UPD161401 [NEC]

256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM; 256色1/ 80 DUTY LCD控制器/驱动器,片上RAM
UPD161401
型号: UPD161401
厂家: NEC    NEC
描述:

256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
256色1/ 80 DUTY LCD控制器/驱动器,片上RAM

驱动器 控制器 CD
文件: 总124页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD161401  
256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM  
DESCRIPTION  
The µPD161401 is an LCD controller/driver with RAM and is capable of driving a full-dot LCD. It can display 256  
colors on an RGB-STN color LCD. This LCD controller/driver can drive a full-dot LCD of up to 101 × 80 pixel with a  
single chip.  
FEATURES  
LCD driver with on-chip display RAM  
Logic power supply operation from +1.8 V to +3.6 V  
Internal booster circuit: x 2 to x 7 selectable  
Dot display RAM: (101 x 80) x 8 bits  
8 (R, G)/4 (B) grayscales selectable from 17 levels  
Full-dot output: 303 segment lines and 80 common lines  
Serial interface (SI, SCL) or 8-/16-bit parallel data input (i80 or M68 system interface)  
On-chip voltage divider resistor  
Selectable bias value: 1/9 to 1/5  
Selectable duty ratio: 1/80, 1/72 and 1/64 (main duty)  
On-chip oscillator  
ORDERING INFORMATION  
Part Number  
Package  
µPD161401W/P  
Wafer/Chip (supports COF)  
Remark Purchasing the above chip entail the exchange of documents such as a separate memorandum or product  
quality, so please contact one of our sales representatives.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No.  
Data Published June 2002 NS CP(K)  
Printed in Japan  
S15726EJ2V0DS00 (2nd Edition)  
The mark shows major revised points.  
2001  
©
µPD161401  
CONTENT  
1. BLOCK DIAGRAM ...................................................................................................................................5  
2. PIN CONFIGURATION (Pad Layout) .....................................................................................................6  
3. PIN FUNCTIONS......................................................................................................................................12  
3.1 Power Supply Pins...........................................................................................................................................12  
3.2 Logic Circuit Pins ............................................................................................................................................13  
3.3 Driver Pins........................................................................................................................................................15  
4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS....................................16  
5. FUNCTIONAL DESCRIPTION.................................................................................................................17  
5.1 CPU Interface ....................................................................................................................................................17  
5.1.1 Selecting interface type...........................................................................................................................17  
5.1.2 Parallel interface.....................................................................................................................................17  
5.1.3 Serial interface........................................................................................................................................19  
5.1.4 Chip select..............................................................................................................................................19  
5.1.5 Accessing display data RAM and internal registers................................................................................19  
5.2 Display Data RAM ............................................................................................................................................21  
5.2.1 Display data RAM...................................................................................................................................21  
5.2.2 X address circuit .....................................................................................................................................21  
5.2.3 Y address circuit .....................................................................................................................................23  
5.2.4 Column address circuit ...........................................................................................................................24  
5.2.5 Common scan circuit ..............................................................................................................................25  
5.2.6 Display data latch circuit .........................................................................................................................28  
5.2.7 Arbitrary address area access (window access mode (WAS)) ...............................................................28  
5.3 Screen Processing...........................................................................................................................................30  
5.3.1 Blink/reverse display circuit.....................................................................................................................30  
5.3.2 Example of setting blink area..................................................................................................................33  
5.4 Oscillator ..........................................................................................................................................................33  
5.5 Display Timing Generator ...............................................................................................................................35  
5.6 Power Supply Circuit.......................................................................................................................................37  
5.6.1 Power supply circuit................................................................................................................................37  
5.6.2 Booster circuit.........................................................................................................................................37  
5.6.3 Voltage regulator circuit ..........................................................................................................................39  
5.6.4 Level voltage control by operational amplifier.........................................................................................42  
5.6.5 Application example of power supply circuit ...........................................................................................44  
5.7 Driving LCD ......................................................................................................................................................48  
5.7.1 Full-dot pulse modulation........................................................................................................................48  
2
Data Sheet S15726EJ2V0DS  
µPD161401  
5.7.2 Grayscale palette....................................................................................................................................51  
5.7.3 Setting of display size .............................................................................................................................52  
5.7.4 Setting of LCD N-line inversion and M-line shift......................................................................................52  
5.7.5 Reverse driving between frames ............................................................................................................54  
5.8 Display Mode....................................................................................................................................................55  
5.8.1 Selecting display mode...........................................................................................................................55  
5.8.2 Screen scrolling .......................................................................................................................................58  
5.8.3 Scroll setting examples............................................................................................................................59  
5.9 Reset.................................................................................................................................................................61  
6. COMMANDS............................................................................................................................................63  
6.1 Control Register 1 (R0)....................................................................................................................................64  
6.2 Control Register 2 (R1)....................................................................................................................................65  
6.3 Reset Command Register (R3) .......................................................................................................................66  
6.4 X Address Register (R4)..................................................................................................................................66  
6.5 Y Address Register (R5)..................................................................................................................................66  
6.6 MIN.·X Address Register (R7) .........................................................................................................................67  
6.7 MAX.·X Address Register (R8)........................................................................................................................67  
6.8 MIN.·Y Address Register (R9) .........................................................................................................................67  
6.9 MAX.·Y Address Register (R10)......................................................................................................................68  
6.10 Display Memory Access Register (R12).......................................................................................................68  
6.11 Main Duty Setting Register (R14) .................................................................................................................69  
6.12 Main Duty N-line Inversion Register (R15)...................................................................................................69  
6.13 Main Duty M-line Shift Register (R16) ..........................................................................................................70  
6.14 Sub-duty Setting Register (R17)...................................................................................................................71  
6.15 Sub-duty N-line Inversion Register (R18) ....................................................................................................72  
6.16 Sub-duty M-line Shift Register (R19)............................................................................................................73  
6.17 COM Scanning Address Setting Register (R21)..........................................................................................74  
6.18 Sub-duty Start Address Register (R22)........................................................................................................77  
6.19 Scroll Fixed Area Position Register (R23) ...................................................................................................78  
6.20 Scroll Fixed Area Width Register (R27) .......................................................................................................78  
6.21 Scroll Step Number Register (R31) ..............................................................................................................79  
6.22 Blink/Reverse Setting Register (R37)...........................................................................................................80  
6.23 Complementary Color Blink X Address Register (R38)..............................................................................80  
6.24 Complementary Color Blink Start Line Address Register (R39)................................................................81  
6.25 Complementary Color Blink End Line Address Register (R40) .................................................................81  
6.26 Complementary Color Blink Data Memory Register (R41) .........................................................................82  
6.27 Specified Color Blink X Address Register (R42).........................................................................................82  
6.28 Specified Color Blink Start Line Address Register (R43)...........................................................................83  
6.29 Specified Color Blink End Line Address Register (R44) ............................................................................83  
6.30 Specified Color Blink Data Memory Register (R45) ....................................................................................84  
6.31 Specified Color Setting Register (R46) ........................................................................................................84  
3
Data Sheet S15726EJ2V0DS  
µPD161401  
6.32 Reverse X Address Register (R47)...............................................................................................................84  
6.33 Reverse Start Line Address Register (R48).................................................................................................85  
6.34 Reverse End Line Address Register (R49) ..................................................................................................85  
6.35 Reverse Data Memory Access Register (R50).............................................................................................86  
6.36 Power System Control Register 1 (R52) ......................................................................................................87  
6.37 Power System Control Register 2 (R53) ......................................................................................................88  
6.38 Power System Control Register 3 (R54) ......................................................................................................89  
6.39 Power System Control Register 4 (R55) ......................................................................................................90  
6.40 Power System Control Register 5 (R56) ......................................................................................................91  
6.41 Main Electronic Volume Register (R57) .......................................................................................................92  
6.42 Sub-electronic Volume Register (R58).........................................................................................................92  
6.43 RAM Test Mode Setting Register (R61)........................................................................................................93  
6.44 Driving Mode Select Register (R64) .............................................................................................................93  
6.45 Main R Grayscale Data Registers (R65 to R72) ...........................................................................................94  
6.46 Main G Grayscale Data Registers (R73 to R80)...........................................................................................95  
6.47 Main B Grayscale Data Registers (R81 to R84) ...........................................................................................96  
6.48 Sub R Grayscale Data Registers (R85 to R92).............................................................................................97  
6.49 Sub G Grayscale Data Registers (R93 to R100) ..........................................................................................98  
6.50 Sub B Grayscale Data Registers (R101 to R104).........................................................................................99  
7. µPD161401 REGISTER LIST ................................................................................................................100  
8. POWER SEQUENCE.............................................................................................................................102  
8.1 Power ON Sequence (with Internal Power Supply, Power ON Display ON) ........................................103  
8.2 Power OFF Sequence (with Internal Power Supply) ...................................................................................105  
8.3 Power ON Sequence (with External Driving Power Supply, Power ON Display ON)...........................106  
8.4 Power OFF Sequence (with External Driving Power Supply).....................................................................107  
8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF .................................................................108  
8.6 Flow of VOUT and VLCD Voltages in Display Output and HALT/Standby Modes.........................................109  
9. USING RAM TEST MODE.....................................................................................................................110  
10. ELECTRICAL SPECIFICATIONS........................................................................................................111  
11. CPU INTERFACE (Reference Example)............................................................................................120  
4
Data Sheet S15726EJ2V0DS  
µPD161401  
1. BLOCK DIAGRAM  
SEG  
1
SEG303  
O
1
O
80  
Common driver  
Segment driver  
Common timing  
generator  
Segment gray-scale control  
IFM0  
IFM1  
/CS1  
CS2  
/RD(E)  
/WR(R,/W)  
Display data latch  
Graphic control  
D15 to D8  
D7(SI)  
D6(SCL)  
D5 to D0  
RS  
I/O  
/DISP  
buffer  
Display data RAM  
101 x 8 x 80 bits  
Blink & Inverse data RAM  
303 bits  
TOUT15 to TOUT0  
M,/S  
FR  
FRSYNC  
Logic Control Circuit  
DOF  
TSTRTST  
TSTVIHL  
Data  
control  
Address  
control  
Data  
register  
TPWR0, TPWR1  
Gray-scale  
control  
Register  
Command  
decorder  
V
DD1  
OSCIN1  
OSCIN2  
V
DD2  
Oscillator  
circuit  
OSCOUT  
OSCSYNC  
Timing generator  
VSS  
+
-
C1 , C1  
D/A  
converter  
Op amp.  
LCD voltage generator  
DC/DC  
converter  
+
-
C5 , C5  
AMPOUTM  
AMPOUTS  
VOUT2  
VR  
VLCD  
VLC1  
VLC2  
VLC3 VLC4  
VOUT  
VRS  
IRS  
Remark /xxx is an active-low signal.  
5
Data Sheet S15726EJ2V0DS  
µPD161401  
2. PIN CONFIGURATION (Pad Layout)  
µPD161401W/P  
Chip size: 2.57 x 16.05 mm2  
Chip thickness: 485 µm (TYP.)  
D
u
D
u
672  
m
m
y
m
m
y
713  
M1  
O
80  
O
41  
671  
Dummy  
1
SEG303  
SEG302  
SEG301  
Y
SEG194  
SEG193  
Dummy  
SEG192  
SEG191  
X
I/O side  
SEG  
SEG  
SEG  
3
2
1
Dummy  
317  
360  
D
O
1
D O40  
M2  
u
u
m
m
y
m
m
y
359  
318  
6
Data Sheet S15726EJ2V0DS  
µPD161401  
Details of pad and alignment mark  
Pad type  
A type  
Pad size (Al): 39 x 71 µm2 TYP.  
Bump size : 33 x 65 µm2 TYP.  
Bump height: 17 µm TYP.  
B type  
Pad size (Al): 93 x 71 µm2 TYP.  
Bump size: 87 x 65 µm2 TYP.  
Bump height: 17 µm TYP.  
Alignment mark (unit: µm)  
X
Y
M1  
M2  
1140.00  
1140.00  
7560.00  
7560.00  
Shape of mark (unit: µm)  
Mark center  
80φ (M1)  
75φ (M2)  
7
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 21 Pad Layout (1/4)  
µ
µ
µ
Pad Layout [ m]  
Pad Layout [ m]  
Pad Layout [ m]  
Pad  
No.  
Pad Name  
Pad  
Pad  
No.  
Pad Name  
Pad  
Pad  
No.  
Pad Name  
Pad  
Type  
X
Y
Type  
X
Y
Type  
X
Y
1 DUMMY  
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
7230.00  
7105.00  
7060.00  
7015.00  
6970.00  
6925.00  
6880.00  
6835.00  
6790.00  
6745.00  
6700.00  
6655.00  
6610.00  
6565.00  
6520.00  
6475.00  
6430.00  
6385.00  
6340.00  
6295.00  
6250.00  
6205.00  
6160.00  
6115.00  
6070.00  
6025.00  
5980.00  
5935.00  
5890.00  
5845.00  
5800.00  
5755.00  
5710.00  
5665.00  
5620.00  
5575.00  
5530.00  
5485.00  
5440.00  
5395.00  
5350.00  
5305.00  
5260.00  
5215.00  
5170.00  
5125.00  
5080.00  
5035.00  
4990.00  
4945.00  
4900.00  
4855.00  
4810.00  
4765.00  
44720.00  
4675.00  
4630.00  
4585.00  
4540.00  
4495.00  
4450.00  
4405.00  
4360.00  
4315.00  
4270.00  
4225.00  
4180.00  
4135.00  
4090.00  
4045.00  
71 VSS  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
4000.00  
3955.00  
3910.00  
3865.00  
3820.00  
3775.00  
3730.00  
3685.00  
3640.00  
3595.00  
3550.00  
3505.00  
3460.00  
3415.00  
3370.00  
3325.00  
3280.00  
3235.00  
3190.00  
3145.00  
3100.00  
3055.00  
3010.00  
2965.00  
2920.00  
2875.00  
2830.00  
2785.00  
2740.00  
2695.00  
2650.00  
2605.00  
2560.00  
2515.00  
2470.00  
2425.00  
2380.00  
2335.00  
2290.00  
2245.00  
2200.00  
2155.00  
2110.00  
2065.00  
2020.00  
1975.00  
1930.00  
1885.00  
1840.00  
1795.00  
1750.00  
1705.00  
1660.00  
1615.00  
1570.00  
1525.00  
1480.00  
1435.00  
1390.00  
1345.00  
1300.00  
1255.00  
1210.00  
1165.00  
1120.00  
1075.00  
1030.00  
985.00  
141 D11  
142 D11  
143 D10  
144 D10  
145 D10  
146 VSS  
147 VSS  
148 VSS  
149 D9  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
850.00  
805.00  
2 VSS  
3 VSS  
72 VSS  
73 VSS  
760.00  
4 VSS  
74 M, /S  
75 M, /S  
76 M, /S  
77 VDD1  
78 VDD1  
79 VDD1  
80 IFM0  
81 IFM0  
82 IFM0  
83 VSS  
715.00  
5 VOUT  
6 VOUT  
7 VOUT  
8 VOUT2  
9 VOUT2  
10 VOUT2  
11 VSS  
12 VSS  
13 VSS  
670.00  
625.00  
580.00  
535.00  
490.00  
150 D9  
445.00  
151 D9  
400.00  
152 D8  
355.00  
153 D8  
310.00  
14 C5  
84 VSS  
154 D8  
265.00  
15 C5  
85 VSS  
155 VSS  
156 VSS  
157 VSS  
158 D7  
220.00  
16 C5  
86 IFM1  
87 IFM1  
88 IFM1  
89 VDD1  
90 VDD1  
91 VDD1  
92 IRS  
175.00  
17 C5+  
18 C5+  
19 C5+  
130.00  
85.00  
159 D7  
40.00  
20 C4  
160 D7  
-5.00  
21 C4  
161 D6  
-50.00  
22 C4  
162 D6  
-95.00  
23 C4+  
24 C4+  
25 C4+  
93 IRS  
163 D6  
-140.00  
-185.00  
-230.00  
-275.00  
-320.00  
-365.00  
-410.00  
-455.00  
-500.00  
-545.00  
-590.00  
-635.00  
-680.00  
-725.00  
-770.00  
-815.00  
-860.00  
-905.00  
-950.00  
-995.00  
-1040.00  
-1085.00  
-1130.00  
-1175.00  
-1220.00  
-1265.00  
-1310.00  
-1355.00  
-1400.00  
-1445.00  
-1490.00  
-1535.00  
-1580.00  
-1625.00  
-1670.00  
-1715.00  
-1760.00  
-1805.00  
-1850.00  
-1895.00  
-1940.00  
-1985.00  
-2030.00  
-2075.00  
-2120.00  
-2165.00  
-2210.00  
-2255.00  
94 IRS  
164 D5  
95 VSS  
165 D5  
26 C3  
96 VSS  
166 D5  
27 C3  
97 VSS  
167 VSS  
168 VSS  
169 VSS  
170 D4  
28 C3  
98 /CS1  
29 C3+  
30 C3+  
31 C3+  
99 /CS1  
100 /CS1  
101 CS2  
102 CS2  
103 CS2  
104 VDD1  
105 VDD1  
106 VDD1  
107 /DISP  
108 /DISP  
109 /DISP  
