UPD61P24CS [NEC]

4-BIT SINGLE-CHIP MICROCONTROLLER FOR REMOTE CONTROL TRANSMISSION; 4位单片机微控制器遥控发送
UPD61P24CS
型号: UPD61P24CS
厂家: NEC    NEC
描述:

4-BIT SINGLE-CHIP MICROCONTROLLER FOR REMOTE CONTROL TRANSMISSION
4位单片机微控制器遥控发送

微控制器和处理器 外围集成电路 遥控 远程控制 光电二极管 可编程只读存储器 时钟
文件: 总36页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD61P24  
4-BIT SINGLE-CHIP MICROCONTROLLER  
FOR REMOTE CONTROL TRANSMISSION  
DESCRIPTION  
The µPD61P24 is a 4-bit single-chip microcontroller for infrared remote controllers for TVs, VCRs, stereos, cassette  
decks, air conditioners, etc.  
As the µPD61P24 is user-programmable, it is ideal for evaluation of programs running in a µPD6124A or 6600A,  
and for small-scale production of such systems.  
The functions of the µPD61P24 are described in detail in the following User’s Manual. Be sure to read this  
manual before designing your system.  
µPD612X Series User’s Manual: IEP-1083  
FEATURES  
Transmitter for programmable infrared remote control-  
ler  
Serial input pins (S-IN): 1 pin  
Transmission-in-progress indication pin (S-OUT): 1  
pin  
19 types of instructions  
Instruction execution time: 17.6 µs (with 455-kHz ce-  
ramic resonator)  
Transmit carrier frequency (REM)  
fOSC/12, fOSC/8  
On-chip one-time PROM: 1002 × 10 bits  
Data memory (RAM) capacity : 32 × 5 bits  
9-bit programmable timer: 1 channel  
I/O pins (KI/O): 8 pins  
Standby operation (HALT/STOP mode)  
Low power consumption  
Current consumption in STOP mode (TA = 25°C)  
1 µA MAX.  
Input pins (KI): 4 pins  
Low-voltage operation: VDD = 2.2 to 5.5 V  
Caution To use the NEC transmission format, ask NEC to supply the custom code.  
Do no use R0 when using a register as an operand of the branch instruction.  
The information in this document is subject to change without notice.  
The mark shows major revised points.  
Document No. U12629EJ4V0DS00 (4th edition)  
Previous No. IC-2876  
Date Published July 1997 N  
Printed in Japan  
©
1997  
µPD61P24  
ORDERING INFORMATION  
Part Number  
µPD61P24CS  
µPD61P24GS  
Package  
20-pin plastic shrink DIP (300 mil)  
20-pin plastic SOP (300 mil)  
PIN CONFIGURATION (Top View)  
(1) Normal operating mode  
(2) PROM programming mode  
D1  
D0  
1
2
3
4
5
6
7
8
9
20 D2  
K
K
I/O1  
I/O0  
1
2
20 K I/O2  
19 K I/O3  
18 K I/O4  
17 K I/O5  
16 K I/O6  
15 K I/O7  
14 K I0  
19 D3  
V
PP  
(Open)  
(Open)  
18 D4  
S-IN 3  
S-OUT 4  
REM 5  
17 D5  
16 D6  
VDD  
15 D7  
V
DD  
6
OSC-OUT 7  
OSC-IN 8  
(Open)  
CLK  
14 MD0  
13 MD1  
12 MD2  
11 MD3  
13 K I1  
V
SS  
9
12 K I2  
VSS  
AC 10  
11 K I3  
(L) 10  
Caution Round brackets ( ) indicate the pins not used in the PROM programming mode.  
: Connect each of these pins to GND via a resistor (470 ).  
Open: Leave these pins open.  
L
2
µPD61P24  
BLOCK DIAGRAM  
ROM  
D.P.  
CNTL CNTL  
1002 × 10 bits  
(L)  
(H)  
L
One-Time  
PROM  
ROM  
D.P.  
32 × 5 bits  
H
M
P
X
(L)  
SP  
RAM  
M
P
PC(L)  
PC(H)  
One-Time  
PROM  
(H)  
X
ADD  
DEC  
RAM  
ALU  
TIMER TIMER  
(L) (H)  
KEY  
OUT(L) OUT(H)  
KEY  
KEY  
IN  
ACC  
Watchdog  
timer  
function  
10 bits  
OSC  
MOD  
OSC-IN S-OUT REM  
OSC-OUT  
S-IN  
K
I/O0-KI/O7  
K
I0-KI3  
AC  
3
µPD61P24  
1. PROGRAM COUNTER (PC) ……… 10 BITS  
The program counter (PC) is a binary counter, which holds the address information for the program memory.  
Figure 1-1. Program Counter Organization  
PC  
PC  
9
PC  
8
PC  
7
PC  
6
PC  
5
PC  
4
PC  
3
PC  
2
PC  
1
PC  
0
Normally, the program counter contents are automatically incremented each time an instruction is executed,  
according to the number of instruction bytes.  
When executing a jump instruction (JMP0, JC, JF), the program counter indicates the jump destination.  
Immediate data or the data memory contents are loaded to all or some bits of the PC.  
When executing the call instruction (CALL0), the PC contents are incremented (+1) and saved into the stack  
memory. Then, a value needed for each jump instruction will be loaded.  
When executing the return instruction (RET), the stack memory contents are double incremented (+2) and loaded  
into the PC.  
When “all clear” is input or on reset, the PC contents are cleared to “000H”.  
2. STACK POINTER (SP) ……… 2 BITS  
This 2-bit register holds the start address information for the stack area. The stack area is shared with the data  
memory.  
The SP contents are incremented, when the call instruction (CALL0) is executed. They are decremented, when  
the return instruction (RET) is executed.  
The stack pointer is cleared to “00B” after reset or “all clear” is input, and indicates the highest address FH for  
the data memory as the stack area.  
The figure below shows the relationship for the stack pointer and the data memory area.  
Data memory  
(SP)  
11B  
10B  
01B  
00B  
R
R
R
R
C
D
E
F
If the stack pointer overflows or underflows, it is determined that the CPU overflows, and the PC internal reset  
signal will be generated.  
4
µPD61P24  
3. PROGRAM MEMORY (ROM) ……… 1002 STEPS × 10 BITS  
The program memory (ROM) is configured in 10 bits steps. It is addressed by the program counter.  
Program and table data are stored in the program memory.  
Figure 3-1. Program Memory Map  
000H  
0FFH  
100H  
1FFH  
200H  
2FFH  
300H  
3E9H  
3EAH  
3FFH  
Test program  
area  
4. DATA MEMORY (RAM) ……… 32 WORDS × 5 BITS  
