UPD44164092AF5-E50-EQ2-A [NEC]

DDR SRAM, 2MX9, CMOS, PBGA165, 13 X 5 MM, LEAD FREE, PLASTIC, BGA-165;
UPD44164092AF5-E50-EQ2-A
型号: UPD44164092AF5-E50-EQ2-A
厂家: NEC    NEC
描述:

DDR SRAM, 2MX9, CMOS, PBGA165, 13 X 5 MM, LEAD FREE, PLASTIC, BGA-165

时钟 双倍数据速率 静态存储器 内存集成电路
文件: 总40页 (文件大小:374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
μPD44164082A, 44164092A, 44164182A, 44164362A  
18M-BIT DDRII SRAM  
2-WORD BURST OPERATION  
Description  
The μPD44164082A is a 2,097,152-word by 8-bit, the μPD44164092A is a 2,097,152-word by 9-bit, the μPD44164182A  
is a 1,048,576-word by 18-bit and the μPD44164362A is a 524,288-word by 36-bit synchronous double data rate static  
RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.  
The μPD44164082A, μPD44164092A, μPD44164182A and μPD44164362A integrate unique synchronous peripheral  
circuitry and a burst counter. All input registers controlled by an input clock pair (K and K#) are latched on the positive  
edge of K and K#.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high  
density and wide bit configuration.  
These products are packaged in 165-pin PLASTIC BGA.  
Features  
1.8 ± 0.1 V power supply  
165-pin PLASTIC BGA package (13 x 15)  
HSTL interface  
PLL circuitry for wide output data valid window and future frequency scaling  
Pipelined double data rate operation  
Common data input/output bus  
Two-tick burst for low DDR transaction size  
Two input clocks (K and K#) for precise DDR timing at clock rising edges only  
Two output clocks (C and C#) for precise flight time  
and clock skew matching-clock and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability. Normal operation is restored in 1,024 cycles after clock is resumed.  
User programmable impedance output  
<R>  
<R>  
Fast clock cycle time : 3.3 ns (300 MHz), 3.7 ns (270 MHz), 4.0 ns (250 MHz), 5.0 ns (200 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
Operating ambient temperature: Commercial TA = 0 to +70°C  
(-E33, -E37, -E40, -E50)  
Industrial TA = –40 to +85°C (-E37Y, -E40Y, -E50Y)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M17767EJ3V0DS00 (3rd edition)  
Date Published February 2007 NS CP(N)  
Printed in Japan  
2006  
The mark <R> shows major revised points.  
The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Ordering Information  
(1) Operating Ambient Temperature TA = 0 to +70°C  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
Organization  
(word x bit)  
Package  
Operating  
Ambient  
Temperature  
μPD44164082AF5-E33-EQ2  
μPD44164082AF5-E40-EQ2  
μPD44164082AF5-E50-EQ2  
μPD44164092AF5-E33-EQ2  
μPD44164092AF5-E40-EQ2  
μPD44164092AF5-E50-EQ2  
μPD44164182AF5-E33-EQ2  
μPD44164182AF5-E37-EQ2  
μPD44164182AF5-E40-EQ2  
μPD44164182AF5-E50-EQ2  
μPD44164362AF5-E33-EQ2  
μPD44164362AF5-E40-EQ2  
μPD44164362AF5-E50-EQ2  
μPD44164082AF5-E33-EQ2-A  
μPD44164082AF5-E40-EQ2-A  
μPD44164082AF5-E50-EQ2-A  
μPD44164092AF5-E33-EQ2-A  
μPD44164092AF5-E40-EQ2-A  
μPD44164092AF5-E50-EQ2-A  
μPD44164182AF5-E33-EQ2-A  
μPD44164182AF5-E37-EQ2-A  
μPD44164182AF5-E40-EQ2-A  
μPD44164182AF5-E50-EQ2-A  
μPD44164362AF5-E33-EQ2-A  
μPD44164362AF5-E40-EQ2-A  
μPD44164362AF5-E50-EQ2-A  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
3.7  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
3.7  
4.0  
5.0  
3.3  
4.0  
5.0  
300  
250  
200  
300  
250  
200  
300  
270  
250  
200  
300  
250  
200  
300  
250  
200  
300  
250  
200  
300  
270  
250  
200  
300  
250  
200  
2M x 8-bit  
2M x 9-bit  
1M x 18-bit  
165-pin PLASTIC  
BGA (13 x 15)  
Commercial  
(TA = 0 to +70°C)  
<R>  
512K x 36-bit  
2M x 8-bit  
165-pin PLASTIC  
BGA (13 x 15)  
2M x 9-bit  
Lead-free  
1M x 18-bit  
<R>  
512K x 36-bit  
Remarks 1. QDR Consortium standard package size is 13 x 15 and 15 x 17.  
The footprint is commonly used.  
2. Products with -A at the end of the part number are lead-free products.  
Data Sheet M17767EJ3V0DS  
2
μPD44164082A, 44164092A, 44164182A, 44164362A  
(2) Operating Ambient Temperature TA = –40 to +85°C  
<R>  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
Organization  
(word x bit)  
Package  
Operating  
Ambient  
Temperature  
μPD44164082AF5-E37Y-EQ2  
μPD44164082AF5-E40Y-EQ2  
μPD44164082AF5-E50Y-EQ2  
μPD44164092AF5-E37Y-EQ2  
μPD44164092AF5-E40Y-EQ2  
μPD44164092AF5-E50Y-EQ2  
μPD44164182AF5-E37Y-EQ2  
μPD44164182AF5-E40Y-EQ2  
μPD44164182AF5-E50Y-EQ2  
μPD44164082AF5-E37Y-EQ2-A  
μPD44164082AF5-E40Y-EQ2-A  
μPD44164082AF5-E50Y-EQ2-A  
μPD44164092AF5-E37Y-EQ2-A  
μPD44164092AF5-E40Y-EQ2-A  
μPD44164092AF5-E50Y-EQ2-A  
μPD44164182AF5-E37Y-EQ2-A  
μPD44164182AF5-E40Y-EQ2-A  
μPD44164182AF5-E50Y-EQ2-A  
3.7  
4.0  
5.0  
3.7  
4.0  
5.0  
3.7  
4.0  
5.0  
3.7  
4.0  
5.0  
3.7  
4.0  
5.0  
3.7  
4.0  
5.0  
270  
250  
200  
270  
250  
200  
270  
250  
200  
270  
250  
200  
270  
250  
200  
270  
250  
200  
2M x 8-bit  
2M x 9-bit  
1M x 18-bit  
2M x 8-bit  
2M x 9-bit  
1M x 18-bit  
165-pin PLASTIC  
BGA (13 x 15)  
Industrial  
(TA = –40 to +85°C)  
165-pin PLASTIC  
BGA (13 x 15)  
Lead-free  
Remarks 1. QDR Consortium standard package size is 13 x 15 and 15 x 17.  
The footprint is commonly used.  
2. Products with -A at the end of the part number are lead-free products.  