110 RS  
171 D4  
32 C2  
172 D4  
33 C2  
173 D3  
34 C2  
174 D3  
35 C2+  
36 C2+  
37 C2+  
175 D3  
176 D2  
177 D2  
38 C1  
178 D2  
39 C1  
179 VSS  
180 VSS  
181 VSS  
182 D1  
40 C1  
41 C1+  
111 RS  
42 C1+  
112 RS  
43 C1+  
113 VSS  
114 VSS  
115 VSS  
116 /WR (R, /W)  
117 /WR (R, /W)  
118 /WR (R, /W)  
119 /RD (E)  
120 /RD (E)  
121 /RD (E)  
122 VDD1  
123 VDD1  
124 VDD1  
125 D15  
126 D15  
127 D15  
128 D14  
129 D14  
130 D14  
131 D13  
132 D13  
133 D13  
134 VSS  
135 VSS  
136 VSS  
137 D12  
138 D12  
139 D12  
140 D11  
183 D1  
44 VSS  
184 D1  
45 VSS  
185 D0  
46 VSS  
186 D0  
47 TPWR1  
48 TPWR1  
49 TPWR1  
50 TPWR0  
51 TPWR0  
52 TPWR0  
53 VRS  
54 VRS  
55 VRS  
56 VSS  
187 D0  
188 VSS  
189 VSS  
190 VSS  
191 FRSYNC  
192 FRSYNC  
193 FRSYNC  
194 FR  
195 FR  
196 FR  
57 VSS  
197 DOF  
198 DOF  
199 DOF  
200 OSCSYNC  
201 OSCSYNC  
202 OSCSYNC  
203 VSS  
204 VSS  
205 VSS  
206 OSCIN1  
207 OSCIN1  
208 OSCIN1  
209 VSS  
210 VSS  
58 VSS  
59 VSS  
60 VSS  
61 VSS  
62 VDD2  
63 VDD2  
64 VDD2  
65 VDD1  
66 VDD1  
67 VDD1  
68 VSS  
69 VSS  
70 VSS  
940.00  
895.00  
8
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 21 Pad Layout (2/4)  
µ
µ
µ
Pad Layout [ m]  
Pad Layout [ m]  
Pad Layout [ m]  
Pad  
No.  
Pad Name  
Pad  
Pad  
No.  
Pad Name  
Pad  
Pad  
Pad Name  
Pad  
Type  
X
Y
Type  
X
Y
No.  
Type  
X
Y
211 VSS  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-2300.00  
-2345.00  
-2390.00  
-2435.00  
-2480.00  
-2525.00  
-2570.00  
-2615.00  
-2660.00  
-2705.00  
-2750.00  
-2795.00  
-2840.00  
-2885.00  
-2930.00  
-2975.00  
-3020.00  
-3065.00  
-3110.00  
-3155.00  
-3200.00  
-3245.00  
-3290.00  
-3335.00  
-3380.00  
-3425.00  
-3470.00  
-3515.00  
-3560.00  
-3605.00  
-3650.00  
-3695.00  
-3740.00  
-3785.00  
-3830.00  
-3875.00  
-3920.00  
-3965.00  
-4010.00  
-4055.00  
-4100.00  
-4145.00  
-4190.00  
-4235.00  
-4280.00  
-4325.00  
-4370.00  
-4415.00  
-4460.00  
-4505.00  
-4550.00  
-4595.00  
-4640.00  
-4685.00  
-4730.00  
-4775.00  
-4820.00  
-4865.00  
-4910.00  
-4955.00  
-5000.00  
-5045.00  
-5090.00  
-5135.00  
-5180.00  
-5225.00  
-5270.00  
-5315.00  
-5360.00  
-5405.00  
281 VSS  
282 VSS  
283 VSS  
284 VSS  
285 VSS  
286 VSS  
287 VR  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1144.50  
-1060.00  
-935.00  
-890.00  
-845.00  
-800.00  
-755.00  
-710.00  
-665.00  
-620.00  
-575.00  
-530.00  
-485.00  
-440.00  
-395.00  
-350.00  
-305.00  
-260.00  
-215.00  
-170.00  
-125.00  
-80.00  
-5450.00  
-5495.00  
-5540.00  
-5585.00  
-5630.00  
-5675.00  
-5720.00  
-5765.00  
-5810.00  
-5855.00  
-5900.00  
-5945.00  
-5990.00  
-6035.00  
-6080.00  
-6125.00  
-6170.00  
-6215.00  
-6260.00  
-6305.00  
-6350.00  
-6395.00  
-6440.00  
-6485.00  
-6530.00  
-6575.00  
-6620.00  
-6665.00  
-6710.00  
-6755.00  
-6800.00  
-6845.00  
-6890.00  
-6935.00  
-6980.00  
-7025.00  
-7150.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
351 O8  
352 O7  
353 O6  
354 O5  
355 O4  
356 O3  
357 O2  
358 O1  
A
A
A
A
A
A
A
A
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
505.00  
550.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7773.00  
-7080.00  
-6955.00  
-6910.00  
-6865.00  
-6820.00  
-6775.00  
-6730.00  
-6685.00  
-6640.00  
-6595.00  
-6550.00  
-6505.00  
-6460.00  
-6415.00  
-6370.00  
-6325.00  
-6280.00  
-6235.00  
-6190.00  
-6145.00  
-6100.00  
-6055.00  
-6010.00  
-5965.00  
-5920.00  
-5875.00  
-5830.00  
-5785.00  
-5740.00  
-5695.00  
-5650.00  
-5605.00  
-5560.00  
-5515.00  
-5470.00  
-5425.00  
-5380.00  
-5335.00  
-5290.00  
-5245.00  
-5200.00  
-5155.00  
-5110.00  
-5065.00  
-5020.00  
-4975.00  
-4930.00  
-4885.00  
-4840.00  
-4795.00  
-4750.00  
-4705.00  
-4660.00  
-4615.00  
-4570.00  
-4525.00  
-4480.00  
-4435.00  
-4390.00  
-4345.00  
-4300.00  
212 OSCIN2  
213 OSCIN2  
214 OSCIN2  
215 VSS  
595.00  
640.00  
685.00  
216 VSS  
730.00  
217 VSS  
775.00  
218 OSCOUT  
219 OSCOUT  
220 OSCOUT  
221 VSS  
288 VR  
820.00  
289 VR  
359 DUMMY  
360 DUMMY  
361 SEG1  
362 SEG2  
363 SEG3  
364 SEG4  
365 SEG5  
366 SEG6  
367 SEG7  
368 SEG8  
369 SEG9  
370 SEG10  
371 SEG11  
372 SEG12  
373 SEG13  
374 SEG14  
375 SEG15  
376 SEG16  
377 SEG17  
378 SEG18  
379 SEG19  
380 SEG20  
381 SEG21  
382 SEG22  
383 SEG23  
384 SEG24  
385 SEG25  
386 SEG26  
387 SEG27  
388 SEG28  
389 SEG29  
390 SEG30  
391 SEG31  
392 SEG32  
393 SEG33  
394 SEG34  
395 SEG35  
396 SEG36  
397 SEG37  
398 SEG38  
399 SEG39  
400 SEG40  
401 SEG41  
402 SEG42  
403 SEG43  
404 SEG44  
405 SEG45  
406 SEG46  
407 SEG47  
408 SEG48  
409 SEG49  
410 SEG50  
411 SEG51  
412 SEG52  
413 SEG53  
414 SEG54  
415 SEG55  
416 SEG56  
417 SEG57  
418 SEG58  
419 SEG59  
420 SEG60  
945.00  
290 AMPOUTM  
291 AMPOUTM  
292 AMPOUTM  
293 VSS  
294 VSS  
295 VSS  
296 AMPOUTS  
297 AMPOUTS  
298 AMPOUTS  
299 VSS  
300 VSS  
301 VSS  
302 VLCD  
303 VLCD  
304 VLCD  
305 VLC1  
306 VLC1  
307 VLC1  
308 VLC2  
309 VLC2  
310 VLC2  
311 VLC3  
312 VLC3  
313 VLC3  
314 VLC4  
315 VLC4  
316 VLC4  
317 DUMMY  
318 DUMMY  
319 O40  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
222 VSS  
223 VSS  
224 TSTRTST  
225 TSTRTST  
226 TSTRTST  
227 TSTVIHL  
228 TSTVIHL  
229 TSTVIHL  
230 TOUT15  
231 TOUT15  
232 TOUT15  
233 TOUT14  
234 TOUT14  
235 TOUT14  
236 TOUT13  
237 TOUT13  
238 TOUT13  
239 TOUT12  
240 TOUT12  
241 TOUT12  
242 TOUT11  
243 TOUT11  
244 TOUT11  
245 TOUT10  
246 TOUT10  
247 TOUT10  
248 TOUT9  
249 TOUT9  
250 TOUT9  
251 TOUT8  
252 TOUT8  
253 TOUT8  
254 TOUT7  
255 TOUT7  
256 TOUT7  
257 TOUT6  
258 TOUT6  
259 TOUT6  
260 TOUT5  
261 TOUT5  
262 TOUT5  
263 TOUT4  
264 TOUT4  
265 TOUT4  
266 TOUT3  
267 TOUT3  
268 TOUT3  
269 TOUT2  
270 TOUT2  
271 TOUT2  
272 TOUT1  
273 TOUT1  
274 TOUT1  
275 TOUT0  
276 TOUT0  
277 TOUT0  
278 VSS  
320 O39  
321 O38  
322 O37  
323 O36  
324 O35  
325 O34  
326 O33  
327 O32  
328 O31  
329 O30  
330 O29  
331 O28  
332 O27  
333 O26  
334 O25  
335 O24  
336 O23  
337 O22  
338 O21  
339 O20  
-35.00  
340 O19  
10.00  
341 O18  
55.00  
342 O17  
100.00  
343 O16  
145.00  
344 O15  
190.00  
345 O14  
235.00  
346 O13  
280.00  
347 O12  
325.00  
348 O11  
370.00  
279 VSS  
280 VSS  
349 O10  
350 O9  
415.00  
460.00  
9
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 21 Pad Layout (3/4)  
µ
µ
µ
Pad Layout [ m]  
Pad Layout [ m]  
Pad Layout [ m]  
Pad  
No.  
Pad Name  
Pad  
Pad  
No.  
Pad Name  
Pad  
Pad  
No.  
Pad Name  
Pad  
Type  
X
Y
Type  
X
Y
Type  
X
Y
421 SEG61  
422 SEG62  
423 SEG63  
424 SEG64  
425 SEG65  
426 SEG66  
427 SEG67  
428 SEG68  
429 SEG69  
430 SEG70  
431 SEG71  
432 SEG72  
433 SEG73  
434 SEG74  
435 SEG75  
436 SEG76  
437 SEG77  
438 SEG78  
439 SEG79  
440 SEG80  
441 SEG81  
442 SEG82  
443 SEG83  
444 SEG84  
445 SEG85  
446 SEG86  
447 SEG87  
448 SEG88  
449 SEG89  
450 SEG90  
451 SEG91  
452 SEG92  
453 SEG93  
454 SEG94  
455 SEG95  
456 SEG96  
457 SEG97  
458 SEG98  
459 SEG99  
460 SEG100  
461 SEG101  
462 SEG102  
463 SEG103  
464 SEG104  
465 SEG105  
466 SEG106  
467 SEG107  
468 SEG108  
469 SEG109  
470 SEG110  
471 SEG111  
472 SEG112  
473 SEG113  
474 SEG114  
475 SEG115  
476 SEG116  
477 SEG117  
478 SEG118  
479 SEG119  
480 SEG120  
481 SEG121  
482 SEG122  
483 SEG123  
484 SEG124  
485 SEG125  
486 SEG126  
487 SEG127  
488 SEG128  
489 SEG129  
490 SEG130  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
-4255.00  
-4210.00  
-4165.00  
-4120.00  
-4075.00  
-4030.00  
-3985.00  
-3940.00  
-3895.00  
-3850.00  
-3805.00  
-3760.00  
-3715.00  
-3670.00  
-3625.00  
-3580.00  
-3535.00  
-3490.00  
-3445.00  
-3400.00  
-3355.00  
-3310.00  
-3265.00  
-3220.00  
-3175.00  
-3130.00  
-3085.00  
-3040.00  
-2995.00  
-2950.00  
-2905.00  
-2860.00  
-2815.00  
-2770.00  
-2725.00  
-2680.00  
-2635.00  
-2590.00  
-2545.00  
-2500.00  
-2455.00  
-2410.00  
-2365.00  
-2320.00  
-2275.00  
-2230.00  
-2185.00  
-2140.00  
-2095.00  
-2050.00  
-2005.00  
-1960.00  
-1915.00  
-1870.00  
-1825.00  
-1780.00  
-1735.00  
-1690.00  
-1645.00  
-1600.00  
-1555.00  
-1510.00  
-1465.00  
-1420.00  
-1375.00  
-1330.00  
1285.00  
-1240.00  
-1195.00  
-1150.00  
491 SEG131  
492 SEG132  
493 SEG133  
494 SEG134  
495 SEG135  
496 SEG136  
497 SEG137  
498 SEG138  
499 SEG139  
500 SEG140  
501 SEG141  
502 SEG142  
503 SEG143  
504 SEG144  
505 SEG145  
506 SEG146  
507 SEG147  
508 SEG148  
509 SEG149  
510 SEG150  
511 SEG151  
512 SEG152  
513 SEG153  
514 SEG154  
515 SEG155  
516 SEG156  
517 SEG157  
518 SEG158  
519 SEG159  
520 SEG160  
521 SEG161  
522 SEG162  
523 SEG163  
524 SEG164  
525 SEG165  
526 SEG166  
527 SEG167  
528 SEG168  
529 SEG169  
530 SEG170  
531 SEG171  
532 SEG172  
533 SEG173  
534 SEG174  
535 SEG175  
536 SEG176  
537 SEG177  
538 SEG178  
539 SEG179  
540 SEG180  
541 SEG181  
542 SEG182  
543 SEG183  
544 SEG184  
545 SEG185  
546 SEG186  
547 SEG187  
548 SEG188  
549 SEG189  
550 SEG190  
551 SEG191  
552 SEG192  
553 DUMMY  
554 DUMMY  
555 DUMMY  
556 DUMMY  
557 DUMMY  
558 DUMMY  
559 DUMMY  
560 SEG193  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
-1105.00  
-1060.00  
-1015.00  
-970.00  
-925.00  
-880.00  
-835.00  
-790.00  
-745.00  
-700.00  
-655.00  
-610.00  
-565.00  
-520.00  
-475.00  
-430.00  
-385.00  
-340.00  
-295.00  
-250.00  
-205.00  
-160.00  
-115.00  
-70.00  
561 SEG194  
562 SEG195  
563 SEG196  
564 SEG197  
565 SEG198  
566 SEG199  
567 SEG200  
568 SEG201  
569 SEG202  
570 SEG203  
571 SEG204  
572 SEG205  
573 SEG206  
574 SEG207  
575 SEG208  
576 SEG209  
577 SEG210  
578 SEG211  
579 SEG212  
580 SEG213  
581 SEG214  
582 SEG215  
583 SEG216  
584 SEG217  
585 SEG218  
586 SEG219  
587 SEG220  
588 SEG221  
589 SEG222  
590 SEG223  
591 SEG224  
592 SEG225  
593 SEG226  
594 SEG227  
595 SEG228  
596 SEG229  
597 SEG230  
598 SEG231  
599 SEG232  
600 SEG233  
601 SEG234  
602 SEG235  
603 SEG236  
604 SEG237  
605 SEG238  
606 SEG239  
607 SEG240  
608 SEG241  
609 SEG242  
610 SEG243  
611 SEG244  
612 SEG245  
613 SEG246  
614 SEG247  
615 SEG248  
616 SEG249  
617 SEG250  
618 SEG251  
619 SEG252  
620 SEG253  
621 SEG254  
622 SEG255  
623 SEG256  
624 SEG257  
625 SEG258  
626 SEG259  
627 SEG260  
628 SEG261  
629 SEG262  
630 SEG263  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
2045.00  
2090.00  
2135.00  
2180.00  
2225.00  
2270.00  
2315.00  
2360.00  
2405.00  
2450.00  
2495.00  
2540.00  
2585.00  
2630.00  
2675.00  
2720.00  
2765.00  
2810.00  
2855.00  
2900.00  
2945.00  
2990.00  
3035.00  
3080.00  
3125.00  
3170.00  
3215.00  
3260.00  
3305.00  
3350.00  
3395.00  
3440.00  
3485.00  
3530.00  
3575.00  
3620.00  
3665.00  
3710.00  
3755.00  
3800.00  
3845.00  
3890.00  
3935.00  
3980.00  
4025.00  
4070.00  
4115.00  
4160.00  
4205.00  
4250.00  
4295.00  
4340.00  
4385.00  
4430.00  
4475.00  
4520.00  
4565.00  
4610.00  
4655.00  
4700.00  
4745.00  
4790.00  
4835.00  
4880.00  
4925.00  
4970.00  
5015.00  
5060.00  
5105.00  
5150.00  
-25.00  
20.00  
65.00  
110.00  
155.00  
200.00  
245.00  
290.00  
335.00  
380.00  
425.00  
470.00  
515.00  
560.00  
605.00  
650.00  
695.00  
740.00  
785.00  
830.00  
875.00  
920.00  
965.00  
1010.00  
1055.00  
1100.00  
1145.00  
1190.00  
1235.00  
1280.00  
1325.00  
1370.00  
1415.00  
1460.00  
1505.00  
1550.00  
1595.00  
1640.00  
1685.00  
1730.00  
1775.00  
1820.00  
1865.00  
1910.00  
1955.00  
2000.00  
10  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 21 Pad Layout (4/4)  
µ
µ
Pad Layout [ m]  
Pad Layout [ m]  
Pad  
No.  
Pad Name  
Pad  
Pad  
No.  
Pad Name  
Pad  
Type  
X
Y
Type  
X
Y
631 SEG264  
632 SEG265  
633 SEG266  
634 SEG267  
635 SEG268  
636 SEG269  
637 SEG270  
638 SEG271  
639 SEG272  
640 SEG273  
641 SEG274  
642 SEG275  
643 SEG276  
A
A
A
A
A
A
A
A
A
A
A
A
A
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
5195.00  
5240.00  
5285.00  
5330.00  
5375.00  
5420.00  
5465.00  
5510.00  
5555.00  
5600.00  
5645.00  
5690.00  
5735.00  
701 O69  
702 O70  
703 O71  
704 O72  
705 O73  
706 O74  
707 O75  
708 O76  
709 O77  
710 O78  
711 O79  
712 O80  
713 DUMMY  
A
A
A
A
A
A
A
A
A
A
A
A
B
-435.00  
-480.00  
-525.00  
-570.00  
-615.00  
-660.00  
-705.00  
-750.00  
-795.00  
-840.00  
-885.00  
-930.00  
-1055.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
644 SEG277  
645 SEG278  
646 SEG279  
647 SEG280  
648 SEG281  
649 SEG282  
650 SEG283  
651 SEG284  
652 SEG285  
653 SEG286  
654 SEG287  
655 SEG288  
656 SEG289  
657 SEG290  
658 SEG291  
659 SEG292  
660 SEG293  
661 SEG294  
662 SEG295  
663 SEG296  
664 SEG297  
665 SEG298  
666 SEG299  
667 SEG300  
668 SEG301  
669 SEG302  
670 SEG303  
671 DUMMY  
672 DUMMY  
673 O41  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
1033.00  
950.00  
825.00  
780.00  
735.00  
690.00  
645.00  
600.00  
555.00  
510.00  
465.00  
420.00  
375.00  
330.00  
285.00  
240.00  
195.00  
150.00  
105.00  
60.00  
5780.00  
5825.00  
5870.00  
5915.00  
5960.00  
6005.00  
6050.00  
6095.00  
6140.00  
6185.00  
6230.00  
6275.00  
6320.00  
6365.00  
6410.00  
6455.00  
6500.00  
6545.00  
6590.00  
6635.00  
6680.00  
6725.00  
6770.00  
6815.00  
6860.00  
6905.00  
6950.00  
7075.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
7773.00  
674 O42  
675 O43  
676 O44  
677 O45  
678 O46  
679 O47  
680 O48  
681 O49  
682 O50  
683 O51  
684 O52  
685 O53  
686 O54  
687 O55  
688 O56  
689 O57  
690 O58  
691 O59  
15.00  
692 O60  
-30.00  
693 O61  
-75.00  
694 O62  
-120.00  
-165.00  
-210.00  
-255.00  
-300.00  
-345.00  
-390.00  
695 O63  
696 O64  
697 O65  
698 O66  
699 O67  
700 O68  
11  
Data Sheet S15726EJ2V0DS  
µPD161401  
3. PIN FUNCTIONS  
3.1 Power Supply Pins  
Symbol  
VDD1  
Pin Name  
Pin No.  
I/O  
Description  
Logic power supply  
65 to 67, 77 to 79,  
89 to 91,104 to 106,  
122 to 124  
Supplies power to the logic circuit.  
VDD2  
Booster circuit power  
supply  
62 to 64  
Supplies power to the booster circuit.  
VSS  
Logic and driver  
ground pin  
2 to 4, 11 to 13, 44 to 46,  
56 to 61, 68 to 73,  
83 to 85, 95 to 97,  
113 to 115, 134 to 136,  
146 to 148, 155 to 157,  
167 to 169, 179 to 181,  
188 to 190, 203 to 205,  
209 to 211, 215 to 217,  
221 to 223, 278 to 286,  
293 to 295, 299 to 301  
5 to 7,  
Ground pin for the logic and driver circuits.  
VOUT,  
VOUT2  
Driver power supply  
Supply power to the driver (output pins of the internal  
booster circuit). Connect a 1 µF capacitor between GND  
and these pins. When the internal booster circuit is not  
used, the driver power can be directly input to the VOUT pin.  
At this time, leave VOUT2 open.  
8 to 10  
VLCD,  
Driver reference  
power supply  
302 to 304,  
305 to 316  
Supply the reference power for driving the LCD. Connect a  
capacitor between GND and these pins when an internal  
bias is selected.  
VLC1 to VLC4  
+
C1 , C1  
Booster capacitor  
connection pin  
43 to 14  
These pins are used to connect capacitors for the internal  
booster circuit. Connect a 1 µF capacitor between the  
corresponding (+) and () pins.  
+
C2 , C2  
+
C3 , C3  
+
C4 , C4  
+
C5 , C5  
12  
Data Sheet S15726EJ2V0DS  
µPD161401  
3.2 Logic Circuit Pins (1/3)  
Symbol Pin Name  
/CS1, Chip select  
Pin No.  
I/O  
Description  
98 to 100,  
101 to 103  
Input  
These pins are chip select signal pins.  
CS2  
When /CS1 = L (CS2 = H), the chip is active, and data/command  
can be input or output and I/O manipulated.  
/RD (E)  
Read (enable)  
119 to 121  
Input  
When i80 system parallel data transfer is selected (/RD), read is  
enabled by this signal. When this pin is L, data is output to the data  
bus. When M68 system parallel data transfer is selected (E), this  
pin inputs an enable signal that triggers data write or read.  
But in the µPD161401, the data of the display access memory  
register, the complementary color blink data memory register, the  
specified color blink data memory register and the reverse data  
memory access register (R12, R41, R45, R50) cannot be read.  
When i80 system parallel data transfer is selected (/WR), write is  
enabled by this signal. Data is written at the rising edge of this  
signal. When M68 system parallel data transfer is selected (R, /W),  
this pin determines the data transfer direction, as follows:  
0: Write  
/WR (R,/W)  
Write (read/write)  
116 to 118  
Input  
Input  
1: Read  
IFM0,  
IFM1  
Interface selection  
86 to 88,  
80 to 82  
Selects an interface mode  
IFM1  
IFM0  
Interface Mode  
L
L
L
H
L
Serial  
Setting prohibited  
i80 series parallel  
M68 series parallel  
H
H
H
D0 to D15  
(SI)  
Data bus  
187 to 182,  
178 to 170,  
166 to 158,  
154 to 149,  
145 to 137,  
133 to 125  
I/O  
This is a bi-directional data bus connected to an 8- or 16-bit  
standard CPU bus.  
(serial input)  
(serial clock)  
(SCL)  
When the serial interface mode is selected (IFM1, IFM0 = L, L), D7  
functions as a serial data input pin (SI), and D6 serves as a serial  
clock input pin (SCL). At this time, D0 to D5 and D8 to D15 go into a  
high-impedance state.  
When the 8-bit data bus is selected, only D0 to D7 are used, and D8  
to D15 go into a high-impedance state. Data is input starting from its  
higher byte, followed by the lower byte. If the chip is not selected,  
all D0 to D15 go into a high-impedance state.  
RS  
Index register/data  
command selection  
Input  
This pin is usually connected to the least significant bit of a  
standard CPU address bus to identify whether data is an index  
register or data/command.  
110 to 112  
RS = H: Indicates that D0 to D15 are data/command.  
RS = L: Indicates that D0 to D15 are an index register.  
13  
Data Sheet S15726EJ2V0DS  
µPD161401  
(2/3)  
Symbol  
/DISP  
Pin Name  
Pin No.  
I/O  
Description  
Reset  
107 to 109  
Input  
Making /DISP low initializes the DISP flag in the control register 1  
(R0) and turns OFF the display. When the serial interface is used,  
the write counter is also initialized. Making /DISP high enables  
writing. To light the display after it has been turned OFF by this pin,  
make /DISP high and set the DISP flag to 1.  
This pin inputs or outputs a liquid crystal AC signal.  
M,/S = H : Output  
FR  
Frame signal  
Frame sync signal  
Display blink  
194 to 196  
191 to 193  
197 to 199  
74 to 76  
I/O  
I/O  
M,/S = L : Input  
When two or more µPD161401s are used in master/slave mode,  
the respective FR pins must be connected to each other.  
This pin inputs or outputs a liquid crystal AC sync signal.  
M,/S = H : Output  
FRSYNC  
DOF  
M,/S  
M,/S = L : Input  
When two or more µPD161401s are used in master/slave mode,  
the respective FRSYNC pins must be connected to each other.  
This pin controls blinking of the LCD.  
I/O  
M,/S = H : Output  
M,/S = L : Input  
When two or more µPD161401s are used in master/slave mode,  
the respective DOF pins must be connected to each other.  
This pin selects master or slave mode. In the master mode, it  
outputs a timing signal necessary for driving the LCD. In the slave  
mode, this timing signal is input from an external source to  
synchronize the LCD. M,/S = H : Master mode  
M,/S = L : Slave mode  
Master/slave  
Input  
The status of each pin, including this pin, and the power circuit is  
as follows depending on the status of the M,/S pin.  
M,/S  
H
Power Circuit  
Enabled  
FR  
FRSYNC  
Output  
Input  
DOF  
Output  
Input  
Output  
Input  
L
Disabled  
IRS  
VLCD adjustment  
Input  
This pin selects the resistor used to adjust the VLCD voltage level.  
IRS = H: The internal resistor is used.  
92 to 94  
IRS = L: The internal resistor is not used.  
The VLCD voltage level is adjusted by an external voltage divider  
resistor connected to the VR pin.  
This pin is enabled only when the master operation mode is  
selected. If the slave mode is selected, this pin is fixed to H or L.  
14  
Data Sheet S15726EJ2V0DS  
µPD161401  
(3/3)  
Symbol  
OSCIN1  
Pin Name  
Pin No.  
I/O  
Description  
Oscillation signal pin  
206 to 208  
Input  
These pins are connected with a resistor inserted between OSCIN1  
and OSCOUT, and between OSCIN2 and OSCOUT. When an external  
oscillator is used, input a clock signal to the OSCIN pin and leave  
the OSCOUT pin open.  
OSCIN2  
212 to 214  
218 to 220  
200 to 202  
Input  
OSCOUT  
OSCSYNC  
Output  
Display clock output  
Test output  
Output This pin outputs a clock for display. When using the µPD161401 in  
the master or slave mode, refer to 5.4 Oscillator.  
TOUT0 to  
TOUT15  
230 to 277  
Output These pins are used when the µPD161401 is in the test mode.  
Usually, leave these pins open.  
TSTRTST,  
TSTVIHL  
TPWR0,  
TPWR1  
Test input pin  
224 to 226,  
227 to 229  
50 to 52,  
Input  
These pins are used to set the µPD161401 in the test mode.  
Usually, connect these pins to VSS.  
Test input/output pin  
I/O  
These pins are used to input/output test signals when the  
µPD161401 is in the test mode. Usually, leave these pins open.  
47 to 49  
3.3 Driver Pins  
Symbol  
Pin Name  
Segment  
Pin No.  
I/O  
Description  
SEG1 to  
SEG303  
361 to 670  
Output These pins output segment signals.  
O1 to O80  
Common  
319 to 358,  
673 to 712  
53 to 55  
Output These pins output common signals.  
VRS  
Operational amplifier  
input  
Input  
These are the input pins of the operational amplifier that adjusts  
the LCD driving voltage. VRS is used to input the reference voltage  
of the amplifier for LCD voltage adjustment. VR is used to connect  
a feedback resistor for the operational amplifier.  
The feedback resistor is connected between this pin and GND,  
AMPOUTM, or AMPOUTS. This pin is enabled only when the internal  
divider resistor for VLCD voltage adjustment is not used (IRS = L).  
When the internal divider resistor is used (IRS = H), this pin is not  
used.  
VR  
287 to 289  
AMPOUTM  
AMPOUTS  
DUMMY  
Operational amplifier  
output  
290 to 292  
296 to 298  
Output These pins are the output pins of the operational amplifier that  
adjusts the LCD driving voltage. The signals output by these pins  
are connected to the LCD driving voltage adjuster resistor (refer to  
5.6.3 Voltage regulator circuit) only when the internal resistor for  
LCD voltage adjustment is not used (IRS = L). It is recommended  
to connect a capacitor of 0.01 to 0.1 µF to these pins to stabilize  
the output of the internal operational amplifier.  
Dummy pin  
1, 317, 318, 359,  
360, 553 to 559,  
671, 672, 713  
These pins are not connected to the internal circuit.  
15  
Data Sheet S15726EJ2V0DS  
µPD161401  
4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS  
The I/O circuit type of each pin and recommended connection of unused pins are shown in the table below.  
