UPD46128953F1-E15X-EB1 [NEC]

4MX32 STANDARD SRAM, PBGA127, 13.0 X 11.5 MM, PLASTIC, FBGA-127;
UPD46128953F1-E15X-EB1
型号: UPD46128953F1-E15X-EB1
厂家: NEC    NEC
描述:

4MX32 STANDARD SRAM, PBGA127, 13.0 X 11.5 MM, PLASTIC, FBGA-127

静态存储器
文件: 总60页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
μPD46128953-X  
128M-BIT CMOS MOBILE SPECIFIED RAM  
4M-WORD BY 32-BIT  
ADDRESS / DATA MULTIPLEXED  
EXTENDED TEMPERATURE OPERATION  
Description  
The μPD46128953-X is a high speed, low power, 134,217,728 bits (4,194,304 words by 32 bits) CMOS Mobile  
Specified RAM featuring synchronous burst read and synchronous burst write function.  
The μPD46128953-X realizes high performance with the SDR interface, command and data inputs / outputs are  
synchronized the rising edge of clock.  
The μPD46128953-X is fabricated with advanced CMOS technology using one-transistor memory cell.  
Features  
4,194,304 words by 32 bits organization  
Low voltage operation: 1.7 to 2.0 V (1.85 0.15 V)  
Operating ambient temperature: TA = 25 to +85 °C  
Synchronous burst mode  
Burst length  
: 8 double words (Wrap)  
Burst sequence  
: Linear burst  
Maximum clock frequency : 83 / 66 MHz  
SDR (Single Data Rate) Architecture  
One data transfers per one clock cycle  
All inputs/outputs are synchronized with the positive edge of the clock  
Write data mask (DM) for write operation  
Output Enable: /OE pin  
Chip Enable input: /CE1 pin  
Standby Mode input: CE2 pin  
Standby Mode 1: Normal standby (Memory cell data hold valid)  
Standby Mode 2: Density of memory cell data hold is variable  
μPD46128953  
Clock  
frequency  
MHz  
Operating  
supply  
voltage  
V
Operating  
ambient  
temperature  
°C  
Supply current  
At operating mA  
At standby μA  
(MAX.)  
(MAX.)  
(MAX.)  
-E12X Note  
-E15X  
83  
66  
1.7 to 2.0  
25 to +85  
60  
55  
T.B.D.  
Note Under consideration  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M17506EJ1V1DS00 (1st edition)  
Date Published September 2005 CP (K)  
Printed in Japan  
2005  
μPD46128953-X  
Ordering Information  
μPD46128593-X is mainly shipping by wafer.  
Please consult with our sales offices for package samples and ordering information.  
2
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Pin Configuration  
The following is pin configuration of package sample.  
/xxx indicates active low signal.  
127-pin PLASTIC FBGA (13.0 x 11.5)  
Top View  
Bottom View  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A B C D E F G H J K L M N P  
P N M L K J H G F E D C B A  
Top View  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ28  
DQ29  
DQ30  
DQ31  
NC  
DQ26  
DQ27  
NC  
DQ25  
NC  
DQ24  
NC  
V
DD  
V
SS  
Q
DQ23  
NC  
DQ22 A/DQ21  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
A/DQ20 A/DQ19  
NC  
NC  
A/DQ15 A/DQ7 A/DQ14 A/DQ18  
NC  
NC  
NC  
A/DQ6 A/DQ13 A/DQ12 A/DQ5 A/DQ17  
8
NC  
NC  
/WE  
CLK  
DM0  
NC  
CE2  
/ADV  
DM1  
NC  
NC  
NC  
A/DQ4  
A/DQ3  
V
DD  
Q
Q
NC  
A/DQ16  
NC  
NC  
7
/WAIT  
NC  
V
DD  
V
DD  
A/DQ11  
V
DD  
Q
Q
6
NC  
A/DQ1 A/DQ9 A/DQ10 A/DQ2  
V
SS  
5
V
SS  
NC  
VSS  
Q
/OE  
NC  
NC  
A/DQ0  
/CE1  
NC  
A/DQ8  
NC  
NC  
NC  
NC  
4
NC  
NC  
NC  
NC  
NC  
3
DM2  
DM3  
V
DD  
V
SS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
2
1
A/DQ0 to A/DQ021 : Address inputs , Data inputs/ outputs  
/WAIT  
: Wait output  
DQ22 to DQ31  
/CE1  
: Data inputs / outputs  
: Chip select input  
: Standby mode input  
: Write enable input  
: Output enable input  
: Clock input  
DM0 to DM3 : Write data mask input  
VDD  
: Power supply  
: Ground  
CE2  
VSS  
/WE  
VDDQ  
VSSQ  
NC Note  
: Power supply for DQ  
: Ground for DQ  
: No Connection  
/OE  
CLK  
/ADV  
: Address valid  
Note Some signals can be applied because this pin is not internally connected.  
Remark Refer to 10. Package Drawing for the index mark.  
3
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Pin Function  
(1/2)  
Symbol  
Description  
A/DQ0 to A/DQ21  
Synchronous address input/data input/output  
These pins are used as address input pins and data input/output pins.  
When they are used as address input pins, the input address is latched at the rising edge of CLK. When the  
address is latched, the setup time and hold time must be satisfied at the rising edge of CLK.  
When they are used as data input/output pins, the input data is latched at the rising edge of CLK. When  
data is input, the setup time and hold time must be satisfied at the rising edge of CLK. Data is output from  
these pins at the rising edge of CLK.  
DQ22 to DQ31  
Synchronous data input/output.  
While the A/DQ pins function as address input pins and data input/output pins, these pins function only as  
data input/output pins.  
The input data is latched at the rising edge of CLK. When data is input, the setup time and hold time must  
be satisfied at the rising edge of CLK. Data is output at the rising edge of CLK.  
Input clock.  
CLK  
Addresses and control signals are latched in synchronization with this signal.  
All the synchronous input signals must satisfy the setup time and hold time at the rising edge of CLK.  
Synchronous address valid input signal.  
/ADV  
An address is latched at the rising edge of CLK while /ADV is LOW. When the address is latched, the setup  
time and hold time must be satisfied at the rising edge of CLK.  
Note: This signal serves as an asynchronous signal when the mode register set or read.  
Synchronous chip enable input.  
/CE1  
This device is active while /CE1 is LOW. When inputting /CE1, the setup time and hold time must be  
satisfied at the rising edge of CLK.  
Remark This signal serves as an asynchronous signal when the mode register set or read.  
Asynchronous power-down mode input  
CE2  
/OE  
When this signal is made LOW, the device enters the power-down mode status.  
CE2 is not synchronized with the clock. It is an asynchronous signal.  
Synchronous output enable input.  
When this signal is made LOW, read data is output.  
When inputting /OE, the setup time and hold time must be satisfied at the rising edge of CLK.  
Remark This signal serves as an asynchronous signal when the mode register set or read.  
Synchronous write enable input.  
/WE  
When /WE inputs a LOW at the same time as /ADV, the device recognizes a write operation. When inputting  
/WE, the setup time and hold time must be satisfied at the rising edge of CLK.  
Remark This signal serves as an asynchronous signal when the mode register is set or read.  
4
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
(2/2)  
Symbol  
DM0 to DM3  
Description  
Synchronous write data mask input.  
These signals can mask write data during burst write.  
To input data mask, the setup time and hold time must be satisfied at the rising edge of CLK.  
Data mask can be controlled in byte units.  
DM0: A/DQ0 to ADQ7  
DM1: A/DQ8 to ADQ15  
DM2: A/DQ16 to ADQ21, DQ22 to DQ23  
DM3: DQ24 to DQ31  
/WAIT  
VDD  
Synchronous wait output.  
/WAIT is a status signal (output) that indicates the preparation for starting burst read/burst write  
This pin outputs a LOW while the internal circuit is busy, and a HIGH when it is ready.  
The wait signal is output at the rising edge of CLK.  
Supply voltage:  
Usually, the supply voltage is 1.85 V. Refer to DC Characteristics and Recommended Operation  
Conditions.  
VSS  
Supply voltage:  
Ground  
VDDQ  
Supply voltage:  
Supply voltage for DQ. Usually, this voltage is 1.85 V. Refer to DC Characteristics and Recommended  
Operation Conditions.  
VSSQ  
NC  
Supply voltage:  
Ground for DQ.  
No connection  
Some signals can be applied because this pin is not internally connected.  
5
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Block Diagram  
VDD  
Standby mode control  
VSS  
V
DD  
Q
Refresh  
state  
control  
Refresh  
control  
V
SSQ  
Refresh  
counter  
Memory cell array  
134,217,728 bits  
Row  
decoder  
Address buffer  
Address latch  
/ADV  
Sense amplifier /  
Switching circuit  
Column decoder  
/CE1  
Data control  
/WAIT  
Command  
control  
CE2  
/WE  
Burst  
counter  
Latch circuit  
DM0 to DM3  
/OE  
Clock  
control  
CLK  
Input / Output buffer  
A/DQ0 to A/DQ21 DQ22 to DQ31  
6
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Truth Table  
Mode  
/CE1  
CE2  
H
CLK  
/ADV  
/OE  
×
/WE  
×
A/DQ0-A/DQ21 , DQ22-DQ31  
Deselect (Standby Mode 1)  
Power Down (Standby Mode 2) Note1  
Output Disable  
H
×
×
×
×
L
H
L
L
×
×
High-Z  
L
×
×
×
High-Z  
L
H
H
H
×
×
High-Z  
Start Address Latch Note2  
Start Address not Latch Note3  
Read Command input Note2  
Write Command input Note2  
Burst Read Termination Note4  
Burst Write Termination Note4  
×
High-Z  
×
Low-Z or High-Z  
High-Z  
H
H
×
H
L
High-Z  
L to H  
×
Low-Z to High-Z  
High-Z  
×
×
Notes1. CE2 pin must be fixed HIGH except Standby Mode 2 (refer to 2.3 Standby Mode Status Transition).  
2. Start address latch and read/write command input are performed at the next rising edge of clock when /ADV  
is transferred HIGH to LOW.  
3. It is impossible that Start address latch and read/write command input are performed at the first rising edge  
of clock during /ADV is fixed HIGH.  
4. Refer to 3.6 Burst Read Termination, 3.7 Burst Write Termination.  
Remark H, HIGH: VIH, L, LOW: VIL, ×: VIH or VIL  
For read/write operation, refer to 7 Timing Charts.  
7
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
CONTENTS  
1. Initialization................................................................................................................................................ 10  
