UPD4416001G5-A17-9JF [NEC]

16M-BIT CMOS FAST SRAM 16M-WORD BY 1-BIT; 16M - BIT的CMOS快速SRAM 16M - BY WORD 1位
UPD4416001G5-A17-9JF
型号: UPD4416001G5-A17-9JF
厂家: NEC    NEC
描述:

16M-BIT CMOS FAST SRAM 16M-WORD BY 1-BIT
16M - BIT的CMOS快速SRAM 16M - BY WORD 1位

静态存储器
文件: 总12页 (文件大小:84K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ
PD4416001  
16M-BIT CMOS FAST SRAM  
16M-WORD BY 1-BIT  
Description  
The µPD4416001 is a high speed, low power, 16,777,216 bits (16,777,216 words by 1 bits) CMOS static RAM.  
Operating supply voltage is 3.3 V ± 0.3 V.  
The µPD4416001 is packaged in a 54-PIN PLASTIC TSOP (II).  
Features  
16,777,216 words by 1 bits  
Fast access time : 15, 17 ns (MAX.)  
Output Enable input for easy application  
Ordering Information  
Part number  
Package  
Supply voltage  
V
Access time  
ns (MAX.)  
15  
Supply current mA (MAX.)  
At operating  
165  
At standby  
10  
µPD4416001G5-A15-9JF  
µPD4416001G5-A17-9JF  
54-PIN PLASTIC TSOP (II)  
(10.16 mm (400))  
3.3 ± 0.3  
17  
160  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. M14077EJ3V0DS00 (3rd edition)  
Date Published December 2000 NS CP(K)  
Printed in Japan  
The mark shows major revised points.  
1999  
©
µ
PD4416001  
Pin Configuration (Marking Side)  
/xxx indicates active low signal.  
54-PIN PLASTIC TSOP (II) (10.16 mm (400))  
[µPD4416001G5xxx9JF]  
NC  
VCC  
NC  
NC  
GND  
NC  
A0  
A1  
A2  
A3  
A4  
NC  
GND  
NC  
NC  
VCC  
NC  
1
2
3
4
5
6
7
8
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
A23  
A22  
A21  
A20  
A19  
A18  
/OE  
GND  
IC  
A17  
A16  
A15  
A14  
A13  
A12  
DOUT  
GND  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
A5  
/CS  
VCC  
/WE  
A6  
A7  
A8  
A9  
A10  
A11  
DIN  
VCC  
NC  
NC  
GND  
NC  
NC  
VCC  
NC  
A0 - A23  
: Address Inputs  
: Data Input  
IN  
D
OUT  
D
: Data Output  
: Chip Select  
: Write Enable  
: Output Enable  
: Power supply  
: Ground  
/CS  
/WE  
/OE  
CC  
V
GND  
NC  
IC  
: No connection  
: Internal connection Note  
Note Leave this pin connect to GND.  
Remark Refer to Package Drawing for 1-pin index mark.  
2
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
Block Diagram  
VCC  
GND  
A0  
Address  
buffer  
Row  
decoder  
Memory cell array  
16,777,216 bits  
A23  
DIN  
Input data  
controller  
Sense / Switch  
Output data  
controller  
DOUT  
Column decoder  
Address buffer  
/CS  
/WE  
/OE  
Truth Table  
/CS  
/OE  
×
/WE  
×
Mode  
I/O  
High impedance  
DOUT  
Supply current  
H
L
L
L
Not selected  
Read  
ISB  
ICC  
L
H
×
L
Write  
DIN  
H
H
Output disable  
High impedance  
Remark × : Don’t care  
3
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol  
VCC  
VT  
Condition  
Rating  
Unit  
V
–0.5 Note to +4.0  
–0.5 Note to +4.0  
0 to 70  
Input / Output voltage  
Operating ambient temperature  
Storage temperature  
V
TA  
°C  
°C  
Tstg  
–55 to +125  
Note –2.0 V (MIN.) (pulse width : 2 ns)  
Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC  
VIH  
Condition  
MIN.  
3.0  
TYP.  
3.3  
MAX.  
3.6  
Unit  
V
Supply voltage  
High level input voltage  
2.0  
VCC + 0.3  
+0.8  
V
Low level input voltage  
VIL  
–0.3 Note  
0
V
Operating ambient temperature  
TA  
70  
°C  
Note –2.0 V (MIN.) (pulse width : 2 ns)  
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)  
Parameter  
Input leakage current  
Output leakage current  
Symbol  
ILI  
Test condition  
MIN.  
–2  
TYP.  
MAX.  
Unit  
VIN = 0 V to VCC  