Symbol  
/CS1  
Input Type  
Schmitt-trigger A  
Schmitt-trigger A  
Schmitt-trigger A  
I/O  
Recommended of Unused Pins  
Connect this pin to VSS.  
Note  
Input  
Input  
Input  
CS2  
Connect this pin to VDD1.  
/RD(E)  
Connect to VDD1 (i80 system interface), or to VDD1 or VSS (serial  
interface).  
/WR(R,/W)  
IFM1, IFM0  
D0 to D5  
D6(SCL)  
D7(SI)  
Schmitt-trigger A  
Schmitt-trigger A  
Schmitt-trigger B  
Schmitt-trigger B  
Schmitt-trigger B  
Schmitt-trigger B  
Schmitt-trigger A  
Schmitt-trigger C  
Schmitt-trigger A  
Schmitt-trigger A  
Schmitt-trigger A  
Schmitt-trigger A  
Schmitt-trigger A  
Schmitt-trigger A  
Schmitt-trigger A  
Input  
Input  
I/O  
Connect to VDD1 or VSS (serial interface).  
Mode setting pin  
1
2
1
1
Leave open.  
I/O  
I/O  
D8 to D15  
RS  
I/O  
Leave open.  
Input  
Input  
I/O  
Register setting pin  
Connect to VDD1.  
/DISP  
FR  
Leave open (in master mode, M,/S = H).  
Leave open (in master mode, M,/S = H).  
Leave open (in master mode, M,/S = H).  
Mode setting pin  
FRSYNC  
DOF  
I/O  
I/O  
M,/S  
Input  
Input  
Input  
Input  
Output  
Output  
Output  
IRS  
Mode setting pin  
OSCIN1  
OSCIN2  
OSCOUT  
OSCSYNC  
TOUT0 to  
TOUT15  
Connect to VDD1 or VSS.  
Connect to VDD1 or VSS.  
Leave open (when an external clock is used).  
Leave open.  
Leave open.  
TSTRTST  
TSTVIHL  
TPWR  
Schmitt-trigger A  
Schmitt-trigger A  
Input  
Input  
I/O  
Connect this pin to VSS (in normal operation mode).  
Connect this pin to VSS (in normal operation mode).  
Leave open.  
Notes 1. Connect this pin to VDD1 or VSS depending on the mode selected.  
2. Input VDD1 or VSS output from the CPU to this pin depending on the mode selected.  
Remark Schmitt-trigger A : Schmitt inverter  
Schmitt-trigger B : Schmitt NAND  
Schmitt-trigger C : Schmitt inverter (with delay circuit)  
16  
Data Sheet S15726EJ2V0DS  
µPD161401  
5. FUNCTIONAL DESCRIPTION  
5.1 CPU Interface  
5.1.1 Selecting interface type  
The µPD161401 transfers data through an 8-bit bi-directional data bus (D7 to D0), a 16-bit bi-directional data bus (D15  
to D0), or a serial data input (SI) pin. Interface type can be selected by making the IFM1,IFM0 pin high or low, as shown  
in the following table.  
IFM1  
IFM0  
Interface type  
Serial data input  
Setting Prohibited  
i80 system CPU  
M68 system CPU  
L
L
L
H
L
H
H
H
Parallel data input or serial data input can be chosen as by setting the polarity of IFM1 terminal, as shown in the  
following table.  
IFM1  
/CS1, CS2  
/CS1, CS2  
/CS1, CS2  
RS  
RS  
/RD  
/RD  
/WR  
/WR  
D15 to D8  
D15 to D8  
Hi-ZNote2  
D7  
D7  
SI  
D6  
D6  
D5 to D0  
D5 to D0  
Hi-ZNote2  
H: Parallel input  
L: Serial input  
RS Note1  
Note1  
SCL  
Notes 1. Fix these pins to the high or low level.  
2. Hi-Z: High impedance  
5.1.2 Parallel interface  
When the parallel interface is selected (IFM = H), an 8-bit bi-directional data bus (D7 to D0) or 16-bit bi-directional data  
bus (D15 to D0) can be selected by setting the BMOD flag of the control register 2 (R1) to 1 or 0. In addition, the  
µPD161401 can be directly connected to an i80 or M68 system by making the IFM0 pin high or low as shown in the  
following table.  
IFM0  
/CS1, CS2  
/CS1, CS2  
RS  
RS  
/RD  
E
/WR  
BMOD  
D15 to D8  
D15 to D8  
Hi-ZNote  
D7 to D0  
D7 to D0  
D7 to D0  
D7 to D0  
D7 to D0  
R,/W  
0
1
0
1
H: M68 system CPU  
RS  
/RD  
/WR  
D15 to D8  
Hi-ZNote  
/CS1, CS2  
L: i80 system CPU  
Note Hi-Z : High impedance (may be open)  
17  
Data Sheet S15726EJ2V0DS  
µPD161401  
The data bus signals are identified by the combination of the RS, /RD(E), /WR (R,/W) signals as shown in the  
following table.  
Common  
M68  
i80  
Common  
Data Bus  
D15 to D8  
Function  
Reads the register.  
Writes the display data/register.  
Prohibited  
RS  
1
R,/W  
1
E
1
/RD  
0
/WR  
1
BMOD  
D7 to D0  
Note1  
OUT  
IN  
0
1
0
1
0
1
0
1
Note1  
Hi-Z  
Note2  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
1
0
0
1
0
1
1
1
1
0
1
0
1
0
IN  
OUT  
OUT  
IN  
0
Writes the control index register.  
IN  
0/1  
Other  
Hi-Z  
Remark IN : Input status (cannot be open), OUT : Output status, Hi-Z : High impedance (may be open)  
Notes1. In the µPD161401, the data of the display access memory register, the complementary color blink data  
memory register, the specified color blink data memory register and the reverse data memory access  
register (R12, R41, R45, R50) are read-prohibited. However, if R12 is selected, the data bus signals D15 to  
D0 enter an output state. If another register is specified, the D15 to D8 signals become Hi-Z and the D7 to D0  
signals enter an output state.  
2. Only the display access memory register (R12) enters the input state. If another register is specified, the D15  
to D8 signals become Hi-Z.  
18  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.1.3 Serial interface  
When the serial interface has been selected (IFM1, IFM0 = L, L), as long as the chip is in an active state (/CS1= L,  
CS2 = H ), serial data input (SI) and serial clock input (SCL) can be received. Serial data is read in the order of D7, then  
D6 to D0 at the rising edge of the serial clock input from the serial input pin. This data is converted to parallel data in  
synchronization with the 8th rising edge of the serial clock. Serial input data is judged as display data/command data if  
RS = H and an index if RS = L. The RS input is read every 8th rising edge of the serial clock after the chip becomes  
active and is used for data discrimination.  
Figure 51. Serial Interface Signal Chart  
CS2 = "H"  
/CS1  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
6
D1  
7
D0  
8
D7  
9
D6  
10  
D5  
11  
D4  
12  
D3  
13  
D2  
14  
D1  
15  
D0  
16  
D7  
17  
D6  
18  
SI  
SCL  
RS  
Remarks 1. If the chip is not in an active state, the shift register and counter are reset to their initial statuses.  
2. The serial clock counter is reset by initialization from the /DISP pin.  
3. Data cannot be read when using serial interface mode.  
4. Care must be taken when performing SCL wiring to avoid effects from terminal radiation or external noise  
caused by the wiring length. It is recommended to confirm operation using the actual equipment to be  
used.  
5.1.4 Chip select  
The µPD161401 has chip select pins (/CS1 and CS2). The CPU parallel interface or Serial interface can be used only  
when /CS1 = L (CS2 = H).  
If the chip select pins are not active, the D0 to D15 pins go into a high-impedance state, and the RS, /RD, and /WR pins  
do not become active.  
5.1.5 Accessing display data RAM and internal registers  
When the CPU accesses the µPD161401, the CPU only has to satisfy the requirement of the cycle time (tCYC) and can  
transfer data at high speeds. Usually, it is not necessary for the CPU to take wait time into consideration.  
When the CPU writes data to the µPD161401, no dummy data is necessary. When reading data, dummy data is not  
necessary either. In the µPD161401, the data of the display access memory register, the complementary color blink  
data memory register, the specified color blink data memory register and the reverse data memory access register  
(R12, R41, R45, R50) cannot be read. Figure 52 illustrates as follows.  
19  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 52. Writing and Reading  
Writing  
/WR  
DATA  
N
N+1  
N+2  
N+3  
Reading (other than display memory access register)  
/WR  
/RD  
IRn  
Data  
IRn+1  
Data  
DATA  
IRn  
IRn + 1  
IR Address  
Set #n  
IRn Register  
Data Read  
IR Address  
Set #n+1  
IRn+1 Register  
Data Read  
Caution Display access memory register, the complementary color blink data memory register, the  
specified color blink data memory register and the reverse data memory access register (R12,  
R41, R45, R50) cannot be read.  
20  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.2 Display Data RAM  
5.2.1 Display data RAM  
This RAM stores dot data for display and consists of (101 × 80) × 8 bits. Any address of this RAM can be accessed by  
specifying an X address and a Y address.  
Display data D0 to D15 transmitted from the CPU corresponds to the pixels on the LCD (refer to Table 51). If the  
µPD161401 is used in a multi-chip configuration, restrictions on display data transfer are relaxed and display setting  
can be performed relatively freely.  
The CPU writes data to the display RAM via I/O buffers. This write operation is performed independently of an  
operation to read signals for driving the LCD. Therefore, even if the display data RAM is asynchronously accessed,  
adverse effects such as flickering do not occur or the current LCD screen.  
Table 51. Display Data RAM  
MSB  
D15  
LSB MSB  
LSB  
D0  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Dot (R)  
Dot (G)  
Dot (B)  
Dot (R)  
Dot (G)  
Dot (B)  
Pixel 1  
Pixel 2  
LCD panel  
Pixel 1  
Pixel 2  
Pixel 2  
Pixel 3  
Pixel 4  
Pixel 4  
Pixel 5  
Pixel 5  
Pixel 6  
Pixel 6  
Pixel 7  
Pixel 7  
Pixel 8  
Pixel 1  
Pixel 3  
Pixel 8  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
5.2.2 X address circuit  
An X address of the display data RAM is specified by using the X address register (R4) as shown in Figure 55.  
If the X address increment mode (INC = 0: control register 2 (R1)) is used, the specified X address is incremented or  
decremented by one each time display data is written. Whether the address is incremented or decremented is specified  
by the XDIR flag of control register 2 (R1) as shown in Table 52.  
In the increment mode, the X address is incremented up to 64H. If more display data is written, the Y address is  
incremented (YDIR = 0) or decremented (YDIR = 1), and the X address returns to 00H.  
In the decrement mode, the X address is decremented to 00H. If more display data is written, the Y address is  
incremented (YDIR = 0) or decremented (YDIR = 1), and the X address returns to 64H.  
When the 16-bit data bus is selected (BMOD = 0), only an even address can be specified. Moreover, when the 16-bit  
data bus is selected, dummy data is required as shown in Figure 53.  
21  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 53. About Dummy Data Required when the 16-bit Data Bus is Selected  
· When an ADC = 0  
pixel1  
101  
D8  
D7  
D0  
D15  
Dummy data  
SEG  
1
SEG303  
X address  
00H 01H  
pixel 1  
64H  
pixel 101  
· When an ADC = 1  
SEG303  
pixel1  
SEG  
101  
1
D8  
D7  
D0  
D15  
Dummy data  
X address  
00H 01H  
pixel 1  
64H  
pixel 101  
22  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.2.3 Y address circuit  
A Y address of the display data RAM is specified by using the Y address register (R5) as shown in Figure 55. If the  
Y address increment mode (INC = 1: control register 2 (R1)) is used, the specified Y address is incremented or  
decremented by one each time display is written. Whether the address is incremented or decremented is specified by  
the YDIR flag of control register 2 (R1) as shown in Table 52.  
In the increment mode, the Y address is incremented up to 4FH. If more display data is written, the X address is  
incremented (XDIR = 0) or decremented (XDIR = 1), and the Y address returns to 00H.  
In the decrement mode, the Y address is decremented to 00H. If more display data is written, the X address is  
incremented (XDIR = 0) or decremented (XDIR = 1), and the Y address returns to 4FH.  
The relationship between the setting of INC, XDIR, and YDIR of control register 2 (R1) and the address is as follows:  
Table 52. Relationship between INC, XDIR, and YDIR, and Address  
INC  
0
Setting  
The address is successively incremented or decremented in the X direction when data is accessed.  
The address is successively incremented or decremented in the Y direction when data is accessed Note  
1
.
Note This setting cannot be used when the 16-bit parallel interface is used.  
XDIR  
Setting  
0
1
Increments the X address (+1) when data is accessed.  
Decrements the X address (1) when data is accessed.  
YDIR  
Setting  
0
1
Increments the Y address (+1) when data is accessed.  
Decrements the Y address (1) when data is accessed.  
Table 53. Combination of INC, XDIR, and YDIR, and Address Direction  
INC  
XDIR  
YDIR  
Image of Address Scanning  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
A-1  
A-2  
A-3  
A-4  
B-1  
B-2  
B-3  
B-4  
0
1
Caution If the access direction is changed by using INC, XDIR, or YDIR, be sure to set the X address register  
(R4) and Y address register (R5) before accessing the display RAM.  
23  
Data Sheet S15726EJ2V0DS  
µPD161401  
Y address register (R5)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
YA6  
YA5  
YA4  
YA3  
YA2  
YA1  
YA0  
YA6 to YA0  
Sets a line address.  
Figure 54. Combination of INC, XDIR, and YDIR, and Address Scanning Image  
X address  
00H  
64H  
00H  
A-1  
A-2  
A-3  
A-4  
4FH  
00H  
X address  
00H  
64H  
4FH  
B-1  
B-2  
B-3  
B-4  
5.2.4 Column address circuit  
When the contents of the display data RAM are displayed, column addresses are output to the SEG output pins as  
shown in Figure 55.  
The correspondence relationship between the column addresses of the display RAM and segment outputs can be  
reversed by the ADC flag (segment driver direction select flag) of control register 1 (R0). This reduces the restrictions  
on chip layout when the LCD module is assembled.  
Table 54. Relationship between Column Address of Display RAM and Segment Output  
SEG Output  
SEG1  
000H  
12EH  
SEG303  
12EH  
000H  
ADC  
(D1)  
0
Column address  
Column address  
1
24  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.2.5 Common scan circuit  
The common scan circuit sets the sequence for the scan line of the common signal in which the display RAM is to be  
read. The RAM line reading direction is set as shown in Table 55 by the COMR flag of control register 1 (R0).  
For example, if the duty ratio is 1/64, the number of scroll steps is 0, and COMR = 0, the RAM line reading direction  
is from 00H to 3FH. If COMR = 1, it is from 3FH to 00H.  
Table 55. Relationship between Common Scan Circuit and Scan Direction  
COMR  
(D0)  
0
1
00H  
4FH  
4FH  
00H  
In addition, scanning of the common outputs can be assigned by using the COM scanning address setting register  
(R21) as shown in Table 56, so that the scanning can be started from any O1 to O80 output pin. Therefore, the  
common wiring of the LCD panel can be optimized when any duty ratio is selected.  
When COMR = 0, the scan start (COM1) pin and scan end (COMa) pin are the On and O(n+a1) pins, respectively. The  
value of a is 64, 72, and 80 for 1/64 duty, 1/72 duty, and 1/80 duty, respectively. When COMR = 1, the scan start  
(COM1) pin and scan end (COMa) pin are the O(82an) and O(80n+1) pins, respectively.  
Examples of COM scan address settings for 1/64 duty, 1/72 duty, and 1/80 duty are shown in Tables 55, 57, and  
58, respectively.  
Table 56. COM Scanning Address Setting (1/64 duty)  
COMR = 0  
COMR = 1  
the scan start  
the scan end  
(COMa)Note pin  
O(n+a-1) Note  
the scan start  
the scan end  
(COMa)Note pin  
CSA4 CSA3 CSA2 CSA1 CSA0  
n
(COM1) pin  
On  
(COM1) pin  
O(82-a-n) Note  
O(80-n+1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
O1  
O2  
O64  
O65  
O66  
O67  
O68  
O69  
O70  
O71  
O72  
O73  
O74  
O75  
O76  
O77  
O78  
O79  
O80  
O17  
O16  
O15  
O14  
O13  
O12  
O11  
O10  
O9  
O80  
O79  
O78  
O77  
O76  
O75  
O74  
O73  
O72  
O71  
O70  
O69  
O68  
O67  
O66  
O65  
O64  
3
O3  
4
O4  
5
O5  
6
O6  
7
O7  
8
O8  
9
O9  
10  
11  
12  
13  
14  
15  
16  
17  
O10  
O11  
O12  
O13  
O14  
O15  
O16  
O17  
O8  
O7  
O6  
O5  
O4  
O3  
O2  
O1  
Note When in 1/64 duty, a = 64.  
25  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 57. COM Scanning Address Setting (1/72 duty)  
COMR = 0  
COMR = 1  
Remark  
the scan start  
(COM1) pin  
On  
the scan end  
(COMa)Note pin  
the scan start  
the scan end  
(COMa)Note pin  
CSA4 CSA3 CSA2 CSA1 CSA0  
n
(COM1) pin  
O(82-a-n) Note  
O(n+a-1) Note  
O(80-n+1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
1
2
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O8  
O9  
O72  
O73  
O74  
O75  
O76  
O77  
O78  
O79  
O80  
O9  
O8  
O7  
O6  
O5  
O4  
O3  
O2  
O1  
O80  
O79  
O78  
O77  
O76  
O75  
O74  
O73  
O72  
3
4
5
6
7
8
9
10  
Prohibit  
since here  
Note When in 1/72 duty, a = 72  
Caution The COM scan address setting register (R21) should be set so that O1 scan start pin and scan end  
pin O80. If any other settings are made the IC operation is not guaranteed.  
Table 58. COM Scanning Address Setting (1/80 duty)  
COMR = 0  
COMR = 1  
Remark  
the scan start  
the scan end the scan start  
the scan end  
(COMa)Note pin  
CSA4 CSA3 CSA2 CSA1 CSA0  
n
(COMa)Note pin  
O(n+a-1) Note  
O80  
(COM1) pin  
(COM1) pin  
O(82-a-n) Note  
O1  
On  
O1  
O(80-n+1)  
0
0
0
0
0
0
0
0
0
1
1
2
O80  
Prohibit  
since here  
Note When in 1/80 duty, a = 80  
Caution When this µPD161401 is used in 1/80 duty, the COM scan address setting register (R21) should be set  
to CSA4, CSA3, CSA2, CSA1, CSA0 = 0, 0, 0, 0, 0. If any other settings are made the IC operation is not  
guaranteed.  
26  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 55. Configuration of X Address Register  
1
1
0
0
1
D
D
D
D
6
5
4
3
0
0
0
0
0
0
0
0
0
0
Setting example 1/64 duty  
COMR = 0  
n
= 1(CSA4 to CSA0 = 0)  
D2  
Panel pin  
COM output  
0
0
64H  
D
D
1
0
0
0
00H  
0
1
01H  
Line  
Driver: On  
address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
1
2
3
4
5
6
7
8
9
10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
1
2
3
4
5
6
7
8
9
Data  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
3BH  
3CH  
3DH  
3EH  
3FH  
40H  
41H  
42H  
43H  
44H  
45H  
46H  
47H  
48H  
49H  
4AH  
4BH  
4CH  
4DH  
4EH  
4FH  
COM60  
COM61  
COM62  
COM63  
COM64  
O
O
O
O
O
60  
61  
62  
63  
64  
27  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.2.6 Display data latch circuit  
The display data latch circuit temporarily stores (latches) the display data that is output from the display data RAM to  
the LCD driver circuit.  
The display scan command for forwarding or reversing data and the display ON/OFF command control the latched  
data and do not affect the data of the display data RAM.  
5.2.7 Arbitrary address area access (window access mode (WAS))  
With the µPD161401, any area of the display RAM selected by the MIN. X/Y address registers (R7 and R9) and  
MAX. X/Y address registers (R8 and R10) can be accessed.  
First, select the area to be accessed by using the MIN. X/Y address registers and MAX. X/Y address registers. When  
WAS of control register 1 is set to 1, the window access mode is then selected. The address scanning setting by INC,  
XDIR, and YDIR of control register 2 (R1) is also valid in this mode, in the same manner as when data is normally  
written to the display RAM. In addition, data can be written from any address by specifying the X address register (R4)  
and Y address register (R5).  
Note that the display RAM must be accessed after setting the X address register (R6) and Y address register (R7) if  
the window access area has been set or changed by the MIN. X/Y address register (R7, R9) or MAX. X/Y address  
register (R8, R10).  
Figure 56. Example of Incrementing Address When INC = 0, XDIR = 0, and YDIR = 0  
.
.
X address  
MIN. X address  
MAX.  
00H  
64H  
Start point  
00H  
.
MIN. Y address  
.
.
.
.
MAX. Y address  
4FH  
End point  
Cautions 1. When using the window access mode, the relationship between the start point and end point  
shown in the table below must be established.  
Item  
X address  
Y address  
Address Relation Ship  
00H MIN. X address X address (R4) MAX. X address 64H  
00H MIN. Y address Y address (R5) MAX. Y address 4FH  
2. If invalid address data is set as the MIN./MAX. address, operation is not guaranteed.  
3. Access the display RAM after setting the X address register (R6) and Y address register (R7) if the  
window access area has been set or changed by the MIN. X/Y address register (R7, R9) or  
MAX. X/Y address register (R8, R10).  
28  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 57. Example of Sequence in Window Access Mode  
Start  
Control register 2  
Sets window access mode.  
(WAS = 1)  
.
.
X address register (R7)  
Y address register (R9)  
MIN.  
MIN.  
Sets start point.  
Sets end point.  
.
X address register (R8)  
Y address register (R10)  
MAX.  
.
MAX.  
X address register (R4)  
Y address register (R5)  
Display memory access register (R12)  
Data  
No  
Writing complete?  
Yes  
End  
29  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.3 Screen Processing  
5.3.1 Blink/reverse display circuit  
The µPD161401 can blink or reverse a specific area of the full-dot display. Blinking is to turn ON/OFF display  
repeatedly at about 1 Hz (complementary color or specified color can be selected) and reversing is to reverse the  
grayscale data on the display.  
The area to be blinked is specified by using the complementary color/specified color blink start/end line address  
registers (R39, R40, R43, and R44), complementary color/specified color blink X address registers (R38, R42), and  
complementary color/specified color blink data memory registers (R41, R45).  
First, select a blink display start line address and end line address by using the start/end line address registers. Next,  
select the column to be blinked by using the blink X address register and blink data memory register.  
The specified color blink is blinked between the graphic data and the color data specified by the specified color setting  
register (R46).  
To select an area to be reversed, use the reverse start/end line address registers (R48, R49), reverse X address  
register (R47), and reverse data memory access register (R50).  
First, select line addresses at which reverse display is started and stopped, by using the reverse start/end line address  
registers. Next, select a column to be reversed, by using the reverse X address register and reverse data memory  
access register. The specified blink/reverse X address is incremented by one each time blink/reverse data has been  
input.  
The complementary color/specified color blink RAM and reverse RAM store the data to be blinked and reversed.  
Each RAM is configured of 101 bits (12 × 8 + 5 bits).  
To access a desired bit, specify an X address. Blink/reverse data D0 to D7 transmitted from the CPU corresponds to  
SEGX on the LCD, as illustrated in Figure 58.  
If the BLD bit and INV bit of the blink/reverse setting register (R37) are set to H after an area and data have been set,  
blinking or reversing the data is started. Figure 59 shows the relationship between the start line address, end line  
