UPD44646366F5-E33-FQ1-A [NEC]

DDR SRAM, 2MX36, CMOS, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165;
UPD44646366F5-E33-FQ1-A
型号: UPD44646366F5-E33-FQ1-A
厂家: NEC    NEC
描述:

DDR SRAM, 2MX36, CMOS, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

双倍数据速率 静态存储器
文件: 总36页 (文件大小:401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
72M-BIT DDR II+ SRAM  
2.0 & 2.5 Cycle Read Latency  
4-WORD BURST OPERATION  
Description  
The μPD44646094 and μPD44646096 are 8,388,608-word by 9-bit, the μPD44646184 and μPD44646186 are  
4,194,304-word by 18-bit and the μPD44646364 and μPD44646366 are 2,097,152-word by 36-bit synchronous double  
data rate static RAMs fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.  
The μPD44646xx4 is for 2.0 cycle and the μPD44646xx6 is for 2.5 cycle read latency. The μPD44646094, μPD44646096,  
μPD44646184, μPD44646186, μPD44646364 and μPD44646366 integrate unique synchronous peripheral circuitry and a  
burst counter. All input registers controlled by an input clock pair (K and K#) are latched on the positive edge of K and K#.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high density  
and wide bit configuration.  
These products are packaged in 165-pin PLASTIC BGA.  
Features  
Core (VDD) = 1.8 ± 0.1 V power supply  
I/O (VDDQ) = 1.5 ± 0.1 V power supply  
165-pin PLASTIC BGA (15x17)  
HSTL interface  
PLL circuitry for wide output data valid window and future frequency scaling  
Pipelined double data rate operation  
Common data input/output bus  
Four - tick burst for reduced address frequency  
Two input clocks (K and K#) for precise DDR timing at clock rising edges only  
Two Echo clocks (CQ and CQ#)  
Data Valid pin (QVLD) supported  
Read latency : 2.0 & 2.5 clock cycles (Not selectable by user)  
Internally self-timed write control  
Clock-stop capability. Normal operation is restored in 2,048 cycles after clock is resumed.  
User programmable impedance output (35 to 70 )  
Fast clock cycle time : 2.66 ns (375 MHz) for 2.0 cycle read latency,  
2.5 ns (400 MHz) for 2.5 cycle read latency  
Simple control logic for easy depth expansion  
JTAG 1149.1 compatible test access port  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M18524EJ1V0DS00 (1st edition)  
Date Published November 2006 NS CP(N)  
Printed in Japan  
2006  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Ordering Information  
2.0 Cycle Read Latency  
Core  
Part number  
Cycle  
Clock  
Organization  
(word x bit)  
I/O  
Package  
Supply  
Time  
ns  
Frequency  
MHz  
375  
Voltage  
Interface  
V
μPD44646094F5-E27-FQ1  
μPD44646094F5-E30-FQ1  
μPD44646094F5-E33-FQ1  
μPD44646184F5-E27-FQ1  
μPD44646184F5-E30-FQ1  
μPD44646184F5-E33-FQ1  
μPD44646364F5-E27-FQ1  
μPD44646364F5-E30-FQ1  
μPD44646364F5-E33-FQ1  
μPD44646094F5-E27-FQ1-A  
μPD44646094F5-E30-FQ1-A  
μPD44646094F5-E33-FQ1-A  
μPD44646184F5-E27-FQ1-A  
μPD44646184F5-E30-FQ1-A  
μPD44646184F5-E33-FQ1-A  
μPD44646364F5-E27-FQ1-A  
μPD44646364F5-E30-FQ1-A  
μPD44646364F5-E33-FQ1-A  
2.66  
3.0  
8M x 9-bit  
4M x 18-bit  
2M x 36-bit  
8M x 9-bit  
4M x 18-bit  
2M x 36-bit  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
BGA (15x17)  
333  
3.3  
300  
2.66  
3.0  
375  
333  
3.3  
300  
2.66  
3.0  
375  
333  
3.3  
300  
2.66  
3.0  
375  
333  
300  
375  
333  
300  
375  
333  
300  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
BGA (15x17)  
Lead-free  
3.3  
2.66  
3.0  
3.3  
2.66  
3.0  
3.3  
Remark Products with -A at the end of the part number are lead-free products.  
Preliminary Data Sheet M18524EJ1V0DS  
2
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
2.5 Cycle Read Latency  
Core  
Part number  
Cycle  
Clock  
Organization  
(word x bit)  
I/O  
Package  
Supply  
Time  
ns  
Frequency  
MHz  
400  
Voltage  
V
Interface  
μPD44646096F5-E25-FQ1  
μPD44646096F5-E27-FQ1  
μPD44646096F5-E30-FQ1  
μPD44646096F5-E33-FQ1  
μPD44646186F5-E25-FQ1  
μPD44646186F5-E27-FQ1  
μPD44646186F5-E30-FQ1  
μPD44646186F5-E33-FQ1  
μPD44646366F5-E25-FQ1  
μPD44646366F5-E27-FQ1  
μPD44646366F5-E30-FQ1  
μPD44646366F5-E33-FQ1  
μPD44646096F5-E25-FQ1-A  
μPD44646096F5-E27-FQ1-A  
μPD44646096F5-E30-FQ1-A  
μPD44646096F5-E33-FQ1-A  
μPD44646186F5-E25-FQ1-A  
μPD44646186F5-E27-FQ1-A  
μPD44646186F5-E30-FQ1-A  
μPD44646186F5-E33-FQ1-A  
μPD44646366F5-E25-FQ1-A  
μPD44646366F5-E27-FQ1-A  
μPD44646366F5-E30-FQ1-A  
μPD44646366F5-E33-FQ1-A  
2.5  
8M x 9-bit  
4M x 18-bit  
2M x 36-bit  
8M x 9-bit  
4M x 18-bit  
2M x 36-bit  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
BGA (15x17)  
2.66  
3.0  
375  
333  
3.3  
300  
2.5  
400  
2.66  
3.0  
375  
333  
3.3  
300  
2.5  
400  
2.66  
3.0  
375  
333  
3.3  
300  
2.5  
2.66  
3.0  
400  
375  
333  
300  
400  
375  
333  
300  
400  
375  
333  
300  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
BGA (15x17)  
Lead-free  
3.3  
2.5  
2.66  
3.0  
3.3  
2.5  
2.66  
3.0  
3.3  
Remark Products with -A at the end of the part number are lead-free products.  
3
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Feature Differences between DDR II and DDR II+  