2. Partial Refresh ........................................................................................................................................... 11  
2. 1 Standby Mode......................................................................................................................................................... 11  
2. 2 Density Switching ................................................................................................................................................... 11  
2. 3 Standby Mode Status Transition............................................................................................................................. 11  
2. 4 Addresses for Which Partial Refresh Is Supported................................................................................................. 12  
3. Burst Operation ......................................................................................................................................... 13  
3. 1 Features of Burst Operation ................................................................................................................................... 13  
3. 2 Latency................................................................................................................................................................... 13  
3. 3 Burst Length, Burst Sequence, Wrap Around......................................................................................................... 16  
3. 4 Burst Read End ...................................................................................................................................................... 17  
3. 5 Burst Write End ...................................................................................................................................................... 18  
3. 6 Burst Read Termination.......................................................................................................................................... 19  
3. 7 Burst Write Termination.......................................................................................................................................... 20  
3. 8 /WAIT signal behavior............................................................................................................................................. 21  
3. 9 /WAIT output........................................................................................................................................................... 21  
4. Mode Register Settings............................................................................................................................. 23  
4. 1 Mode Register Setting Method ............................................................................................................................... 23  
4. 1. 1 Cautions for Setting Mode Register............................................................................................................. 23  
4. 1. 2 Mode Register Setting/Reading................................................................................................................... 25  
4. 1. 3 Partial refresh Density ................................................................................................................................. 25  
4. 1. 4 Burst length ................................................................................................................................................. 25  
4. 1. 5 Function mode............................................................................................................................................. 26  
4. 1. 6 Driver strength............................................................................................................................................. 26  
4. 1. 7 Read Latency .............................................................................................................................................. 26  
4. 1. 8 Single Write................................................................................................................................................. 26  
4. 1. 9 Valid Clock Edge ......................................................................................................................................... 26  
4. 1. 10 Reset to Asynchronous.............................................................................................................................. 26  
4. 1. 11 /WE control................................................................................................................................................ 26  
4. 1. 12 Setting of unused bits................................................................................................................................ 26  
4. 2 Mode Register Reading.......................................................................................................................................... 27  
4. 2. 1 Cautions for Setting Mode Register............................................................................................................. 27  
4. 2. 2 Data read from mode register...................................................................................................................... 27  
5. Address, /OE, /WE, DM control ................................................................................................................ 29  
5. 1 Relation of address inputs and /OE control ............................................................................................................ 29  
5. 2 Address Latching.................................................................................................................................................... 30  
5. 3 Read / Write Command Loading............................................................................................................................. 32  
5. 4 /OE control during burst read operation.................................................................................................................. 34  
5. 4. 1 /OE HIGH to LOW during burst read operation ........................................................................................... 34  
5. 4. 2 /OE LOW to HIGH during burst read operation ........................................................................................... 35  
5. 5 Write data mask signal (DM) control....................................................................................................................... 36  
5. 5. 1 Controlling write data mask signal (DM) in write cycle................................................................................. 36  
5. 5. 2 Write data mask (DM) truth table................................................................................................................. 37  
8
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
6. Electrical Specifications ........................................................................................................................... 38  
7. Timing Charts............................................................................................................................................. 43  
8. Mode Register Setting/Read Timing........................................................................................................ 49  
8. 1 Mode Register Setting Timing ................................................................................................................................ 49  
8. 2 Mode Register Setting Flow Chart.......................................................................................................................... 50  
8. 3 Mode Register Read Timing................................................................................................................................... 51  
8. 4 Mode Register Read Flow Chart............................................................................................................................. 52  
9. Standby Mode Timing Charts................................................................................................................... 53  
10. Package Drawing..................................................................................................................................... 54  
11. Recommended Soldering Conditions ................................................................................................... 55  
9
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
1. Initialization  
Initialize the μPD46128953-X at power application using the following sequence to stabilize internal circuits.  
(1) Following power application, make CE2 HIGH after fixing CE2 to LOW for the period of tVHMH.  
Make /CE1 HIGH before making CE2 HIGH.  
(2) /CE1 and CE2 are fixed HIGH for the period of tMHCL.  
Normal operation is possible after the completion of initialization.  
Figure 1-1. Initialization Timing Chart  
Normal Operation  
Initialization  
/CE1 (Input)  
CE2 (Input)  
t
CHMH  
tMHCL  
t
VHMH  
VDD  
VDD (MIN.)  
Cautions1. Make CE2 LOW when starting the power supply.  
2. tVHMH is specified from when the power supply voltage reaches the prescribed minimum value  
(VDD (MIN.)).  
Initialization Timing  
Parameter  
Symbol  
MIN.  
50  
MAX.  
Unit  
μs  
Power application to CE2 LOW hold  
tVHMH  