Data Sheet M17767EJ3V0DS  
3
μPD44164082A, 44164092A, 44164182A, 44164362A  
Pin Configurations  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD44164082A]  
2M x 8-bit  
1
CQ#  
NC  
2
3
A
4
5
6
7
NC  
NW0#  
A
8
9
A
10  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ1  
NC  
NC  
NC  
NC  
NC  
TMS  
11  
CQ  
DQ3  
NC  
NC  
DQ2  
NC  
NC  
ZQ  
A
B
C
D
E
F
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ6  
NC  
NC  
NC  
TCK  
R, W# NW1#  
K#  
K
LD#  
A
NC  
NC  
NC  
DQ4  
NC  
DQ5  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQ7  
A
A
NC  
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
VSS  
A
VSS  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
G
H
J
NC  
DLL#  
NC  
NC  
NC  
DQ0  
NC  
NC  
NC  
TDI  
K
L
NC  
NC  
M
N
P
R
NC  
NC  
VSS  
VSS  
NC  
A
A
C
A
A
TDO  
A
A
C#  
A
A
A
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
DQ0 to DQ7  
LD#  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Nibble Write data select  
: Input clock  
TDI  
TCK  
TDO  
VREF  
VDD  
R, W#  
NW0#, NW1#  
K, K#  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, C#  
: Output clock  
VDDQ  
VSS  
CQ, CQ#  
ZQ  
: Echo clock  
: Output impedance matching  
: DLL/PLL disable  
NC  
: No connection  
DLL#  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb.  
2A and 10A of this product can also be used as NC.  
Data Sheet M17767EJ3V0DS  
4
μPD44164082A, 44164092A, 44164182A, 44164362A  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD44164092A]  
2M x 9-bit  
1
CQ#  
NC  
2
3
A
4
5
6
7
NC  
BW0#  
A
8
9
A
10  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ2  
NC  
NC  
NC  
NC  
NC  
TMS  
11  
CQ  
DQ4  
NC  
A
B
C
D
E
F
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ7  
NC  
NC  
NC  
TCK  
R, W#  
A
NC  
NC  
A
K#  
K
LD#  
A
NC  
NC  
NC  
DQ5  
NC  
DQ6  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQ8  
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
VSS  
A
VSS  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ3  
NC  
NC  
G
H
J
NC  
NC  
DLL#  
NC  
ZQ  
NC  
K
L
NC  
NC  
NC  
DQ1  
NC  
M
N
P
R
NC  
NC  
VSS  
VSS  
NC  
NC  
A
A
C
A
A
DQ0  
TDI  
TDO  
A
A
C#  
A
A
A
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
DQ0 to DQ8  
LD#  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TDI  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0#  
K, K#  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, C#  
: Output clock  
VDDQ  
VSS  
CQ, CQ#  
ZQ  
: Echo clock  
: Output impedance matching  
: DLL/PLL disable  
NC  
: No connection  
DLL#  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb.  
2A and 10A of this product can also be used as NC.  
Data Sheet M17767EJ3V0DS  
5
μPD44164082A, 44164092A, 44164182A, 44164362A  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD44164182A]  
1M x 18-bit  
1
CQ#  
NC  
2
VSS  
3
4
5
6
7
NC  
BW0#  
A
8
9
A
10  
VSS  
NC  
11  
CQ  
A
B
C
D
E
F
A
R, W# BW1#  
K#  
K
LD#  
A
DQ9  
NC  
NC  
A
NC  
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
DQ8  
NC  
NC  
NC  
VSS  
A0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ7  
NC  
NC  
NC  
DQ10  
DQ11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
DQ6  
DQ5  
NC  
NC  
DQ12  
NC  
NC  
G
H
J
NC  
DQ13  
VDDQ  
NC  
NC  
DLL#  
NC  
VREF  
NC  
VREF  
DQ4  
NC  
ZQ  
NC  
K
L
NC  
NC  
DQ14  
NC  
DQ3  
DQ2  
NC  
NC  
DQ15  
NC  
NC  
M
N
P
R
NC  
NC  
DQ1  
NC  
NC  
NC  
DQ16  
DQ17  
A
VSS  
VSS  
NC  
NC  
NC  
A
A
C
A
A
NC  
DQ0  
TDI  
TDO  
TCK  
A
A
C#  
A
A
TMS  
A0, A  
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
DQ0 to DQ17  
LD#  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TDI  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0#, BW1#  
K, K#  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, C#  
: Output clock  
VDDQ  
VSS  
CQ, CQ#  
ZQ  
: Echo clock  
: Output impedance matching  
: DLL/PLL disable  
NC  
: No connection  
DLL#  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb.  
2A and 10A of this product can also be used as NC.  
Data Sheet M17767EJ3V0DS  
6
μPD44164082A, 44164092A, 44164182A, 44164362A  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD44164362A]  
512K x 36-bit  
1
CQ#  
NC  
2
3
4
5
6
7
BW1#  
BW0#  
A
8
9
A
10  
VSS  
11  
CQ  
A
B
C
D
E
F
VSS  
NC  
R, W# BW2#  
K#  
K
LD#  
A
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
VDDQ  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
A
A
BW3#  
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
NC  
VSS  
A0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ17  
NC  
NC  
DQ29  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ15  
NC  
NC  
DQ30  
DQ31  
VREF  
NC  
G
H
J
NC  
NC  
DLL#  
NC  
VREF  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
NC  
NC  
NC  
DQ33  
NC  
M
N
P
R
NC  
DQ11  
NC  
NC  
DQ35  
NC  
VSS  
VSS  
NC  
A
A
C
A
A
DQ9  
TMS  
TDO  
TCK  
A
A
C#  
A
A
A0, A  
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
DQ0 to DQ35  
LD#  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TDI  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0# to BW3#  
K, K#  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, C#  
: Output clock  
VDDQ  
VSS  
CQ, CQ#  
ZQ  
: Echo clock  