address, blinking/reversing data, and LCD.  
If the same area is specified for complementary color blinking and specified color blinking, the specified color blinking  
takes precedence.  
Table 59. Reversing Operation and Display  
Original Grayscale  
After Reversing (supplement color)  
R/G display data  
0, 0, 0  
0, 0, 1  
0, 1, 0  
0, 1, 1  
1, 0, 0  
1, 0, 1  
1, 1, 0  
1, 1, 1  
1, 1, 1  
1, 1, 0  
1, 0, 1  
1, 0, 0  
0, 1, 1  
0, 1, 0  
0, 0, 1  
0, 0, 0  
B display data  
0, 0  
0, 1  
1, 0  
1, 1  
1, 1  
1, 0  
0, 1  
0, 0  
30  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 58. Correspondence between Blink/Reverse Data and Segment  
When an ADC = 0  
D3  
D2  
D1  
D0  
0
0
0
0
1
1
0
0
0
0
1
0
00H  
01H  
0CH  
Data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Note  
Note  
Note  
Column output  
LCD  
Output  
Note The value written in D2 to D0 of X address 0CH is invalid.  
When an ADC = 1  
D
3
0
0
0
0
1
D2  
1
0
0
D1  
0
0
D0  
0
1
00H  
01H  
0CH  
Data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Column output  
LCD  
Output  
Note The value written in D7 to D5 of X address 00H is invalid.  
Figure 59. Blink/Reverse Display Area Setting Image  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0  
Blink/reverse  
data  
Start line  
End line  
: Blink or reverse pixel  
31  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 510. Example of Sequence of Setting Blink/Reverse Display  
Start  
Blink/reverse start line  
address register  
Blink/reverse end line  
address register  
Blink/reverse X address register  
Blink/reverse data memory  
Data  
NO  
Writing complete ?  
YES  
Blink/reverse setting register (R37)  
(BLDn, INV = H)  
End  
The data configuration of the range specification registers (start/end line address registers R39, R40, R43, R44, R48,  
and R49) of each line is in the format shown below. Each display area is set in this format. .  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X_6  
X_5  
X_4  
X_3  
X_2  
X_1  
X_0  
X_6 to X_0  
Sets start/end line addresses.  
Remark X_: CBS, CBE, SBS, SBE, IVS, IVE  
32  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.3.2 Example of setting blink area  
This section explains how to specify an area to be blinked, taking complementary color blinking as an example. The  
same setting is also applied to specified color blinking and reverse display.  
(1) Example of using 1 chip at duty ratio of 1/80  
T.B.D.  
Remark T.B.D. (To be determined.)  
(2) Example of using 2 chip (Master and slave) at duty ratio of 1/80  
T.B.D.  
5.4 Oscillator  
The µPD161401 has a CR oscillator (with external R) for main duty/sub-duty display. This oscillator generates the  
display clock.  
This oscillator is controlled by the DTY flag of control register 2 (R1), and the configuration of its display clock can be  
set in accordance with the system used.  
The function of each circuit of the oscillator is shown below. The main duty display/sub-duty display oscillator  
becomes valid only when oscillation resistors (RM and RS) are connected to it. The clock for main duty display or sub-  
duty display can be selected depending on the status of the DTY flag of control register 2 (R1).  
Figure 511. Oscillator Block  
Selected by DTY  
OSCIN1  
OSCIN2  
Oscillator for  
main duty/sub-duty  
OSCOUT  
To graphic driver circuit  
OSCSYNC  
The relationship between the frame frequency (fFRAME) in the normal display mode, oscillation frequency (fOSCINn), and  
set duty frame is as follows.  
fFRAME = fOSCINn ÷ 16 ÷ N  
N = Duty ratio  
33  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 510 shows the relationship between oscillation resistors RM and RS, and the display clock circuit.  
Table 510. Relationship between Display Clock Circuit, Pins, and Resistor  
RM Connection  
Connected  
RS Connection  
Connected  
Clock for Main Duty Display  
Internal oscillation  
Clock for Sub-duty Display  
Internal oscillation  
External clock  
Example  
A
B
Not connected  
Not connected  
External clock  
Figure 512. Example of Using Clock  
f
M
OSCIN1  
OSCIN2  
OSCOUT  
OSCIN1  
OSCIN2  
OSCOUT  
f
S
R
M
R
S
Open  
(A)  
(B)  
OSCIN1 : For main duty  
OSCIN2 : For sub-duty  
Figure 513. Example of Master/Slave Connection  
Master  
Slave  
(M,/S = H)  
(M,/S = L)  
OSCSYNC  
OSCIN1  
OSCIN2  
Open  
OSCOUT  
(A)  
34  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.5 Display Timing Generator  
The display timing generator generates timing signals for the line address circuit and display data latch circuit, from  
the display clock. The display data is latched to the display data latch circuit in synchronization with the display clock  
and output to the segment driver output pins. The display data can be read completely independently of the access to  
the display data RAM by the CPU. Therefore, even if the display data RAM is asynchronously accessed, no adverse  
effect, such as flickering, occurs on the LCD.  
The internal common timing, LCD AC signal (FR), and frame synchronization signal (FRSYNC) are generated by the  
display clock. A driver waveform in the frame AC driving mode shown in Figure 514 is generated for the LCD driver  
circuit.  
When the µPD161401 is used in a multi-chip configuration, the display timing signals for the slave chip (FR and  
FRSYNC) must be supplied from the master chip.  
Table 511. Relationship between FR, FRSYNC, and Operation Mode  
Operation Mode  
Master (M,/S = H)  
Slave (M,/S = L)  
FR  
FRSYNC  
Output  
Input  
Output  
Input  
35  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 514. Driver Waveform in Frame AC Driver Mode  
1 FRAME  
1
2
3
4
5
6
7
8
78 79 80 1  
2
3
4
5
6
7
8
78 79 80  
OSCSYNC  
FRSYNC  
FR  
RAM  
DATA  
VLCD  
V
V
LC1  
LC2  
SEG  
1
V
V
LC3  
LC4  
V
SS  
V
LCD  
V
V
LC1  
LC2  
COM  
1
V
V
LC3  
LC4  
V
SS  
V
LCD  
V
V
LC1  
LC2  
COM  
2
V
V
LC3  
LC4  
V
SS  
V
LCD  
V
V
LC1  
LC2  
COM80  
V
V
LC3  
LC4  
V
SS  
36  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.6 Power Supply Circuit  
5.6.1 Power supply circuit  
The power supply circuit generates the voltage necessary for driving the LCD. The power circuit consists of a booster  
circuit, voltage regulator circuit, and voltage follower circuit.  
Power system control register 1 (R52) turns ON/OFF the transformer, reference voltage generator, voltage regulator  
circuit (V regulator circuit), and voltage follower circuit (V/F circuit). Part of the internal power supply function and an  
external power supply can be used in combination. Table 512 shows the functions controlled by the 4-bit data of  
power system control register 1 (R52). Table 513 shows examples of combinations of the power circuit functions.  
Table 512. Function of Each Bit of Power System Control Register  
Status  
Item  
1
0
OP3  
OP2  
OP1  
OP0  
: Booster circuit control bit  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
: Reference voltage generator control bit  
: Voltage regulator circuit (V regulator circuit) control bit  
: Voltage follower circuit (V/F circuit) control bit  
Table 513. Examples of Combinations (Reference Values)  
V/F  
Booster Reference V Regulator  
External  
Booster  
Status  
OP3 OP2 OP1 OP0  
Circuit  
voltage  
Circuit  
Circuit  
Power Input System Pins  
<1> Only internal power supply is  
used  
1
1
1
1
Ο
Ο
Ο
Ο
VDD2  
Used  
<2> External VOUT power supply  
0
1
1
0
1
0
1
1
×
Ο
×
Ο
×
Ο
Ο
VDD2, VOUT  
VDD2,  
Open  
Used  
<3> Only V/F circuit is used  
Ο
AMPOUT  
VDD2, VOUT,  
VLCD,  
Open  
<4> Only external power supply is  
used  
0
0
0
0
×
×
×
×
VLC1 to VLC4  
+
+
Remarks 1. The “booster system pins” are the C1 , C1 to C5 , C5 pins.  
2. All the power circuits are turned OFF when the µPD161401 serves as a slave (M,/S pin = L).  
5.6.2 Booster circuit  
The power supply circuit has an internal booster circuit that increases the LCD driver voltage two- to seven-fold.  
Because this booster circuit uses the internal oscillator signals, either the oscillator must be operating or an external  
display clock must be input to operate this circuit.  
+
+
The booster circuit usually uses the C1 , C1 to C5 , C5 pins and VDD2 pins. Keep the wiring impedance of these pins  
as low as possible. The number of boosting steps for main duty display and sub-duty display is set as shown in Table  
514 by the MBTn and SBTn flags of power system control register 4 (R55).  
For the number of boosting steps and how to connect capacitors, refer to Figure 515.  
37  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 515. Number of Boosting Steps and Capacitor Connection  
To boost LCD drive voltage seven-fold  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x7  
x6  
x5  
x4  
x3  
x2  
To boost LCD drive voltage six-fold  
To boost LCD drive voltage five-fold  
To boost LCD drive voltage four-fold  
Open  
Open  
Open  
Open  
To boost LCD drive voltage three-fold  
To boost LCD drive voltage two-fold  
Open  
Remark “xN” (N = 2 to 7) of the capacitors in the above figure indicates the maximum voltage applied to the  
capacitors.  
xN : VDD2 x N (V)  
Table 514. Number of Boosting Steps of Main Duty/Sub-duty Display Booster Circuit (during Normal Display)  
MBT2  
MBT1  
MBT0  
Number of Boosting steps (unit: fold)  
SBT2  
SBT1  
SBT0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Two  
Three  
Four  
Five  
Six  
Seven  
Prohibited  
Prohibited  
38  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.6.3 Voltage regulator circuit  
The boosted voltage from VOUT is supplied to the voltage regulator circuit and output to the LCD drive voltage pin VLCD.  
Because the µPD161401 has a 128-step electronic volume function and an internal VLCD adjuster resistor, a high-  
accuracy voltage regulator circuit can be configured by adding only a few components.  
VLCD regulator circuit  
(a) When internal resistor for adjusting VLCD is used  
By using the internal resistor for adjusting VLCD and the electronic control function, LCD drive voltage VLCD can be  
controlled and the contrast of the LCD can be adjusted by using commands. In this case, no external resistor is  
necessary. Where VLCD < VOUT, the value of VLCD can be calculated as follows:  
Example Calculating value of VLCD (where VLCD < VOUT)  
Rb  
Ra  
VLCD = (1 +  
VLCD = (1 +  
) VEV  
Rb  
Ra  
α
256  
) (1 −  
) VREG  
α
256  
Remark VEV = (1 −  
) VREG  
Figure 516. Example of Circuit Using Internal Resistor for Adjustment VLCD  
+
VLCD  
V
EV (constant power supply + electronic volume)  
Rb  
Ra  
VREG is the internal fixed power source of the IC and has three types of temperature characteristic curves. These  
temperature characteristic curves can be adjusted as shown in Table 515 depending on the setting of power system  
control register 1 (R52) (TCS2 to TCS0).  
Table 515 shows VREG at TA = 25°C.  
Table 515. Adjusting Temperature Characteristic Curve  
Status  
TCS2  
TCS1  
TCS0  
Temperature Gradient (unit: %/°C)  
VREG (TYP.) (unit: V)  
Internal power supply  
0
0
0
0
1
0
0
1
1
×
0
1
0
1
×
0.12  
0.13  
0.15  
0.17  
1.77  
1.69  
1.63  
1.59  
When external reference  
power supply is used  
39  
Data Sheet S15726EJ2V0DS  
µPD161401  
α is the value of the electronic volume register. It can take any of 128 values in accordance with the data set to the 7-  
bit electronic control register. The value of α set by the main electronic volume register (R57) (main duty display) and  
sub-electronic volume register (R58) (sub-duty display) is shown in Table 516.  
Table 516. Changes in Value of α Depending on Setting of Electronic Volume Register  
MEV6  
SEV6  
MEV5  
SEV5  
MEV4  
SEV4  
MEV3  
SEV3  
MEV2  
SEV2  
MEV1  
SEV1  
MEV0  
SEV0  
α
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
256  
126  
125  
124  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
2
1
0
Rb/Ra is a ratio of the internal resistors for adjusting VLCD. This resistance ratio can be adjusted in 128 steps, by using  
power control register 2 (R53) (VRRn: main duty display mode, and SVRn: sub-duty display mode). The value of the  
reference voltage (1 + Rb/Ra) is determined as shown in Table 517, depending on the setting of 4 bits of the VLCD  
internal resistance ratio register.  
Table 517. Determining Reference Voltage Value by Setting of Internal Resistance Ratio Register  
Register  
VRR3  
SVR3  
VRR2  
SVR2  
VRR1  
SVR1  
VRR0  
SVR0  
1 + Rb/Ra  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
40  
Data Sheet S15726EJ2V0DS  
µPD161401  
(b) When external resistor is used (when internal resistor for adjusting VLCD is not used)  
LCD drive voltage VLCD can be controlled not only by a setting of the internal resistor for adjusting VLCD (IRS = L)  
but also by connecting resistors Rae, Rbe, and Rce between VSS and VR, between VR and AMPOUTM, and between  
VR and AMPOUTS, respectively. In this case also, LCD drive voltage VLCD and the contrast of the LCD can be  
adjusted by using the electronic control function and commands.  
In addition, the µPD161401 can select two values of VLCD for normal display and partial display. These values are  
set by using an external divider resistor and automatically selected by the DTY flag of control register 2 (R1).  
Where VLCD < VOUT, the value of VLCD can be calculated by the expression in Example 1 (DTY = 0) and the  
expression in Example 2 (DTY = 1).  
Example 1. To calculate value of VLCD (DTY = 0, in main duty display mode)  
Rbe  
Rae  
VLCD = (1 +  
VLCD = (1 +  
) VEV  
Rbe  
Rae  
α
256  
) (1 −  
) VREG  
α
256  
Remark VEV = (1 −  
) VREG  
Example 2. To calculate value of VLCD (DTY = 1, in sub-duty display mode)  
Rce  
Rae  
VLCD = (1 +  
VLCD = (1 +  
) VEV  
α
256  
Rce  
Rae  
) (1 −  
) VREG  
α
256  
Remark VEV = (1 −  
) VREG  
Figure 517. Example of Circuit Using External Resistor  
+
VLCD  
Main/sub-duty VLCD  
adjustment selector  
B
A
AMPOUTM  
AMPOUTS  
VR  
VRS  
Rbe  
Rce  
Rae  
Main duty display mode  
(DTY = 0)  
B
B
A
A
Sub-duty display mode  
(DTY = 1)  
41  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.6.4 Level voltage control by operational amplifier  
Although the µPD161401 has a power-saving power supply circuit, the display quality may be degraded if it is used to  
drive a high-load LCD panel. The driving capability of the segment output can be controlled as shown in Table 518 by  
LCS1 and LCS0 of power system control register 5 (R56), and the driving capability of the common outputs can be  
controlled as shown in Table 519 by LCC1 and LCC0 of the same register. By controlling the driving capability, the  
display quality and power consumption may be improved. Determine the driving capability in accordance with the actual  
display status. If the display quality is not sufficiently improved in any driving mode, it will be necessary to supply the  
LCD drive voltage from an external power supply.  
In addition, the operational amplifier driving modes shown in Table 520 can be selected by the setting of HPM1 and  
HPM0, so that the wait time to stabilize the supply voltage immediately after the power has been turned ON or OFF can  
be shortened.  
PSM1 specifies whether a boosting voltage of VDD2 × 2 is applied to the VLC3 or VLC4 level voltage follower of (refer to  
Table 521). If a voltage boosted two-fold is applied to the voltage follower circuit, the current consumption may be  
reduced.  
Thoroughly confirm and evaluate the VLC3 and VLC4 levels of the LCD panel with the actual system to determine  
whether the two-fold LCD drive voltage is to be supplied.  
PSM0 can be used to set the current value of all the voltage follower circuits as shown in Table 522.  
Table 518. Setting Driving Capability of Segment Outputs (LCS1, LCS0 = 0, 0)  
LCS1  
LCS0  
Segment Output Driving Capability (unit: fold)  
0
0
1
1
0
1
0
1
One  
Two  
Four  
Eight  
Table 519. Setting Driving Capability of Common Outputs (LCS1, LCS0 = 0, 0)  
LCC1  
LCC0  
Common Output Driving Capability (unit: fold)  
0
0
1
1
0
1
0
1
Two  
Four  
Eight  
Sixteen  
Table 520. Setting Operation Mode of Operational Amplifier  
HPM1  
HPM0  
Mode Setting  
0
0
1
1
0
1
0
1
Normal mode  
Power supply ON mode 1  
Power supply OFF mode  
Power supply ON mode 2  
42  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 521. Setting of Two-Fold Drive Voltage  
PSM1  
Mode Setting  
0
1
Not used  
Used  
Table 522. Voltage Follower Bias Current Setting  
PSM0  
Bias Current Setting (unit: fold)  
0
1
One  
Two  
43  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.6.5 Application example of power supply circuit  
Figure 518. IRS = H, [OP3, OP2, OP1, OP0] = [1, 1, 1, 1]  
Six-fold drive voltage  
VDD1  
V
DD2  
V
RS  
V
R
V
OUT  
Open  
AMPOUTS  
AMPOUTM  
V
OUT2  
+
1
C
C
V
LCD  
-
1
V
V
LC1  
LC2  
C +  
2
-
+
C
C
2
3
V
V
LC3  
LC4  
-
+
C
C
3
4
-
+
C
C
4
5
-
C
V
5
SS  
Figure 519. IRS = L, [OP3, OP2, OP1, OP0] = [1, 1, 1, 1]  
Six-fold drive voltage  
Open  
V
RS  
V
V
DD1  
DD2  
V
OUT  
AMPOUTS  
Rc  
V
R
Rb' Ra'  
AMPOUTM  
V
OUT2  
C +  
1
V
LCD  
-
+
C
1
2
V
V
LC1  
LC2  
C
-
C
3
2
C +  
-
V
V
LC3  
LC4  
C
C
3
4
+
-
+
C
4
5
C
-
C
V
5
SS  
44  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 520. IRS = H, [OP3, OP2, OP1, OP0] = [0, 0, 0, 1]  
VDD1  
V
DD2  
V
RS  
V
R
Open  
V
OUT  
AMPOUTS  
AMPOUTM  
V
OUT2  
Open  
Open  
C +  
1
V
LCD  
-
C
C
1
+
2
V
V
LC1  
LC2  
-
C
2
C +  
3
V
V
LC3  
LC4  
-
+
C
C
3
4
-
+
C
4
C
5
-
C
5
V
SS  
Figure 521. IRS = L, [OP3, OP2, OP1, OP0] = [0, 0, 0, 1]  
V
RS  
V
V
DD1  
DD2  
Open  
V
R
V
OUT  
V
OUT2  
Open  
Open  
AMPOUTS  
AMPOUTM  
+
1
C
C
-
V
LCD  
1
C +  
2
V
V
LC1  
LC2  
-
C
2
C +  
3
-
V
V
LC3  
LC4  
C
3
C +  
4
-
C
C
4
+
5
-
C
5
V
SS  
45  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 522. IRS = L, [OP3, OP2, OP1, OP0] = [0, 0, 0, 0]  
V
RS  
V
V
DD1  
DD2  
V
R
Open  
AMPOUTS  
AMPOUTM  
V
OUT  
V
OUT2  
Open  
C +  
1
V
LCD  
-
+
C
1
2
C
V
V
LC1  
LC2  
-
+
C
C
2
3
Open  
V
V
LC3  
LC4  
-
C
3
C +  
4
-
C
4
C +  
5
-
C
5
V
SS  
Figure 523. Master/Slave Connection Example 1  
V
V
DD1  
DD2  
V
RS  
V
V
DD1  
DD2  
V
RS  
M,/S  
V
R
V
R
M,/S  
Open  
C +  
1
AMPOUTS  
AMPOUTS  
C +  
1
-
1
C
C
AMPOUTM  
AMPOUTM  
C +  
2
V
OUT  
V
OUT  
-
1
C +  
C
+
-
2
2
C +  
3
-
-
2
V
OUT2  
C
3
Open  
V
OUT2  
LCD  
C
C +  
4
Slave  
Master  
C +  
3
-
Open  
C
4
C +  
5
-
3
V
V
LCD  
C
C +  
4
-
C
5
V
LC1  
V
LC1  
-
4
C
V
V
V
LC2  
LC3  
C +  
5
V
LC2  
LC3  
-
5
V
V
C
LC4  
LC4  
V
SS  
V
SS  
46  
Data Sheet S15726EJ2V0DS  
µPD161401  
Figure 524. Master/Slave Connection Example 2  
V
V
DD1  
DD2  
V
RS  
V
V
DD1  
DD2  
V
RS  
M,/S  
V
R
V
R
M,/S  
Open  
Open  
C +  
1
AMPOUTS  
AMPOUTM  
AMPOUTS  
AMPOUTM  
-
1
C +  
1
C
C +  
2
-
1
C
V
OUT  
V
V
OUT  
C +  
2
-
+
C
C
2
3
V
OUT2  
OUT2  
-
2
C
Open  
C +  
3
-
C
C
3
4
Master  
Slave  
+
Open  
-
3
C
V
LCD  
V
V
LCD  
LC1  
C +  
4
-
+
C
C
4
V
LC1  
5
-
C
C
4
+
-
5
C
5
V
LC2  
LC3  
V
LC2  
-
V
V
C
5
V
LC3  
LC4  
V
LC4  
V
SS  
V
SS  
47  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.7 Driving LCD  
The µPD161401 has a full-dot driver. This full-dot driver can modulate grayscale, depending on the setting of the  
pulse widths. In this driving mode, eight R/G output grayscales and four B output grayscales are selected from a 17-  
stage grayscale palette, and the selected grayscales are registered to the output grayscale palette of the IC. For details,  
refer to Table 523 Example of Pulse Width Modulation Output.  
5.7.1 Full-dot pulse modulation  
The pulse width modulation function of the µPD161401 divides the segment pulse width of the signal for normal LCD  
display (16), and outputs the divided pulse width in accordance with the output timing of dots at the ratio of the  
grayscale palette selected by a command.  
Figure 525. Full-Dot Pulse Width Modulation  
1 Frame  
1
2
3
4
5
6
7
8
78 79 80 1  
2
3
4
5
6
7
8
78 79 80  
V
LCD  
V
V
LC1  
LC2  
SEG  
1
V
V
LC3  
LC4  
V
SS  
V
LCD  
V
V
LC1  
LC2  
COM  
1
V
V
LC3  
LC4  
V
SS  
Expanded view of part  
1
2
3
16/16  
8/16  
1/16  
V
LCD  
VLC1  
VLC2  
Caution The width of the common output pulse is not modulated.  
48  
Data Sheet S15726EJ2V0DS  
µPD161401  
The pulse is output in the form of combined odd line/even line or even line/odd line output, as shown in Figure 526.  
Table 523 shows the combination of the rising and falling edges of the pulse of each frame.  
Figure 526. Example of Pulse Width Modulation Output of Odd/Even Line  
1 Frame  
1
2
3
4
5
6
7
8
9 10 11 12  
78 79 80  
1
2
3
4
5
6
7
8
VLCD  
V
V
LC1  
LC2  
V
V
LC3  
LC4  
V
SS  
1
2
3
16/16  
8/16  
16/16  
16/16  
6/16 8/16  
49  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 523. Pulse Width Modulation Output  
1 or 2 Frames  
3 or 4 Frames  
SEG Odd Number SEG Even Number  
Grayscale Level  
0
COM  
SEG Odd Number  
SEG Even Number  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
2n+1  
2n+2  
0
0
0
0
0
0
0
0
1
2
1 ↑  
1 ↓  
1 ↓  
1 ↑  
1 ↓  
1 ↑  
1 ↑  
1 ↓  
2 ↑  
2 ↓  
2 ↓  
2 ↑  
2 ↓  
2 ↑  
2 ↑  
2 ↓  
3
3 ↑  
3 ↓  
3 ↓  
3 ↑  
3 ↓  
3 ↑  
3 ↑  
3 ↓  
4
4 ↑  
4 ↓  
4 ↓  
4 ↑  
4 ↓  
4 ↑  
4 ↑  
4 ↓  
5
5 ↑  
5 ↓  
5 ↓  
5 ↑  
5 ↓  
5 ↑  
5 ↑  
5 ↓  
6
6 ↑  
6 ↓  
6 ↓  
6 ↑  
6 ↓  
6 ↑  
6 ↑  
6 ↓  
7
7 ↑  
7 ↓  
7 ↓  
7 ↑  
7 ↓  
7 ↑  
7 ↑  
7 ↓  
8
8 ↑  
8 ↓  
8 ↓  
8 ↑  
8 ↓  
8 ↑  
8 ↑  
8 ↓  
9
9 ↑  
9 ↓  
9 ↓  
9 ↑  
9 ↓  
9 ↑  
9 ↑  
9 ↓  
10  
11  
12  
13  
14  
15  
16  
10 ↑  
10 ↓  
11 ↑  
11 ↓  
12 ↑  
12 ↓  
13 ↑  
13 ↓  
14 ↑  
14 ↓  
15 ↑  
15 ↓  
16 ↑  
16 ↓  
10 ↓  
10 ↑  
11 ↓  
11 ↑  
12 ↓  
12 ↑  
13 ↓  
13 ↑  
14 ↓  
14 ↑  
15 ↓  
15 ↑  
16 ↓  
16 ↑  
10 ↓  
10 ↑  
11 ↓  
11 ↑  
12 ↓  
12 ↑  
13 ↓  
13 ↑  
14 ↓  
14 ↑  
15 ↓  
15 ↑  
16 ↓  
16 ↑  
10 ↑  
10 ↓  
11 ↑  
11 ↓  
12 ↑  
12 ↓  
13 ↑  
13 ↓  
14 ↑  
14 ↓  
15 ↑  
15 ↓  
16 ↑  
16 ↓  
Remarks 1. n: Integer of 0 to 39  
2. A: Pulse rises in the middle of A line output.  
3. A: Pulse rises at the beginning of A line output.  
4. A: PWM pulse width (A/16)  
50  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.7.2 Grayscale palette  
The µPD161401 has 17 levels of grayscale outputs. Eight R/G output grayscales and four B output grayscales can be  
selected for each of main duty display and sub-duty display, by using the grayscale data registers (R65 to R104), and  
can be output as the grayscale outputs of the IC to R/G/B.  
Table 524. Correspondence of Grayscale Levels of Grayscale Data Registers  
Set Value of Grayscale Data Register  
Grayscale Level  
Remark  
D4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Level 0  
Level 1  
Level 2  
Level 3  
Level 4  
Level 5  
Level 6  
Level 7  
Level 8  
Level 9  
Level 10  
Level 11  
Level 12  
Level 13  
Level 14  
Level 15  
Level 16  
OFF data  
50%  
100%  
51  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.7.3 Setting of display size  
The µPD161401 can set the main duty cycles in a range of 1/80, 1/72 and 1/64 duty, the sub-duty cycles in a range of  