/CE1 HIGH to CE2 HIGH  
tCHMH  
tMHCL  
0
ns  
Following power application CE2 HIGH hold to /CE1 LOW  
300  
μs  
10  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
2. Partial Refresh  
2. 1 Standby Mode  
In addition to the regular standby mode (Standby Mode 1) with a 128M bits density, Standby Mode 2, which performs  
partial refresh, is also provided.  
2. 2 Density Switching  
In Standby Mode 2, the densities that can be selected for performing refresh are 64M bits, 32M bits, 16M bits, and 0M  
bit.  
The density for performing refresh can be set with the mode register. Once the refresh density has been set in the  
mode register, these settings are retained until they are set again, while applying the power supply. However, the mode  
register setting will become undefined if the power is turned off, so set the mode register again after power application.  
(For how to perform mode register settings, refer to section 4. Mode Register Settings.)  
2. 3 Standby Mode Status Transition  
In Standby Mode 1, /CE1 and CE2 are HIGH. In Standby Mode 2, CE2 is LOW. In Standby Mode 2, if 0M bit is set as  
the density, it is necessary to perform initialization the same way as after applying power, in order to return to normal  
operation from Standby Mode 2. When the density has been set to 64M bits, 32M bits, or 16M bits in Standby Mode 2, it  
is not necessary to perform initialization to return to normal operation from Standby Mode 2.  
For the timing charts, refer to Figure 9-1. Standby Mode 2 (data hold: 64M bits / 32M bits / 16M bits) Entry / Exit  
Timing Chart, Figure 9-2. Standby Mode 2 (data not held) Entry / Exit Timing Chart.  
11  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 2-1. Standby Mode State Machine  
Power On  
Initialization  
Mode Register  
Setting  
CE2 = VIH  
/CE1 = VIL  
Active  
CE2 = VIL  
/CE1 = VIH  
CE2 = VIH  
,
CE2 = VIL  
/CE1 = VIL  
,
/CE1 = VIL  
,
CE2 = VIH  
CE2 = VIH  
Standby Mode 2  
(64M bits / 32M bits  
/ 16M bits)  
CE2 = VIL  
CE2 = VIL  
Standby  
Mode 1  
Standby Mode 2  
(Data not held)  
2. 4 Addresses for Which Partial Refresh Is Supported  
Data hold density  
Correspondence address  
000000H to 1FFFFFH  
000000H to 0FFFFFH  
000000H to 07FFFFH  
64M bits  
32M bits  
16M bits  
12  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
3. Burst Operation  
3. 1 Features of Burst Operation  
Function  
Features  
Burst Length  
8 double words  
Wrap  
Burst Wrap  
Burst Sequence  
Linear  
Valid Clock Edge  
CLK Rising Edge  
6, 7, 8  
Latency Count  
Read Latency  
Write Latency  
5, 6, 7  
3. 2 Latency  
Read Latency (RL) is the number of clock cycles between the address being latched and first read data becoming  
available during synchronous burst read operation. It is set through Mode Register Set sequence after power-up. Once  
RL is set through Mode Register Set sequence, write latency, that is the number of clock cycles between address being  
latched and first write data being latched, is automatically set to RL1.  
Latency Count  
Grade  
Clock Frequency  
<83 MHz  
Read Latency  
7, 8  
Write LatencyNote  
6, 7  
-E12X  
-E15X  
<66 MHz  
6, 7, 8  
5, 6, 7  
Note Write Latency = Read Latency1  
13  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 3-1. Latency Configuration (Read)  
T8  
T7  
T11  
T9  
T10  
T4  
T5  
T12  
T13  
T0  
T1  
T2  
T3  
T6  
CLK (Input)  
/ADV (Input)  
/CE1 (Input)  
Read Latency = 6  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Output)  
Add  
Q1  
Q1  
Q5  
Q6  
Q7  
Q7  
Q0  
Q4  
Q2  
Q2  
Q3  
Q5  
Q6  
Q0  
Q4  
Q3  
Read Latency = 7  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Output)  
Add  
Add  
Q5  
Q5  
Q6  
Q6  
Q0  
Q0  
Q1  
Q1  
Q4  
Q4  
Q2  
Q2  
Q3  
Q3  
Read Latency = 8  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Output)  
Q0  
Q0  
Q1  
Q1  
Q4  
Q4  
Q5  
Q5  
Q2  
Q2  
Q3  
Q3  
14  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 3-2. Latency Configuration (Write)  
T8  
T7  
T11  
T9  
T10  
T4  
T5  
T12  
T13  
T0  
T1  
T2  
T3  
T6  
CLK (Input)  
/ADV (Input)  
/CE1 (Input)  
Write Latency = 5  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
DQ22 to DQ31 (Input)  
Add  
D5  
D6  
D7  
D7  
D0  
D1  
D4  
D2  
D2  
D3  
D0  
D1  
D3  
D4  
D5  
D6  
Write Latency = 6  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
DQ22 to DQ31 (Input)  
Add  
Add  
D5  
D5  
D6  
D6  
D7  
D7  
D0  
D0  
D1  
D1  
D4  
D4  
D2  
D2  
D3  
D3  
Write Latency = 7  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
DQ22 to DQ31 (Input)  
D5  
D5  
D6  
D6  
D0  
D0  
D1  
D1  
D4  
D4  
D2  
D2  
D3  
D3  
15  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
3. 3 Burst Length, Burst Sequence, Wrap Around  
The burst length is 8 double words and the corresponding address is (A/DQ2, A/DQ1, A/DQ0). A burst operation that  
extends over addresses higher than A/DQ3 cannot be executed.  
Wrap-around is performed within the burst length of 8 double words. Refer to Table 3-1. Burst Sequence.  
Table 3-1. Burst Sequence  
Start Address  
Burst Sequence  
(A/DQ2 , A/DQ1, A/DQ0)  
Linear , Wrap  
1st data - 2nd data - 3rd data - 4th data - 5th data - 6th data - 7th data - 8th data  
(0, 0, 0) - (0, 0, 1) - (0, 1, 0) - (0, 1, 1) - (1, 0, 0) - (1, 0, 1) - (1, 1, 0) - (1, 1, 1)  
(0, 0, 1) - (0, 1, 0) - (0, 1, 1) - (1, 0, 0) - (1, 0, 1) - (1, 1, 0) - (1, 1, 1) - (0, 0, 0)  
(0, 1, 0) - (0, 1, 1) - (1, 0, 0) - (1, 0, 1) - (1, 1, 0) - (1, 1, 1) - (0, 0, 0) - (0, 0, 1)  
(0, 1, 1) - (1, 0, 0) - (1, 0, 1) - (1, 1, 0) - (1, 1, 1) - (0, 0, 0) - (0, 0, 1) - (0, 1, 0)  
(1, 0, 0) - (1, 0, 1) - (1, 1, 0) - (1, 1, 1) - (0, 0, 0) - (0, 0, 1) - (0, 1, 0) - (0, 1, 1)  
(1, 0, 1) - (1, 1, 0) - (1, 1, 1) - (0, 0, 0) - (0, 0, 1) - (0, 1, 0) - (0, 1, 1) - (1, 0, 0)  
(1, 1, 0) - (1, 1, 1) - (0, 0, 0) - (0, 0, 1) - (0, 1, 0) - (0, 1, 1) - (1, 0, 0) - (1, 0, 1)  
(1, 1, 1) - (0, 0, 0) - (0, 0, 1) - (0, 1, 0) - (0, 1, 1) - (1, 0, 0) - (1, 0, 1) - (1, 1, 0)  
(0, 0, 0)  
(0, 0, 1)  
(0, 1, 0)  
(0, 1, 1)  
(1, 0, 0)  
(1, 0, 1)  
(1, 1, 0)  
(1, 1, 1)  
16  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
3. 4 Burst Read End  
The memory output goes into a high impedance state after completion of the burst read operation of the eighth double  
word. Therefore, no data is output from the memory even if CLK is kept input while /CE1 = LOW after the burst read  
operation of 8 words has been completed.  
Figure 3-3. Burst Read End  
T13  
T14  
T9  
T10  
T11  
T12  
T15  
CLK (Input)  
H
/ADV (Input)  
/CE1 (Input)  
L
/OE (Input)  
L
t
AC  
t
HZ  
High-Z  
A/DQ0 to A/DQ21 (Output)  
DQ22 to DQ31 (Output)  
Q5  
Q5  
Q6  
Q7  
High-Z  
Q6  
Q7  
Remark Memory output goes into a high impedance state after the last data (Q7) read by the burst operation has  
been output.  
17  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
3. 5 Burst Write End  
The memory does not input write data to internal circuits even if CLK is kept input with /CE1 = LOW and write data is  
input from the controller after completion of a burst write operation of 8 double words.  
Figure 3-4. Burst Write End  
T12  
T13  
T8  
T9  
T10  
T11  
T14  
CLK (Inout)  
H
L
/ADV (Input)  
/CE1 (Input)  
/WE (Input)  
t
WDS  
t
WDH  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
DQ22 to DQ31 (Input)  
D5  
D5  
D6  
B
B
D7  
D7  
A
A
C
C
D6  
Remark The memory does not input any write data to internal circuits even if write data (A, B, or C) is input after the  
last burst write data (D7) has been input, as shown in Figure 3-4.  
18  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
3. 6 Burst Read Termination  
A burst read termination is executed when /CE1 is made HIGH during a burst read operation. The command that the  
burst read termination (/CE1 = HIGH) is recognized at the next rising edge of CLK when /CE1 = HIGH, the read data is  
output before the command of the burst read termination (/CE1 = HIGH) is input.  
Figure 3-5. Burst Read Termination  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CLK (Input)  
H
/ADV (Input)  
/CE1 (Input)  
t
CEH  
t
CES  
L
/OE (Input)  
A/DQ0-A/DQ21 (Output)  
DQ22-DQ31 (Output)  
t
HZ  
t
AC  
High-Z  
High-Z  
Q0  
Q1  
Q2  
Q3  
Q4  
Q0  
Q1  
Q2  
Q3  
Q4  
Remark If the burst read termination is performed (/CE1: LOW HIGH) before the rising edge of CLK in T8, as  
shown in Figure 3-5, determined data is output as the read data (Q4) from the rising edge of CLK in T7.  
The burst read termination is valid after the initial read data has been output.  
(For the burst read termination, refer to Figure 7-5. Burst Read Termination Cycle Timing Chart (/CE1 control).)  
19  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
3. 7 Burst Write Termination  
A burst write termination is executed when /CE1 is made HIGH during a burst write operation. The command that the  
burst write termination (/CE1 = HIGH) is recognized at the next rising edge of CLK when /CE1 = HIGH, the write data is  
written before the command of the burst write termination (/CE1 = HIGH) is input.  
Figure 3-6. Burst Write Termination  
T7  
T8  
T3  
T4  
T5  
T6  
T9  
CLK (Input)  
H
/ADV (Input)  
/CE1 (Input)  
tCEH  
t
CES  
/WE (Input)  
t
WDS  
t
WDH  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
DQ22 to DQ31 (Input)  
D3  
D3  
D4  
D0  
D0  
D1  
D5  
D5  
D2  
D4  
D1  
D2  
Remark If the burst write termination is performed (/CE1: LOW HIGH) before the rising edge of CLK in T8, as  