Features  
Frequency (DLL/PLL ON)  
Organization  
DDR II  
120 MHz to 300 MHz  
x8 / x9 / x18 / x36  
1.8 ± 0.1 V  
DDR II+  
300 MHz to 400 MHz  
x9 / x18 / x36  
Note  
VDD  
1.8 ± 0.1 V  
VDDQ  
1.8 ± 0.1 V or 1.5 ± 0.1 V  
1.5 clocks  
1.5 ± 0.1 V  
Read Latency  
2.0 & 2.5 clocks  
1.0 clocks  
1
2
Write Latency  
1.0 clocks  
Input Clocks (K, K#)  
Output Clocks (C, C#)  
Echo Clock Number (CQ, CQ#)  
Package  
Single Ended (K, K#)  
Yes  
Single Ended (K, K#)  
No  
1 Pair  
1 Pair  
3
165 (11x15) pin PLASTIC BGA  
165 (11x15) pin PLASTIC BGA  
Fixed Burst Address for DDR CIO;  
A0 and A1 for burst 4  
Yes  
No  
No  
4
5
QVLD  
Yes  
Notes 1. DDR II+ read latency is not user selectable. Offered as two different devices.  
2. DDR II+ write latency is 1.0 cycle regardless of read latency.  
3. Echo Clocks are single-ended inputs.  
4. Linear burst is not supported at DDR II + CIO.  
5. Edge aligned with Echo Clocks.  
Preliminary Data Sheet M18524EJ1V0DS  
4
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Pin Configurations  
165-pin PLASTIC BGA (15x17)  
(Top View)  
[μPD44646094], [μPD44646096]  
8M x 9-bit  
1
CQ#  
NC  
2
3
A
4
5
NC  
NC/288M  
A
6
K#  
7
8
9
A
10  
A
11  
CQ  
DQ4  
NC  
A
B
C
D
E
F
A
R, W#  
A
LD#  
A
NC/144M  
BW0#  
A
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ7  
NC  
NC  
NC  
TCK  
NC  
NC  
NC  
DQ5  
NC  
DQ6  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQ8  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ2  
NC  
NC  
NC  
NC  
NC  
TMS  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ3  
NC  
NC  
G
H
J
NC  
NC  
DLL#  
NC  
ZQ  
NC  
K
L
NC  
NC  
NC  
DQ1  
NC  
M
N
P
R
NC  
NC  
VSS  
VSS  
NC  
NC  
A
A
QVLD  
NC  
A
A
DQ0  
TDI  
TDO  
A
A
A
A
A
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
DQ0 to DQ8  
LD#  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TDI  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0#  
K, K#  
CQ, CQ#  
ZQ  
: Echo clock  
VDDQ  
VSS  
: Power Supply  
: Output impedance matching  
: DLL/PLL disable  
: Q Valid output  
: Ground  
DLL#  
NC  
: No connection  
QVLD  
NC/xxM  
: Expansion address for xxMb  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 7A and 5B are expansion addresses: 7A for 144Mb and 5B for 288Mb.  
5
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
165-pin PLASTIC BGA (15x17)  
(Top View)  
[μPD44646184], [μPD44646186]  
4M x 18-bit  
1
CQ#  
NC  
2
A
3
4
5
BW1#  
NC/288M  
A
6
K#  
7
8
9
A
10  
A
11  
CQ  
A
B
C
D
E
F
A
R, W#  
A
LD#  
A
NC/144M  
BW0#  
NC  
DQ9  
NC  
NC  
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
DQ8  
NC  
NC  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ7  
NC  
NC  
NC  
DQ10  
DQ11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
DQ6  
DQ5  
NC  
NC  
DQ12  
NC  
NC  
G
H
J
NC  
DQ13  
VDDQ  
NC  
NC  
DLL#  
NC  
VREF  
NC  
VREF  
DQ4  
NC  
ZQ  
NC  
K
L
NC  
NC  
DQ14  
NC  
DQ3  
DQ2  
NC  
NC  
DQ15  
NC  
NC  
M
N
P
R
NC  
NC  
DQ1  
NC  
NC  
NC  
DQ16  
DQ17  
A
VSS  
VSS  
NC  
NC  
NC  
A
A
QVLD  
NC  
A
A
NC  
DQ0  
TDI  
TDO  
TCK  
A
A
A
A
TMS  
A
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
DQ0 to DQ17  
LD#  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TDI  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0#, BW1#  
K, K#  
CQ, CQ#  
ZQ  
: Echo clock  
VDDQ  
VSS  
: Power Supply  
: Output impedance matching  
: DLL/PLL disable  
: Q Valid output  
: Ground  
DLL#  
NC  
: No connection  
QVLD  
NC/xxM  
: Expansion address for xxMb  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 7A and 5B are expansion addresses: 7A for 144Mb and 5B for 288Mb.  
Preliminary Data Sheet M18524EJ1V0DS  
6
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
165-pin PLASTIC BGA (15x17)  
(Top View)  
[μPD44646364], [μPD44646366]  
2M x 36-bit  
1
CQ#  
NC  
2
3
4
5
BW2#  
BW3#  
A
6
K#  
7
BW1#  
BW0#  
NC  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
8
9
A
10  
A
11  
CQ  
A
B
C
D
E
F
A
R, W#  
A
LD#  
A
NC/144M  
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
VDDQ  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ17  
NC  
NC  
DQ29  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ15  
NC  
NC  
DQ30  
DQ31  
VREF  
NC  
G
H
J
NC  
NC  
DLL#  
NC  
VREF  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
NC  
NC  
NC  
DQ33  
NC  
M
N
P
R
NC  
DQ11  
NC  
NC  
DQ35  
NC  
VSS  
VSS  
NC  
A
A
QVLD  
NC  
A
A
DQ9  
TMS  
TDO  
TCK  
A
A
A
A
A
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
DQ0 to DQ35  
LD#  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TDI  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0# to BW3#  
K, K#  
CQ, CQ#  
ZQ  
: Echo clock  
VDDQ  
VSS  
: Power Supply  
: Output impedance matching  
: DLL/PLL disable  
: Q Valid output  
: Ground  
DLL#  
NC  
: No connection  
QVLD  
NC/xxM  
: Expansion address for xxMb  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A is expansion addresses: 2A for 144Mb.  
7
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Pin Identification  