The data memory is a RAM of 32 words × 5 bits. The data memory stores processing data. In some cases, the  
data memory is processed in 8-bit units. R0 may be used as the data pointer for the ROM.  
After power application, the RAM will be undefined. The RAM retains the previous data on reset.  
Figure 4-1. Data Memory Organization  
1
0
R0  
.
.
.
RB  
R
C
SP–3  
SP–2  
SP–1  
SP–0  
.
.
.
R
F
Caution Avoid using the RAM areas RD, RE, and RF in a CALL routine as much as possible because these  
areas are also used as stack memory areas (to prevent program hang-up in case the value of the  
SP is destroyed due to some reason such as noise).  
When using these RAM areas as general-purpose RAM areas, be sure to include stack pointer  
checking in the main routine.  
5
µPD61P24  
5. DATA POINTER (R0)  
R0 (R10, R00) for the data memory can serve as the data pointer for the ROM.  
R0 specifies the low-order 8 bits in the ROM address. The high-order 2 bits in the ROM address are specified  
by the control register.  
Table referencing for ROM data can be easily executed by calling the ROM contents by setting the ROM address  
to the data pointer.  
On reset or “all clear” is input, it becomes undefined.  
Figure 5-1. Data Pointer Organization  
Control registers  
(P1 )  
R10  
R00  
AD  
9
AD  
8
AD  
7
AD  
6
AD  
5
AD  
4
AD  
3
AD  
2
AD  
1
AD  
0
R
0
6. ACCUMULATOR (A) ……… 4 BITS  
The accumulator (A) is a 4-bit register. The accumulator plays a major role in each operation.  
On reset or “all clear” is input, it becomes undefined.  
Figure 6-1. Accumulator Organization  
A
3
A
2
A
1
A
0
A
7. ARITHMETIC LOGIC UNIT (ALU) ……… 4 BITS  
The arithmetic logic unit (ALU) is a 4-bit operation circuit, and executes simple operations, such as arithmetic  
operations.  
8. FLAGS  
(1) Status flag  
When the status for each pin is checked by the STTS instruction, if the condition coincides with the condition  
specified by the STTS instruction, the status flag (F) is set (to 1).  
On reset or “all clear” is input, it becomes undefined.  
(2) Carry flag  
When the INC (increment) instruction or the RL (rotate left) instruction is executed, if a carry is generated from  
the MSB for the accumulator, the carry flag (C) is set (to 1).  
The carry flag (C) is also set (to 1), if the contents for the accumulator are “FH”, when the SCAF instruction  
is executed.  
On reset or “all clear” is input, it becomes undefined.  
6
µPD61P24  
9. SYSTEM CLOCK GENERATOR  
The system clock generator consists of a resonator, which uses a ceramic resonator (400kHz to 500kHz).  
Figure 9-1. System Clock Generator  
OSC-IN  
STOP mode  
ø
System clock  
OSC-OUT  
In the STOP mode (oscillation stop HALT instruction), the oscillator in the system clock generator stops its  
operation, and the system clock ø is stopped.  
7
µPD61P24  
10. TIMER  
The timer block determines the transmission output pattern. The timer consists of 10 bits, of which 9 bits serve  
as the 9-bit down counter and the remaining 1 bit serves as the 1-bit latch, which determines the carrier output  
validity.  
The 9-bit down counter is decremented (–1) every 8/fOSC(s) in synchronization with the machine cycle, after  
starting down count operation. Down counting stops after all of the 9 bits become 0. When down counting is stopped,  
the signal indicating that the timer operation has stopped, is output. If the CPU is at standby (HALT TIMER) for  
the timer operation completion, the standby (HALT) condition is released and the next instruction will be executed.  
If the next instruction again sets the value of the down counter, down counting continues without any error (the carrier  
output of the REM pin is not affected).  
Set the down count time according to the following calculation; (set value (HEX) + 1) × 8/fOSC. Setting the value  
to the timer is done by the timer manipulation instruction.  
When the down counter is operating, the remote control transmission carrier can be output to the REM pin.  
Whether or not to output the carrier can be selected by the MSB for the timer register block. Set “1”, when outputting  
the carrier, or “0”, when not outputting the carrier.  
If all the down counter bits become “0”, when outputting the carrier, the carrier output will be stopped. When  
not outputting the carrier, the REM pin output will become low level.  
A signal in synchronization with the REM output is output to the S-OUT pin. However, the waveform for the S-  
OUT pin is low, when the carrier is being output to the REM pin, or it is high, when the carrier is not being output  
to the REM pin.  
If the HALT instruction, which initiates the oscillation stop mode, is executed when the down counter is operating,  
the oscillation stop mode is initiated after down counting is stopped (after 0).  
Timer operation STOP/RUN is controlled by the control register (P1). (Refer to 13. CONTROL REGISTER (P1).)  
At reset (all clear) time, the REM pin goes low and S-OUT pin goes high. All 10 bits of the timer are cleared to  
000H.  
Caution Because the timer clock is not synchronized with the carrier output, the pulse width may be  
shortened at the beginning and end of the carrier output.  
Figure 10-1. Timer Block Organization  
Set by timer mainpulation instruction  
MSB  
fosc/8  
1/0  
9-bit down counter  
Clear  