: Output impedance matching  
: DLL/PLL disable  
NC  
: No connection  
DLL#  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A, 3A and 10A are expansion addresses: 3A for 36Mb, 10A for 72Mb and 2A for 144Mb.  
2A and 10A of this product can also be used as NC.  
Data Sheet M17767EJ3V0DS  
7
μPD44164082A, 44164092A, 44164182A, 44164362A  
Pin Identification  
(1/2)  
Symbol  
Description  
A0  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the  
rising edge of K. All transactions operate on a burst of two words (one clock period of bus activity). A0 is used  
as the lowest order address bit permitting a random starting address within the burst operation on x18 and x36  
devices. These inputs are ignored when device is deselected, i.e., NOP (LD# = HIGH).  
DQ0 to DQxx Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and K#. Output  
data is synchronized to the respective C and C# data clocks or to K and K# if C and C# are tied to HIGH.  
x8 device uses DQ0 to DQ7.  
x9 device uses DQ0 to DQ8.  
x18 device uses DQ0 to DQ17.  
x36 device uses DQ0 to DQ35.  
LD#  
Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition  
includes address and read/write direction. All transactions operate on a burst of 2 data (one clock period of bus  
activity).  
R, W#  
Synchronous Read/Write Input: When LD# is LOW, this input designates the access type (READ when R, W#  
is HIGH, WRITE when R, W# is LOW) for the loaded address. R, W# must meet the setup and hold times  
around the rising edge of K.  
BWx#  
NWx#  
Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble  
to be registered and written during WRITE cycles. These signals must meet setup and hold times around the  
rising edges of K and K# for each of the two rising edges comprising the WRITE cycle. See Pin  
Configurations for signal to data relationships.  
x8 device uses NW0#, NW1#.  
x9 device uses BW0#.  
x18 device uses BW0#, BW1#.  
x36 device uses BW0# to BW3#.  
See Byte Write Operation for relation between BWx#, NWx# and Dxx.  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data  
on the rising edge of K and the rising edge of K#. K# is ideally 180 degrees out of phase with K. All  
synchronous inputs must meet setup and hold times around the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of  
C# is used as the output timing reference for first output data. The rising edge of C is used as the output  
reference for second output data. Ideally, C# is 180 degrees out of phase with C. When use of K and K# as the  
reference instead of C and C#, then fixed C and C# to HIGH. Operation cannot be guaranteed unless C and  
C# are fixed to HIGH (i.e. toggle of C and C#).  
K, K#  
C, C#  
Data Sheet M17767EJ3V0DS  
8
μPD44164082A, 44164092A, 44164182A, 44164362A  
(2/2)  
Symbol  
Description  
CQ, CQ#  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous  
data outputs and can be used as a data valid indication. These signals run freely and do not stop when DQ  
tristates. If C and C# are stopped (if K and K# are stopped in the single clock mode), CQ and CQ# will also  
stop.  
<R>  
<R>  
ZQ  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus  
impedance. DQ, CQ and CQ# output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to  
ground. The output impedance can be minimized by directly connect ZQ to VDDQ. This pin cannot be  
connected directly to GND or left unconnected. The output impedance is adjusted every 1,024 cycles upon  
power-up to account for drifts in supply voltage and temperature. After replacement for a resistor, the new  
output impedance is reset by implementing power-on sequence.  
DLL#  
DLL/PLL Disable: When debugging the system or board, the operation can be performed at a clock frequency  
slower than TKHKH (MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. The AC/DC characteristics  
cannot be guaranteed. For normal operation, DLL# must be HIGH and it can be connected to VDDQ through a  
10 kΩ or less resistor.  
TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the JTAG function is not  
used in the circuit.  
TCK  
IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to VSS if the JTAG function is not used in the  
circuit.  
TDO  
VREF  
VDD  
IEEE 1149.1 Test Output: 1.8 V I/O level.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC Characteristics for  
range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible. See Recommended  
DC Operating Conditions and DC Characteristics for range.  
Power Supply: Ground  
VSS  
<R>  
NC  
No Connect: These signals are not connected internally.  
Data Sheet M17767EJ3V0DS  
9
μPD44164082A, 44164092A, 44164182A, 44164362A  
Block Diagram  
CLK  
Burst  
Logic  
A0'  
A0  
D0  
Q0  
R
Address  
Register  
Address  
LD#  
W#  
E
Compare  
C#  
C
A0''  
A0'''  
Output control  
Logic  
Write address  
Register  
K
E
E
A0'  
Input  
Register  
/A0'  
A0'  
ZQ  
0
2 :1  
MUX  
Memory  
Array  
CLK  
/A0'  
K
1
A0'  
Output Buffer  
E
DQ  
0
1
K#  
Input  
Register  
E
A0'''  
Output Enable  
Register  
C
R, W#  
R, W#`  
Register  
E
Data Sheet M17767EJ3V0DS  
10  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Power-on Sequence  
The following two timing charts show the recommended power-on sequence, i.e., when starting the clock after  