Symbol  
Description  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the  
rising edge of K. All transactions operate on a burst of four words (two clock period of bus activity). These  
inputs are ignored when device is deselected, i.e., NOP (LD# = HIGH).  
DQ0 to DQxx Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and K#. Output  
data is synchronized to the respective K and K#.  
x9 device uses DQ0 to DQ8.  
x18 device uses DQ0 to DQ17.  
x36 device uses DQ0 to DQ35.  
LD#  
Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition  
includes address and read/write direction. All transactions operate on a burst of 4 data (two clock period of bus  
activity).  
R, W#  
Synchronous Read/Write Input: When LD# is LOW, this input designates the access type (READ when R, W#  
is HIGH, WRITE when R, W# is LOW) for the loaded address. R, W# must meet the setup and hold times  
around the rising edge of K. If a synchronous load command (LD# = LOW) is input, inputs of R,W# and LD# on  
the subsequent of K are ignored.  
BWx#  
Synchronous Byte Writes: When LOW these inputs cause their respective byte to be registered and written  
during WRITE cycles. These signals must meet setup and hold times around the rising edges of K and K# for  
each of the two rising edges comprising the WRITE cycle. See Pin Configurations for signal to data  
relationships.  
x9 device uses BW0#.  
x18 device uses BW0#, BW1#.  
x36 device uses BW0# to BW3#.  
See Byte Write Operation for relation between BWx# and DQxx.  
K, K#  
CQ, CQ#  
ZQ  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data  
on the rising edge of K and the rising edge of K#. K# is ideally 180 degrees out of phase with K. All  
synchronous inputs must meet setup and hold times around the clock rising edges.  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous  
data outputs and can be used as a data valid indication. These signals run freely and do not stop when DQ  
tristates. If K and K# are stopped in the single clock mode, CQ and CQ# will also stop.  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus  
impedance. DQ, CQ, CQ# and QVLD output impedance are set to 0.2 x RQ, where RQ is a resistor from this  
bump to ground. The output impedance can be minimized by directly connect ZQ to VDDQ. This pin cannot be  
connected directly to GND or left unconnected. The output impedance is adjusted every 1,024 cycles upon  
power-up to account for drifts in supply voltage and temperature. After replacement for a resistor, the new  
output impedance is reset by implementing power-on sequence.  
DLL#  
DLL/PLL Disable: When DLL# is LOW, the operation can be performed at a clock frequency slower than  
TKHKH (MAX.) without the DLL/PLL circuit being used. The AC/DC characteristics cannot be guaranteed. For  
normal operation, DLL# must be HIGH and it can be connected to VDDQ through a 10 kΩ or less resistor.  
QVLD  
Q valid Output: The Q Valid indicates valid output data. QVLD is edge aligned with CQ and CQ#.  
TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the JTAG function is not  
used in the circuit.  
TCK  
TDO  
VREF  
VDD  
IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to VSS if the JTAG function is not used in the  
circuit.  
IEEE 1149.1 Test Output: 1.8 V I/O level.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC Characteristics for  
range.  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. See Recommended DC Operating  
Conditions and DC Characteristics for range.  
VDDQ  
VSS  
Power Supply: Ground  
No Connect: These signals are not connected internally.  
NC  
Preliminary Data Sheet M18524EJ1V0DS  
8
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Block Diagram  
x9/x18/x36  
Write Register  
Address  
Register  
A
Write Driver  
x9/x18/x36  
DQx  
CQ#  
Add.  
Dec.  
Output  
Buffer  
K#  
K
Memory Array  
CQ  
CLK  
Gen.  
QVLD  
DLL#  
Sense AMPs  
MUX  
R, W#  
BWx#  
LD#  
Control  
Logic  
x36/x72/x144  
x18/x36/x72  
Output Register  
9
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Power-On Sequence in DDR II+ SRAM  
DDR II+ SRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
The following timing charts show the recommended power-on sequence.  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ  
can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-up. The  
following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ  
can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-down.  
Power-On Sequence  
Apply power and tie DLL# to HIGH.  
- Apply VDD before VDDQ.  
- Apply VDDQ before VREF or at the same time as VREF.  
Provide stable clock for more than 2,048 cycles to lock the DLL/PLL.  
DLL/PLL Constraints  
The DLL/PLL uses K clock as its synchronizing input and the input should have low phase jitter which is specified  
as TKC var. The DLL/PLL can cover 120 MHz as the lowest frequency. If the input clock is unstable and the  
DLL/PLL is enabled, then the DLL/PLL may lock onto an undesired clock frequency.  
