UPD16873MC-6A4 [NEC]

MONOLITHIC 3-ASPECT SPINDLE MOTOR DRIVER; 单片3宽高比主轴电机驱动器
UPD16873MC-6A4
型号: UPD16873MC-6A4
厂家: NEC    NEC
描述:

MONOLITHIC 3-ASPECT SPINDLE MOTOR DRIVER
单片3宽高比主轴电机驱动器

驱动器 电机
文件: 总16页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS Integrated Circuit  
µPD16873/A/B/C  
MONOLITHIC 3-ASPECT SPINDLE MOTOR DRIVER  
DESCRIPTION  
µPD16873/A/B/C is 3 aspect spindle motor driver that composed by CMOS control circuit and MOS bridge output.  
The consumption electric power can be substantially reduced to the screwdriver which used a conventional  
Bipolar transistor by the adoption of 3 aspect all-wave PWM methods and making an output paragraph MOSFET.  
FEATURES  
Low On resistance. (The summation of the on resistance of the upper and lower MOSFET) RON = 0.6 (TYP.)  
Low consumption power for 3 aspects all-wave PWM drive method.  
Index pulse (FG pulse) output function built in.  
By the PWM-drive form and the IND pulse pattern, 4 kind, line-up  
PWM method  
normal  
Pattern of IND pulse (at 12 pole motor)  
3 phase composition output (18 pulses/turn)  
1 phase output (6 pulses/turn)  
µPD16873  
µPD16873A  
µPD16873B  
µPD16873C  
normal  
synchronous  
synchronous  
1 phase output (6 pulses/turn)  
3 phase composition output (18 pulses/turn)  
Built in STANDBY terminal and off the inner circuit at the time of the standby.  
Built in START/STOP terminal. Operating short brake works, when ST/SP terminal is off state.  
Supply voltage: 5 V drive  
Low consumption current: IDD = 3 mA (MAX.)  
Thermal shut down circuit (TSD) built in.  
Over current protection circuit built in. (Setting by outside resistance)  
Low voltage malfunction prevention circuit built in.  
Reverse turn prevention circuit built in.  
Hall bias switch built in. (synchronized STB signal.)  
Loading into 30-pin plastic TSSOP (300 mil).  
ORDERING INFORMATION  
Part number  
Function  
Package  
µPD16873MC-6A4  
µPD16873AMC-6A4  
µPD16873BMC-6A4  
normal-PWM/3 phase IND  
normal-PWM/1 phase IND  
synchronous-PWM/1 phase IND  
30-pin plastic TSSOP (7.62 mm (300))  
µPD16873CMC-6A4 synchronous-PWM/3 phase IND  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S13870EJ1V0DS00 (1st edition)  
Date Published February 2000 N CP(K)  
Printed in Japan  
2000  
©
µPD16873/A/B/C  
ABSOLUTE MAXIMUM RATINGS (TA = 25°C)  
When mounted on a glass epoxy board (10 cm × 10cm × 1mm, 15% copper foil)  
Parameter  
Symbol  
VDD  
Condition  
control block  
Rating  
Unit  
Supply voltage  
Input voltage  
0.5 to +5.7  
0.5 to +5.7  
0.5 to VDD + 0.5  
0.5 to +6.7  
±0.5  
V
VM  
output block  
V
V
VIN  
Output pin voltage  
VOUT  
ID(DC)  
ID(pulse)  
IDR(pulse)  
PT  
V
Output current (DC)Note 1  
Output current (pulse)Note 2  
Output current (pulse, reverse brake)Note 3  
Power consumption  
DC  
A/phase  
A/phase  
A/phase  
W
PW < 5 ms, Duty < 30 %  
PW < 5 ms, Duty < 30 %  
±1.3  
±1.9  
1.0  
Peak junction temperature  
Storage temperature range  
TCH(MAX)  
Tstg  
150  
°C  
55 to 150  
°C  
Notes 1. DC  
2. PW < 5 ms, Duty < 30 % (start-up, locking)  
3. PW < 5 ms, Duty < 30 % (reverse brake)  
RECOMMENDED OPERATING CONDITIONS  
When mounted on a glass epoxy board (10 cm × 10cm × 1mm, 15% copper foil)  
Parameter  
Symbol  
VDD  
Condition  
control block  
MIN.  
4.5  
4.5  
0
TYP.  
5.0  
MAX.  
5.5  
5.5  
VDD  
0.4  
1.0  
1.5  
20  
Unit  
V
Supply voltage  
Input voltage  
VM  
output block  
5.0  
V
VIN  
V
Output current (DC)Note 1  
ID(DC)  