+2  
+2  
µA  
µA  
ILO  
VOUT = 0 V to VCC,  
–2  
/CS = VIH or /OE = VIH or /WE = VIL  
Operating supply current  
Standby supply current  
ICC  
/CS = VIL, IOUT = 0 mA,  
Minimum cycle time  
Cycle time : 15 ns  
Cycle time : 17 ns  
165  
160  
80  
mA  
mA  
ISB  
/CS = VIH, VIN = VIH or VIL, Minimum cycle time  
/CS VCC – 0.2 V,  
ISB1  
10  
VIN 0.2 V or VCC – 0.2 V VIN  
IOH = –4.0 mA  
High level output voltage  
Low level output voltage  
VOH  
VOL  
2.4  
V
V
IOL = +8.0 mA  
0.4  
IN  
V
OUT  
Remark  
: Input voltage, V  
: Output voltage  
Capacitance (TA = 25 °C, f = 1 MHz)  
Parameter Symbol  
Input capacitance  
Test condition  
MIN.  
TYP.  
MAX.  
Unit  
CIN  
VIN = 0 V  
6
8
pF  
pF  
Input / Output capacitance  
COUT  
VOUT = 0 V  
IN  
OUT  
Remarks 1. V : Input voltage, V  
: Output voltage  
2. These parameters are periodically sampled and not 100% tested.  
4
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)  
AC Test Conditions  
LVTTL Interface  
Input Waveform (Rise and Fall Time 3 ns)  
3.0 V  
1.5 V  
Test Points  
1.5 V  
GND  
Output Waveform  
1.5 V  
Test Points  
1.5 V  
Output Load  
AC characteristics directed with the note should be measured with the output load shown in Figure 1 or Figure 2.  
Figure 1  
Figure 2  
AA ACS OE OH  
CLZ OLZ CHZ OHZ WHZ OW  
(for t , t , t , t  
)
(for t , t , t , t , t  
, t  
)
V
TT = +1.5 V  
+3.3 V  
50  
317 Ω  
ZO = 50 Ω  
DOUT (Output)  
DOUT (Output)  
351 Ω  
30 pF  
5 pF  
C
L
C
L
L
Remark C includes capacitances of the probe and jig, and stray capacitances.  
.
5
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
Read Cycle  
Parameter  
Symbol  
-A15  
-A17  
Unit  
Notes  
MIN.  
15  
MAX.  
MIN.  
17  
MAX.  
Read cycle time  
tRC  
tAA  
tACS  
tOE  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address access time  
15  
15  
7
17  
17  
8
1
/CS access time  
/OE access time  
Output hold from address change  
/CS to output in low impedance  
/OE to output in low impedance  
/CS to output in high impedance  
/OE to output hold in high impedance  
tOH  
3
3
0
3
3
0
tCLZ  
tOLZ  
tCHZ  
tOHZ  
2, 3  
7
7
8
8
Notes 1. See the output load shown in Figure 1.  
2. Transition is measured at ±200 mV from steady-state voltage with the output load shown in Figure 2.  
3. These parameters are periodically sampled and not 100% tested.  
Read Cycle Timing Chart 1 (Address Access)  
t
RC  
Address (Input)  
t
AA  
t
OH  
DOUT (Output)  
Previous data output  
Data output  
Remarks 1. In read cycle, /WE should be fixed to high level.  
IL  
2. /CS = /OE = V  
Read Cycle Timing Chart 2 (/CS Access)  
t
RC  
Address (Input)  
/CS (Input)  
t
AA  
ACS  
t
t
t
CLZ  
t
CHZ  
/OE (Input)  
t
OHZ  
t
OE  
OLZ  
High impedance  
High impedance  
DOUT (Output)  
Data output  
Caution Address valid prior to or coincident with /CS low level input.  
Remark In read cycle, /WE should be fixed to high level.  
6
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
Write Cycle  
Parameter  
Symbol  
-A15  
-A17  
Unit  
Notes  
MIN.  
15  
10  
10  
10  
7
MAX.  
MIN.  
17  
11  
11  
11  
8
MAX.  
Write cycle time  
tWC  
tCW  
tAW  
tWP  
tDW  
tDH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
/CS to end of write  
Address valid to end of write  
Write pulse width  
Data valid to end of write  
Data hold time  
0
0
Address setup time  
tAS  
0
0
Write recovery time  
tWR  
tWHZ  
tOW  
1
1
/WE to output in high impedance  