Power-On Waveforms  
V
DD/VDDQ  
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
DLL#  
Clock  
Fix HIGH (or tied to VDDQ)  
2,048 cycles or more  
Unstable Clock  
Normal Operation  
Start  
Stable Clock  
Preliminary Data Sheet M18524EJ1V0DS  
10  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Truth Table  
Read Latency = 2.0 clocks  
[μPD44646094], [μPD44646184], [μPD44646364]  
Operation  
CLK  
LD# R,W#  
DQ  
WRITE cycle  
L H  
L
L
Data in  
DA(A+2)  
DA(A+3)  
Load address, input write data on two  
consecutive K and K# rising edge  
READ cycle  
Input data  
Input clock  
DA(A+0)  
DA(A+1)  
K(t+2) ↑  
K#(t+2) ↑  
K(t+1) ↑  
K#(t+1) ↑  
L H  
L
H
Data out  
QA(A+2)  
QA(A+3)  
Load address, read data on two  
consecutive K and K# rising edge  
NOP (No operation)  
Output data  
Output clock  
QA(A+0)  
QA(A+1)  
K(t+3) ↑  
K#(t+3) ↑  
K(t+2) ↑  
K#(t+2) ↑  
L H  
H
X
X
X
DQ = High-Z  
Clock stop  
Stopped  
Previous state  
Read Latency = 2.5 clocks  
[μPD44646096], [μPD44646186], [μPD44646366]  
Operation  
CLK  
LD# R,W#  
DQ  
WRITE cycle  
L H  
L
L
Data in  
DA(A+2)  
DA(A+3)  
Load address, input write data on two  
consecutive K and K# rising edge  
READ cycle  
Input data  
DA(A+0)  
DA(A+1)  
K(t+2) ↑  
K#(t+2) ↑  
Input clock  
K(t+1) ↑  
K#(t+1) ↑  
L H  
L
H
Data out  
QA(A+2)  
QA(A+3)  
Load address, read data on two  
consecutive K and K# rising edge  
NOP (No operation)  
Output data  
QA(A+0)  
QA(A+1)  
K#(t+3) K (t+4) ↑  
Output clock K#(t+2) ↑  
K(t+3) ↑  
L H  
H
X
X
X
DQ = High-Z  
Clock stop  
Stopped  
Previous state  
Remarks  
Remarks listed below are for both products with 2.0 and 2.5 Cycle Read Latency.  
1. H : HIGH, L : LOW, × : don’t care, : rising edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at K and K# rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K and are registered at the rising edge of K.  
4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. A+0 refers to the address input during a WRITE or READ cycle.  
A+1, A+2 and A+3 refers to the next internal burst address in accordance with the burst sequence.  
7. It is recommended that K = K# when clock is stopped. This is not essential but permits most rapid restart  
by overcoming transmission line charging symmetrically.  
11  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Byte Write Operation  
[μPD44646094], [μPD44646096]  
Operation  
K
K#  
BW0#  
Write DQ0 to DQ8  
Write nothing  
L H  
0
0
1
1
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
[μPD44646184], [μPD44646186]  
Operation  
K
L H  
K#  
BW0#  
BW1#  
Write DQ0 to DQ17  
Write DQ0 to DQ8  
Write DQ9 to DQ17  
Write nothing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
[μPD44646364], [μPD44646366]  
Operation  
K
L H  
K#  
BW0#  
BW1#  
BW2#  
BW3#  
Write DQ0 to DQ35  
Write DQ0 to DQ8  
Write DQ9 to DQ17  
Write DQ18 to DQ26  
Write DQ27 to DQ35  
Write nothing  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Preliminary Data Sheet M18524EJ1V0DS  
12  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Bus Cycle State Diagram  
LOAD NEW  
ADDRESS  
Count = 0  
Load, Count = 4  
WRITE DOUBLE  
Load, Count = 4  
READ DOUBLE  
Write  
Read  
Count = Count + 2  
Count = Count + 2  
Always  
Count = 2  
Always  
Count = 2  
Load  
NOP,  
NOP,  
Count = 4  
Count = 4  
ADVANCE ADDRESS  
BY TWO  
ADVANCE ADDRESS  
BY TWO  
NOP  
NOP  
Supply voltage provided  
Power UP  
Remarks 1. Bus cycle is terminated after burst count = 4.  
2. State transitions: L = (LD# = LOW); L# = (LD# = HIGH); R = (R#, W = HIGH); W = (R#, W = LOW).  
3. State machine control timing sequence is controlled by K.  
13  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol Conditions  
MIN.  
–0.5  
–0.5  
–0.5  
–0.5  
0
TYP.  
MAX.  
Unit  
V
Supply voltage  
VDD  
VDDQ  
VIN  
+2.5  
Output supply voltage  
Input voltage  
VDD  
VDD + 0.5 (2.5 V MAX.)  
VDDQ + 0.5 (2.5 V MAX.)  
70  
V
V
Input / Output voltage  
Operating ambient temperature  
Storage temperature  
VI/O  
TA  
V
°C  
°C  
Tstg  
–55  
+125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70°C)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
1.7  
TYP.  
1.8  
MAX.  
1.9  
Unit  
V
Note  
Output supply voltage  
Input HIGH voltage  
Input LOW voltage  
Clock input voltage  
Reference voltage  
VDDQ  
VIH (DC)  
VIL (DC)  
VIN  
1.4  
1.5  
1.6  
V
1
VREF + 0.1  
–0.30  
–0.30  
0.68  
VDDQ + 0.30  
VREF – 0.1  
VDDQ + 0.30  
0.85  
V
1, 2  
1, 2  
1, 2  
V
V
VREF  
0.75  
V
Notes 1. During normal operation, VDDQ must not exceed VDD.  
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70°C)  
Parameter  
Input HIGH voltage  
Input LOW voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Conditions  
MIN.  
VREF + 0.2  
TYP.  
MAX.  
Unit  
V
Note  
1
1
VREF – 0.2  
V
Note 1. Overshoot: VIH (AC) VDD + 0.7 V (2.5 V MAX.) for t TKHKH/2  
Undershoot: VIL (AC) – 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
Preliminary Data Sheet M18524EJ1V0DS  
14  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
x9 x18 x36  
+2  
Unit Note  
Input leakage current  
I/O leakage current  
Operating supply current  
(Read Write cycle)  
ILI  
–2  
–2  
μA  
μA  
ILO  
IDD  
+2  
VIN VIL  
-E25 Note1  
-E27  
TBD  
mA  
100read cycles  
and  
or VIN VIH,  
II/O = 0 mA  
Cycle = MAX.  
TBD  
100write cycles  
-E30  
TBD  
-E33  
TBD  
-E25 Note1  
TBD  
mA  
mA  
50read cycles  
and  
-E27  
TBD  
50write cycles  
-E30  
TBD  
-E33  
TBD  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH,  
-E25 Note1  
TBD  
II/O = 0 mA  
-E27  
TBD  
-E30  
TBD  
-E33  
TBD  
Output HIGH voltage  
Output LOW voltage  
VOH(Low) |IOH| 0.1 mA  
VOH Note2  
VOL(Low) IOL 0.1 mA  
VOL Note3  
VDDQ – 0.2  
VDDQ/2–0.12  
VSS  
VDDQ  
V
V
4,5  
4,5  
4,5  
4,5  
VDDQ/2+0.12  
0.2  
VDDQ/2–0.12  
VDDQ/2+0.12  
Notes 1. -E25 is valid for 2.5 Cycle Read Latency products.  
2. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) ±15% for values of 175 RQ 350 .  
3. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) ±15% for values of 175 RQ 350 .  
4. AC load current is higher than the shown DC values.  
5. HSTL outputs meet JEDEC HSTL Class I standards.  
Capacitance (TA = 25°C, f = 1 MHz)  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
Unit  
Input capacitance (Address, Control)  
Input / Output capacitance  
(DQ, CQ, CQ#, QVLD)  
4
5
pF  
pF  
CI/O  
VI/O = 0 V  
Clock Input capacitance  
Cclk  
Vclk = 0 V  
4
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Thermal Resistance  
Parameter  
Symbol  
θ j-a  
Test conditions  
MIN.  
TYP.  
TBD  
TBD  
MAX.  
Unit  
°C/W  
°C/W  
Thermal resistance (junction – ambient)  
Thermal resistance (junction – ambient)  
θ j-c  
Remark These parameters are simulated under the condition of air flow velocity = 1 m/s.  
15  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
AC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V)  
AC Test Conditions (VDD = 1.8 ± 0.1 V, VDDQ = 1.5 ± 0.1 V)  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.75 V  
Test Points  
0.25 V  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
VDDQ / 2  
0.75 V  
50 Ω  
VREF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
Preliminary Data Sheet M18524EJ1V0DS  
16  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Read and Write Cycle  
Parameter  
Symbol  
-E25 Note1  
-E27  
-E30  
-E33  
Unit  
Note  
(333 MHz)  
(400 MHz)  
(375 MHz)  
(300 MHz)  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
Clock  
Average Clock cycle time (K, K#)  
Clock phase jitter (K, K#)  
Clock HIGH time (K, K#)  
Clock LOW time (K, K#)  
TKHKH  
TKC var  
TKHKL  
TKLKH  
ns  
2
3
2.5  
3.25  
0.20  
2.66  
3.46  
0.20  
3.0  
3.9  
0.20  
3.3  
4.2  
0.20  
ns  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
TKHKH  
TKHKH  
Clock HIGH to Clock# HIGH  
(K K#)  
Clock# HIGH to Clock HIGH  
(K# K)  
TKHK#H  
TK#HKH  
ns  
ns  
1.06  
1.06  
1.13  
1.13  
1.28  
1.28  
1.40  
1.40  
DLL/PLL lock time (K)  
TKC lock  
4
5
2,048  
30  
2,048  
30  
2,048  
30  
2,048  
30  
Cycle  
ns  
K static to DLL/PLL reset  
TKC reset  
Output Times  
CQ HIGH to CQ# HIGH (CQ CQ#)  
CQ# HIGH to CQ HIGH (CQ# CQ)  
K, K# HIGH to output valid  
K, K# HIGH to output hold  
K, K# HIGH to echo clock valid  
K, K# HIGH to echo clock hold  
CQ, CQ# HIGH to output valid  
CQ, CQ# HIGH to output hold  
K HIGH to output High-Z  
TCQHCQ#H  
TCQ#HCQH  
TKHQV  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
6
0.9  
0.9  
0.98  
0.98  
1.15  
1.15  
1.3  
1.3  
0.45  
0.45  
0.45  
0.45  
TKHQX  
– 0.45  
– 0.45  
– 0.45  
– 0.45  
TKHCQV  
TKHCQX  
TCQHQV  
TCQHQX  
TKHQZ  
0.45  
0.45  
0.45  
0.45  
– 0.45  
– 0.45  
– 0.45  
– 0.45  
7
7
0.20  
0.20  
0.20  
0.20  
– 0.20  
– 0.20  
– 0.20  
– 0.20  
0.45  
0.45  
0.45  
0.45  
K HIGH to output Low-Z  
TKHQX1  
TCQHQVLD  
– 0.45  
– 0.45  
– 0.45  
– 0.45  
CQ, CQ# HIGH to QVLD valid  
– 0.20 0.20 – 0.20 0.20 – 0.20 – 0.20 – 0.20 0.20  
Setup Times  
Address valid to K rising edge  
TAVKH  
TIVKH  
ns  
ns  
8
8
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
Synchronous load input (LD#), read  
write input (R, W#) valid to K rising edge  
Data inputs and write data select inputs  
(BWx#) valid to K, K# rising edge  
TDVKH  
ns  
8
0.28  
0.28  
0.28  
0.28  
Hold Times  
K rising edge to address hold  
TKHAX  
TKHIX  
ns  
ns  
8
8
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
K rising edge to synchronous load input  
(LD#), read write input (R, W#) hold  
K, K# rising edge to data inputs and  
write data select inputs (BWx#) hold  
TKHDX  
ns  
8
0.28  
0.28  
0.28  
0.28  
Notes 1. -E25 is valid for 2.5 Cycle Read Latency products.  
2. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH  
(MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.0 clock  
regardless of RL = 2.0 and 2.5 clock products in this operation. The AC/DC characteristics cannot be  
guaranteed, however.  
3. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var  
(MAX.) indicates a peak-to-peak value.  
4. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention.  