VDD/VDDQ stable and when starting the clock before VDD/VDDQ stable.  
1. Clock starts after VDD/VDDQ stable  
The clock is supplied from a controller.  
(a)  
VDD/VDDQ  
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
DLL#  
Clock  
Fix HIGH (or tied to VDDQ)  
20 ns (MIN.)  
Clock Start Note  
1,024 cycles or more  
Stable Clock  
Normal Operation  
Start  
Note Input a stable clock from the start.  
(b)  
V
DD/VDD  
Q
DLL#  
Clock  
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
Switched to HIGH after Clock is stable.  
Unstable Clock  
(level, frequency)  
1,024 cycles or more  
Stable Clock  
Normal Operation  
Start  
Clock Start  
(c)  
VDD/VDD  
Q
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
DLL#  
Clock  
Fix HIGH (or tied to VDDQ)  
30 ns. (MIN.)  
Clock Stop  
Unstable Clock  
(level, frequency)  
1,024 cycles or more  
Stable Clock  
Normal Operation  
Start  
Clock Start  
Data Sheet M17767EJ3V0DS  
11  
μPD44164082A, 44164092A, 44164182A, 44164362A  
2. Clock starts before VDD/VDDQ stable  
The clock is supplied from a clock generator.  
(a)  
VDD/VDDQ  
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
DLL#  
Clock  
Fix HIGH (or tied to VDDQ)  
Unstable Clock  
(level, frequency)  
1,024 cycles or more  
Stable Clock  
Normal Operation Start  
30 ns. (MIN.)  
Clock Stop  
Clock Start  
(b)  
VDD/VDD  
Q
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
30 ns (MIN.)  
DLL# LOW  
HIGH or LOW  
DLL#  
Clock  
Switched to HIGH after Clock is stable.  
Unstable Clock  
(level, frequency)  
1,024 cycles or more Normal  
Stable Clock  
Operation  
Start  
Clock keep running  
Clock Start  
Data Sheet M17767EJ3V0DS  
12  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Burst Sequence  
Linear Burst Sequence Table  
[μPD44164182A, μPD44164362A]  
A0  
0
A0  
1
External Address  
1st Internal Burst Address  
1
0
Truth Table  
Operation  
LD# R, W#  
CLK  
DQ  
WRITE cycle  
L
L
L H  
Data in  
Load address, input write data on two  
consecutive K and K# rising edge  
READ cycle  
Input data  
Input clock  
D(A1)  
D(A2)  
K(t+1) ↑  
K#(t+1) ↑  
L
H
L H  
Data out  
Output data  
Output clock  
High-Z  
Previous state  
Load address, read data on two  
consecutive C and C# rising edge  
NOP (No operation)  
Clock stop  
Q(A1)  
Q(A2)  
C#(t+1) ↑  
C(t+2) ↑  
H
X
X
X
L H  
Stopped  
Remarks 1. H : HIGH, L : LOW, × : don’t care, : rising edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges  
except if C and C# are HIGH then Data outputs are delivered at K and K# rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. A1 refers to the address input during a WRITE or READ cycle. A2 refers to the next internal burst  
address in accordance with the linear burst sequence.  
7. It is recommended that K = K# = C = C# when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
Data Sheet M17767EJ3V0DS  
13  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Byte Write Operation  
[μPD44164082A]  
Operation  
K
K#  
NW0#  
NW1#  
Write DQ0 to DQ7  
L H  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
L H  
Write DQ0 to DQ3  
Write DQ4 to DQ7  
Write nothing  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
<R>  
2. Assumes a WRITE cycle was initiated. NW0# and NW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
[μPD44164092A]  
Operation  
K
L H  
K#  
BW0#  
Write DQ0 to DQ8  
Write nothing  
0
0
1
1
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
<R>  
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
[μPD44164182A]  
Operation  
K
L H  
K#  
BW0#  
BW1#  
Write DQ0 to DQ17  
Write DQ0 to DQ8  
Write DQ9 to DQ17  
Write nothing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
<R>  
2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Data Sheet M17767EJ3V0DS  
14  
μPD44164082A, 44164092A, 44164182A, 44164362A  
[μPD44164362A]  
Operation  
K
L H  
K#  
BW0#  
BW1#  
BW2#  
BW3#  
Write DQ0 to DQ35  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
Write DQ0 to DQ8  
Write DQ9 to DQ17  
Write DQ18 to DQ26  
Write DQ27 to DQ35  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
<R>  
2. Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Data Sheet M17767EJ3V0DS  
15  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Bus Cycle State Diagram  
LOAD NEW  
ADDRESS  
Count = 0  
Load, Count = 2  
Load, Count = 2  
Write  
Read  
READ DOUBLE  
Count = Count + 2  
WRITE DOUBLE  
Count = Count + 2  
Load  
NOP,  
NOP,  
Count = 2  
Count = 2  
NOP  
NOP  
Supply voltage provided  
Power UP  
Remarks 1. A0 is internally advanced in accordance with the burst order table.  
Bus cycle is terminated after burst count = 2.  
2. State machine control timing sequence is controlled by K.  
Data Sheet M17767EJ3V0DS  
16  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Conditions  
MIN.  
–0.5  
–0.5  
–0.5  
–0.5  
0
TYP.  
MAX.  
Unit  
V
Supply voltage  
+2.5  
Output supply voltage  
Input voltage  
VDDQ  
VIN  
VDD  
V
VDD + 0.5 (2.5 V MAX.)  
V
Input / Output voltage  
Operating ambient temperature  
VI/O  
VDDQ + 0.5 (2.5 V MAX.)  
V
TA  
Commercial  
Industrial  
+70  
+85  
°C  
<R>  
–40  
–55  
Storage temperature  
Tstg  
+125  