Output active from end of write  
7
8
1, 2  
3
3
Notes 1. Transition is measured at ± 200 mV from steady-state voltage with the output load shown in Figure 2.  
2. These parameters are periodically sampled and not 100% tested.  
Write Cycle Timing Chart 1 (/WE Controlled)  
t
WC  
Address (Input)  
/CS (Input)  
t
CW  
t
AW  
t
AS  
t
WP  
t
WR  
/WE (Input)  
t
ACS  
t
CLZ  
t
DW  
t
DH  
DIN (Input)  
Data in  
t
OH  
t
WHZ  
t
OW  
High impedance  
DOUT (Output)  
t
AA  
Cautions 1. /CS or /WE should be fixed to high level during address transition.  
2. Do not input data to the I/O pins while they are in the output state.  
Remarks 1. Write operation is done during the overlap time of a low level /CS, a low level /WE.  
WHZ  
OUT  
, D  
2. During t  
pins are in the output state, therefore the input signals of opposite phase to the  
output must not be applied.  
OUT  
3. When /WE is at low level, the D  
pins are always high impedance. When /WE is at high level, read  
OUT  
operation is executed. Therefore /OE should be at high level to make the D  
pins high impedance.  
7
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
Write Cycle Timing Chart 2 (/CS Controlled)  
tWC  
Address (Input)  
tAS  
tCW  
/CS (Input)  
tAW  
tWP  
tWR  
tDH  
/WE (Input)  
tDW  
Data in  
DIN (Input)  
High impedance  
DOUT (Input)  
Cautions 1. /CS or /WE should be fixed to high level during address transition.  
2. Do not input data to the I/O pins while they are in the output state.  
Remark Write operation is done during the overlap time of a low level /CS and a low level /WE.  
8
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
Package Drawing  
54-PIN PLASTIC TSOP (II) (10.16 mm (400))  
54  
28  
detail of lead end  
F
P
E
1
27  
A
H
I
J
G
S
L
C
N
S
B
K
D
M
M
NOTES  
ITEM MILLIMETERS  
1. Each lead centerline is located within 0.13 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
22.22±0.05  
0.91 MAX.  
0.80 (T.P.)  
2. Dimension "A" does not include mold fiash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15 mm per side.  
+0.08  
0.32  
D
0.07  
E
F
G
H
I
0.10±0.05  
1.1±0.1  
1.00  
11.76±0.20  
10.16±0.10  
0.80±0.20  
J
+0.025  
0.145  
K
0.015  
L
M
N
0.50±0.10  
0.13  
0.10  
+7°  
3°  
P
3°  
S54G5-80-9JF-2  
9
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the µPD4416001.  
Type of Surface Mount Device  
µPD4416001 : 54-PIN PLASTIC TSOP (II) (10.16 mm (400))  
10  
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
11  
Data Sheet M14077EJ3V0DS  
µ
PD4416001  
The information in this document is current as of December, 2000. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or  
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all  
products and/or types are available in every country. Please check with an NEC sales representative  
for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD4416004

16M-BIT CMOS FAST SRAM 4M-WORD BY 4-BIT
NEC

UPD4416004G5-A15-9JF

16M-BIT CMOS FAST SRAM 4M-WORD BY 4-BIT
NEC

UPD4416004G5-A17-9JF

16M-BIT CMOS FAST SRAM 4M-WORD BY 4-BIT
NEC

UPD4416008

16M-BIT CMOS FAST SRAM 2M-WORD BY 8-BIT
NEC

UPD4416008G5-A15-9JF

16M-BIT CMOS FAST SRAM 2M-WORD BY 8-BIT
NEC

UPD4416008G5-A15-9JF-A

Standard SRAM, 2MX8, 15ns, CMOS, PDSO54, 0.400 INCH, LEAD FREE, PLASTIC, TSOP2-54
NEC

UPD4416008G5-A17-9JF

16M-BIT CMOS FAST SRAM 2M-WORD BY 8-BIT
NEC

UPD4416008G5-A17-9JF-A

Standard SRAM, 2MX8, 15ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
NEC