ID(pulse)  
IDR(pulse)  
IHB  
DC  
A/phase  
A/phase  
A/phase  
mA  
Output current (pulse)Note 2  
Output current (pulse, reverse brake)Note 3  
Hall bias current  
PW < 5 ms, Duty < 30 %  
PW < 5 ms, Duty < 30 %  
10  
IND terminal output current  
Operating temperature  
IFG  
±2.5  
±5.0  
75  
mA  
TA  
20  
°C  
Notes 1. DC  
2. PW < 5 ms, Duty < 30 % (start-up, locking)  
3. PW < 5ms, Duty < 30 % (reverse brake)  
2
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
CHARACTERISTICS (Unless otherwise specified, TA = 25°C, VDD = VM = 5 V)  
Parameter  
Symbol  
Condition  
MIN.  
TYP.  
1.5  
MAX  
Unit  
<all>  
VDD pin current (operating)  
VDD pin current (standby)  
<ST/SP, STB pin>  
IDD  
STB = VDD  
3.0  
1.0  
mA  
IDD(ST)  
STB = GND  
µA  
High level input voltage  
Low level input voltage  
Input pull-down resistance  
<Oscillation circuit part>  
VIH  
VIL  
1.8  
VDD  
0.8  
V
V
RIND  
110  
75  
kΩ  
Triangle wave oscillation  
frequency  
fPWM  
CT = 330pF  
kHz  
<Hall amplifier part>  
Same aspect input range  
Hysteresis  
VHch  
VHhys  
IHbias  
1.5  
4.0  
50  
V
VH = 2.5 V  
15  
mV  
µA  
Input bias voltage  
1.0  
<Hall bias part>  
Hall bias voltage  
VHB  
IHB = 10 mA  
0.3  
0.5  
V
<IND signal output part>  
IND terminal high level votlage  
IND terminal low level voltage  
<Output part>  
VFG_H  
VFG_L  
IFG = 2.5 mA  
3.5  
V
V
IFG = +2.5 mA  
0.5  
0.9  
Output on resistance  
RON  
ID = 200 mA  
0.6  
(upper + lower MOSFET)  
20°C < TA < 75°C  
Off state leakage  
ID(OFF)  
tONH  
20°C < TA < 75°C  
10  
1.0  
1.0  
µA  
µs  
µs  
Output turn-on time  
Output turn-off time  
<Torque order part>  
RM = 5Ω  
star connection  
tOFFH  
Control standard input votlage  
range  
ECR  
0.3  
0.3  
4.0  
V
Control input voltage range  
Input current  
EC  
4.0  
70  
V
µA  
V
IIN  
EC, ECR = 0.5 to 3.0 V  
Input voltage difference  
ECR-EC  
Duty = 100%, ECR = 2 V  
exclusing dead zone  
0.75  
Dead zone (+)  
EC_d+  
ECR = 2 V  
ECR = 2 V  
0
0
65  
100  
mV  
mV  
Dead zone ()  
EC_d−  
65  
100  
<Over current detection part>  
Input offset voltage  
CL terminal voltage  
VIO  
VCL  
15  
15  
mV  
mV  
90  
100  
110  
Thermal shut down circuit (TSD) works in TCH > 150°C.  
Low voltage malfunction prevention circuit (UVLO) works in 4 V (TYP.).  
3
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
PIN CONNECTION  
IND  
STB  
1
2
3
4
5
6
7
8
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
EC  
ECR  
V
M
VDD  
VM  
CT  
OUT2  
RF  
RF  
OUT1  
H2+  
H2−  
H1+  
H1−  
H0+  
H0−  
HB  
GND  
GND  
ST/SP  
NC  
VM  
9
VM  
10  
11  
12  
13  
14  
15  
OUT0  
RF  
RF  
I
SEN  
CL  
Pin No.  
1
Pin name  
IND  
STB  
VM  
Terminal function  
Index signal output terminal  
Standby mode input terminal  
2
3
Supply voltage input terminal for motor part  
Supply voltage input terminal for motor part  
Motor connection terminal (W-phase)  
3 pahse bridge common terminal  
3 phase bridge common terminal  
Motor connection terminal (V-phase)  
Supply voltage input terminal for motor part  
Supply voltage input terminal for motor part  
Motor connection terminal (U-phase)  
3 phase bridge common terminal  
3 phase bridge common terminal  
Sense resistance connection terminal  
Over current detection voltage filter terminal  
No connection  
4
VM  
5
OUT2  
RF  
6
7
RF  
8
OUT1  
VM  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VM  
OUT0  
RF  
RF  
ISENSE  
CL  
NC  
ST/SP  
GND  
GND  
HB  