Zero detection circuit  
S-OUT  
REM  
Carrier  
(fosc/12, fosc/8)  
Selected by control register  
D
2
of control register P  
1
(Timer RUN/STOP)  
8
µPD61P24  
11. PIN FUNCTIONS  
11.1 KI/O Pin (P0)  
This is the 8-bit I/O pin for key-scan output. When the control register (P1) is set for the input port, the port can  
be used as an 8-bit input pin. When the port is set for the input mode, all of these pins are pulled down to the VSS  
level inside the LSI.  
At reset (all cleared), the value of I/O mode and output latch becomes undefined.  
Figure 11-1. KI/O Pin Organization  
(P  
1
)
Control register  
P10  
P00  
P0  
KI/O7  
KI/O6  
KI/O5  
KI/O4  
KI/O3  
KI/O2  
KI/O1  
KI/O0  
11.2 KI/O Pull-Down Resistor Configuration  
V
DD  
Input/output selection  
P-ch  
Pin  
N-ch  
Output signal  
Input signal  
V
SS  
CMOS  
R
Pull-down resistor  
N-ch  
When KI/O is set to the input mode, pull-down resistor R is turned on.  
9
µPD61P24  
11.3 KI Pin (P12)  
This is the 4-bit pin for key input. All of these pins are pulled down to the VSS level by PLA data.  
Figure 11-2. KI Pin Organization  
KI3  
KI2  
KI1  
KI0  
P2  
11.4 KI Pull-Down Resistor Configuration  
V
DD  
P-ch  
N-ch  
Pin  
Input signal  
PLA K  
I
pull-down  
resistor switch  
Pull-down  
resistor  
V
SS  
V
SS  
When the pull-down resistor switch is turned on (set 1) by PLA data, pull-down resistor R is turned on.  
10  
µPD61P24  
11.5 S-OUT Pin  
By going low whenever the carrier frequency is output from the REM pin, the S-OUT pin indicates that  
communication is in progress.  
The S-OUT pin is CMOS output.  
The S-OUT pin goes high on reset.  
11.6 S-IN Pin (D0 bit of P1)  
To input serial data, use the S-IN pin. When control register (P1) is set to serial input mode, the S-IN pin is  
connected as an input to the LSB of the accumulator; the S-IN pin is pulled down to the VSS level within the LSI.  
In this state, if the rotate-left accumulator instruction (RL A) is executed, the data on the S-IN pin is copied to the  
LSB of the accumulator.  
If the control register is released from serial input mode, the S-IN pin goes into a high-impedance state, but no  
through current flows internally. When the RL A instruction is executed, the MSB is copied to the LSB.  
At reset (all cleared), the S-IN pin goes into a high-impedance state.  
Figure 11-3. Configuration of the S-IN Pin  
S-IN  
CY  
A
3
A 2  
A
1
A
0
Control register  
11  
µPD61P24  
12. PORT REGISTER (P×)  
KI/O, KI, and the control register are handled as port registers.  
The table below shows the relations between the port registers and pins.  
Table 12-1. Relations between Port Registers and Pins  
Input Mode  
Output Mode  
Pin  
Name  
On Reset  
Read  
Write  
Output latch  
Read  
Write  
Output latch  
KI/O  
KI  
Pin status  
Pin status  
Pin status  
Undefined [input mode, output latch]  
Input mode  
S-IN Pin status is read by RL A instruction when D0 of P1 register = 1.  
High impedance (D0 of P1 register = 0)  
P1× (H)  
P0× (L)  
P0  
KI/O7-4  
KI/O3-0  
P10  
P00  
Control register (H)  
KI3-0  
Control register (L)  
P1  
P2  
P11  
P12  
P01  
P02  
12  
µPD61P24  
13. CONTROL REGISTER (P1)  
The control register contains of 10 bits. The controllable items are shown in Table 13-1.  
Table 13-1. Control Register (P1)  
Bit  
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D.P.  
AD9  
D.P.  
AD8  
RL A CC  
Name  
Test mode  
HALT  
NOP  
MOD  
Timer  
K
I/O  
A0  
0
1
AD  
9
9
=0  
AD  
8
8
=0  
f
OSC/8  
STOP  
RUN  
IN  
A
3
Set  
Value  
Be sure to set 0.  
OSC  
STOP  
AD  
=1  
AD  
=1  
f
OSC/12  
OUT  
S-IN  
D0 .......................... Specifies data to be input to A0 when the accumulator is shifted to the left.  
0: A3, 1:S-IN  
D1 .......................... Specifies the status of KI/O, as follows:  
0: input mode, 1: output mode  
D2 .......................... Specifies the status of the timer, as follows:  
0: Count stop, 1: Count execution  
D3 .......................... Specifies the carrier frequency output from the REM pin.  
0: fOSC/8, 1: fOSC/12  
D4, D5 ................. Specify the high-order 2 bits of the ROM data pointer.  
D6 .......................... Determines what happen to the oscillation circuit when the HALT instruction is executed.  
0: Oscillation does not stop  
1: Oscillation stops (STOP mode)  
D7 .......................... Be sure to set this bit to 0.  
D8, D9 ................. These bits specify test modes. Be sure to set them to 0.  
Remark D0 = D8 = D9 = 0 on reset, and the other bits are undefined.  
13  
µPD61P24  
14. STANDBY FUNCTION (HALT INSTRUCTION)  
The µPD6600A is provided with the standby mode (HALT instruction), in order to reduce the power consumption,  
when not executing the program. Clock oscillation can be stopped in the standby mode (STOP mode).  
In the standby mode, the program execution stops. However, the contents of the internal registers and the data  
memory are all retained.  
14.1 STOP Mode (Oscillation stop HALT instruction)  
In the STOP mode, the operation of the system clock generator (ceramic resonator oscillation circuit) stops.  
Therefore, operations requiring the system clock will stop.  
If the HALT instruction is executed during timer operation, the program counter stops. The oscillation stop mode  
will be initiated, after the timer count down operation is completed.  
14.2 HALT Mode (Oscillation continue HALT instruction)  
The CPU stops its operation, until the HALT release condition is satisfied.  
The system clock operation continues in this mode.  
14.3 Standby Release Conditions  
(1) S-IN input  
(2) KI/O input  
(3) KI input  
(4) Timer count down operation completion  
Remark Either high level or low level can be specified for setting a release condition by input.  
Table 14-1. Standby Mode Releasing Condition  
Releasing  
Condition  
D
3
D
2
D
1
D
0
Remarks  
When RL  
A
3
is selected, the standby mode is  
0
0
0
S-IN  
always released.  
0
0
0
0
1
1
1
0
1
K
I/O  
Valid only in the IN mode.  
0/1  
K
I
0
Timer  
Released when 0.  
Releasing condition: “0”···Low level detection  
“1”···High level detection  
14  
µPD61P24  
15. AC PIN (ALL CLEAR PIN)  
Internal part of the CPU including the program counter can be reset by setting the AC pin to the low level.  
Watchdog Timer Function  
A power-on reset function and a CR watchdog timer function, that can be controlled by program, can be realized  
by connecting a 0.1 µF capacitor across the AC pin and the VSS.  
V
DD  
Charge mode  
Charge start instruction  
Execute HALT instruction  
immediately before NOP.  
(Charge for 0.4 ms or more)  
0.1 µF  
Discharge mode  
Discharge start instruction  
Discharge starts after the NOP  
instruction execution.  
(Discharge time is about 5 ms from VDD to VthL  
0.1 µF  
)
V
Charge-discharge  
pattern  
V
DD  
The pattern must be  
controlled by the program,  
in such a manner that  
the C charge level will not  
V
thL  
go below VthL  
.
t
Caution When the watchdog timer function is not used, switch to charging mode by executing a NOP  
instruction immediately before a HALT instruction at the beginning of the program. (Be sure to  
connect the capacitor.)  
15  
µPD61P24  
16. MASK OPTIONS (PLA DATA)  
The following items are fixed by mask option:  
• KI, S-IN pin pull-down resistor provided  
• Carrier duty selection (1/3) at fOSC/12  
• Hang-up detection provided  
<1> KI/O ALL  
The system is reset when the hang-up detection KI/O ALL switch is set to ON (“1”) by PLA data and if the  
KI/O pins are in the input mode in the oscillation stop HALT mode or if even one of the KI/O pins is low.  
To use a pin as a key source of the switch, turn ON the switch with PLA data.  
Figure 16-1. Hang-up Detection KI/O ALL Configuration Diagram  
K
K
K
K
K
K
I/O0 output signal  
I/O1 output signal  
I/O2 output signal  
I/O3 output signal  
I/O4 output signal  
I/O5 output signal  
V
DD  
To RESET circuit  
PLA hang-up  
detection  
K
K
I/O6 output signal  
I/O7 output signal  
K
I/O ALL switch  
KI/O input/output selection  
<2> HALT release condition specification (S-IN, KI/O, KI)  
The system is reset if S-IN and KI/O are used in the HALT mode when S-IN and KI/O are specified by PLA data  
not to be used (“1”). KI is used (“0”).  
16  
µPD61P24  
BIT Assignment by Switch Selection  
LSB  
MSB  
Corresponding  
7
Portion  
6
5
4
3
2
1
0
0
K
I3  
K
1
I2  
K
1
I1  
K
1
I0  
KI  
pull-down resistorNote  
0
1
2
1
(Provided) (Provided) (Provided)  
(Provided)  
S-IN  
0
0
0
Duty  
0
0
0
pull-down  
resistor  
Duty  
S-IN  
1
1
(1/3 duty)  
(Provided)  
HALT  
S-IN  
K
I/O ALL  
1
HALT  
0
HALT  
K
I
K
I/O  
Hang-up detection  
1
0
1
(Detection  
provided)  
(Unused)  
(Used)  
(Unused)  
17  
µPD61P24  
17. WRITING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)  
To write, read, or verify the PROM, set the PROM mode and use the pins shown in Table 17-1. No address input  
pin is used. To update the address, the clock signal input from the CLK pin is used.  
Table 17-1. Pins Used to Write, Read, and Verify Program Memory  
Symbol  
VPP  
Function  
Applies program voltage (12.5 V)  
Inputs clock to update address  
CLK  
MD0-MD3 Selects operation mode  
D0-D7  
Inputs/outputs 8-bit data  
VDD  
Applies supply voltage (6 V)  
17.1 Operation Mode When Writing, Reading, and Verifying Program Memory  
The µPD61P24 enters the program memory write, read, or verify mode if +6 V is applied to the VDD pin and +12.5  
V is applied to the VPP pin after the reset status has been held a certain time (VDD = 5 V, AC = low level).  
In this mode, the operation modes listed in Table 17-2 can be selected by using the MD0 through MD3 pins.  
Any input pins not used for writing, reading, or verifying the program memory must be open or connected to GND  
via a pull-down resistor (470 ).  
Table 17-2. Operating Mode When Writing, Reading, and Verifying Program Memory  
Specifies Operation Mode  
Operation Mode  
VPP  
VDD  
MD0  
H
MD1  
MD2  
H
MD3  
L
+12.5 V  
+6 V  
L
H
L
Clears program memory address to 0  
Write mode  
L
H
H
L
H
H
Read and verify modes  
Program inhibit mode  
H
×
H
H
×: don’t care (L or H)  
18  
µPD61P24  
17.2 Program Memory Writing Procedure  
The program memory is written at high speed in the following procedure.  
(1) Pull down the pins not used to GND via resistor. Keep the CLK pin low.  
(2) Supply 5 V to the VDD pin. Keep the VPP pin low.  
(3) Wait for 10 µs, and supply 5 V to the VPP pin.  
(4) Set the mode in which the program memory address is cleared to 0, by using the mode setting pins.  
(5) Supply 6 V to VDD and 12.5 V to VPP.  
(6) Set the program inhibit mode.  
(7) Write data in the 1-ms write mode.  
(8) Set the program inhibit mode.  
(9) Set the verify mode. If the data has been correctly written, proceed to (10). If not, repeat (7) through (9).  
(10) Additional writing of (Number of times data has been written in (7) through (9): X) × 1 ms  
(11) Set the program inhibit mode.  
(12) Input a pulse four times to the CLK pin to update the program memory address (+1).  
(13) Repeat (7) through (12) until the data is written to the last address.  
(14) Set the mode in which the program memory address is cleared to 0.  
(15) Change the voltage on the VDD and VPP pins to 5 V.  
(16) Turn off power supply.  
Program memory writing steps (2) through (12) are illustrated below.  
Repeat X times  
Reset  
Address  
increment  
Write  
Verify  
Additional write  
V
PP  
V
DD  
V
PP  
GND  
V
DD+1  
V
DD  
VDD  
GND  
CLK  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Data input  
Data output  
Data input  
D0-D7  
MD0  
MD1  
MD2  
MD3  
19  
µPD61P24  
17.3 Program Memory Reading Procedure  
(1) Pull down the pins not used to GND via resistor. Keep the CLK pin low.  
(2) Supply 5 V to the VDD pin. Keep the VPP pin low.  
(3) Wait for 10 µs, and supply 5 V to the VPP pin.  
(4) Set the mode in which the program memory address is cleared to 0, by using the mode setting pins.  
(5) Supply 6 V to VDD and 12.5 V to VPP.  
(6) Set the program inhibit mode.  
(7) Set the verify mode. If a clock pulse is input to the CLK pin, the data of one address is output each time the  
pulse has been input to the CLK pin four times.  
(8) Set the program inhibit mode.  
(9) Set the mode in which the program memory address is cleared to 0.  
(10) Change the voltage on the VDD and VPP pins to 5 V.  
(11) Turn off power supply.  
Program memory reading steps (2) through (9) are illustrated below.  
Reset  
VPP  
VPP  
VDD  
GND  
V
DD+1  
VDD  
V
DD  
GND  
CLK  
Hi-Z  
Hi-Z  
D0-D7  
MD0  
MD1  
MD2  
MD3  
Data output  
Data output  
“ L ”  
20  
µPD61P24  
18. INSTRUCTION SET  
Accumulator Manipulation Instructions  
R
r
R10  
R11  
R12  
R1F  
R
00  
R
01  
R
0F  
ANL  
ANL  
ANL  
ANL  
A, R  
r
D00  
E00  
A00  
D01  
E01  
A01  
D02  
E02  
A02  
D0F  
E0F  
A0F  
D20  
E20  
A20  
D21  
E21  
A21  
D2F  
E2F  
A2F  
D10  
D30  
D31  
A, @R  
A, @R  
0
H
L
0
A, #data  
ORL A, R  
r
E10  
E30  
E31  
ORL A, @R  
ORL A, @R  
0
H
L
0
ORL A, #data  
XRL  
XRL  
XRL  
XRL  
INC  
RL  
A, R  
r
A10  
A30  
A31  
A13  
F13  
A, @R  
A, @R  
0
H
L
0
A, #data  
A
A
Input/Output Instructions  
P
P
P10  
P11  
P12  
P00  
P01  
P
02  
F1A  
21A  
D1A  
E1A  
A1Z  
IN  
A, PP  
, A  
F18  
218  
D18  
E18  
A18  
F19  
219  
D19  
E19  
A19  
F38  
238  
D38  
E38  
A38  
F39  
239  
D39  
E39  
A39  
F3A  
23A  
D3A  
E3A  
A3A  
OUT  
ANL  
ORL  
XRL  
P
P
A, PP  
A, PP  
A, PP  
P
OUT PP #data  
P
P
0
P
1
P
2
31A  
318  
319  
P1P and P0P operate in pair format  
Data Transfer Instructions  
Rr  
R10  
R11  
R12  
R1F  
R00  
R01  
R0F  
MOV A, Rr  
F00  
F01  
F02  
F0F  
F20  
F21  
F2F  
MOV A, @R0 H  
MOV A, @R0 H  
MOV A, #data  
F10  
F30  
F31  
MOV Rr , A  
200  
201  
202  
20F  
220  
221  
22F  
Rr  
R0  
R1  
R2  
RF  
MOV Rr , #data  
MOV Rr , @R0  
300  
320  
301  
321  
302  
322  
30F  
32F  
R1r and R0r operate in pair format  
21  
µPD61P24  
Branch Instructions  
R
r
R
0
R
1
R
2
R
F
Pair register  
JMP0  
JMP0  
addr  
RrNote  
411  
401  
601  
621  
701  
721  
402  
602  
622  
702  
722  
40F  
60F  
62F  
70F  
72F  
JC  
addr  
611  
JC  
RrNote  
JNC  
JNC  
addr  
631  
RrNote  
JF  
addr  
711  
JF  
RrNote  
JNF  
JNF  
addr  
731  
RrNote  
Note r = 1 through F  
r = 0 canot be used.  
Subroutine Instructions  
P
P
P0  
P1  
CALL0 addr  
RET  
312  
412  
411  
Timer/Counter Manipulation Instructions  
T
t
T
0-1  
T1  
T
0
MOV A, Tt  
MOV Tt , A  
F1F  
21F  
F3F  
23F  
MOV T, #data  
MOV T, @R0  
31F  
33F  
Other Instructions  
R
00  
R
01  
R
02  
R
0F  
HALT #data  
111  
131  
STTS R0r  
120  
121  
122  
12F  
STTS #data  
SCAF  
NOP  
D13  
000  
22  
µPD61P24  
19. APPLICATION CIRCUIT EXAMPLE  
Key matrix  
20  
19  
18  
17  
16  
15  
1
K
K
I/O1  
I/O0  
K
K
K
K
K
K
I/O2  
I/O3  
I/O4  
I/O5  
V
DD  
V
DD  
2
3
S-IN  
SE303 series  
Transmission  
indication  
Infrared LED  
SE313  
SE307-C  
SE1003-C  
4
S-OUT  
REM  
I/O6  
I/O7  
2SC3616, 3618  
2SD1615, 1616  
2SC2001  
Mode select switch  
5
6
7
14  
13  
K
I0  
I1  
V
DD  
100 pF  
100 pF  
K
OSC-OUT  
OSC-IN  
3.0 V  
+
12  
11  
8
9
K
K
I2  
I3  
V
SS  
47 µF  
10  
AC  
0.1 µF  
µ
PD61P24  
Caution The ceramic resonator start up capacitor value must be determined, by taking the voltage level and  
the oscillation start up characteristics for the ceramic resonator into consideration.  
23  
µPD61P24  
20. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25 °C)  
Parameter  
Supply Voltage  
Symbol  
VDD  
Ratings  
7.0  
Unit  
V
Input Voltage  
VIN  
–0.3 to VDD + 0.3  
–20 to +75  
–40 to +125  
V
Operating Ambient Temperature  
Storage Temperature  
TA  
°C  
°C  
Tstg  
Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality  
of the product may be degraded. The absolute maximum rating therefore specifies the upper or  
lower limit of the value at which the product can be used without physical damages. Be sure to  
use the product(s) within the ratings.  
Recommended Operating Range (TA = 25 °C)  
Parameter  
Supply Voltage  
Oscillation Frequency  
Symbol  
VDD  
MIN.  
2.2  
TYP.  
MAX.  
5.5  
Unit  
V
fOSC  
400  
500  
kHz  
24  
µPD61P24  
DC Characteristics (VDD = 3.0 V, fOSC = 455 kHz, TA = 25 °C)  
Parameter  
Supply Voltage  
Symbol  
VDD  
IDD1  
IDD2  
IOH1  
IOL1  
IOH2  
IOL2  
IIH1  
Conditions  
MIN.  
2.2  
TYP.  
0.3  
MAX.  
5.5  
Unit  
V
Current Consumption 1  
fOSC = 455 kHz  
1.5  
mA  
µA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
µA  
µA  
µA  
V
Current Consumption 2  
fOSC = STOP  
1.0  
REM High Level Output Current  
REM Low Level Output Current  
S-OUT High Level Output Current  
S-OUT Low Level Output Current  
KI High Level Input Current  
KI High Level Input Current  
KI Low Level Input Current  
KI/O High Level Input Current  
KI/O High Level Input Current  
KI/O Low Level Input Current  
KI/O High Level Output Current  
KI/O Low Level Output Current  
S-IN High Level Input Current  
S-IN High Level Input Current  
S-IN Low Level Input Current  
KI High Level Input Voltage  
KI Low Level Input Voltage  
KI/O High Level Input Voltage  
KI/O Low Level Input Voltage  
S-IN High Level Input Voltage  
S-IN Low Level Input Voltage  
AC Pull-Up Resistor  
VO = 1.0 V  
–5  
0.5  
–0.3  
1
–8  
1.5  
–15  
2.5  
VO = 0.3 V  
VO = 2.7 V  
–1.0  
1.5  
–2.0  
2.5  
VO = 0.3 V  
VI = 3.0 V  
10  
30  
IIH1'  
IIL1  
VI = 3.0 V, without pull-down resistor  
0.2  
VI = 0 V  
–0.2  
30  
IIH2  
VI = 3.0 V  
10  
IIH2'  
IIL2  
VI = 3.0 V, without pull-down resistor  
0.2  
VI = 0 V  
–0.2  
–4.0  
100  
15  
IOH3  
IOL3  
IIH3  
V0 = 2.5 V  
–1.5  
25  
6
–2.0  
50  
V0 = 2.1 V  
VI = 3.0 V  
IIH3'  
IIL3  
VI = 3.0 V, without pull-down resistor  
VI = 0 V  
0.2  
–0.2  
3.0  
VIH1  
VIL1  
VIH2  
VIL2  
IIH3  
2.1  
0
VI = 3.0 V  
0.9  
V
1.3  
0
3.0  
V
0.4  
V
1.1  
0
3.0  
V
IIL3  
0.4  
V
R1  
VI = 0 V  
0.3  
150  
1.8  
0
3.0  
kΩ  
kΩ  
V
AC Pull-Down Resistor  
R2  
VI = 2.7 V  
400  
1500  
3.0  
AC High Level Input Voltage  
AC Low Level Input Voltage  
VIH4  
VIL4  
1.2  
V
25  
µPD61P24  
DC Programming Characteristics (TA = 25±5 °C, VDD = 6.0±0.25 V, VPP = 12.5±0.5 V)  
Parameter  
Symbol  
VIH1  
VIH2  
VIL1  
VIL2  
ILI  
Conditions  
Other than CLK  
MIN.  
0.7 VDD  
VDD–0.5  
0
TYP. MAX.  
Unit  
V
High-level input voltage  
VDD  
VDD  
CLK  
V
Low-level input voltage  
Other than CLK  
CLK  
0.3 VDD  
0.4  
V
0
V
Input leakage current  
High-level output voltage  
Low-level output voltage  
VDD supply current  
VIN = VIL or VIH  
IOH = –1 mA  
IOL = 1.6 mA  
10  
µA  
V
VOH  
VOL  
IDD  
VDD–1.0  
0.4  
30  
30  
V
mA  
mA  
VPP supply current  
IPP  
MD0 = VIL, MD1 = VIH  
Cautions 1. Keep VPP to within +13.5 V including the overshoot.  
2. Apply VDD before VPP, and turn it off after VPP.  
AC Programming Characteristics (TA = 25±5 °C, VDD = 6.0±0.25 V, VPP = 12.5±0.5 V)  
Parameter  
Symbol Note 1  
Conditions  
MIN.  
TYP. MAX.  
Unit  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ms  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
MHz  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
Address setup timeNote 2 (vs. MD0)  
MD1 setup time (vs. MD0)  
Data setup time (vs. MD0)  
Address hold timeNote 2 (vs. MD0)  
Data hold time (vs. MD0)  
MD0data output float delay time  
VPP setup time (vs. MD3)  
VDD setup time (vs. MD3)  
Initial program pulse width  
Additional program pulse width  
MD0 setup time (vs. MD1)  
MD0 data output delay time  
MD1 hold time (vs. MD0)  
MD1 recovery time (vs. MD0)  
Program counter reset time  
CLK input high-, low-level widths  
CLK input frequency  
tAS  
tM1S  
tDS  
tAS  
tOES  
tDS  
tAH  
tDH  
tDF  
2
2
2
tAH  
2
tDH  
2
tDF  
0
130  
tVPS  
tVDS  
tPW  
tVPS  
tVCS  
tPW  
tOPW  
tCES  
tDV  
tOEH  
tOR  
2
2
0.95  
0.95  
2
1.0  
1.05  
21.0  
tOPW  
tM0S  
tDV  
MD0 = MD1 = VIL  
1
tM1H  
tM1R  
tPCR  
tXH, tXL  
fX  
tM1H + tM1R 50 µs  
2
2
10  
0.125  
4.19  
Initial mode set time  
tI  
2
2
2
2
MD3 setup time (vs. MD1)  
MD3 hold time (vs. MD1)  
MD3 setup time (vs. MD0)  
AddressNote 2 data output delay time  
AddressNote 2 data output hold time  
MD3 hold time (vs. MD0)  
MD3 data output float delay time  
Reset setup time  
tM3S  
tM3H  
tM3SR  
tDAD  
tHAD  
tM3HR  
tDFR  
tRES  
On reading program memory  
On reading program memory  
On reading program memory  
On reading program memory  
On reading program memory  
tACC  
tOH  
2
0
2
130  
2
10  
Notes 1. Corresponding symbols of µPD27C256A (the µPD27C256A is a maintenance product).  
2. The internal address signal is incremented by one at the falling edge of CLK input at the third clock.  
26  
µPD61P24  
PROGRAM MEMORY WRITE TIMING  
t
t
VPS  
VDS  
t
RES  
V
PP  
VDD  
V
PP  
GND  
V
DD+1  
V
DD  
V
DD  
t
XH  
GND  
CLK  
t
XL  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
D0-D7  
MD0  
Data input  
Data output  
DV DF  
Data input  
Data input  
t
DH  
AH  
t
DS  
t
I
t
DS  
t
OH  
t
t
t
t
AS  
t
PW  
t
M1R  
t
M0S  
t
OPW  
MD1  
MD2  
t
PCR  
t
M1S  
t
M1H  
t
M3H  
t
M3S  
MD3  
PROGRAM MEMORY READ TIMING  
t
RES  
t
VPS  
V
PP  
V
PP  
V
DD  
GND  
t
VDS  
V
DD+1  
V
DD  
t
XH  
V
DD  
GND  
CLK  
t
DAD  
t
XL  
t
HAD  
Hi-Z  
Hi-Z  
D0-D7  
MD0  
MD1  
MD2  
MD3  
Data output  
Data output  
t
DV  
t
DFR  
t
I
t
M3HR  
“ L ”  
t
PCR  
t
M3SR  
27  
µPD61P24  
21. PACKAGE DRAWINGS  
20 PIN PLASTIC SOP (300 mil)  
20  
11  
detail of lead end  
1
10  
A
H
I
J
L
B
C
N
M
M
D
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.12 mm (0.005 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
13.00 MAX.  
0.78 MAX.  
1.27 (T.P.)  
0.512 MAX.  
0.031 MAX.  
0.050 (T.P.)  
+0.10  
0.40  
+0.004  
0.016  
D
–0.05  
–0.003  
E
F
G
H
I
0.1±0.1  
1.8 MAX.  
1.55  
0.004±0.004  
0.071 MAX.  
0.061  
7.7±0.3  
5.6  
0.303±0.012  
0.220  
J
1.1  
0.043  
+0.004  
0.008  
+0.10  
0.20  
K
L
–0.002  
–0.05  
+0.008  
0.024  
0.6±0.2  
–0.009  
M
N
0.12  
0.10  
0.005  
0.004  
+7°  
3°  
+7°  
3°  
P
–3°  
–3°  
P20GM-50-300B, C-4  
28  
µPD61P24  
20PIN PLASTIC SHRINK DIP (300 mil)  
20  
11  
10  
1
A
K
L
I
J
C
H
M
B
G
R
F
M
D
N
NOTES  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
19.57 MAX.  
1.78 MAX.  
1.778 (T.P.)  
0.771 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) ltem "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.85 MIN.  
3.2±0.3  
0.033 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.300 (T.P.)  
0.256  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
7.62 (T.P.)  
6.5  
J
K
L
+0.10  
0.25  
+0.004  
0.010  
M
–0.05  
–0.003  
N
R
0.17  
0.007  
0~15°  
0~15°  
P20C-70-300B-1  
29  
µPD61P24  
22. RECOMMENDED SOLDERING CONDITIONS  
It is recommended that µPD6124A and 6600A be soldered under the following conditions.  
For details on the recommended soldering conditions, refer to Information Document, Semiconductor Device  
Mounting Technology Manual (C10535E).  
For other soldering methods and conditions, consult NEC.  
Table 22-1. Soldering Conditions of Surface-Mount Type  
µPD61P24GS: 20-pin plastic SOP (300 mil)  
Soldering Method  
Partial Heating  
Soldering Conditions  
Pin temperature: 300°C max., time: 3 seconds max. (per device side)  
Table 22-2. Soldering Conditions of Through-Hole Type  
µPD61P24CS: 20-pin plastic shrink DIP (300 mil)  
Soldering Method  
Soldering Conditions  
Wave Soldering (Only for pin part)  
Partial Heating  
Solder bath temperature: 260°C max., time: 10 seconds max.  
Pin temperature: 300°C max., time: 3 seconds max. (per pin)  
Caution When soldering this product using of wave soldering, exercise care that the solder does not come  
in direct contact with the package.  
30  
µPD61P24  
APPENDIX A. µPD612× SERIES PRODUCT LIST  
Part Number  
µPD6124A  
µPD6600A  
µPD61P24  
µPD6125A  
µPD6126A  
Item  
ROM capacity  
1002 × 10 bits  
512 × 10 bits  
1002 × 10 bits  
1002 × 10 bits  
(mask ROM)  
(mask ROM)  
(one-time PROM) (mask ROM)  
RAM capacity  
I/O pin  
32 × 5 bits  
8 pins (KI/O0-7)  
12 pins  
16 pins (KI/O0-7,  
I/O00-03, I/O10-13)  
(KI/O0-7, I/O00-03)  
S-IN pin  
Provided  
Current consumption  
(fOSC = STOP) (MAX.)  
2 µA  
1 µA  
S-IN high-level input  
current (MAX.)  
30 µA  
15 µA  
Transmission carrier frequency fOSC/12, fOSC/8  
Low-voltage detection  
(reset) function  
Provided  
None  
Mask option  
Supply voltage  
Package  
Provided  
None (fixed)  
Provided  
VDD = 2.2 to 5.5 V VDD = 2.2 to 3.6 V VDD = 2.2 to 5.5 V VDD = 2.0 to 6.0 V  
• 20-pin plastic SOP (300 mil)  
• 24-pin plastic  
SOP (300 mil)  
• 24-pin plastic  
shrink DIP  
• 28-pin plastic  
SOP (375 mil)  
• 20-pin plastic shrink DIP (300 mil)  
(300 mil)  
31  
µPD61P24  
APPENDIX B. DEVELOPMENT TOOLS  
The following tools are available for program development using the µPD61P24.  
Document  
µPS612X Series Emulator  
µPS61P24 Assembler  
PROM Programmer  
Document No.  
Note 1  
Note 1  
AF-9703Note 2, 3  
AF-9704Note 2, 3  
AF-9705Note 3  
AF-9706Note 3  
µPD61P24 Program Adapter  
AF9807BNote 3  
Notes 1. These are products from I.C Corp. For details, consult I.C Corp.  
I.C Corp.  
6th Barnet Gotanda Bldg.  
1-9-5 Higashi-Gotanda, Shinagawa-ku, Tokyo 141  
Tel. 03-3447-3793  
Fax. 03-3440-5606  
2. Not available.  
3. These are products from Ando Electric Co., Ltd. For details, consult Ando Electric Co., Ltd.  
Ando Electric Co., Ltd.  
4-19-7 Kamata, Ota-ku, Tokyo 144  
Tel. 0120-40-0211(toll-free)  
Caution Use a writing program after assembling the program, convert the HEX file to a ROM file by using  
the PROM utility program “UPDPROM” (refer to AS612X Assembler User’s Manual(IEM-1016)).  
32  
µPD61P24  
[MEMO]  
33  
µPD61P24  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Produc-  
tion process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
34  
µPD61P24  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 800-729-9288  
Fax: 2886-9022/9044  
Fax: 040-2444580  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
Fax: 0211-65 03 490  
Tel: 02-528-0303  
Fax: 02-528-4411  
Fax: 01-30-67 58 99  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
Fax: 01908-670-290  
Fax: 250-3583  
Tel: 01-504-2787  
NEC Electronics Italiana s.r.1.  
Milano, Italy  
Tel: 02-66 75 41  
Fax: 01-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-719-2377  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Fax: 02-66 75 42 99  
Fax: 02-719-5951  
Taeby, Sweden  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Sao Paulo-SP, Brasil  
Tel: 011-889-1680  
Fax: 011-889-1689  
Fax: 08-63 80 388  
J96. 8  
35  
µPD61P24  
[MEMO]  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPD61P24GS

4-BIT SINGLE-CHIP MICROCONTROLLER FOR REMOTE CONTROL TRANSMISSION
NEC

UPD61P34

4-Bit Microcontroller
ETC

UPD61P34B

4-BIT SINGLE-CHIP MICROCONTROLLER FOR INFRARED REMOTE CONTROL TRANSMISSION
NEC

UPD61P34BGS

4-BIT SINGLE-CHIP MICROCONTROLLER FOR INFRARED REMOTE CONTROL TRANSMISSION
NEC

UPD61P34BMC-5A4

4-BIT SINGLE-CHIP MICROCONTROLLER FOR INFRARED REMOTE CONTROL TRANSMISSION
NEC

UPD61P34GS

Microcontroller, OTPROM, MOS, PDSO20, 0.300 INCH, PLASTIC, SOP-20
NEC

UPD62

4-BIT SINGLE-CHIP MICROCONTROLLER FOR INFRARED REMOTE CONTROL TRANSMISSION
NEC

UPD6221CX

8-Bit Digital-to-Analog Converter
ETC

UPD6221GS

8-Bit Digital-to-Analog Converter
ETC

UPD6222CS

8-Bit Digital-to-Analog Converter
ETC

UPD6222GS

8-Bit Digital-to-Analog Converter
ETC

UPD6252C

Microcontroller
ETC