shown in Figure 3-6, the write data is input to memory at the rising edge of CLK in T7. The write data input  
in cycle T8 (D5) is invalid.  
The burst termination is valid after the initial write data has been input.  
(For the burst write termination refer to Figure 7-6. Burst Write Termination Cycle Timing Chart (/CE1 control).)  
20  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
3. 8 /WAIT signal behavior  
/WAIT is a status signal (output) that indicates the preparation for starting burst read/burst write  
This pin outputs a LOW while the internal circuit is busy, and a HIGH when it is ready.  
The wait signal is output at the rising edge of CLK.  
Table 3-2. Relation Between Internal Operation of Memory and /WAIT Output  
Internal Operation of Memory  
Preparation for burst read/burst write in progress  
Completion of preparation for burst read/burst write  
/WAIT output  
LOW  
HIGH  
3. 9 /WAIT output  
The /WAIT output is enabled after specified time from CLK. /WAIT output is transferred LOW to HIGH one cycle before  
1st burst read data output and 1st burst write data input.  
Figure 3-7. /WAIT Output Timing (Read Cycle)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK (Input)  
/ADV (Input)  
Read Latency = 6  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Output)  
Add  
Q0  
Q0  
tCEWA  
tCLWA  
1 cycle before latency cycle  
/WAIT (Output)  
21  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 3-8. /WAIT Output Timing (Write Cycle)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK (Input)  
/ADV (Input)  
Write Latency = 5  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
DQ22 to DQ31 (Input)  
Add  
D0  
D0  
D1  
D1  
t
CEWA  
t
CLWA  
1 cycle before latency cycle  
/WAIT (Output)  
22  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
4. Mode Register Settings  
The default value of the mode register of the μPD46128953-X is undefined upon power application. Therefore, be sure  
to set the mode register after power application and initialization.  
4. 1 Mode Register Setting Method  
Each mode can be set by performing a total of six cycles of operations in succession after reading the most significant  
address (3FFFFFH) – two consecutive cycles for writing any data and three consecutive cycles for writing specific data  
(codes 1 to 3) – by an asynchronous access (with CLK fixed HIGH or LOW).  
Table 4-1. Mode Register Settings  
Cycle  
1st cycle  
Operation  
Address  
3FFFFFH  
3FFFFFH  
3FFFFFH  
3FFFFFH  
3FFFFFH  
3FFFFFH  
Data  
Read  
Write  
Write  
Write  
Write  
Write  
Don’t care  
Don’t care  
Don’t care  
2nd cycle  
3rd cycle  
4th cycle  
5th cycle  
6th cycle  
Code 1 (A/DQ0 = 1)  
Code 2  
Code 3  
Codes 1 to 3 are set at the register. The register has a function to latch an address and data necessary for instruction  
execution, and does not occupy the memory.  
Whether the mode register is set or read can be selected by code 1 in the 4th bus cycle. If setting of the mode register  
is selected (A/DQ0 = 1) by code 1 in the 4th bus cycle, the contents of the mode register are set by code 2 in the 5th bus  
cycle and code 3 in the 6th bus cycle.  
The command contents are shown in Table 4-2. Mode Register Code 1 Definition (4th cycle), Table 4-3. Mode  
Register Code 2 Definition (5th cycle), and Table 4-4. Mode Register Code 3 Definition (6th cycle).  
For the timing chart and flowchart, refer to Figure 8-1. Mode Register Setting Timing Chart and Figure 8-2. Mode  
Register Setting Flowchart.  
If reading the mode register is selected by code 1 in the 4th bus cycle (A/DQ = 0), the contents of the mode register  
currently set in the 5th and 6th bus cycles can be read. If the mode register is read before it is set, any (undefined) data  
is read.  
For the mode register, refer to 4.2 Mode Register Reading.  
4. 1. 1 Cautions for Setting Mode Register  
When the mode register is set, the status of the internal counter is identified by the toggle operation of /CE1 and /OE.  
When setting a mod entry, therefore, perform a toggle operation of /CE1 in each cycle (one read cycle and five write  
cycles).  
In the 1st bus cycle (read cycle), perform a toggle operation of /OE in the same manner as /CE1. If an illegal address  
or data is written or if an address and data are written in an incorrect sequence, the mode register is not correctly set.  
If the most significant address (3FFFFFH) is read (in the 1st bus cycle), written (2nd bus cycle), and then written (3rd  
bus cycle), a sequence of setting/reading the mode register is started. Therefore, setting of the mode register cannot be  
stopped after the 4th bus cycle. If the normal sequence is executed up to the 5th bus cycle, setting of the mode register  
cannot be stopped until the 6th bus cycle is completed.  
23  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Once the mode register has been set, the setting is retained while power is supplied and CE2 = HIGH, until it is re-set.  
If data is not retained by turning off the power or making CE2 LOW (except partial), however, the setting of the mode  
register is undefined. Re-set the register after power application or when returning from a data non-retention status.  
For the timing chart and flowchart, refer to Figure 8-1. Mode Register Setting Timing Chart and Figure 8-2. Mode  
Register Setting Flowchart.  
Table 4-2. Mode Register Code1 Definition (4th Bus Cycle)  
Data Code  
A/DQ0  
Symbol  
RW  
Function  
Value  
0
Description  
Mode Register Reading  
Mode Register Setting  
Reserved  
Mode Register Setting /  
Mode Register Reading  
1
A/DQ21 to A/DQ1  
DQ31 to DQ22  
All “1”  
All “1”  
Reserved  
Table 4-3. Mode Register Code2 Definition (5th Bus Cycle)  
Data Code  
Symbol  
PR  
Function  
Value  
00  
Description  
A/DQ1 to A/DQ0  
Partial Refresh Density  
32M  
01  
16M  
10  
64M  
11  
0M  
A/DQ4 to A/DQ2  
BL  
Burst length  
000  
001  
010  
011  
100  
101  
110  
111  
0
Reserved  
Reserved  
8 double words  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Synchronous Burst  
Reserved  
Strong  
A/DQ5  
M
Function Mode  
Driver Strength  
1
A/DQ7 to A/DQ6  
DS  
00  
01  
Reserved  
Weak  
10  
11  
Middle  
A/DQ21 to A/DQ8  
DQ31 to DQ22  
All “1”  
All “1”  
Reserved  
Reserved  
24  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Table 4-4. Mode Register Code3 Definition (6th Bus Cycle)  
Data Code  
Symbol  
RL  
Function  
Value  
000  
001  
010  
011  
100  
101  
110  
111  
1
Description  
A/DQ2 to A/DQ0  
Read Latency  
Reserved  
Reserved  
Reserved  
Reserved  
6
7
8
Reserved  
Reserved  
A/DQ3  
A/DQ4  
N/A  
SW  
N/A  
Single Write  
0
Burst Read & Burst Write  
Reserved  
1
A/DQ5  
VE  
Valid Clock Edge  
0
Reserved  
1
Rising Edge  
Reserved  
A/DQ6  
A/DQ7  
RP  
Reset to Asynchronous  
/WE Control  
1
WC  
0
/WE Pulse Control  
Reserved  
1
A/DQ21 to A/DQ8  
DQ31 to DQ22  
1
Reserved  
1
Reserved  
4. 1. 2 Mode Register Setting/Reading  
Select whether to set the mode register or read the set contents of the register by this item.  
If 1 is input to A/DQ0 in the 4th cycle, the mode register setting mode is set. If 0 is input to A/DQ0 in the 4th cycle, the  
mode register reading mode is set.  
For how to read the mode register, refer to 4.2 Mode Register Reading.  
4. 1. 3 Partial refresh Density  
The partial refresh area is set by this item. If 00 are input to A/DQ1 and A/DQ0 in the 5th cycle, it is set that 32M bits  
are retained. If 01 are input to A/DQ1 and A/DQ0 in the 5th cycle, it is set that 16M bits are retained. If 10 are input to  
A/DQ1 and A/DQ0 in the 5th cycle, it is set that 64M bits are retained. If 11 are input to A/DQ1 and A/DQ0 in the 5th  
cycle, it is set that all bits are not retained.  
4. 1. 4 Burst length  
The burst length is set by this item. If 010 are input to A/DQ4, A/DQ3, and A/DQ2 in the 5th cycle, the burst length is  
set to 8. This product supports only a burst length of 8.  
25  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
4. 1. 5 Function mode  
The burst read mode is set by this item. If 0 is input to A/DQ5 in the 5th cycle, the burst mode is set.  
Be sure to input 0 to A/DQ5.  
4. 1. 6 Driver strength  
The output driver strength is set by this item. If 00 are input to A/DQ7 and A/DQ6 in the 5th cycle, the output driver  
strength is set to Strong. If 11 are input to A/DQ7 and A/DQ6 in the 5th cycle, the output driver strength is set to Middle.  
If 10 are input to A/DQ7 and A/DQ6 in the 5th cycle, the output driver strength is set to Weak.  
4. 1. 7 Read Latency  
The read latency count is set by this item. If 100 are input to A/DQ2, A/DQ1, and A/DQ0 in the 6th cycle, the read  
latency is set to 6. If 101 are input to A/DQ2, A/DQ1, and A/DQ0 in the 6th cycle, the read latency is set to 7. If 110 are  
input to A/DQ2, A/DQ1, and A/DQ0 in the 6th cycle, the read latency is set to 8. Write latency is automatically set RL-1.  
4. 1. 8 Single Write  
The write mode is set by this item, if 0 is input to A/DQ4 in the 6th cycle, the write mode is set to burst write.  
Be sure to input 0 to A/DQ4.  
4. 1. 9 Valid Clock Edge  
The valid clock edge (Rising edge or Falling edge) is set in the burst mode. If 1 is input to A/DQ5 in the 6th cycle,  
rising edge is set to valid clock edge.  
4. 1. 10 Reset to Asynchronous  
This function is not available now and reserved for future function. Be sure to input 1 to A/DQ6.  
4. 1. 11 /WE control  
The input timing of /WE is set by this item. If 0 is input to A/DQ7 in the 6th cycle, the input timing of /WE is set to be  