DLL/PLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept NOP (LD# = HIGH) during these cycles.  
17  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
5. K input is monitored for this operation. See below for the timing.  
K
TKC reset  
TKC reset  
or  
K
6. Guaranteed by design.  
7. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
8. This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold  
times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise  
noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. VDDQ is 1.5 V DC.  
Preliminary Data Sheet M18524EJ1V0DS  
18  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Read and Write Timing  
2.0 Cycle Read Latency  
[μPD44646094], [μPD44646184], [μPD44646364]  
NOP  
READ  
NOP  
NOP  
READ  
NOP  
WRITE  
(burst of 4)  
(burst of 4)  
(burst of 4)  
1
2
3
4
5
6
7
8
9
10  
11  
TKHKH  
K
TKHKL  
TKLKH  
TKHK#H  
TK#HKH  
K#  
LD#  
TIVKH  
TKHIX  
R, W#  
TKHAX  
TAVKH  
Address  
QVLD  
A0  
A1  
TCQHQVLD  
A2  
TCQHQVLD  
Read Latency = 2.0 clocks  
TKHDX  
TKHDX  
TDVKH  
TKHQV  
TKHQX  
TKHQV  
TKHQX  
TDVKH  
TKHQZ  
TKHCQX1  
D11  
D12  
D13  
D14  
Q20  
DQ  
Q01 Q02 Q03  
Q04  
TCQHQX  
TCQHQV  
TCQHQX  
TCQHQV  
TKHCQV  
TKHCQX  
CQ  
TCQ#HCQH  
TCQHCQ#H  
TKHCQV  
TKHCQX  
CQ#  
Remarks 1. Q01 refers to output from address A0.  
Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disabled (high impedance) 4 clocks after the last READ (LD# = LOW, R, W# = HIGH) is input  
in the sequences of [READ]-[NOP].  
3. The third NOP cycle between Read to Write transition may not be necessary for correct device  
operation when Read latency = 2.0 cycles; however at high frequency operation, it may be required to  
avoid bus contention.  
19  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
2.5 Cycle Read Latency  
[μPD44646096], [μPD44646186], [μPD44646366]  
READ  
(burst of 4)  
WRITE  
(burst of 4)  
NOP  
READ  
(burst of 4)  
NOP  
NOP  
NOP  
1
2
3
4
5
6
7
8
9
10  
11  
TKHKH  
K
TKHKL TKLKH  
TKLKH  
TKHK#H  
TK#HKH  
K#  
LD#  
TIVKH  
TKHIX  
R, W#  
TKHAX  
TAVKH  
Address  
QVLD  
A0  
A1  
TCQHQVLD  
A2  
TCQHQVLD  
Read Latency = 2.5 clocks  
TKHQV  
TKHQX  
TKHCQX1  
TKHDX  
TKHQZ TDVKH  
TKHDX  
TDVKH  
TKHQV  
TKHQX  
D11  
D12  
D13  
D14  
DQ  
Q01 Q02 Q03  
Q04  
TCQHQX  
TCQHQV  
TCQHQX  
TCQHQV  
TKHCQV  
TKHCQX  
CQ  
TCQHCQ#H TCQ#HCQH  
TKHCQV  
TKHCQX  
CQ#  
Remarks 1. Q01 refers to output from address A0.  
Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disabled (high impedance) 4.5 clocks after the last READ (LD# = LOW, R, W# = HIGH) is  
input in the sequences of [READ]-[NOP].  
3. The third NOP cycle between Read to Write transition may not be necessary for correct device  
operation when Read latency = 2.5 cycles; however at high frequency operation, it may be required to  
avoid bus contention.  
Preliminary Data Sheet M18524EJ1V0DS  
20  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Application Example  
ZQ  
CQ#  
CQ  
ZQ  
R =  
250 Ω  
R =  
250 Ω  
CQ#  
. . .  
SRAM#1  
SRAM#4  
CQ  
QVLD  
DQ  
A
DQ  
A
QVLD  
LD#  
R, W# BWx# K/K#  
LD#  
R, W#  
BWx# K/K#  
V
t
SRAM  
Controller  
R
Data IO  
V
t
Address  
LD#  
R
R, W#  
BW#  
QVLD  
V
V
t
t
R
R
SRAM#1 CQ/CQ#  
SRAM#4 CQ/CQ#  
V
t
R
Source CLK/CLK#  
Return CLK/CLK#  
V
t
R
R = 50 Ω V  
t
= Vref  
Remark AC specifications are defined at the condition of SRAM outputs, CQ, CQ#, QVLD and DQ with termination.  
21  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
TMS  
TDI  
10R  
11R  
Test Mode Select. This is the command input for the TAP controller state machine.  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is determined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. This is the output side of the serial registers placed between TDI and  
TDO. Output changes in response to the falling edge of TCK.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
MIN.  
5.0  
5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
μA  
JTAG Input leakage current  
JTAG I/O leakage current  
0 V VIN VDD  
ILO  
0 V VIN VDDQ,  
μA  
Outputs disabled  
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
VIH  
VIL  
1.3  
0.3  
1.6  
1.4  
VDD+0.3  
V
V
V
V
V
V
+0.5  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 μA  
| IOHT | = 2 mA  
IOLC = 100 μA  
IOLT = 2 mA  
JTAG output LOW voltage  
0.2  
0.4  
Preliminary Data Sheet M18524EJ1V0DS  
22  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
23  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
JTAG AC Characteristics (TA = 0 to 70°C)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Clock  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
50  
20  
ns  
MHz  
ns  
tTHTL  
tTLTH  
20  
20  
ns  
Output time  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
tTLOX  
tTLOV  
0
ns  
ns  
10  
Setup time  
TMS setup time  
TDI valid to TCK HIGH  
Capture setup time  
tMVTH  
tDVTH  
tCS  
5
5
5
ns  
ns  
ns  
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCH  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
JTAG Timing Diagram  