1/48, 1/40, 1/32, 1/24 and 1/16 duty. This can be done by setting MDT6 to MDT0 and SDT6 to SDT0 of the main duty  
setting register (R14) and sub-duty setting register (R17) as Table 525 and 526:  
Table 525. Setting of Main Duty (R14)  
MDT6  
MDT5  
MDT4  
MDT3  
MDT2  
MDT1  
MDT0  
Duty  
1
1
0
0
0
1
0
0
1
1
0
1
1
1
1
1
1
1
1
1
1
1/80  
1/72  
1/64  
Table 526. Setting of Sub-duty (R17)  
SDT6  
SDT5  
SDT4  
SDT3  
SDT2  
SDT1  
SDT0  
Duty  
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1/48  
1/40  
1/32  
1/24  
1/16  
5.7.4 Setting of LCD N-line inversion and M-line shift  
During main duty display, the shift amount of the reverse position of AC driving and the reverse position of each  
display frame can be set by the main duty N-line inversion register (R15) and main duty M-line shift register (R16). They  
can also be set by the sub-duty N-line inversion register (R18) and sub-duty M-line shift register (R19) during sub-duty  
display.  
The N-line reverse cycle function can set a line to be reversed as shown in Table 527, depending on the setting of  
MID5 to MID0 or SID5 to SID0 of the main or sub-duty N-line inversion register.  
The M-line shift amount of the reverse position of each display frame can be set as shown in Table 528, by using  
MSD5 to MSD0 or SSD5 to SSD0 of the main or sub-duty M-line shift register.  
Table 527. Setting of N-line Inversion Register (R15)  
MID5  
SID5  
MID4  
SID4  
MID3  
SID3  
MID2  
SID2  
MID1  
SID1  
MID0  
SID0  
Reversed  
Cycle  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1
2
3
4
1
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
0
1
38  
39  
40  
52  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 528. Setting of M-line Shift Register  
MSD5  
SSD5  
MSD4  
SSD4  
MSD3  
SSD3  
MSD2  
SSD2  
MSD1  
SSD1  
MSD0  
SSD0  
Reversed Position Shift Amount  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
2
3
1
1
1
0
0
0
0
0
1
1
1
0
1
1
0
0
1
0
38  
39  
40  
Make sure that the display size, reverse cycle, and shift amount of reverse position have the relationship indicated by  
the following expression:  
Display size (duty) reverse cycle reverse shift amount  
53  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.7.5 Reverse driving between frames  
In the µPD161401, the LCD drive waveform can be reversed and output between frames by setting the FXOR flag of  
Driving mode select register (R64), as shown in Figure 527. This function is executed in combination with the reverse  
cycle and reverse shift functions.  
Figure 527. Image of Reversal between Pulse Width Modulation Frames  
Reversal between frames not implemented (FXOR = 0)  
Reverse cycle (R15, R18)  
Frame n  
Frame n+1  
Frame n+2  
Frame n+3  
Reverse position shift amount (R16, R19)  
Implementation of reversal between frames (FXOR = 1)  
Reverse cycle (R15, R18)  
Frame n  
Frame n+1  
Frame n+2  
Frame n+3  
Reverse position shift amount (R16, R19)  
54  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.8 Display Mode  
5.8.1 Selecting display mode  
The µPD161401 has two display modes: main duty display and sub-duty display. In each of these modes, any duty  
ratio can be selected and parts other than the display area can be scanned with a non-selected waveform.  
The display mode can be selected by using the DTY flag of control register 2 (R1), and parameters such as the duty  
ratio, bias value, and number of boosting steps are automatically selected as shown in the table below.  
Display Setting  
Duty ratio  
Main Duty Display (DTY = 0)  
Main duty setting register (R14)  
Sub-duty Display (DTY = 1)  
Sub-duty setting register (R17)  
N-line inversion  
M-line shift  
Main duty N-line inversion register (R15)  
Main duty M-line shift register (R16)  
Power system control register 2 (R53)  
VRR3 to VRR0  
Sub-duty N-line inversion register (R18)  
Sub-duty M-line shift register (R19)  
Power system control register 2 (R53)  
SVR3 to SVR0  
VLCD adjustment  
Bias value  
Power system control register 3 (R54)  
BIS2 to BIS0  
Power system control register 3 (R54)  
SBIS2 to SBIS0  
Number of boosting steps Power system control register 4 (R55)  
MBT2 to MBT0  
Power system control register 4 (R55)  
SBT2 to SBT0  
Electronic volume  
Main electronic volume register (R57)  
Sub-electronic volume register (R58)  
Sub R grayscale data registers (R85 to R92)  
Sub G grayscale data registers (R93 to R100)  
Sub B grayscale data registers (R101 to R104)  
Grayscale data setting  
Main R grayscale data registers (R65 to R72)  
Main G grayscale data registers (R73 to R80)  
Main B grayscale data registers (R81 to R84)  
When the mode is changed from the main duty display mode to the sub-duty display mode or vice versa, the display  
screen may be temporarily disturbed, depending on the setting of each duty mode, if electric charge remains in the  
smoothing capacitor connected between the LCD drive voltage pins (VLCD, VLC1 to VLC4) and VSS. It is recommended  
that the following power sequence be observed to avoid any trouble that may occur when the display mode is changed.  
55  
Data Sheet S15726EJ2V0DS  
µPD161401  
(1) Main duty display mode to sub-duty display mode  
Operation status  
Main duty display mode  
Control register 1  
R0  
Display OFF. Internal operation starts.  
DISP = 0, HALT = 0  
Change the operation mode of the operational  
amplifier to “power OFF mode”.  
Power system control register 5  
R56  
(HPM1 = 1, HPM0 = 0)  
Control register 2  
R1  
Sub-duty display mode setting Note1  
DTY = 1  
Wait time 1  
Wait for at least 50 ms. Note2  
Change the operation mode of the operational  
amplifier to “power ON mode”.  
Power system control register 5  
R56  
(HPM1 = 0, HPM0 = 1)  
Wait time 2  
Wait for at least 150 ms. Note2  
The operation mode of the operational amplifier:  
“normal mode”.  
Power system control register 5  
R56  
(HPM1 = 0, HPM0 = 0)  
Control register 1  
R0  
Display ON. Internal operation starts.  
(DISP = 1, HALT = 0)  
Setting completed  
Notes 1. A scroll function cannot be used in sub-duty display mode. In the state where the scroll function is used by  
main duty display mode when it changes to sub-duty, a scroll function is disregarded. Then, when it  
changes to main duty display mode again, a scroll function returns to an effective state (state before  
changing to sub-duty).  
2. The wait times 1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the  
boosting or smoothing capacitor. It is recommended to determine these values after thorough evaluation  
with the actual system.  
56  
Data Sheet S15726EJ2V0DS  
µPD161401  
(2) Sub-duty display mode to main duty display mode  
Sub-duty display mode Note1  
Operation status  
Control register 1  
R0  
Display OFF. Internal operation starts.  
DISP = 0, HALT = 0  
Change the operation mode of the operational  
amplifier to “power ON mode”.  
Power system control register 5  
R56  
(HPM1 = 0, HPM0 = 1)  
Control register 2  
R1  
Main duty display mode setting  
DTY = 0  
Wait time  
Wait for at least 160 ms. Note2  
The operation mode of the operational amplifier:  
“normal mode”.  
Power system control register 5  
R56  
(HPM1 = 0, HPM0 = 0)  
Control register 1  
R0  
Display ON. Internal operation starts.  
(DISP = 1, HALT = 0)  
Setting completed  
Notes 1. A scroll function cannot be used in sub-duty display mode. In the state where the scroll function is used by  
main duty display mode when it changes to sub-duty, a scroll function is disregarded. Then, when it  
changes to main duty display mode again, a scroll function returns to an effective state (state before  
changing to sub-duty).  
2. The wait time varies depending on the characteristics of the LCD panel and the capacitance of the boosting  
or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual  
system.  
57  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.8.2 Screen scrolling  
The µPD161401 has a screen scroll function. This function is enabled during main duty display. The width of the area  
to be fixed is specified by the scroll fixed area width register (R27) and the number of scroll steps is set by the scroll  
step number register (R31). By these settings, other parts of screen can be scrolled with part of the screen fixed. To  
specify the position of the area to be fixed, set the FIXAHL flag of the scroll fixed area position register (R23) as shown  
in Table 529. Specify the fixed area position on the upper part of the LCD panel in master mode and on the bottom  
part of the panel in slave mode.  
Table 529. Scroll Fixed Area Width Register (R27)  
FIXAW1  
FIXAW0  
Fixed area width  
0
0
1
1
0
1
0
1
0
16  
24  
32  
Table 530. Scroll Step Count Register (R31)  
MST6  
MST5  
MST4  
MST3  
MST2  
MST1  
MST0  
Number of Scroll Steps  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
2
3
1
1
1
0
0
0
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
78  
79  
Other settings prohibited  
Note that the relationship between the number of scroll steps and the width of the scroll fixed area needs to be set so  
that the following condition is set.  
Number of scroll steps 79 Width of scroll fixed area  
Caution If values other than the above is set, the operation is not guaranteed.  
Table 531. Scroll Fixed Area Position Register (R23)  
FIXAHL  
LCD Display Position  
0
1
Bottom  
Upper  
58  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.8.3 Scroll setting examples  
(1) Setting example 1  
Duty: 1/64 duty  
RAM read direction: normal (R0:COMR = 0)  
Scroll fixed area width: 16 lines (R27: FIXAW1,0 = 0,1)  
(a) Scroll fixed position: upper (R23: FIXAHL = 1)  
(b) Scroll fixed position: bottom (R23: FIXAHL = 0)  
Y address  
Y address  
00H  
COM1  
00H  
Fixed area  
COM16  
0FH  
Display RAM  
Display RAM  
COM49  
COM64  
30H  
3FH  
Fixed area  
3FH  
4FH  
4FH  
The relationships between the numbers of scroll steps and RAM Y address scan order in cases of (a) and (b) are as  
follows.  
(a)  
Number of scroll steps: 0 (R31: MSTn = 00H)  
Number of scroll steps: 1 (R31: MSTn = 01H)  
Number of scroll steps: 10 (R31: MSTn = 0AH)  
RAM Y address: 00H 0FH, 10H 3FH  
RAM Y address: 00H 0FH, 11H 40H  
RAM Y address: 00H 0FH, 1AH 49H  
(b)  
Number of scroll steps: 0 (R31: MSTn = 00H)  
Number of scroll steps: 1 (R31: MSTn = 01H)  
Number of scroll steps: 10 (R31: MSTn = 0AH)  
RAM Y address: 00H 2FH, 30H 3FH  
RAM Y address: 00H 2FH, 40H, 30H 3FH  
RAM Y address: 0AH 2FH, 40H 49H, 30H 3FH  
59  
Data Sheet S15726EJ2V0DS  
µPD161401  
(2) Setting example 2  
Duty: 1/64 duty  
RAM read direction: reverse (R0: COMR = 1)  
Scroll fixed area width: 16 lines (R27: FIXAW1,0 = 0,1)  
(a) Scroll fixed position: upper (R23: FIXAHL = 1)  
(b) Scroll fixed position: bottom (R23: FIXAHL = 0)  
Y address  
Y address  
00H  
COM64  
00H  
Fixed area  
0FH  
COM49  
Display RAM  
Display RAM  
COM16  
COM1  
30H  
3FH  
Fixed area  
3FH  
4FH  
4Fh  
The relationships between the numbers of scroll steps and RAM Y address scan order in cases of (a) and (b) are as  
follows.  
(a)  
Number of scroll steps: 0 (R31: MSTn = 00H)  
Number of scroll steps: 1 (R31: MSTn = 01H)  
Number of scroll steps: 10 (R31: MSTn = 0AH)  
RAM Y address: 3FH 10h, 0FH 00H  
RAM Y address: 40H 11h, 0FH 00H  
RAM Y address: 49H 1Ah, 0FH 00H  
(b)  
Number of scroll steps: 0 (R31: MSTn = 00H)  
Number of scroll steps: 1 (R31: MSTn = 01H)  
Number of scroll steps: 10 (R31: MSTn = 0AH)  
RAM Y address: 3Fh 30H, 2FH 00H  
RAM Y address: 3Fh 30H, 40h, 2FH 01H  
RAM Y address: 3Fh 30hH, 49H 40H, 2FH 0AH  
60  
Data Sheet S15726EJ2V0DS  
µPD161401  
5.9 Reset  
When the reset command is input, the IC is initialized to the default status shown in the table below. Note that  
initialization by using the /DISP pin should be used only to prevent malfunctioning due to noise.  
Table 532. Default Values of Registers (1/2)  
Register  
Reset Command  
/DISP  
Control register 1  
R0  
R1  
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
×
Ο (DISP, TRON flag only)  
Control register 2  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
X address register  
R4  
Y address register  
R5  
MIN. X address register  
MAX. X address register  
MIN. Y address register  
MIN. Y address register  
Display memory access register  
Main duty setting register  
R7  
R8  
R9  
R10  
R12  
R14  
R15  
R16  
R17  
R18  
R19  
R21  
R22  
R23  
R27  
R31  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
×
Main duty N-line inversion register  
Main duty M-line shift register  
Sub-duty setting register  
Sub-duty N-line inversion register  
Sub-duty M-line shift register  
COM scanning address setting register  
Sub-duty start address register  
Scroll fixed area position register  
Scroll fixed area width register  
Scroll steps number register  
Blinking/reverse setting register  
Complementary color blink X address register  
Complementary color blink start line address register  
Complementary color blink end line address register  
Complementary color blink data memory register  
Specified color blink X address register  
Specified color blink start line address register  
Specified color blink end line address register  
Specified color blink data memory register  
Specified color setting register  
Ο
Ο
Ο
×
Ο
Ο
Ο
Reverse X address register  
Reverse start line address register  
Remark O: Default value is input. X: Default value is not input.  
Cautions 1. When initialization is made using the /DISP pin, the contents of memory are not guaranteed.  
In this case, use the initialized RAM. When initialization is made via the reset command, the  
contents of memory are retained.  
2. If the device is initialized by the /DISP pin while the serial interface is being used, the serial clock  
counter is initialized.  
3. Always input the reset command as the first command after power application.  
61  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 532. Default Values of Registers (2/2)  
Register Reset Command  
Reverse end line address register  
/DISP  
R49  
R50  
Ο
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
Reversed data memory access register  
Power system control register 1  
Power system control register 2  
Power system control register 3  
Power system control register 4  
Power system control register 5  
Main electronic volume register  
Sub-electronic volume register  
×
R52  
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
R53  
R54  
R55  
R56  
R57  
R58  
RAM test mode setting register  
Driving mode select register  
R61  
R64  
Main R grayscale data registers 1 to 8  
Main G grayscale data registers 1 to 8  
Main B grayscale data registers 1 to 4  
Sub R grayscale data registers 1 to 8  
Sub G grayscale data registers 1 to 8  
Sub B grayscale data registers 1 to 8  
R65 to R72  
R73 to R80  
R81 to R84  
R85 to R92  
R93 to R100  
R101 to R104  
Remark O: Default value is input. X: Default value is not input.  
Cautions 1. When initialization is made using the /DISP pin, the contents of memory are not guaranteed.  
In this case, use the initialized RAM. When initialization is made via the reset command, the  
contents of memory are retained.  
2. If the device is initialized by the /DISP pin while the serial interface is being used, the serial clock  
counter is initialized.  
3. Always input the reset command as the first command after power application.  
62  
Data Sheet S15726EJ2V0DS  
µPD161401  
6. COMMANDS  
The µPD161401 identifies data bus signals by a combination of the RS, /RD (E), and /WR (R,/W) signals. It interprets  
and executes commands only in accordance with the internal timing, without being dependent upon the external clock.  
Therefore, the processing speed is extremely high and, usually, no busy check is necessary.  
An i80 system CPU interface inputs a low pulse to the /RD pin when it reads data from the µPD161401 to issue a  
command. It inputs a low pulse to the /WR pin when it writes data to the µPD161401.  
Data can be read from an M68 system CPU interface if a high-pulse signal is input to the R,/W pin, and written if a  
low-pulse signal is input to the R,/W pin. A command is executed if a high-pulse signal is input to the E pin in this status.  
Therefore, in the explanation of the commands and display commands in 6.1 Control Register 1 (R0) and the sections  
that follow, the M68 system CPU interface uses H, instead of /RD (E), when reading status or display data. This is how  
it differs from the i80 system CPU interface.  
The commands of the µPD161401 are explained below, taking an i80 system CPU interface as an example. When the  
serial interface is used, sequentially input data to the µPD161401, starting from D7.  
The data bus length to input commands is as follows:  
Commands other than those that manipulate the display memory access register (R12) are input in byte units,  
regardless of the value of BMOD (control register 2 (R1), bus length setting).  
The commands that manipulate the display memory access register (R12) are input in 1-byte units when BMOD = 1,  
or in 2-byte units when BMOD = 0.  
A. Commands other than those that manipulate display memory access register (R12)  
BMOD = 1 (8-bit data bus)  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Pin  
DATA  
BMOD = 0 (16-bit data bus)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Pin  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
DATA  
Note 0 or 1  
B. Display memory access register (R12)  
BMOD = 1 (8-bit data bus)  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Pin  
DATA  
BMOD = 0 (16-bit data bus)  
D15  
D15  
D14  
D14  
D13  
D13  
D12  
D12  
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Pin  
DATA  
63  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.1 Control Register 1 (R0)  
This command specifies the general operation mode of the µPD161401.  
RS  
1
E /RD  
1
R,/W  
/WR  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
TRON  
WAS  
COMF  
DISP  
STBY  
HALT  
ADC  
COMR  
TRON  
WAS  
0: Normal mode (all values written to the test register are ignored)  
1: Test register valid mode (values written to the test register are valid)  
0: Normal data write mode  
1: Window access mode (Refer to 5.2.7 Arbitrary address area access (window access mode (WAS)).)  
0: Normal display operation  
COMF  
1: All output from common pins is OFF (all the common pins output a non-selected waveform. At this time, the  
segment pins output OFF data (level 0)).  
DISP  
STBY  
HALT  
0: Display OFF (All the LCD output pins output a VSS level, and the oscillator and DC/DC converter operate.)  
1: Display ON  
0: Normal operation  
1: Internal operation and oscillation stop. Display OFF  
0: Internal operation starts.  
1: Internal operation stops (all the LCD output pins output a VSS level, the oscillator operates, and the DC/DC  
converter stops, and the reference voltage generator operates).  
Column addresses correspond to SEG outputs that are used to display the display data RAM (refer to Table 61).  
Selects the direction in which the lines of the graphic RAM are read (refer to Table 62).  
ADC  
COMR  
Table 61. Relationship between Column Address of Display RAM and Segment Output  
SEG Output  
SEG1  
000H  
12EH  
• • •  
SEG303  
12EH  
000H  
ADC  
(D1)  
0
1
Column address  
Column address  
Table 62. Relationship between Common Scan Circuit and Scan Direction  
COMR  
(D0)  
0
1
00H  
4FH  
4FH  
00H  
Default (default value of reset command)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
D1  
0
D0  
0
0
64  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.2 Control Register 2 (R1)  
This command specifies the general operation mode of the µPD161401.  
RS  
1
E
R,/W  
/WR  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
/RD  
1
0
FDM  
BMOD  
DTY  
INC  
XDIR  
YDIR  
FDM  
Sets all screen display modes.  
0: Normal operation  
1: All screen display (Turns ON all screens [outputs grayscale level 16 to all screens].)  
Selects data length when parallel data is input.  
0: 16-bit data bus  
BMOD  
1: 8-bit data bus  
DTY  
0: Main duty display mode  
1: Sub-duty display mode  
INC Note  
XDIR Note  
0: Increments/decrements X address each time it is accessed.  
1: Increments/decrements Y address each time it is accessed.  
Specifies the direction in which the X address is to be accessed.  
0: Increment (+1)  
1: Decrement (-1)  
YDIR Note  
Specifies the direction in which the Y address is to be accessed.  
0: Increment (+1)  
1: Decrement (-1)  
Note If the access direction is changed by INC, XDIR, or YDIR, be sure to set the X address register (R4) and Y  
address register (R5) before accessing the display RAM.  
Table 63. Relationship between Functions of µPD161401 and Display Mode  
Display Setting  
Duty  
Main Duty Display (DTY = 0)  
Main duty setting register (R14)  
Sub-duty Display (DTY = 1)  
Sub-duty setting register (R17)  
N-line inversion  
M-line shift  
Main duty N-line inversion register (R15)  
Main duty M-line shift register (R16)  
Power system control register 2 (R53)  
VRR3 to VRR0  
Sub-duty N-line inversion register (R18)  
Sub-duty M-line shift register (R19)  
Power system control register 2 (R53)  
SVR3 to SVR0  
VLCD adjustment  
Bias value  
Power system control register 3 (R54)  
BIS2 to BIS0  
Power system control register 3 (R54)  
SBIS to SBIS0  
Number of boosting  
steps  
Power system control register 4 (R55)  
MBT2 to MBT0  
Power system control register 4 (R55)  
SBT2 to SBT0  
Electronic volume  
Grayscale data  
setting  
Main electronic volume register (R57)  
Main R grayscale data register (R65 to R72)  
Main G grayscale data register (R73 to R80)  
Main B grayscale data register (R81 to R84)  
Sub-electronic volume register (R58)  
Sub R grayscale data register (R85 to R92)  
Sub G grayscale data register (R93 to R100)  
Sub B grayscale data register (R101 to R104)  
Default (default value of reset command)  
D7  
0
D6  
D5  
0
D4  
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note 0 or 1  
65  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.3 Reset Command Register (R3)  
When this command is input, the registers of the µPD161401 (R0 to R104) are set to the default values.  
RS  
1
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
Caution At power application, be sure to input the reset command as the first command.  
6.4 X Address Register (R4)  
The X address register specifies the X address of the display RAM the CPU accesses. This address is automatically  
incremented or decremented each time the display RAM has been accessed (INC = 0).  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
XA6  
XA5  
XA4  
XA3  
XA2  
XA1  
XA0  
Caution If the access direction is changed by control register 2 (R1: INC, XDIR, YDIR) or window access area  