Start/Stop input terminal  
Ground terminal  
Ground terminal  
Hall bias terminal  
H0−  
H0+  
H1−  
H1+  
H2−  
H2+  
CT  
Hall signal input terminal (U-phase)  
Hall signal input terminal (U-phase)  
Hall signal input terminal (V-phase)  
Hall signal input terminal (V-phase)  
Hall signal input terminal (W-phase)  
Hall signal input terminal (W-phase)  
Oscillation frequency setting condenser connection terminal  
Supply voltage input terminal for control part  
Control standard voltage input terminal  
Control voltage input terminal  
VDD  
ECR  
EC  
Caution Plural terminal (VM, RF, GND) is not only 1 terminal and connect all terminals.  
4
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
BLOCK DIAGRAM  
IND  
1
2
30 EC  
STB  
29 ECR  
V
M
M
3
4
5
28  
V
DD  
UVLO  
OSC  
V
27 CT  
Q5  
Q6  
T. S. D  
OUT2  
26 H2+  
+
CMP2  
Phase  
exciting  
pulse  
generation  
circuit  
RF  
RF  
6
7
25 H2−  
24 H1+  
+
Q3  
Q4  
CMP1  
CMP0  
OUT1  
8
9
23 H1−  
22 H0+  
21 H0−  
20 HB  
V
M
M
+
V
10  
Q1  
Q2  
OUT0 11  
RF 12  
RF 13  
19 GND  
18 GND  
Reverse  
turn  
detection  
circuit  
I
SEN 14  
17 ST/SP  
16 NC  
+
CL 15  
100 mV  
Caution Plural terminal (VM, RF, GND) is not only 1 terminal and connect all terminals.  
5
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
TYPICAL CHARACTERISTICS (TA = 25°C)  
PT  
vs. T  
A
characteristics  
IDD, IDD (ST) vs. VDD characteristics  
2.0  
1.0  
0
T
A
= 25°C  
µ
1.0  
0.5  
0
125°C/W  
I
DD  
I
DD (ST)  
20  
0
20  
40  
60  
(°C)  
80  
4.5  
5.0  
Control block supply voltage VDD (V)  
5.5  
Ambient temperature T  
A
VIH, VIL vs. VDD characteristics (ST/SP, STB)  
fPWM vs. VDD characteristics  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
100  
90  
80  
70  
60  
50  
T
A
= 25°C  
= 330 pF  
T
A
= 25°C  
CT  
VIH, VIL  
4.5  
5.0  
Control block supply voltage VDD (V)  
5.5  
4.5  
5.0  
Control block supply voltage VDD (V)  
5.5  
f
PWM vs. T  
A
characteristics  
VHch vs. VDD characteristics  
100  
90  
80  
70  
60  
50  
V
DD = 5 V  
T = 25°C  
A
(+)  
()  
CT  
= 330 pF  
5.0  
4.0  
3.0  
2.0  
1.0  
0
(+)  
()  
20  
0
20  
40  
60  
(°C)  
80  
4.5  
5.0  
Control block supply voltage VDD (V)  
5.5  
Ambient temperature T  
A
6
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
R
ON, vs. V  
M
characteristics  
R
ON, vs. T characteristics  
A
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
A
= 25°C  
V
M
= 5 V  
4.5  
5.0  
Control block supply voltage V  
5.5  
20  
0
20  
40  
60  
80  
M
(V)  
Ambient temperature T (°C)  
A
(ECR-EC) vs. VDD characteristics  
EC_d+/EC_dvs. VDD characteristics  
= 25°C  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
100  
80  
60  
40  
20  
0
T
A
= 25°C  
T
A
Duty = 100%  
EC_d−  
EC_d+  
4.5  
5.0  
Control block supply voltage VDD (V)  
5.5  
4.5  
5.0  
Control block supply voltage VDD (V)  
5.5  
t
ONH, tOFFH vs. V  
M
characteristics  
= 25°C  
1.0  
0.5  
0
T
A
VDD = 5 V  
t
ONH  
µ
µ
t
OFFH  
4.5  
5.0  
5.5  
Control block supply voltage VDD (V)  
7
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
FUNCTION OPERATION TABLE  
(1) ST/SP (start/stop) function  
ON/OFF of the movement can be set up under the condition which makes oscillation circuit work. Setting is done  
with ST/SP terminal.  
When ST/SP terminal is high level, it becomes active (operating) condition. And, when ST/SP terminal is low  
level, it becomes stop condition. It becomes short brake condition under the stop condition.  