tTHTH  
TCK  
tMVTH  
tTHTL  
tTLTH  
TMS  
TDI  
tTHMX  
tDVTH  
tTHDX  
tTLOV  
tTLOX  
TDO  
Preliminary Data Sheet M18524EJ1V0DS  
24  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The second column is  
the name of the input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
109  
bit  
Boundary register  
bit  
ID Register Definition  
2.0 Cycle Read Latency  
Part number  
μPD44646094  
μPD44646184  
μPD44646364  
Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 1000 1111  
0000 0000 1001 0000  
0000 0000 1001 0001  
ID [11:1] vendor ID no. ID [0] fix bit  
8M x 9  
4M x 18  
2M x 36  
XXXX  
XXXX  
XXXX  
00000010000  
00000010000  
00000010000  
1
1
1
2.5 Cycle Read Latency  
Part number  
μPD44646096  
μPD44646186  
μPD44646366  
Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 1001 1011  
0000 0000 1001 1100  
0000 0000 1001 1101  
ID [11:1] vendor ID no. ID [0] fix bit  
8M x 9  
4M x 18  
2M x 36  
XXXX  
XXXX  
XXXX  
00000010000  
00000010000  
00000010000  
1
1
1
25  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x9  
x18 x36  
no.  
x9  
x18 x36  
no.  
x9  
x18 x36  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
6R  
6P  
6N  
7P  
7N  
7R  
8R  
8P  
9R  
37  
38  
39  
40  
41  
42  
10D  
9E  
73  
2C  
QVLD  
74 DQ5 DQ11 DQ20 3E  
A
A
A
A
A
A
A
NC DQ7 DQ17 10C  
NC NC DQ16 11D  
75  
76  
77  
78  
79  
80  
81  
NC NC DQ29 2D  
NC  
NC  
2E  
1E  
NC  
NC  
9C  
9D  
NC DQ12 DQ30 2F  
NC NC DQ21 3F  
43 DQ4 DQ8 DQ8 11B  
NC  
NC  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
NC  
NC DQ7 11C  
1G  
1F  
NC  
NC  
9B  
10B  
11A  
10A  
9A  
10 DQ0 DQ0 DQ0 11P  
82 DQ6 DQ13 DQ22 3G  
11  
12  
13  
14  
15  
16  
17  
NC NC DQ9 10P  
CQ  
A
83  
84  
85  
86  
87  
88  
89  
90  
NC NC DQ31 2G  
NC  
NC  
10N  
9P  
DLL#  
NC  
1H  
1J  
2J  
A
A
NC  
NC DQ1 DQ11 10M  
NC NC DQ10 11N  
8B  
A
NC  
NC  
LD#  
NC  
7C  
NC DQ14 DQ23 3K  
NC NC DQ32 3J  
NC  
NC  
9M  
9N  
6C  
NC  
NC  
8A  
2K  
1K  
18 DQ1 DQ2 DQ2 11L  
NC  
NC BW1# 7A  
BW0#  
K
19  
20  
21  
22  
23  
24  
25  
NC NC DQ1 11M  
7B  
6B  
6A  
91 DQ7 DQ15 DQ33 2L  
NC  
NC  
9L  
92  
93  
94  
95  
96  
97  
98  
NC NC DQ24 3L  
K#  
NC  
NC  
10L  
1M  
1L  
NC DQ3 DQ3 11K  
NC NC DQ12 10K  
NC  
NC BW3# 5B  
NC BW1# BW2# 5A  
NC DQ16 DQ25 3N  
NC NC DQ34 3M  
NC  
NC  
9J  
R, W#  
4A  
5C  
4B  
3A  
2A  
1A  
NC  
NC  
9K  
A
A
1N  
2M  
26 DQ2 DQ4 DQ13 10J  
27  
28  
29  
30  
31  
32  
33  
34  
NC NC DQ4 11J  
A
99 DQ8 DQ17 DQ26 3P  
100 NC NC DQ35 2N  
ZQ  
NC  
NC  
11H  
10G  
9G  
A
A
NC  
NC  
NC  
CQ#  
101  
102  
103  
104  
105  
106  
107  
108  
109  
2P  
1P  
NC DQ9 DQ27 2B  
NC NC DQ18 3B  
NC DQ5 DQ5 11F  
NC NC DQ14 11G  
A
A
A
A
A
A
3R  
NC  
NC  
1C  
1B  
4R  
NC  
NC  
9F  
4P  
10F  
NC DQ10 DQ19 3D  
NC NC DQ28 3C  
NC  
5P  
35 DQ3 DQ6 DQ6 11E  
36 NC NC DQ15 10E  
5N  
1D  
5R  
Internal  
Preliminary Data Sheet M18524EJ1V0DS  
26  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
JTAG Instructions  
Instructions  
Description  
EXTEST  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-  
scan register cells at output pins are used to apply test vectors, while those at input pins capture test  
results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,  
the output drive is turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is  
placed in the test-logic-reset state.  
When the BYPASS instruction is loaded in the instruction register, the bypass register is placed  
between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This  
allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /  
PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-  
DR state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to  
capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state).  
Although allowing the TAP to sample metastable input will not harm the device, repeatable results  
cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input  
data capture setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any  
other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving  
the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are forced to an  
inactive drive state (high impedance) and the boundary register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
1
2
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
2
2
1
1
0
1
1
1
Notes 1. TRISTATE all DQ pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
2. Do not use this instruction code because the vendor uses it to evaluate this product.  
27  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Output Pin States of CQ, CQ#, QVLD and DQ  
Instructions  
Control-Register Status  
Output Pin Status  
CQ, CQ#, QVLD  
DQ  
EXTEST  
0
1
0
1
0
1
0
1
0
1
Update  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
High-Z  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
Boundary Scan  
Register  
Remark The output pin statuses during each instruction vary according  
to the Control-Register status (value of Boundary Scan  