is changed or set by MIN. X address register (R7, R9) and MAX. X address register (R8, R10), be sure  
to set the X address register (R4) and Y address register (R5) before accessing the display RAM.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
6.5 Y Address Register (R5)  
The Y address register specifies the Y address of the display RAM the CPU accesses. This address is automatically  
incremented or decremented each time the display RAM is accessed (INC = 1).  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
YA6  
YA5  
YA4  
YA3  
YA2  
YA1  
YA0  
YA6 to YA0  
Sets line address  
Caution If the access direction is changed by control register 2 (R1: INC, XDIR, YDIR), be sure to set the X  
address register (R4) and Y address register (R5) before accessing the display RAM.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
66  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.6 MIN.·X Address Register (R7)  
This register specifies the X address of the start point of the display RAM the CPU accesses when the window  
access mode is used.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
XMN6  
XMN5  
XMN4  
XMN3  
XMN2  
XMN1  
XMN0  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
6.7 MAX.·X Address Register (R8)  
This register specifies the X address of the end point of the display RAM the CPU accesses when the window access  
mode is used.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
XMX6  
XMX5  
XMX4  
XMX3  
XMX2  
XMX1  
XMX0  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
6.8 MIN.·Y Address Register (R9)  
This register specifies the Y address of the start point of the display RAM the CPU accesses when the window access  
mode is used.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
YMN6  
YMN5  
YMN4  
YMN3  
YMN2  
YMN1  
YMN0  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
67  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.9 MAX.·Y Address Register (R10)  
This register specifies the Y address of the end point of the display RAM the CPU accesses when the window access  
mode is used.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
YMX6  
YMX5  
YMX4  
YMX3  
YMX2  
YMX1  
YMX0  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
6.10 Display Memory Access Register (R12)  
The display memory access register is used to access the display RAM. When data is written to this register, it is  
directly written to the display RAM. In the µPD161401, the data of the display access memory register (R12) cannot be  
read.  
BMOD = 1 (8-bit data bus)  
RS  
1
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
BMOD = 0 (16-bit data bus)  
RS  
1
D15  
D15  
D14  
D14  
D13  
D13  
D12  
D12  
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Default value (default value of reset command)  
BMOD = 1 (8-bit data bus)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
BMOD = 0 (16-bit data bus)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
68  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.11 Main Duty Setting Register (R14)  
This register can set the display duty ratio in a range of 1/80, 1/72 and 1/64 duty as shown in Table 65 in the main  
duty display mode.  
Before changing the contents of this register, be sure to stop the internal operation by using the HALT command  
(control register 1 (R0)).  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MDT6  
MDT5  
MDT4  
MDT3  
MDT2  
MDT1  
MDT0  
Table 65. Main Duty Setting Register (R14)  
MDT6  
MDT5  
MDT4  
MDT3  
MDT2  
MDT1  
MDT0  
Duty  
1
1
0
0
0
1
0
0
1
1
0
1
1
1
1
1
1
1
1
1
1
1/80  
1/72  
1/64  
Default value (default value of reset command)  
D7  
D6  
1
D5  
0
D4  
0
D3  
1
D2  
D1  
D0  
Note  
1
1
1
Note 0 or 1  
6.12 Main Duty N-line Inversion Register (R15)  
This register can set the line position of AC driving in the main duty display mode as shown in Table 66.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MID5  
MID4  
MID3  
MID2  
MID1  
MID0  
Table 66. Setting of Main Duty N-line Inversion Register (R15)  
MID5  
MID4  
MID3  
MID2  
MID1  
MID0  
Line to be reversed  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
2
3
1
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
0
1
38  
39  
40  
Default value (default value of reset command)  
D7  
D6  
D5  
1
D4  
0
D3  
0
D2  
1
D1  
D0  
Note  
Note  
1
1
Note 0 or 1  
69  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.13 Main Duty M-line Shift Register (R16)  
This register shifts the reverse position of each frame in the main duty display mode by the shift amount shown in  
Table 67.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSD5  
MSD4  
MSD3  
MSD2  
MSD1  
MSD0  
Table 67. Main Duty M-line Shift Register (R16)  
Shift amount of position  
to be reversed  
MSD5  
MSD4  
MSD3  
MSD2  
MSD1  
MSD0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
2
3
1
1
1
0
0
0
0
0
1
1
1
0
1
1
0
0
1
0
38  
39  
40  
Make sure that the relationship between the display size, reverse cycle, and reverse position is established as follows.  
Display size (Duty) reverse cycle reverse shift amount  
Default value (default value of reset command)  
D7  
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note 0 or1  
70  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.14 Sub-duty Setting Register (R17)  
This register can set the display duty ratio in a range of 1/48, 1/40, 1/32, 1/24 and 1/16 as shown in Table 68 in the  
sub-duty display mode by setting SDT6 to SDT0.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDT6  
SDT5  
SDT4  
SDT3  
SDT2  
SDT1  
SDT0  
Table 68. Main Duty Setting Register (R17)  
SDT6  
SDT5  
SDT4  
SDT3  
SDT2  
SDT1  
SDT0  
Duty  
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1/48  
1/40  
1/32  
1/24  
1/16  
Default value (default value of reset command)  
D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
D1  
D0  
Note  
1
1
1
Note 0 or 1  
71  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.15 Sub-duty N-line Inversion Register (R18)  
This register can set the line position of driving in the sub-duty display mode as shown in Table 69.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SID5  
SID4  
SID3  
SID2  
SID1  
SID0  
Table 69. Sub-duty N-line Inversion Register (R18)  
SID5  
SID4  
SID3  
SID2  
SID1  
SID0  
Line to be reversed  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1
2
3
4
1
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
0
1
38  
39  
40  
Caution Please protect the following relations.  
Sub-duty display size (duty) sub-duty reversed line  
If this relation is not protected, the operation is not guaranteed.  
However, when the above-mentioned relation is not protected, inside µPD161401, processing which makes  
reversed line equal to display size is carried out. In addition, the value of a register is not rewritten  
automatically.  
Default value (default value of reset command)  
D7  
D6  
D5  
1
D4  
0
D3  
0
D2  
1
D1  
1
D0  
1
Note  
Note  
Note 0 or 1  
72  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.16 Sub-duty M-line Shift Register (R19)  
This register shifts the reverse position of each frame in the sub-duty display mode by the shift amount shown in  
Table 610.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SSD5  
SSD4  
SSD3  
SSD2  
SSD1  
SSD0  
Table 610. Sub-duty M-line Shift Register (R19)  
SSD5  
SSD4  
SSD3  
SSD2  
SSD1  
SSD0  
Shift amount of position to be reversed  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
2
3
1
1
1
0
0
0
0
0
1
1
1
0
1
1
0
0
1
0
38  
39  
40  
Make sure that the relationship between the display size, reverse cycle, and reverse position is established as follows.  
Display size (duty) reverse cycle reverse shift amount  
Default value (default value of reset command)  
D7  
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note 0 or 1  
73  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.17 COM Scanning Address Setting Register (R21)  
This command specifies that scanning of the common outputs can be started from any of the On (n = 1 to 80) output  
pins. Set the CSA4 to CSA0 bits as shown in Table 611 (1/2). The scan start pin can be specified by the value n  
obtained from this table and the selected duty shown in Table 611 (2/2). The common wiring on the LCD panel can be  
optimized according to the selected duty.  
Tables 612, 613, and 614 indicate examples of the COM scan address settings for 1/64 duty, 1/72 duty, and 1/80  
duty.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CSA4  
CSA3  
CSA2  
CSA1  
CSA0  
Table 611. COM Scanning Address Setting Register (1/2)  
CSA4  
CSA3  
CSA2  
CSA1  
CSA0  
n
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
2
3
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
15  
16  
17  
Other settings prohibited  
Table 611. COM Scanning Address Setting Register (2/2)  
COMR = 0  
COMR = 1  
Scanning start  
(COM1) pin  
On  
Scanning end  
(COMa) Note pin  
O(n+a1) Note  
Scanning start  
(COM1) pin  
O(82an)  
Scanning end  
(COMa) Note pin  
O(80n+1) Note  
Note a = 64: 1/64 duty  
a = 72: 1/72 duty  
a = 80: 1/80 duty  
Caution Set the COM scan address setting register so that the scan start pin and scan end pin satisfy the  
equation below. If a value that exceeds this condition is set, the µPD161401 operation is not  
guaranteed.  
O1 Scan start pin and scan end pin O80  
74  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 612. Example of COM Scanning Address Setting (1/64 duty)  
COMR = 0  
COMR = 1  
Scanning start  
(COM1) pin  
Scanning end  
(COMa) Note pin  
Scanning start  
(COM1) pin  
Scanning end  
(COMa) Note pin  
CSA4  
CSA3  
CSA2  
CSA1  
CSA0  
n
On  
O(n+a1) Note  
O(82an)  
O(80n+1) Note  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
O1  
O2  
O64  
O65  
O66  
O67  
O68  
O69  
O70  
O71  
O72  
O73  
O74  
O75  
O76  
O77  
O78  
O79  
O80  
O17  
O16  
O15  
O14  
O13  
O12  
O11  
O10  
O9  
O80  
O79  
O78  
O77  
O76  
O75  
O74  
O73  
O72  
O71  
O70  
O69  
O68  
O67  
O66  
O65  
O64  
3
O3  
4
O4  
5
O5  
6
O6  
7
O7  
8
O8  
9
O9  
10  
11  
12  
13  
14  
15  
16  
17  
O10  
O11  
O12  
O13  
O14  
O15  
O16  
O17  
O8  
O7  
O6  
O5  
O4  
O3  
O2  
O1  
Note a = 64 at 1/64 duty  
75  
Data Sheet S15726EJ2V0DS  
µPD161401  
Table 613. Example of COM Scanning Address Setting (1/72 duty)  
COMR = 0  
COMR = 1  
Remark  
Scanning start Scanning end  
Scanning start  
(COM1) pin  
Scanning end  
(COMa) Note pin  
CSA4  
CSA3  
CSA2  
CSA1  
CSA0  
n
(COM1) pin  
(COMa) Note pin  
On  
O(n+a1) Note  
O(82an)  
O(80n+1) Note  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
1
2
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O8  
O9  
O72  
O73  
O74  
O75  
O76  
O77  
O78  
O79  
O80  
O9  
O8  
O7  
O6  
O5  
O4  
O3  
O2  
O1  
O80  
O79  
O78  
O77  
O76  
O75  
O74  
O73  
O72  
3
4
5
6
7
8
9
10  
Other settings  
prohibited  
Note a = 72 at 1/72 duty  
Caution Set the COM scan address setting register (R21) so that O1 scan start pin and scan end pin O80. If a  
value that exceeds this condition is set, the µPD161401 operation is not guaranteed  
Table 614. Example of COM Scanning Address Setting (1/80 duty)  
COMR = 0  
COMR = 1  
Remark  
Scanning  
start  
Scanning end  
(COMa) Note pin  
Scanning start  
Scanning end  
(COMa) Note pin  
CSA4 CSA3 CSA2 CSA1  
CSA0  
n
(COM1) pin  
(COM1) pin  
On  
O(n+a1) Note  
O(82an)  
O(80n+1) Note  
0
0
0
0
0
0
0
0
0
1
1
2
O1  
O80  
O1  
O80  
Other settings  
prohibited  
Note a = 80 at 1/80 duty  
Caution When the µPD161401 is used in 1/80 duty, set the COM scan address setting register (R21) to CSA4,  
CSA3, CSA2, CSA1, CSA0 = 0, 0, 0, 0, 0. If any other settings are made, the µPD161401 operation is not  
guaranteed.  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note 0 or 1  
76  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.18 Sub-duty Start Address Register (R22)  
The sub-duty start address register specifies the start address of the display RAM the CPU accesses to use the sub-  
duty display mode. The sub-duty display area starts from this start line address and consists of the number of lines  
specified by the sub-duty setting register (R17).  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SSA6  
SSA5  
SSA4  
SSA3  
SSA2  
SSA1  
SSA0  
Table 615. Sub-duty Start Address Register  
SSA6  
SSA5  
SSA4  
SSA3  
SSA2  
SSA1  
SSA0  
Common  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
COM1  
COM2  
COM3  
COM4  
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
1
1
1
0
1
COM78  
COM79  
COM80  
Make sure that SSA (R22) and SDT (R17) have in the following relationship.  
SSAn + SDTn MDT 4FH  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
77  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.19 Scroll Fixed Area Position Register (R23)  
This command specifies the display position of the scroll fixed area to upper or bottom of side in LCD panel.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIXAHL  
Table 616. Scroll Fixed Position Register (R23)  
FIXAHL  
Display Position  
0
1
bottom  
upper  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Note  
D0  
Note  
Note  
Note  
Note  
Note  
Note  
1
Note 0 or 1  
6.20 Scroll Fixed Area Width Register (R27)  
This register selects the width of the area to be fixed from 0, 16, 24, and 32 lines.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIXAW1  
FIXAW0  
Table 416. Scroll Fixed Area Width Register (R27)  
FIXAW1  
FIXAW0  
Fixed Area Width  
0
0
1
1
0
1
0
1
0
16  
24  
32  
Even if the screen display size is changed by the duty setting register (R14 and R17), FIXAW1 and FIXAW0 are not  
overwritten.  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
0
Note  
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
78  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.21 Scroll Step Number Register (R31)  
This register sets the number of scroll steps when the scroll function is used.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MST6  
MST5  
MST4  
MST3  
MST2  
MST1  
MST0  
Table 618. Scroll Step Number Register (R31)  
MST6  
MST5  
MST4  
MST3  
MST2  
MST1  
MST0  
Number of Scroll Steps  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
2
3
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
1
1
1
0
0
1
1
0
1
0
1
0
77  
78  
79  
Other settings prohibited  
Caution The relationship between the number of scroll steps and scroll fixed area width should be as follows.  
Number of scroll steps 79 Scroll fixed area width  
If values exceeding the above condition are set, the operation is not guaranteed.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
79  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.22 Blink/Reverse Setting Register (R37)  
This register controls blink display or reverse display. Blink display is controlled by the BLD1 and BLD0 flags of this  
register, and reverse display is controlled by the INV flag, as shown in the table below.  
The condition of each of the blink and reverse display areas is individually set by R38 to R50.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INV  
BLD1  
BLD0  
Table 619. Blink/Reverse Display Control  
INV  
0
Display  
Reverse display OFF  
Reverse display ON  
1
BLD1  
Display  
0
1
Specified-color blink display OFF  
Specified-color blink display ON  
BLD0  
Display  
0
1
Complementary-color blink display OFF  
Complementary-color blink display ON  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
D1  
0
D0  
0
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
6.23 Complementary Color Blink X Address Register (R38)  
The complementary color blink X address register specifies the X address of the complementary color blink RAM the  
CPU accesses. This address is automatically incremented each time the complementary color blink data RAM is  
accessed.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CBX3  
CBX2  
CBX1  
CBX0  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note  
Note 0 or 1  
80  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.24 Complementary Color Blink Start Line Address Register (R39)  
The complementary color blink start line address register specifies the start line address the CPU accesses to use  
complementary color blinking display. The range of the complementary color blink lines is determined by this register  
and the complementary color blink end line address register.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
CBS6  
CBS5  
CBS4  
CBS3  
CBS2  
CBS1  
CBS0  
CBS6 to CBS0  
Sets a start line address  
Caution Make sure that CBS [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
6.25 Complementary Color Blink End Line Address Register (R40)  
The complementary color blink end line address register specifies the end line address the CPU accesses to use  
complementary color blink display. The range of the complementary color blink lines is determined by this register and  
the complementary color blink start line address register.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
CBE6  
CBE5  
CBE4  
CBE3  
CBE2  
CBE1  
CBE0  
CBE6 to CBE0  
Sets an end line address  
Caution Make sure that CBE [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
81  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.26 Complementary Color Blink Data Memory Register (R41)  
The complementary color blink data memory register is used to access the complementary color blink data RAM.  
If this register is accessed for write, data is directly written to the complementary color blink data RAM.  
RS  
1
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Data  
Status  
0
1
Normal  
Complementary color blinking  
Default value (default value of reset command, all data)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
6.27 Specified Color Blink X Address Register (R42)  
The specified color blink X address register specifies the X address of the specified color blinking RAM the CPU  
accesses. This address is automatically incremented each time the specified color blink data RAM is accessed.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SBX3  
SBX2  
SBX1  
SBX0  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note  
Note 0 or 1  
82  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.28 Specified Color Blink Start Line Address Register (R43)  
The specified color blink start line address register specifies the start line address the CPU accesses to use specified  
color blinking display. The range of the specified color blink lines is determined by this register and the specified color  
blinking end line address register.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
SBS6  
SBS5  
SBS4  
SBS3  
SBS2  
SBS1  
SBS0  
SBS6 to SBS0 Sets a start line address.  
Caution Make sure that SBS [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
6.29 Specified Color Blink End Line Address Register (R44)  
The specified color blink end line address register specifies the end line address the CPU accesses to use specified  
color blink display. The range of the specified color blink lines is determined by this register and the specified color blink  
start line address register.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
SBE6  
SBE5  
SBE4  
SBE3  
SBE2  
SBE1  
SBE0  
SBE6 to SBE0 Sets an end line address.  
Caution Make sure that SBE [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed.  
Default value (default value of reset command)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
83  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.30 Specified Color Blink Data Memory Register (R45)  
The specified color blink data memory register is used to access the specified color blink data RAM. If this register is  
accessed for write, data is directly written to the specified color blink data RAM.  
RS  
1
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Data  
Status  
0
1
Normal  
Specified color blinking  
Default value (default value of reset command, all data)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
6.31 Specified Color Setting Register (R46)  
This register sets specified color data when the specified color blink function is used. The data between this data and  
the display RAM data blinks in a specified color.  
RS  
1
D7  
D7  
D6  
D6  
R
D5  
D5  
D4  
D4  
D3  
D3  
G
D2  
D2  
D1  
D1  
D0  
D0  
Remark  
B
In 256-color mode  
Default value (default value of reset command, all data)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.32 Reverse X Address Register (R47)  
The reverse X address register specifies the X address of the reverse data RAM the CPU accesses. This address is  
incremented each time the reverse RAM has been accessed.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IVX3  
IVX2  
IVX1  
IVX0  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note  
Note 0 or 1  
84  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.33 Reverse Start Line Address Register (R48)  
The reverse start line address register specifies start line address of the display RAM the CPU accesses for reverse  
display. The range of the reverse lines is determined by this register and the reverse end line address register.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IVS6  
IVS5  
IVS4  
IVS3  
IVS2  
IVS1  
IVS0  
IVS6 to IVS0  
Sets a start line address.  
Caution Make sure that IVS [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
6.34 Reverse End Line Address Register (R49)  
The reverse end line address register specifies the end line address of the display RAM the CPU accesses for reverse  
display. The range of the reverse lines is determined by this register and the reverse start line address register.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
IVE6  
IVE5  
IVE4  
IVE3  
IVE2  
IVE1  
IVE0  
IVE6 to IVE0  
Sets an end line address.  
Caution Make sure that IVE [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
85  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.35 Reverse Data Memory Access Register (R50)  
The reverse data memory access register is used to access the reverse data RAM. When this register is accessed for  
write, data is directly written to the reverse data RAM.  
RS  
1
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Setting  
Data  
Status  
0
1
Normal  
Reverse  
Default value (default value of reset command, all data)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
86  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.36 Power System Control Register 1 (R52)  
This command sets the power system mode of the µPD161401.  
E
R,/W  
/WR  
RS  
1
/RD  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
TCS2  
TCS1  
TCS0  
OP3  
OP2  
OP1  
OP0  
TCS2 to TCS0 These bits set the value that selects the temperature curve of the VREG voltage to a value shown in Table 620.  
OP3 to OP0  
These bits turn ON/OFF the booster circuit, reference voltage generator, control the voltage regulator circuit (V  
regulator circuit) and voltage follower circuit (V/F circuit). The functions controlled by these four-power control  
set command controlled by these 4 bits are listed in Table 621.  
Table 620. VREG Voltage Temperature Curve Value  
TCS2  
TCS1  
TCS0  
Status  
Temperature Gradient (unit: %/°C)  
VREG (TYP.) (unit: V)  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
–0.12  
–0.13  
–0.15  
–0.17  
1.77  
1.69  
1.63  
1.59  
Internal power supply  
When external reference  
power supply is used  
Table 621. Details of Control by Each Bit of Power System Control Register  
Status  
Item  
1
0
OP3  
OP2  
OP1  
OP0  
: Booster circuit control bit  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
: Reference voltage generator control bit  
: Voltage regulator circuit (V regulator circuit) control bit  
: Voltage follower circuit (V/F circuit) control bit  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
87  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.37 Power System Control Register 2 (R53)  
This command sets the power system mode of the µPD161401.  
E
R,/W  
/WR  
RS  
1
/RD  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
1
0
VRR3  
VRR2  
VRR1  
VRR0  
SVR3  
SVR2  
SVR1  
SVR0  
VRR3 to VRR0  
SVR3 to SVR0  
When the main duty display mode is used, the resistance ratio can be changed in 16 steps by the VLCD internal  
resistance ratio adjustment command. Four bits of the VLCD internal resistance ratio adjustment register set the  
reference value of (1 + Rb/Ra) to the value shown in Table 622.  
When the sub-duty display mode is used, the resistance ratio can be changed in 16 steps by the VLCD internal  
resistance ratio adjustment command. Four bits of the VLCD internal resistance ratio adjustment register set the  
reference value of (1 + Rb/Ra) to the value shown in Table 622.  
Table 6-22. VLCD Internal Resistance Ratio Adjustment Register  
Register  
VRR3  
SVR3  
VRR2  
SVR2  
VRR1  
SVR1  
VRR0  
SVR0  
1 + Rb/Ra  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Default value (default value of reset command)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
88  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.38 Power System Control Register 3 (R54)  
This command sets the bias value for main duty display and sub-duty display by the µPD161401.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
BIS2  
BIS1  
BIS0  
SBIS2  
SBIS1  
SBIS0  
BIS2 to BIS0 Note  
These flags select the bias ratio in the main duty display mode as follows:  
BIS2  
BIS1  
BIS0  
Bias Ratio  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/9 bias  
1/8 bias  
1/7 bias  
1/6 bias  
1/5 bias  
Prohibited  
Prohibited  
Prohibited  
SBIS2 to SBIS0Note  
These flags select the bias ratio in the sub-duty display mode as follows:  
SBIS2  
SBIS1  
SBIS0  
Bias Ratio  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/9 bias  
1/8 bias  
1/7 bias  
1/6 bias  
1/5 bias  
Prohibited  
Prohibited  
Prohibited  
Note Before changing these flags, execute the HALT command.  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
D2  
0
D1  
0
D0  
0
Note  
Note  
Note 0 or 1  
89  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.39 Power System Control Register 4 (R55)  
This command sets the number of boosting steps for main duty display and sub-duty display of µPD161401 as shown  
in Table 623.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
MBT2  
MBT1  
MBT0  
SBT2  
SBT1  
SBT0  
Table 623. Number of Boosting Steps for Main/Sub-duty Display of Booster Circuit  
MBT2  
MBT1  
MBT0  
Number of Boosting Steps (unit: fold)  
SBT2  
SBT1  
SBT0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Two  
Three  
Four  
Five  
Six  
Seven  
Prohibited  
Prohibited  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
D2  
0
D1  
0
D0  
0
Note  
Note  
Note 0 or 1  
90  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.40 Power System Control Register 5 (R56)  
This command sets the status of the voltage follower circuit of the µPD161401 that drives the LCD, as follows:  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
LCS1  
LCS0  
LCC1  
LCC0  
HPM1  
HPM0  
PSM1  
PSM0  
Table 624. Setting of Segment Output Driving Capability (LCS1, LCS0 = 0, 0)  
LCS1  
LCS0  
Segment Output Driving Capability  
(unit: fold)  
0
0
1
1
0
1
0
1
One  
Two  
Four  
Eight  
Table 625. Setting of Common Output Driving Capability (LCS1, LCS0 = 0, 0)  
LCC1  
LCC0  
Common Output Driving Capability  
(unit: fold)  
0
0
1
1
0
1
0
1
Two  
Four  
Eight  
Sixteen  
Table 626. Setting of Operational Amplifier Operation Mode  
HPM1  
HPM0  
Mode Setting  
0
0
1
1
0
1
0
1
Normal mode  
Power ON mode1  
Power OFF mode  
Power ON mode2  
Table 627. Setting of Two-fold Supply Voltage (VLC3, VLC4 Level Voltage Follower Power Supply)  
PSM1  
Mode Setting  
0
1
Not used  
used  
Table 628. Setting of Voltage Follower Bias Current  
PSM0  
Bias Current Setting  
(unit: fold)  
0
1
One  
Two  
Default value (default value of reset command)  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
0
D2  
0
D1  
1
D0  
0
91  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.41 Main Electronic Volume Register (R57)  
The main electronic volume register specifies the electronic volume value for adjusting the contrast in the main duty  
display mode, in 128 steps.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
MEV6  
MEV5  
MEV4  
MEV3  
MEV2  
MEV1  
MEV0  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
6.42 Sub-electronic Volume Register (R58)  
The sub-electronic volume register specifies an electronic volume value for adjusting the contrast in the sub-duty  
display mode, in 128 steps.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
SEV6  
SEV5  
SEV4  
SEV3  
SEV2  
SEV1  
SEV0  
Default value (default value of reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note 0 or 1  
92  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.43 RAM Test Mode Setting Register (R61)  
The RAM test mode setting register directly writes the data of each display status to the display RAM as shown in  
Table 629.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RTS2  
RTS1  
RTS0  
Table 629. RAM Test Mode  
RTS0 Write Data  
RTS2  
RTS1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
Normal operation  
1
0
1
0
1
0
1
all [00000000] / pixel display  
all [11111111] / pixel display  
Checker pattern display of [00000000] / [11111111]  
Vertical grayscale bar display  
Horizontal grayscale bar display  
Each color grayscale display  
256-color display  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
D3  
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
6.44 Driving Mode Select Register (R64)  
The FXOR flag of the drive mode select register controls the reversal of the LCD drive waveform between frames as  
shown in Table 630. Note that the reverse function is executed between frames regardless of the FXOR flag during  
sub-duty display.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FXOR  
Table 630. Driving Mode Select Register (R64)  
FXOR  
Reversing Between Frames  
0
1
OFF  
ON  
Default value (default value of reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
D1  
D0  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note 0 or 1  
93  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.45 Main R Grayscale Data Registers (R65 to R72)  
The main R grayscale data registers specify the grayscale level of the R output in the main duty display mode. By  
using these registers, grayscale display can be optimized.  
Rx  
Data  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
0, 0, 0  
0, 0, 1  
0, 1, 0  
0, 1, 1  
1, 0, 0  
1, 0, 1  
1, 1, 0  
1, 1, 1  
MRG4  
MRG4  
MRG4  
MRG4  
MRG4  
MRG4  
MRG4  
MRG4  
MRG3  
MRG3  
MRG3  
MRG3  
MRG3  
MRG3  
MRG3  
MRG3  
MRG2  
MRG2  
MRG2  
MRG2  
MRG2  
MRG2  
MRG2  
MRG2  
MRG1  
MRG1  
MRG1  
MRG1  
MRG1  
MRG1  
MRG1  
MRG1  
MRG0  
MRG0  
MRG0  
MRG0  
MRG0  
MRG0  
MRG0  
MRG0  
1
1
1
1
1
1
1
D7  
×
D6  
×
D5  
×
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Grayscale Level  
Level 0  
×
×
×
0
0
0
0
1
Level 1  
×
×
×
0
0
0
1
0
Level 2  
×
×
×
0
0
0
1
1
Level 3  
×
×
×
×
×
×
0
1
1
0
1
0
1
0
1
0
Level 15  
Level 16  
Default value (default value of reset command, common to all grayscale data registers)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note 0 or 1  
94  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.46 Main G Grayscale Data Registers (R73 to R80)  
The main G grayscale data registers specify the grayscale level of the G output in the main duty display mode. By  
using these registers, grayscale display can be optimized.  
Rx  
Data  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
R73  
R74  
R75  
R76  
R77  
R78  
R79  
R80  
0, 0, 0  
0, 0, 1  
0, 1, 0  
0, 1, 1  
1, 0, 0  
1, 0, 1  
1, 1, 0  
1, 1, 1  
MGG4  
MGG4  
MGG4  
MGG4  
MGG4  
MGG4  
MGG4  
MGG4  
MGG3  
MGG3  
MGG3  
MGG3  
MGG3  
MGG3  
MGG3  
MGG3  
MGG2  
MGG2  
MGG2  
MGG2  
MGG2  
MGG2  
MGG2  
MGG2  
MGG1  
MGG1  
MGG1  
MGG1  
MGG1  
MGG1  
MGG1  
MGG1  
MGG0  
MGG0  
MGG0  
MGG0  
MGG0  
MGG0  
MGG0  
MGG0  
1
1
1
1
1
1
1
D7  
×
D6  
×
D5  
×
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Grayscale Level  
Level 0  
×
×
×
0
0
0
0
1
Level 1  
×
×
×
0
0
0
1
0
Level 2  
×
×
×
0
0
0
1
1
Level 3  
×
×
×
×
×
×
0
1
1
0
1
0
1
0
1
0
Level 15  
Level 16  
Default value (default value of reset command, common to all grayscale data registers)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note 0 or 1  
95  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.47 Main B Grayscale Data Registers (R81 to R84)  
The main B grayscale data registers specify the grayscale level of the B output in the main duty display mode. By  
using these registers, grayscale display can be optimized.  
Rx  
Data  
0, 0  
0, 1  
1, 0  
1, 1  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
R81  
R82  
R83  
R84  
MBG4  
MBG4  
MBG4  
MBG4  
MBG3  
MBG3  
MBG3  
MBG3  
MBG2  
MBG2  
MBG2  
MBG2  
MBG1  
MBG1  
MBG1  
MBG1  
MBG0  
MBG0  
MBG0  
MBG0  
1
1
1
D7  
×
D6  
×
D5  
×
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Grayscale Level  
Level 0  
×
×
×
0
0
0
0
1
Level 1  
×
×
×
0
0
0
1
0
Level 2  
×
×
×
0
0
0
1
1
Level 3  
×
×
×
×
×
×
0
1
1
0
1
0
1
0
1
0
Level 15  
Level 16  
Default value (default value of reset command, common to all grayscale data registers)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note 0 or 1  
96  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.48 Sub R Grayscale Data Registers (R85 to R92)  
The sub R grayscale data registers specify the grayscale level of the R output in the sub-duty display mode. By using  
these registers, grayscale display can be optimized.  
Rx  
Data  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
R85  
R86  
R87  
R88  
R89  
R90  
R91  
R92  
0, 0, 0  
0, 0, 1  
0, 1, 0  
0, 1, 1  
1, 0, 0  
1, 0, 1  
1, 1, 0  
1, 1, 1  
SRG4  
SRG4  
SRG4  
SRG4  
SRG4  
SRG4  
SRG4  
SRG4  
SRG3  
SRG3  
SRG3  
SRG3  
SRG3  
SRG3  
SRG3  
SRG3  
SRG2  
SRG2  
SRG2  
SRG2  
SRG2  
SRG2  
SRG2  
SRG2  
SRG1  
SRG1  
SRG1  
SRG1  
SRG1  
SRG1  
SRG1  
SRG1  
SRG0  
SRG0  
SRG0  
SRG0  
SRG0  
SRG0  
SRG0  
SRG0  
1
1
1
1
1
1
1
D7  
×
D6  
×
D5  
×
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Grayscale Level  
Level 0  
×
×
×
0
0
0
0
1
Level 1  
×
×
×
0
0
0
1
0
Level 2  
×
×
×
0
0
0
1
1
Level 3  
×
×
×
×
×
×
0
1
1
0
1
0
1
0
1
0
Level 15  
Level 16  
Default value (default value of reset command, common to all grayscale data registers)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note 0 or 1  
97  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.49 Sub G Grayscale Data Registers (R93 to R100)  
The sub G grayscale data registers specify the grayscale level of the G output in the sub-duty display mode. By using  
these registers, grayscale display can be optimized.  
Rx  
R93  
R94  
R95  
R96  
R97  
R98  
R99  
R100  
Data  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
0, 0, 0  
0, 0, 1  
0, 1, 0  
0, 1, 1  
1, 0, 0  
1, 0, 1  
1, 1, 0  
1, 1, 1  
SGG4  
SGG4  
SGG4  
SGG4  
SGG4  
SGG4  
SGG4  
SGG4  
SGG3  
SGG3  
SGG3  
SGG3  
SGG3  
SGG3  
SGG3  
SGG3  
SGG2  
SGG2  
SGG2  
SGG2  
SGG2  
SGG2  
SGG2  
SGG2  
SGG1  
SGG1  
SGG1  
SGG1  
SGG1  
SGG1  
SGG1  
SGG1  
SGG0  
SGG0  
SGG0  
SGG0  
SGG0  
SGG0  
SGG0  
SGG0  
1
1
1
1
1
1
1
D7  
×
D6  
×
D5  
×
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Grayscale Level  
Level 0  
×
×
×
0
0
0
0
1
Level 1  
×
×
×
0
0
0
1
0
Level 2  
×
×
×
0
0
0
1
1
Level 3  
×
×
×
×
×
×
0
1
1
0
1
0
1
0
1
0
Level 15  
Level 16  
Default value (default value of reset command, common to all grayscale data registers)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note 0 or 1  
98  
Data Sheet S15726EJ2V0DS  
µPD161401  
6.50 Sub B Grayscale Data Registers (R101 to R104)  
The sub B grayscale data registers specify the grayscale level of the B output in the sub-duty display mode. By using  
these registers, grayscale display can be optimized.  
Rx  
Data  
0, 0  
0, 1  
1, 0  
1, 1  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
R101  
R102  
R103  
R104  
SBG4  
SBG4  
SBG4  
SBG4  
SBG3  
SBG3  
SBG3  
SBG3  
SBG2  
SBG2  
SBG2  
SBG2  
SBG1  
SBG1  
SBG1  
SBG1  
SBG0  
SBG0  
SBG0  
SBG0  
1
1
1
D7  
×
D6  
×
D5  
×
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Grayscale Level  
Level 0  
×
×
×
0
0
0
0
1
Level 1  
×
×
×
0
0
0
1
0
Level 2  
×
×
×
0
0
0
1
1
Level 3  
×
×
×
×
×
×
0
1
1
0
1
0
1
0
1
0
Level 15  
Level 16  
Default value (default value of reset command, common to all grayscale data registers)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note  
Note  
Note  
Note 0 or 1  
99  
Data Sheet S15726EJ2V0DS  
µPD161401  
7. µPD161401 REGISTER LIST  
(1/2)  
Index Register  
Data Bit  
3
CS  
RS  
Register Name  
R/W  
W
6
5
4
3
2
1
0
7
6
5
4
2
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
IR  
Index Register  
IR6  
IR5  
IR4  
IR3  
IR2  
IR1  
IR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
Control Register 1  
Control Register 2  
R/W TRON WAS COMF DISP STBY HALT  
ADC COMR  
R/W  
FDM  
BMOD  
DTY  
INC  
XDIR  
YDIR  
Reset Command  
W
RES  
XA0  
YA0  
X Address Register  
Y Address Register  
R/W  
R/W  
XA6  
YA6  
XA5  
YA5  
XA4  
YA4  
XA3  
YA3  
XA2  
YA2  
XA1  
YA1  
MIN.·X Address Register  
MAX. X Address Register  
MIN. Y Address Register  
R/W  
R/W  
R/W  
R/W  
XMN6 XMN5 XMN4 XMN3 XMN2 XMN1 XMN0  
XMX6 XMX5 XMX4 XMX3 XMX2 XMX1 XMX0  
YMN6 YMN5 YMN4 YMN3 YMN2 YMN1 YMN0  
YMX6 YMX5 YMX4 YMX3 YMX2 YMX1 YMX0  
R10 MAX. Y Address Register  
R11  
R12 Display Memory Access Register  
D15  
D7  
D14  
D6  
D13  
D5  
D15  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
W
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
R13  
R14 Main Duty Setting Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MDT6 MDT5 MDT4 MDT3 MDT2 MDT1 MDT0  
MID5 MID4 MID3 MID2 MID1 MID0  
MSD5 MSD4 MSD3 MSD2 MSD1 MSD0  
R15 Main Duty N-line Inversion Register  
R16 Main Duty M-line Shift Register  
R17 Sub-duty Setting Register  
SDT6 SDT5 SDT4 SDT3 SDT2 SDT1  
SID5 SID4 SID3 SID2 SID1  
SDT0  
SID0  
R18 Sub-duty N-line Inversion Register  
R19 Sub-duty M-line Shift Register  
SSD5 SSD4 SSD3 SSD2 SSD1 SSD0  
R20  
R21 COM Scanning Address Setting Register  
R/W  
R/W  
R/W  
CSA4 CSA3 CSA2 CSA1 CSA0  
R22 Sub-duty Start Address Register  
SSA6 SSA5 SSA4 SSA3 SSA2 SSA1  
SSA0  
R23 Scroll Fixed Area Position Register  
FIXAHL  
R24  
R25  
R26  
R27 Scroll Fixed Area Width Register  
R/W  
R/W  
FIXAW1 FIXAW0  
R28  
R29  
R30  
R31 Scroll Step Number Register  
MST6 MST5 MST4 MST3 MST2 MST1 MST0  
R32  
R33  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
R34  
R35  
R36  
R37 Blink/Reverse Setting Register  
R/W  
INV  
BLD1  
BLD0  
R38 Complementary Color Blink X Address Register R/W  
CBX3 CBX2 CBX1 CBX0  
CBS6 CBS5 CBS4 CBS3 CBS2 CBS1 CBS0  
CBE6 CBE5 CBE4 CBE3 CBE2 CBE1 CBE0  
R39 Complementary Color Blink Start Line Address Register  
R40 Complementary Color Blink End Line Address Register  
R41 Complementary Color Blink Data Memory Register  
R42 Specified Color Blinking X Address Register  
R43 Specified Color Blink Start Line Address Register  
R44 Specified Color Blink End Line Address Register  
R45 Specified Color Blink Data Memory Register  
R46 Specified Color Setting Register  
R47 Reverse X Address Register  
R48 Reverse Start Line Address Register  
R49 Reverse End Line Address Register  
R50 Reverse Data Memory Access Register  
R51  
R/W  
R/W  
W
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SBX0  
SBS0  
SBE0  
D0  
R/W  
R/W  
R/W  
W
SBX3 SBX2 SBX1  
SBS6 SBS5 SBS4 SBS3 SBS2 SBS1  
SBE6 SBE5 SBE4 SBE3 SBE2 SBE1  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
R/W  
R/W  
R/W  
R/W  
W
D0  
IVX3 IVX2  
IVX1  
IVS1  
IVE1  
D1  
IVX0  
IVS0  
IVE0  
D0  
IVS6 IVS5 IVS4 IVS3 IVS2  
IVE6 IVE5 IVE4 IVE3 IVE2  
D7  
D6  
D5  
D4  
D3  
D2  
R52 Power System Control Register 1  
R53 Power System Control Register 2  
R54 Power System Control Register 3  
R55 Power System Control Register 4  
R56 Power System Control Register 5  
R57 Main Electronic Volume Register  
R58 Sub-electronic Volume Register  
R59  
R/W  
TCS2 TCS1 TCS0 OP3  
OP2  
OP1  
OP0  
R/W VRR3 VRR2 VRR1 VRR0 SVR3 SVR2 SVR1 SVR0  
R/W  
R/W  
BIS2 BIS1 BIS0  
MBT2 MBT1 MBT0  
SBIS2 SBIS1 SBIS0  
SBT2 SBT1 SBT0  
R/W LCS1 LCS0 LCC1 LCC0 HPM1 HPM0 PSM1 PSM0  
R/W  
R/W  
MEV6 MEV5 MEV4 MEV3 MEV2 MEV1 MEV0  
SEV6 SEV5 SEV4 SEV3 SEV2 SEV1  
RTS2 RST1  
SEV0  
RST0  
R60  
R61 RAM Test Mode Setting Register  
R62  
R/W  
R63  
100  
Data Sheet S15726EJ2V0DS  
µPD161401  
(2/2)  
Index Register  
Data Bit  
CS  
RS  
Register Name  
R/W  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IR  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
R76  
R77  
R78  
R79  
R80  
R81  
R82  
R83  
R84  
R85  
R86  
R87  
R88  
R89  
R90  
R91  
R92  
R93  
R94  
R95  
R96  
R97  
R98  
R99  
Driving Mode Select Register  
FXOR  
Main R Grayscale Data Register 1 (0, 0, 0)  
Main R Grayscale Data Register 2 (0, 0, 1)  
Main R Grayscale Data Register 3 (0, 1, 0)  
Main R Grayscale Data Register 4 (0, 1, 1)  
Main R Grayscale Data Register 5 (1, 0, 0)  
Main R Grayscale Data Register 6 (1, 0, 1)  
Main R Grayscale Data Register 7 (1, 1, 0)  
Main R Grayscale Data Register 8 (1, 1, 1)  
Main G Grayscale Data Register 1 (0 ,0, 0)  
Main G Grayscale Data Register 2 (0, 0, 1)  
Main G Grayscale Data Register 3 (0, 1, 0)  
Main G Grayscale Data Register 4 (0, 1, 1)  
Main G Grayscale Data Register 5 (1, 0, 0)  
Main G Grayscale Data Register 6 (1, 0, 1)  
Main G Grayscale Data Register 7 (1, 1, 0)  
Main G Grayscale Data Register 8 (1, 1, 1)  
Main B Grayscale Data Register 1 (0, 0)  
Main B Grayscale Data Register 2 (0, 1)  
Main B Grayscale Data Register 3 (1, 0)  
Main B Grayscale Data Register 4 (1, 1)  
Sub R Grayscale Data Register 1 (0, 0, 0)  
Sub R Grayscale Data Register 2 (0, 0, 1)  
Sub R Grayscale Data Register 3 (0, 1, 0)  
Sub R Grayscale Data Register 4 (0, 1, 1)  
Sub R Grayscale Data Register 5 (1, 0, 0)  
Sub R Grayscale Data Register 6 (1, 0, 1)  
Sub R Grayscale Data Register 7 (1, 1, 0)  
Sub R Grayscale Data Register 8 (1, 1, 1)  
Sub G Grayscale Data Register 1 (0, 0, 0)  
Sub G Grayscale Data Register 2 (0, 0, 1)  
Sub G Grayscale Data Register 3 (0, 1, 0)  
Sub G Grayscale Data Register 4 (0, 1, 1)  
Sub G Grayscale Data Register 5 (1, 0, 0)  
Sub G Grayscale Data Register 6 (1, 0, 1)  
Sub G Grayscale Data Register 7 (1, 1, 0)  
MRG4 MRG3 MRG2 MRG1 MRG0  
MRG4 MRG3 MRG2 MRG1 MRG0  
MRG4 MRG3 MRG2 MRG1 MRG0  
MRG4 MRG3 MRG2 MRG1 MRG0  
MRG4 MRG3 MRG2 MRG1 MRG0  
MRG4 MRG3 MRG2 MRG1 MRG0  
MRG4 MRG3 MRG2 MRG1 MRG0  
MRG4 MRG3 MRG2 MRG1 MRG0  
MGG4 MGG3 MGG2 MGG1 MGG0  
MGG4 MGG3 MGG2 MGG1 MGG0  
MGG4 MGG3 MGG2 MGG1 MGG0  
MGG4 MGG3 MGG2 MGG1 MGG0  
MGG4 MGG3 MGG2 MGG1 MGG0  
MGG4 MGG3 MGG2 MGG1 MGG0  
MGG4 MGG3 MGG2 MGG1 MGG0  
MGG4 MGG3 MGG2 MGG1 MGG0  
MBG4 MBG3 MBG2 MBG1 MBG0  
MBG4 MBG3 MBG2 MBG1 MBG0  
MBG4 MBG3 MBG2 MBG1 MBG0  
MBG4 MBG3 MBG2 MBG1 MBG0  
SRG4 SRG3 SRG2 SRG1 SRG0  
SRG4 SRG3 SRG2 SRG1 SRG0  
SRG4 SRG3 SRG2 SRG1 SRG0  
SRG4 SRG3 SRG2 SRG1 SRG0  
SRG4 SRG3 SRG2 SRG1 SRG0  
SRG4 SRG3 SRG2 SRG1 SRG0  
SRG4 SRG3 SRG2 SRG1 SRG0  
SRG4 SRG3 SRG2 SRG1 SRG0  
SGG4 SGG3 SGG2 SGG1 SGG0  
SGG4 SGG3 SGG2 SGG1 SGG0  
SGG4 SGG3 SGG2 SGG1 SGG0  
SGG4 SGG3 SGG2 SGG1 SGG0  
SGG4 SGG3 SGG2 SGG1 SGG0  
SGG4 SGG3 SGG2 SGG1 SGG0  
SGG4 SGG3 SGG2 SGG1 SGG0  
SGG4 SGG3 SGG2 SGG1 SGG0  
SBG4 SBG3 SBG2 SBG1 SBG0  
SBG4 SBG3 SBG2 SBG1 SBG0  
SBG4 SBG3 SBG2 SBG1 SBG0  
SBG4 SBG3 SBG2 SBG1 SBG0  
R100 Sub G Grayscale Data Register 8 (1, 1, 1)  
R101 Sub B Grayscale Data Register 1 (0, 0)  
R102 Sub B Grayscale Data Register 2 (0, 1)  
R103 Sub B Grayscale Data Register 3 (1, 0)  
R104 Sub B Grayscale Data Register 4 (1, 1)  
R105  
R106  
R107  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
R108  
R109  
R110  
R111  
R112  
R113  
R114  
R115  
R116  
R117  
R118  
R119  
R120  
R121  
R122  
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
R123  
R124  
R125  
R126  
R127  
101  
Data Sheet S15726EJ2V0DS  
µPD161401  
8. POWER SEQUENCE  
The µPD161401 has on-chip power circuits such as a booster circuit and a voltage follower circuit. Resetting by the  
/DISP pin should only be used to prevent malfunctioning due to noise.  
If charge remains in the smoothing capacitor connected between the LCD drive pins (VLCD, VLC1 to VLC4) and VSS, the  
display screen may momentarily blackout when power is turned ON or OFF. It is therefore recommended to turn  
ON/OFF power in the following sequence to avoid any trouble.  
102  
Data Sheet S15726EJ2V0DS  
µPD161401  
8.1 Power ON Sequence (with Internal Power Supply, Power ON Display ON)  
Power ON when /DISP pin = L  
Power supply is stabilized.  
/DISP pin = H  
Wait for 50 µs or more.  
Initialization of registers  
Reset command  
R3  
R0  
Control register 1  
DISP = 0, HALT = 1  
Display OFF. Internal operation stops.  
IC function setting by command input 1  
Control register 1  
(DISP = 0, HALT = 1)  
Control register 2  
IC function setting by command input 2  
Power system control register 1  
(OP3, OP2, OP1, OP0 = 1, 1, 1, 1)  
Power system control registers 2, 3, and 4  
Power system control register 5  
(HPM1, HPM0 = 0, 1)  
Specify power ON mode 1 (master IC only).  
Main electronic volume register  
Sub-electronic volume register  
User setting by command input  
Setting of functions such as grayscale data  
Initialization complete  
Control register 1  
(DIPS = 0, HALT = 0)  
Display OFF. Internal operation starts.  
R0  
LCD display screen setting  
Display start line set  
Writing of screen data  
+ Wait time  
Wait time 1  
Wait for 120 to 150 ms or more from when the internal  
operation starts until the LCD turns ON Note  
.
Power system control register 5  
(HPM1, HPM0 = 0, 0)  
(LCS1, LCS0 = 1,1)  
(LCC1, LCC0 = 1,1)  
(PSM = 1)  
Change the operation mode of the operation amplifier to  
“normal mode” (master IC only).  
Segment output driving capability setting: x8  
Common output driving capability setting: x16  
Voltage follower bias current: x2  
<A> in the next page  
Note The wait times1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the  
boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with  
the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).  
103  
Data Sheet S15726EJ2V0DS  
µPD161401  
<A>  
Wait time 2  
Wait for at least 250 ms from when the output mode of the  
operation amplifier is changed until the LCD turns ON Note  
.
Power system control register 5  
(HPM1, HPM0 = 0, 0)  
(LCS1, LCS0 = x,x)  
(LCC1, LCC0 = x,x)  
(PSM = x)  
The operation mode of the operation amplifier: normal mode  
Change the setting of the segment output driving capability,  
common output driving capability, and voltage follower bias  
current to the normal state.  
R0  
R0  
Control register 1  
(DIPS = 1, HALT = 0)  
Display ON. Internal operation starts.  
x: 0 or 1  
Note The wait times1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the  
boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with  
the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).  
104  
Data Sheet S15726EJ2V0DS  
µPD161401  
8.2 Power OFF Sequence (with Internal Power Supply)  
Operation status  
Control register 1  
R0  
Display OFF. Internal operation starts.  
DISP = 0, HALT = 0  
Change the operation mode of the operational  
amplifier to “power OFF mode”.  
Power system control register 5  
R56  
(HPM1, HPM0 = 1, 0)  
[MEV6, MEV5, MEV4, MEV3, MEV2, MEV1, MEV0]  
= [0, 0, 0, 0, 0, 0, 0]  
Main electronic volume register setting  
R57  
R58  
[SEV6, SEV5, SEV4, SEV3, SEV2, SEV1, SEV0]  
= [0, 0, 0, 0, 0, 0, 0]  
Sub-electronic volume register setting  
Wait time 1  
Wait for at least 120 ms Note  
.
Control register 1  
(DISP = 0, HALT = 1)  
Display OFF. Internal operation stops.  
R0  
Wait time 2  
Wait for at least 380 ms before turning power OFF Note  
.
Power OFF  
Note The wait times 1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the  
boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with  
the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).  
105  
Data Sheet S15726EJ2V0DS  
µPD161401  
8.3 Power ON Sequence (with External Driving Power Supply, Power ON Display ON)  
This is an example of inputting a reference voltage to the VRS pin and a driving voltage to the VOUT pin from an  
external power supply.  
Logic power supply ON with /DISP pin = L  
VDD1 and VDD2 ON, VOUT = Hi-Z  
Power supply stabilized.  
/DISP pin = H  
Wait for 50 µs or more.  
Reset command  
R3  
R0  
Initialization of registers  
Control register 1  
DISP = 0, HALT = 1  
Display OFF. Internal operation stops.  
IC function setting by command input 1  
Control register 1  
(DISP = 0, HALT = 1)  
Control register 2  
IC function setting by command input 2  
Power system control register 1  
(OP3, OP2, OP1, OP0 = 1, 1, 1, 1)  
Power system control registers 2, 3, and 4  
Power system control register 5  
(HPM1, HPM0 = 0, 1)  
Specify power ON mode1 (master IC only).  
Main electronic volume register  
Sub-electronic volume register  
User setting by command input  
Setting of functions such as grayscale data  
Initialization complete  
Control register 1  
(DISP = 0, HALT = 0)  
Display OFF. Internal operation starts.  
R0  
Turn ON external driving power supply  
Supply voltage to VOUT pin.  
LCD screen setting  
Display start line setting  
Writing of screen data  
+ Wait time  
Wait for at least 300 ms from when the internal operation  
starts until the LCD turns ON Note  
.
Power system control register 5  
Change the operation mode of the operation amplifier to  
“normal mode” (master IC only).  
(HPM1, HPM0 = 0, 0)  
Control register 1  
(DIPS = 1, HALT = 0)  
Display ON. Internal operation starts.  
R0  
Note The time of 300 ms varies depending on the characteristics of the LCD panel and the capacitance of the  
smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual  
system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).  
106  
Data Sheet S15726EJ2V0DS  
µPD161401  
8.4 Power OFF Sequence (with External Driving Power Supply)  
This is an example of inputting a reference voltage to the VRS pin and a driving voltage to the VOUT pin from an  
external power supply.  
Operation status  
Control register 1  
DISP = 0, HALT = 0  
Display OFF. Internal operation starts.  
R0  
Change the operation mode of the operational  
amplifier to “power OFF mode”.  
Power system control register 5  
(HPM1, HPM0 = 1, 0)  
R56  
Wait for at least 300 ms until power is OFF Note  
.
Turn OFF driving voltage VOUT after the levels of VLCD  
and VLC1 to VLC4 have completely dropped.  
Driving power supply OFF  
Power OFF  
Power to VDD1 and VDD2 OFF  
Note The time of 300 ms varies depending on the characteristics of the LCD panel and the capacitance of the  
smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual  
system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).  
107  
Data Sheet S15726EJ2V0DS  
µPD161401  
8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF  
0 VDD  
VOUT  
/DISP pin = L  
V
DD ON  
/DISP pin = H  
RES = 1  
DISP = 0, HALT = 1  
TCS = 0,1,1(M) OP = 1,1,1,1 (M)  
LCS = 1,1 LCC = 1,1 HPM = 0,1 (M)  
HALT = 0  
120 to 150 ms  
250 ms  
LCS = 1,1 LCC = 1,1 HPM = 0,0 (M)  
LCS = X,X LCC = X,X HPM = 0,0 (M)  
DISP = 1  
Main Duty Display  
DISP = 0  
HPM = 1,0(M)  
DTY = 1  
50 ms  
HPM = 0,1(M)  
HPM = 0,0(M)  
DISP = 1  
150 ms  
Sub Duty Display  
DISP = 0  
HPM = 0,1(M)  
DTY = 0  
160 ms  
HPM = 0,0(M)  
DISP = 1  
Normal Duty Display  
DISP = 0  
HPM = 1,0(M)  
EV = 0 PEV = 0(M)  
120 ms  
380 ms  
HALT = 1  
V
DD OFF  
Dotted line: VOUT  
Solid line: VLCD  
x: 1 or 0  
Test conditions:  
Supply voltage: VDD1 = VDD2 = 3.0 V  
Number of boosting stages: x5 (in normal display mode), x3 (in partial display mode)  
Capacitance: Between VLCn pin and Cn+/- pins = 1.0 µF  
Caution Connect a capacitor of 0.1 µF or less to the AMPOUTM and AMPOUTS pins.  
108  
Data Sheet S15726EJ2V0DS  
µPD161401  
8.6 Flow of VOUT and VLCD Voltages in Display Output and HALT/Standby Modes  
0 VDD  
V
OUT  
Main Duty Display  
DISP = 0  
HPM = 1,0(M)  
EV = 0  
300 ms  
HALT = 1(STBY = 1)  
HALT(STBY)  
160 ms  
HPM = 0,1(M)  
EV = x,x(M)  
HALT = 0(STBY = 0)  
HPM = 0,0(M)  
DISP = 1  
Dotted line: VOUT  
Solid line: VLCD  
x: 1 or 0  
Test conditions:  
Supply voltage: VDD1 = VDD2 = 3.0 V.  
Number of boosting stages: x5 (in normal display mode), x3 (in partial display mode)  
Capacitance: Between VLCn pin and Cn+/- pins = 1.0 µF  
Caution Connect a capacitor of 0.1 µF or less to the AMPOUTM and AMPOUTS pins.  
109  
Data Sheet S15726EJ2V0DS  
µPD161401  
9. USING RAM TEST MODE  
The µPD161401 has a test mode in which seven types of screen data are written to the display RAM. When using this  
test mode, be sure to execute the following sequence. If the RAM test mode is executed in any other sequence,  
erroneous data may be displayed.  
Operating status  
Control register 1  
DISP = 0, STBY = 1  
Display OFF. Standby setting  
R0  
RAM test mode setting  
R61  
R0  
Select data to be written to RAM.  
Control register 1  
DISP = 0, STBY = 0  
Display OFF. Standby cleared  
Wait for 200 ms or more from when the internal operation  
Wait time  
starts until the LCD turns OFF Note  
.
Control register 1  
Display ON.  
R0  
DISP = 1  
Setting complete  
Note The time of 200 ms varies depending on the characteristics of the LCD panel and the capacitance of the  
boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with  
the actual system.  
Remark The set display data is always written to the display RAM in the RAM test mode.  
110  
Data Sheet S15726EJ2V0DS  
µPD161401  
10. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C, VSS = 0 V)  
Parameter  
Logic supply voltage  
Symbol  
Ratings  
Unit  
V
VDD1  
VDD2  
VOUT  
0.3 to +4.0  
Booster circuit supply voltage  
Driver supply voltage  
0.3 to +4.0  
V
0.3 to +20.0  
V
Driver reference power input voltage VLCD,VLC1 to VLC4  
0.3 to VOUT + 0.3  
0.3 to VDD1 + 0.3  
0.3 to VDD1 + 0.3  
0.3 to VDD1 + 0.3  
0.3 to VOUT + 0.3  
0.3 to VOUT + 0.3  
40 to +85  
V
Logic input voltage  
VIN1  
VO1  
VI/O1  
VIN2  
VO2  
TA  
V
Logic output voltage  
Logic I/O voltage  
V
V
Driver input voltage  
Driver output voltage  
Operating ambient temperature  
Storage temperature  
V
V
°C  
°C  
Tstg  
55 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Range  
Parameter  
Logic supply voltage  
Symbol  
MIN.  
1.8  
2.4  
5.5  
0
TYP.  
MAX.  
3.6  
Unit  
V
VDD1  
VDD2  
VOUT  
VIN  
Note1  
Note2  
Booster circuit supply voltage  
Driver supply voltage  
Logic supply voltage  
3.6  
V
18.0  
VDD1  
VOUT  
V
V
Driver supply voltage  
VLCD,  
0
V
Note2  
VLC1 to VLC4  
Note3  
Maximum LCD voltage setting range VLCD  
VOUT 0.5  
V
Notes 1. It is essential that VDD1 VDD2.  
2. These conditions are recommended when the LCD is driven by an external power supply.  
3. This condition is recommended when the LCD is driven by the internal power supply circuit.  
Cautions 1. Make sure that the relationship of VSS < VLC4 < VLC3 < VLC2 <VLC1 < VLCD VOUT is satisfied when the  
LCD is driven by an external power supply.  
2. Make sure that the condition described in 8. POWER SEQUENCE are satisfied when turning  
power ON or OFF.  
3. Keep the voltage at the VR and VRS pins to between 1.0 V and VDD1 when an external resistor is  
used (when the internal resistor is not used to adjust VLCD).  
111  
Data Sheet S15726EJ2V0DS  
µPD161401  
Electrical Specifications (Unless otherwise specified, TA = 40 to +85°C, VDD1 = 1.8 to 3.6 V, VDD2 = 2.4 to 3.6 V.)  
Parameter  
Input voltage, high  
Symbol  
VIH  
Conditions  
MIN.  
TYP.Notes1  
MAX.  
Unit  
V
0.8 VDD1  
Input voltage, low  
Input current, high  
Input current, low  
VIL  
0.2 VDD1  
V
IIH1  
Other than D15 to D0  
1
µA  
µA  
V
IIL1  
Other than D15 to D0  
1  
Output voltage, high  
Output voltage, low  
Leakage current, high  
VOH  
VOL  
ILOH  
IOUT = 1 mA. Other than OCSOUT  
IOUT = 1 mA. Other than OCSOUT  
D15 to D8, D7(SI), D6(SCL), D5 to D0,  
VIN/OUT = VDD1  
VDD1 0.5  
0.5  
10  
V
µA  
Leakage current, low  
ILOL  
D15 to D8, D7(SI), D6(SCL), D5 to D0,  
VIN/OUT = VSS  
10  
4
µA  
kΩ  
kΩ  
V
Common output ON resistance  
Segment output ON resistance  
RCOM  
VLCn COMn, VOUT = 15 V, VLCD = 13 V,  
1/9 bias, |IO| = 50 µA  
RSEG  
VLCn SEGn, VOUT = 15 V, VLCD = 13 V,  
1/9 bias, |IO| = 50 µA  
4
Driver voltage (booster voltage) VOUT  
In 5-fold mode, VDD2 = 3.0 V,  
diced display  
13.8  
16.6  
In 6-fold mode, VDD2 = 3.0 V,  
diced display  
V
Regulated voltageNotes2  
VREG  
TA = 85°C.  
1.430  
1.485  
1.540  
50  
V
(TCS2, TCS1, TCS0) = (0,1,0)  
Temperature curve –0.15 %/°C  
VLCn: VLCD, VLC1 to VLC4,  
Output voltage deflection  
VLCn  
50  
mV  
(OP3, OP2, OP1, OP0) = (0, 0, 0, 1)  
VDD1 = 2.5 V, VOUT = 15 V,  
AMPOUTM = 14 V, bias = 1/5 to 1/9,  
IRS pin = L, display OFF, no load  
AMPOUT IRS pin = H, 1+Rb/Ra = 10-fold  
100  
100  
97  
mV  
Oscillation frequency Notes3  
Current consumption  
fOSC  
VDD1 = 3.0 V, TA = 25°C, 1/80 duty,  
R = 360 k(OSCIN1-OSCOUT)  
VDD1 = 3.0 V, TA = 25°C, 1/38 duty,  
R = 770 k(OSCIN2-OSCOUT)  
Frame frequency = 70 Hz, all PWM  
display output, 1/80 duty,  
72  
85  
40  
kHz  
33  
46  
kHz  
IDD11  
175  
280  
µA  
VDD1 = VDD2 = 3.0 V, VLCD = 13 V,  
in 5-fold mode, driving mode (segment x  
1, common x 4)  
Frame frequency = 70 Hz, all PWM  
display output, 1/32 duty,  
72  
120  
10  
µA  
µA  
VDD1 = VDD2 = 3.0 V, VLCD = 7.0 V,  
in 3-fold mode, driving mode (segment x  
1, common x 4)  
Current consumption  
(standby mode)  
IDD22  
VDD1 = VDD2 = 3.0 V  
Notes1 The TYP. values are reference values at TA = 25°C (except for regulated voltage (VREG)).  
2
3
The TYP. values of Regulated voltage (VREG) at TA = 25°C are MIN. 1.580 V, TYP. 1.635 V, MAX. 1.690 V  
Oscillation frequency is changed under the influence of the wiring capacity to the external resistor for  
oscillation.  
112  
Data Sheet S15726EJ2V0DS  
µPD161401  
Timing Requirements (Unless otherwise specified, TA = 30 to +85°C.)  
(1) i80 CPU interface  
RS  
t
AS8  
t
AH8  
t
f
tr  
/CS1  
(CS2 = H)  
t
CYC8  
t
CCLR, tCCLW  
/WR, /RD  
t
CCHR, tCCHW  
t
DS8  
t
DH8  
D0  
to D15(D  
7)  
(Write)  
t
OH8  
t
ACC8  
D0  
to  
D7  
(Read)  
(VDD1 = 1.8 to 2.0 V)  
Parameter  
Address hold time  
Symbol  
tAH8  
Conditions  
MIN. TYP.Note MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
0
0
Address setup time  
System cycle time  
tAS8  
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
tDS8  
1000  
160  
430  
160  
160  
160  
0
Control L pulse width (/WR)  
Control L pulse width (/RD)  
Control H pulse width (/WR)  
Control H pulse width (/RD)  
Data setup time  
/WR  
/RD  
/WR  
/RD  
D0 to D15 (D7)  
D0 to D15 (D7)  
Data hold time  
tDH8  
/RD access time  
tACC8  
tOH8  
D0 to D7, CL = 100 pF  
0
470  
170  
Output disable time  
D0 to D7, CL = 5 pF, RL = 3 kΩ  
0
Note The TYP. values are reference values at TA = 25°C.  
(VDD1 = 2.0 to 2.5 V)  
Parameter  
Address hold time  
Symbol  
tAH8  
Conditions  
MIN. TYP.Note MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
0
Address setup time  
tAS8  
0
System cycle time  
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
tDS8  
600  
120  
240  
120  
120  
120  
0
Control L pulse width (/WR)  
Control L pulse width (/RD)  
Control H pulse width (/WR)  
Control H pulse width (/RD)  
Data setup time  
/WR  
/RD  
/WR  
/RD  
D0 to D15 (D7)  
D0 to D15 (D7)  
Data hold time  
tDH8  
/RD access time  
tACC8  
tOH8  
D0 to D7, CL = 100 pF  
0
0
280  
170  
Output disable time  
D0 to D7 , CL = 5 pF, RL = 3 kΩ  
Note The TYP. values are reference values at TA = 25°C.  
113  
Data Sheet S15726EJ2V0DS  
µPD161401  
(VDD1 = 2.5 to 3.6 V)  
Parameter  
Address hold time  
Symbol  
tAH8  
Conditions  
MIN. TYP.Note MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
0
0
Address setup time  
System cycle time  
tAS8  
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
tDS8  
100  
40  
40  
40  
40  
40  
0
Control L pulse width (/WR)  
Control L pulse width (/RD)  
Control H pulse width (/WR)  
Control H pulse width (/RD)  
Data setup time  
/WR  
/RD  
/WR  
/RD  
D0 to D15 (D7)  
D0 to D15 (D7)  
Data hold time  
tDH8  
/RD access time  
tACC8  
tOH8  
D0 to D7, CL = 100 pF  
0
50  
50  
Output disable time  
D0 to D7, CL = 5 pF, RL = 3 kΩ  
0
Note The TYP. values are reference values at TA = 25°C.  
Cautions 1. The rise and fall times (tr and tf) of an input signal are 10 ns or less.  
2. All timing data is specified at 20% and 80% of VDD1.  
114  
Data Sheet S15726EJ2V0DS  
µPD161401  
(2) M68 CPU interface  
RS  
R,/W  
t
AS6  
t
AH6  
t
f
tr  
/CS1  
(CS2 = H)  
t
CYC6  
t
EWHR, tEWHW  
E
t
EWLR, tEWLW  
t
DS6  
t
DH6  
D0  
to D15 (D  
7)  
(Write)  
t
OH6  
t
ACC6  
D0  
to D  
7
(Read)  
(VDD1 = 1.8 to 2.0 V)  
Parameter  
Address hold time  
Address setup time  
System cycle time  
Data setup time  
Symbol  
tAH6  
Conditions  
MIN.  
0
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
tAS6  
0
tCYC6  
tDS6  
1000  
160  
0
D0 to D15 (D7)  
Data hold time  
tDH6  
D0 to D15 (D7)  
Access time  
tACC6  
tOH6  
D0 to D7, CL = 100 pF  
0
470  
170  
Output disable time  
Enable H pulse width  
D0 to D7, CL = 5 pF, R = 3 kΩ  
0
Read  
Write  
Read  
Write  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
E
E
E
E
430  
160  
160  
160  
Enable L pulse width  
Note The TYP. values are reference values at TA = 25°C.  
(VDD1 = 2.0 to 2.5 V)  
Parameter  
Address hold time  
Symbol  
tAH6  
Conditions  
MIN.  
0
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
Address setup time  
System cycle time  
Data setup time  
Data hold time  
tAS6  
0
tCYC6  
tDS6  
600  
120  
0
D0 to D15 (D7)  
tDH6  
D0 to D15 (D7)  
Access time  
tACC6  
tOH6  
D0 to D7, CL = 100 pF  
0
280  
170  
Output disable time  
Enable H pulse width  
D0 to D7, CL = 5 pF, R = 3 kΩ  
0
Read  
Write  
Read  
Write  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
E
E
E
E
240  
120  
120  
120  
Enable L pulse width  
Note The TYP. values are reference values at TA = 25°C.  
115  
Data Sheet S15726EJ2V0DS  
µPD161401  
(VDD1 = 2.5 to 3.6 V)  
Parameter  
Address hold time  
Address setup time  
System cycle time  
Data setup time  
Symbol  
tAH6  
Conditions  
MIN.  
0
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
tAS6  
0
tCYC6  
tDS6  
100  
50  
0
D0 to D15 (D7)  
Data hold time  
tDH6  
D0 to D15 (D7)  
Access time  
tACC6  
tOH6  
D0 to D7, CL = 100 pF  
0
50  
50  
Output disable time  
Enable H pulse width  
D0 to D7, CL = 5 pF, R = 3 kΩ  
0
Read  
Write  
Read  
Write  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
E
E
E
E
40  
40  
40  
40  
Enable L pulse width  
Note The TYP. values are reference values at TA = 25°C.  
Cautions 1. The rise and fall times (tr and tf) of an input signal are 10 ns or less. If the system cycle time is  
short, (tr + tf) (tCYC6 – tEWLW – tEWHW) or (tr + tf) (tCYC6 – tEWLR – tEWHR).  
2. All timing data is specified at 20% and 80% of VDD1.  
116  
Data Sheet S15726EJ2V0DS  
µPD161401  
(3) Serial interface  
t
CSS  
t
CSH  
/CS1  
(CS2 = H)  
t
SAS  
t
SAH  
RS  
t
SCYC  
t
SLW  
SCL  
t
f
tSHW  
t
r
t
SDS  
tSDH  
SI  
(VDD1 = 1.8 to 2.5 V)  
Parameter  
Serial clock cycle  
Symbol  
tSCYC  
Condition  
MIN.  
250  
100  
100  
150  
150  
100  
100  
150  
150  
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
SCL  
SCL  
RS  
RS  
SI  
SCL high-level pulse width  
SCL low-level pulse width  
Address hold time  
Address setup time  
Data setup time  
tSHW  
tSLW  
tSAH  
tSAS  
tSDS  
tSDH  
tCSS  
tCSH  
Data hold time  
SI  
CS - SCL time  
/CS1 (CS2 = H)  
/CS1 (CS2 = H)  
Note TYP. values are reference values when TA = 25°C.  
(VDD1 = 2.5 to 3.6 V)  
Parameter  
Serial clock cycle  
Symbol  
tSCYC  
Condition  
MIN.  
150  
60  
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
SCL  
SCL  
RS  
RS  
SI  
SCL high-level pulse width  
SCL low-level pulse width  
Address hold time  
Address setup time  
Data setup time  
tSHW  
tSLW  
tSAH  
tSAS  
tSDS  
tSDH  
tCSS  
tCSH  
60  
90  
90  
60  
Data hold time  
SI  
60  
CS - SCL time  
/CS1 (CS2 = H)  
/CS1 (CS2 = H)  
90  
90  
Note TYP. values are reference values when TA = 25°C.  
Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less.  
2. All timing is rated based on 20% and 80% of VDD1.  
117  
Data Sheet S15726EJ2V0DS  
µPD161401  
(4) Common  
Parameter  
Symbol  
fM  
Conditions  
MIN.  
TYP.Note  
85  
MAX.  
Unit  
kHz  
Clock input 1  
OSCIN1. External clock is used in main  
duty display mode,1/80 duty  
Clock input 2  
fS  
OSCIN2. External clock is used in sub-duty  
display mode, 1/40 duty  
40  
kHz  
Note The TYP. values are reference value at a frame frequency = 70 Hz.  
Cautions 1. The rise time and fall time (tr and tf) of an input signal is 15 ns or less.  
2. All timing data is specified at 20% and 80% of VDD1.  
(a) Timing of display control output  
SYNC  
OSC  
(OUT)  
t
DFR  
FR  
(VDD1 = 1.8 to 2.5 V)  
Parameter  
Symbol  
tDFR  
Conditions  
MIN.  
MIN.  
TYP.Note  
50  
MAX.  
200  
Unit  
ns  
FR delay time  
FR, CL = 50 pF  
Note The TYP. values are reference values at TA = 25°C.  
(VDD1 = 2.5 to 3.6 V)  
Parameter  
FR delay time  
Symbol  
tDFR  
Conditions  
TYP.Note  
20  
MAX.  
80  
Unit  
ns  
FR, CL = 50 pF  
Note The TYP. values are reference values at TA = 25°C.  
Caution All timing data is specified at 20% and 80% of VDD1.  
118  
Data Sheet S15726EJ2V0DS  
µPD161401  
(b) Reset timing  
tRW  
/DISP  
tR  
Reset  
End of reset  
Internal status  
(VDD1 = 1.8 to 2.5 V)  
Parameter  
Symbol  
Conditions  
MIN.  
50  
TYP.Note  
MAX.  
Unit  
µs  
Reset time  
Reset L pulse width  
tR  
tRW  
50  
/DISP  
µs  
Note The TYP. values are reference values at TA = 25°C.  
(VDD1 = 2.5 to 3.6 V)  
Parameter  
Symbol  
Conditions  
MIN.  
50  
TYP.Note  
MAX.  
50  
Unit  
µs  
Reset time  
Reset L pulse width  
tR  
tRW  
/DISP  
µs  
Note The TYP. values are reference values at TA = 25°C.  
Caution All timing data is specified at 20% and 80% of VDD1.  
119  
Data Sheet S15726EJ2V0DS  
µPD161401  
11. CPU INTERFACE (Reference Example)  
The µPD161401 can be connected to both an i80 system CPU and a M68 system CPU. In addition, the number of  
signal lines can be reduced by using the serial interface.  
The display area can be expanded by using two or more µPD161401 chips. In this case, each IC is selected and  
accessed by a chip select signal.  
(1) M68 series CPU  
V
CC  
V
DD1  
A
0
RS  
IFM0  
IFM1  
A
1
to A15  
VIMA  
Decoder  
/CS1  
CPU  
D0  
to D15  
D0 to D15  
E
E
µ
R,/W  
/RES  
R,/W  
/DISP  
GND  
VSS  
/RES  
(2) i80 series CPU  
V
CC  
V
DD1  
A
0
RS  
IFM0  
IFM1  
A
1
to A  
7
/CS1  
Decoder  
/IORQ  
D to D15  
0
CPU  
D0  
to D15  
/RD  
/RD  
µ
/WR  
/DISP  
/WR  
/RES  
GND  
V
SS  
/RES  
(3) Serial interface in used  
V
CC  
V
DD1  
A
0
RS  
IFM0  
IFM1  
A
1
to A  
7
Decoder  
/CS1  
D
D
0
8
to D5,  
Open  
CPU  
GND  
to D15  
Port1  
SI(D7)  
µ
SCL(D  
6)  
/Port2  
/RES  
/DISP  
V
SS  
/RES  
120  
Data Sheet S15726EJ2V0DS  
µPD161401  
[MEMO]  
121  
Data Sheet S15726EJ2V0DS  
µPD161401  
[MEMO]  
122  
Data Sheet S15726EJ2V0DS  
µPD161401  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
123  
Data Sheet S15726EJ2V0DS  
µPD161401  
The information in this document is current as of June, 2002. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data  
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products  
and/or types are available in every country. Please check with an NEC sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD161401P

256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC

UPD161401W

256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC

UPD1615GC(A)-XXX-8BT

MICROCONTROLLER, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, QFP-80
RENESAS

UPD161602A

360/396-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD161602AP

360/396-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD161602B

360/396-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD161602BP

360/396-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD161608P

LIQUID CRYSTAL DISPLAY DRIVER, UUC, CHIP
RENESAS

UPD161608P

Liquid Crystal Driver, 220-Segment, CHIP
NEC

UPD161620

432 OUTPUT TFT-LCD SOURCE DRIVER WITH RAM
NEC

UPD161622

396 OUTPUT TFT-LCD SOURCE DRIVER WITH RAM
NEC

UPD161622P

396 OUTPUT TFT-LCD SOURCE DRIVER WITH RAM
NEC