ST/SP = “H”  
Input signal (Hall amplifier output)  
Operation mode  
exciting phase  
CMP 0  
CMP 1  
CMP 2  
PWM  
H
L
H
H
H
H
H
H
L
H
H
L
L
L
ON  
OFF  
ON  
W V  
L
H
L
W U  
V U  
V W  
U W  
U V  
L
L
OFF  
ON  
L
H
H
H
H
H
H
L
H
L
L
OFF  
ON  
L
H
L
L
L
OFF  
ON  
L
H
H
H
H
H
L
L
OFF  
ON  
L
H
L
L
L
OFF  
In addition, the movement in OFF varies in the product.  
Loop is composed through parasitic diode of the high-side MOSFET. (µPD16873/µPD16873A)  
Loop is composed through channel of the high-side MOSFET. (µPD16873B/µPD16873C)  
ST/SP = “L”  
Input signal (Hall amplifier output)  
Operation mode  
CMP 0  
CMP 1  
CMP 2  
PWM  
Stop (short brake)  
It becomes short brake condition. (High side switch is “ON” and low side switch is “OFF”)  
8
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
(2) Torque order  
The relation between difference (ECR-EC) in control standard voltage (ECR) and control voltage (EC) and the  
torque is as follows.  
Duty cycle  
Forward torque  
100%  
65 mVtyp  
0.75 Vtyp  
ECR-EC  
()  
(+)  
0.75 Vtyp  
65 mVtyp  
100%  
Reverse torque  
Input voltage difference (ECR-EC) and output PWM duty becomes related to the proportion.  
In addition, it becomes reverse brake when input voltage is ECR < EC. It stops after the reverse rotation of the  
motor is detected under reverse braking mode. If input voltage difference is zero (ECR = EC), it becomes short  
brake mode.  
Input voltage difference  
ECR > EC  
Output mode  
Forward turn  
ECR = EC  
ECR < EC  
Stop (short brake)  
Reverse turnNote  
Note After detecting reverse, it stops.  
(3) Standby mode  
By the setting of standby mode, the power supply inside µPD16873 can be made off.  
Each output terminal at the time of standby mode becomes high impedance. Also, the oscillation block inside,  
too, stops and it is possible for the circuit current to reduce.  
STB terminal  
Operation mode  
Regular mode  
“H” level  
“L” level  
Standby mode  
9
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
TIMING CHART  
(1) Hall signal input  
H0  
H1  
H2  
(2) CMP signal  
CMP0  
CMP1  
CMP2  
IND  
(873A/873B)  
IND  
(873/873C)  
(3) Output MOSFET drive and comparator choice  
Q1  
(SW) (SW)  
ON  
ON  
(SW) (SW)  
ON  
ON  
Q2  
SW  
ON  
SW  
ON  
SW  
SW  
ON  
Q3 (SW)  
ON  
(SW) (SW)  
ON  
(SW) (SW)  
Q4  
Q5  
Q6  
SW  
ON  
SW  
SW  
ON  
SW  
SW  
ON  
(SW) (SW)  
SW SW  
ON  
(SW) (SW)  
SW SW  
Remark µPD16873/A are not synchronous switching. (Normal type PWM)  
µPD16873B/C are synchronous switching of high-side MOSFET. (Synchronous type PWM)  
10  
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
(4) Output terminal voltage wave  
OUT0  
OUT1  
OUT2  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
Caution  
(1) About output current  
The rated ouptut current differs depending on whether the motor revolves at a constant speed (steady state), is  
started (steady state), or Reverse brake is applied. The rated DC current when the motor revolves at a constant  
speed is 0.5 A, and the rated instantaneous current when the is started is 1.3 A. When the motor is stopped by  
using Reverse brake, the maximum current is 1.9 A.  
When use Reverse brake, a current exceeding that when the motor revolves at a constant speed (immediately  
before a brake is applied) instantaneously flows because of the counter electromotive force due to the motor  
inductance. Determine the value of over current for steady state, taking the peak current for using Reverse  