the same as the timing of loading an address (/WE = LOW while /ADV = LOW). Refer to 5.3 Loading Command  
(read/write).  
Be sure to input 0 to A/DQ7.  
4. 1. 12 Setting of unused bits  
Some of the undefined bits are used to enter a test mode that is not disclosed. Therefore, be sure to input 1 to the  
undefined bits (A/DQ21 to A/DQ1 and DQ31 to DQ22 in the 4th cycle, A/DQ21 to A/DQ8 and DQ31 to DQ22 in the 5th  
cycle, and A/DQ3, A/DQ21 to A/DQ8, and DQ31 to DQ22 in the 6th cycle).  
26  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
4. 2 Mode Register Reading  
If 0 is set to A/DQ0 in the 4th cycle after reading the most significant address (3FFFFFH) – two consecutive cycles for  
writing any data, it is possible to read current setting value of code 2 in the 5th cycle and current setting value of code 3 in  
the 6th cycle  
Table 4-5. Mode Register Settings  
Cycle  
1st cycle  
Operation  
Address  
3FFFFFH  
3FFFFFH  
3FFFFFH  
3FFFFFH  
3FFFFFH  
3FFFFFH  
Data  
Read  
Write  
Write  
Write  
Read  
Read  
Don’t care  
Don’t care  
Don’t care  
2nd cycle  
3rd cycle  
4th cycle  
5th cycle  
6th cycle  
Code 1 (A/DQ0 = 0)  
Code 2  
Code 3  
Codes 1 to 3 are written to the register. The register has a function to latch an address and data necessary for  
instruction execution, and does not occupy the memory.  
For the timing chart and flowchart, refer to Figure 8-3. Mode Register Read Timing Chart and Figure 8-4. Mode  
Register Read Flowchart.  
4. 2. 1 Cautions for Setting Mode Register  
When the mode register is set, the status of the internal counter is identified by the toggle operation of /CE1 and /OE.  
When setting the mode register, therefore, perform a toggle operation of /CE1 in each cycle (one read cycle, three write  
cycles, and two mode register read cycles). In the 1st bus cycle (read cycle) and 5th and 6th bus cycles, perform a  
toggle operation of /OE in the same manner as /CE1. If an illegal address or data is written or if the codes are written in  
an incorrect sequence, reading the mode register fails and the mode register is not read correctly.  
If the most significant address (3FFFFFH) is read (in the 1st bus cycle), written (2nd bus cycle), and then written (3rd  
bus cycle), a sequence of setting/reading the mode register is started. Therefore, setting of the mode register cannot be  
stopped after the 4th bus cycle. If the normal sequence is executed up to the 3rd bus cycle, setting of the mode register  
cannot be stopped until the 6th bus cycle is completed.  
4. 2. 2 Data read from mode register  
If reading the mode register is started, the contents of currently set code 2 (partial refresh density, burst length, function  
mode, and driver strength) can be read in the 5th bus cycle. In the 6th bus cycle, the contents of currently set code 3  
(read latency, single write, valid clock edge, reset to asynchronous, and /WE control) can be read. If the mode register is  
read before it is set, any (undefined) data is output.  
Set or read the mode register in compliance with the AC specifications in Table 4-6.  
27  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Table 4-6. AC Specification of Mode Register Setting / Reading  
Item  
Symbol  
-E12X, -E15X  
Unit  
MIN.  
MAX.  
Specification of Mode Register Setting / Reading  
Cycle time  
tMSC  
90  
6
10000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup time to /ADV = HIGH  
Address hold time to /ADV = HIGH  
/CE1 setup time to /ADV = HIGH  
Address setup time to /OE = LOW  
/ADV Low pulse width  
tAS  
tAH  
1
tCS  
6
tAOSM  
tVPL  
tOLZM  
tACM  
tCHZM  
tOHZM  
tDW  
0
6
/OE to output in low impedance  
/OE to output valid  
5
30  
10  
10  
/CE1 to output in high impedance  
/OE to output in high impedance  
Write data setup time to /WE = HIGH  
Write data hold time to /WE = HIGH  
/CE1 HIGH pulse width  
20  
0
tDH  
tCP  
10  
50  
50  
/WE LOW pulse width  
tWP  
/OE LOW pulse width  
tOVL  
For the timing chart and flowchart, refer to Figure 8-1. Mode Register Setting Timing Chart, Figure 8-2. Mode  
Register Setting Flowchart, Figure 8-3. Mode Register Read Timing Chart and Figure 8-4. Mode Register Read  
Flowchart.  
28  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
5. Address, /OE, /WE, DM control  
5. 1 Relation of address inputs and /OE control  
This product uses only one pin to input an address and input/output DQ. Consequently, a bus fight may occur between  
an address input from the controller and data output from the memory and, therefore, the timing must be considered.  
Data is output after specified tOLZ from the first rising edge of CLK when /OE has changes its level from HIGH to LOW.  
Therefore, complete inputting an address from the controller before the first rising edge of CLK when /OE has changed  
its level from HIGH to LOW.  
Figure 5-1. Address inputs and /OE Timing  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK (Input)  
/ADV (Input)  
/CE1 (Input)  
t
AH  
tOEH  
t
OES  
t
OLZ  
/OE (Input)  
t
ACH  
t
AOS  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
Add  
Q0  
Q1  
Q2  
Read Latency = 6  
High-Z  
DQ22 to DQ31 (Output)  
Q0  
Q1  
Q2  
Remark Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
29  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
5. 2 Address Latching  
An address is latched at the first rising edge of CLK when /ADV changes its level from HIGH to LOW while /CE1 =  
LOW. An address can be latched and a read or write operation can be started as soon as the memory has changed its  
status from standby (/CE1 = HIGH) to active (/CE1 = LOW). If the period in which /ADV = LOW while /CE1 = LOW  
extends over two or more CLK as shown in Figure 5-4, an address is latched at the first rising edge of CLK after /ADV =  
LOW.  
Figure 5-2. Address Latched Timing 1  
T0  
T1  
T2  
CLK (Input)  
/ADV (Input)  
tCHV  
t
CSV  
tCHV  
t
AH  
t
CES  
/CE1 (Input)  
t
ACS  
t
ACH  
A/DQ0 to A/DQ21 (Input)  
Add  
Address Latched  
Remark Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
30  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 5-3. Address Latched Timing 2  
T0  
T1  
T2  
CLK (Input)  
/ADV (Input)  
tCHV  
t
CSV  
tCHV  
t
AH  
t
CES  
/CE1 (Input)  
t
ACS  
tACH  
A/DQ0 to A/DQ21 (Input)  
Add  
Address Latched  
Remark Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
Figure 5-4. Address Latched Timing 3  
T0  
T1  
T2  
CLK (Input)  
/ADV (Input)  
tCHV  
t
CSV  
t
CHV  
t
AH  
t
CES  
/CE1 (Input)  
t
ACS  
t
ACH  
Add  
A/DQ0 to A/DQ21 (Input)  
Address Latched  
Remark Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
31  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
5. 3 Read / Write Command Loading  
A command (read/write) is loaded in the same timing as an address (refer to 6.2 Address Latching). If /WE = HIGH  
at that time, a read operation is started; if /WE = LOW, a write operation is started. Figure 5-5 shows a read operation  
and Figure 5-6 shows a write operation. If /WE = LOW in the cycle next to that in which an address is loaded as shown in  
Figure 5-7, a write operation is not recognized. The operation in Figure 5-7 is a read operation.  
Figure 5-5. Command Loading Timing 1  
T0  
T1  
T2  
CLK (Input)  
tCHV  
t
CSV  
t
CHV  
/ADV (Input)  
/CE1 (Input)  
t
CES  
H
/OE (Input)  
/WE (Input)  
t
WES  
t
WEH  
Command Input  
Remarks 1. Figure 5-5 shows a read operation  
2. Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
32  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 5-6. Command Loading Timing 2  
T0  
T1  
T2  
CLK (Input)  
tCHV  
t
CSV  
t
CHV  
/ADV (Input)  
/CE1 (Input)  
t
CES  
H
/OE (Input)  
/WE (Input)  
t
WES  
t
WEH  
Command Input  
Remarks 1. Figure 5-6 shows a write operation  
2. Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
Figure 5-7. Command Loading Timing 3  
T0  
T1  
T2  
CLK (Input)  
tCHV  
t
CHV  
t
CSV  
/ADV (Input)  
/CE1 (Input)  
t
CES  
H
/OE (Input)  
/WE (Input)  
t
WES  
t
WEH  
t
WES  
t
WEH  
Command Input  
Remarks 1. Figure 5-7 shows a read operation  
2. Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
33  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
5. 4 /OE control during burst read operation  
5. 4. 1 /OE HIGH to LOW during burst read operation  
The output is controlled depending on the status of /OE (HIGH or LOW) when CLK rises. As shown in Figure 5-8, if  
/OE is made from LOW to HIGH before the rising edge of CLK in T8 during burst read, the read data (Q4) output from the  
rising edge of CLK in T7 is output. However, the read data that is output from the rising edge of CLK in T8 is not output.  
Figure 5-8. /OE HIGH to LOW during burst read operation Timing  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CLK (Input)  
H
/ADV (Input)  
/CE1 (Input)  
L
tOEH  
t
OES  
/OE (Input)  
t
AC  
t
HZ  
tOH  
High-Z  
A/DQ0 to A/DQ21 (Output)  
DQ22 to DQ31 (Output)  
Q0  
Q0  
Q1  
Q2  
Q3  
Q4  
High-Z  
Q1  
Q2  
Q3  
Q4  
Remark Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
34  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
5. 4. 2 /OE LOW to HIGH during burst read operation  
The output is controlled depending on the status of /OE (HIGH or LOW) when CLK rises. As shown in Figure 5-9, if  
/OE is made from HIGH to LOW before the rising edge of CLK in T8 during burst read, the read data (Q5) output from the  
rising edge of CLK in T8 is output. Because /OE = HIGH until cycle T7, the read data (Q0, Q1, Q2, Q3, and Q4) that  