°C  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit  
V
Note  
Output supply voltage  
Input HIGH voltage  
Input LOW voltage  
Clock input voltage  
Reference voltage  
VDDQ  
VIH (DC)  
VIL (DC)  
VIN  
1.4  
VDD  
V
1
VREF + 0.1  
–0.3  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.95  
V
1, 2  
1, 2  
1, 2  
V
–0.3  
V
VREF  
0.68  
V
Notes 1. During normal operation, VDDQ must not exceed VDD.  
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions  
Parameter  
Input HIGH voltage  
Input LOW voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Conditions  
MIN.  
VREF + 0.2  
TYP.  
MAX.  
Unit  
V
Note  
1
1
VREF – 0.2  
V
Note 1. Overshoot: VIH (AC) VDD + 0.7 V (2.5 V MAX.) for t TKHKH/2  
Undershoot: VIL (AC) – 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
Data Sheet M17767EJ3V0DS  
17  
μPD44164082A, 44164092A, 44164182A, 44164362A  
DC Characteristics (VDD = 1.8 ± 0.1 V)  
<R>  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
x8, x9 x18 x36  
+2  
Unit Note  
Input leakage current  
I/O leakage current  
Operating supply  
current  
ILI  
–2  
–2  
μA  
μA  
ILO  
IDD  
+2  
Note1  
Commercial  
-E33  
-E37  
-E40  
-E50  
-E37Y  
480 520 610  
mA  
(TA = 0 to +70°C)  
490  
(Read cycle/  
440 470 540  
400 420 470  
Write cycle)  
Industrial  
470 510  
460 490  
420 440  
(TA = –40 to +85°C) -E40Y  
-E50Y  
Standby supply  
current  
ISB1  
Note1  
Commercial  
-E33  
-E37  
-E40  
-E50  
-E37Y  
300 300 300  
290  
mA  
(TA = 0 to +70°C)  
(NOP)  
280 280 280  
260 260 260  
Industrial  
310 310  
300 300  
280 280  
VDDQ  
(TA = –40 to +85°C) -E40Y  
-E50Y  
Output HIGH voltage VOH(Low) |IOH| 0.1 mA  
VOH Note2  
VDDQ – 0.2  
VDDQ/2–0.12  
VSS  
V
V
V
V
4, 5  
4, 5  
4, 5  
4, 5  
VDDQ/2+0.12  
0.2  
Output LOW voltage VOL(Low) IOL 0.1 mA  
VOL Note3  
VDDQ/2–0.12  
VDDQ/2+0.12  
Notes 1. VIN VIL or VIN VIH, II/O = 0 mA, Cycle = MAX.  
2. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) ±15 % for values of 175 Ω ≤ RQ 350 Ω.  
3. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) ±15 % for values of 175 Ω ≤ RQ 350 Ω.  
4. AC load current is higher than the shown DC values.  
5. HSTL outputs meet JEDEC HSTL Class I and standards.  
Capacitance (TA = 25°C, f = 1MHz)  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
Unit  
pF  
Input capacitance (Address, Control)  
Input / Output capacitance  
(DQ, CQ, CQ#)  
4
6
5
7
CI/O  
VI/O = 0 V  
pF  
Clock Input capacitance  
Cclk  
Vclk = 0 V  
5
6
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Thermal Resistance  
Parameter  
Thermal resistance  
Symbol  
Test conditions  
MIN.  
TYP.  
25.1  
MAX.  
Unit  
θ j-a  
°C/W  
(junction – ambient)  
Thermal resistance  
(junction – case)  
θ j-c  
2.8  
°C/W  
Remark These parameters are simulated under the condition of air flow velocity = 1 m/s.  
Data Sheet M17767EJ3V0DS  
18  
μPD44164082A, 44164092A, 44164182A, 44164362A  
AC Characteristics (VDD = 1.8 ± 0.1 V)  
AC Test Conditions (VDD = 1.8 ± 0.1 V, VDDQ = 1.4 V to VDD)  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.75 V  
Test Points  
0.25 V  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
VDDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
Data Sheet M17767EJ3V0DS  
19  
μPD44164082A, 44164092A, 44164182A, 44164362A  
<R>  
Read and Write Cycle  
-E33  
Parameter  
Symbol  
-E37, -E37Y -E40, -E40Y -E50, -E50Y Unit Note  
(270 MHz) (250 MHz) (200 MHz)  
(300 MHz)  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
Clock  
Average Clock cycle time (K, K#, C, C#)  
Clock phase jitter (K, K#, C, C#)  
Clock HIGH time (K, K#, C, C#)  
Clock LOW time (K, K#, C, C#)  
Clock HIGH to Clock# HIGH  
(KK#, CC#)  
TKHKH  
TKC var  
TKHKL  
TKLKH  
TKHK#H  
3.3  
8.4  
0.2  
3.7  
8.4  
0.2  
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
ns  
ns  
ns  
ns  
ns  
1
2
1.32  
1.32  
1.49  
1.5  
1.5  
1.7  
1.6  
1.6  
1.8  
2.0  
2.0  
2.2  
Clock# HIGH to Clock HIGH  
(K#K, C#C)  
TK#HKH  
1.49  
1.7  
1.8  
2.2  
ns  
ns  
Clock to data clock  
270 to 300 MHz TKHCH  
250 to 270 MHz  
200 to 250 MHz  
167 to 200 MHz  
133 to 167 MHz  
< 133 MHz  
0
1.45  
1.65  
1.8  
2.3  
2.8  
3.55  
1.65  
1.8  
2.3  
2.8  
3.55  
(KC, K#C#)  
0
0
0
0
0
0
0
0
1.8  
2.3  
2.8  
3.55  
0
2.3  
2.8  
3.55  
0
0
0
0
0
0
0
0
DLL/PLL lock time (K, C)  
K static to DLL/PLL reset  
TKC lock  
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
Cycle  
ns  
3
4
TKC reset  
Output Times  
C, C# HIGH to output valid  
C, C# HIGH to output hold  
TCHQV  
TCHQX  
– 0.45  
0.45  
0.45  
0.45  
– 0.45  
0.45  
– 0.45  
0.45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C, C# HIGH to echo clock valid  
C, C# HIGH to echo clock hold  
CQ, CQ# HIGH to output valid  
CQ, CQ# HIGH to output hold  
C HIGH to output High-Z  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
0.45  
0.45  
0.45  
0.45  
– 0.45  
0.45  
– 0.45  
– 0.45  
0.27  
0.3  
0.3  
0.35  
5
5
– 0.27  
0.3  
– 0.3  
– 0.35  
0.45  
0.45  
0.45  
0.45  
C HIGH to output Low-Z  
TCHQX1  
– 0.45  
0.45  
– 0.45  
– 0.45  
Setup Times  
Address valid to K rising edge  
Synchronous load input (LD#),  
read write input (R, W#) valid to  
K rising edge  
TAVKH  
TIVKH  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