brake to the motor into consideration.  
(2) About output pin voltage  
Output terminal (OUT0, OUT1, OUT2) takes the voltage which exceeds a motor power supply during following  
counter current.  
Maximum rate of output pin voltage is 6.7 V. Be careful that an output terminal doesn’t take a voltage over 6.7 V.  
VM  
VM  
I
D
I
D
OFF:  
µ
PD16873/A  
PD16873B/C  
Q1  
PWM ON:  
µ
ON  
OFF  
ON  
VOL  
OUTA  
OUTB  
OUTA  
OUTB  
V
V
OUTB = IDR (ROUTB + R  
S
)
OUTB = V  
M
+ VOL  
RON(N)  
RON(N)  
OFF  
PWM-ON  
OFF  
PWM-ON  
RF  
RF  
ISEN  
ISEN  
RS  
RS  
Lower Nch MOC: PWM-ON time  
Lower Nch MOC: PWM-OFF time  
11  
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
APPLICATION CIRCUIT EXAMPLE  
Caution If hall elements connected series, please change hall bias resistances, and hall signal include  
into same aspect input range of hall amplifier.  
12  
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
PACKAGE DIMENSION  
30-PIN PLASTIC TSSOP (7.62mm(300))  
30  
16  
detail of lead end  
F
G
T
P
L
U
1
15  
E
H
A
A'  
I
J
S
C
N
S
M
D
M
B
K
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.10 mm of  
its true position (T.P.) at maximum material condition.  
A
A'  
B
C
D
E
F
G
H
I
9.85±0.10  
9.7±0.1  
0.375  
0.65 (T.P.)  
0.24±0.05  
0.1±0.05  
1.2 MAX.  
1.0±0.05  
8.1±0.1  
6.1±0.1  
1.0±0.1  
0.145±0.025  
0.5  
J
K
L
M
N
0.10  
0.10  
+5°  
3°  
P
3°  
T
0.25  
U
0.6±0.15  
S30MC-65-6A4  
13  
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
RECOMMENDED SOLDERING CONDITIONS  
Solder this product under the following recommended conditions.  
For soldering methods and conditions other than those recommended, consult NEC.  
For details of the recommended soldering conditions, refer to information document “Semiconductor Device  
Mounting Technology Manual”.  
Recommended Condition  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Symbol  
Package peak temperature: 235°C; Time: 30 secs. max. (210°C min.);  
Number of times: 3 times max.; Number of day: none; Flux:  
Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% max.) is  
recommended.  
IR35-00-3  
VP15-00-3  
WS60-00-1  
VPS  
Package peak temperature: 215°C; Time: 40 secs. max.; (200°C min.)  
Number of times: 3 times max.; Number of day: none; Flux:  
Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% max.) is  
recommended.  
Wave Soldering  
Package peak temperature: 260°C; Time: 10 secs. max.;  
Preheating temperature: 120°C max.; Number of times: once;  
Flux: Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% max.)  
is recommended.  
Caution Do not use two or more soldering methods in combination.  
14  
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
15  
Data Sheet S13870EJ1V0DS00  
µPD16873/A/B/C  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98. 8  

相关型号:

UPD16874

MOS INTEGRATED CIRCUIT
NEC

UPD16874GS

MOS INTEGRATED CIRCUIT
NEC

UPD16875

DUAL Pch HIGH-SIDE SWITCH FOR USB
NEC

UPD16875C

UPD16875C
RENESAS

UPD16875G

DUAL Pch HIGH-SIDE SWITCH FOR USB
NEC

UPD16875G

3A 2 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO8, 0.225 INCH, PLASTIC, SOP-8
RENESAS

UPD16875G-E2

UPD16875G-E2
RENESAS

UPD16876

SINGLE Pch HIGH-SIDE SWITCH FOR USB
NEC

UPD16876G

SINGLE Pch HIGH-SIDE SWITCH FOR USB
NEC

UPD16876G-E2

IC,PERIPHERAL DRIVER,1 DRIVER,MOS,SOP,8PIN,PLASTIC
RENESAS

UPD16877

MONOLITHIC QUAD H-BRIDGE DRIVER CIRCUIT
NEC

UPD16877MA-6A5

MONOLITHIC QUAD H-BRIDGE DRIVER CIRCUIT
NEC