should be output when /OE = LOW are not output, but go into a high impedance state.  
Figure 5-9. /OE LOW to HIGH during burst read operation Timing  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CLK (Input)  
H
L
/ADV (Input)  
/CE1 (Input)  
tOEH  
t
OES  
/OE (Input)  
tOAC  
t
OLZ  
High-Z  
Q0  
Q4  
A/DQ0 to A/DQ21 (Output)  
Q1  
Q2  
Q3  
Q3  
Q5  
Q6  
Q7  
Q7  
High-Z  
Q0  
Q4  
DQ22 to DQ31 (Output)  
Q1  
Q2  
Q5  
Q6  
Remark Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification.  
35  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
5. 5 Write data mask signal (DM) control  
This section explains how to control the write data mask signal (DM). DM is a signal that masks input data.  
Data mask is valid only in the write cycle. Therefore, data can be masked in the burst write cycle but cannot in the  
burst read cycle.  
The write data mask signal (DM) controls byte unit with one pin.  
- DM0 controls A/DQ7 to A/DQ0.  
- DM1 controls A/DQ15 to A/DQ8.  
- DM2 controls A/DQ21 to A/DQ16 and DQ23 to DQ22.  
- DM3 controls DQ31 to DQ24.  
5. 5. 1 Controlling write data mask signal (DM) in write cycle  
As shown in Figure 5-10, the corresponding write data is masked when the write data mask signal (DM) is HIGH.  
Figure 5-10. Command Loading Timing 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK (Input)  
/ADV (Inout)  
/WE (Input)  
tBDH  
t
BDS  
t
BDH  
t
BDS  
DM (Input)  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
DQ22 to DQ31 (Input)  
Add  
D0  
D0  
Mask  
Mask  
D2  
Mask  
Mask  
D4  
D2  
D4  
Remark Refer to 6. Electrical Specifications, 7. Timing Charts in detail of AC specification  
36  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
5. 5. 2 Write data mask (DM) truth table  
Table 5-1. Write data mask (DM) truth table  
Function  
DM  
DM0  
DM1  
DM2  
DM3  
All A/DQ and DQ write permission  
All A/DQ and DQ write prohibition  
L
H
A/DQ7 to A/DQ0 write permission  
L
×
×
×
H
×
×
×
×
L
×
×
×
H
×
×
×
×
L
×
×
×
H
×
×
×
×
L
×
×
×
H
A/DQ15 to A/DQ8 write permission  
DQ23 to DQ22, A/DQ21 to A/DQ16 write permission  
DQ31 to DQ24 write permission  
A/DQ7 to A/DQ0 write prohibition  
A/DQ15 to A/DQ8 write prohibition  
DQ23 to DQ22, A/DQ21 to A/DQ16 write prohibition  
DQ31 to DQ24 write prohibition  
Remark H: VIH, L: VIL, ×: VIH or VIL  
37  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
6. Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol  
Condition  
Rating  
Unit  
Supply voltage  
VDD  
VDDQ  
VT  
0.5 Note to +2.5  
0.5 Note to +2.5  
0.5 Note to +2.5  
25 to +85  
V
V
Input / Output Supply voltage  
Input / Output voltage  
V
Operating ambient temperature TA  
°C  
°C  
Storage temperature  
Tstg  
55 to +125  
Note –1.0 V (MIN.) (Pulse width: 30 ns)  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Rating could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended Operating Conditions  
Parameter  
Supply voltage  
Symbol  
Condition  
MIN.  
1.7  
MAX.  
2.0  
Unit  
V
Note1  
VDD  
Input / Output Supply voltage  
Input HIGH voltage  
VDDQ Note1  
VIH  
1.7  
2.0  
V
0.8VDDQ  
0.3 Note2  
25  
VDDQ +0.3  
0.2VDDQ  
+85  
V
Input LOW voltage  
VIL  
V
Operating ambient temperature TA  
°C  
Notes1. Use same voltage condition (VDD = VDDQ).  
2. 0.5 V (MIN.) (Pulse width: 30 ns)  
Capacitance (TA = 25°C, f = 1 MHz)  
Parameter  
Input capacitance  
Symbol  
CIN  
Test condition  
VIN = 0 V, Input pins  
MIN.  
TYP.  
MAX.  
Unit  
pF  
8
8
Output capacitance  
COUT  
CDQ  
VOUT = 0 V, /WAIT pin  
pF  
Input / Output capacitance  
VDQ = 0 V, A/DQ, DQ pins  
10  
pF  
Remarks 1.  
VIN : input voltage, VOUT : output voltage, VDQ : input / output voltage  
2. These parameters are not 100% tested.  
38  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)  
Parameter  
Symbol  
Test condition  
Density of  
data hold  
MIN.  
TYP.  
MAX.  
Unit  
Input leakage current  
A/DQ, DQ, /WAIT  
ILI  
VIN = 0 V to VDDQ  
1.0  
1.0  
+1.0  
+1.0  
μA  
μA  
ILO  
VDQ , VOUT = 0 V to VDDQ, /CE1 = VIH  
or /WE = VIL or /OE = VIH  
leakage current  
Operating supply current  
ICCA1  
ICCA2  
ISB1  
/CE1 = VIL, Burst length = 1, frequency = 83 MHz  
60  
55  
mA  
mA  
μA  
IDQ = 0 mA  
frequency = 66 MHz  
Operating supply  
Burst current  
/CE1 = VIL, Burst length = 8, frequency = 83MHz  
40  
IDQ = 0 mA  
frequency = 66MHz  
35  
Standby supply current  
/CE1 VDDQ0.2 V,  
CE2 VDDQ0.2 V  
/CE1 VDDQ0.2 V,  
CE2 0.2 V  
128M bits  
T.B.D.  
ISB2  
64M bits  
32M bits  
16M bits  
0M bit  
T.B.D.  
T.B.D.  
T.B.D.  
T.B.D.  
Output HIGH voltage  
Output LOW voltage  
VOH  
VOL  
IOH = 0.5 mA  
0.8VDDQ  
V
V
IOL = 1 mA  
0.2VDDQ  
Remark VIN: Input voltage, VOUT: output voltage, VDQ: Input / Output voltage  
39  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)  
AC Test Conditions  
Input Waveform (Rise and Fall Time 3 ns)  
V
DD  
Q
0.8VDD  
Q
VDDQ / 2  
Test points  
VDDQ / 2  
0.2VDD  
Q
Q
V
SS  
3 ns  
Output Waveform  
VDDQ / 2  
Test Points  
VDDQ / 2  
Output Load  
30 pF  
Remark CL includes capacitance of the probe and jig, and stray capacitance.  
40  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
AC Specifications  
(1/2)  
Parameter  
Symbol  
-E12X  
-E15X  
Unit  
Note  
MIN.  
MAX.  
83  
MIN.  
MAX.  
66  
Clock Specifications  
Cycle frequency  
tCLK  
tCH  
MHz  
ns  
CLK HIGH width  
3
3
3
3
CLK LOW width  
tCL  
ns  
CLK rise / fall time  
tCHCL  
3
3
ns  
Address Latching Specifications  
Address hold time from /ADV = HIGH  
Address setup time to CLK  
Address hold time to CLK  
/ADV = LOW setup time to CLK  
/ADV = LOW hold time from CLK  
Address setup time to /OE = LOW  
/ADV = LOW pulse width  
/ADV = LOW to next /ADV = LOW  
Control Signals Specifications  
/CE1 setup time to CLK  
/CE1 hold time to CLK  
tAH  
1
5
7
5
1
0
6
1
5
7
5
1
0
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
tACS  
tACH  
tCSV  
tCHV  
tAOS  
tVPL  
tCVCV  
10  
10  
1
tCES  
tCEH  
tOES  
tOEH  
tWES  
tWEH  
5
1
5
1
5
1
5
1
5
1
5
1
ns  
ns  
ns  
ns  
ns  
ns  
/OE setup time to CLK  
/OE hold time to CLK  
/WE setup time to CLK  
/WE hold time to CLK  
Note 1. tCVCV (MAX.) is applied while /CE1 is being hold at LOW.  
41  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
(2/2)  
Parameter  
Symbol  
-E12X  
-E15X  
Unit  
Note  
MIN.  
MAX.  
MIN.  
MAX.  
Read Specifications  
Burst access time  
tAC  
tOH  
tHZ  
8
7
8
7
ns  
ns  
ns  
1, 3  
1
Output data hold  
2
2
CLK to output in high impedance  
Write Specifications  
2
Write data valid of CLK  
Write data hold of CLK  
DM setup time to CLK  
DM hold time to CLK  
tWDS  
tWDH  
tBDS  
tBDH  
5
1
5
1
5
1
5
1
ns  
ns  
ns  
ns  
/WAIT Specifications  
/WAIT LOW output time from CLK  
/WAIT HIGH output time from CLK  
/WAIT in high impedance from CLK  
Others  
tCEWA  
tCLWA  
tCWHZ  
8
8
8
8
ns  
ns  
ns  
1
1
2
10  
10  
/OE to output in low impedance  
Output time from /OE HIGH to LOW  
during burst read  
tOLZ  
tOAC  
1
1
ns  
ns  
2
9
9
1, 3, 4  
Notes1. Output load: 30 pF  
2. Output load: 5 pF  
3. In case output driver size is ‘Middle’  
4. For tOAC, refer to Figure 5-9. /OE HIGH to LOW during burst read operation timing.  
42  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
7. Timing Charts  
Figure 7-1. Burst Read Cycle Timing Chart (/CE1 = LOW Consecutive Access)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T0  
T1  
t
CLK  
CLK (Input)  
tCH  
tCL  
t
CHCL  
tCHCL  
tCVCV  
t
CHV  
t
CSV  
t
CHV  
tCHV tCSV tCHV  
/ADV (Input)  
/CE1 (Input)  
t
VPL  
tAH  
tVPL  
tAH  
t
CES  
tOEH  
t
OES  
t
OLZ  
t
OEH OES  
t
t
OLZ  
OES  
tOEH  
tOES  
tOEH  
tOES  
t
OEH  
t
tOLZ  
/OE (Input)  
/WE (Input)  
t
WES  
t
WEH  
tWES  
tWEH  
t
CEWA  
tCEWA  
t
CLWA  
High-Z  
/WAIT (Output)  
Read Latency = 6  
t
AOS  
t
AC  
t
AC  
t
AOS  
tHZ  
t
ACS  
tACH  
tACS  
t
ACH  
tAOS  
t
OH  
t
AOS  
High-Z  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
Add  
Q0  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q5  
Q5  
Q6  
Q6  
Q7  
Q7  
Add  
High-Z  
tHZ  
High-Z  
High-Z  
Q0  
DQ22 to DQ31 (Output)  
Remark The above timing chart assumes read latency is set 6.  
43  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 7-2. Burst Read Cycle Timing Chart (/CE1 Toggle Access)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T0  
T1  
t
CLK  
CLK (Input)  
tCH  
tCL  
t
CHCL  
tCHCL  
tCVCV  
t
CHV  
t
CSV  
t
CHV  
tCHV tCSV tCHV  
/ADV (Input)  
/CE1 (Input)  
t
VPL  
tAH  
t
VPL  
tAH  
t
CEH  
tCES  
t
CEH  
tCES  
t
CEH  
t
CES  
t
CES  
tOEH  
tOES  
tOEH  
tOES  
tOEH  
t
OES  
tOLZ  
/OE (Input)  
/WE (Input)  
t
WES  
t
WEH  
tWES  
tWEH  
t
CEWA  
t
CWHZ  
tCEWA  
tCLWA  
t
CLWA  
High-Z  
/WAIT (Output)  
Read Latency = 6  
t
AC  
t
AC  
t
HZ  
HZ  
t
ACS  
tACH  
tACS  
t
ACH  
tAOS  
t
AOS  
t
OH  
High-Z  
High-Z  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Output)  
Add  
Q0  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q5  
Q5  
Q6  
Q6  
Q7  
Q7  
Add  
t
High-Z  
High-Z  
Q0  
Remark The above timing chart assumes read latency is set 6.  
44  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 7-3. Burst Write Cycle Timing Chart (/CE1 = LOW Consecutive Access)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T0  
T1  
t
CLK  
CLK (Input)  
tCH  
tCL  
t
CHCL  
tCHCL  
tCVCV  
t
CHV  
t
CSV  
t
CHV  
tCHV tCSV tCHV  
/ADV (Input)  
/CE1 (Input)  
t
VPL  
tAH  
tVPL  
tAH  
t
CES  
/OE (Input)  
/WE (Input)  
H
t
WES  
t
WEH  
tWES  
tWEH  
t
CEWA  
tCEWA  
t
CLWA  
High-Z  
/WAIT (Output)  
DM (Input)  
t
BDS  
tBDH  
Write Latency = 5  
t
WDS  
tWDH  
t
ACS  
tACH  
tACS  
tACH  
High-Z  
High-Z  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
DQ22 to DQ31 (Input)  
Add  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
Add  
High-Z  
High-Z  
D0  
D7  
Remark The above timing chart assumes write latency is set 5.  
45  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 7-4. Burst Write Cycle Timing Chart (/CE1 Toggle Access)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T0  
T1  
t
CLK  
CLK (Input)  
tCH  
tCL  
t
CHCL  
tCHCL  
tCVCV  
t
CHV  
t
CSV  
t
CHV  
t
CHV  
tCSV tCHV  
/ADV (Input)  
/CE1 (Input)  
t
VPL  
tAH  
tVPL  
tAH  
t
CES  
tCEH  
tCES  
tCEH  
tCES  
tCEH  
tCES  
/OE (Input)  
/WE (Input)  
H
t
WES  
t
WEH  
tWES  
tWEH  
t
CEWA  
t
CWHZ  
tCEWA  
tCLWA  
t
CLWA  
High-Z  
/WAIT (Output)  
DM (Input)  
t
BDS  
tBDH  
Write Latency = 5  
t
WDS  
tWDH  
t
ACS  
tACH  
tACS  
tACH  
High-Z  
High-Z  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Input)  
Add  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
Add  
High-Z  
High-Z  
D0  
D7  
Remark The above timing chart assumes write latency is set 5.  
46  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 7-5. Burst Read Termination Cycle Timing Chart (/CE1 Controlled)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
CLK  
CLK (Input)  
tCH  
tCL  
t
CHV  
t
CSV  
t
CHV  
tCHV tCSV tCHV  
/ADV (Input)  
/CE1 (Input)  
t
VPL  
t
AH  
t
VPL  
tAH  
t
CES  
t
CEH  
tCES  
t
CEH  
tCES  
tOEH  
t
OES  
t
OLZ  
tOEH  
t
OES  
tOEH  
tOES  
tOLZ  
/OE (Input)  
/WE (Input)  
t
WES  
t
WEH  
tWES  
tWEH  
tCEWA  
t
CWHZ  
tCEWA  
t
CLWA  
tCLWA  
High-Z  
High-Z  
/WAIT (Output)  
Read Latency = 6  
Read Latency = 6  
t
AC  
t
ACS  
t
ACH  
t
AOS  
t
AC  
t
HZ  
tACS  
t
ACH  
tAOS  
tAC  
t
OH  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Output)  
Add  
Q0  
Q0  
Add  
Q0  
Q1  
Q2  
Q2  
High-Z  
Q0  
Q1  
Note Burst Read Termination is available after the first read data output.  
Figure 7-5 is the minimum cycle at Burst Read Termination to next operation.  
Remark The above timing chart assumes read latency is set 6.  
47  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
Figure 7-6. Burst Write Termination Cycle Timing Chart (/CE1 Controlled)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
t
CLK  
CLK (Input)  
tCH  
tCL  
t
CHV  
t
CSV  
t
CHV  
tCHV tCSV tCHV  
/ADV (Input)  
/CE1 (Input)  
t
VPL  
t
AH  
t
VPL  
tAH  
t
CES  
t
CEH  
t
CES  
t
CEH  
tCES  
/OE (Input)  
/WE (Input)  
H
t
WES  
t
WEH  
tWES  
tWEH  
t
CEWA  
tCWHZ  
tCEWA  
t
CLWA  
tCLWA  
High-Z  
High-Z  
/WAIT (Output)  
Write Latency = 5  
High-Z  
Write Latency = 5  
High-Z  
t
ACS  
t
ACH  
t
WDS  
tWDH  
tACS  
t
ACH  
tWDS tWDH  
High-Z  
High-Z  
A/DQ0 to A/DQ21 (Input)  
Add  
D0  
Add  
D0  
D1  
D1  
High-Z  
High-Z  
D0  
D0  
DQ22 to DQ31 (Input)  
DM0 to DM3 (Input)  
L
Note Burst Write Termination is available after the first write data input.  
Figure 7-6 is the minimum cycle at Burst Write Termination to next operation.  
Remark The above timing chart assumes write latency is set 5.  
48  
Preliminary Data Sheet M17506EJ1V1DS  
Figure 8-1. Mode Register Setting Timing Chart  
6th Cycle  
5th Cycle  
4th Cycle  
3rd Cycle  
2nd Cycle  
1st Cycle  
H
L
CLK (Input)  
t
VPL  
t
VPL  
t
VPL  
t
VPL  
t
VPL  
t
t
VPL  
/ADV (Input)  
/CE1 (Input)  
t
CS  
tCP  
t
CS  
tCP  
tCS  
tCP  
tCS  
t
CP  
t
CS  
t
CP  
CS  
tCP  
tMSC  
tMSC  
tMSC  
t
MSC  
tMSC  
tMSC  
t
CHZM  
tOVL  
/OE (Input)  
/WE (Input)  
t
WP  
tWHP  
t
WP  
tWHP  
tWP  
t
WHP  
tWP  
tWHP  
tWP  
tWHP  
tACM  
tOLZM  
tOHZM  
t
AOSM  
t
DW  
t
DH  
t
DW  
tDH  
t
AS  
tAH  
t
AS  
tAH  
t
DW  
tDH  
tDW  
tDH  
tDW  
tDH  
tAH  
tAS  
tAH  
tAS  
t
AS  
tAH  
tAS  
tAH  
Don't  
Care  
Don't  
Care  
Don't  
Care  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Input/Output)  
Note  
Note  
Note  
Note  
Code1  
Note  
Code2  
Note  
Code3  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Code1  
Code2  
Code3  
μ
Note Address All “1” (3FFFFFH)  
Remark When setting the mode register, fix CLK to HIGH or LOW. If CLK is toggled, the mode register is not correctly set.  
When the mode register is set, DM0 to DM3 are don’t care (HIGH or LOW).  
μPD46128953-X  
8. 2 Mode Register Setting Flow Chart  
Figure 8-2. Mode Register Setting Flow Chart  
Start  
Read Operation  
Address = 3FFFFFH  
toggled the  
No  
No  
/CE1 and /OE  
Yes  
Write Operation  
Address = 3FFFFFH  
toggled the /CE1  
Yes  
Write Operation  
Address = 3FFFFFH  
toggled the /CE1  
No  
Yes  
Write Operation  
Address = 3FFFFFH  
toggled the /CE1  
No  
No  
Yes  
Mode register setting exit  
Write Data = Code1 Note 1  
(A/DQ = 1)  
Yes  
Write Operation  
Address = 3FFFFFH  
toggled the /CE1  
No  
Yes  
Write Data = Code2 Note 2  
Yes  
No  
No  
No  
Write Operation  
Address = 3FFFFFH  
toggled the /CE1  
Yes  
Write Data = Code3 Note 3  
Yes  
End  
Re-setup the mode register  
Notes1. Refer to Table 4-2.  
2. Refer to Table 4-3.  
3. Refer to Table 4-4.  
50  
Preliminary Data Sheet M17506EJ1V1DS  
Figure 8-3. Mode Register Read Timing Chart  
6th Cycle  
5th Cycle  
4th Cycle  
3rd Cycle  
2nd Cycle  
1st Cycle  
H
L
CLK (Input)  
t
VPL  
t
VPL  
t
VPL  
t
VPL  
t
VPL  
t
t
VPL  
/ADV (Input)  
/CE1 (Input)  
t
CS  
tCP  
t
CS  
tCP  
tCS  
tCP  
tCS  
t
CP  
t
CS  
t
CP  
CS  
tCP  
tMSC  
tMSC  
tMSC  
t
MSC  
t
MSC  
tMSC  
t
CHZM  
tOVL  
tOVL  
tOVL  
/OE (Input)  
/WE (Input)  
t
WP  
tWHP  
t
WP  
tWHP  
tWP  
tACM  
t
ACM  
tACM  
tOLZM  
tOLZM  
tOLZM  
tOHZM  
t
AOSM  
t
AOSM  
tAOSM  
t
DW  
t
DH  
t
DW  
tDH  
t
AS  
tAH  
t
AS  
tAH  
t
DW  
tDH  
tDW  
tDH  
tDW  
tDH  
tAH  
tAS  
tAH  
tAS  
t
AS  
tAH  
tAS  
tAH  
Don't  
Care  
Don't  
Care  
Don't  
Care  
A/DQ0 to A/DQ21 (Input/Output)  
DQ22 to DQ31 (Input/Output)  
Note  
Note  
Note  
Note  
Code1  
Note  
Code2  
Note  
Code3  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Code1  
Code2  
Code3  
μ
Note Address All “1” (3FFFFFH)  
Remark When setting the mode register, fix CLK to HIGH or LOW. If CLK is toggled, the mode register is not correctly set.  
When the mode register is set, DM0 to DM3 are don’t care (HIGH or LOW).  
μPD46128953-X  
8. 4 Mode Register Read Flow Chart  
Figure 8-4. Mode Register Read Flow Chart  
Start  
Read Operation  
Address = 3FFFFFH  
toggled the  
No  
No  
/CE1 and /OE  
Yes  
Write Operation  
Address = 3FFFFFH  
toggled the /CE1  
Yes  
Write Operation  
Address = 3FFFFFH  
toggled the /CE1  
No  
Yes  
Write Operation  
Address = 3FFFFFH  
toggled the /CE1  
No  
No  
Yes  
Mode register setting exit  
Write Data = Code1 Note 1  
(A/DQ = 0)  
Yes  
Read Operation  
Address = 3FFFFFH  
toggled the  
No  
/CE1 and /OE  
Yes  
Read Data = Code2 Note 2  
Read Operation  
Address = 3FFFFFH  
toggled the  
No  
/CE1 and /OE  
Yes  
Read Data = Code3 Note 3  
End  
Impossible Mode Register Read  
Notes1. Refer to Table 4-2.  
2. Refer to Table 4-3.  
3. Refer to Table 4-4.  
52  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
9. Standby Mode Timing Charts  
Figure 9-1. Standby Mode 2 (data hold: 64M bits / 32M bits / 16M bits) Entry / Exit Timing Chart  
CLK (Input)  
CE2 (Input)  
/CE1 (Input)  
t
CE2S  
t
CES  
tCES  
t
CHML  
tMHCL1  
Standby  
mode 1  
Standby mode 2  
(Data hold: 64M bits / 32M bits / 16M bits)  
Figure 9-2. Standby Mode 2 (data not held) Entry / Exit Timing Chart  
CLK (Input)  
CE2 (Input)  
/CE1 (Input)  
t
CE2S  
t
CES  
tCES  
t
CHML  
tMHCL2  
Standby  
mode 1  
Standby mode 2  
(Data not held)  
Standby Mode 2 Entry / Exit Timing  
Parameter  
Standby mode 2 entry /CE1 HIGH to CE2 LOW  
Standby mode 2 exit to normal operation CE2 HIGH to /CE1 LOW  
Standby mode 2 exit to normal operation CE2 HIGH to /CE1 LOW  
/CE1 setup time to CLK  
Symbol  
tCHML  
MIN.  
0
MAX.  
Unit  
ns  
Note  
tMHCL1  
tMHCL2  
tCES  
30  
300  
5
ns  
1
2
μs  
ns  
CE2 hold time to CLK  
tCE2S  
1
ns  
Notes1. This is the time it takes to return to normal operation from Standby Mode 2 (data hold: 64M bits / 32M bits /  
16M bits).  
2. This is the time it takes to return to normal operation from Standby Mode 2 (data not held).  
53  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
10. Package Drawing  
The following is a package drawing of package sample.  
127-PIN PLASTIC FBGA (13.0x11.5)  
D
ZE  
ZD  
W S A  
A
14  
13  
12  
11  
10  
9
B
8
E
7
6
5
4
3
2
1
PNM L K J HG F E DC B A  
W S B  
x4  
INDEX MARK  
v
A
A2  
y1  
S
S
(UNIT :mm)  
ITEM MILLIMETERS  
e
A1  
S AB  
y
S
13.00  
11.50  
D
E
M
b
x
v
0.15  
0.20  
0.80  
1.50  
0.22  
1.28  
0.40  
0.08  
0.10  
0.20  
1.30  
0.55  
w
e
A
A1  
A2  
b
This package drawing is a preliminary version. It may be changed in the future.  
x
y
y1  
ZD  
ZE  
54  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
11. Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the μPD46128953-X.  
Type of Surface Mount Device  
μPD46128953F1-EB1: 127-pin PLASTIC FBGA (13.0 x 11.5)  
55  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
[ MEMO ]  
56  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
[ MEMO ]  
57  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
[ MEMO ]  
58  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
59  
Preliminary Data Sheet M17506EJ1V1DS  
μPD46128953-X  
The information in this document is current as of September, 2005. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD46128953F1-EB1

128M-BIT CMOS MOBILE SPECIFIED RAM 4M-WORD BY 32-BIT ADDRESS / DATA MULTIPLEXED EXTENDED TEMPERATURE OPERATION
NEC

UPD461318-55LS1

x18 Synchronous SRAM
ETC

UPD461318-5LS1

x18 Synchronous SRAM
ETC

UPD461318-6LS1

x18 Synchronous SRAM
ETC

UPD461318-7LS1

x18 Synchronous SRAM
ETC

UPD461318LS1-5

Cache SRAM, 64KX18, 3ns, BICMOS, PBGA119, PLASTIC, BGA-119
NEC

UPD461318LS1-55

Cache SRAM, 64KX18, 3.25ns, BICMOS, PBGA119, PLASTIC, BGA-119
NEC

UPD461318LS1-6

Cache SRAM, 64KX18, 3.5ns, BICMOS, PBGA119, PLASTIC, BGA-119
NEC

UPD461318LS1-7

Cache SRAM, 64KX18, 4ns, BICMOS, PBGA119, PLASTIC, BGA-119
NEC

UPD461336-55LS1

x36 Synchronous SRAM
ETC

UPD461336-5LS1

x36 Synchronous SRAM
ETC

UPD461336-6LS1

x36 Synchronous SRAM
ETC