ns  
ns  
6
6
Data inputs and write data select  
inputs (BWx#, NWx#) valid to  
K, K# rising edge  
TDVKH  
0.3  
0.35  
0.35  
0.4  
ns  
6
Hold Times  
K rising edge to address hold  
K rising edge to  
TKHAX  
TKHIX  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
ns  
ns  
6
6
synchronous load input (LD#),  
read write input (R, W#) hold  
K, K# rising edge to data inputs and  
write data select inputs (BWx#, NWx#)  
hold  
TKHDX  
0.3  
0.35  
0.35  
0.4  
ns  
6
Data Sheet M17767EJ3V0DS  
20  
μPD44164082A, 44164092A, 44164182A, 44164362A  
<R>  
Notes 1. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH  
(MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.5 clock in  
this operation. The AC/DC characteristics cannot be guaranteed, however.  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var  
(MAX.) indicates a peak-to-peak value.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention.  
DLL/PLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept NOP (LD# = HIGH) during these cycles.  
4. K input is monitored for this operation. See below for the timing.  
<R>  
K
TKC reset  
or  
K
TKC reset  
5. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
6. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions  
unless otherwise noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, C# are tied HIGH, K, K# become the references for C, C# timing parameters.  
5. VDDQ is 1.5 V DC.  
Data Sheet M17767EJ3V0DS  
21  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Read and Write Timing  
READ  
NOP  
READ  
NOP  
NOP  
WRITE  
WRITE  
READ  
(burst of 2)  
(burst of 2)  
(burst of 2) (burst of 2)  
(burst of 2)  
1
2
3
4
5
6
7
8
9
10  
TKHKH  
K
TKHKL TKLKH  
TKLKH  
TKHK#H  
TK#HKH  
K#  
LD#  
TIVKH  
TKHIX  
R, W#  
TAVKH TKHAX  
A0  
Address  
DQ  
A1  
A2  
A3  
A4  
TKHDX  
TKHDX  
TDVKH  
TDVKH  
D21  
D22  
D31  
D32  
Q01 Q02 Q11  
TCHQX  
Q12  
Qx2  
Q41 Q42  
TCQHQX  
TCQHQV  
TCHQX1  
TCHQV  
TCHQZ  
TCHQX  
TKHCH  
TKHCH  
TCHQV  
CQ  
TCHCQX  
TCHCQV  
CQ#  
C
TCHCQX  
TCHCQV  
TKHKL TKLKH TKHKH TKHK#H TK#HKH  
C#  
Remarks 1. Q01 refers to output from address A0.  
Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disabled (high impedance) 2.5 clocks after the last READ (LD# = LOW, R, W# = HIGH) is  
input in the sequences of [READ]-[NOP].  
3. The second NOP cycle at the cycle “5” is not necessary for correct device operation;  
however, at high clock frequencies it may be required to prevent bus contention.  
Data Sheet M17767EJ3V0DS  
22  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Application Example  
R =  
250 Ω  
R =  
250 Ω  
ZQ  
CQ#  
CQ  
ZQ  
CQ#  
CQ  
. . .  
SRAM#1  
SRAM#4  
DQ  
A
DQ  
A
LD# R, W# BWx# C/C# K/K#  
LD# R, W# BWx# C/C# K/K#  
V
t
SRAM  
Controller  
R
Data IO  
V
t
Address  
LD#  
R
R, W#  
BW#  
SRAM#1 CQ/CQ#  
V
t
R
R
SRAM#4 CQ/CQ#  
V
t
Source CLK/CLK#  
Return CLK/CLK#  
V
t
R
R = 50 Ω  
Vt = Vref  
Remark AC specifications are defined at the condition of SRAM outputs, CQ, CQ# and DQ with termination.  
Data Sheet M17767EJ3V0DS  
23  
μPD44164082A, 44164092A, 44164182A, 44164362A  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
Test Mode Select. This is the command input for the TAP controller state machine.  
TMS  
TDI  
10R  
11R  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is determined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. This is the output side of the serial registers placed between TDI and  
TDO. Output changes in response to the falling edge of TCK.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (VDD = 1.8 ± 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
MIN.  
–5.0  
–5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
μA  
JTAG Input leakage current  
JTAG I/O leakage current  
0 V VIN VDD  
ILO  
0 V VIN VDDQ,  
μA  
Outputs disabled  
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
VIH  
VIL  
1.3  
–0.3  
1.6  
1.4  
VDD+0.3  
V
V
V
V
V
V
+0.5  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 μA  
| IOHT | = 2 mA  
IOLC = 100 μA  
IOLT = 2 mA  
JTAG output LOW voltage  
0.2  
0.4  
Data Sheet M17767EJ3V0DS  
24  
μPD44164082A, 44164092A, 44164182A, 44164362A  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
Data Sheet M17767EJ3V0DS  
25  
μPD44164082A, 44164092A, 44164182A, 44164362A  
<R>  
JTAG AC Characteristics  
Parameter  
Clock  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
50  
20  
ns  
MHz  
ns  
tTHTL  
tTLTH  
20  
20  
ns  
Output time  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
tTLOX  
tTLOV  
0
ns  
ns  
10  
Setup time  
TMS setup time  
TDI valid to TCK HIGH  
Capture setup time  
tMVTH  
tDVTH  
tCS  
5
5
5
ns  
ns  
ns  
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCH  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
JTAG Timing Diagram  
tTHTH  
TCK  
tMVTH  
tTHTL  
tTLTH  
TMS  
TDI  
tTHMX  
tDVTH  
tTHDX  
tTLOV  
tTLOX  
TDO  
Data Sheet M17767EJ3V0DS  
26  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The second column is  
the name of the input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
107  
bit  
Boundary register  
bit  
ID Register Definition  
Part number  
μPD44164082A  
μPD44164092A  
μPD44164182A  
μPD44164362A  
Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 0001 0010  
0000 0000 0101 0011  
0000 0000 0001 0011  
0000 0000 0001 0100  
ID [11:1] vendor ID no.  
00000010000  
ID [0] fix bit  
2M x 8  
2M x 9  
XXXX  
XXXX  
XXXX  
XXXX  
1
1
1
1
00000010000  
1M x 18  
512K x 36  
00000010000  
00000010000  
Data Sheet M17767EJ3V0DS  
27  
μPD44164082A, 44164092A, 44164182A, 44164362A  
SCAN Exit Order  
Bit  
no.  
1
Signal name  
x9 x18 x36  
Bump  
ID  
Bit  
no.  
37  
38  
39  
40  
41  
42  
Signal name  
Bump  
ID  
Bit  
no.  
73  
Signal name  
x9 x18 x36  
NC NC NC NC  
Bump  
ID  
x8  
x8  
x9  
NC  
NC  
x18 x36  
x8  
C#  
C
A
6R  
6P  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
10D  
9E  
2C  
2
74 DQ4 DQ5 DQ11 DQ20 3E  
3
6N  
7P  
NC DQ7 DQ17 10C  
75  
76  
77  
78  
79  
80  
81  
NC NC NC DQ29 2D  
4
A
NC  
NC  
NC  
NC DQ16 11D  
NC NC NC NC  
NC NC NC NC  
2E  
1E  
5
A
7N  
7R  
8R  
8P  
NC  
NC  
NC  
NC  
9C  
9D  
6
A
NC NC DQ12 DQ30 2F  
NC NC NC DQ21 3F  
7
A
43 DQ3 DQ4 DQ8 DQ8 11B  
8
A
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ7 11C  
NC NC NC NC  
NC NC NC NC  
1G  
1F  
9
A
9R  
NC  
NC  
NC  
NC  
9B  
10B  
11A  
Internal  
9A  
10 NC DQ0 DQ0 DQ0 11P  
11 NC NC NC DQ9 10P  
12 NC NC NC NC 10N  
82 DQ5 DQ6 DQ13 DQ22 3G  
CQ  
83  
84  
85  
86  
87  
88  
89  
NC NC NC DQ31 2G  
NC NC NC NC  
NC NC NC NC  
1J  
2J  
13 NC NC NC NC  
9P  
A
14 NC NC DQ1 DQ11 10M  
15 NC NC NC DQ10 11N  
A
8B  
NC NC DQ14 DQ23 3K  
NC NC NC DQ32 3J  
A
7C  
16 NC NC NC NC  
17 NC NC NC NC  
9M  
9N  
A
A
A0  
A0  
6C  
NC NC NC NC  
NC NC NC NC  
2K  
1K  
LD#  
NC  
8A  
18 DQ0 DQ1 DQ2 DQ2 11L  
19 NC NC NC DQ1 11M  
NC  
NC BW1# 7A  
90 DQ6 DQ7 DQ15 DQ33 2L  
55 NW0# BW0# BW0# BW0# 7B  
91  
92  
93  
94  
95  
96  
97  
NC NC NC DQ24 3L  
NC NC NC NC 1M  
20 NC NC NC NC  
21 NC NC NC NC  
9L  
56  
57  
58  
K
6B  
6A  
10L  
K#  
NC NC NC NC  
1L  
22 NC NC DQ3 DQ3 11K  
23 NC NC NC DQ12 10K  
NC  
NC  
NC BW3# 5B  
NC NC DQ16 DQ25 3N  
NC NC NC DQ34 3M  
59 NW1# NC BW1# BW2# 5A  
24 NC NC NC NC  
25 NC NC NC NC  
9J  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
R, W#  
4A  
5C  
4B  
3A  
1H  
1A  
NC NC NC NC  
1N  
9K  
A
A
NC NC NC NC 2M  
26 DQ1 DQ2 DQ4 DQ13 10J  
27 NC NC NC DQ4 11J  
98 DQ7 DQ8 DQ17 DQ26 3P  
99 NC NC NC DQ35 2N  
A
A
A
NC  
28  
29 NC NC NC NC 10G  
30 NC NC NC NC 9G  
ZQ  
11H  
DLL#  
CQ#  
100 NC NC NC NC  
101 NC NC NC NC  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ9 DQ27 2B  
102  
103  
104  
105  
106  
107  
A
A
A
A
A
A
31 NC NC DQ5 DQ5 11F  
32 NC NC NC DQ14 11G  
NC  
NC  
NC  
NC DQ18 3B  
NC  
NC  
NC  
NC  
1C  
1B  
33 NC NC NC NC  
34 NC NC NC NC  
9F  
10F  
NC DQ10 DQ19 3D  
35 DQ2 DQ3 DQ6 DQ6 11E  
36 NC NC NC DQ15 10E  
NC  
NC  
NC DQ28 3C  
NC NC 1D  
Data Sheet M17767EJ3V0DS  
28  
μPD44164082A, 44164092A, 44164182A, 44164362A  
JTAG Instructions  
Instructions  
EXTEST  
Description  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-  
scan register cells at output pins are used to apply test vectors, while those at input pins capture test  
results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,  
the output drive is turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is  
placed in the test-logic-reset state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register, the bypass register is placed  
between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This  
allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE / PRELOAD  
SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /  
PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-  
DR state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to  
capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state).  
Although allowing the TAP to sample metastable input will not harm the device, repeatable results  
cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input  
data capture setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any  
other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving  
the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are forced to an  
inactive drive state (high impedance) and the boundary register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
1
2
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
2
2
1
1
0
1
1
1
Notes 1. TRISTATE all DQ pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
2. Do not use this instruction code because the vendor uses it to evaluate this product.  
Data Sheet M17767EJ3V0DS  
29  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Output Pin States of CQ, CQ# and DQ  
Instructions  
Control-Register Status  
Output Pin Status  
CQ, CQ#  
Update  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
DQ  
EXTEST  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
0
1
0
1
0
1
0
1
0
1
High-Z  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
Boundary Scan  
Register  
Remark The output pin statuses during each instruction vary according  
to the Control-Register status (value of Boundary Scan  
Register, bit no. 48).  
CAPTURE  
Register  
There are three statuses:  
Update  
Register  
SRAM  
Output  
Update : Contents of the “Update Register” are output to  
the output pin (QDR Pad).  
