UPD16520A [NEC]

VERTICAL DRIVER FOR CCD SENSORS; 垂直驱动器,用于CCD传感器
UPD16520A
型号: UPD16520A
厂家: NEC    NEC
描述:

VERTICAL DRIVER FOR CCD SENSORS
垂直驱动器,用于CCD传感器

驱动器 传感器 CD
文件: 总19页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ PD16520,16520A  
VERTICAL DRIVER FOR CCD SENSORS  
DESCRIPTION  
The µ PD16520 and µ PD16520A are vertical drivers for CCD image sensors that have a level conversion circuit and  
a 3-level output function. Since it incorporates a CCD vertical register driver equivalent to the µ PD16510 (10  
channels, consisting of six 3-level channels and four 2-level channels) and a VOD shutter driver (1 channel), it is ideal  
as a vertical driver for multiple-electrode high-pixel CCD transfer type area image sensors employed in digital still  
cameras.  
The µ PD16520 and µ PD16520A use a CMOS process to achieve optimum transmission delay characteristics for  
vertical driving of CCD image sensors, as well as output on-state resistance characteristics. The µ PD16520 and  
µ PD16520A also support low-voltage logic (logic power supply voltage: 2.0 to 5.5 V).  
FEATURES  
CCD vertical register driver: 10 channels (3-level: 6 channels, 2-level: 4 channels)  
VOD shutter driver: 1 channel  
High withstanding voltage: 33 V MAX.  
Low-output on-state resistance: 30 TYP.  
Low-voltage input supported (Logic power supply voltage: 2.0 to 5.5 V)  
Latch-up free  
Same drive capacity as µ PD16510  
Small package: 38-pin plastic SSOP (7.62 mm (300) )  
Super small package: 42-pin wafer level CSP  
APPLICATIONS  
Digital still cameras, digital video cameras, etc.  
ORDERING INFORMATION  
Part Number  
Package  
µ PD16520GS-BGG  
µ PD16520AFH-2Q1  
38-pin plastic SSOP (7.62 mm (300) )  
42-pin wafer level CSP  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. S14201EJ3V0DS00 (3rd edition)  
Date Published February 2005 NS CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
1999, 2003  
µ PD16520,16520A  
1. PIN CONFIGURATION  
(1) 38-pin plastic SSOP (7.62 mm (300) )  
µ PD16520GS-BGG (Top view)  
GND  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
V
SS  
VCC  
VDD1  
TO1  
TI1  
TI2  
3
4
VDD2a  
TO2  
TI3  
5
TI4  
6
TO3  
TI5  
7
VDD2a  
TO4  
TI6  
8
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
BI1  
9
TO5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
VDD2A  
TO6  
BO1  
BO2  
VDD2b  
BO3  
BI2  
BO4  
BI3  
SUBO  
Vsb  
BI4  
SUBI  
V
SS  
2
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
(2) 42-pin wafer level CSP  
µ PD16520AFH-2Q1 (Bottom view)  
13  
12  
11  
10  
9
14  
33  
32  
31  
30  
29  
28  
27  
4
15  
34  
42  
16  
35  
36  
37  
38  
39  
40  
25  
2
17  
18  
19  
20  
21  
22  
23  
24  
1
8
7
41  
26  
3
6
5
Index Mark  
Pin No.  
Pin Name  
BO4  
Vsb  
VSS  
Pin No.  
15  
Pin Name  
VSS  
Pin No.  
29  
Pin Name  
PG5  
1
2
16  
VDD1  
VDD2a  
TO2  
30  
PG2  
3
17  
31  
TI6  
4
BI4  
18  
32  
TI4  
5
BI2  
19  
TO3  
33  
TI2  
6
BI1  
20  
TO4  
34  
GND  
TO1  
7
PG6  
PG4  
PG3  
PG1  
TI5  
21  
TO5  
35  
8
22  
TO6  
36  
VDD2a  
VDD2a  
VDD2a  
BO1  
9
23  
BO2  
37  
10  
11  
12  
13  
14  
24  
BO3  
38  
25  
BO4  
39  
TI3  
26  
SUBO  
BI3  
