UPD4481162GF-C50 [NEC]

512KX16 ZBT SRAM, 3.2ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, LQFP-100;
UPD4481162GF-C50
型号: UPD4481162GF-C50
厂家: NEC    NEC
描述:

512KX16 ZBT SRAM, 3.2ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, LQFP-100

静态存储器 内存集成电路
文件: 总40页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ
PD4481162, 4481182, 4481322, 4481362  
8M-BIT ZEROSBTM SRAM  
PIPELINED OPERATION  
Description  
The µPD4481162 is a 524,288-word by 16-bit, the µPD4481182 is a 524,288-word by 18-bit, the µPD4481322 is a  
262,144-word by 32-bit and the µPD4481362 is a 262,144-word by 36-bit ZEROSB static RAM fabricated with  
advanced CMOS technology using full CMOS six-transistor memory cell.  
The µPD4481162, µPD4481182, µPD4481322 and µPD4481362 are optimized to eliminate dead cycles for read to  
write, or write to read transitions. These ZEROSB static RAMs integrate unique synchronous peripheral circuitry, 2-bit  
burst counter and output buffer as well as SRAM core. All input registers are controlled by a positive edge of the  
single clock input (CLK).  
The µPD4481162, µPD4481182, µPD4481322 and µPD4481362 are suitable for applications which require  
synchronous operation, high speed, low voltage, high density and wide bit configuration, such as buffer memory.  
ZZ has to be set LOW at the normal operation. When ZZ is set HIGH, the SRAM enters Power Down State (“Sleep”).  
In the “Sleep” state, the SRAM internal state is preserved. When ZZ is set LOW again, the SRAM resumes normal  
operation.  
The µPD4481162, µPD4481182, µPD4481322 and µPD4481362 are packaged in 100-pin PLASTIC LQFP with a 1.4  
mm package thickness or 165-pin TAPE FBGA for high density and low capacitive loading.  
Features  
Low voltage core supply (A version : VDD = 3.3 ± 0.165V, C version : VDD = 2.5 ± 0.125V)  
Synchronous operation  
100 percent bus utilization  
Internally self-timed write control  
Burst read / write : Interleaved burst and linear burst sequence  
Fully registered inputs and outputs for pipelined operation  
All registers triggered off positive clock edge  
3.3V or 2.5V LVTTL Compatible : All inputs and outputs  
Fast clock access time : 3.2 ns (200 MHz), 3.5 ns (167 MHz) , 4.2 ns (133 MHz)  
Asynchronous output enable : /G  
Burst sequence selectable : MODE  
Sleep mode : ZZ (ZZ = Open or Low : Normal operation)  
Separate byte write enable : /BW1 - /BW4 (µPD4481322 and µPD4481362), /BW1 - /BW2 (µPD4481162 and µPD4481182)  
Three chip enables for easy depth expansion  
Common I/O using three state outputs  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. M15562EJ1V0DS00 (1st edition)  
Date Published June 2001 NS CP(K)  
Printed in Japan  
2001  
©
µPD4481162, 4481182, 4481322, 4481362  
Ordering Information  
(1/2)  
Part number  
Access  
Time  
ns  
Clock  
Frequency  
MHz  
Core Supply  
Voltage  
V
I/O Interface  
Package  
µPD4481162GF-A50  
µPD4481162GF-A60  
µPD4481162GF-A75  
µPD4481182GF-A50  
µPD4481182GF-A60  
µPD4481182GF-A75  
µPD4481322GF-A50  
µPD4481322GF-A60  
µPD4481322GF-A75  
µPD4481362GF-A50  
µPD4481362GF-A60  
µPD4481362GF-A75  
µPD4481162GF-C50  
µPD4481162GF-C60  
µPD4481162GF-C75  
µPD4481182GF-C50  
µPD4481182GF-C60  
µPD4481182GF-C75  
µPD4481322GF-C50  
µPD4481322GF-C60  
µPD4481322GF-C75  
µPD4481362GF-C50  
µPD4481362GF-C60  
µPD4481362GF-C75  
µPD4481162F9-A50-EQx  
µPD4481162F9-A60-EQx  
µPD4481162F9-A75-EQx  
µPD4481182F9-A50-EQx  
µPD4481182F9-A60-EQx  
µPD4481182F9-A75-EQx  
µPD4481322F9-A50-EQx  
µPD4481322F9-A60-EQx  
µPD4481322F9-A75-EQx  
µPD4481362F9-A50-EQx  
µPD4481362F9-A60-EQx  
µPD4481362F9-A75-EQx  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
3.3 ± 0.165  
2.5 ± 0.125  
3.3 ± 0.165  
3.3 V or 2.5 V  
LVTTL  
100-pin PLASTIC LQFP  
(14 x 20)  
2.5 V  
LVTTL  
3.3 V or 2.5 V  
LVTTL  
165-pin TAPE FBGA  
(13 x 15)  
Remark "EQx" of part number is package specifications. However, this is not available.  
2
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
(2/2)  
Part number  
Access  
Time  
ns  
Clock  
Frequency  
MHz  
Core Supply  
Voltage  
V
I/O Interface  
Package  
µPD4481162F9-C50-EQx  
µPD4481162F9-C60-EQx  
µPD4481162F9-C75-EQx  
µPD4481182F9-C50-EQx  
µPD4481182F9-C60-EQx  
µPD4481182F9-C75-EQx  
µPD4481322F9-C50-EQx  
µPD4481322F9-C60-EQx  
µPD4481322F9-C75-EQx  
µPD4481362F9-C50-EQx  
µPD4481362F9-C60-EQx  
µPD4481362F9-C75-EQx  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
3.2  
3.5  
4.2  
200  
167  
133  
200  
167  
133  
200  
167  
133  
200  
167  
133  
2.5 ± 0.125  
2.5 V  
165-pin TAPE FBGA  
(13 x 15)  
LVTTL  
Remark "EQx" of part number is package specifications. However, this is not available.  
3
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Pin Configurations (Marking Side)  
/××× indicates active low signal.  
100-pin PLASTIC LQFP (14 × 20)  
[µPD4481162GF, µPD4481182GF]  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
NC  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A18  
NC  
NC  
2
3
V
DDQ  
4
VDDQ  
V
SSQ  
5
V
SSQ  
NC  
NC  
6
NC  
7
I/OP1, NC  
I/O8  
I/O9  
8
I/O10  
9
I/O7  
V
SS  
Q
Q
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
V
SS  
Q
V
DD  
DD  
Q
I/O11  
I/O12  
I/O6  
I/O5  
V
V
V
DD  
DD  
DD  
V
V
V
SS  
DD  
DD  
V
SS  
ZZ  
I/O13  
I/O14  
I/O4  
I/O3  
V
DD  
Q
Q
V
V
DD  
Q
V
SS  
SSQ  
I/O15  
I/O16  
I/O2  
I/O1  
NC  
I/OP2, NC  
NC  
NC  
V
SS  
Q
Q
V
V
SS  
Q
V
DD  
DD  
Q
NC  
NC  
NC  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Remark Refer to Package Drawings for 1-pin index mark.  
4
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Pin Identifications  
[µPD4481162GF, µPD4481182GF]  
Symbol  
Pin No.  
Description  
A0 - A18  
37, 36, 35, 34, 33, 32, 100, 99, 82, 81,  
44, 45, 46, 47, 48, 49, 50, 83, 80  
Synchronous Address Input  
I/O1 - I/O16  
58, 59, 62, 63, 68, 69, 72, 73, 8, 9, 12, 13, Synchronous Data In,  
18, 19, 22, 23  
Synchronous / Asynchronous Data Out  
I/OP1, NCNote  
I/OP2, NCNote  
ADV  
74  
Synchronous Data In (Parity),  
Synchronous / Asynchronous Data Out (Parity)  
Synchronous Address Load / Advance Input  
Synchronous Chip Enable Input  
Synchronous Write Enable Input  
Synchronous Byte Write Enable Input  
Asynchronous Output Enable Input  
Clock Input  
24  
85  
/CE, CE2, /CE2  
/WE  
98, 97, 92  
88  
/BW1, /BW2  
/G  
93, 94  
86  
CLK  
89  
/CKE  
87  
Synchronous Clock Enable Input  
Asynchronous Burst Sequence Select Input  
Have to tied to VDD or VSS during normal operation  
Asynchronous Power Down State Input  
Power Supply  
MODE  
31  
ZZ  
64  
VDD  
VSS  
14, 15, 16, 41, 65, 66, 91  
17, 40, 67, 90  
Ground  
VDDQ  
VSSQ  
NC  
4, 11, 20, 27, 54, 61, 70, 77  
5, 10, 21, 26, 55, 60, 71, 76  
Output Buffer Power Supply  
Output Buffer Ground  
1, 2, 3, 6, 7, 25, 28, 29, 30, 38, 39, 42, 43, No Connection  
51, 52, 53, 56, 57, 75, 78, 79, 84, 95, 96  
Note NC (No Connection) is used in the µPD4481162GF.  
I/OP1 - I/OP2 are used in the µPD4481182GF.  
5
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
100-pin PLASTIC LQFP (14 × 20)  
[µPD4481322GF, µPD4481362GF]  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
I/OP3, NC  
I/O17  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
I/OP2, NC  
I/O16  
2
I/O18  
3
I/O15  
V
DD  
Q
Q
4
V
DD  
SS  
Q
V
SS  
5
V
Q
I/O19  
I/O20  
I/O21  
I/O22  
6
I/O14  
I/O13  
I/O12  
I/O11  
7
8
9
V
SS  
Q
Q
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSS  
Q
VDD  
VDD  
Q
I/O23  
I/O24  
I/O10  
I/O9  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
ZZ  
I/O25  
I/O26  
I/O8  
I/O7  
V
DD  
Q
Q
V
DD  
SS  
Q
V
SS  
V
Q
I/O27  
I/O28  
I/O29  
I/O30  
I/O6  
I/O5  
I/O4  
I/O3  
V
SS  
Q
Q
VSS  
Q
VDD  
VDD  
Q
I/O31  
I/O32  
I/O2  
I/O1  
I/OP4, NC  
I/OP1, NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Remark Refer to Package Drawings for 1-pin index mark.  
6
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
[µPD4481322GF, µPD4481362GF]  
Symbol  
Pin No.  
Description  
A0 - A17  
37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44, Synchronous Address Input  
45, 46, 47, 48, 49, 50, 83  
I/O1 - I/O32  
52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72, Synchronous Data In,  
73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, Synchronous / Asynchronous Data Out  
18, 19, 22, 23, 24, 25, 28, 29  
I/OP1, NC Note  
I/OP2, NCNote  
I/OP3, NCNote  
I/OP4, NCNote  
ADV  
51  
Synchronous Data In (Parity),  
80  
Synchronous / Asynchronous Data Out (Parity)  
1
30  
85  
Synchronous Address Load / Advance Input  
Synchronous Chip Enable Input  
Synchronous Write Enable Input  
Synchronous Byte Write Enable Input  
Asynchronous Output Enable Input  
Clock Input  
/CE, CE2, /CE2  
/WE  
98, 97, 92  
88  
/BW1 - /BW4  
/G  
93, 94, 95, 96  
86  
89  
87  
31  
CLK  
/CKE  
Synchronous Clock Enable Input  
Asynchronous Burst Sequence Select Input  
Have to tied to VDD or VSS during normal operation  
Asynchronous Power Down State Input  
Power Supply  
MODE  
ZZ  
64  
VDD  
VSS  
14, 15, 16, 41, 65, 66, 91  
17, 40, 67, 90  
Ground  
VDDQ  
VSSQ  
NC  
4, 11, 20, 27, 54, 61, 70, 77  
5, 10, 21, 26, 55, 60, 71, 76  
38, 39, 42, 43, 84  
Output Buffer Power Supply  
Output Buffer Ground  
No Connection  
Note NC (No Connection) is used in the µPD4481322GF.  
I/OP1 - I/OP4 are used in the µPD4481362GF.  
7
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
165-pin TAPE FBGA  
[µPD4481162F9-EQx, µPD4481182F9-EQx]  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
NC  
NC  
A7  
A6  
/CE  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
/BW2  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A2  
NC  
/BW1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
/CE2  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
A1  
/CKE  
/WE  
VSS  
ADV  
/G  
A17  
NC  
A8  
A9  
A18  
NC  
NC  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A10  
A11  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
I/OP1  
I/O8  
I/O7  
I/O6  
I/O5  
ZZ  
NC  
I/O9  
I/O10  
I/O11  
I/O12  
VDD  
NC  
VSS  
NC  
NC  
VSS  
NC  
NC  
VSS  
NC  
G
H
J
NC  
VSS  
NC  
NC  
VSS  
NC  
I/O13  
I/O14  
I/O15  
I/O16  
I/OP2  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A5  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A13  
I/O4  
I/O3  
I/O2  
I/O1  
NC  
NC  
K
L
NC  
VSS  
NC  
NC  
VSS  
NC  
M
N
P
R
NC  
VSS  
NC  
NC  
VDD  
TDO  
TCK  
NC  
NC  
TDI  
TMS  
A14  
A15  
NC  
MODE  
NC  
A4  
A3  
A0  
A12  
A16  
8
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
[µPD4481162F9-EQx, µPD4481182F9-EQx]  
Symbol Pin No.  
Description  
A0 - A18  
6R, 6P, 4P, 4R, 3R, 3P, 2B, 2A, 10A, 10B, 8P, Synchronous Address Input  
8R, 9R, 9P, 10P, 10R, 11R, 9A, 11A  
I/O1 - I/O16  
10M, 10L, 10K, 10J, 11G, 11F, 11E, 11D, 2D,  
Synchronous Data In,  
2E, 2F, 2G, 1J, 1K, 1L, 1M  
11C  
Synchronous / Asynchronous Data Out  
Synchronous Data In (Parity),  
I/OP1, NCNote  
I/OP2, NCNote  
ADV  
1N  
Synchronous / Asynchronous Data Out (Parity)  
Synchronous Address Load / Advance Input  
Synchronous Chip Enable Input  
Synchronous Write Enable Input  
Synchronous Byte Write Enable Input  
Asynchronous Output Enable Input  
Clock Input  
8A  
/CE, CE2, /CE2  
/WE  
3A, 3B, 6A  
4H  
/BW1, /BW2  
/G  
5B, 4A  
8B  
CLK  
6B  
/CKE  
7A  
Synchronous Clock Enable Input  
MODE  
1R  
Asynchronous Burst Sequence Select Input  
Have to tied to VDD or VSS during normal operation  
Asynchronous Power Down State Input  
ZZ  
11H  
VDD  
2H, 4D, 4E, 4F, 4G, 4H, 4J, 4K, 4L, 4M, 7N, 8D, Power Supply  
8E, 8F, 8G, 8H, 8J, 8K, 8L, 8M  
VSS  
4C, 4N, 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, 5L, 5M, Ground  
6C, 6D, 6E, 6F, 6G, 6H, 6J, 6K, 6L, 6M, 7C, 7D,  
7E, 7F, 7G, 7H, 7J, 7K, 7L, 7M, 8C, 8N  
VDDQ  
NC  
3C, 3D, 3E, 3F, 3G, 3J, 3K, 3L, 3M, 3N, 9C, 9D, Output Buffer Power Supply  
9E, 9F, 9G, 9J, 9K, 9L, 9M, 9N  
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1P, 2C, 2J, 2K, No Connection  
2L, 2M, 2N, 2P, 2R, 3H, 4B, 5A, 5N, 6N, 9B, 9H,  
10C, 10D, 10E, 10F, 10G, 10H, 10N, 11B, 11J,  
11K, 11L, 11M, 11N, 11P  
TMS  
TDI  
5R  
5P  
7R  
7P  
Test Mode Select (JTAG)  
Test Data Input (JTAG)  
Test Clock Input (JTAG)  
Test Data Output (JTAG)  
TCK  
TDO  
Note NC (No Connection) is used in the µPD4481162F9-EQx.  
I/OP1 - I/OP2 are used in the µPD4481182F9-EQx .  
9
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
165-pin TAPE FBGA  
[µPD4481322F9-EQx, µPD4481362F9-EQx]  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
NC  
A7  
A6  
/CE  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
/BW3  
/BW4  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A2  
/BW2  
/BW1  
VSS  
/CE2  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
A1  
/CKE  
/WE  
VSS  
ADV  
/G  
A17  
NC  
A8  
A9  
NC  
NC  
A
B
C
D
E
F
I/OP3  
I/O18  
I/O20  
I/O22  
I/O24  
NC  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A10  
A11  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
I/OP2  
I/O15  
I/O13  
I/O11  
I/O9  
ZZ  
I/O17  
I/O19  
I/O21  
I/O23  
VDD  
VSS  
VSS  
I/O16  
I/O14  
I/O12  
I/O10  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G
H
J
VSS  
VSS  
I/O26  
I/O28  
I/O30  
I/O32  
I/OP4  
NC  
I/O25  
I/O27  
I/O29  
I/O31  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A5  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A13  
I/O8  
I/O6  
I/O4  
I/O2  
NC  
I/O7  
I/O5  
I/O3  
I/O1  
I/OP1  
NC  
VSS  
VSS  
K
L
VSS  
VSS  
VSS  
VSS  
M
N
P
R
NC  
VDD  
TDO  
TCK  
NC  
TDI  
TMS  
A14  
A15  
MODE  
NC  
A4  
A3  
A0  
A12  
A16  
10  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
[µPD4481322F9-EQx, µPD4481362F9-EQx]  
Symbol Pin No.  
Description  
A0 - A17  
6R, 6P, 4P, 4R, 3R, 3P, 2B, 2A, 10A, 10B, 8P, 8R, Synchronous Address Input  
9R, 9P, 10P, 10R, 11R, 9A  
I/O1 - I/O32  
11M, 10M, 11L, 10L, 11K, 10K, 11J, 10J, 11G,  
10G, 11F, 10F, 11E, 10E, 11D, 10D, 2D, 1D, 2E,  
1E, 2F, 1F, 2G, 1G, 2J, 1J, 2K, 1K, 2L, 1L, 2M, 1M  
11N  
Synchronous Data In,  
Synchronous / Asynchronous Data Out  
I/OP1, NC Note  
I/OP2, NCNote  
I/OP3, NCNote  
I/OP4, NCNote  
ADV  
Synchronous Data In (Parity),  
11C  
Synchronous / Asynchronous Data Out (Parity)  
1C  
1N  
8A  
Synchronous Address Load / Advance Input  
Synchronous Chip Enable Input  
Synchronous Write Enable Input  
Synchronous Byte Write Enable Input  
Asynchronous Output Enable Input  
Clock Input  
/CE, CE2, /CE2  
/WE  
3A, 3B, 6A  
7B  
/BW1 - /BW4  
/G  
5B, 5A, 4A, 4B  
8B  
6B  
7A  
1R  
CLK  
/CKE  
Synchronous Clock Enable Input  
MODE  
Asynchronous Burst Sequence Select Input  
Have to tied to VDD or VSS during normal operation  
Asynchronous Power Down State Input  
ZZ  
11H  
VDD  
2H, 4D, 4E, 4F, 4G, 4H, 4J, 4K, 4L, 4M, 7N, 8D,  
8E, 8F, 8G, 8H, 8J, 8K, 8L, 8M  
Power Supply  
VSS  
4C, 4N, 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, 5L, 5M,  
6C, 6D, 6E, 6F, 6G, 6H, 6J, 6K, 6L, 6M, 7C, 7D,  
7E, 7F, 7G, 7H, 7J, 7K, 7L, 7M, 8C, 8N  
3C, 3D, 3E, 3F, 3G, 3J, 3K, 3L, 3M, 3N, 9C, 9D,  
9E, 9F, 9G, 9J, 9K, 9L, 9M, 9N  
Ground  
VDDQ  
NC  
Output Buffer Power Supply  
No Connection  
1A, 1B, 1H, 1P, 2C, 2N, 2P, 2R, 3H, 5N, 6N, 9B,  
9H, 10C, 10H, 10N, 11A, 11B, 11P  
5R  
TMS  
TDI  
Test Mode Select (JTAG)  
Test Data Input (JTAG)  
Test Clock Input (JTAG)  
Test Data Output (JTAG)  
5P  
7R  
7P  
TCK  
TDO  
Note NC (No Connection) is used in the µPD4481322F9-EQx.  
I/OP1 - I/OP4 are used in the µPD4481362F9-EQx.  
11  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Block Diagrams  
[µPD4481162, µPD4481182]  
19  
17  
19  
A0 - A18  
MODE  
Address  
register 0  
A1  
A0  
A1’  
A0’  
Burst  
logic  
ADV  
K
K
CLK  
/CKE  
19  
19  
Write address  
register 1  
Write address  
register 0  
Memory Cell Array  
1,024 rows  
ADV  
/BW1  
/BW2  
Write registry and  
data coherency  
control logic  
Write  
drivers  
16/18  
16/18  
I/O1 - I/O16  
I/OP1, I/OP2  
512 x 16 columns  
(8,388,608 bits)  
512 x 18 columns  
(9,437,184 bits)  
/WE  
E
E
16/18  
16/18  
16/18  
Input  
register 1  
Input  
register 0  
E
E
Read  
logic  
/G  
/CE  
CE2  
/CE2  
ZZ  
Power down control  
Burst Sequence  
[µPD4481162, µPD4481182]  
Interleaved Burst Sequence Table (MODE = Open or VDD)  
External Address  
1st Burst Address  
2nd Burst Address  
3rd Burst Address  
A18 - A2, A1, A0  
A18 - A2, A1, /A0  
A18 - A2, /A1, A0  
A18 - A2, /A1, /A0  
Linear Burst Sequence Table (MODE = VSS)  
External Address  
1st Burst Address  
2nd Burst Address  
3rd Burst Address  
A18 - A2, 0, 0  
A18 - A2, 0, 1  
A18 - A2, 1, 0  
A18 - A2, 1, 1  
A18 - A2, 0, 1  
A18 - A2, 1, 0  
A18 - A2, 1, 1  
A18 - A2, 0, 0  
A18 - A2, 1, 0  
A18 - A2, 1, 1  
A18 - A2, 0, 0  
A18 - A2, 0, 1  
A18 - A2, 1, 0  
A18 - A2, 1, 1  
A18 - A2, 0, 0  
A18 - A2, 0, 1  
12  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
[µPD4481322, µPD4481362]  
18  
16  
18  
A0 - A17  
MODE  
Address  
register 0  
A1  
A0  
A1’  
A0’  
Burst  
logic  
ADV  
K
K
CLK  
/CKE  
18  
18  
Write address  
register 1  
Write address  
register 0  
Memory Cell Array  
1,024 rows  
ADV  
/BW1  
/BW2  
/BW3  
/BW4  
/WE  
Write registry and  
data coherency  
control logic  
Write  
drivers  
32/36  
32/36  
I/O1 - I/O32  
256 x 32 columns  
(8,388,608 bits)  
256 x 36 columns  
(9,437,184 bits)  
I/OP1 - I/OP4  
E
E
32/36  
32/36  
32/36  
Input  
register 1  
Input  
register 0  
E
E
Read  
logic  
/G  
/CE  
CE2  
/CE2  
ZZ  
Power down control  
[µPD4481322, µPD4481362]  
Interleaved Burst Sequence Table (MODE = Open or VDD)  
External Address  
1st Burst Address  
2nd Burst Address  
3rd Burst Address  
A17 - A2, A1, A0  
A17 - A2, A1, /A0  
A17 - A2, /A1, A0  
A17 - A2, /A1, /A0  
Linear Burst Sequence Table (MODE = VSS)  
External Address  
1st Burst Address  
2nd Burst Address  
3rd Burst Address  
A17 - A2, 0, 0  
A17 - A2, 0, 1  
A17 - A2, 1, 0  
A17 - A2, 1, 1  
A17 - A2, 0, 1  
A17 - A2, 1, 0  
A17 - A2, 1, 1  
A17 - A2, 0, 0  
A17 - A2, 1, 0  
A17 - A2, 1, 1  
A17 - A2, 0, 0  
A17 - A2, 0, 1  
A17 - A2, 1, 1  
A17 - A2, 0, 0  
A17 - A2, 0, 1  
A17 - A2, 1, 0  
13  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
State Diagram  
DS  
BURST  
DS  
DS  
DESELECT  
READ  
WRITE  
DS  
DS  
WRITE  
READ  
BEGIN  
READ  
BEGIN  
WRITE  
READ  
WRITE  
READ  
BURST  
BURST  
WRITE  
WRITE  
READ  
BURST  
READ  
BURST  
WRITE  
BURST  
BURST  
Command  
DS  
Operation  
Deselect  
Read  
Write  
New Read  
New Write  
Burst  
Burst Read, Burst Write or Continue Deselect  
Remarks 1. States change on the rising edge of the clock.  
2. A Stall of Ignore Clock Edge cycle is not shown in the above diagram. This is because /CKE HIGH only  
blocks the clock (CLK) input and does not change the state of the device.  
14  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Asynchronous Truth Table  
Operation  
Read Cycle  
/G  
L
I/O  
Data-Out  
Hi-Z  
Read Cycle  
H
×
Write Cycle  
Hi-Z, Data-In  
Hi-Z  
Deselected  
×
Remark × : dont care  
Synchronous Truth Table  
Operation  
Deselected  
/CE  
H
×
CE2 /CE2 ADV  
/WE /BWs /CKE  
CLK  
I/O  
Hi-Z  
Address  
None  
Note  
×
L
×
×
H
×
L
×
L
×
L
×
×
L
L
×
×
×
×
H
×
L
×
L
×
×
×
×
×
×
×
×
L
L
H
H
×
L
L
L
L
L
L
L
L
L
L
H
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
1
1
1
1
Deselected  
Hi-Z  
None  
Deselected  
×
×
×
H
×
H
×
H
×
×
L
Hi-Z  
None  
Continue Deselected  
Read Cycle / Begin Burst  
Read Cycle / Continue Burst  
Write Cycle / Begin Burst  
Write Cycle / Continue Burst  
Write Cycle / Write Abort  
Write Cycle / Write Abort  
Stall / Ignore Clock Edge  
×
H
L
Hi-Z  
None  
L
Data-Out  
Data-Out  
Data-In  
Data-In  
Hi-Z  
External  
Next  
×
H
L
L
External  
Next  
×
H
L
L
External  
Next  
×
H
×
Hi-Z  
×
Current  
2
Notes 1. Deselect status is held until new Begin Burstentry.  
2. If an Ignore Clock Edge command occurs during a read operation, the I/O bus will remain active (Low-Z).  
If it occurs during a write cycle, the bus will remain Hi-Z. No write operation will be performed during the  
Ignore Clock Edge cycle.  
Remarks 1. × : dont care  
2. /BWs = L means any one or more byte write enables (/BW1, /BW2, /BW3 or /BW4) are LOW.  
/BWs = H means all byte write enables (/BW1, /BW2, /BW3 or /BW4) are HIGH.  
15  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Partial Truth Table for Write Enables  
[µPD4481162, µPD4481182]  
Operation  
/WE  
H
/BW1  
/BW2  
Read Cycle  
×
L
×
H
L
Write Cycle / Byte 1 (I/O [1:8], I/OP1)  
Write Cycle / Byte 2 (I/O [9:16], I/OP2)  
Write Cycle / All Bytes  
Write Abort / NOP  
L
L
H
L
L
L
L
H
H
Remark × : dont care  
[µPD4481322, µPD4481362]  
Operation  
/WE  
H
L
/BW1  
/BW2  
/BW3  
/BW4  
Read Cycle  
×
L
×
H
L
×
H
H
L
×
H
H
H
L
Write Cycle / Byte 1 (I/O [1:8], I/OP1)  
Write Cycle / Byte 2 (I/O [9:16], I/OP2)  
Write Cycle / Byte 3 (I/O [17:24], I/OP3)  
Write Cycle / Byte 4 (I/O [25:32], I/OP4)  
Write Cycle / All Bytes  
L
H
H
H
L
L
H
H
L
L
H
L
L
L
Write Abort / NOP  
L
H
H
H
H
Remark × : dont care  
ZZ (Sleep) Truth Table  
ZZ  
0.2 V  
Chip Status  
Active  
Active  
Sleep  
Open  
VDD 0.2 V  
16  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Conditions  
MIN.  
0.5  
TYP.  
MAX.  
+4.0  
Unit  
V
Supply voltage  
for A version  
for C version  
0.5  
+3.0  
Output supply voltage  
Input voltage  
VDDQ  
VIN  
0.5  
VDD  
V
V
0.5 Note  
0.5 Note  
0
VDD + 0.5  
VDDQ + 0.5  
70  
Input / Output voltage  
Operating ambient temperature  
Storage temperature  
VI/O  
TA  
V
°C  
°C  
Tstg  
55  
+125  
Note 2.0 V (MIN.) (Pulse width : 2 ns)  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70 °C)  
for A Version [µPD4481162-Axx, µPD4481182-Axx, µPD4481322-Axx, µPD4481362-Axx]  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
TYP.  
3.3  
MAX.  
3.465  
Unit  
V
3.135  
2.5 V LVTTL Interface  
Output supply voltage  
High level input voltage  
Low level input voltage  
3.3 V LVTTL Interface  
Output supply voltage  
High level input voltage  
Low level input voltage  
VDDQ  
VIH  
2.375  
1.7  
2.5  
3.3  
2.9  
VDDQ + 0.3  
+0.7  
V
V
V
VIL  
0.3 Note  
VDDQ  
VIH  
3.135  
2.0  
3.465  
VDDQ + 0.3  
+0.8  
V
V
V
VIL  
0.3 Note  
Note 0.8 V (MIN.) (Pulse width : 2 ns)  
for C Version [µPD4481162-Cxx, µPD4481182-Cxx, µPD4481322-Cxx, µPD4481362-Cxx]  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
2.375  
2.375  
1.7  
TYP.  
2.5  
MAX.  
2.625  
Unit  
V
Output supply voltage  
High level input voltage  
Low level input voltage  
VDDQ  
VIH  
2.5  
2.625  
V
VDDQ + 0.3  
+0.7  
V
VIL  
0.3 Note  
V
Note 0.8 V (MIN.) (Pulse width : 2 ns)  
17  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
DC Characteristics (TA = 0 to 70°C, VDD = 3.3 ± 0.165 V or 2.5 ± 0.125 V)  
Parameter  
Input leakage current  
I/O leakage current  
Operating supply current  
Symbol  
ILI  
Test condition  
MIN.  
2  
TYP.  
MAX.  
+2  
Unit  
µA  
VIN (except ZZ, MODE) = 0 V to VDD  
VI/O = 0 V to VDDQ, Outputs are disabled.  
Device selected, Cycle = MAX. -A50, -C50  
ILO  
2  
+2  
µA  
IDD  
400  
350  
300  
TBD  
mA  
VIN VIL or VIN VIH,  
-A60, -C60  
-A75, -C75  
II/O = 0 mA  
Standby supply current  
ISB  
Device deselected, Cycle = 0 MHz,  
VIN VIL or VIN VIH, All inputs are static.  
Device deselected, Cycle = 0 MHz,  
VIN 0.2 V or VIN VDD 0.2 V,  
VI/O 0.2 V, All inputs are static.  
Device deselected, Cycle = MAX.  
VIN VIL or VIN VIH  
mA  
ISB1  
TBD  
ISB2  
ISBZZ  
VOH  
VOL  
130  
Power down supply current  
2.5 V LVTTL Interface  
High level output voltage  
ZZ VDD 0.2 V, VI/O VDDQ + 0.2 V  
TBD  
mA  
V
IOH = 2.0 mA  
IOL = 1.0 mA  
IOH = +2.0 mA  
IOL = +1.0 mA  
1.7  
2.1  
Low level output voltage  
0.7  
0.4  
V
3.3 V LVTTL Interface  
High level output voltage  
Low level output voltage  
VOH  
VOL  
IOH = 4.0 mA  
2.4  
V
V
IOL = +8.0 mA  
0.4  
Capacitance (TA = 25 °C, f = 1MHz)  
Parameter  
Symbol  
CIN  
Test condition  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
5.0  
Unit  
pF  
Input capacitance  
Input / Output capacitance  
Clock input capacitance  
CI/O  
VI/O = 0 V  
8.0  
pF  
Cclk  
Vclk = 0 V  
6.0  
pF  
Remark These parameters are not 100% tested.  
18  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
AC Characteristics (TA = 0 to 70°C, VDD = 3.3 ± 0.165 V or 2.5 ± 0.125 V)  
AC Test Conditions  
2.5 V LVTTL Interface  
Input waveform (Rise / Fall time2.4 ns)  
2.4 V  
V
DDQ/2  
Test points  
Test points  
VDDQ/2  
VSS  
Output waveform  
VDDQ/2  
VDDQ/2  
3.3 V LVTTL Interface  
Input waveform (Rise / Fall time3.0 ns)  
3.0 V  
1.5 V  
Test points  
Test points  
1.5 V  
VSS  
Output waveform  
1.5 V  
1.5 V  
Output load condition  
CL : 30 pF  
5 pF (TKHQX1, TKHQX2, TGLQX, TGHQZ, TKHQZ)  
Figure External load at test  
ZO = 50 Ω  
I/O (Output)  
C
L
50 Ω  
VT = +1.2 V / +1.5 V  
Remark CL includes capacitances of the probe and jig, and stray capacitances.  
19  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Read and Write Cycle  
Parameter  
Symbol  
-A50, -C50  
(200 MHz)  
-A60, -C60  
(167 MHz)  
-A75, -C75  
(133 MHz)  
Unit Notes  
Standard  
Alias  
TCYC  
TCD  
TOE  
TDC1  
TDC2  
TOLZ  
TOHZ  
TCZ  
TCH  
TCL  
TAS  
TSS  
TDS  
TWS  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Cycle time  
TKHKH  
TKHQV  
TGLQV  
TKHQX1  
TKHQX2  
TGLQX  
TGHQZ  
TKHQZ  
TKHKL  
ns  
ns  
ns  
5
6
7.5  
4.2  
4.2  
Clock access time  
3.2  
3.2  
3.5  
3.5  
Output enable access time  
Clock high to output active  
Clock high to output change  
Output enable to output active  
Output disable to output Hi-Z  
Clock high to output Hi-Z  
Clock high pulse width  
Clock low pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2  
1.5  
1.5  
0
1.5  
1.5  
0
1.5  
1.5  
0
1
1
0
3.2  
3.2  
0
3.5  
3.5  
0
4.2  
3.5  
1, 2  
1.5  
1.8  
1.8  
1.5  
1.5  
1.8  
1.8  
1.5  
1.5  
2.2  
2.2  
1.5  
TKLKH  
Setup times  
Address  
TAVKH  
TADSVKH  
TDVKH  
TWVKH  
Address status  
Data in  
Write enable  
Address advance TADVVKH  
Chip enable  
Address  
TEVKH  
TKHAX  
Hold times  
TAH  
TSH  
TDH  
TWH  
0.5  
0.5  
0.5  
ns  
Address status  
Data in  
TKHADSX  
TKHDX  
Write enable  
TKHWX  
Address advance TKHADVX  
Chip enable  
TKHEX  
TZZE  
Power down entry time  
TZZE  
TZZR  
ns  
ns  
10  
10  
12  
12  
15  
15  
Power down recovery time  
TZZR  
Notes 1. Transition is measured ±200 mV from steady state.  
2. To avoid bus contention, the output buffers are designed such that TKHQZ (device turn-off) is faster than  
TKHQX1 (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus  
contention because TKHQX1 is a min. parameter that is worse case at totally different conditions (0 °C, VDD  
max.) than TKHQZ, which is a max. parameter (worse case at 70 °C, VDD min.).  
20  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
READ / WRITE CYCLE  
1
2
TKHKH  
3
4
5
6
7
8
9
10  
CLK  
TKHKL TKLKH  
TEVKH TKHEX  
TCVKH TKHCX  
/CKE  
/CEs Note 1  
ADV  
TADVVKH TKHADVX  
TWVKH TKHWX  
TWVKH TKHWX  
/WE  
/BWs Note 2  
Address  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
TAVKH TKHAX  
D (A1)  
D (A2)  
D (A2+1)  
D (A5)  
Data In  
TDVKH TKHDX  
TKHQX1  
TKHQX2  
Q (A3)  
TGLQV TKHQZ  
Q (A4)  
Q (A4+1)  
Q (A6)  
Data Out  
/G  
TKHQX2  
TGHQZ  
TKHQV  
TGLQX  
BURST  
WRITE  
D (A2+1)  
BURST  
READ  
Q (A4+1)  
WRITE  
D (A1)  
WRITE  
D (A2)  
READ  
Q (A3)  
READ  
Q (A4)  
WRITE  
D (A5)  
READ  
Q (A6)  
WRITE  
Q (A7)  
Command  
DESELECT  
Notes 1. /CEs refers to /CE, CE2 and /CE2. When /CEs is LOW, /CE and /CE2 are LOW and CE2 is HIGH. When  
/CEs is HIGH, /CE and /CE2 are HIGH and CE2 is LOW.  
2. /BWs refers to /BW1, /BW2, /BW3 and /BW4. When /BWs is LOW, any one or more byte write enables  
(/BW1, /BW2, /BW3 or /BW4) are LOW.  
21  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
NOP, STALL AND DESELECT CYCLE  
1
2
3
4
5
6
7
8
9
10  
CLK  
/CKE  
/CEs  
ADV  
/WE  
/BWs  
Address  
A1  
A2  
A3  
A4  
A5  
D (A1)  
D (A4)  
Data In  
TKHQZ  
Q (A2)  
Q (A3)  
Q (A5)  
TKHQX2  
Data Out  
WRITE  
D (A1)  
READ  
Q (A2)  
READ  
Q (A3)  
WRITE  
D (A4)  
READ  
Q (A5)  
CONTINUE  
DESELECT  
Command  
STALL  
STALL  
NOP  
DESELECT  
22  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
POWER DOWN (ZZ) CYCLE  
1
2
3
4
5
6
7
8
9
10  
11  
12  
TKHKH  
CLK  
/CKE  
TKHKL TKLKH  
/CEs Note  
ADV  
/WE Note  
/BWs  
Address  
/G  
A1  
A2  
Data Out  
ZZ  
Q1 (A2)  
Q (A1)  
TZZEH TZZES  
TZZRH TZZRS  
Power Down (ISBZZ) State  
Note /WE or /CEs must be held HIGH at CLK rising edge (clock edge No.2 and No.3 in this figure) prior to power  
down state entry.  
23  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
JTAG Specification  
The µPD4481162, µPD4481182, µPD4481322 and µPD4481362 support a limited set of JTAG functions as in IEEE  
standard 1149.1.  
Test Access Port (TAP) Pins  
Pin Name  
TCK  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling  
edge of TCK.  
TMS  
TDI  
Test Mode Select. This is the command input for the TAP controller state machine.  
Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed  
between TDI and TDO is deter-mined by the state of the TAP controller state machine and the instruction that is  
currently loaded in the TAP instruction.  
TDO  
Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial  
registers placed between TDI and TDO.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (Tj = 0 to 70 °C)  
Parameter  
Symbol  
VIH  
Conditions  
MIN.  
2.0  
0.3  
2.4  
TYP.  
MAX.  
VDD + 0.3  
+0.8  
Unit  
V
Note  
JTAG input high voltage  
JTAG input low voltage  
JTAG output high voltage  
JTAG output low voltage  
VIL  
V
VOH  
VOL  
IOH = 8 mA  
IOL = 8 mA  
V
0.4  
V
24  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
JTAG AC Test Conditions (Tj = 0 to 70 °C)  
Input waveform (rise / fall time = 1 ns (20 to 80 %))  
3.0 V  
1.5 V  
1.5 V  
Test Points  
0 V  
Output waveform  
1.5 V  
1.5 V  
Test Points  
Output load (VTT=1.5 V)  
V
TT  
50 Ω  
ZO = 50 Ω  
TDO  
25  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
JTAG AC Characteristics (Tj = 0 to 70 °C)  
Parameter  
Symbol  
tTHTH  
Conditions  
MIN.  
100  
40  
TYP.  
MAX.  
Unit  
ns  
Note  
Clock cycle time (TCK)  
Clock phase time (TCK)  
Setup time (TMS / TDI)  
Hold time (TMS / TDI)  
TCK low to TDO valid (TDO)  
tTHTL / tTLTH  
tMVTH / tDVTH  
tTHMX / tTHDX  
tTLQV  
ns  
10  
ns  
10  
ns  
20  
ns  
JTAG Timing Diagram  
t
THTH  
TCK  
TMS  
TDI  
t
MVTH  
t
THTL  
t
TLTH  
t
THMX  
t
DVTH  
t
THDX  
t
TLQV  
TDO  
26  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bits position in the boundary register. The shift register bit  
nearest TDO (i.e., first to be shifted out) is defined as bit 1. The second column is the name of the  
input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
512K x 16/18  
256K x 16/18  
Unit  
bit  
3
1
3
1
bit  
32  
51  
32  
70  
bit  
Boundary register  
bit  
ID Register Definition  
Part number Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
ID [11:1] vendor ID no.  
00000010000  
ID [0] fix bit  
µPD4481162  
µPD4481182  
µPD4481322  
µPD4481362  
512K x 16  
512K x 18  
256K x 16  
256K x 18  
XXXX  
XXXX  
XXXX  
XXXX  
0000 0000 0000 1000  
0000 0000 0000 1001  
0000 0000 0000 1010  
0000 0000 0000 1011  
1
1
1
1
00000010000  
00000010000  
00000010000  
27  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
SCAN Exit Order  
[µPD4481162F9-EQx / µPD4481182F9-EQx (512K words by 16/18 bits)]  
Bit no. Signal name  
Bump ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit no.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Signal name  
/WE  
CLK  
/CE2  
/BW1  
/BW2  
CE2  
/CE  
A7  
Bump ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1
2
A10  
A11  
A12  
A13  
A14  
A15  
A16  
I/O  
3
4
5
6
7
8
9
I/O  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
I/O  
I/O  
I/O  
I/O  
ZZ  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A18  
A9  
I/O  
I/O  
A8  
MODE  
A5  
A17  
NC  
ADV  
/G  
A4  
A3  
A2  
/CKE  
A1  
A0  
28  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
[µPD4481322F9-EQx / µPD4481362F9-EQx (256K words by 32/36 bits)]  
Bit no. Signal name Bit no. Signal name  
Bump ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bump ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1
A10  
A11  
A12  
A13  
A14  
A15  
A16  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
/CE2  
/BW1  
/BW2  
/BW3  
/BW4  
CE2  
/CE  
A7  
2
3
4
5
6
7
8
9
I/O  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ZZ  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A9  
I/O  
A8  
I/O  
A17  
NC  
ADV  
/G  
MODE  
A5  
A4  
A3  
/CKE  
/WE  
CLK  
A2  
A1  
A0  
29  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
JTAG Instructions  
Instructions  
EXTEST  
Description  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction  
register, whatever length it may be in the device, is loaded with all logic 0s. EXTEST is not implemented  
in this device. Therefore this device is not 1149.1 compliant. Nevertheless, this RAMs TAP does  
respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the  
instruction register the RAM responds just as it does in response to the SAMPLE instruction, except the  
RAM output are forced to Hi-Z any time the instruction is loaded.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed  
in the test-logic-reset state.  
BYPASS  
SAMPLE  
The BYPASS instruction is loaded in the instruction register when the bypass register is placed between  
TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the  
board level scan path to be shortened to facilitate testing of other devices in the scan path.  
Sample is a Standard 1149.1 mandatory public instruction. When the sample instruction is loaded in the  
instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input  
and I/O buffers into the boundary scan register. Because the RAM clock(s) are independent from the  
TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable  
input will not harm the device, repeatable results cannot be expected. RAM input signals must be  
stabilized for long enough to meet the TAPs input data capture setup plus hold time (tCS plus tCH). The  
RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring  
contents into the boundary scan register. Moving the controller to shift-DR state then places the  
boundary scan register between the TDI and TDO pins. This functionality is not Standard 1149.1  
compliant.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive  
drive state (Hi-Z) and the boundary register is connected between TDI and TDO when the TAP controller  
is moved to the shift-DR state.  
JTAG Instruction Cording  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
IDCODE  
SAMPLE-Z  
BYPASS  
SAMPLE  
BYPASS  
BYPASS  
BYPASS  
Note  
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Note 1. TRISTATE all data drivers and CAPTURE the pad values into a SERIAL SCAN LATCH.  
30  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with  
normal operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and  
may be left unconnected. But they may also be tied to VDD through a 1k resistor.  
TDO should be left unconnected.  
31  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Run-Test/Idle  
Update-IR  
Exit1-IR  
Shift-IR  
Exit2-IR  
Pause-IR  
Exit1-IR  
Shift-IR  
Capture-IR  
select-IR-Scan  
select-DR-Scan  
Run-Test/Idle  
Test-Logic-Reset  
32  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Test-Logic-Reset  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Update-DR  
Exit1-DR  
Shift-DR  
Exit2-DR  
Pause-DR  
Exit1-DR  
Shift-DR  
Capture-DR  
select-DR-Scan  
Run-Test/Idle  
33  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Package Drawings  
100-PIN PLASTIC LQFP (14x20)  
A
B
80  
81  
51  
50  
detail of lead end  
S
C
D
R
Q
31  
30  
100  
1
F
M
G
J
H
I
K
P
S
N
S
L
M
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.13 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
D
F
22.0±0.2  
20.0±0.2  
14.0±0.2  
16.0±0.2  
0.825  
G
0.575  
+0.08  
0.32  
H
0.07  
I
J
0.13  
0.65 (T.P.)  
1.0±0.2  
0.5±0.2  
K
L
+0.06  
0.17  
M
0.05  
N
P
Q
0.10  
1.4  
0.125±0.075  
+7°  
3°  
R
S
3°  
1.7 MAX.  
S100GF-65-8ET-1  
34  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
165-PIN TAPE FBGA (13x15)  
TBD  
35  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of the µPD4481162, 4481182, 4481322 and 4481362.  
Types of Surface Mount Devices  
µPD4481162GF  
µPD4481182GF  
µPD4481322GF  
µPD4481362GF  
: 100-pin PLASTIC LQFP (14 x 20)  
: 100-pin PLASTIC LQFP (14 x 20)  
: 100-pin PLASTIC LQFP (14 x 20)  
: 100-pin PLASTIC LQFP (14 x 20)  
µPD4481162F9-EQx : 165-pin TAPE FBGA (13 x 15)  
µPD4481182F9-EQx : 165-pin TAPE FBGA (13 x 15)  
µPD4481322F9-EQx : 165-pin TAPE FBGA (13 x 15)  
µPD4481362F9-EQx : 165-pin TAPE FBGA (13 x 15)  
36  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
[MEMO]  
37  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
[MEMO]  
38  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
39  
Preliminary Data Sheet M15562EJ1V0DS  
µPD4481162, 4481182, 4481322, 4481362  
ZEROSB is a trademark of NEC Corporation.  
The information in this document is current as of June, 2001. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data  
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products  
and/or types are available in every country. Please check with an NEC sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD4481162GF-C50-A

512KX16 ZBT SRAM, 3.2ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, LQFP-100
NEC

UPD4481162GF-C60

8M-BIT ZEROSB SRAM PIPELINED OPERATION
NEC

UPD4481162GF-C75

8M-BIT ZEROSB SRAM PIPELINED OPERATION
NEC

UPD4481162GF-C75Y

ZBT SRAM, 512KX16, 4.2ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
NEC

UPD4481181

8M-BIT ZEROSB SRAM FLOW THROUGH OPERATION
NEC

UPD4481181GF-A65

8M-BIT ZEROSB SRAM FLOW THROUGH OPERATION
NEC

UPD4481181GF-A65-A

ZBT SRAM, 512KX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
NEC

UPD4481181GF-A65Y-A

ZBT SRAM, 512KX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
NEC

UPD4481181GF-A75

8M-BIT ZEROSB SRAM FLOW THROUGH OPERATION
NEC

UPD4481181GF-A75-A

IC,SYNC SRAM,512KX18,CMOS,QFP,100PIN,PLASTIC
RENESAS

UPD4481181GF-A75-A

ZBT SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
NEC

UPD4481181GF-A75Y

ZBT SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
NEC