SRAM : Contents of the SRAM internal output “SRAM  
Output” are output to the output pin (QDR Pad).  
High-Z : The output pin (QDR Pad) becomes high  
impedance by controlling of the “High-Z JTAG  
ctrl”.  
Update  
QDR  
Pad  
SRAM  
SRAM  
Output  
Driver  
High-Z  
The Control-Register status is set during Update-DR at the  
EXTEST or SAMPLE instruction.  
High-Z  
JTAG ctrl  
Data Sheet M17767EJ3V0DS  
30  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Boundary Scan Register Status of Output Pins CQ, CQ# and DQ  
Instructions  
SRAM Status  
Boundary Scan Register Status  
Note  
CQ, CQ#  
DQ  
Pad  
Pad  
EXTEST  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
Pad  
Pad  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
No definition  
Pad  
Pad  
Internal  
Internal  
Pad  
Pad  
Internal  
Pad  
No definition  
Remark The Boundary Scan Register statuses during execution each  
instruction vary according to the instruction code and SRAM  
operation mode.  
Boundary Scan  
Register  
CAPTURE  
Register  
There are two statuses:  
Internal  
Pad  
: Contents of the output pin (QDR Pad) are captured  
in the “CAPTURE Register” in the Boundary Scan  
Register.  
SRAM  
Output  
Update  
Register  
Pad  
Internal : Contents of the SRAM internal output “SRAM  
Output” are captured in the “CAPTURE Register”  
in the Boundary Scan Register.  
QDR  
Pad  
SRAM  
Output  
Driver  
High-Z  
JTAG ctrl  
Data Sheet M17767EJ3V0DS  
31  
μPD44164082A, 44164092A, 44164182A, 44164362A  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs. TDI and TMS may be left open but fix  
them to VDD via a resistor of about 1 kΩ when the TAP controller is not used. TDO should be left unconnected also  
when the TAP controller is not used.  
Data Sheet M17767EJ3V0DS  
32  
Test Logic Operation (Instruction Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
IDCODE  
New Instruction  
Output Inactive  
TDO  
Test Logic (Data Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
Instruction  
IDCODE  
Output Inactive  
TDO  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Package Drawing  
165-PIN PLASTIC BGA (13x15)  
B
E
w
S
B
ZD  
ZE  
11  
10  
9
8
A
7
6
D
5
4
3
2
1
R P N M L K J H G F E D C B A  
w
S A  
INDEX MARK  
A
A2  
y1  
S
S
y
e
S
A1  
(UNIT:mm)  
ITEM DIMENSIONS  
M
φ
φ
x
b
S A B  
D
E
13.00 0.10  
15.00 0.10  
0.15  
w
e
1.00  
A
1.40 0.11  
0.40 0.05  
1.00  
A1  
A2  
b
0.50 0.05  
0.08  
x
y
0.10  
y1  
ZD  
ZE  
0.20  
1.50  
0.50  
P165F5-100-EQ2  
Data Sheet M17767EJ3V0DS  
35  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
μPD44164082AF5-EQ2  
μPD44164092AF5-EQ2  
μPD44164182AF5-EQ2  
μPD44164362AF5-EQ2  
:
:
:
:
165-pin PLASTIC BGA (13 x 15)  
165-pin PLASTIC BGA (13 x 15)  
165-pin PLASTIC BGA (13 x 15)  
165-pin PLASTIC BGA (13 x 15)  
μPD44164082AF5-EQ2-A : 165-pin PLASTIC BGA (13 x 15)  
μPD44164092AF5-EQ2-A : 165-pin PLASTIC BGA (13 x 15)  
μPD44164182AF5-EQ2-A : 165-pin PLASTIC BGA (13 x 15)  
μPD44164362AF5-EQ2-A : 165-pin PLASTIC BGA (13 x 15)  
Data Sheet M17767EJ3V0DS  
36  
μPD44164082A, 44164092A, 44164182A, 44164362A  
Revision History  
Edition/  
Page  
Previous  
edition  
Type of  
revision  
Location  
Description  
Date  
This  
edition  
(Previous edition This edition)  
3rd edition/ Throughout Throughout  
Feb. 2007  
Addition  
-E37 (Commercial)  
-E37Y, -E40Y, -E50Y (Industrial)  
Text has been modified.  
p.9  
pp.14, 15  
p.21  
pp.7,8  
p.13  
Modification Pin Identification ZQ, DLL#, NC  
Addition Byte Write Operation  
Remark 2 has been added.  
p.19  
Modification Read and Write Cycle  
Addition  
Note 1 has been modified.  
Note 4 has been added.  
p.26  
p.24  
Modification JTAG AC Characteristics  
JTAG AC Characteristics have been modified.  
Data Sheet M17767EJ3V0DS  
37  
μPD44164082A, 44164092A, 44164182A, 44164362A  
[ MEMO ]  
Data Sheet M17767EJ3V0DS  
38  
μPD44164082A, 44164092A, 44164182A, 44164362A  
NOTES FOR CMOS DEVICES  
1
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
Data Sheet M17767EJ3V0DS  
39  
μPD44164082A, 44164092A, 44164182A, 44164362A  
The information in this document is current as of February, 2007. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD44164092AF5-E50Y-EQ2

IC,SYNC SRAM,DDR,2MX9,CMOS,BGA,165PIN,PLASTIC
NEC

UPD44164092AF5-E50Y-EQ2-A

IC,SYNC SRAM,DDR,2MX9,CMOS,BGA,165PIN,PLASTIC
RENESAS

UPD44164094AF5-E33-EQ2

2MX9 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC

UPD44164094AF5-E33-EQ2-A

2MX9 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44164094AF5-E33-EQ2-A

DDR SRAM, 2MX9, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164094AF5-E37Y-EQ2

2MX9 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC

UPD44164094AF5-E37Y-EQ2-A

2MX9 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44164094AF5-E37Y-EQ2-A

DDR SRAM, 2MX9, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164094AF5-E40-EQ2-A

DDR SRAM, 2MX9, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164094AF5-E40Y-EQ2

DDR SRAM, 2MX9, 0.45ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC

UPD44164094AF5-E40Y-EQ2-A

DDR SRAM, 2MX9, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164094AF5-E50-EQ2

DDR SRAM, 2MX9, 0.45ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC