UPD16772 [NEC]

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES; 480输出TFT -LCD源极驱动器兼容的64级灰度
UPD16772
型号: UPD16772
厂家: NEC    NEC
描述:

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES
480输出TFT -LCD源极驱动器兼容的64级灰度

驱动器 输出元件 CD
文件: 总20页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ
PD16772  
480-OUTPUT TFT-LCD SOURCE DRIVER  
(COMPATIBLE WITH 64-GRAY SCALES)  
DESCRIPTION  
The µ PD16772 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is  
based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors  
by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the  
SS2  
DD2  
output dynamic range is as large as V  
+ 0.1 V to V  
– 0.1 V, level inversion operation of the LCD’s common  
electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line  
inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit  
whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a  
clock frequency of 45 MHz when driving at 2.3 V, this driver is applicable to UXGA-standard TFT-LCD panels.  
FEATURES  
CMOS level input (2.3 to 3.6 V)  
480 outputs  
Input of 6 bits (gradation data) by 6 dots  
Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter (R-  
DAC)  
SS2  
DD2  
+ 0.1 V to V  
Output dynamic range : V  
– 0.1 V  
CLK  
DD1  
High-speed data transfer : f  
= 45 MHz (internal data transfer speed when operating at V  
= 2.3 V)  
Apply for dot-line inversion, n-line inversion and column line inversion  
Output voltage polarity inversion function (POL)  
Display data inversion function (POL21/22)  
Current consumption reduction function (LPC, Bcont)  
DD1  
Logic power supply voltage (V ) : 2.3 to 3.6 V  
DD2  
Driver power supply voltage (V ) : 8.5 V ± 0.5 V  
ORDERING INFORMATION  
Part Number  
Package  
µ PD16772N-xxx  
TCP (TAB package)  
Remark The TCP’s external shape is customized. To order the required shape, so please contact one of our  
sales representatives.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S14416EJ1V0DS00 (1st edition)  
Date Published August 2000 NS CP (K)  
The mark shows major revised points.  
1999, 2000  
©
Printed in Japan  
µ
PD16772  
1. BLOCK DIAGRAM  
STHR  
R,/L  
CLK  
STB  
STHL  
V
V
DD1  
80-bit bidirectional shift register  
SS1  
C1  
C2  
C79  
C80  
D
D
D
D
D
D
00 -  
D
D
D
D
D
D
05  
10 -  
15  
20 -  
25  
Data register  
30 -  
40 -  
50 -  
35  
45  
55  
POL21/22  
Latch  
POL  
V
V
DD2  
SS2  
Level shifter  
V
0 -  
V
9
D/A converter  
Voltage follower output  
LPC  
Bcont  
S
1
S
2
S
3
S
480  
Remark /xxx indicates active low signal.  
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER  
S
1
S
2
S
479  
S
480  
5
5
V
0
V
4
Multi-  
plexer  
6-bit D/A converter  
V
5
V
9
POL  
2
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
3. PIN CONFIGURATION (µPD16772N-xxx: TCP (TAB package))  
S480  
S479  
S478  
S477  
STHL  
D55  
D54  
D53  
D52  
D51  
D50  
D45  
D44  
D43  
D42  
D41  
D40  
D35  
D34  
D33  
D32  
D31  
D30  
VDD1  
R,/L  
V9  
V8  
V7  
V6  
V5  
VDD2  
Copper Foil  
Surface  
VSS2  
Bcont  
V4  
V3  
V2  
V1  
V0  
VSS1  
LPC  
CLK  
STB  
POL  
POL21  
POL22  
D25  
D24  
D23  
D22  
D21  
D20  
D15  
D14  
D13  
D12  
D11  
D10  
D05  
D04  
D03  
D02  
D01  
S4  
S3  
S2  
S1  
D00  
STHR  
Remark This figure does not specify the TCP package.  
3
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
4. PIN FUNCTIONS  
Pin Symbol  
S1 to S480  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L  
Pin Name  
Description  
Driver output  
The D/A converted 64-gray-scale analog voltage is output.  
Display data input  
The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2  
pixels).  
DX0: LSB, DX5: MSB  
Shift direction control These refer to the start pulse I/O pins when driver ICs are connected in cascade. The shift  
input  
directions of the shift registers are as follows.  
R,/L = H: STHR input, S1 S480, STHL output  
R,/L = L: STHL input, S480 S1, STHR output  
These refer to the start pulse I/O pins when driver ICs are connected in cascade.  
Fetching of display data starts when H is read at the rising edge of CLK.  
R,/L = H (right shift): STHR input, STHL output  
STHR  
STHL  
Right shift start pulse  
input/output  
Left shift start pulse  
input/output  
R,/L = L (left shift): STHL input, STHR output  
The start pulse width (H level) for next-level drivers is 1CLK.  
CLK  
Shift clock input  
Refers to the shift register’s shift clock input. The display data is incorporated into the data  
register at the rising edge. At the rising edge of the 80th clock after the start pulse input, the  
start pulse output reaches the high level, thus becoming the start pulse of the next-level  
driver. If 82 clock pulses are input after input of the start pulse, input of display data is halted  
automatically. The contents of the shift register are cleared at the STB’s rising edge.  
The contents of the data register are transferred to the latch circuit at the rising edge. And,  
at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure  
input of one pulse per horizontal period.  
STB  
POL  
Latch input  
Polarity input  
POL = L: The S2n–1 output uses V0 to V4 as the reference supply. The S2n output uses V5 to  
V9 as the reference supply.  
POL = H: The S2n–1 output uses V5 to V9 as the reference supply. The S2n output uses V0 to  
V4 as the reference supply.  
S2n-1 indicates the odd output: and S2n indicates the even output. Input of the POL signal is  
allowed the setup time(tPOL-STB) with respect to STB’s rising edge.  
POL21,  
POL22  
Data inversion input Data inversion can invert when display data is loaded.  
POL21/22 = H : Data inversion loads display data after inverting it.  
POL21/22 = L : Data inversion does not invert input data.  
POL21: D00 to D05, D10 to D15, D20 to D25  
POL22: D30 to D35, D40 to D45, D50 to D55  
LPC  
Low power control  
input  
The current consumption of VDD2 is lowered by controlling the constant current source of the  
output amplifier. This pin is pulled up to the VDD1 power supply inside the IC. For details,  
see 9. CURRENT CONSUMPTION REDUCTION FUNCTION.  
Bias control  
Bcont  
V0 to V9  
This pin can be used to finely control the bias current inside the output amplifier.  
When this fine-control function is not required, leave this pin open. For details, see  
9. CURRENT CONSUMPTION REDUCTION FUNCTION.  
γ -corrected power  
Input the γ -corrected power supplies from outside by using operational amplifier. Make sure  
to maintain the following relationships. During the gray scale voltage output, be sure to keep  
the gray scale level power supply at a constant level.  
supplies  
VDD2 0.1 V > V0 > V1 > V2 > V3 > V4 > 0.5 VDD2 > V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V  
VDD1  
VDD2  
VSS1  
VSS2  
Logic power supply 2.3 to 3.6 V  
Driver power supply 8.5 V ± 0.5 V  
Logic ground  
Driver ground  
Grounding  
Grounding  
4
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order.  
Reverse this sequence to shut down (Simultaneous power application to VDD2 and V0 to V9 is  
possible.).  
2. To stabilize the supply voltage, please be sure to insert a 0.1 µF bypass capacitor between  
VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion  
of a bypass capacitor of about 0.01 µF is also advised between the γ -corrected power supply  
terminals (V0, V1, V2,....., V9) and VSS2.  
5
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE  
The µ PD16772 incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively  
gray scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The  
D/A converter consists of ladder resistors and switches.  
0
63  
The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ-compensated voltages to V ’ to V ’  
0
63  
0
4
5
9
and V ” to V ” is almost equivalent. For the 2 sets of five γ-compensated power supplies, V to V and V to V ,  
respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine gray  
scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ-compensated  
1
3
6
8
power supplies V to V and V to V .  
DD2  
SS2  
Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages V  
and V  
,
COM  
0
9
common electrode potential V  
, and γ -corrected voltages V to V and the input data. Be sure to maintain the  
voltage relationships of VDD2 – 0.1 V > V  
0
> V > V > V > V > 0.5 VDD2 > V > V > V > V > V > VSS2 + 0.1 V  
1
2
3
4
5
6
7
8
9
Figures 5–2 and 5–3 show the relationship between the input data and the output voltage and the resistance values  
of the resistor strings.  
Figure 5–1. Relationship between Input Data and γ-corrected Power Supplies  
V
DD2  
0.1 V  
V
0
16  
V
1
16  
16  
V
2
3
V
15  
V
4
V
COM  
Split interval  
15  
V
5
V
6
16  
16  
V
7
V
8
16  
V
9
0.1 V  
V
SS2  
00  
10  
20  
30  
3F  
Input data (HEX)  
6
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
Figure 5–2. Relationship between Input Data and Output Voltage  
VDD2–0.2 V > V0 > V1 > V2 > V3 > V4 > 0.5 VDD2, POL21/22 = L  
Data  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
DX5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
DX2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DX1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DX0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
rn  
r0  
r1  
r2  
r3  
r4  
r5  
r6  
r7  
r8  
()  
800  
750  
700  
650  
600  
550  
550  
500  
500  
400  
400  
350  
350  
350  
300  
300  
300  
250  
250  
250  
200  
200  
200  
150  
150  
150  
150  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
200  
200  
250  
250  
300  
500  
800  
15850  
Output votage  
V
0
V
0
'
V0'  
V1'  
V2'  
V3'  
V4'  
V5'  
V6'  
V7'  
V0  
r0  
r1  
r2  
r3  
V1+(V0-V1)× 7250 /  
V1+(V0-V1)× 6500 /  
V1+(V0-V1)× 5800 /  
V1+(V0-V1)× 5150 /  
V1+(V0-V1)× 4550 /  
V1+(V0-V1)× 4000 /  
V1+(V0-V1)× 3450 /  
V1+(V0-V1)× 2950 /  
V1+(V0-V1)× 2450 /  
V1+(V0-V1)× 2050 /  
V1+(V0-V1)× 1650 /  
V1+(V0-V1)× 1300 /  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
V
V
V
1
'
'
'
2
3
V8'  
V9'  
r9  
V10'  
V11'  
V12'  
V13'  
V14'  
V15'  
V16'  
V17  
V18'  
V19'  
V20'  
V21'  
V22'  
V23'  
V24'  
V25'  
V26'  
V27'  
V28'  
V29'  
V30'  
V31'  
V32'  
V33'  
V34'  
V35'  
V36'  
V37'  
V38'  
V39'  
V40'  
V41'  
V42'  
V43'  
V44'  
V45'  
V46'  
V47'  
V48'  
V49'  
V50'  
V51'  
V52'  
V53'  
V54'  
V55'  
V56'  
V57'  
V58'  
V59'  
V60'  
V61'  
V62'  
V63'  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
r total  
V1+(V0-V1)×  
V1+(V0-V1)×  
V1+(V0-V1)×  
V1  
950 /  
600 /  
300 /  
r14  
r15  
V15  
'
'
V1  
V16  
V2+(V1-V2)× 2450 /  
V2+(V1-V2)× 2200 /  
V2+(V1-V2)× 1950 /  
V2+(V1-V2)× 1700 /  
V2+(V1-V2)× 1500 /  
V2+(V1-V2)× 1300 /  
V2+(V1-V2)× 1100 /  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
r16  
r17  
V17  
'
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2  
950 /  
800 /  
650 /  
500 /  
400 /  
300 /  
200 /  
100 /  
V3+(V2-V3)× 1500 /  
V3+(V2-V3)× 1400 /  
V3+(V2-V3)× 1300 /  
V3+(V2-V3)× 1200 /  
V3+(V2-V3)× 1100 /  
V3+(V2-V3)× 1000 /  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3  
900 /  
800 /  
700 /  
600 /  
500 /  
400 /  
300 /  
200 /  
100 /  
r46  
r47  
r48  
V
V
V
47  
'
'
'
V3  
48  
V4+(V3-V4)× 3350 /  
V4+(V3-V4)× 3250 /  
V4+(V3-V4)× 3150 /  
V4+(V3-V4)× 3050 /  
V4+(V3-V4)× 2950 /  
V4+(V3-V4)× 2800 /  
V4+(V3-V4)× 2650 /  
V4+(V3-V4)× 2500 /  
V4+(V3-V4)× 2300 /  
V4+(V3-V4)× 2100 /  
V4+(V3-V4)× 1850 /  
V4+(V3-V4)× 1600 /  
V4+(V3-V4)× 1300 /  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
49  
r49  
r60  
r61  
V61  
'
V62  
'
V4+(V3-V4)×  
V4  
800 /  
r62  
V4  
V63  
'
Caution There is no connection between V4 and V5 terminal in the chip.  
7
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
Figure 5–3. Relationship between Input Data and Output Voltage  
0.5 VDD2 > V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V, POL21/22 = L  
Data  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
DX5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
DX2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DX1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DX0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
rn  
r0  
r1  
r2  
r3  
r4  
r5  
r6  
r7  
r8  
()  
800  
750  
700  
650  
600  
550  
550  
500  
500  
400  
400  
350  
350  
350  
300  
300  
300  
250  
250  
250  
200  
200  
200  
150  
150  
150  
150  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
200  
200  
250  
250  
300  
500  
800  
15850  
Output voltage  
V0"  
V1"  
V2"  
V3"  
V4"  
V5"  
V6"  
V7"  
V9  
V9+(V8-V9)×  
V
V
63''  
62''  
V
5
r62  
r61  
800 /  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
V9+(V8-V9)× 1550 /  
V9+(V8-V9)× 2250 /  
V9+(V8-V9)× 2900 /  
V9+(V8-V9)× 3500 /  
V9+(V8-V9)× 4050 /  
V9+(V8-V9)× 4600 /  
V9+(V8-V9)× 5100 /  
V9+(V8-V9)× 5600 /  
V9+(V8-V9)× 6000 /  
V9+(V8-V9)× 6400 /  
V9+(V8-V9)× 6750 /  
V9+(V8-V9)× 7100 /  
V9+(V8-V9)× 7450 /  
V9+(V8-V9)× 7750  
V8  
V
61''  
60''  
r60  
r59  
V
V8"  
V9"  
r9  
V10"  
V11"  
V12"  
V13"  
V14"  
V15"  
V16"  
V17"  
V18"  
V19"  
V20"  
V21"  
V22"  
V23"  
V24"  
V25"  
V26"  
V27"  
V28"  
V29"  
V30"  
V31"  
V32"  
V33"  
V34"  
V35"  
V36"  
V37"  
V38"  
V39"  
V40"  
V41"  
V42"  
V43"  
V44"  
V45"  
V46"  
V47"  
V48"  
V49"  
V50"  
V51"  
V52"  
V53"  
V54"  
V55"  
V56"  
V57"  
V58"  
V59"  
V60"  
V61"  
V62"  
V63"  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
rtotal  
r49  
r48  
r47  
V
V
V
49''  
48''  
47''  
V
6
V8+(V7-V8)×  
V8+(V7-V8)×  
V8+(V7-V8)×  
300 /  
550 /  
800 /  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
r46  
V8+(V7-V8)× 1050 /  
V8+(V7-V8)× 1250 /  
V8+(V7-V8)× 1450 /  
V8+(V7-V8)× 1650 /  
V8+(V7-V8)× 1800 /  
V8+(V7-V8)× 1950 /  
V8+(V7-V8)× 2100 /  
V8+(V7-V8)× 2250 /  
V8+(V7-V8)× 2350 /  
V8+(V7-V8)× 2450 /  
V8+(V7-V8)× 2550 /  
V8+(V7-V8)× 2650  
V7  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
100 /  
200 /  
300 /  
400 /  
500 /  
600 /  
700 /  
800 /  
900 /  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
r17  
r16  
r15  
r14  
V
17''  
16''  
V
V8  
V7+(V6-V7)× 1000 /  
V7+(V6-V7)× 1100 /  
V7+(V6-V7)× 1200 /  
V7+(V6-V7)× 1300 /  
V7+(V6-V7)× 1400 /  
V7+(V6-V7)× 1500 /  
V6  
V
15''  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
100 /  
200 /  
300 /  
400 /  
500 /  
650 /  
800 /  
950 /  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
r2  
V
2''  
r1  
r0  
V1  
''  
V6+(V5-V6)× 1150 /  
V6+(V5-V6)× 1350 /  
V6+(V5-V6)× 1600 /  
V6+(V5-V6)× 1850 /  
V6+(V5-V6)× 2150 /  
V6+(V5-V6)× 2650 /  
V5  
V
0
''  
V
9
Caution There is no connection between V4 and V5 terminal in the chip.  
8
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN  
Data format : 6 bits x 2 RGBs (6 dots)  
Input width : 36 bits (2-pixel data)  
(1) R,/L = H (Right shift)  
Output  
Data  
S1  
S2  
S3  
S4  
xxx  
xxx  
S479  
S480  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
(2) R,/L = L (Left shift)  
Output  
Data  
S1  
S2  
S3  
S4  
xxx  
xxx  
S479  
S480  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
Note  
Note  
S2n–1  
S2n  
POL  
L
V0 to V4  
V5 to V9  
V5 to V9  
V0 to V4  
H
Note S2n–1 (Odd output), S2n (Even output)  
7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
STB  
POL  
S2n-1  
Selected voltage V  
0
toV  
4
Selected voltage V  
5
toV  
9
Selected voltage V  
0
toV  
4
S
2n  
Selected voltage V  
0
toV  
4
Selected voltage V  
5
toV  
9
Selected voltage V  
5
toV  
9
Hi-Z  
Hi-Z  
Hi-Z  
9
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
8. RELATIONSHIP BETWEEN STB, CLK AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
Figure 8–1. Output Circuit Block Diagram  
Output Amp  
-
+
DAC  
SW1  
VOUT  
VAMP(IN)  
Figure 8–2. Output Circuit Timing Waveform  
[1] [2]  
CLK  
(External Input)  
STB  
(External Input)  
SW1 : ON  
SW1 : OFF  
SW1 : ON  
V
AMP(IN)  
VOUT  
(External output)  
Output  
Hi-Z  
Output  
Remarks 1. STB = L : SW1 = ON  
STB = H : SW1 = OFF  
2. STB = “H” is acknowledged at timing [1].  
3. The display data latch is compensated at timing [2] and the input voltage (VAMP(IN): gray-  
scale level voltage) of the output amplifier changes.  
10  
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
9. CURRENT CONSUMPTION REDUCTION FUNCTION  
The µ PD16772 has a low power control function (LPC) which can switch the bias current of the output amplifier  
between two levels and a bias control function (Bcont) which can be used to finely control the bias current.  
Low Power Control Function (LPC)  
The bias current of the output amplifier can be switched between two levels using this pin (Bcont: Open).  
LPC = H or Open: Low power mode  
LPC = L: Normal power mode  
DD2  
The V  
of static current consumption can be reduced to two thirds of that in normal mode. Input a stable DC  
DD1 SS1  
current (V /V ) to this pin.  
Bias Current Control Function (Bcont)  
It is possible to fine-control the current consumption by using the bias current control function (Bcont pin). When  
SS2  
EXT  
using this function, connect this pin to the stabilized ground potential (V ) via an external resistor (R ). When  
not using this function, leave this pin open.  
Figure 9–1. Bias Current Control Function (Bcont)  
PD16772  
µ
B
cont  
LPC  
REXT  
H/L  
VSS2  
Refer to the table below for the percentage of current regulation when using the bias current control function.  
Table 9–1. Current Consumption Regulation Percentage Compared to Normal Mode  
REXT  
Current Consumption Reguration Percentage  
LPC = L  
100%  
120%  
140%  
240%  
LPC = H/Open  
65%  
(Open)  
50 kΩ  
20 kΩ  
0 Ω  
VDD1 = 3.3 V  
VDD2 = 8.7 V  
80%  
100%  
210%  
Remark The above current consumption regulation percentages are not product-characteristic  
guaranteed as they are based on the results of simulation.  
Caution Because the low-power and bias-current control functions control the bias current in the output  
amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the  
characteristics of the output amplifier will simultaneously change. Therefore, when using these  
functions, be sure to sufficiently evaluate the picture quality.  
11  
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
10. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C, VSS1 = VSS2 = 0 V)  
Parameter  
Logic Part Supply Voltage  
Driver Part Supply Voltage  
Logic Part Input Voltage  
Driver Part Input Voltage  
Logic Part Output Voltage  
Driver Part Output Voltage  
Operating Ambient Temperature  
Storage Temperature  
Symbol  
Rating  
Unit  
V
VDD1  
VDD2  
VI1  
–0.5 to +4.0  
–0.5 to +10.0  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–10 to +75  
V
V
VI2  
V
VO1  
VO2  
TA  
V
V
°C  
°C  
Tstg  
–55 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Range (TA = –10 to +75°C, VSS1 = VSS2 = 0 V)  
Parameter  
Logic Part Supply Voltage  
Driver Part Supply Voltage  
High-Level Input Voltage  
Low-Level Input Voltage  
γ -Corrected Voltage  
Symbol  
Condition  
MIN.  
2.3  
TYP.  
8.5  
MAX.  
3.6  
Unit  
V
VDD1  
VDD2  
VIH  
8.0  
9.0  
V
0.7 VDD1  
0
VDD1  
V
VIL  
0.3 VDD1  
VDD2 – 0.1  
VDD2 – 0.1  
45  
V
V0 to V9  
VO  
VSS2 + 0.1  
VSS2 + 0.1  
V
Driver Part Output Voltage  
Clock Frequency  
V
fCLK  
VDD2 = 2.3 V  
MHz  
12  
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
Electrical Characteristics (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.5 V ± 0.5 V, VSS1 = VSS2 = 0 V, unless  
otherwise specified, the input level is defined to be LPC = L, Bcont = Open)  
Parameter  
Symbol  
IIL  
Condition  
MIN.  
TYP.  
MAX.  
Unit  
µA  
V
Input Leak Current  
±1.0  
High-Level Output Voltage  
Low-Level Output Voltage  
γ -Corrected Supply Current  
VOH  
VOL  
Iγ  
STHR (STHL), IOH = 0 mA  
STHR (STHL), IOL = 0 mA  
VDD1 – 0.1  
0.1  
504  
V
VDD2 = 8.5 V  
V0 to V4 = V5 to V9 =  
4.0 V  
V0 pin, V5 pin  
V4 pin, V9 pin  
126  
252  
µA  
µA  
–504  
–252  
–126  
Driver Output Current  
IVOH  
V
V
X = 7.0 V, VOUT = 6.5 V Note  
X = 1.0 V, VOUT = 1.5 V Note  
–30  
µA  
µA  
IVOL  
30  
Output Voltage Deviation  
Output Swing Difference  
Deviation  
VO  
VP–P  
TA = 25°C  
±7  
±2  
±20  
±15  
mV  
mV  
VDD1 = 3.3 V, VDD2 = 8.5 V  
VOUT = 2.0 V, 4.25 V, 6.5 V  
VDD1  
Logic Part Dynamic Current  
Consumption  
IDD1  
1.0  
3.5  
7.5  
7.5  
mA  
mA  
Driver Part Dynamic Current IDD2  
Consumption  
VDD2, with no load  
Note VX refers to the output voltage of analog output pins S1 to S480.  
OUT  
V
1
480  
refers to the voltage applied to analog output pins S to S  
.
Cautions 1. fSTB = 50 kHz, fCLK = 40 MHz  
2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the  
measured values in the dot checkerboard input pattern.  
3. Refers to the current consumption per driver when cascades are connected under the  
assumption of UXGA single-sided mounting (10 units).  
Switching Characteristics (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.5 V ± 0.5 V, VSS1 = VSS2 = 0 V, unless  
otherwise specified, the input level is defined to be LPC = L, Bcont = Open)  
Parameter  
Symbol  
tPLH1  
Condition  
MIN.  
TYP.  
10  
10  
2.5  
5
MAX.  
20  
20  
5
Unit  
ns  
Start Pulse Delay Time  
CL = 10 pF  
tPHL1  
tPLH2  
tPLH3  
tPHL2  
tPHL3  
CI1  
ns  
Driver Output Delay Time  
Input Capacitance  
CL = 75 pF, RL = 5kΩ  
µs  
µs  
µs  
µs  
pF  
pF  
8
2.5  
5
5
8
STHR (STHL) excluded, TA = 25°C  
STHR (STHL),TA = 25°C  
5
10  
10  
CI2  
8
13  
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
Timing Requirements (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VSS1 = 0 V, tr = tf = 5.0 ns)  
Parameter  
Clock Pulse Width  
Symbol  
PWCLK  
Condition  
MIN.  
22  
4
TYP.  
MAX.  
Unit  
ns  
VDD1 = 2.3 to 3.6 V  
Clock Pulse High Period  
Clock Pulse Low Period  
PWCLK(H)  
PWCLK(L)  
ns  
VDD1 = 2.3 to 3.0 V  
VDD1 = 3.0 to 3.6 V  
7
ns  
4
ns  
Data Setup Time  
tSETUP1  
tHOLD1  
tSETUP2  
tHOLD2  
tSETUP3  
tHOLD3  
3
ns  
Data Hold Time  
0
ns  
Start Pulse Setup Time  
Start Pulse Hold Time  
POL21/22 Setup Time  
POL21/22 Hold Time  
3
ns  
0
ns  
3
ns  
VDD1 = 2.3 to 3.0 V  
VDD1 = 3.0 to 3.6 V  
1
ns  
0
ns  
Start Pulse Low Period  
STB Pulse Width  
Last Data Timing  
CLK-STB Time  
tSPL  
1
CLK  
CLK  
CLK  
ns  
PWSTB  
tLDT  
2
2
tCLK-STB  
tSTB-CLK  
CLK ↑ → STB ↑  
6
STB-CLK Time  
STB ↑ → CLK ↑  
14  
ns  
VDD1 = 2.3 to 3.0 V  
STB ↑ → CLK ↑  
6
ns  
VDD1 = 3.0 to 3.6 V  
STB ↑ → STHR(STHL) ↑  
POL or ↓ → STB ↑  
STB ↓ → POL or ↑  
Time Between STB and Start Pulse  
POL-STB Time  
tSTB-STH  
tPOL-STB  
tSTB-POL  
2
–5  
6
CLK  
ns  
STB-POL Time  
ns  
Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.  
14  
Data Sheet S14416EJ1V0DS00  
PWCLK(L) PWCLK  
PWCLK(H)  
t
r
t
f
1
2
V
V
DD1  
SS1  
90%  
1
2
3
80  
81  
82  
801  
802  
CLK  
10%  
t
SETUP2  
t
HOLD2  
t
STB-CLK  
t
SPL  
t
CLK-STB  
V
V
DD1  
SS1  
STHR  
(1st Dr.)  
t
SETUP1  
t
HOLD1  
t
STB-STH  
V
V
DD1  
SS1  
D
D
469 to  
D
D
475 to  
D
D
481 to  
D
D
4795 to  
D
n0 to Dn5  
INVALID  
INVALID  
D1  
to D  
6
D
7
to D12  
INVALID  
D1-D6  
D7-D12  
474  
480  
486  
4800  
t
SETUP3  
t
HOLD3  
V
DD1  
SS1  
INVALID  
POL21/22  
V
t
PLH1  
t
PHL1  
V
V
DD1  
SS1  
STHL  
(1st Dr.)  
t
LDT  
PWSTB  
V
V
DD1  
SS1  
STB  
POL  
t
POL-STB  
t
STB-POL  
V
V
DD1  
SS1  
t
t
PLH3  
Hi-Z  
PLH2  
Target Voltage ± 0.1 VDD2  
6-bit accuracy  
V
OUT  
t
t
PHL2  
PHL3  
µ
µ
µ
PD16772  
12. RECOMMENDED MOUNTING CONDITIONS  
The following conditions must be met for mounting conditions of the µPD16772.  
For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).  
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under  
different conditions.  
µPD16772N-xxx : TCP (TAB Package)  
Mounting Condition  
Thermocompression  
Mounting Method  
Soldering  
Condition  
Heating tool 300 to 350°C, heating for 2 to 3 seconds : pressure 100g  
(per solder)  
ACF  
Temporary bonding 70 to 100°C : pressure 3 to 8 kg/cm2: time 3 to 5  
sec. Real bonding 165 to 180°C: pressure 25 to 45 kg/cm2: time 30 to  
40 sec. (When using the anisotropy conductive film SUMIZAC1003 of  
Sumitomo Bakelite,Ltd).  
(Adhesive  
Conductive Film)  
Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF  
manufacturing company. Be sure to avoid using two or more mounting methods at a time.  
16  
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
[MEMO]  
17  
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
[MEMO]  
18  
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
19  
Data Sheet S14416EJ1V0DS00  
µ
PD16772  
Reference Documents  
NEC Semiconductor Device Reliability/Quality Control System (C10983E)  
Quality Grades to NEC’s Semiconductor Devices (C11531E)  
The information in this document is current as of August, 2000. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or  
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all  
products and/or types are available in every country. Please check with an NEC sales representative  
for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD16772A

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES
NEC

UPD16772AN

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES
NEC

UPD16772B

UPD16772B Data Sheet | Data Sheet[07/2002]
ETC

UPD16772BN-XXX

Liquid Crystal Driver, 480-Segment, MOS, TCP
NEC

UPD16772N

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES
NEC

UPD16772N-XXX

Liquid Crystal Driver, 480-Segment, MOS, TCP-540
NEC

UPD16780

288/300 OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD16780A

UPD16780A Data Sheet | Data Sheet[11/2000]
ETC

UPD16780AN-XXX

Liquid Crystal Driver, 300-Segment, MOS, TCP-319
NEC

UPD16780AN-XXX

LIQUID CRYSTAL DISPLAY DRIVER, UUC319, TCP-319
RENESAS

UPD16780N

288/300 OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD16780N-XXX

LCD Display Driver
ETC