40  
VDD2b  
SUBI  
VCC  
TI2  
27  
41  
TI1  
28  
BI2  
42  
3
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
2. BLOCK DIAGRAM  
(1) µ PD16520GS-BGG  
38  
V
SS  
GND  
1
2
37 VDD1  
VCC  
+
TI1  
TI2  
3
4
5
6
7
8
9
3-level  
3-level  
3-level  
3-level  
3-level  
3-level  
2-level  
2-level  
2-level  
2-level  
2-level  
36 TO1  
+
35 VDD2a  
34 TO2  
+
TI3  
+
TI4  
+
TI5  
33 TO3  
+
TI6  
32 VDD2a  
31 TO4  
+
PG1  
+
PG2 10  
PG3 11  
PG4 12  
PG5 13  
PG6 14  
+
30 TO5  
+
29 VDD2a  
28 TO6  
+
+
+
BI1 15  
27 BO1  
+
BI2 16  
BI3 17  
26 BO2  
25 VDD2b  
24 BO3  
+
+
BI4 18  
23 BO4  
+
SUBI 19  
22 SUBO  
21 Vsb  
20  
V
SS  
4
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
(2) µ PD16520AFH-2Q1  
15  
V
SS  
GND 34  
16 VDD1  
V
CC 42  
+
TI1 14  
3-level  
3-level  
3-level  
3-level  
3-level  
3-level  
2-level  
2-level  
2-level  
2-level  
2-level  
35 TO1  
TI2 13  
TI2 33  
+
17 VDD2a  
36 VDD2a  
+
TI3 12  
TI4 32  
TI5 11  
TI6 31  
PG1 10  
PG2 30  
18 TO2  
+
+
19 TO3  
+
37 VDD2a  
20 TO4  
+
+
+
PG3  
PG4  
9
8
21 TO5  
+
38 VDD2a  
22 TO6  
PG5 29  
+
+
PG6  
BI1  
7
6
+
39 BO1  
+
BI2  
5
23 BO2  
BI2 28  
40 VDD2b  
24 BO3  
+
BI3 27  
+
BI4  
4
1
BO4  
25 BO4  
+
SUBI 41  
26 SUBO  
2
3
Vsb  
V
SS  
5
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
3. PIN FUNCTIONS  
(1) µ PD16520GS-BGG  
Pin No.  
1
Pin Name  
GND  
I/O  
Function  
Ground  
2
VCC  
Logic power supply  
3
TI1  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
3-level driver input (for charge transfer)  
4
TI2  
(Refer to 4. FUNCTION TABLES.)  
5
TI3  
6
TI4  
7
TI5  
8
TI6  
9
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
BI1  
3-level driver input (for charge read)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
(Refer to 4. FUNCTION TABLES.)  
2-level driver input (for charge transfer)  
BI2  
(Refer to 4. FUNCTION TABLES.)  
BI3  
BI4  
SUBI  
VSS  
VOD shutter drive pulse input  
VL power supply  
Vsb  
VHH power supply (for SUB drive)  
VOD shutter drive pulse output  
2-level pulse output  
SUBO  
BO4  
BO3  
VDD2b  
BO2  
BO1  
TO6  
VDD2a  
TO5  
TO4  
VDD2a  
TO3  
TO2  
VDD2a  
TO1  
VDD1  
VSS  
Output  
Output  
Output  
VMb power supply (for 2-level driver)  
2-level pulse output  
Output  
Output  
Output  
3-level pulse output  
VMa power supply (for 3-level driver)  
3-level pulse output  
Output  
Output  
VMa power supply (for 3-level driver)  
3-level pulse output  
Output  
Output  
VMa power supply (for 3-level driver)  
3-level pulse output  
Output  
VH power supply  
VL power supply  
6
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
(2) µ PD16520AFH-2Q1  
Pin No.  
1
Pin Name  
I/O  
Output  
Function  
BO4  
Vsb  
VSS  
2-level pulse output  
2
VHH power supply (for SUB drive)  
VL power supply  
3
4
BI4  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
2-level driver input (for charge transfer)  
(Refer to 4. FUNCTION TABLES.)  
5
BI2  
6
BI1  
7
PG6  
PG4  
PG3  
PG1  
TI5  
3-level driver input (for charge read)  
8
(Refer to 4. FUNCTION TABLES.)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
3-level driver input (for charge transfer)  
TI3  
(Refer to 4. FUNCTION TABLES.)  
TI2  
TI1  
VSS  
VL power supply  
VDD1  
VDD2a  
TO2  
VH power supply  
VMa power supply (for 3-level driver)  
3-level pulse output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
TO3  
TO4  
TO5  
TO6  
BO2  
BO3  
BO4  
SUBO  
BI3  
2-level pulse output  
VOD shutter drive pulse output  
2-level driver input (for charge transfer)  
(Refer to 4. FUNCTION TABLES.)  
3-level driver input (for charge read)  
(Refer to 4. FUNCTION TABLES.)  
3-level driver input (for charge transfer)  
(Refer to 4. FUNCTION TABLES.)  
BI2  
PG5  
PG2  
TI6  
TI4  
TI2  
GND  
TO1  
Ground  
Output  
3-level pulse output  
VMa power supply (for 3-level driver)  
VDD2a  
VDD2a  
VDD2a  
BO1  
VDD2b  
SUBI  
VCC  
Output  
2-level pulse output  
VMb power supply (for 2-level driver)  
VOD shutter drive pulse input  
Logic power supply  
Input  
7
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
4. FUNCTION TABLE (VL = VSS, VMa = VDD2a, VMb = VDD2b, VH = VDD1, VHH = Vsb)  
Pins TO1 to TO6  
Input  
TI1 TI2 TI3 TI4 TI5 TI6 PG1 PG2  
Output  
Pin  
PG3 PG4 PG5 PG6 TO1 TO2 TO3 TO4 TO5 TO6  
Name  
Pin  
3
4
5
6
7
8
9
10  
30  
11  
9
12  
8
13  
29  
14  
7
36  
35  
34  
18  
33  
19  
31  
20  
30  
21  
28  
22  
No.  
14  
13,  
33  
12  
32  
11  
31  
10  
L
L
L
H
L
VH  
VMa  
VL  
H
H
H
Remark Pin No. upper row: µ PD16520GS-BGG, lower row: µ PD16520AFH-2Q1  
Pins BO1 to BO4  
Input  
Output  
Pin  
BI1  
BI2  
BI3  
BI4  
BO1  
BO2  
BO3  
BO4  
Name  
Pin  
15  
6
16  
5,  
17  
27  
28  
4
27  
39  
26  
23  
24  
24  
23  
1,  
No.  
28  
25  
L
VMa  
VL  
H
Remark Pin No. upper row: µ PD16520GS-BGG, lower row: µ PD16520AFH-2Q1  
Pin SUBO  
Input  
SUBI  
Output  
SUBO  
Pin  
Name  
Pin  
19  
41  
L
22  
26  
No.  
VHH  
VL  
H
Remark Pin No. upper row: µ PD16520GS-BGG, lower row: µ PD16520AFH-2Q1  
8
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
5. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C, GND = 0 V)  
Parameter  
Symbol  
VSS  
Condition  
Rating  
Unit  
V
Power supply voltage  
0 to 10  
VSS 0.3 to VSS + 20.0  
VSS 0.3 to VSS + 33.0  
VSS 0.3 to VSS + 33.0  
VSS 0.3 to VSS + 33.0  
VSS 0.3 to VCC + 0.3  
25 to +85  
VCC  
V
VDD1  
VDD2  
Vsb  
VI  
V
V
V
Input pin voltage  
V
Operating ambient temperature  
Storage temperature  
Allowable dissipation  
TA  
°C  
°C  
mW  
mW  
Tstg  
40 to +125  
Pd  
µ PD16520GS-BGG  
µ PD16520AFH-2Q1  
500  
600 Note  
Note Mounted on 8-layer glass epoxy board of 30 mm x 30 mm x 1.6 mm  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Conditions (TA = 25°C, GND = 0 V)  
Parameter  
Symbol  
Condition  
MIN.  
2.0  
TYP.  
15.0  
MAX.  
5.5  
Unit  
V
Power supply voltage  
VCC  
VDD1  
VDD1-VSS  
VDD2a  
VDD2b  
VSS  
Note  
Note  
10.5  
16.5  
1.0  
1.0  
10.0  
21.0  
31.0  
+4.0  
+4.0  
6.0  
31.0  
VCC  
V
V
V
V
V
Vsb-VSS  
VIH  
Note  
V
High level input voltage  
Low level input voltage  
0.8 VCC  
0
V
VIL  
0.3 VCC  
+70  
V
Operating ambient temperature TA  
Note Set VDD1 and VSS to values that satisfy VDD1-VSS rating.  
20  
°C  
9
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
Electrical Characteristics (Unless otherwise specified, TA = 25°C, VDD1 = +15 V, VDD2a = 0 V, VDD2b = +1.0 V,  
Vsb = 21.5 V, VCC = +2.5 V, VSS = 7.0 V, GND = 0 V)  
Parameter  
Symbol  
VH  
Condition  
MIN.  
VDD1 0.1  
VDD2a 0.1  
VDD2b  
TYP.  
MAX.  
VDD1  
VDD2a  
VDD2b + 0.1  
VSS + 0.1  
Vsb  
Unit  
V
High level output voltage  
Middle level output voltage  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 10 mA  
IO = 10 mA  
IO = 10 mA  
VMa  
V
VMb  
V
Low level output voltage  
VL  
VSS  
V
SUB high level output voltage VsubH  
Vsb 0.1  
VSS  
V
SUB low level output voltage  
Output on-state resistance  
VsubL  
RL  
VSS + 0.1  
30  
V
20  
30  
30  
30  
RM  
45  
RH  
40  
Rsub  
TD1  
TD2  
TD3  
TP1  
TP2  
TP3  
40  
Transmission delay time 1  
Transmission delay time 2  
Transmission delay time 3  
Rise/fall time 1  
No load,  
200  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Figure 52. Timing Chart.  
200  
200  
Refer to Figure 51. Output Load  
Equivalence Circuit and  
500  
Rise/fall time 2  
500  
Rise/fall time 3  
Figure 52. Timing Chart.  
200  
10  
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
Figure 51. Output Load Equivalence Circuit  
(a) Between output pins  
(b) Between output pin and GND  
BO4  
TO1  
TO1  
BO4  
R1  
R10  
R1  
TO1'  
TO2  
R10  
BO4'  
C10  
C9  
BO3  
BO3  
TO2  
BO4'  
TO1'  
R2  
TO2'  
R2  
BO3'  
R9  
TO2'  
C1  
R9  
C2  
BO3'  
R3  
TO3  
C3 TO3' R3  
BO2'  
BO2  
TO3  
TO3'  
R8  
BO2  
R8 BO2' C8  
C7  
C4  
TO4'  
BO1'  
R7  
R4  
C5  
BO1'  
C6  
R4  
TO4'  
TO5'  
R7  
TO6'  
TO5'  
TO6'  
BO1  
TO4  
BO1  
TO4  
R5  
R6  
R5  
R6  
RGND  
TO6  
TO5  
TO6  
TO5  
SUBO  
C11  
Output Load Capacitance Symbol  
TO1'  
TO2'  
C_33  
TO3'  
C_33  
C_33  
TO4'  
TO5'  
C_33  
C_33  
C_33  
C_33  
TO6'  
C_33  
C_33  
C_33  
C_33  
C_33  
BO1'  
BO2'  
C_23  
C_32  
C_23  
C_32  
C_23  
C_32  
C_22  
BO3'  
C_32  
C_23  
C_32  
C_23  
C_32  
C_23  
C_22  
C_22  
BO4'  
GND  
TO1'  
TO2'  
TO3'  
TO4'  
TO5'  
TO6'  
BO1'  
BO2'  
BO3'  
BO4'  
SUBO  
C_33  
C_33  
C_33  
C_32  
C_23  
C_32  
C_23  
C_32  
C_23  
C_23  
C_32  
C_23  
C_32  
C_23  
C_32  
C_22  
C_22  
C_22  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C_33  
C_33  
C_33  
C_33  
C_33  
C_32  
C_23  
C_32  
C_23  
C_33  
C_33  
C_33  
C_33  
C_23  
C_32  
C_23  
C_32  
C_33  
C_33  
C_33  
C_32  
C_23  
C_32  
C_23  
C_33  
C_33  
C_23  
C_32  
C_23  
C_32  
C_33  
C_32  
C_23  
C_32  
C_23  
C_23  
C_32  
C_23  
C_32  
C_22  
C_22  
C_22  
C_22  
C_22  
C_22  
11  
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
Output Load Equivalence Circuit Constants  
Parameter  
Symbol  
R1 to R10  
PGND  
Constant  
0 Ω  
Vertical register serial resistor  
Vertical register ground resistor  
0 Ω  
Capacitance 1 between vertical register clocks (3-level - 3-level)  
Capacitance 2 between vertical register clocks (2-level - 2-level)  
Capacitance 3 between vertical register clocks (3-level - 2-level)  
Capacitance 4 between vertical register clocks (2-level - 3-level)  
Vertical register ground capacitance 1 (3-level)  
Vertical register ground capacitance 2 (2-level)  
Substrate ground capacitance  
C_33  
0 pF  
C_22  
0 pF  
C_32  
1000 pF  
500 pF  
3000 pF  
1500 pF  
1600 pF  
C_23  
C1 to C6  
C7 to C10  
C11  
Figure 52. Timing Chart  
BI1 to BI4  
TI1 to TI6  
TD1  
TD1  
V
V
Mb  
Ma  
BO1 to BO4  
TO1 to TO6  
V
L
TP1  
TP1  
PG1 to PG6  
TO1 to TO6  
TD2  
TD2  
V
V
H
Ma  
TP2  
TP2  
SUBI  
TD3  
TD3  
V
V
HH  
SUBO  
L
TP3  
TP3  
12  
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
6. NOTE ON USE  
6.1 Power ON/OFF Sequence  
In the µ PD16520 and µ PD16520A, a PN junction (diode) exists between VDD2 VDD1, input pin (TI1 to TI6, PG1  
to PG6, BI1 to BI4, and SUBI) VCC, so that in the case of voltage conditions: VDD2 > VDD1, input pin voltage (TI1  
to TI6, PG1 to PG6, BI1 to BI4, and SUBI) > VCC, an abnormal current flows. Therefore, when turning the power  
ON/OFF, make sure that the following voltage conditions are satisfied: VDD2 VDD1, input pin voltage (TI1 to TI6,  
PG1 to PG6, BI1 to BI4, and SUBI) VCC. Also, to minimize the negative potential applied to the SUB pin of the CCD  
image sensor, following the power ON/OFF sequence described below.  
(1) Power ON  
<1> Powering ON VCC  
Make sure that input pin voltage (TI1 to TI6, PG1 to PG6, BI1 to BI4, and SUBI) VCC. Also, when Vsb = 2 V,  
make sure that VCC reaches the rated voltage.  
<2> Powering ON Vsb, VDD1, VDD2a, VDD2b and VSS  
At this time, make SUBI high level (0.8VCC or higher) .  
Vsb  
VDD1  
V
CC  
2 V  
VDD2a, VDD2b  
0 V  
<1> <2>  
V
SS  
Time  
13  
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
(2) Power OFF  
<1> Powering OFF Vsb, VDD1, VDD2a, VDD2b and VSS  
Until VCC power OFF, keep SUBI high level (0.8VCC or higher) .  
<2> Powering OFF VCC  
Power OFF VCC when Vsb becomes 2 V or lower. At this time, make sure that the input pin voltage (TI1 to TI6,  
PG1 to PG6, BI1 to BI4, and SUBI) VCC.  
<1>  
Vsb  
VDD1  
<2>  
V
CC  
2 V  
VDD2a, VDD2b  
0 V  
V
SS  
Time  
6.2 Recommended Connection of Unused Pins  
Handle input pins and output pins that are not used as follows.  
Input pin: High level (connect to VCC)  
Output pin: Leave open  
14  
Data Sheet S14201EJ3V0DS  
V
CC  
V
SS  
VDD1 Vsb  
VDD2b  
VSUB (Substrate voltage)  
CCD  
µ
PD16520GS-BGG  
38  
1
2
TG/SSG  
V
SS  
GND  
37  
36  
VDD1  
TO1  
VCC  
3
4
5
6
TI1  
35  
34  
33  
VDD2a  
TO2  
TI2  
TI3  
TO3  
TI4  
7
8
9
32  
31  
VDD2a  
TO4  
TI5  
TI6  
30  
29  
28  
27  
26  
25  
24  
23  
TO5  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
BI1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
VDD2a  
TO6  
BO1  
BO2  
VDD2b  
BO3  
BO4  
BI2  
+
22  
21  
20  
BI3  
SUBO  
Vsb  
µ
1
F
BI4  
19  
SUBI  
V
SS  
µ
1 MΩ  
µ
µ
µ
µ
µ
µ
0.1 F  
0.1  
F
0.1  
F
0.1  
F
0.1  
F
0.1  
F
µ PD16520,16520A  
8. PACKAGE DRAWINGS  
38-PIN PLASTIC SSOP (7.62 mm (300))  
38  
20  
detail of lead end  
F
G
P
L
1
19  
A
E
H
I
J
S
B
C
N
S
K
M
M
D
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.10 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
12.7 0.3  
0.65 MAX.  
0.65 (T.P.)  
+0.05  
0.37  
D
0.1  
E
F
G
H
I
0.125 0.075  
1.675 0.125  
1.55  
7.7 0.2  
5.6 0.2  
J
1.05 0.2  
+0.1  
0.2  
K
0.05  
L
M
N
0.6 0.2  
0.10  
0.10  
+7°  
3°  
P
3°  
P38GS-65-BGG-1  
16  
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
42-PIN WAFER LEVEL CSP (Unit: mm)  
w S A  
Pitch 0.5 x (5 1) = 2.0  
D
ZD  
9
8
7
6
5
4
3
2
1
φ
INDEX 0.25  
Solder ball is not  
loaded yet.  
E
D
C
B
A
INDEX MARK  
φ
42 −  
b
t S A B  
φ
x M S A B  
C Block  
Standard  
Parameter MIN. TYP. MAX.  
// y1 S  
D
E
ZD  
ZE  
e
2.98  
4.99  
3.03  
5.04  
0.515  
0.520  
0.5  
3.08  
5.09  
y S  
t
A
A1  
A2  
b
y
x
w
y1  
0.15  
0.8  
C Block Details  
0.66  
0.18  
0.48  
0.25  
0.73  
0.23  
0.50  
0.30  
0.28  
0.52  
0.35  
0.08  
0.05  
0.20  
0.20  
17  
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
9. RECOMMENDED SOLDERING CONDITIONS  
The µ PD16520 and µ PD16520A should be soldered and mounted under the following recommended conditions.  
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales  
representative.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Type of Surface Mount Device  
µ PD16520GS-BGG: 38-pin plastic SSOP (7.62 mm (300) )  
Process  
Infrared reflow  
Conditions  
Symbol  
Peak temperature: 235°C or below (package surface temperature) ,  
Reflow time: 30 seconds or less (at 210°C or higher) ,  
Maximum number of reflow processes: 3 times or less.  
Peak temperature: 215°C or below (package surface temperature) ,  
Reflow time: 40 seconds or less (at 200°C or higher) ,  
Maximum number of reflow processes: 3 times or less.  
Solder temperature: 260°C or below, Flow time: 10 seconds or less,  
Maximum number of flow processes: 1 time,  
IR35-00-3  
Vapor phase soldering  
Wave soldering  
VP15-00-3  
WS60-00-1  
Pre-heating temperature: 120° or below (package surface temperature) .  
Pin temperature: 300°C or below,  
Partial heating method  
Heat time: 3 seconds or less (per each side of the device) .  
µ PD16520AFH-2Q1: 42-pin wafer level CSP  
Process  
Conditions  
Symbol  
Infrared reflow  
Peak temperature: 260°C or below (package surface temperature) ,  
Reflow time: 60 seconds or less (at 220°C or higher) ,  
Maximum number of reflow processes: 3 times or less.  
IR60-00-3  
Caution Do not use different soldering methods together (except for partial heating) .  
REFERENCE DOCUMENTS  
NEC Semiconductor Device Reliability/Quality Control System (C10983E)  
Quality Grades on NEC Semiconductor Devices (C11531E)  
18  
Data Sheet S14201EJ3V0DS  
µ PD16520,16520A  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
V
IH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
19  
Data Sheet S14201EJ3V0DS  

相关型号:

UPD16520AFH-2Q1

VERTICAL DRIVER FOR CCD SENSORS
NEC

UPD16520AFH-2Q1-E4-A

IC,CCD DRIVER,CMOS,BGA,42PIN,PLASTIC
RENESAS

UPD16520GS-BGG

VERTICAL DRIVER FOR CCD SENSORS
NEC

UPD166007T1F

Buffer/Inverter Based Peripheral Driver, 130A, TO-252, 5 PIN
NEC

UPD16601

MOS Integrated Circuit
NEC

UPD166010T1F-E1-AY

UPD166010T1F-E1-AY
RENESAS

UPD166011T1J

INTELLIGENT POWER DEVICE
RENESAS

UPD166011T1J-E1-AY

INTELLIGENT POWER DEVICE
RENESAS

UPD166013T1J

INTELLIGENT POWER DEVICE
RENESAS

UPD166013T1J-E1-AY

INTELLIGENT POWER DEVICE
RENESAS

UPD166015GR

MOS INTEGRATED CIRCUIT
RENESAS

UPD166015GR-E1-AY

MOS INTEGRATED CIRCUIT
RENESAS