Register, bit no. 109).  
CAPTURE  
Register  
There are three statuses:  
SRAM  
Output  
Update : Contents of the “Update Register” are output to the  
output pin (QDR Pad).  
Update  
Register  
SRAM : Contents of the SRAM internal output “SRAM  
Output” are output to the output pin (QDR Pad).  
High-Z : The output pin (QDR Pad) becomes high  
impedance by controlling of the “High-Z JTAG ctrl”.  
Update  
QDR  
Pad  
SRAM  
SRAM  
Output  
Driver  
The Control-Register status is set during Update-DR at the  
EXTEST or SAMPLE instruction.  
High-Z  
High-Z  
JTAG ctrl  
Preliminary Data Sheet M18524EJ1V0DS  
28  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Boundary Scan Register Status of Output Pins CQ, CQ#, QVLD and DQ  
Instructions  
SRAM Status  
Boundary Scan Register Status  
Note  
CQ, CQ#, QVLD  
DQ  
Pad  
Pad  
EXTEST  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
Pad  
Pad  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
No definition  
Pad  
Pad  
Internal  
Internal  
Pad  
Pad  
Internal  
Pad  
No definition  
Boundary Scan  
Register  
Remark The Boundary Scan Register statuses during execution each  
instruction vary according to the instruction code and SRAM  
operation mode.  
CAPTURE  
Register  
There are two statuses:  
Internal  
SRAM  
Output  
Update  
Register  
Pad  
: Contents of the output pin (QDR Pad) are  
captured in the “CAPTURE Register” in the  
Boundary Scan Register.  
Pad  
Internal : Contents of the SRAM internal output “SRAM  
Output” are captured in the “CAPTURE Register”  
in the Boundary Scan Register.  
QDR  
Pad  
SRAM  
Output  
Driver  
High-Z  
JTAG ctrl  
29  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs. TDI and TMS may be left open but fix  
them to VDD via a resistor of about 1 kΩ when the TAP controller is not used. TDO should be left unconnected also  
when the TAP controller is not used.  
Preliminary Data Sheet M18524EJ1V0DS  
30  
Test Logic Operation (Instruction Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
IDCODE  
New Instruction  
Output Inactive  
TDO  
Test Logic (Data Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
Instruction  
IDCODE  
Output Inactive  
TDO  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Package Drawing  
165-PIN PLASTIC BGA (15x17)  
B
E
w S  
B
ZD  
ZE  
11  
10  
9
8
A
7
6
D
5
4
3
2
1
R P N M L K J H G F E D C B A  
w
S A  
INDEX MARK  
A
A2  
A1  
y1  
S
S
y
e
S
(UNIT:mm)  
ITEM DIMENSIONS  
M
b
x
S A B  
D
E
15.00 0.10  
17.00 0.10  
0.15  
w
e
1.00  
A
1.40 0.11  
0.40 0.05  
1.00  
A1  
A2  
b
0.50 0.05  
0.08  
x
y
0.10  
y1  
ZD  
ZE  
0.20  
2.50  
1.50  
This package drawing is a preliminary version. It may be changed in the future.  
33  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
μPD44646094F5-FQ1 : 165-pin PLASTIC BGA (15x17)  
μPD44646184F5-FQ1 : 165-pin PLASTIC BGA (15x17)  
μPD44646364F5-FQ1 : 165-pin PLASTIC BGA (15x17)  
μPD44646096F5-FQ1 : 165-pin PLASTIC BGA (15x17)  
μPD44646186F5-FQ1 : 165-pin PLASTIC BGA (15x17)  
μPD44646366F5-FQ1 : 165-pin PLASTIC BGA (15x17)  
μPD44646094F5-FQ1-A : 165-pin PLASTIC BGA (15x17)  
μPD44646184F5-FQ1-A : 165-pin PLASTIC BGA (15x17)  
μPD44646364F5-FQ1-A : 165-pin PLASTIC BGA (15x17)  
μPD44646096F5-FQ1-A : 165-pin PLASTIC BGA (15x17)  
μPD44646186F5-FQ1-A : 165-pin PLASTIC BGA (15x17)  
μPD44646366F5-FQ1-A : 165-pin PLASTIC BGA (15x17)  
Preliminary Data Sheet M18524EJ1V0DS  
34  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
NOTES FOR CMOS DEVICES  
1
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
35  
Preliminary Data Sheet M18524EJ1V0DS  
μPD44646094, 44646184, 44646364, 44646096, 44646186, 44646366  
QDR RAMs and Quad Data Rate RAMs comprise a new series of products developed by Cypress Semiconductor,  
Renesas, IDT, NEC Electronics, and Samsung.  
The information in this document is current as of November, 2006. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD44646367F5-E25-FQ1-A

DDR SRAM, 2MX36, CMOS, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647094AF5-E30-FQ1-A

IC,SYNC SRAM,QDR,8MX9,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44647094AF5-E33-FQ1-A

IC,SYNC SRAM,QDR,8MX9,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44647094F5-E27-FQ1

IC,SYNC SRAM,QDR,8MX9,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647094F5-E27-FQ1-A

QDR SRAM, 8MX9, 0.45ns, CMOS, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647094F5-E30-FQ1

8MX9 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647094F5-E30-FQ1-A

QDR SRAM, 8MX9, 0.45ns, CMOS, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647094F5-E33-FQ1-A

8MX9 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647096AF5-E22-FQ1-A

IC,SYNC SRAM,QDR,8MX9,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44647096AF5-E25-FQ1-A

IC,SYNC SRAM,QDR,8MX9,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44647096AF5-E30-FQ1-A

IC,SYNC SRAM,QDR,8MX9,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44647096F5-E25-FQ1-A

IC,SYNC SRAM,QDR,8MX9,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC