UPD70216HLP-12 [NEC]

V40HLTM, V50HLTM 16/8, 16-BIT MICROPROCESSOR; V40HLTM , V50HLTM 16/8 , 16位微处理器
UPD70216HLP-12
型号: UPD70216HLP-12
厂家: NEC    NEC
描述:

V40HLTM, V50HLTM 16/8, 16-BIT MICROPROCESSOR
V40HLTM , V50HLTM 16/8 , 16位微处理器

微控制器和处理器 外围集成电路 微处理器 装置 时钟
文件: 总110页 (文件大小:614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD70208H, 70216H  
V40HLTM, V50HLTM  
16/8, 16-BIT MICROPROCESSOR  
DESCRIPTION  
The µPD70208H (V40HL) is a high-speed, low-power 16-/8-bit microprocessor based on the µPD70208 (V40TM) with  
16-bit architecture, 8-bit data bus, and general-purpose peripheral functions.  
The µPD70216H (V50HL) is a high-speed, low-power 16-bit microprocessor based on the µPD70216 (V50TM) with 16-  
bit architecture, 16-bit data bus, and general-purpose peripheral functions.  
The V40HL and V50HL offer 20 MHz operation, and in addition to the conventional standby functions, also allows the  
clock to be stopped by the use of fully static internal circuitry, thus achieving greatly reduced power consumption. It is also  
capable of 3 V operation in addition to the previous 5 V operation, making it ideally suited to battery driven systems.  
Details are given in the following manuals. Be sure to read when carrying out design work.  
• V40HL, V50HL User’s Manual – Hardware (U11610E)  
• 16-bit V seriesTM User’s Manual – Instruction (U11301J: Japanese version)  
FEATURES  
High-speed, low-power version of V40 and V50  
High-performance CPU (V20TM/V30TM software compatible)  
• Minimum instruction execution time:  
100 ns (20 MHz, 5 V)  
200 ns (10 MHz, 3 V)  
• Memory addressing space: 1M bytes  
• High-speed multiply/divide instructions:  
0.95 to 2.8 µs (20 MHz, 5 V)  
1.9 to 5.6 µs (10 MHz, 3 V)  
• Maskable (ICU) & non-maskable (NMI) interrupt inputs  
µPD8080AF emulation function  
• Standby functions, clock stoppage capability  
Standard peripheral LSI functions on chip  
• Clock generator (CG)  
• Programmable wait control unit (WCU)  
• Refresh control unit (REFU)  
• Timer/counter unit (TCU)  
• Serial control unit (SCU)  
··· µPD71054 subset  
··· µPD71051 subset  
• Interrupt control unit (ICU) ··· µPD71059 subset  
• DMA control unit (DMAU)  
··· µPD71071/71037 subset (functions of either selectable)  
Operating frequency: 10/12.5/16/20 MHz (at 5 V, with 20/25/32/40 MHz supplied externally)  
5/6.25/8/10 MHz (at 3 V, with 10/12.5/16/20 MHz supplied externally)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for availability  
and additional information.  
The mark shows the the major revised points.  
Document No. U13225EJ4V0DS00 (4th edition)  
Date Published April 1999 N CP(K)  
Printed in Japan  
1995  
©
µPD70208H, 70216H  
ORDERING INFORMATION  
(1) V40HL  
Max. Operating  
Part Number  
Package  
80-pin plastic QFP (14 × 20 mm)  
Frequency (MHz)  
µPD70208HGF-10-3B9  
10  
12.5  
16  
(Resin thickness 2.7 mm)  
µPD70208HGF-12-3B9  
µPD70208HGF-16-3B9  
µPD70208HGF-20-3B9  
µPD70208HGK-10-9EU  
µPD70208HGK-12-9EU  
µPD70208HGK-16-9EU  
µPD70208HGK-20-9EU  
80-pin plastic QFP (14 × 20 mm)  
(Resin thickness 2.7 mm)  
80-pin plastic QFP (14 × 20 mm)  
(Resin thickness 2.7 mm)  
80-pin plastic QFP (14 × 20 mm)  
(Resin thickness 2.7 mm)  
20  
80-pin plastic TQFP (Fine pitch) (12 × 12 mm)  
(Resin thickness 1.0 mm)  
10  
80-pin plastic TQFP (Fine pitch) (12 × 12 mm)  
(Resin thickness 1.0 mm)  
12.5  
16  
80-pin plastic TQFP (Fine pitch) (12 × 12 mm)  
(Resin thickness 1.0 mm)  
80-pin plastic TQFP (Fine pitch) (12 × 12 mm)  
(Resin thickness 1.0 mm)  
20  
µPD70208HLP-10  
µPD70208HLP-12  
µPD70208HLP-16  
µPD70208HLP-20  
68-pin plastic QFJ (950 × 950 mil)  
68-pin plastic QFJ (950 × 950 mil)  
68-pin plastic QFJ (950 × 950 mil)  
68-pin plastic QFJ (950 × 950 mil)  
10  
12.5  
16  
20  
(2) V50HL  
Max. Operating  
Part Number  
Package  
Frequency (MHz)  
µPD70216HGF-10-3B9  
80-pin plastic QFP (14 × 20 mm)  
(Resin thickness 2.7 mm)  
10  
12.5  
16  
µPD70216HGF-12-3B9  
µPD70216HGF-16-3B9  
µPD70216HGF-20-3B9  
µPD70216HGK-10-9EU  
µPD70216HGK-12-9EU  
µPD70216HGK-16-9EU  
µPD70216HGK-20-9EU  
80-pin plastic QFP (14 × 20 mm)  
(Resin thickness 2.7 mm)  
80-pin plastic QFP (14 × 20 mm)  
(Resin thickness 2.7 mm)  
80-pin plastic QFP (14 × 20 mm)  
(Resin thickness 2.7 mm)  
20  
80-pin plastic TQFP (Fine pitch) (12 × 12 mm)  
(Resin thickness 1.0 mm)  
10  
80-pin plastic TQFP (Fine pitch) (12 × 12 mm)  
(Resin thickness 1.0 mm)  
12.5  
16  
80-pin plastic TQFP (Fine pitch) (12 × 12 mm)  
(Resin thickness 1.0 mm)  
80-pin plastic TQFP (Fine pitch) (12 × 12 mm)  
(Resin thickness 1.0 mm)  
20  
µPD70216HLP-10  
µPD70216HLP-12  
µPD70216HLP-16  
µPD70216HLP-20  
68-pin plastic QFJ (950 × 950 mil)  
68-pin plastic QFJ (950 × 950 mil)  
68-pin plastic QFJ (950 × 950 mil)  
68-pin plastic QFJ (950 × 950 mil)  
10  
12.5  
16  
20  
Data Sheet U13225EJ4V0DS00  
2
µPD70208H, 70216H  
PIN CONFIGURATION (Top View)  
(1) V40HL  
80-pin Plastic QFP (14 × 20 mm)  
µPD70208HGF-10-3B9  
µPD70208HGF-12-3B9  
µPD70208HGF-16-3B9  
µPD70208HGF-20-3B9  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
64  
A16/PS0  
NC  
1
2
IORD  
NC  
63  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
3
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
MWR  
IOWR  
BUSLOCK  
BUFR/W  
BUFEN  
CLKOUT  
X1  
4
5
6
7
8
9
A8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
X2  
GND  
NC  
GND  
NC  
GND  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
NC  
GND  
High  
ASTB  
QS0  
QS1  
POLL  
TCTL2  
TOUT2  
TCLK  
NC  
NC  
INTP7  
INTP6  
END/TC  
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Caution Leave IC pin open.  
Data Sheet U13225EJ4V0DS00  
3
µPD70208H, 70216H  
80-pin Plastic TQFP (Fine pitch) (12 × 12 mm)  
µPD70208HGK-10-9EU  
µPD70208HGK-12-9EU  
µPD70208HGK-16-9EU  
µPD70208HGK-20-9EU  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
A15  
NC  
NC  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
MWR  
IOWR  
BUSLOCK  
BUFR/W  
BUFEN  
CLKOUT  
X1  
A14  
A13  
A12  
A11  
A10  
A9  
3
4
5
6
7
8
A8  
X2  
9
GND  
GND  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
NC  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
High  
ASTB  
QS0  
QS1  
POLL  
TCTL2  
TOUT2  
TCLK  
NC  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Data Sheet U13225EJ4V0DS00  
4
µPD70208H, 70216H  
68-pin Plastic QFJ (950 × 950 mil)  
µPD70208HLP-10  
µPD70208HLP-12  
µPD70208HLP-16  
µPD70208HLP-20  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
60  
59  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
MWR  
IOWR  
BUSLOCK  
BUFR/W  
BUFEN  
CLKOUT  
X1  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
A8  
X2  
GND  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
GND  
High  
ASTB  
QS0  
QS1  
POLL  
TCTL2  
TOUT2  
TCLK  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Data Sheet U13225EJ4V0DS00  
5
µPD70208H, 70216H  
(2) V50HL  
80-pin Plastic QFP (14 × 20 mm)  
µPD70216HGF-10-3B9  
µPD70216HGF-12-3B9  
µPD70216HGF-16-3B9  
µPD70216HGF-20-3B9  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
64  
A16/PS0  
NC  
1
2
IORD  
NC  
63  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
3
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
MWR  
IOWR  
BUSLOCK  
BUFR/W  
BUFEN  
CLKOUT  
X1  
4
5
6
7
8
9
AD8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
X2  
GND  
NC  
GND  
NC  
GND  
AD7  
GND  
UBE  
AD6  
ASTB  
QS0  
AD5  
AD4  
QS1  
AD3  
POLL  
TCTL2  
TOUT2  
TCLK  
NC  
AD2  
AD1  
AD0  
NC  
NC  
INTP7  
INTP6  
END/TC  
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Caution Leave IC pin open.  
Data Sheet U13225EJ4V0DS00  
6
µPD70208H, 70216H  
80-pin Plastic TQFP (Fine pitch) (12 × 12 mm)  
µPD70216HGK-10-9EU  
µPD70216HGK-12-9EU  
µPD70216HGK-16-9EU  
µPD70216HGK-20-9EU  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
AD15  
NC  
NC  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
MWR  
IOWR  
BUSLOCK  
BUFR/W  
BUFEN  
CLKOUT  
X1  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
AD8  
GND  
GND  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
NC  
3
4
5
6
7
8
X2  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
UBE  
ASTB  
QS0  
QS1  
POLL  
TCTL2  
TOUT2  
TCLK  
NC  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Data Sheet U13225EJ4V0DS00  
7
µPD70208H, 70216H  
68-pin Plastic QFJ (950 × 950 mil)  
µPD70216HLP-10  
µPD70216HLP-12  
µPD70216HLP-16  
µPD70216HLP-20  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
60  
59  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
MWR  
IOWR  
BUSLOCK  
BUFR/W  
BUFEN  
CLKOUT  
X1  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
AD8  
X2  
GND  
AD7  
GND  
UBE  
AD6  
ASTB  
QS0  
AD5  
AD4  
QS1  
AD3  
POLL  
TCTL2  
TOUT2  
TCLK  
AD2  
AD1  
AD0  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Data Sheet U13225EJ4V0DS00  
8
µPD70208H, 70216H  
PIN NAMES  
A8-A15  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Address Bus  
A16/PS0-A19/PS3  
AD0-AD15  
ASTB  
Address/Processor Status  
Address Bus/Data Bus  
Address Strobe  
Bus Status  
BS0-BS2  
BUFEN  
Buffer Enable  
BUFR/W  
BUSLOCK  
CLKOUT  
DMAAK0-DMAAK2  
DMAAK3/TXD  
DMARQ0-DMARQ2  
DMARQ3/RXD  
END/TC  
GND  
Buffer Read/Write  
Bus Lock  
Clock Output  
DMA Acknowledge  
DMA Acknowledge/Transmit Data  
DMA Request  
DMA Request/Receive Data  
End/Terminal Count  
Ground  
High  
High Level Output  
Hold Acknowledge  
Hold Request  
HLDAK  
HLDRQ  
IC  
Internally Connected  
Interrupt Acknowledge/Serial Ready/Timer Output 1  
Interrupt Request from Peripherals  
I/O Read  
INTAK/SRDY/TOUT1  
INTP1-INTP7  
IORD  
IOWR  
I/O Write  
MRD  
Memory Read  
MWR  
Memory Write  
NC  
No Connection  
NMI  
Non-Maskable Interrupt Request  
Poll  
POLL  
QS0, QS1  
READY  
Queue Status  
Ready  
REFRQ  
Refresh Request  
Reset  
RESET  
RESOUT  
TCLK  
Reset Output  
Timer Clock  
TCTL2  
Timer Control 2  
Timer Output 2  
TOUT2  
UBE  
Upper Byte Enable  
Power Supply  
VDD  
X1, X2  
Crystal  
Data Sheet U13225EJ4V0DS00  
9
µPD70208H, 70216H  
BLOCK DIAGRAM  
(1) V40HL  
TOUT2  
TOUT1  
TCTL2  
TCLK  
POLL  
BUSLOCK  
BUFEN  
BUFR/W  
High  
BIU  
SCU  
TCU  
ASTB  
IOWR  
IORD  
INTP7  
INTP6  
INTP5  
INTP4  
INTP3  
INTP2  
INTP1  
MWR  
WCU  
MRD  
READY  
RESOUT  
RESET  
ICU  
CPU  
HLDAK  
HLDRQ  
INTAK  
NMI  
BAU  
X2  
X1  
REFU  
CG  
DMAU  
CPU : Central Processing Unit  
REFU : Reflesh Control Unit  
CG  
:
:
Clock Generator  
Bus Interface Unit  
TCU  
SCU  
ICU  
:
:
:
Timer/Count Unit  
BIU  
Serial Control Unit  
Interrupt Control Unit  
BAU : Bus Arbitration Unit  
WCU : Wait Control Unit  
DMAU : DMA Control Unit  
Data Sheet U13225EJ4V0DS00  
10  
µPD70208H, 70216H  
(2) V50HL  
TOUT2  
TOUT1  
TCTL2  
TCLK  
POLL  
BUSLOCK  
BUFEN  
BUFR/W  
UBE  
SCU  
TCU  
BIU  
ASTB  
IOWR  
IORD  
INTP7  
INTP6  
INTP5  
INTP4  
INTP3  
INTP2  
INTP1  
MWR  
WCU  
MRD  
READY  
RESOUT  
RESET  
ICU  
CPU  
HLDAK  
HLDRQ  
INTAK  
NMI  
BAU  
X2  
X1  
CG  
DMAU  
REFU  
Data Sheet U13225EJ4V0DS00  
11  
µPD70208H, 70216H  
DIFFERENCES FROM V40 AND V50  
Item  
V40HL, V50HL  
V40, V50  
Operating supply voltage  
3 V, 5 V  
5 V  
VDD = 5 V  
MAX. : 10, 12.5, 16, 20 MHz  
MIN. : DC  
MAX. : 8, 10 MHz  
MIN. : 2 MHz  
Operating  
frequency  
VDD = 3 V  
MAX. : 5, 6.25, 8, 10 MHz  
MIN. : DC  
No operation  
Clock generator  
(CG)  
Variable scaling factor  
Fixed scaling factor  
Variable instruction cycle time  
Maximum input frequency: 40 MHz  
Fixed instruction cycle time  
Maximum input frequency: 20 MHz  
Internal I/O relocation  
function  
Switchable 8-bit boundary or 16-bit boundary  
relocation function  
V40: Relocation possible on 8-bit boundary  
V50: Relocation possible on 16-bit boundary  
Note 1  
Wait control unit (WCU)  
Memory space: 5 divisions  
Memory space: 3 divisions  
I/O space: Not divided  
Note 2  
I/O space: 3 divisions  
Refresh control unit  
(REFU)  
Refresh address: 16 bits  
Refresh address: 9 bits  
No REFRQ extended timing  
REFRQ extended timing supported  
Dedicated baud rate generator incorporated  
Serial control unit (SCU)  
DMA control unit (DMAU)  
Standby functions  
No dedicated baund rate generator  
incorporated  
µPD71071/71037 subset (either function  
µPD71071 subset  
selectable)  
HALT mode, STOP mode  
HALT mode only  
Notes 1. Divided into 3 when a reset is performed.  
2. Not divided when a reset is performed.  
Data Sheet U13225EJ4V0DS00  
12  
µPD70208H, 70216H  
CONTENTS  
1. PIN FUNCTIONS ................................................................................................................................... 15  
1.1 LIST OF PIN FUNCTIONS ...........................................................................................................................  
1.2 PROCESSING OF UNUSED PINS ..............................................................................................................  
15  
17  
2. MEMORY AND I/O CONFIGURATION ................................................................................................ 19  
2.1 MEMORY SPACE.........................................................................................................................................  
19  
2.2 I/O SPACE .................................................................................................................................................... 21  
3. CPU ........................................................................................................................................................ 22  
4. CG (CLOCK GENERATOR) ................................................................................................................. 24  
5. BIU (BUS INTERFACE UNIT) .............................................................................................................. 24  
6. BAU (BUS ARBITRATION UNIT) ........................................................................................................ 25  
7. WCU (WAIT CONTROL UNIT) ................................................................................................................ 27  
7.1 FEATURES ...................................................................................................................................................  
7.2 RELATION BETWEEN WCU AND READY PIN ........................................................................................  
27  
28  
8. REFU (REFRESH CONTROL UNIT) .................................................................................................... 29  
8.1 FEATURES ...................................................................................................................................................  
8.2 REFRESH OPERATIONS ............................................................................................................................  
29  
29  
9. TCU (TIMER/COUNTER UNIT) ............................................................................................................ 30  
9.1 FEATURES ...................................................................................................................................................  
9.2 TCU INTERNAL BLOCK DIAGRAM ...........................................................................................................  
30  
30  
10. SCU (SERIAL CONTROL UNIT) .......................................................................................................... 31  
10.1 FEATURES ...................................................................................................................................................  
10.2 SCU INTERNAL BLOCK DIAGRAM...........................................................................................................  
31  
31  
11. ICU (INTERRUPT CONTROL UNIT) .................................................................................................... 32  
11.1 FEATURES ...................................................................................................................................................  
11.2 ICU INTERNAL BLOCK DIAGRAM ............................................................................................................  
32  
32  
12. DMAU (DMA CONTROL UNIT) ............................................................................................................ 33  
12.1 FEATURES ...................................................................................................................................................  
12.2 DMAU INTERNAL BLOCK DIAGRAM .......................................................................................................  
33  
33  
13. STANDBY FUNCTIONS........................................................................................................................ 34  
14. RESET OPERATION ............................................................................................................................. 34  
15. INSTRUCTION SET............................................................................................................................... 35  
Data Sheet U13225EJ4V0DS00  
13  
µPD70208H, 70216H  
16. ELECTRICAL SPECIFICATIONS ......................................................................................................... 66  
16.1 AT 5 V OPERATION ....................................................................................................................................  
16.2 AT 3 V OPERATION ....................................................................................................................................  
66  
75  
17. PACKAGE DRAWINGS ........................................................................................................................ 100  
18. RECOMMENDED SOLDERING CONDITIONS ................................................................................... 103  
Data Sheet U13225EJ4V0DS00  
14  
µPD70208H, 70216H  
1. PIN FUNCTIONS  
1.1 LIST OF PIN FUNCTIONS  
Pin Name  
Input/Output  
3-state I/O  
3-state I/O  
3-state output  
3-state output  
Output  
Function  
Note 1, 3  
AD0 to AD15  
Time-division address/data bus  
Time-division address/data bus  
Address bus  
Note 2, 3  
AD0 to AD7  
Note 2, 3  
A8 to A15  
Note 3  
A16/PS0 to A19/PS3  
Time-division address/processor status  
Refresh request  
REFRQ  
HLDRQ  
HLDAK  
RESET  
RESOUT  
READY  
NMI  
Input  
Bus hold request  
Output  
Bus hold acknowledge  
Reset  
Input  
Output  
System reset output  
Bus cycle end  
Input  
Input  
Non-maskable interrupt  
Memory read strobe  
Memory read strobe  
I/O read strobe  
Note 3  
MRD  
3-state output  
3-state output  
3-state output  
3-state output  
Output  
Note 3  
MWR  
Note 3  
IORD  
Note 3  
IOWR  
I/O write strobe  
ASTB  
Address strobe  
Note 1, 3  
UBE  
3-state output  
3-state output  
3-state output  
Input  
Data bus upper byte enable  
High level output  
Note 2  
High  
Note 3  
BUSLOCK  
Bus lock  
POLL  
Floating-point operation processor polling  
Buffer read/write  
Note 3  
BUFR/W  
3-state output  
3-state output  
Input  
Note 3  
BUFEN  
Buffer enable  
X1  
Crystal/external clock  
X2  
CLKOUT  
Output  
Clock output  
Note 3  
BS0 to BS2  
3-state output  
Output  
Bus status  
QS0, QS1  
TOUT2  
Queue status  
Output  
Timer 2 output  
TCTL2  
Input  
Timer 2 control  
TCLK  
Input  
Timer clock  
INTP1 to INTP7  
INTAK/SRDY/TOUT1  
Input  
Maskable interrupts  
Output  
Interrupt acknowledge/serial reception ready/timer 1 output  
Notes 1. V50HL only  
2. V40HL only  
3. These pins are provided with a latch. Therefore, when they go into a high-impedance state, they hold  
the status before the high-impedance state until driven by an external device. It is not necessary to pull  
up or down the data bus. To invert the level of the pin that goes into a high-impedance state by an  
external device, a drive current higher than the latch invert current (IILH, IILL) is necessary.  
Data Sheet U13225EJ4V0DS00  
15  
µPD70208H, 70216H  
Pin Name  
DMAAK3/TXD  
Input/Output  
Output  
Input  
Output  
Input  
I/O  
Function  
DMA acknowledge 3/serial transmit data  
DMA request 3/serial receive data  
DMA acknowledge  
DMARQ3/RXD  
DMAAK0 to DMAAK2  
DMARQ0 to DMARQ2  
DMA request  
END/TC  
VDD  
DMA service forcible termination/DMA service completion  
Positive power supply pin  
GND  
IC  
Ground potential pin  
Internal connection pin (External connection impossible)  
Data Sheet U13225EJ4V0DS00  
16  
µPD70208H, 70216H  
1.2 PROCESSING OF UNUSED PINS  
Table 1-1 shows the processing (recommended connection) of the unused pins. Use of a resistor with a resistance of  
1 to 10 kis recommended to connect these pins to VDD or GND via resistor.  
Table 1-1. Processing of Unused Pins  
Pin Name  
Input/Output  
3-state I/O  
3-state I/O  
3-state output  
3-state output  
Output  
Recommended Connection  
Note 1  
AD0 to AD15  
Open  
Note 2  
AD0 to AD7  
Note 2  
A8 to A15  
A16/PS0 to A19/PS3  
REFRQ  
HLDRQ  
HLDAK  
RESOUT  
READY  
NMI  
Input  
Connect to GND via resistor  
Output  
Open  
Output  
Open  
Input  
Connect to VDD via resistor  
Connect to GND via resistor  
Open  
Input  
MRD  
3-state output  
3-state output  
3-state output  
3-state output  
Output  
MWR  
IORD  
IOWR  
ASTB  
Note 1  
UBE  
3-state output  
Output  
Note 2  
High  
BUSLOCK  
3-state output  
Input  
POLL  
Connect to GND via resistor  
Open  
BUFR/W  
3-state output  
3-state output  
Output  
BUFEN  
CLKOUT  
Open  
BS0 to BS2  
QS0, QS1  
3-state output  
Output  
TOUT2  
Output  
TCTL2  
Input  
Connect to GND via resistor  
Open  
TCLK  
Input  
INTP1 to INTP7  
INTAK/SRDY/TOUT1  
DMAAK3/TxD  
DMARQ3/RxD  
DMAAK0 to DMAAK2  
DMARQ0 to DMARQ2  
END/TC  
Input  
Output  
Output  
Input  
Connect to GND via resistor  
Open  
Output  
Input  
Connect to GND via resistor  
Individually connect to VDD via resistor  
I/O  
Notes 1. V50HL only  
2. V40HL only  
Data Sheet U13225EJ4V0DS00  
17  
µPD70208H, 70216H  
Remark The circuit configuration of the latch is as illustrated below. To invert the level of the pin with a latch, a drive  
current higher than the latch invert current is necessary.  
(1) Output pin  
Output buffer  
Latch  
Output pin  
address bus,  
control bus  
Hi-Z  
control  
(2) I/O pin  
Output buffer  
Latch  
I/O pin  
(data bus)  
Hi-Z  
control  
Input buffer  
Data Sheet U13225EJ4V0DS00  
18  
µPD70208H, 70216H  
2. MEMORY AND I/O CONFIGURATION  
2.1 MEMORY SPACE  
The V40HL and V50HL can access a 1M-byte (512K-word) memory space.  
Figure 2-1. Memory Map  
FFFFFH  
Reserved  
FFFFCH  
FFFFBH  
Dedicated  
FFFF0H  
FFFEFH  
General Use  
00400H  
003FFH  
Interrupt Vector Table  
00000H  
Figure 2-2. Interface with Memory (1/2)  
(a) V40HL  
A0-A19  
Address Bus (20)  
Memory  
1M Byte  
8
D0-D7  
Data Bus (8)  
Data Sheet U13225EJ4V0DS00  
19  
µPD70208H, 70216H  
Figure 2-2. Interface with Memory (2/2)  
(b) V50HL  
A1-A19  
Address Bus (19)  
A0  
19  
19  
UBE  
BSEL  
BSEL  
Memory  
Upper Bank  
512K Byte  
Memory  
Lower Bank  
512K Byte  
D8-D15  
D0-D7  
8
8
D0-D15  
Data Bus (16)  
Data Sheet U13225EJ4V0DS00  
20  
µPD70208H, 70216H  
2.2 I/O SPACE  
In the V40HL and V50HL, I/Os up to 64K bytes (32K words) can be accessed in an area independent of the memory.  
The various on-chip peripheral LSIs are set by accessing the system I/O area.  
Extended functions added to those of the V40 and V50 are mapped onto unused V40 and V50 registers and the reserved  
area.  
The I/O map is shown in Figure 2-3.  
Figure 2-3. I/O Map  
FFFFH  
Area used for setting of I/O boundary,  
WCU, REFU, baud rate generator, etc.,  
and DMAU, ICU, TCU and SCU allocation.  
System I/O Area  
FFE0H  
FFDFH  
Reserved Area  
FF00H  
FEFFH  
DMAU  
ICU  
The DMAU, ICU, TCU and SCU  
are allocated within any 256 bytes.  
256 Bytes  
TCU  
SCU  
Internal I/O Area  
External I/O Area  
0000H  
Data Sheet U13225EJ4V0DS00  
21  
µPD70208H, 70216H  
3. CPU  
The CPU has the same functions as the V20HLTM and V30HLTM. In hardware terms, there are some changes regarding  
the use of the bus with on-chip peripherals, but in software terms the CPU is fully compatible.  
The internal block diagram of the CPU is shown in Figure 3-1.  
Figure 3-1. Internal Block Diagram of CPU (1/2)  
(a) V40HL  
Internal Address/Data Bus (20)  
To BIU  
ADM  
PS  
T-STATE  
SS  
CONTROL  
DS0  
DS1  
PFP  
NMI  
CYCLE  
DECISION  
INTERRUPT  
CONTROL  
DP  
INT  
(From ICU)  
TEMP  
Q0  
Q2  
Q1  
Q3  
QUEUE  
CONTROL  
STANDBY  
CONTROL  
CLOCK  
(From CG)  
BCU  
EXU  
LC  
PC  
AW  
BW  
CW  
DW  
IX  
EFFECTIVE ADDRESS  
GENERATOR  
µINSTRUCTION  
29  
Micro Data Bus  
IY  
ROM  
BP  
SP  
µ
SEQUENCE  
CONTROL  
µ
TC  
TA  
TB  
SHIFTER  
INSTRUCTION DECODER  
ALU  
PSW  
Sub Data Bus  
(16)  
Main Data Bus  
(16)  
Data Sheet U13225EJ4V0DS00  
22  
µPD70208H, 70216H  
Figure 3-1. Internal Block Diagram of CPU (2/2)  
(b) V50HL  
Internal Address/Data Bus (20)  
To BIU  
ADM  
PS  
SS  
DS0  
DS1  
T-STATE  
CONTROL  
PFP  
DP  
NMI  
CYCLE  
DECISION  
INTERRUPT  
CONTROL  
INT  
(From ICU)  
TEMP  
Q0  
Q2  
Q4  
Q1  
Q3  
Q5  
QUEUE  
CONTROL  
STANDBY  
CONTROL  
CLOCK  
(From CG)  
BCU  
EXU  
LC  
PC  
AW  
BW  
CW  
DW  
IX  
EFFECTIVE ADDRESS  
GENERATOR  
INSTRUCTION  
ROM  
µ
29  
Micro Data Bus  
IY  
BP  
SP  
µ
SEQUENCE  
CONTROL  
µ
TC  
TA  
TB  
SHIFTER  
INSTRUCTION DECODER  
ALU  
PSW  
Sub Data Bus  
(16)  
Main Data Bus  
(16)  
Data Sheet U13225EJ4V0DS00  
23  
µPD70208H, 70216H  
4. CG (CLOCK GENERATOR)  
The CG generates a clock at a frequency of 1/2, 1/4, 1/8 or 1/16 that of the crystal and oscillator connected to the X1  
and X2 pins, supplies it as the CPU operating clock and outputs it externally as the CLKOUT pin output.  
The interrupt cycle time can be changed according to the oscillator scaling factor. The scaling factor can be set by a  
system I/O area register.  
Figure 4-1. Internal Block Diagram of CG  
X1  
f
X
f
XX  
Divide-by-2  
Scaler  
Divide-by-1-to-8  
Scaler  
Oscillator  
CPU, DMAU, REFU, SCU  
X2  
CLKOUT  
Baud Rate Counter (BRC)  
Divide-by-2-to-16  
Scaler  
TCU  
5. BIU (BUS INTERFACE UNIT)  
The BIU controls the data bus, address bus and control bus pins. These buses are used by the CPU, DMAU (DMA control  
unit) and REFU (refresh control unit).  
The BIU synchronizes the RESET input signal and READY input signal using the CLOCK signal generated by the clock  
generator (CG). In addition to being supplied to the inside of the V40HL and V50HL, the synchronized reset signal is also  
output externally from the RESOUT pin. The synchronized READY signal is supplied to the internal CPU, DMAU and REFU.  
Figure 5-1. RESET and READY Signal Synchronization  
CLOCK  
CK ↓  
RESET  
READY  
D
D
Q
Q
RESOUT  
To Internal Units  
CK ↑  
CK ↓  
D
Q
To Internal Units  
Data Sheet U13225EJ4V0DS00  
24  
µPD70208H, 70216H  
6. BAU (BUS ARBITRATION UNIT)  
The BAU performs bus arbitration among bus masters.  
A list of bus masters (units which can acquire the bus) is shown below.  
Table 6-1. Bus Masters  
Bus Master  
Bus Cycle  
CPU  
Program fetch, data read/write  
DMA cycle  
DMAU  
REFU  
Refresh cycle  
External bus master  
(HLDRQ pin input)  
Bus cycle driven by external device  
The relative priorities of the bus masters are shown below.  
High  
CPU (when BUSLOCK prefix is used)  
REFU (highest priority: when given number of requests are reached)  
DMAU  
HLDRQ pin  
CPU (normal CPU cycle)  
REFU (lowest priority: cycle steal)  
Low  
BAU bus arbitration is performed as follows.  
A bus master such as the CPU, DMAU, REFU, etc., incorporated in the V40HL and V50HL normally release the bus at  
the end of the bus cycle currently being executed, as shown in Figure 6-1. However, in the case of a bus master connected  
to the HLDRQ pin, or cascaded external DMA controllers, for instance, the situation is as shown in Figure 6-2. The V40HL  
and V50HL request return of the bus by inactivating the acknowledge signal (HLDAK), and on receiving this request, the  
external bus master holding the bus should release the bus by dropping the bus hold request signal (HLDRQ). The V40HL  
and V50HL-internal bus master with the highest priority is kept waiting until the bus hold request signal is dropped. This  
is called a bus wait operation.  
Data Sheet U13225EJ4V0DS00  
25  
µPD70208H, 70216H  
Figure 6-1. Internal Bus Cycles  
Bus Cycle  
CPU  
CPU  
DMA  
Refresh Refresh Refresh  
Internal DMA Request  
Internal Refresh Request  
(Highest Priority)  
Figure 6-2. Bus Wait Operation  
Bus Wait  
Bus ReleaseNote  
Refresh  
Bus Cycle  
HLDRQ Pin  
HLDAK Pin  
Internal Refresh Request  
(Highest Priority)  
Note The period in which the external bus master which has been given the bus after its release by the V40HL and  
V50HL can use the bus.  
Data Sheet U13225EJ4V0DS00  
26  
µPD70208H, 70216H  
7. WCU (WAIT CONTROL UNIT)  
The WCU has the function of automatically inserting a wait state (TW) of 0 to 3 clock cycles in a CPU, DMAU or REFU  
bus cycle.  
7.1  
FEATURES  
Automatic setting of 0 to 3 waits for a CPU memory bus cycle  
1M-byte memory space can be divided into 5  
64K-byte I/O space can be divided into 3  
Automatic setting of 0 to 3 waits for an external I/O cycle  
Automatic setting of 0 to 3 waits for a DMA cycle  
Automatic setting of 0 to 3 waits for a refresh cycle  
Same as V40 and V50 directly after a reset (memory space divided into 3, no division of I/O space)  
Figure 7-1. Example of Memory Space Division  
Upper Sub  
Memory Block  
FFFFFH  
Upper Memory Block  
1 M-Byte  
Memory Area  
Middle Memory Block  
Lower Memory Block  
Lower Sub  
Memory Block  
00000H  
Remark The division specification and the size of each block are set by means of a system I/O area register.  
Data Sheet U13225EJ4V0DS00  
27  
µPD70208H, 70216H  
Figure 7-2. Example of I/O Space Division  
FFFFH  
Upper I/O Block  
64K-Byte I/O Area  
Middle I/O Block  
Lower I/O Block  
0000H  
Remark The division specification and the size of each block are set by means of a system I/O area register.  
7.2 RELATION BETWEEN WCU AND READY PIN  
When wait cycles exceeding 3 clock cycles are necessary, the WCU and the READY signal pin can be used in  
combination. The number of wait cycles specified by the WCU set value or the number of wait cycles under READY control,  
whichever is larger, is inserted.  
Figure 7-3. WCU and READY Control  
V40HL/V50HL  
WCU  
Bus Control  
READY  
Data Sheet U13225EJ4V0DS00  
28  
µPD70208H, 70216H  
8. REFU (REFRESH CONTROL UNIT)  
The REFU generates refresh cycles required for refreshing of external DRAM. Refresh enabling/disabling and the refresh  
interval can be set programmably.  
8.1 FEATURES  
Lowest-priority refreshing/highest-priority refreshing  
7-refresh queue  
16-bit refresh address  
REFRQ extended timing supported (REFRQ active from T1 state)  
8.2 REFRESH OPERATIONS  
The REFU has two priorities. Normally, it has the lowest priority, and a refresh cycle cannot be started unless the bus  
is completely idle. However, if there are 7 or more pending refresh requests, it is given the highest priority, and it requests  
the bus master holding the bus to relinquish it. (See 6. BAU.)  
The refresh address is output on A0 to A15. Every refresh cycle the refresh address is incremented by 1 (for the V40HL)  
or by 2 (for the V50HL), and the next refresh address is generated.  
In a refresh cycle, a low-level signal is output on the low address pins (A16 to A19).  
This refresh address is not affected by a reset. When the device is powered on, the refresh address is undefined.  
Data Sheet U13225EJ4V0DS00  
29  
µPD70208H, 70216H  
9. TCU (TIMER/COUNTER UNIT)  
The TCU incorporates 3 counters, and can be used as a timer, event counter, rate generator, etc. Functionally it is a  
subset of the µPD71054.  
9.1  
FEATURES  
3 × 16-bit counters  
Six programmable count modes  
Binary/BCD count  
Multiple latch command  
Choice of two input clocks: internal/external  
9.2 TCU INTERNAL BLOCK DIAGRAM  
TCTL1=High  
TOUT1 (External) TCTL2 (External)  
TOUT2 (External)  
TCLK  
(External)  
CLOCK  
TCU  
Selection  
Signal  
TCTL0=High  
TOUT0 (To INTL0)  
Note 2  
Note 1  
IORD IOWR  
Prescaler  
To INTL2/SCU  
SW  
SW  
SW  
TCT #0  
Read/Write Control  
Control Logic  
Status  
Register  
TCT #1  
TCT #2  
Down Counter (16)  
(8)  
(16)  
(16)  
TMD  
(Mode  
Register)  
H(8) L(8)  
Count  
Register  
H(8) L(8)  
Count  
Latch  
Status  
Latch  
(8)  
(8)  
(8)  
Internal Data Bus  
Notes 1. A0 or A1 (Set by a system I/O area register)  
2. A1 or A2 (Set by a system I/O area register)  
Data Sheet U13225EJ4V0DS00  
30  
µPD70208H, 70216H  
10. SCU (SERIAL CONTROL UNIT)  
The SCU performs control of serial communication (asynchronous). Its functions are a subset of the µPD71051 excluding  
synchronous communication. Also, what was the control word register in the µPD71051 has been divided into two: a  
command register and a mode register.  
10.1 FEATURES  
Dedicated baud rate generator incorporated (using internal clock)  
Asynchronous serial communication  
Clock rate: baud rate × 16, × 64  
Baud rate: DC – 500 kbps  
Character length: 7/8 bits  
Transmit stop bits: 1/2 bits  
Break transmission  
Automatic break detection  
Full-duplex double-buffer system  
Parity addition/checking  
Error detection: parity, overrun, framing  
Interrupt generation maskable  
10.2 SCU INTERNAL BLOCK DIAGRAM  
Baud Rate  
From CG  
Generator  
From TCU  
(TOUT1 Output)  
RESET  
CLOCK  
Selector  
IORD  
IOWR  
Note 1  
Note 2  
Read/Write  
Control  
SST  
Status Register  
SCU Selection Signal  
SCM  
Command Register  
Receiver  
(Including Receive Buffer)  
SRDY (External)  
D (External)  
D (External)  
SRB  
(8)  
(8)  
Receive Data Buffer  
R
X
STB  
T
X
Transmit Data Buffer  
Transmitter  
(Including Transmit Buffer)  
RTCLK  
SMD  
Mode Register  
SIMK  
Interrupt Mask Register  
Interrupt  
Generation Logic  
SINT (To INTL1)  
Notes 1. A0 or A1 (Set by a system I/O area register)  
2. A1 or A2 (Set by a system I/O area register)  
Data Sheet U13225EJ4V0DS00  
31  
µPD70208H, 70216H  
11. ICU (INTERRUPT CONTROL UNIT)  
The ICU arbitrates among up to 8 interrupt requests (maskable interrupts) generated inside and outside the V40HL and  
V50HL, and transfers one of them to the CPU. The ICU functions comprise the functions of the V40HL and V50HL minus  
those functions not required by the V40HL and V50HL.  
11.1 FEATURES  
8 interrupt inputs  
µPD71059 cascading possible  
Edge- or level-triggered request input  
(input from internally connected TCU is edge-triggered only)  
Interrupt requests individually maskable  
Programmable interrupt request priority order  
Polling operation capability  
11.2 ICU INTERNAL BLOCK DIAGRAM  
SA0  
SA1  
SA2  
A8  
Initialize &  
Command Word  
Register Group  
To BIU  
A9  
A10  
Slave Control  
IORD  
IOWR  
Note 1  
Note 2  
Read/Write  
Control  
INTAK (From CPU)  
INT (To CPU)  
Control Logic  
ICU Selection Signal  
TOUT0 (From TCU)  
SINT (From SCU)  
INTL0  
INTL1  
TOUT1 (From TCU)  
Priority  
Determina-  
tion Logic  
SW  
SW  
INTP1  
INTP2  
INTP3  
INTL2  
INTL3  
INTL4  
INTL5  
INTL6  
INTL7  
Interrupt  
Request  
Register  
(IRQ)  
Interrupt  
In-Service  
Register  
(IIS)  
External Pins  
INTP4  
INTP5  
INTP6  
INTP7  
Interrupt  
Mask  
Register  
(IMK)  
Internal Data Bus  
Notes 1. A0 or A1 (Set by a system I/O area register)  
2. A1 or A2 (Set by a system I/O area register)  
Data Sheet U13225EJ4V0DS00  
32  
µPD70208H, 70216H  
12. DMAU (DMA CONTROL UNIT)  
The DMAU has 4 DMA channels, and provides the functions (subset) of two LSIs, the µPD71071 and µPD71037.  
12.1 FEATURES  
Two operating modes (µPD71071 mode, µPD71037 mode)  
20-bit address register  
16-bit count register  
Four independent DMA channels  
Byte transfer/word transfer selectable  
Three transfer modes (settable on an individual channel basis)  
Single transfer mode, demand transfer mode, block transfer mode  
Two bus modes (common to all channels: in µPD71037 mode, bus release mode only)  
Bus release mode  
Bus hold mode  
DMA requests maskable on an individual channel basis  
Auto initialization function  
Transfer address increment/decrement  
Two channel priority systems (fixed priority/rotating priority)  
TC output at end of transfer  
Forced termination of service by END input  
Cascading capability  
12.2 DMAU INTERNAL BLOCK DIAGRAM  
Address Increment/  
DMAU Address Bus (20)  
Decrement  
(20)  
(20)  
(8)  
Internal Address Bus  
Internal Data Bus  
Address  
Registers  
Internal Bus  
Interface  
Control Register Group  
Current Address (20 × 4)  
Base Address (20 × 4)  
ChannelNote 1  
Device Control  
Status  
(4)  
(10)  
(8)  
Internal Control Bus  
BUSRQ  
DMAU Data Bus  
BAU  
BUSAK  
(7 × 4)  
(4)  
Mode Control  
Mask  
Count  
Registers  
Base Count (16 × 4)  
RequestNote 2  
Current Count (16 × 4)  
(4)  
DMARQ0-  
DMARQ3  
External  
DMAAK0-  
pins  
Priority Control  
DMAAK3  
Terminal Count  
Count Decrementer  
(16)  
END/TC  
Notes 1. In µPD71071 mode  
2. In µPD71037 mode  
Data Sheet U13225EJ4V0DS00  
33  
µPD70208H, 70216H  
13. STANDBY FUNCTIONS  
The V40HL and V50HL have two modes, the HALT mode and STOP mode, as standby functions.  
(1) HALT mode  
When the HALT instruction is executed, the clock to internal CPU circuitry (excluding the HALT mode release circuit)  
is stopped.  
(2) STOP mode  
When the HALT instruction is executed, all clocks to the CPU and internal I/Os are stopped.  
STOP mode should be used when a resonator is connected to the X1 and X2 pins.  
Remark Switching between HALT mode and STOP mode is performed by setting a system I/O area register.  
14. RESET OPERATION  
When the RESET pin is driven low and this level is held for 4 clock cycles or more from the fall of the signal, the CPU  
and on-chip peripheral LSIs are reset.  
When the RESET pin subsequently returns to the high level, the CPU begins an instruction prefetch from address  
FFFF0H.  
When the V40HL and V50HL are reset, its status is fully compatible with the V40 and V50.  
Extended functions added to those of the V40 and V50 are mapped onto unused V40 and V50 registers and the reserved  
area.  
Table 14-1 shows the main statuses of the on-chip peripheral LSIs when a reset is performed.  
Table 14-1. Main Statuses of On-Chip Peripheral LSIs After Reset  
Memory, external I/O, DMA & refresh  
Upper & lower memory blocks  
:
:
3-wait insertion  
set to 512 KB  
WCU  
Refresh cycle  
:
:
set to 72 clock cycles  
not affected by reset  
REFU  
Refresh enabling/disabling  
Baud rate  
Character  
Parity  
:
:
:
:
:
x 64  
7 bits  
None  
1 bit  
SCU  
Stop bits  
Break detection  
None  
µPD71071 mode  
Demand mode  
Auto initialization disabled  
Verify transfer, byte transfer  
Bus release mode  
DMAU  
DMA enabled  
Caution When a reset is performed, the SCU, TCU, ICU and DMAU cannot be used.  
Data Sheet U13225EJ4V0DS00  
34  
µPD70208H, 70216H  
15. INSTRUCTION SET  
Table 15-1. Operand Type Legend  
Identifier  
Description  
reg  
8/16-bit general register  
(destination register in an instruction using two 8/16-bit general registers)  
Source register in an instruction using two 8/16-bit general registers  
8-bit general register  
reg’  
reg8  
(destination register in an instruction using two 8-bit general registers)  
Source register in an instruction using two 8-bit general registers  
16-bit general register  
reg8’  
reg16  
(destination register in an instruction using two 16-bit general registers)  
Source register in an instruction using two 16-bit general registers  
8/16-bit memory location  
reg16’  
dmem  
mem  
8/16-bit memory location  
mem8  
8-bit memory location  
mem16  
mem32  
imm  
16-bit memory location  
32-bit memory location  
Constant in range 0 to FFFFH  
imm3  
Constant in range 0 to 7  
imm4  
Constant in range 0 to FH  
imm8  
Constant in range 0 to FFH  
imm16  
acc  
Constant in range 0 to FFFFH  
Accumulator AW or AL  
sreg  
Segment register  
src-table  
src-block  
dst-block  
near-proc  
far-proc  
near-label  
short-label  
far-label  
memptr16  
Name of 256-byte conversion translation table  
Name of block addressed by register IX  
Name of block addressed by register IY  
Procedure in current program segment  
Procedure in a different program segment  
Label in current program segment  
Label in range –128 to +127 bytes from end of instruction  
Label in a different program segment  
Word containing location offset in a different program segment to which control is to be shifted and segment  
base address  
memptr32  
Doubleword containing location offset in a different program segment to which control is to be shifted and  
segment base address  
regptr16  
pop-value  
fp-op  
General register containing location offset in a different program segment to which control is to be shifted  
Number of bytes to be removed from stack (0 to 64K, normally an even number)  
Immediate value which identifies external floating-point operation coprocessor operation code  
Register set  
R
Data Sheet U13225EJ4V0DS00  
35  
µPD70208H, 70216H  
Table 15-2. Operation Code Legend  
Identifier  
Description  
W
Byte/word specification bit (0: byte, 1: word). However, when s =1, byte data of sign extension is 16-bit  
operand if W = 1.  
reg  
reg’  
mem  
mod  
s
Register field (000 to 111)  
Register field (000 to 111) (source register in instruction which uses two registers)  
Memory field (000 to 111)  
Mode field (00 to 10)  
Sign-extended specification bit (0: without sign extension, 1: with sign extension)  
Data used to determine external floating-point coprocessor operation code  
X, XXX, YYY, ZZZ  
Data Sheet U13225EJ4V0DS00  
36  
µPD70208H, 70216H  
Table 15-3. Operand Description Legend  
Identifier  
AW  
Description  
Accumulator (16-bit)  
AH  
AL  
Accumulator (high-order byte)  
Accumulator (low-order byte)  
Register BW (16-bit)  
BW  
CW  
CL  
DW  
BP  
SP  
PC  
PSW  
IX  
Register CW (16-bit)  
Register CL (low-order byte)  
Register DW (16-bit)  
Base pointer (16-bit)  
Stack pointer (16-bit)  
Program counter (16-bit)  
Program status word (16-bit)  
Index register (source) (16-bit)  
Index register (destination) (16-bit)  
Program segment register (16-bit)  
Stack segment register (16-bit)  
Data segment 0 register (16-bit)  
Data segment 1 register (16-bit)  
Auxiliary carry flag  
IY  
PS  
SS  
DS0  
DS1  
AC  
CY  
P
Carry flag  
Parity flag  
S
Sign flag  
Z
Zero flag  
DIR  
IE  
Direction flag  
Interrupt enable flag  
V
Overflow flag  
BRK  
MD  
Break flag  
Mode flag  
...  
(
)
Contents of memory indicated by contents of ( )  
Displacement (8/16-bit)  
16 bits with 8-bit displacement sign-extended  
Temporary register (8/16/32-bit)  
Temporary register A (16-bit)  
Temporary register B (16-bit)  
Temporary register C (16-bit)  
Temporary carry flag (1-bit)  
Immediate segment data (16-bit)  
Immediate offset data (16-bit)  
Transfer direction  
disp  
ext-disp8  
temp  
TA  
TB  
TC  
tmpcy  
seg  
offset  
+
Addition  
Subtraction  
×
Multiplication  
÷
Division  
%
Modulo  
Logical product  
Logical sum  
Exclusive logical sum  
Two-digit hexadecimal number  
Four-digit hexadecimal number  
××H  
××××H  
Data Sheet U13225EJ4V0DS00  
37  
µPD70208H, 70216H  
Table 15-4. Flag Operation Legend  
Identifier  
Description  
(Blank)  
No change  
Cleared to 0  
Set to 1  
0
1
×
Set or cleared depending upon result  
Undefined  
U
R
Previously saved value is restored  
Table 15-5. Memory Addressing  
mod  
00  
01  
10  
mem  
000  
BW + IX  
BW + IX + disp 8  
BW + IY + disp 8  
BP + IX + disp 8  
BP + IY + disp 8  
IX + disp 8  
BW + IX + disp 16  
BW + IY + disp 16  
BP + IX + disp 16  
BP + IY + disp 16  
IX + disp 16  
001  
010  
011  
100  
101  
110  
111  
BW + IY  
BP + IX  
BP + IY  
IX  
IY  
IY + disp 8  
IY + disp 16  
DIRECT ADDRESS  
BW  
BP + disp 8  
BW + disp 8  
BP + disp 16  
BW + disp 16  
Table 15-6. 8/16-Bit General Register Selection  
Table 15-7. Segment Register Selection  
sreg  
00  
reg, reg’  
000  
W=0  
AL  
W=1  
AW  
CW  
DW  
BW  
SP  
BP  
IX  
DS1  
PS  
01  
001  
CL  
10  
SS  
010  
DL  
11  
DS0  
011  
BL  
100  
AH  
CH  
DH  
BH  
101  
110  
111  
IY  
Data Sheet U13225EJ4V0DS00  
38  
µPD70208H, 70216H  
The instruction set is shown in tabular form on the following pages.  
Clock cycle shown in table is the time required for execution of instruction by the execution unit and is based on the  
following conditions.  
• Prefetch time and wait time for using bus, etc. are not included.  
• 0 wait is assumed for memory access. That is, the clock number of one bus cycle is four clock cycle.  
• 0 wait is assumed for I/O access.  
• Primitive block transfer instruction and primitive input/output instruction is included repeat prefixes.  
The number of clock cycle of instruction with byte processing and word processing (with W bit) is shown as the followings.  
(1) V40HL  
On the left of "/"  
:
The value corresponding to byte processing (W= 0) or word processing (W = 1) of even  
address  
On the right of "/": The value corresponding to word processing (W =1) of odd address  
For the clock of block transfer related instruction of V40HL, see Table 15-8.  
Table 15-8. Number of Clock Cycles in Block Transfer Related Instruction (V40HL)  
Number of Clock Cycles  
Instruction  
Byte Processing (W = 0)  
Word Processing (W = 1)  
MOVBK  
CMPBK  
CMPM  
LDM  
9 + 8 × rep  
9 + 16 × rep  
(9)  
(17)  
7 + 14 × rep  
7 + 22 × rep  
(13)  
(21)  
7 + 10 × rep  
7 + 14 × rep  
(7)  
(11)  
7 + 9 × rep  
7 + 13 × rep  
(7)  
(11)  
STM  
5 + 4 × rep  
5 + 8 × rep  
(5)  
(9)  
INM  
9 + 8 × rep  
9 + 16 × rep  
(10)  
(18)  
OUTM  
9 + 8 × rep  
9 + 16 × rep  
(10)  
(18)  
Remark The figures in parentheses apply to one-time processing only.  
Data Sheet U13225EJ4V0DS00  
39  
µPD70208H, 70216H  
(2) V50HL  
On the left of "/"  
:
The value corresponding to byte processing (W= 0) or word processing (W = 1) of even  
address  
On the right of "/" : The value corresponding to word processing (W =1) of odd address  
For the clock of block transfer related instruction of V50HL, see Table 15-9.  
Table 15-9. Number of Clock Cycles in Block Transfer Related Instruction V50HL (1/2)  
Number of Clock Cycles  
Instruction  
Byte Processing  
(W = 0)  
Word Processing (W = 1)  
Odd/Even Address  
Odd/Odd Address  
Even/Even Address  
MOVBK  
CMPBK  
INM  
9 + 8 × rep  
9 + 16 × rep  
9 + 12 × rep  
9 + 8 × rep  
(9)  
(17)  
(13)  
(9)  
7 + 14 × rep  
7 + 22 × rep  
7 + 18 × rep  
7 + 14 × rep  
(13)  
(21)  
(17)  
(13)  
9 + 8 × rep  
9 + 16 × rep  
9 + 12 × rep  
9 + 8 × rep  
(10)  
(18)  
(14)  
(10)  
OUTM  
9 + 8 × rep  
9 + 16 × rep  
9 + 12 × rep  
9 + 8 × rep  
(10)  
(18)  
(14)  
(10)  
Remark The figures in parentheses apply to one-time processing only.  
Table 15-9. Number of Clock Cycles in Block Transfer Related Instruction (V50HL) (2/2)  
Number of Clock Cycles  
Instruction  
Byte Processing  
(W = 0)  
Word Processing (W = 1)  
Odd Address  
Even Address  
CMPM  
LDM  
7 + 10 × rep  
7 + 14 × rep  
7 + 10 × rep  
(7)  
(11)  
(7)  
7 + 9 × rep  
7 + 13 × rep  
7 + 9 × rep  
(7)  
(11)  
(7)  
STM  
5 + 4 × rep  
5 + 8 × rep  
5 + 4 × rep  
(5)  
(9)  
(5)  
Remark The figures in parentheses apply to one-time processing only.  
Data Sheet U13225EJ4V0DS00  
40  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
Clock Cycles  
Flags  
Mnemonic Operand(s)  
Bytes  
Operation  
V40HL V50HL  
AC CY V  
P
S
Z
MOV  
reg, reg’  
1 0 0 0 1 0 1 W 1 1 reg reg’  
1 0 0 0 1 0 0 W mod reg mem  
1 0 0 0 1 0 1 W mod reg mem  
1 1 0 0 0 1 1 W mod 0 0 0 mem  
1 0 1 1 W reg  
2
2
2
reg reg’  
mem, reg  
reg, mem  
mem, imm  
reg, imm  
acc, dmem  
2-4  
2-4  
3-6  
2-3  
3
7/11  
7/11 (mem) reg  
10/14 10/14 reg (mem)  
9/13  
4
9/13 (mem) imm  
reg imm  
4
1 0 1 0 0 0 0 W  
10/14 10/14 If W=0: AL (dmem)  
If W=1: AH (dmem + 1), AL (dmem)  
dmem, acc  
1 0 1 0 0 0 1 W  
3
9/13  
9/13 If W=0: (dmem) AL  
If W=1: (dmem + 1) AH, (dmem) AL  
sreg, reg16  
1 0 0 0 1 1 1 0  
1 1 0 sreg reg  
sreg mem  
2
2
2
sreg reg16  
10/14 sreg (mem16)  
reg16 sreg  
sreg:SS, DS0, DS1  
sreg:SS, DS0, DS1  
sreg, mem16 1 0 0 0 1 1 1 0  
reg16, sreg 1 0 0 0 1 1 0 0  
mem16, sreg 1 0 0 0 1 1 0 0  
mod  
0
2-4  
2
14  
2
1 1 0 sreg reg  
mod 0 sreg mem  
mod reg mem  
2
2-4  
2-4  
12  
25  
8/12 (mem16) sreg  
DS0, reg16,  
mem32  
1 1 0 0 0 1 0 1  
17/25 reg16(mem32)  
DS0 (mem32 + 2)  
DS1, reg16,  
mem32  
1 1 0 0 0 1 0 0  
mod reg mem  
2-4  
25  
17/25 reg16 (mem32)  
DS1 (mem32 + 2)  
AH, PSW  
PSW, AH  
1 0 0 1 1 1 1 1  
1 0 0 1 1 1 1 0  
1
1
2
3
4
9
3
2
3
4
9
3
AH S, Z, ×, AC, ×, P, ×, CY  
S, Z, ×, AC, ×, P, ×, CYAH  
reg16 mem16  
×
×
×
×
×
LDEA  
TRANS  
XCH  
reg16, mem16 1 0 0 0 1 1 0 1  
mod reg mem  
2-4  
1
µ
src-table  
reg, reg’  
1 1 0 1 0 1 1 1  
AL(BW + AL)  
1 0 0 0 0 1 1 W 1 1 reg reg’  
1 0 0 0 0 1 1 W mod reg mem  
2
reg reg’  
mem, reg  
reg, mem  
2-4  
13/21 13/21 (mem) reg  
AW, reg16  
reg16, AW  
1 0 0 1 0 reg  
1
3
3
AW reg16  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
REPC  
Operation  
Bytes  
1
AC CY V  
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
0 1 1 0 0 1 0 1  
2
2
While CW 0, the following byte primitive block transfer  
instruction is executed and CW is decremented (–1).  
If there is a pending interrupt, it is serviced.  
If CY 1 the loop is exited.  
REPNC  
0 1 1 0 0 1 0 0  
1 1 1 1 0 0 1 1  
1
1
2
2
2
2
Same as above  
If CY 0 the loop is exited.  
REP  
While CW 0, the following byte primitive block transfer  
instruction is executed and CW is decremented (–1).  
If there is a pending interrupt, it is serviced.  
REPE  
REPZ  
If the primitive block transfer instruction is CMPBK or  
CMPM and Z 1 the loop is exited.  
REPNE  
REPNZ  
1 1 1 1 0 0 1 0  
1 0 1 0 0 1 0 W  
1
1
Same as above  
2
2
If Z 0 the loop is exited.  
MOVBK  
dst-block,  
src-block  
See  
See  
If W = 0: (IY) (IX)  
DIR = 0 : IX IX + 1, IY IY + 1  
DIR = 1 : IX IX – 1, IY IY – 1  
Table Table  
15-8  
15-9  
If W = 1: (IY + 1, IY) (IX + 1, IX)  
DIR = 0 : IX IX + 2, IY IY + 2  
DIR = 1 : IX IX – 2, IY IY – 2  
×
×
×
×
×
×
×
×
×
×
×
×
src-block,  
dst-block  
See  
Table Table  
See  
CMPBK  
1
If W = 0: (IX) – (IY)  
1 0 1 0 0 1 1 W  
DIR = 0 : IX IX + 1, IY IY + 1  
DIR = 1 : IX IX – 1, IY IY – 1  
15-8  
15-9  
If W = 1: (IX + 1, IX) – (IY + 1, IY)  
DIR = 0 : IX IX + 2, IY IY + 2  
DIR = 1 : IX IX – 2, IY IY – 2  
CMPM  
LDM  
dst-block  
src-block  
dst-block  
1 0 1 0 1 1 1 W  
1 0 1 0 1 1 0 W  
1 0 1 0 1 0 1 W  
1
1
1
See  
See  
If W = 0: AL – (IY)  
µ
Table Table  
15-8  
DIR = 0 : IY IY + 1; DIR = 1 : IY IY – 1  
15-9  
If W = 1: AW – (IY + 1, IY)  
DIR = 0 : IY IY + 2; DIR = 1 : IY IY – 2  
See  
See  
If W = 0: AL (IX)  
Table Table  
15-8  
DIR = 0 : IX IX + 1; DIR = 1 : IX IX – 1  
15-9  
If W = 1: AW (IX + 1, IX)  
DIR = 0 : IX + 2; DIR = 1 : IX IX – 2  
STM  
See  
See  
If W = 0: (IY) AL  
Table Table  
15-8 15-9  
DIR = 0 : IY IY + 1; DIR = 1 : IY IY – 1  
If W = 1: (IY + 1, IY) AW  
DIR = 0 : IY IY + 2; DIR = 1 : IY IY – 2  
Instruc-  
tion  
Group  
Operation Code  
Flags  
AC CY V  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
3
7 6 5 4 3 2 1 0  
P
S
Z
7 6 5 4 3 2 1 0  
0 0 1 1 0 0 0 1  
V40HL V50HL  
INS  
reg8, reg8’  
reg8, imm4  
reg8, reg8’  
reg8, imm4  
0 0 0 0 1 1 1 1  
1 1 reg’ reg  
0 0 0 0 1 1 1 1  
1 1 0 0 0 reg  
0 0 0 0 1 1 1 1  
1 1 reg’ reg  
0 0 0 0 1 1 1 1  
1 1 0 0 0 reg  
1 1 1 0 0 1 0 W  
35-133 31-117/ 16-bit field AW  
35-133  
0 0 1 1 1 0 0 1  
0 0 1 1 0 0 1 1  
0 0 1 1 1 0 1 1  
4
3
4
35-133 31-117/ 16-bit field AW  
35-133  
EXT  
34-59 26-55/ AW 16-bit field  
34-59  
34-59 26-55/ AW 16-bit field  
34-59  
IN  
acc, imm8  
acc, DW  
2
1
2
1
1
9/13 9/13Note If W = 0: AL (imm8)  
If W = 1: AH (imm8 + 1), AL (imm8)  
8/12 8/12Note If W = 0: AL (DW)  
If W = 1: AH (DW + 1), AL (DW)  
8/12 8/12Note If W = 0: (imm8) AL  
If W = 1: (imm8 + 1) AH, (imm8) AL  
8/12 8/12Note If W = 0: (DW) AL  
1 1 1 0 1 1 0 W  
1 1 1 0 0 1 1 W  
1 1 1 0 1 1 1 W  
0 1 1 0 1 1 0 W  
OUT  
INM  
OUTM  
imm8, acc  
DW, acc  
If W = 1: (DW + 1) AH, (DW) AL  
dst-block,  
DW  
See  
See  
If W = 0: (IY) (DW)  
Table Table DIR = 0 : IY IY + 1 ; DIR = 1 : IY IY – 1  
15-8 15-9  
If W = 1: (IY + 1, IY) (DW + 1, DW)  
DIR = 0 : IY IY + 2 ; DIR = 1 : IY IY – 2  
DW,  
0 1 1 0 1 1 1 W  
1
See  
See  
If W = 0: (DW) (IX )  
µ
src-block  
Table Table DIR = 0 : IX IX + 1 ; DIR = 1 : IX IX – 1  
15-8 15-9  
If W = 1: (DW + 1, DW) (IX + 1, IX)  
DIR = 0 : IX IX + 2 ; DIR = 1 : IX IX – 2  
Note In case of IN/OUT instruction to internal DMAU, the number of word processing clock cycles applied is always that to the right of "/".  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
AC CY V  
P
×
×
×
×
×
×
S
×
×
×
×
×
×
Z
V40HL V50HL  
ADD  
reg, reg’  
0 0 0 0 0 0 1 W 1 1 reg reg’  
0 0 0 0 0 0 0 W mod reg mem  
0 0 0 0 0 0 1 W mod reg mem  
1 0 0 0 0 0 s W 1 1 0 0 0 reg  
1 0 0 0 0 0 s W mod 0 0 0 mem  
0 0 0 0 0 1 0 W  
2
2
2
reg reg + reg’  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
mem, reg  
reg, mem  
reg, imm  
mem, imm  
acc, imm  
2-4  
2-4  
3-4  
3-6  
2-3  
13/21  
10/14  
4
13/21 (mem) (mem) + reg  
10/14 reg reg + (mem)  
×
×
×
×
×
4
reg reg + imm  
15/23  
4
15/23 (mem) (mem) + imm  
4
2
If W = 0: AL AL + imm  
If W = 1: AW AW + imm  
ADDC  
reg, reg’  
0 0 0 1 0 0 1 W 1 1 reg reg’  
0 0 0 1 0 0 0 W mod reg mem  
0 0 0 1 0 0 1 W mod reg mem  
1 0 0 0 0 0 s W 1 1 0 1 0 reg  
1 0 0 0 0 0 s W mod 0 1 0 mem  
0 0 0 1 0 1 0 W  
2
2
reg reg + reg’+ CY  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
mem, reg  
reg, mem  
reg, imm  
mem, imm  
acc, imm  
2-4  
2-4  
3-4  
3-6  
2-3  
13/21  
10/14  
4
13/21 (mem) (mem) + reg + CY  
10/14 reg reg + (mem) + CY  
4
reg reg + imm + CY  
15/23  
4
15/23 (mem) (mem) + imm + CY  
4
2
If W = 0: AL AL + imm + CY  
If W = 1: AW AW + imm + CY  
SUB  
reg, reg’  
0 0 1 0 1 0 1 W 1 1 reg reg’  
0 0 1 0 1 0 0 W mod reg mem  
0 0 1 0 1 0 1 W mod reg mem  
1 0 0 0 0 0 s W 1 1 1 0 1 reg  
1 0 0 0 0 0 s W mod 1 0 1 mem  
0 0 1 0 1 1 0 W  
2
2
reg reg – reg’  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
mem, reg  
reg, mem  
reg, imm  
mem, imm  
acc, imm  
2-4  
2-4  
3-4  
3-6  
2-3  
13/21  
10/14  
4
13/21 (mem) (mem) – reg  
10/14 reg reg – (mem)  
4
reg reg – imm  
15/23  
4
15/23 (mem) (mem) – imm  
4
2
If W = 0: AL AL – imm  
If W = 1: AW AW – imm  
µ
SUBC  
reg, reg’  
0 0 0 1 1 0 1 W 1 1 reg reg’  
0 0 0 1 1 0 0 W mod reg mem  
0 0 0 1 1 0 1 W mod reg mem  
1 0 0 0 0 0 s W 1 1 0 1 1 reg  
1 0 0 0 0 0 s W mod 0 1 1 mem  
0 0 0 1 1 1 0 W  
2
2
reg reg – reg’– CY  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
mem, reg  
reg, mem  
reg, imm  
mem, imm  
acc, imm  
2-4  
2-4  
3-4  
3-6  
2-3  
13/21  
10/14  
4
13/21 (mem) (mem) – reg – CY  
10/14 reg reg – (mem) – CY  
4
reg reg – imm – CY  
15/23 (mem) (mem) – imm – CY  
15/23  
4
4
If W = 0: AL AL – imm – CY  
If W = 1: AW AW imm– CY  
Instruc-  
tion  
Group  
Operation Code  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
ADD4S  
Operation  
Bytes  
2
7 6 5 4 3 2 1 0  
AC CY V  
P
U
S
U
Z
7 6 5 4 3 2 1 0  
0 0 1 0 0 0 0 0  
V40HL V50HL  
0 0 0 0 1 1 1 1  
0 0 0 0 1 1 1 1  
0 0 0 0 1 1 1 1  
19 × n 19 × n dst BCD string dst BCD string + src BCD string*  
+ 7 + 7  
U
U
U
×
×
×
U
U
U
×
SUB4S  
CMP4S  
0 0 1 0 0 0 1 0  
0 0 1 0 0 1 1 0  
0 0 1 0 1 0 0 0  
2
2
3
19 × n 19 × n dst BCD string dst BCD string – src BCD string*  
+ 7 + 7  
U
U
U
U
×
×
19 × n 19 × n dst BCD string – src BCD string*  
+ 7  
+ 7  
reg  
ROL4  
reg8  
0 0 0 0 1 1 1 1  
1 1 0 0 0 reg  
0 0 0 0 1 1 1 1  
mod 0 0 0 mem  
0 0 0 0 1 1 1 1  
1 1 0 0 0 reg  
0 0 0 0 1 1 1 1  
mod 0 0 0 mem  
1 1 1 1 1 1 1 0  
13  
13  
ALL  
ALL  
ALL  
Lower  
Upper  
mem  
Lower  
mem8  
reg8  
0 0 1 0 1 0 0 0  
0 0 1 0 1 0 1 0  
0 0 1 0 1 0 1 0  
1 1 0 0 0 reg  
3-5  
3
25  
17  
29  
2
25  
17  
29  
2
Upper  
reg  
Lower  
ROR4  
Upper  
mem  
Lower  
mem8  
3-5  
ALL  
Upper  
INC  
reg8  
2
2-4  
1
reg8 reg8 + 1  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
mem  
reg16  
reg8  
1 1 1 1 1 1 1 W mod 0 0 0 mem  
0 1 0 0 0 reg  
13/21 13/21 (mem) (mem) + 1  
2
2
2
2
reg16 reg16 + 1  
reg8 reg8 – 1  
DEC  
1 1 1 1 1 1 1 0  
1 1 0 0 1 reg  
2
mem  
reg16  
1 1 1 1 1 1 1 W mod 0 0 1 mem  
0 1 0 0 1 reg  
2-4  
1
13/21 13/21 (mem) (mem) – 1  
reg16 reg16 – 1  
2
2
µ
n: 1/2 the number of BCD digits  
The number of BCD digits is given by the CL register: a value between 1 and 254 can be set.  
*
Instruc-  
tion  
Group  
Operation Code  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2
7 6 5 4 3 2 1 0  
7 6 5 4 3 2 1 0  
1 1 1 0 0 reg  
AC CY V  
P
U
S
U
Z
V40HL V50HL  
MULU  
reg8  
1 1 1 1 0 1 1 0  
1 1 1 1 0 1 1 0  
1 1 1 1 0 1 1 1  
1 1 1 1 0 1 1 1  
1 1 1 1 0 1 1 0  
1 1 1 1 0 1 1 0  
1 1 1 1 0 1 1 1  
1 1 1 1 0 1 1 1  
0 1 1 0 1 0 1 1  
0 1 1 0 1 0 1 1  
0 1 1 0 1 0 0 1  
0 1 1 0 1 0 0 1  
21-22 21-22 AW AL × reg8  
U
U
U
U
U
U
U
U
U
U
U
U
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
U
AH = 0: CY 0, V 0  
AH 0: CY 1, V 1  
26-27 26-27 AW AL × (mem8)  
mem8  
reg16  
mem16  
reg8  
mod 1 0 0 mem  
1 1 1 0 0 reg  
mod 1 0 0 mem  
1 1 1 0 1 reg  
mod 1 0 1 mem  
1 1 1 0 1 reg  
mod 1 0 1 mem  
1 1 reg reg’  
mod reg mem  
1 1 reg reg’  
mod reg mem  
2-4  
2
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
AH = 0: CY 0, V 0  
AH 0: CY 1, V 1  
29-30 29-30 DW, AW AW × reg16  
DW = 0: CY 0, V 0  
DW 0: CY 1, V 1  
2-4  
2
38-39 34-35/ DW, AW AW × (mem16)  
38-39  
DW = 0: CY 0, V 0  
DW 0: CY 1, V 1  
MUL  
33-39 33-39 AW AL × reg8  
AH = AL sign extension: CY 0, V 0  
AH AL sign extension: CY 1, V 1  
38-44 38-44 AW AL × (mem8)  
mem8  
reg16  
mem16  
2-4  
2
AH = AL sign extension: CY 0, V 0  
AH AL sign extension: CY 1, V 1  
41-47 41-47 DW, AW AW × reg16  
DW = AW sign extension: CY 0, V 0  
DW AW sign extension: CY 1, V 1  
2-4  
3
50-56 46-52/ DW, AW AW × (mem16)  
50-56  
DW = AW sign extension: CY 0, V 0  
DW AW sign extension: CY 1, V 1  
reg16,  
(reg16’,)  
imm8  
28-34 28-34 reg16 reg16’ × imm8  
Product 16 bits : CY 0, V 0  
Product > 16 bits : CY 1, V 1  
37-43 33-39/ reg16 (mem16) × imm8  
Note  
µ
reg16,  
mem16,  
imm8  
3-5  
4
37-43  
Product 16 bits : CY 0, V 0  
Product > 16 bits : CY 1, V 1  
reg16,  
(reg16’,)  
imm16  
reg16,  
mem16,  
imm16  
36-42 36-42 reg16 reg16’ × imm16  
Product 16 bits : CY 0, V 0  
Product > 16 bits : CY 1, V 1  
45-51 41-47/ reg16 (mem16) × imm16  
Note  
4-6  
45-51  
Product 16 bits : CY 0, V 0  
Product > 16 bits : CY 1, V 1  
Note The 2nd operand can be omitted, in which case the same register as the 1st operand is taken as being specified.  
Instruc-  
tion  
Group  
Operation Code  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2
7 6 5 4 3 2 1 0  
7 6 5 4 3 2 1 0  
1 1 1 1 0 reg  
AC CY V  
P
U
S
U
Z
V40HL V50HL  
DIVU  
reg8  
1 1 1 1 0 1 1 0  
1 1 1 1 0 1 1 0  
1 1 1 1 0 1 1 1  
1 1 1 1 0 1 1 1  
19  
24  
25  
34  
19  
24  
25  
temp AW  
U
U
U
U
U
U
U
U
U
U
U
U
U
If temp ÷ reg8 FFH  
AH temp%reg8, AL temp ÷ reg8  
If temp ÷ reg8 > FFH  
TA (001H, 000H), TC (003H, 002H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
mem8  
reg16  
mem16  
mod 1 1 0 mem  
1 1 1 1 0 reg  
mod 1 1 0 mem  
2-4  
temp AW  
U
U
U
U
U
U
U
U
U
If temp ÷ (mem8) FFH  
AH temp%(mem8), AL temp ÷ (mem8)  
If temp ÷ (mem8) > FFH  
TA (001H, 000H), TC (003H, 002H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
2
temp DW, AW  
If temp ÷ reg16 FFFFH  
DW temp%reg16, AW temp ÷ reg16  
If temp ÷ reg16 > FFFFH  
TA (001H, 000H), TC (003H, 002H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
2-4  
30/34 temp DW, AW  
If temp ÷ (mem16) FFFFH  
µ
DW temp%(mem16), AW temp ÷ (mem16)  
If temp ÷ (mem16) > FFFFH  
TA (001H, 000H), TC (003H, 002H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
Instruc-  
tion  
Group  
Operation Code  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2
7 6 5 4 3 2 1 0  
7 6 5 4 3 2 1 0  
1 1 1 1 1 reg  
V40HL V50HL  
AC CY V  
P
U
S
U
Z
reg8  
1 1 1 1 0 1 1 0  
1 1 1 1 0 1 1 0  
1 1 1 1 0 1 1 1  
1 1 1 1 0 1 1 1  
29-34 29-34 temp AW  
U
U
U
U
U
U
U
U
U
U
U
U
U
DIV  
If temp ÷ reg8 > 0 and temp ÷ reg8 7FH  
or temp ÷ reg8 < 0 and temp ÷ reg8 > 0 – 7FH –1  
AH temp%reg8, AL temp ÷ reg8  
If temp ÷ reg8 > 0 and temp ÷ reg8 > 7FH  
or temp ÷ reg8 < 0 and temp ÷ reg8 0 – 7FH –1  
TA (001H, 000H), TC (003H, 002H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
mem8  
reg16  
mem16  
mod 1 1 1 mem  
1 1 1 1 1 reg  
mod 1 1 1 mem  
2-4  
temp AW  
U
U
U
U
U
U
U
U
U
34-39 34-39  
If temp ÷ (mem8) > 0 and temp ÷ (mem8) 7FH  
or temp ÷ (mem8) < 0 and temp ÷ (mem8) > 0 – 7FH –1  
AH temp%(mem8), AL temp ÷(mem8)  
If temp ÷ (mem8) > 0 and temp ÷ (mem8) > 7FH  
or temp ÷ (mem8) < 0 and temp ÷ (mem8) 0 – 7FH –1  
TA (001H, 000H), TC (003H, 002H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
2
temp DW, AW  
38-43 38-43  
If temp ÷ reg16 > 0 and temp ÷ reg16 7FFFH  
or temp ÷ reg16 < 0 and temp ÷ reg16 > 0 – 7FFFH –1  
DW temp%reg16, AW temp ÷ reg16  
If temp ÷ reg16 > 0 and temp ÷ reg16 > 7FFFH  
or temp ÷ reg16 < 0 and temp ÷ reg16 0 – 7FFFH –1  
TA (001H, 000H), TC (003H, 002H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
µ
2-4  
temp DW, AW  
47-52 43-48/  
47-52  
If temp ÷ (mem16) > 0 and temp ÷ (mem16) 7FFFH  
or temp ÷ (mem16) < 0 and temp ÷ (mem16) > 0 – 7FFFH  
–1  
DW temp%(mem16), AW temp ÷ (mem16)  
If temp ÷ (mem16) > 0 and temp ÷ (mem16) > 7FFFH  
or temp ÷ (mem16) < 0 and temp ÷ (mem16) 0 – 7FFFH  
–1  
TA (001H, 000H), TC (003H, 002H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
Instruc-  
tion  
Group  
Operation Code  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
ADJBA  
Operation  
Bytes  
1
7 6 5 4 3 2 1 0  
7 6 5 4 3 2 1 0  
V40HL V50HL  
AC CY V  
P
U
S
U
Z
7
7
0 0 1 1 0 1 1 1  
If AL 0FH > 9 or AC = 1: AL AL + 6  
×
×
U
U
AH AH + 1, AC 1, CY AC, AL AL 0FH  
ADJ4A  
0 0 1 0 0 1 1 1  
1
3
3
If AL 0FH > 9 or AC = 1  
AL AL + 6, CY CY AC , AC1  
If AL > 9FH or CY = 1  
×
×
U
×
×
×
AL AL + 60H, CY 1  
ADJBS  
ADJ4S  
0 0 1 1 1 1 1 1  
0 0 1 0 1 1 1 1  
1
1
7
3
7
3
If AL 0FH > 9 or AC = 1  
×
×
×
×
U
U
U
U
U
AL AL – 6, AH AH – 1 , AC1  
CY AC, AL AL 0FH  
If AL 0FH > 9 or AC = 1  
AL AL –6, CY CY AC , AC1  
If AL > 9FH or CY = 1  
×
×
×
AL AL – 60H, CY 1  
CVTBD  
CVTDB  
CVTBW  
CVTWL  
1 1 0 1 0 1 0 0  
1 1 0 1 0 1 0 1  
1 0 0 1 1 0 0 0  
1 0 0 1 1 0 0 1  
0 0 0 0 1 0 1 0  
0 0 0 0 1 0 1 0  
2
2
15  
7
15  
7
AH AL ÷ 0AH, AL AL%0AH  
AL AH × 0AH + AL, AH 0  
If AL < 80H: AH 0, otherwise: AH FFH  
If AW < 8000H: DW 0, otherwise: DW FFFFH  
reg – reg’  
U
U
U
U
U
U
×
×
×
×
×
×
2
2
1
4-5  
2
4-5  
2
1
CMP  
reg, reg’  
0 0 1 1 1 0 1 W 1 1 reg reg’  
0 0 1 1 1 0 0 W mod reg mem  
0 0 1 1 1 0 1 W mod reg mem  
1 0 0 0 0 0 s W 1 1 1 1 1 reg  
1 0 0 0 0 0 s W mod 1 1 1 mem  
0 0 1 1 1 1 0 W  
2
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
mem, reg  
reg, mem  
reg, imm  
mem, imm  
acc, imm  
2-4  
2-4  
3-4  
3-6  
2-3  
10/14 10/14 (mem) – reg  
10/14 10/14  
reg – (mem)  
reg – imm  
4
4
12/16 12/16  
(mem) – imm  
µ
4
4
If W = 0: AL – imm  
If W = 1: AW – imm  
NOT  
NEG  
reg  
1 1 1 1 0 1 1 W 1 1 01 0 reg  
1 1 1 1 0 1 1 W mod 0 1 0 mem  
1 1 1 1 0 1 1 W 1 1 0 1 1 reg  
2
2
2
reg reg  
13/21 13/21  
mem  
reg  
2-4  
2
(mem) (mem)  
reg reg + 1  
(mem) (mem) + 1  
2
2
×
×
×
×
×
×
×
×
×
×
×
×
13/21 13/21  
mem  
1 1 1 1 0 1 1 W mod 0 1  
mem  
2-4  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
V40HL V50HL  
AC CY V  
P
×
×
S
×
×
Z
TEST  
reg, reg’  
1 0 0 0 0 1 0 W 1 1 reg’ reg  
1 0 0 0 0 1 0 W mod reg mem  
2
2
2
U
U
0
0
0
0
×
reg reg’  
9/13  
9/13  
mem, reg  
reg, mem  
2-4  
(mem) reg  
×
4
4
reg, imm  
mem, imm  
acc, imm  
1 1 1 1 0 1 1 W 1 1 0 0 0 reg  
1 1 1 1 0 1 1 W mod 0 0 0 mem  
1 0 1 0 1 0 0 W  
3-4  
3-6  
2-3  
reg imm  
U
U
U
0
0
0
0
0
0
×
×
×
×
×
×
×
×
×
10/14 10/14  
(mem) imm  
4
4
If W = 0: AL imm8  
If W = 1: AW imm16  
AND  
reg, reg’  
0 0 1 0 0 0 1 W 1 1 reg reg’  
0 0 1 0 0 0 0 W mod reg mem  
0 0 1 0 0 0 1 W mod reg mem  
1 0 0 0 0 0 0 W 1 1 1 0 0 reg  
1 0 0 0 0 0 0 W mod 1 0 0 mem  
0 0 1 0 0 1 0 W  
2
2
2
U
U
U
U
U
U
0
0
0
0
0
0
0
0
0
0
0
0
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
reg reg reg’  
mem, reg  
reg, mem  
reg, imm  
mem, imm  
acc, imm  
2-4  
2-4  
3-4  
3-6  
2-3  
13/21 13/21 (mem) (mem) reg  
10/14 10/14  
reg reg (mem)  
reg reg imm  
4
4
15/23 15/23 (mem) (mem) imm  
4
4
If W = 0: AL AL imm8  
If W = 1: AW AW imm16  
OR  
reg, reg’  
0 0 0 0 1 0 1 W 1 1 reg reg’  
0 0 0 0 1 0 0 W mod reg mem  
0 0 0 0 1 0 1 W mod reg mem  
1 0 0 0 0 0 0 W 1 1 0 0 1 reg  
1 0 0 0 0 0 0 W mod 0 0 1 mem  
0 0 0 0 1 1 0 W  
2
2
2
U
U
U
U
U
U
0
0
0
0
0
0
0
0
0
0
0
0
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
reg reg reg’  
13/21 13/21  
10/14 10/14  
mem, reg  
reg, mem  
reg, imm  
mem, imm  
acc, imm  
2-4  
2-4  
3-4  
3-6  
2-3  
(mem) (mem) reg  
reg reg (mem)  
4
4
reg reg imm  
15/23 15/23  
(mem) (mem) imm  
4
4
If W = 0: AL AL imm8  
µ
If W = 1: AW AW imm16  
XOR  
reg, reg’  
0 0 1 1 0 0 1 W 1 1 reg reg’  
0 0 1 1 0 0 0 W mod reg mem  
0 0 1 1 0 0 1 W mod reg mem  
1 0 0 0 0 0 0 W 1 1 1 1 0 reg  
1 0 0 0 0 0 0 W mod 1 1 0 mem  
0 0 1 1 0 1 0 W  
2
2
2
U
U
U
U
U
U
0
0
0
0
0
0
0
0
0
0
0
0
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
reg reg reg’  
13/21 13/21  
10/14 10/14  
mem, reg  
reg, mem  
reg, imm  
mem, imm  
acc, imm  
2-4  
2-4  
3-4  
3-6  
2-3  
(mem) (mem) reg  
reg reg (mem)  
reg reg imm  
4
4
15/23 15/23 (mem) (mem) imm  
4
4
If W = 0: AL AL imm8  
If W = 1: AW AW imm16  
Instruc-  
tion  
Group  
Operation Code  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
3
7 6 5 4 3 2 1 0  
7 6 5 4 3 2 1 0  
1 1 0 0 0 reg  
V40HL V50HL  
AC CY V  
P
U
S
U
Z
TEST1  
reg8, CL  
0 0 0 1 0 0 0 0  
3
3
reg8 bit NO.CL = 0 : Z 1  
U
U
U
U
U
U
U
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
×
reg8 bit NO.CL = 1 : Z 0  
7
7
mem8, CL  
reg16, CL  
0 0 0 0  
mod 0 0 0 mem  
1 1 0 0 0 mem  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
3-5  
3
(mem8) bit NO.CL = 0 : Z1  
(mem8) bit NO.CL = 1 : Z0  
U
U
U
U
U
U
U
U
U
U
U
U
U
U
×
×
×
×
×
×
×
3
3
0 0 0 1  
reg16 bit NO.CL = 0 : Z 1  
reg16 bit NO.CL = 1 : Z 0  
11  
4
7/11  
4
mem16, CL  
reg8, imm3  
mem8, imm3  
reg16, imm4  
mem16, imm4  
0 0 0 1  
3-5  
4
(mem16) bit NO.CL = 0 : Z1  
(mem16) bit NO.CL = 1 : Z0  
1 0 0 0  
reg8 bit NO.imm3 = 0 : Z 1  
reg8 bit NO.imm3 = 1 : Z 0  
8
8
1 0 0 0  
4-6  
4
(mem8) bit NO.imm3 = 0 : Z1  
(mem8) bit NO.imm3 = 1 : Z0  
1 0 0 1  
4
4
reg16 bit NO.imm4 = 0 : Z 1  
reg16 bit NO.imm4 = 1 : Z 0  
12  
8/12  
1 0 0 1  
4-6  
(mem16) bit NO.imm4 = 0 : Z1  
(mem16) bit NO.imm4 = 1 : Z0  
NOT1  
reg8, CL  
0 1 1 0  
0 1 1 0  
0 1 1 1  
0 1 1 1  
1 1 1 0  
1 1 1 0  
1 1 1 1  
1 1 1 1  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
3
3-5  
3
4
10  
4
4
10  
4
reg8 bit NO.CLreg8 bit NO.CL  
(mem8) bit NO.CL(mem8) bit NO.CL  
reg16 bit NO.CLreg16 bit NO.CL  
mem8, CL  
reg16, CL  
mem16, CL  
reg8, imm3  
mem8, imm3  
reg16, imm4  
mem16, imm4  
3-5  
4
18  
5
10/18 (mem16) bit NO.CL(mem16) bit NO.CL  
5
11  
reg8 bit NO.imm3reg8 bit NO.imm3  
11  
5
4-6  
4
(mem8) bit NO.imm3(mem8) bit NO.imm3  
reg16 bit NO.imm4reg16 bit NO.imm4  
(mem16) bit NO.imm4(mem16) bit NO.imm4  
µ
5
19  
11/19  
4-6  
2nd byte*  
3rd byte*  
* 1st byte = 0FH  
CYCY  
NOT1  
CY  
1 1 1 1 0 1 0 1  
1
2
2
×
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
Flags  
AC CY V  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
7 6 5 4 3 2 1 0  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 mem  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
V40HL V50HL  
P
S
Z
CLR1  
reg8, CL  
0 0 0 1 0 0 1 0  
0 0 1 0  
0 0 1 1  
0 0 1 1  
1 0 1 0  
1 0 1 0  
1 0 1 1  
1 0 1 1  
0 1 0 0  
0 1 0 0  
0 1 0 1  
0 1 0 1  
1 1 0 0  
1 1 0 0  
1 1 0 1  
1 1 0 1  
3
3-5  
3
5
11  
5
5
11  
5
reg8 bit NO.CL 0  
mem8, CL  
reg16, CL  
(mem8) bit NO.CL 0  
reg16 bit NO.CL 0  
(mem16) bit NO.CL 0  
reg8 bit NO.imm3 0  
19  
6
11/19  
6
mem16, CL  
reg8, imm3  
mem8, imm3  
reg16, imm4  
mem16, imm4  
reg8, CL  
3-5  
4
12  
6
12  
6
4-6  
4
(mem8) bit NO.imm3 0  
reg16 bit NO.imm4 0  
(mem16) bit NO.imm4 0  
reg8 bit NO.CL 1  
20  
4
12/20  
4
4-6  
3
SET1  
mem8, CL  
reg16, CL  
3-5  
3
10  
4
10  
4
(mem8) bit NO.CL 1  
reg16 bit NO.CL 1  
mem16, CL  
reg8, imm3  
mem8, imm3  
reg16, imm4  
mem16, imm4  
3-5  
4
18  
5
10/18 (mem16) bit NO.CL 1  
5
11  
reg8 bit NO.imm3 1  
(mem8) bit NO.imm3 1  
reg16 bit NO.imm4 1  
(mem16) bit NO.imm4 1  
11  
5
4-6  
4
5
19  
11/19  
4-6  
2nd byte*  
3rd byte*  
* 1st byte = 0FH  
µ
CLR1  
SET1  
CY  
1 1 1 1 1 0 0 0  
1 1 1 1 1 1 0 0  
1 1 1 1 1 0 0 1  
1 1 1 1 1 1 0 1  
1
1
1
1
2
2
2
2
2
2
2
2
CY 0  
DIR 0  
CY 1  
DIR 1  
0
1
DIR  
CY  
DIR  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Bytes  
2
Operation  
V40HL V50HL  
AC CY V  
P
S
Z
SHL  
reg, 1  
1 1 0 1 0 0 0 W 1 1 1 0 0 reg  
1 1 0 1 0 0 0 W mod 1 0 0 mem  
1 1 0 1 0 0 1 W 1 1 1 0 0 reg  
1 1 0 1 0 0 1 W mod 1 0 0 mem  
1 1 0 0 0 0 0 W 1 1 1 0 0 reg  
6
6
CY reg MSB, reg reg × 2  
U
U
U
U
U
×
×
×
×
×
×
×
×
×
If reg MSB CY: V 1  
If reg MSB = CY: V 0  
mem, 1  
reg, CL  
mem, CL  
reg, imm8  
2-4  
2
13/21 13/21 CY (mem) MSB, (mem) (mem) × 2  
If (mem) MSB CY: V 1  
×
×
×
×
×
×
×
×
×
×
×
×
×
If (mem) MSB = CY: V 0  
7 + n 7 + n temp CL, while temp 0 the following operation are repeated:  
CY reg MSB, reg reg × 2  
U
U
U
temp temp – 1  
2-4  
3
16/24 16/24 temp CL, while temp 0 the following operation are repeated:  
+ n  
+ n  
CY (mem) MSB, (mem) (mem) × 2  
temp temp – 1  
7 + n 7 + n temp imm8, while temp 0 the following operations are  
repeated:  
CY reg MSB, regreg × 2  
temp temp – 1  
mem, imm8  
1 1 0 0 0 0 0 W mod 1 0 0 mem  
3-5  
16/24 16/24 temp imm8, while temp 0 the following operations are  
U
×
U
×
×
×
+ n  
+ n  
repeated:  
CY (mem) MSB, (mem) (mem) × 2  
temp temp – 1  
n: Number of shifts  
µ
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2
AC CY V  
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
SHR  
reg, 1  
1 1 0 1 0 0 0 W 1 1 1 0 1 reg  
1 1 0 1 0 0 0 W mod 1 0 1 mem  
1 1 0 1 0 0 1 W 1 1 1 0 1 reg  
6
6
CY reg LSB, reg reg ÷ 2  
U
U
U
×
×
×
×
×
×
×
If reg MSB bit after reg MSB : V 1  
If reg MSB = bit after reg MSB : V 0  
mem, 1  
reg, CL  
2-4  
2
13/21 13/21 CY (mem) LSB, (mem) (mem) ÷ 2  
If (mem) MSB bit after (mem) MSB : V 1  
If (mem) MSB = bit after (mem) MSB : V 0  
×
×
×
×
×
×
×
7 + n 7 + n temp CL, while temp 0 the following operations are  
U
repeated:  
CY reg LSB, reg reg ÷ 2  
temp temp – 1  
mem, CL  
1 1 0 1 0 0 1 W mod 1 0 1 mem  
2-4  
16/24 16/24 temp CL, while temp 0 the following operations are  
U
U
U
×
×
×
U
U
U
×
×
×
×
×
×
×
×
×
+ n  
+ n  
repeated:  
CY (mem) LSB, (mem) (mem) ÷ 2  
temp temp – 1  
reg, imm8  
mem, imm8  
1 1 0 0 0 0 0 W 1 1 1 0 1 reg  
3
7 + n 7 + n temp imm8, while temp 0 the following operations are  
repeated:  
CY reg LSB, reg reg ÷ 2  
temp temp – 1  
1 1 0 0 0 0 0 W  
3-5  
16/24 16/24 temp imm8, while temp 0 the following operations are  
mod 1 0 1 mem  
+ n  
+ n  
repeated:  
CY (mem) LSB,(mem) (mem) ÷ 2  
temp temp – 1  
µ
n: Number of shifts  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2
AC CY V  
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
SHRA  
reg, 1  
1 1 0 1 0 0 0 W 1 1 1 1 1 reg  
1 1 0 1 0 0 0 W mod 1 1 1 mem  
1 1 0 1 0 0 1 W 1 1 1 1 1 reg  
6
CY reg LSB, reg reg ÷ 2, V 0  
MSB of operand is unchanged.  
U
U
U
×
×
×
0
0
×
×
×
6
mem, 1  
reg, CL  
2-4  
2
13/21  
7 + n  
CY (mem) LSB,(mem) (mem) ÷ 2, V 0  
MSB of operand is unchanged.  
×
×
×
×
×
×
13/21  
7 + n  
temp CL, while temp 0 the following operations are  
repeated:  
U
CY reg LSB, reg reg ÷ 2  
temp temp – 1, MSB of operand is unchanged.  
mem, CL  
1 1 0 1 0 0 1 W mod 1 1 1 mem  
1 1 0 0 0 0 0 W 1 1 1 1 1 reg  
1 1 0 0 0 0 0 W mod 1 1 1 mem  
2-4  
16/24  
+ n  
temp CL, while temp 0 the following operations are  
repeated:  
CY (mem) LSB, (mem) (mem) ÷ 2  
temp temp – 1, MSB of operand is unchanged.  
U
U
U
×
×
×
U
U
U
×
×
×
×
×
×
×
×
×
16/24  
+ n  
reg, imm8  
mem, imm8  
3
7 + n  
temp imm8, while temp 0 the following operations are  
repeated:  
7 + n  
CY reg LSB, reg reg ÷ 2  
temp temp – 1, MSB of operand is unchanged.  
3-5  
16/24  
+ n  
temp imm8, while temp 0 the following operations are  
repeated:  
16/24  
+ n  
CY (mem) LSB,(mem) (mem) ÷ 2  
temp temp – 1, MSB of operand is unchanged.  
n: Number of shifts  
µ
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
Flags  
AC CY V  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
ROL  
6
reg, 1  
1 1 0 1 0 0 0 W 1 1 0 0 0 reg  
1 1 0 1 0 0 0 W mod 0 0 0 mem  
1 1 0 1 0 0 1 W 1 1 0 0 0 reg  
6
CY reg MSB, reg reg × 2 + CY  
reg MSB CY : V 1  
×
×
×
×
reg MSB = CY : V 0  
13/21  
7 + n  
mem, 1  
reg, CL  
2-4  
2
13/21  
7 + n  
CY (mem) MSB, (mem) (mem) × 2 + CY  
(mem) MSB CY : V 1  
(mem) MSB = CY : V 0  
×
temp CL, while temp 0 the following operations are  
repeated:  
U
CY reg MSB, reg reg × 2 + CY  
temp temp – 1  
16/24  
+ n  
mem, CL  
mod 0 0 0 mem  
1 1 0 0 0 reg  
mod 0 0 0 mem  
2-4  
3
16/24  
+ n  
temp CL, while temp 0 the following operations are  
repeated:  
CY (mem) MSB, (mem) (mem) × 2 + CY  
temp temp – 1  
×
×
×
U
U
U
1 1 0 1 0 0 1 W  
1 1 0 0 0 0 0 W  
1 1 0 0 0 0 0 W  
7 + n  
reg, imm8  
mem, imm8  
7 + n  
temp imm8, while temp 0 the following operations are  
repeated:  
CY reg MSB, reg reg × 2 + CY  
temp temp – 1  
16/24  
+ n  
3-5  
16/24  
+ n  
temp imm8, while temp 0 the following operations are  
repeated:  
CY (mem) MSB, (mem) (mem) × 2 + CY  
temp temp – 1  
n: Number of shifts  
µ
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
Flags  
AC CY V  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
CY reg LSB, regreg ÷ 2  
Bytes  
2
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
ROR  
6
reg, 1  
1 1 0 1 0 0 0 W 1 1 0 0 1 reg  
1 1 0 1 0 0 0 W mod 0 0 1 mem  
1 1 0 1 0 0 1 W 1 1 0 0 1 reg  
1 1 0 1 0 0 1 W mod 0 0 1 mem  
1 1 0 0 0 0 0 W 1 1 0 0 1 reg  
6
×
×
×
×
×
×
reg MSB CY  
reg MSB bit after reg MSB : V 1  
reg MSB = bit after reg MSB : V 0  
13/21  
7 + n  
mem, 1  
reg, CL  
mem, CL  
reg, imm8  
2-4  
2
13/21  
7 + n  
CY (mem) LSB, (mem) (mem) ÷ 2  
(mem) MSB CY  
(mem) MSB bit after (mem) MSB : V 1  
(mem) MSB = bit after (mem) MSB : V 0  
×
tempCL, whileCL 0thefollowingoperationsarerepeated:  
CY reg LSB, reg reg ÷ 2  
reg MSB CY  
U
U
U
temp temp – 1  
16/24  
+ n  
2-4  
3
16/24  
+ n  
tempCL, whileCL 0thefollowingoperationsarerepeated:  
CY (mem) LSB,(mem) (mem) ÷ 2  
(mem) MSB CY  
temp temp – 1  
7 + n  
7 + n  
temp imm8, while CL 0 the following operations are  
repeated:  
CY reg LSB,reg reg ÷ 2  
reg MSB CY  
temp temp – 1  
16/24  
+ n  
mem, imm8  
1 1 0 0 0 0 0 W mod 0 0 1 mem  
3-5  
16/24  
+ n  
temp imm8, while CL 0 the following operations are  
repeated:  
×
U
CY (mem) LSB,(mem) (mem) ÷ 2  
(mem) MSB CY  
temp temp – 1  
µ
n: Number of shifts  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
1 1 0 1 0 0 0 W 1 1 0 1 0 reg  
Flags  
AC CY V  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
ROLC  
×
×
×
×
reg, 1  
tmpcy CY, CY reg MSB  
6
6
reg reg × 2 + tmpcy  
reg MSB CY : V 1  
reg MSB = CY : V 0  
×
mem, 1  
reg, CL  
1 1 0 1 0 0 0 W  
mod 0 1 0 mem  
2-4  
tmpcy CY, CY (mem) MSB  
(mem)(mem) × 2 + tmpcy  
(mem) MSB CY : V 1  
(mem) MSB = CY : V 0  
13/21 13/21  
U
1 1 0 1 0 0 1 W 1 1 0 1 0 reg  
2
temp CL, while CL 0 the following operations are re-  
peated:  
7 + n 7 + n  
tmpcyCY, CY reg MSB  
reg reg × 2 + tmpcy  
temp temp – 1  
×
×
U
U
mem, CL  
reg, imm8  
1 1 0 1 0 0 1 W  
mod 0 1 0 mem  
2-4  
tempCL, whileCL0thefollowingoperationsarerepeated:  
tmpcy CY, CY (mem) MSB  
(mem) (mem) × 2 + tmpcy  
16/24 16/24  
+ n  
+ n  
temp temp – 1  
1 1 0 0 0 0 0 W 1 1 0 1 0 reg  
3
temp imm8, while CL 0 the following operations are  
repeated:  
7 + n 7 + n  
tmpcy CY, CY reg MSB  
reg reg × 2 + tmpcy  
temp temp – 1  
×
U
mem, imm8  
1 1 0 0 0 0 0 W  
mod 0 1 0 mem  
3-5  
temp imm8, while CL 0 the following operations are  
repeated:  
16/24 16/24  
+ n + n  
µ
tmpcy CY, CY (mem) MSB  
(mem) (mem) × 2 + tmpcy  
temp temp – 1  
n: Number of shifts  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
1 1 0 1 0 0 0 W 1 1 0 1 1 reg  
Flags  
AC CY V  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
RORC  
6
×
×
×
×
×
×
reg, 1  
6
tmpcy CY, CY reg LSB  
reg reg ÷ 2  
reg MSB tmpcy  
reg MSB bit after reg MSB : V 1  
reg MSB = bit after reg MSB : V 0  
13/21  
7 + n  
×
mem, 1  
reg, CL  
mem, CL  
reg, imm8  
1 1 0 1 0 0 0 W  
mod 0 1 1 mem  
2-4  
13/21  
7 + n  
tmpcy CY, CY (mem) LSB  
(mem) (mem) ÷ 2  
(mem) MSB tmpcy  
(mem) MSB bit after (mem) MSB : V 1  
(mem) MSB = bit after (mem) MSB : V 0  
U
U
U
1 1 0 1 0 0 1 W 1 1 0 1 1 reg  
2
tempCL, whileCL0thefollowingoperationsarerepeated:  
tmpcy CY, CY reg LSB  
reg reg ÷ 2  
reg MSB tmpcy  
temp temp – 1  
16/24  
+ n  
1 1 0 1 0 0 1 W  
mod 0 1 1 mem  
2-4  
16/24  
+ n  
tempCL, whileCL0thefollowingoperationsarerepeated:  
tmpcy CY, CY (mem) LSB  
(mem) (mem) ÷ 2  
(mem) MSB tmpcy  
temp temp – 1  
7 + n  
1 1 0 0 0 0 0 W 1 1 0 1 1 reg  
3
7 + n  
temp imm8, while CL 0 the following operations are  
repeated:  
tmpcy CY, CY reg LSB  
reg reg ÷ 2  
reg MSB tmpcy  
temp temp – 1  
µ
16/24  
+ n  
×
U
mem, imm8  
1 1 0 0 0 0 0 W  
mod 0 1 1 mem  
3-5  
16/24  
+ n  
temp imm8, while CL 0 the following operations are  
repeated:  
tmpcy CY, CY (mem) LSB  
(mem) (mem) ÷ 2  
(mem) MSB tmpcy  
temp temp – 1  
n: Number of shifts  
Instruc-  
tion  
Group  
Operation Code  
Flags  
AC CY V  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
3
7 6 5 4 3 2 1 0  
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
CALL  
16/20  
near-proc  
regptr16  
1 1 1 0 1 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 0 0 1 1 0 1 0  
1 1 1 1 1 1 1 1  
20  
18  
31  
29  
47  
SP SP – 2, (SP + 1, SP) PC  
PC PC + disp  
14/18  
1 1 0 1 0 reg  
mod 0 1 0 mem  
2
SP SP – 2, (SP + 1, SP) PC  
PC regptr16  
memptr16  
far-proc  
2-4  
5
23/31 TA (memptr16)  
SP SP – 2, (SP + 1, SP) PC, PC TA  
21/29  
SP SP – 2, (SP + 1, SP) PS, PS seg  
SP SP – 2, (SP + 1, SP) PC, PC offset  
memptr32  
mod 0 1 1 mem  
2-4  
31/47 TA (memptr32),TB (memptr32 + 2)  
SP SP – 2, (SP + 1, SP) PS, PS TB  
SP SP – 2, (SP + 1, SP) PC, PC TA  
RET  
15/19  
1 1 0 0 0 0 1 1  
1 1 0 0 0 0 1 0  
1 1 0 0 1 0 1 1  
1
3
1
19  
24  
29  
PC (SP + 1, SP)  
SP SP + 2  
20/24  
pop-value  
pop-value  
PC (SP + 1, SP)  
SP SP + 2, SP SP + pop-value  
21/29 PC (SP + 1, SP)  
PS (SP + 3, SP + 2)  
PS SP + 4  
24/32  
1 1 0 0 1 0 1 0  
3
32  
PC (SP + 1, SP)  
PS (SP + 3, SP + 2)  
SP SP + 4, SP SP + pop-value  
µ
Instruc-  
tion  
Group  
Operation Code  
Flags  
AC CY V P  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
2-4  
7 6 5 4 3 2 1 0  
S
Z
7 6 5 4 3 2 1 0  
mod 1 1 0 mem  
V40HL V50HL  
PUSH  
15/23  
mem16  
reg16  
sreg  
1 1 1 1 1 1 1 1  
0 1 0 1 0 reg  
0 0 0 sreg 1 1 0  
1 0 0 1 1 1 0 0  
23  
10  
10  
10  
SP SP – 2  
(SP + 1, SP) (mem16)  
6/10 SP SP – 2  
(SP + 1, SP) reg16  
1
1
1
6/10  
SP SP – 2  
(SP + 1, SP) sreg  
6/10  
PSW  
SP SP – 2  
(SP + 1, SP) PSW  
33/65  
5/9  
R
0 1 1 0 0 0 0 0  
0 1 1 0 1 0 1 0  
1
2
65  
9
Push registers on the stack  
imm8  
SP SP – 2  
(SP + 1, SP) imm8, sign of extension  
imm16  
0 1 1 0 1 0 0 0  
3
6/10 SP SP – 2  
(SP + 1, SP) imm16  
10  
(mem16) (SP + 1, SP)  
SP SP + 2  
2-4  
1
mem16  
reg16  
sreg  
1 0 0 0 1 1 1 1  
0 1 0 1 1 reg  
0 0 0 sreg 1 1 1  
mod 0 0 0 mem  
16/24  
8/12  
8/12  
8/12  
24  
12  
12  
12  
POP  
reg16(SP + 1, SP)  
SP SP + 2  
sreg(SP + 1, SP)  
SP SP + 2  
1
sreg : SS, DS0, DS1  
R
R
R
R
R
R
PSW(SP + 1, SP)  
SP SP + 2  
PSW  
R
1 0 0 1 1 1 0 1  
0 1 1 0 0 0 0 1  
1
Pop registers from the stack  
Prepare New Stack Frame  
Dispose of Stack Frame  
1
4
1
43/75  
Note 2  
6/10  
75  
Note 1  
10  
imm16, imm8 1 1 0 0 1 0 0 0  
1 1 0 0 1 0 0 1  
PREPARE  
DISPOSE  
µ
Notes1. If imm8 = 0 16  
If imm8 1  
21 + 16 (imm8 – 1)  
2. If imm8 = 0 12/16  
If imm8 1  
{17 + 8 (imm8 – 1)} / {21 + 16 (imm8 – 1)}  
Instruc-  
tion  
Group  
Operation Code  
Flags  
AC CY V  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
7 6 5 4 3 2 1 0  
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
BR  
13  
12  
11  
near-label  
short-label  
regptr16  
1 1 1 0 1 0 0 1  
1 1 1 0 1 0 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 0 1 0 1 0  
3
2
13  
12  
11  
23  
15  
PC PC+ dsip  
PC PC+ ext-disp8  
PC regptr16  
1 1 1 0 0 reg  
mod 1 0 0 mem  
2
memptr16  
far-label  
2-4  
5
19/23 PC (memptr16)  
15  
PS seg  
PC offset  
26/34  
memptr32  
1 1 1 1 1 1 1 1  
mod 1 0 1 mem  
2-4  
34  
PS (memptr32 + 2)  
PC (memptr32)  
µ
Clock CyclesNote  
V40HL V50HL  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
Flags  
AC CY V  
Mnemonic Operand(s)  
Operation  
Bytes  
P
S
Z
7 6 5 4 3 2 1 0  
BV  
14/4  
14/4  
14/4  
short-label  
short-label  
short-label  
0 1 1 1 0 0 0 0  
0 0 0 1  
2
2
2
14/4  
14/4  
14/4  
if V = 1  
if V = 0  
if CY = 1  
PC PC + ext-disp8  
BNV  
PC PC + ext-disp8  
PC PC + ext-disp8  
BC  
BL  
0 0 1 0  
BNC  
BNL  
14/4  
14/4  
14/4  
short-label  
short-label  
short-label  
0 0 1 1  
0 1 0 0  
0 1 0 1  
2
2
2
14/4  
14/4  
14/4  
if CY = 0  
if Z = 1  
if Z = 0  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
BE  
BZ  
BNE  
BNZ  
BNH  
BH  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/5  
short-label  
short-label  
short-label  
short-label  
short-label  
short-label  
short-label  
short-label  
short-label  
short-label  
short-label  
0 1 1 0  
0 1 1 1  
2
2
2
2
2
2
2
2
2
2
2
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/4  
14/5  
if CY Z = 1  
if CY Z = 0  
if S = 1  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
BN  
1 0 0 0  
BP  
1 0 0 1  
if S = 0  
BPE  
BPO  
BLT  
1 0 1 0  
if P = 1  
1 0 1 1  
if P = 0  
1 1 0 0  
if S V = 1  
if S V = 0  
if (S V) Z = 1  
if (S V) Z = 0  
BGE  
BLE  
BGT  
DBNZNE  
1 1 0 1  
1 1 1 0  
1 1 1 1  
µ
1 1 1 0 0 0 0 0  
CW = CW – 1  
if Z = 0 and CW 0  
DBNZE  
DBNZ  
14/5  
13/5  
13/5  
short-label  
short-label  
short-label  
1 1 1 0 0 0 0 1  
1 1 1 0 0 0 1 0  
1 1 1 0 0 0 1 1  
2
2
2
14/5  
13/5  
13/5  
CW = CW – 1  
PC PC + ext-disp8  
PC PC + ext-disp8  
PC PC + ext-disp8  
if Z = 1 and CW 0  
CW = CW – 1  
if CW 0  
BCWZ  
if CW = 0  
Note Condition determination: true/false  
Instruc-  
tion  
Group  
Operation Code  
Flags  
AC CY V P  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
1
7 6 5 4 3 2 1 0  
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
BRK  
38/50  
3
1 1 0 0 1 1 0 0  
1 1 0 0 1 1 0 1  
1 1 0 0 1 1 1 0  
50  
TA (00DH, 00CH), TC (00FH, 00EH)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
imm8  
( = 3)  
2
1
50  
38/50 TA (4 n + 1, 4n), TC (4n + 3, 4n + 2) n = imm8  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
BRKV  
Note 2  
Note 1  
If V = 1  
TA (011H, 010H), TC (013H, 012H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
RETI  
27/39  
38/50  
1 1 0 0 1 1 1 1  
0 0 0 0 1 1 1 1  
1
3
39  
50  
PC (SP + 1, SP), PS (SP + 3, SP + 2),  
PSW (SP + 5, SP + 4), SP SP + 6  
R
R
R
R
R
R
BRKEM  
imm8  
1 1 1 1 1 1 1 1  
TA (4 n + 1, 4n), TC (4n + 3, 4n + 2) n = imm8  
SP SP – 2, (SP + 1, SP) PSW, MD 0  
MD is set to write enabled  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
CHKIND  
Note 4  
reg16, mem32 0 1 1 0 0 0 1 0  
mod reg mem  
2-4  
Note 3  
If (mem32) > reg16 or (mem32 + 2) < reg16  
TA (015H, 014H), TC (017H, 016H)  
SP SP – 2, (SP + 1, SP) PSW, IE 0, BRK 0  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
µ
Notes 1. When V = 1: 52  
When V = 0: 3  
2. When V = 1: 40/52  
When V = 0: 3  
3. When interrupt condition is established  
: 72 to 75  
: 25  
When interrupt condition is not established  
4. When interrupt condition is established  
When interrupt condition is not established  
: (52 to 55)/(72 to 75)  
: 17/25  
Instruc-  
tion  
Group  
Operation Code  
7 6 5 4 3 2 1 0  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
Operation  
Bytes  
AC CY V  
P
S
Z
7 6 5 4 3 2 1 0  
V40HL V50HL  
HALT  
POLL  
DI  
2
1 1 1 1 0 1 0 0  
1 0 0 1 1 0 1 1  
1 1 1 1 1 0 1 0  
1 1 1 1 1 0 1 1  
1 1 1 1 0 0 0 0  
1
1
2
CPU Halt  
2 + 5n  
2 + 5n  
Poll and wait n: Number of times POLL pin is sampled  
2
2
2
2
1
2
2
IE 0  
EI  
1
IE 1  
BUSLOCK  
1
2
Bus Lock Prefix  
No Operation  
FPO1  
FPO2  
NOP  
fp-op  
1 1 0 1 1  
1 1 0 1 1  
X
X
X
X
X
X
X
X
1 1  
mod  
1 1  
mod  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Z
Z
Z
Z
2
2
fp-op, mem  
fp-op  
mem  
2-4  
2
14  
2
10/14 data bus (mem)  
2
10/14  
3
0 1 1 0 0 1 1  
0 1 1 0 0 1 1  
Z
Z
No Operation  
fp-op, mem  
mem  
2-4  
1
14  
3
data bus (mem)  
No Operation  
1 0 0 1 0 0 0 0  
*
2
0 0 1 sreg 1 1 0  
1
2
Segment override prefix  
*
DS0:, DS1:, PS:, and SS:.  
Instruc-  
tion  
Group  
Operation Code  
Flags  
Clock Cycles  
Mnemonic Operand(s)  
RETEM  
Operation  
Bytes  
2
7 6 5 4 3 2 1 0  
1 1 1 0 1 1 0 1  
V40HL V50HL  
AC CY V  
P
R
S
R
Z
7 6 5 4 3 2 1 0  
1 1 1 1 1 1 0 1  
39  
27/39 PC (SP + 1, SP), PS (SP + 3, SP + 2),  
PSW (SP + 5, SP + 4), SP SP + 6, MD is set to write  
disabled  
R
R
R
R
µ
CALLN  
38/58  
imm8  
1 1 1 0 1 1 0 1  
1 1 1 0 1 1 0 1  
3
58  
TA (4n + 1, 4n), TC (4n + 3, 4n + 2)  
n = imm8  
SP SP – 2, (SP + 1, SP) PSW, MD 1  
SP SP – 2, (SP + 1, SP) PS, PS TC  
SP SP – 2, (SP + 1, SP) PC, PC TA  
µPD70208H, 70216H  
16. ELECTRICAL SPECIFICATIONS  
Applied standard  
The electrical characteristics shown below are applied to devices other than the old models conforming  
to K mask.  
Therefore, these characteristics are different from those conforming to the K mask. For the electrical  
characteristics of the K mask, consult NEC.  
“Others” in the table below means products conforming to the masks other than E, P, X, and M (but  
conforming to the L, F mask).  
16.1 AT 5 V OPERATION  
OPERATING RANGE  
E, P, X, M Mask Model  
VDD = 5 V ±10%  
Others  
µPD70208H, 70216H-10/12/16  
µPD70208H, 70216H-20  
VDD = 5 V ±5%  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
Parameter  
Supply voltage  
Symbol  
Test Conditions  
Rating  
Unit  
VDD  
VI  
–0.5 to +7.0  
V
V
VDD = 5 V ±10%  
Input voltage  
–0.5 to VDD + 0.3  
–0.5 to VDD + 1.0  
–0.5 to VDD + 0.3  
–40 to +85  
(µPD70208H, 70216H-10/12/16)  
VDD = 5 V ±5%  
Clock input voltage  
Output voltage  
VK  
VO  
TA  
V
V
(µPD70208H, 70216H-20)  
Operating ambient temperature  
Storage temperature  
°C  
°C  
Tstg  
–65 to +150  
Cautions 1. Do not directly connect the output pins of two or more IC products and do not directly connect  
the output pins to VDD or VCC and GND. However, open-drain pins or open-collector pins may be  
connected directly. Moreover, an external circuit whose timing is designed to avoid output  
collision can be connected to pins that go into a high-impedance state.  
2. If even one of the above parameters exceeds the absolute maximum rating even momentarily, the  
quality of the program may be degraded. Absolute maximum ratings, therefore, are the values  
exceeding which the product may be physically damaged. Use the program keeping all the  
parameters within these rated values.  
The standards and conditions shown in DC and AC Characteristics below specify the range within  
which the normal operation of the product is guaranteed.  
Data Sheet U13225EJ4V0DS00  
66  
µPD70208H, 70216H  
DC CHARACTERISTICS  
(TA = –40 to +85 °C, VDD = 5 V ±10% (µPD70208H, 70216H-10/12/16), VDD = 5 V ±5% (µPD70208H, 70216H-20))  
Parameter  
Input voltage high  
Symbol  
Test Conditions  
Except RESET  
MIN.  
2.2  
TYP.  
MAX.  
Unit  
V
VIH  
E, P, X, M  
masks  
VDD+0.3  
VDD+0.3  
VDD+0.3  
RESET  
0.8 VDD  
2.2  
Others  
Except RESET,  
INTP1 to INTP7  
RESET  
0.8 VDD  
2.4  
VDD+0.3  
VDD+0.3  
+0.8  
INTP1 to INTP7  
Input voltage low  
VIL  
Except RESET  
RESET  
–0.5  
V
–0.5  
0.2VDD  
VDD+1.0  
+0.6  
Clock input voltage high  
Clock input voltage low  
Output voltage high  
VKH  
VKL  
VOH  
3.9  
V
V
V
–0.5  
IOH = –2.5 mA  
0.7 VDD  
VDD – 0.4  
IOH = –100 µA  
Output voltage low  
VOL  
Except END/TC : IOL = 2.5 mA  
0.4  
V
END/TC  
: IOL = 5.0 mA  
Input leak current high  
Input leak current low  
ILIH  
ILIL  
VI = VDD  
10  
–10  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
Except INTP:VI = 0 V  
INTP input:VI = 0 V  
VO = VDD  
INTP input current low  
Output leak current high  
Output leak current low  
Latch leak current high  
Latch leak current low  
ILIPL  
ILOH  
ILOL  
ILLH  
ILLL  
IILH  
IILL  
–300  
10  
VO = 0 V  
–10  
VI = 3.0 V  
–50  
50  
–300  
300  
VI = 0.8 V  
Latch inversion current (L H)  
Latch inversion current (H L)  
400  
–400  
9.0 fX  
2.5 fX  
50  
Note  
Supply current  
IDD  
E, P, X, M  
masks  
On operation  
5.5 fX  
1.5 fX  
On standby (HALT)  
On standby (STOP)  
On operation  
µA  
Others  
4.5 fX  
1.5 fX  
6.0 fX  
2.2 fX  
50  
mA  
On standby (HALT)  
On standby (STOP)  
µA  
Note The unit of constant values (1.5, 2.2, 2.5, 4.5, 5.5, 6.0 and 9.0) is mA/MHz.  
CAPACITANCE (TA = 25 ˚C, VDD = 0 V)  
Parameter  
Input capacitance  
Input/output capacitance  
Symbol  
CI  
Test Conditions  
fC = 1 MHz  
MIN.  
TYP.  
MAX.  
10  
Unit  
pF  
CIO  
0 V other than test pin.  
15  
pF  
Data Sheet U13225EJ4V0DS00  
67  
µPD70208H, 70216H  
AC CHARACTERISTICS  
(1) µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 5 V ±10%) (1/3)  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-10  
µPD70208H-12  
µPD70216H-12  
µPD70208H-16  
µPD70216H-16  
Parameter  
Symbol  
µPD70216H-10  
Unit  
MIN.  
50  
MAX.  
DC  
MIN.  
40  
MAX.  
DC  
MIN.  
31.25  
12  
MAX.  
DC  
External clock input cycle  
tCYX  
tXXH  
tXXL  
tXR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
<12>  
<13>  
<14>  
External clock input high-level width (VKH=3.0 V)  
External clock input low-level width (VKL=1.5 V)  
External clock input rise time (1.53.0 V)  
External clock input fall time (3.01.5 V)  
Clock output cycle  
19  
14  
19  
14  
12  
5
5
5
5
5
5
tXF  
tCYK  
tKKH  
tKKL  
tKR  
100  
DC  
80  
DC  
62.5  
DC  
Clock output high-level width (VOH=3.0 V)  
Clock output low-level width (VOL=1.5 V)  
Clock output rise time (1.53.0 V)  
0.5tCYK–5  
0.5tCYK–5  
0.5tCYK–5  
0.5tCYK–5  
0.5tCYK–5  
0.5tCYK–5  
5
5
5
Clock output fall time (3.01.5 V)  
tKF  
5
5
5
CLKOUT delay time (vs. external clock)  
Input rise time (except external clock) (0.82.2 V)  
Input fall time (except external clock) (2.20.8 V)  
tDXK  
tIR  
40  
15  
10  
15  
10  
10  
35  
15  
10  
15  
10  
10  
20  
15  
10  
15  
10  
10  
tIF  
Output rise time  
E, P, X, M masks  
Others  
tOR  
(except CLKOUT) (0.82.2 V)  
Output fall time (except CLKOUT) (2.20.8 V)  
tOF  
<15>  
<16>  
<17>  
<18>  
<19>  
<20>  
<21>  
<22>  
<23>  
<24>  
<25>  
<26>  
<27>  
<28>  
<29>  
<30>  
<31>  
<32>  
<33>  
Note 1  
RESET setup time (vs. CLKOUT)  
tSRESK  
tHKRES  
tDKRES  
tSRYLK  
tHKRYL  
tSRYHK  
tHKRYH  
tSNMIK  
tSPOLK  
tSDK  
20  
25  
5
20  
25  
5
20  
Note 1  
RESET hold time (vs. CLKOUT)  
15  
RESOUT output delay time (vs. CLKOUT)  
READY inactive setup time (vs. CLKOUT)  
READY inactive hold time (vs. CLKOUT)  
READY active setup time (vs. CLKOUT)  
READY active hold time (vs. CLKOUT)  
NMI setup time (vs. CLKOUT)  
50  
40  
5
30  
15  
20  
15  
20  
15  
20  
15  
5
10  
15  
10  
20  
15  
20  
10  
5
7
15  
7
15  
15  
POLL setup time (vs. CLKOUT)  
20  
Data setup time (vs. CLKOUT)  
7
Data hold time (vs. CLKOUT)  
tHKD  
5
Note 2  
CLKOUT address delay time  
tDKA  
5
50  
5
40  
5
28  
CLKOUT address hold time  
CLKOUT↓ → PS delay time  
tHKA  
5
5
5
5
tDKP  
5
50  
50  
5
40  
40  
30  
30  
CLKOUT↓ → PS float delay time  
Address setup time (vs. ASTB)  
tFKP  
5
5
5
tSAST  
tFKA  
tKKL–20  
tHKA  
tKKL–10  
tHKA  
tKKL–10  
tHKA  
Note 3  
CLKOUT↓ → address float delay time  
50  
40  
40  
30  
30  
25  
CLKOUT↓ → ASTBdelay time  
tDKSTH  
Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.  
2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE,  
BUFEN, BUFR/W, MRD, IORD, MWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.  
3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR,  
IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.  
Data Sheet U13225EJ4V0DS00  
68  
µPD70208H, 70216H  
(1) µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 5 V ±10%) (2/3)  
µPD70208H-10  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-12  
µPD70216H-12  
µPD70208H-16  
µPD70216H-16  
Parameter  
Symbol  
µPD70216H-10  
Unit  
MIN.  
MAX.  
45  
MIN.  
MAX.  
35  
MIN.  
MAX.  
30  
CLKOUT↑ → ASTBdelay time  
<34> tDKSTL  
<35> tSTST  
<36> tHSTA  
<37> tDKCT1  
<38> tDKCT2  
<39> tDAFRL  
<40> tDKRL  
<41> tDKRH  
<42> tDRHA  
<43> tRR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ASTB high-level width  
tKKL–10  
tKKL–10  
tKKL–10  
ASTB↓ → address hold time  
tKKH–20  
tKKH–10  
tKKH–10  
Note 1  
CLKOUT control 1  
CLKOUT control 2  
delay time  
5
60  
55  
5
50  
45  
5
40  
35  
Note 2  
delay time  
5
5
5
Address float RDdelay time  
CLKOUT↓ → RDdelay time  
0
0
0
5
65  
60  
5
50  
45  
5
40  
35  
CLKOUT↓ → RDdelay time  
5
5
5
RD↑ → address delay time  
tCYK–40  
tCYK–20  
tCYK–10  
RD low-level width  
2tCYK–40  
2tCYK–20  
2tCYK–20  
BUFEN↑ → BUFR/W delay time (read cycle)  
CLKOUT↓ → data output delay time  
CLKOUT↓ → data float delay time  
WR low-level width  
<44> tDBECT  
<45> tDKD  
tKKL–20  
tKKL–10  
tKKL–10  
5
55  
55  
5
40  
40  
5
30  
30  
<46> tFKD  
5
5
5
<47> tWW  
2tCYK–40  
2tCYK–20  
2tCYK–20  
WR↑ → BUFENor BUFR/W(write cycle)  
CLKOUT↑ → BSdelay time  
<48> tDWCT  
<49> tDKBL  
<50> tDKBH  
<51> tSHQK  
<52> tDKHA  
<53> tDKHDA  
<54> tDKLDA  
<55> tWW1  
<56> tWW2  
<57> tDDARW  
tKKL–20  
tKKL–10  
tKKL–10  
5
55  
55  
5
40  
40  
5
30  
30  
CLKOUT↓ → BSdelay time  
5
5
5
HLDRQ setup time (vs. CLKOUT)  
CLKOUT↓ → HLDAK delay time  
CLKOUT↑ → DMAAK delay time  
CLKOUT↓ → DMAAK delay time (cascade mode)  
15  
10  
7
5
5
60  
55  
80  
5
5
50  
45  
70  
5
5
40  
35  
55  
5
5
5
WR low-level width  
(DMA cycle)  
DMA extended write  
DMA normal write  
2tCYK–40  
tCYK–40  
tKKH–30  
tKKL–30  
3
2tCYK–20  
tCYK–20  
tKKH–20  
tKKL–20  
3
2tCYK–20  
tCYK–15  
tKKH–15  
tKKL–15  
3
RD, WRdelay time (vs. DMAAK)  
DMAAKdelay time (vs. RD)  
RDdelay time (vs. WR)  
<58>  
tDRHDAH  
<59> tDWHRH  
<60> tDKTCL  
<61> tDKTCF  
<62> tTCTCL  
<63> tDKTCH  
<64> tSEDK  
<65> tEDEDL  
<66> tSDQK  
<67> tIPIPL  
<68> tSRX  
TC output delay time (vs. CLKOUT)  
TC OFF delay time (vs. CLKOUT)  
TC low-level width  
55  
55  
45  
45  
35  
35  
tCYK–15  
tCYK–10  
tCYK–10  
TC pull-up delay time (vs. CLKOUT)  
END setup time (vs. CLKOUT)  
END low-level width  
Note 3  
Note 4  
Note 4 ns  
30  
80  
25  
65  
20  
50  
ns  
ns  
ns  
ns  
ns  
DMARQ setup time (vs. CLKOUT)  
INTPn low-level width  
30  
20  
15  
80  
80  
80  
RXD setup time (vs. SCU internal clock)  
500  
500  
500  
Notes 1. MWR and IOWR signals in DMA cycle  
2. MWR and IOWR signals in CPU cycles and BUFEN, BUFR/W, INTAK and REFRQ signals.  
3. tKKH + 2tCYK – 10 (Reference value when a 1.1-kpull-up resistor is connected.)  
4. tKKH + 2tCYK – 5 (Reference value when a 1.1-kpull-up resistor is connected.)  
Data Sheet U13225EJ4V0DS00  
69  
µPD70208H, 70216H  
(1) µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 5 V ±10%) (3/3)  
µPD70208H-10  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-12  
µPD70216H-12  
µPD70208H-16  
µPD70216H-16  
Parameter  
Symbol  
Unit  
µPD70216H-10  
MIN.  
500  
MAX.  
MIN.  
500  
MAX.  
MIN.  
500  
MAX.  
RXD hold time (vs. SCU internal clock)  
CLKOUT↓ → SRDY delay time  
TOUT1↓ → TXD delay time  
TCTL2 setup time (vs. CLKOUT)  
TCTL2 setup time (vs. TCLK)  
TCTL2 hold time (vs. CLKOUT)  
TCTL2 hold time (vs. TCLK)  
TCTL2 high-level width  
tHRX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
<69>  
<70>  
<71>  
<72>  
<73>  
<74>  
<75>  
<76>  
<77>  
<78>  
<79>  
<80>  
<81>  
<82>  
<83>  
<84>  
<85>  
<86>  
<87>  
<88>  
tDKSR  
tDTX  
100  
200  
100  
200  
100  
200  
tSGK  
40  
40  
80  
40  
40  
40  
40  
40  
80  
40  
40  
40  
40  
40  
80  
40  
40  
40  
tSGTK  
tHKG  
tHTKG  
tGGH  
tGGL  
TCTL2 low-level width  
TOUT output delay time (vs. CLKOUT)  
TOUT output delay time (vs. TCLK)  
TOUT output delay time (vs. TCTL2)  
TCLK rise time  
tDKTO  
tDTKTO  
tDGTO  
tTKR  
150  
100  
90  
150  
100  
90  
150  
100  
90  
25  
25  
25  
TCLK fall time  
tTKF  
25  
25  
25  
TCLK high-level width  
t
TKTKH  
45  
45  
40  
40  
30  
30  
TCLK low-level width  
tTKTKL  
tCYTK  
tAI  
TCLK cycle  
100  
DC  
80  
DC  
62.5  
DC  
Note 1  
Access interval  
2tCYK–40  
tKKL–30  
4tCYK  
2tCYK–25  
tKKL–15  
4tCYK  
2tCYK–20  
tKKL–10  
4tCYK  
Note 2  
REFRQdelay time (vs. MRD)  
t
DRQHRH  
Note 3  
RESET pulse width  
tWRESL  
Notes 1. Specification to guarantee read/write recovery time for I/O device.  
2. Specification to guarantee that REFRQis always later than MRD.  
Only guaranteed when the EREF bit of the SCTL register is 0.  
3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation  
stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending  
on the characteristics of the resonator and oscillator used, evaluate the oscillation stabilization time with the  
resonator and oscillator actually used.  
Data Sheet U13225EJ4V0DS00  
70  
µPD70208H, 70216H  
(2) µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 5 V ±5%) (1/3)  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-20  
Parameter  
Symbol  
µPD70216H-20  
Unit  
MIN.  
25  
MAX.  
DC  
tCYX  
tXXH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
External clock input cycle  
<1>  
<2>  
10  
External clock input high-level width (VKH=3.0 V)  
External clock input low-level width (VKL=1.5 V)  
External clock input rise time (1.53.0 V)  
External clock input fall time (3.01.5 V)  
Clock output cycle  
tXXL  
10  
<3>  
tXR  
5
5
<4>  
tXF  
<5>  
tCYK  
tKKH  
50  
DC  
<6>  
0.5tCYK–5  
0.5tCYK–5  
Clock output high-level width (VOH=3.0 V)  
Clock output low-level width (VOL=1.5 V)  
Clock output rise time (1.53.0 V)  
<7>  
tKKL  
<8>  
tKR  
5
<9>  
tKF  
5
Clock output fall time (3.01.5 V)  
<10>  
<11>  
<12>  
<13>  
<14>  
<15>  
<16>  
<17>  
<18>  
<19>  
<20>  
<21>  
<22>  
<23>  
<24>  
<25>  
<26>  
<27>  
<28>  
<29>  
<30>  
<31>  
<32>  
<33>  
<34>  
<35>  
tDXK  
tIR  
20  
15  
10  
10  
10  
CLKOUT delay time (vs. external clock)  
Input rise time (except external clock) (0.82.2 V)  
Input fall time (except external clock) (2.20.8 V)  
Output rise time (except CLKOUT) (0.82.2 V)  
Output fall time (except CLKOUT) (2.20.8 V)  
tIF  
tOR  
tOF  
Note 1  
tSRESK  
tHKRES  
tDKRES  
tSRYLK  
tHKRYL  
tSRYHK  
tHKRYH  
tSNMIK  
tSPOLK  
tSDK  
20  
RESET setup time (vs. CLKOUT)  
Note 1  
10  
RESET hold time (vs. CLKOUT)  
5
25  
RESOUT output delay time (vs. CLKOUT)  
READY inactive setup time (vs. CLKOUT)  
READY inactive hold time (vs. CLKOUT)  
READY active setup time (vs. CLKOUT)  
READY active hold time (vs. CLKOUT)  
NMI setup time (vs. CLKOUT)  
7
10  
7
10  
10  
20  
POLL setup time (vs. CLKOUT)  
7
Data setup time (vs. CLKOUT)  
tHKD  
tDKA  
5
Data hold time (vs. CLKOUT)  
Note 2  
5
25  
CLKOUT address delay time  
tHKA  
5
5
CLKOUT address hold time  
CLKOUT ↓ → PS delay time  
CLKOUT ↓ → PS float delay time  
Address setup time (vs. ASTB)  
tDKP  
30  
30  
tFKP  
5
tSAST  
tFKA  
tKKL–10  
tHKA  
Note 3  
25  
20  
20  
CLKOUT ↓ → address float delay time  
tDKSTH  
tDKSTL  
tSTST  
CLKOUT ↓ → ASTB delay time  
CLKOUT ↑ → ASTB delay time  
ASTB high-level width  
tKKL–10  
Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.  
2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE,  
BUFEN, BUFR/W, MRD, IORD, MWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.  
3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR,  
IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.  
Data Sheet U13225EJ4V0DS00  
71  
µPD70208H, 70216H  
(2) µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 5 V ±5%) (2/3)  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-20  
Parameter  
Symbol  
µPD70216H-20  
Unit  
MIN.  
MAX.  
<36>  
ASTB ↓ → address hold time  
tHSTA  
tDKCT1  
tDKCT2  
tDAFRL  
tDKRL  
tDKRH  
tDRHA  
tRR  
tKKH–10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
<37>  
<38>  
<39>  
<40>  
<41>  
<42>  
<43>  
<44>  
<45>  
<46>  
<47>  
<48>  
<49>  
<50>  
<51>  
<52>  
<53>  
<54>  
<55>  
<56>  
<57>  
<58>  
<59>  
<60>  
<61>  
<62>  
<63>  
<64>  
<65>  
<66>  
<67>  
<68>  
<69>  
<70>  
CLKOUT control 1  
CLKOUT control 2  
delay time  
delay time  
5
25  
30  
Note 2  
5
Address float RD delay time  
CLKOUT ↓ → RD delay time  
CLKOUT ↓ → RD delay time  
RD ↑ → address delay time  
0
5
25  
28  
5
tCYK–5  
RD low-level width  
2tCYK–15  
BUFEN ↑ → BUFR/W delay time (read cycle)  
CLKOUT ↓ → data output delay time  
CLKOUT ↓ → data float delay time  
WR low-level width  
tDBECT  
tDKD  
tKKL–10  
5
25  
25  
tFKD  
5
tWW  
2tCYK–15  
WR ↑ → BUFEN or BUFR/W (write cycle)  
CLKOUT ↑ → BS delay time  
CLKOUT ↓ → BS delay time  
HLDRQ setup time (vs. CLKOUT )  
CLKOUT ↓ → HLDAK delay time  
CLKOUT ↑ → DMAAK delay time  
CLKOUT ↓ → DMAAK delay time (cascade mode)  
WR low-level width (DMA cycle)  
tDWCT  
tDKBL  
tDKBH  
tSHQK  
tDKHA  
tDKHDA  
tDKLDA  
tWW1  
tKKL–10  
5
30  
25  
5
7
5
5
25  
25  
45  
5
DMA extended write  
DMA normal write  
2tCYK–15  
tCYK–15  
tKKH–10  
tKKL–10  
3
tWW2  
RD , WR delay time (vs. DMAAK )  
DMAAK delay time (vs. RD )  
RD delay time (vs. WR )  
tDDARW  
t
DRHDAH  
tDWHRH  
tDKTCL  
tDKTCF  
tTCTCL  
tDKTCH  
tSEDK  
tEDEDL  
tSDQK  
tIPIPL  
TC output delay time (vs. CLKOUT )  
TC OFF delay time (vs. CLKOUT )  
TC low-level width  
25  
25  
tCYK–10  
TC pull-up delay time (vs. CLKOUT )  
END setup time (vs. CLKOUT )  
END low-level width  
Note 3 ns  
20  
40  
ns  
ns  
ns  
ns  
ns  
ns  
DMARQ setup time (vs. CLKOUT )  
INTPn low-level width  
10  
60  
RxD setup time (vs. SCU internal clock )  
RxD hold time (vs. SCU internal clock )  
CLKOUT ↓ → SRDY delay time  
tSRX  
500  
500  
tHRX  
tDKSR  
100  
ns  
Notes 1. MWR and IOWR signals in DMA cycle  
2. MWR and IOWR signals in BUFEN, BUFR/W, INTAK, REFRQ, and CPU cycles  
3. tKKH + 2tCYK – 5 (reference value when a 1.1-kpull-up resistor is connected)  
Data Sheet U13225EJ4V0DS00  
72  
µPD70208H, 70216H  
(2) µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 5 V ±5%) (3/3)  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-20  
Parameter  
Symbol  
µPD70216H-20  
Unit  
MIN.  
MAX.  
200  
TOUT1 ↓ → TxD delay time  
TCTL2 setup time (vs. CLKOUT )  
TCTL2 setup time (vs. TCLK )  
TCTL2 hold time (vs. CLKOUT )  
TCTL2 hold time (vs. TCLK )  
TCTL2 high-level width  
tDTX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
<71>  
<72>  
<73>  
<74>  
<75>  
<76>  
<77>  
<78>  
<79>  
<80>  
<81>  
<82>  
<83>  
<84>  
<85>  
<86>  
<87>  
<88>  
tSGK  
40  
40  
80  
40  
40  
40  
tSGTK  
tHKG  
tHTKG  
tGGH  
tGGL  
TCTL2 low-level width  
TOUT output delay time (vs. CLKOUT )  
TOUT output delay time (vs. TCLK )  
TOUT output delay time (vs. TCTL2 )  
TCLK rise time  
tDKTO  
tDTKTO  
tDGTO  
tTKR  
150  
100  
90  
25  
TCLK fall time  
tTKF  
25  
TCLK high-level width  
t
TKTKH  
23  
23  
TCLK low-level width  
tTKTKL  
tCYTK  
tAI  
TCLK cycle  
50  
DC  
Note 1  
Access interval  
2tCYK–15  
tKKL–10  
4tCYK  
Note 2  
REFRQ delay time (vs. MRD )  
t
DRQHRH  
Note 3  
RESET pulse width  
tWRESL  
Notes 1. This rating is to guarantee the read/write recovery time for the I/O device.  
2. This rating is to guarantee that REFRQ is always behind MRD , and guaranteed only when the EREF  
bit of the STCL register is 0.  
3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation  
stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending  
on the characteristics of the resonator and oscillator used, evaluate the oscillation stabilization time with the  
resonator and oscillator actually used.  
Data Sheet U13225EJ4V0DS00  
73  
µPD70208H, 70216H  
RECOMMENDED OSCILLATOR  
The clock input circuits (1) and (2) shown below are recommended.  
(1) Ceramic resonator connection (TA = –40 to +85 °C, VDD = 5 V ±10% (µPD70208H, 70216H-10/12/16), VDD = 5 V ±5%  
(µPD70208H, 70216H-20))  
X1  
X2  
C2  
C1  
Cautions 1. The oscillator should be as close as possible to the X1 and X2 pins.  
2. No other signal lines should pass through the area enclosed in dashed line.  
3. For matching between V40HL, V50HL and resonator, the efficient evaluation should be carried  
out.  
4. The values of the oscillator constants C1 and C2 depend on the characteristics of the  
resonator used. Evaluate them with the resonator actually used.  
Recommended  
Frequency  
Constant  
Product Name  
Manufacturer  
(fXX) [MHz]  
C1 [pF]  
C2 [pF]  
3
5
3
5
40  
32  
25  
20  
32  
25  
20  
CSA40.00MXZ040  
CSA32.00MXZ040  
CSA25.00MXZ040  
CSA20.00MXZ040  
FCR32.0M2G  
Murata Mfg.  
Co., Ltd.  
5
5
10  
5
10  
5
TDK Corp.  
5
5
FCR25.0M2G  
10  
10  
FCR20.0M2G  
(2) External clock input  
X1  
X2  
X1  
X2  
Open  
or  
High-speed  
CMOS  
Inverter  
High-speed  
CMOS  
Inverter  
External Clock  
External Clock  
Caution The high-speed CMOS inverter should be as close as possible to the X1 and X2 pins.  
Data Sheet U13225EJ4V0DS00  
74  
µPD70208H, 70216H  
16.2 AT 3 V OPERATION  
OPERATING RANGE  
E, P, X, M Masks  
VDD = 3 V ±10%  
Others  
µPD70208H, 70216H-10/12/16  
µPD70208H, 70216H-20  
VDD = 3 V ±10%  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
Parameter  
Supply voltage  
Symbol  
Test Conditions  
Rating  
Unit  
VDD  
VI  
–0.5 to +7.0  
V
V
Input voltage  
–0.5 to VDD + 0.3  
–0.5 to VDD + 1.0  
–0.5 to VDD + 0.3  
–40 to +85  
Clock input voltage  
Output voltage  
VK  
VO  
TA  
V
VDD = 3 V ±10%  
V
Operating ambient temperature  
Storage temperature  
°C  
°C  
Tstg  
–65 to +150  
Cautions 1. Do not directly connect the output pins of two or more IC products and do not directly connect  
the output pins to VDD or VCC and GND. However, open-drain pins or open-collector pins may be  
connected directly. Moreover, an external circuit whose timing is designed to avoid output  
collision can be connected to pins that go into a high-impedance state.  
2. If even one of the above parameters exceeds the absolute maximum rating even momentarily, the  
quality of the program may be degraded. Absolute maximum ratings, therefore, are the values  
exceeding which the product may be physically damaged. Use the program keeping all the  
parameters within these rated values.  
The standards and conditions shown in DC and AC Characteristics below specify the range within  
which the normal operation of the product is guaranteed.  
Data Sheet U13225EJ4V0DS00  
75  
µPD70208H, 70216H  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 3 V ±10%)  
Parameter  
Input voltage high  
Symbol  
Test Conditions  
Except RESET  
MIN.  
0.7 VDD  
0.8 VDD  
–0.5  
TYP.  
MAX.  
Unit  
V
VIH  
VDD+0.3  
VDD+0.3  
0.2 VDD  
RESET  
Input voltage low  
VIL  
Except RESET  
RESET  
V
Clock input voltage high  
Clock input voltage low  
Output voltage high  
VKH  
VKL  
VOH  
0.8 VDD  
–0.5  
VDD+0.5  
0.2 VDD  
V
V
V
IOH = –2.5 mA  
0.7 VDD  
VDD – 0.4  
IOH = –100 µA  
Output voltage low  
VOL  
Except END/TC : IOL = 2.5 mA  
0.4  
V
END/TC  
VI = VDD  
VI = 0 V  
VI = 0 V  
VO = VDD  
VO = 0 V  
VI = 3.0 V  
VI = 0.8 V  
: IOL = 5.0 mA  
Input leak current high  
Input leak current low  
ILIH  
ILIL  
10  
–10  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
: Except INTP  
: INTP input  
INTP input current low  
Output leak current high  
Output leak current low  
Latch leak current high  
Latch leak current low  
ILIPL  
ILOH  
ILOL  
ILLH  
ILLL  
IILH  
IILL  
–300  
10  
–10  
–50  
50  
–300  
300  
Latch inversion current (L H)  
Latch inversion current (H L)  
400  
–400  
5.5 fX  
1.5 fX  
30  
Note  
Supply current  
IDD  
E, P, X, M  
masks  
On Operation  
3.0 fX  
0.9 fX  
On standby (HALT)  
On standby (STOP)  
On Operation  
µA  
Others  
2.5 fX  
0.9 fX  
4.0 fX  
1.5 fX  
30  
mA  
On standby (HALT)  
On standby (STOP)  
µA  
Note The unit of constant values (0.9, 1.5, 2.5, 3.0, 4.0 and 5.5) is mA/MHz.  
CAPACITANCE (TA = 25˚C, VDD = 0 V)  
Parameter  
Input capacitance  
Input/output capacitance  
Symbol  
CI  
Test Conditions  
fC = 1 MHz  
MIN.  
TYP.  
MAX.  
10  
Unit  
pF  
CIO  
0 V other than test pin.  
15  
pF  
Data Sheet U13225EJ4V0DS00  
76  
µPD70208H, 70216H  
AC CHARACTERISTICS  
(1) µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 3 V ±10%) (1/3)  
µPD70208H-10  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-12  
µPD70216H-12  
µPD70208H-16  
µPD70216H-16  
Parameter  
Symbol  
µPD70216H-10  
Unit  
MIN.  
100  
40  
MAX.  
DC  
MIN.  
83  
MAX.  
DC  
MIN.  
62.5  
20  
MAX.  
DC  
<1> tCYX  
<2> tXXH  
<3> tXXL  
<4> tXR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
External clock input cycle  
30  
External clock input high-level width (VKH=0.8 VDD)  
External clock input low-level width (VKL=0.2 VDD)  
External clock input rise time (0.2 VDD0.8 VDD)  
External clock input fall time (0.8 VDD0.2 VDD)  
Clock output cycle  
40  
30  
20  
10  
10  
10  
10  
10  
10  
<5> tXF  
<6> tCYK  
<7> tKKH  
<8> tKKL  
<9> tKR  
200  
DC  
166  
DC  
125  
DC  
0.5tCYK–7  
0.5tCYK–7  
0.5tCYK–7  
0.5tCYK–7  
0.5tCYK–7  
0.5tCYK–7  
Clock output high-level width (VOH=0.7 VDD)  
Clock output low-level width (VOL=0.2 VDD)  
Clock output rise time (0.2 VDD0.7 VDD)  
7
7
7
<10> tKF  
7
7
7
Clock output fall time (0.7 VDD0.2 VDD)  
<11> tDXK  
<12> tIR  
75  
20  
12  
20  
12  
65  
20  
12  
20  
12  
55  
20  
12  
20  
12  
CLKOUT delay time (vs. external clock)  
Input rise time (except external clock) (0.2 VDD0.7 VDD)  
Input fall time (except external clock) (0.7 VDD0.2 VDD)  
Output rise time (except CLKOUT) (0.2 VDD0.7 VDD)  
Output fall time (except CLKOUT) (0.7 VDD0.2 VDD)  
<13> tIF  
<14> tOR  
<15> tOF  
Note 1  
<16> tSRESK  
<17> tHKRES  
<18> tDKRES  
<19> tSRYLK  
<20> tHKRYL  
<21> tSRYHK  
<22> tHKRYH  
<23> tSNMIK  
<24> tSPOLK  
<25> tSDK  
<26> tHKD  
<27> tDKA  
<28> tHKA  
<29> tDKP  
<30> tFKP  
<31> tSAST  
<32> tFKA  
<33> tDKSTH  
<34> tDKSTL  
<35> tSTST  
25  
25  
25  
RESET setup time (vs. CLKOUT)  
Note 1  
35  
35  
35  
RESET hold time (vs. CLKOUT)  
5
80  
5
70  
5
60  
RESOUT output delay time (vs. CLKOUT)  
READY inactive setup time (vs. CLKOUT)  
READY inactive hold time (vs. CLKOUT)  
READY active setup time (vs. CLKOUT)  
READY active hold time (vs. CLKOUT)  
NMI setup time (vs. CLKOUT)  
20  
20  
15  
30  
30  
25  
20  
20  
15  
30  
30  
25  
15  
15  
15  
20  
20  
20  
POLL setup time (vs. CLKOUT)  
20  
20  
15  
Data setup time (vs. CLKOUT)  
5
5
5
Data hold time (vs. CLKOUT)  
Note 2  
5
75  
5
65  
5
55  
CLKOUT address delay time  
5
5
5
CLKOUT address hold time  
CLKOUT↓ → PS delay time  
5
80  
80  
5
70  
70  
5
60  
60  
5
5
5
CLKOUT↓ → PS float delay time  
Address setup time (vs. ASTB)  
tKKL–30  
tKKL–30  
tKKL–30  
Note 3  
5
80  
65  
70  
5
70  
55  
60  
5
60  
45  
50  
CLKOUT↓ → address float delay time  
5
5
5
5
5
5
CLKOUT↓ → ASTBdelay time  
CLKOUT↑ → ASTBdelay time  
ASTB high-level width  
tKKL–10  
tKKL–10  
tKKL–10  
Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.  
2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE,  
BUFEN, BUFR/W, MRD, IORD, MWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.  
3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR,  
IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.  
Data Sheet U13225EJ4V0DS00  
77  
µPD70208H, 70216H  
(1) µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 3 V ±10%) (2/3)  
µPD70208H-10  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-12  
µPD70216H-12  
µPD70208H-16  
µPD70216H-16  
Parameter  
Symbol  
µPD70216H-10  
Unit  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
ASTB↓ → address hold time  
<36> tHSTA  
<37> tDKCT1  
<38> tDKCT2  
<39> tDAFRL  
<40> tDKRL  
<41> tDKRH  
<42> tDRHA  
<43> tRR  
tKKH–30  
tKKH–30  
tKKH–20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
CLKOUT control 1  
CLKOUT control 2  
delay time  
delay time  
5
90  
80  
5
80  
70  
5
70  
60  
Note 2  
5
5
5
Address float RDdelay time  
CLKOUT↓ → RDdelay time  
0
0
0
5
95  
90  
5
85  
80  
5
75  
70  
CLKOUT↓ → RDdelay time  
5
5
5
RD↑ → address delay time  
tCYK–70  
tCYK–60  
tCYK–50  
RD low-level width  
2tCYK–70  
2tCYK–60  
2tCYK–50  
BUFEN↑ → BUFR/W delay time (read cycle)  
CLKOUT↓ → data output delay time  
CLKOUT↓ → data float delay time  
WR low-level width  
<44> tDBECT  
<45> tDKD  
tKKL–30  
tKKL–30  
tKKL–20  
5
80  
80  
5
70  
70  
5
60  
60  
<46> tFKD  
5
5
5
<47> tWW  
2tCYK–50  
2tCYK–50  
2tCYK–40  
WR↑ → BUFENor BUFR/W(write cycle)  
CLKOUT↑ → BSdelay time  
<48> tDWCT  
<49> tDKBL  
<50> tDKBH  
<51> tSHQK  
<52> tDKHA  
<53> tDKHDA  
<54> tDKLDA  
<55> tWW1  
<56> tWW2  
<57> tDDARW  
tKKL–30  
tKKL–30  
tKKL–20  
5
80  
80  
5
70  
70  
5
60  
60  
CLKOUT↓ → BSdelay time  
5
5
5
HLDRQ setup time (vs. CLKOUT)  
CLKOUT↓ → HLDAK delay time  
CLKOUT↑ → DMAAK delay time  
CLKOUT↓ → DMAAK delay time (cascade mode)  
25  
25  
20  
5
90  
80  
5
80  
70  
5
70  
60  
90  
5
5
5
5
5
5
110  
100  
WR low-level width  
(DMA cycle)  
DMA extended write  
DMA normal write  
2tCYK–50  
tCYK–50  
tKKH–40  
tKKL–40  
5
2tCYK–50  
tCYK–50  
tKKH–40  
tKKL–40  
5
2tCYK–40  
tCYK–40  
tKKH–30  
tKKL–30  
5
RDWRdelay time (vs. DMAAK)  
DMAAKdelay time (vs. RD)  
RDdelay time (vs. WR)  
<58>  
t
DRHDAH  
<59> tDWHRH  
<60> tDKTCL  
<61> tDKTCF  
<62> tTCTCL  
<63> tDKTCH  
<64> tSEDK  
<65> tEDEDL  
<66> tSDQK  
<67> tIPIPL  
<68> tSRX  
TC output delay time (vs. CLKOUT)  
TC OFF delay time (vs. CLKOUT)  
TC low-level width  
5
80  
80  
5
70  
70  
5
60  
60  
5
5
5
tCYK–25  
tCYK–25  
tCYK–15  
TC pull-up delay time (vs. CLKOUT)  
END setup time (vs. CLKOUT)  
END low-level width  
Note 3  
Note 4  
Note 4 ns  
45  
140  
45  
40  
120  
40  
35  
100  
35  
ns  
ns  
ns  
ns  
ns  
ns  
DMARQ setup time (vs. CLKOUT)  
INTPn low-level width  
100  
1000  
1000  
100  
1000  
1000  
100  
1000  
1000  
RXD setup time (vs. SCU internal clock)  
RXD hold time (vs. SCU internal clock)  
CLKOUT↓ → SRDY delay time  
<69> tHRX  
<70> tDKSR  
150  
150  
150  
ns  
Notes 1. MWR and IOWR signals in DMA cycle  
2. MWR and IOWR signals in CPU cycles and BUFEN, BUFR/W, INTAK and REFRQ signals.  
3. tKKH + 2tCYK – 20 (Reference value when a 1.1-kpull-up resistor is connected)  
4. tKKH + 2tCYK – 10 (Reference value when a 1.1-kpull-up resistor is connected)  
Data Sheet U13225EJ4V0DS00  
78  
µPD70208H, 70216H  
(1) µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 3 V ±10%) (3/3)  
µPD70208H-10  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-12  
µPD70216H-12  
µPD70208H-16  
Parameter  
Symbol  
µPD70216H-10  
µPD70216H-16 Unit  
MIN.  
MAX.  
500  
MIN.  
MAX.  
500  
MIN.  
MAX.  
500  
TOUT1TXD delay time  
<71>  
tDTX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCTL2 setup time (vs. CLKOUT)  
TCTL2 setup time (vs. TCLK)  
TCTL2 hold time (vs. CLKOUT)  
TCTL2 hold time (vs. TCLK)  
TCTL2 high-level width  
<72>  
<73>  
<74>  
<75>  
<76>  
<77>  
<78>  
<79>  
<80>  
<81>  
<82>  
<83>  
<84>  
<85>  
<86>  
<87>  
<88>  
tSGK  
50  
50  
50  
50  
50  
50  
tSGTK  
tHKG  
tHTKG  
tGGH  
tGGL  
100  
50  
100  
50  
100  
50  
50  
50  
50  
TCTL2 low-level width  
50  
50  
50  
TOUT output delay time (vs. CLKOUT)  
TOUT output delay time (vs. TCLK)  
TOUT output delay time (vs. TCTL2)  
TCLK rise time  
tDKTO  
tDTKTO  
tDGTO  
tTKR  
200  
150  
120  
25  
200  
150  
120  
25  
200  
150  
120  
25  
TCLK fall time  
tTKF  
25  
25  
25  
TCLK high-level width  
t
TKTKH  
60  
60  
55  
55  
50  
50  
TCLK low-level width  
tTKTKL  
tCYTK  
tAI  
TCLK cycle  
200  
DC  
166  
DC  
125  
DC  
Note 1  
Access interval  
2tCYK–70  
tKKL–50  
4tCYK  
2tCYK–60  
tKKL–40  
4tCYK  
2tCYK–50  
tKKL–30  
4tCYK  
Note 2  
REFRQdelay time (vs. MRD)  
t
DRQHRH  
Note 3  
RESET pulse width  
tWRESL  
Notes 1. Specification to guarantee read/write recovery time for I/O device.  
2. Specification to guarantee that REFRQis always later than MRD.  
Only guaranteed when the EREF bit of the SCTL register is 0.  
3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation  
stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending  
on the characteristics of the resonator and oscillator used, evaluate the oscillation stabilization time with the  
resonator and oscillator actually used.  
Data Sheet U13225EJ4V0DS00  
79  
µPD70208H, 70216H  
(2) µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 3 V ±10%) (1/3)  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-20  
Parameter  
Symbol  
µPD70216H-20  
Unit  
MIN.  
50  
MAX.  
DC  
External clock input cycle  
tCYX  
tXXH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
<1>  
<2>  
External clock input high-level width (VKH=0.8 VDD)  
External clock input low-level width (VKL=0.2 VDD)  
External clock input rise time (0.2 VDD0.8 VDD)  
External clock input fall time (0.8 VDD0.2 VDD)  
Clock output cycle  
19  
tXXL  
19  
<3>  
tXR  
5
5
<4>  
tXF  
<5>  
tCYK  
tKKH  
100  
DC  
<6>  
Clock output high-level width (VOH=0.7 VDD)  
Clock output low-level width (VOL=0.2 VDD)  
Clock output rise time (0.2 VDD0.7 VDD)  
Clock output fall time (0.7 VDD0.2 VDD)  
0.5tCYK–7  
0.5tCYK–7  
<7>  
tKKL  
<8>  
tKR  
7
<9>  
tKF  
7
<10>  
<11>  
<12>  
<13>  
<14>  
<15>  
<16>  
<17>  
<18>  
<19>  
<20>  
<21>  
<22>  
<23>  
<24>  
<25>  
<26>  
<27>  
<28>  
<29>  
<30>  
<31>  
<32>  
<33>  
<34>  
<35>  
CLKOUT delay time (vs. external clock)  
tDXK  
tIR  
45  
15  
10  
15  
10  
Input rise time (except external clock) (0.2 VDD0.7 VDD)  
Input fall time (except external clock) (0.7 VDD0.2 VDD)  
Output rise time (except CLKOUT) (0.2 VDD0.7 VDD)  
Output fall time (except CLKOUT) (0.7 VDD0.2 VDD)  
tIF  
tOR  
tOF  
Note 1  
RESET setup time (vs. CLKOUT)  
tSRESK  
tHKRES  
tDKRES  
tSRYLK  
tHKRYL  
tSRYHK  
tHKRYH  
tSNMIK  
tSPOLK  
tSDK  
25  
25  
5
Note 1  
RESET hold time (vs. CLKOUT)  
RESOUT output delay time (vs. CLKOUT)  
READY inactive setup time (vs. CLKOUT)  
READY inactive hold time (vs. CLKOUT)  
READY active setup time (vs. CLKOUT)  
READY active hold time (vs. CLKOUT)  
NMI setup time (vs. CLKOUT)  
50  
15  
20  
15  
20  
15  
20  
15  
5
POLL setup time (vs. CLKOUT)  
Data setup time (vs. CLKOUT)  
Data hold time (vs. CLKOUT)  
tHKD  
tDKA  
Note 2  
CLKOUT address delay time  
5
50  
CLKOUT address hold time  
CLKOUT ↓ → PS delay time  
CLKOUT ↓ → PS float delay time  
Address setup time (vs. ASTB)  
tHKA  
5
tDKP  
5
50  
50  
tFKP  
5
tSAST  
tFKA  
tKKL–20  
tHKA  
Note 3  
CLKOUT ↓ → address float delay time  
50  
40  
45  
CLKOUT ↓ → ASTB delay time  
CLKOUT ↑ → ASTB delay time  
ASTB high-level width  
tDKSTH  
tDKSTL  
tSTST  
tKKL–10  
Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.  
2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE,  
BUFEN, BUFR/W, MRD, IORD, MWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.  
3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR,  
IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.  
Data Sheet U13225EJ4V0DS00  
80  
µPD70208H, 70216H  
(2) µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 3 V ±10%) (2/3)  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-20  
Parameter  
Symbol  
µPD70216H-20  
Unit  
MIN.  
MAX.  
ASTB ↓ → address hold time  
tHSTA  
tDKCT1  
tDKCT2  
tDAFRL  
tDKRL  
tDKRH  
tDRHA  
tRR  
tKKH–20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
<36>  
<37>  
<38>  
<39>  
<40>  
<41>  
<42>  
<43>  
<44>  
<45>  
<46>  
<47>  
<48>  
<49>  
<50>  
<51>  
<52>  
<53>  
<54>  
<55>  
<56>  
<57>  
<58>  
<59>  
<60>  
<61>  
<62>  
<63>  
<64>  
<65>  
<66>  
<67>  
<68>  
<69>  
<70>  
Note 1  
CLKOUT control 1  
CLKOUT control 2  
delay time  
delay time  
5
60  
55  
Note 2  
5
Address float RD delay time  
CLKOUT ↓ → RD delay time  
CLKOUT ↓ → RD delay time  
RD ↑ → address delay time  
0
5
65  
60  
5
tCYK–40  
RD low-level width  
2tCYK–40  
BUFEN ↑ → BUFR/W delay time (read cycle)  
CLKOUT ↓ → data output delay time  
CLKOUT ↓ → data float delay time  
WR low-level width  
tDBECT  
tDKD  
tKKL–20  
5
55  
55  
tFKD  
5
tWW  
2tCYK–40  
WR ↑ → BUFEN or BUFR/W (write cycle)  
CLKOUT ↑ → BS delay time  
CLKOUT ↓ → BS delay time  
HLDRQ setup time (vs. CLKOUT )  
CLKOUT ↓ → HLDAK delay time  
CLKOUT ↑ → DMAAK delay time  
CLKOUT ↓ → DMAAK delay time (cascade mode)  
WR low-level width (DMA cycle)  
tDWCT  
tDKBL  
tDKBH  
tSHQK  
tDKHA  
tDKHDA  
tDKLDA  
tWW1  
tKKL–20  
5
55  
55  
5
15  
5
5
60  
55  
80  
5
DMA extended write  
DMA normal write  
2tCYK–40  
tCYK–40  
tKKH–30  
tKKL–30  
3
tWW2  
RD , WR delay time (vs. DMAAK )  
DMAAK delay time (vs. RD )  
RD delay time (vs. WR )  
tDDARW  
t
DRHDAH  
tDWHRH  
tDKTCL  
tDKTCF  
tTCTCL  
tDKTCH  
tSEDK  
tEDEDL  
tSDQK  
tIPIPL  
TC output delay time (vs. CLKOUT )  
TC OFF delay time (vs. CLKOUT )  
TC low-level width  
55  
55  
tCYK–15  
TC pull-up delay time (vs. CLKOUT )  
END setup time (vs. CLKOUT )  
END low-level width  
Note 3 ns  
30  
80  
ns  
ns  
ns  
ns  
ns  
ns  
DMARQ setup time (vs. CLKOUT )  
INTPn low-level width  
30  
80  
RxD setup time (vs. SCU internal clock )  
RxD hold time (vs. SCU internal clock )  
CLKOUT ↓ → SRDY delay time  
tSRX  
500  
500  
tHRX  
tDKSR  
100  
ns  
Notes 1. MWR and IOWR signals in DMA cycle  
2. MWR and IOWR signals in CPU cycles and BUFEN, BUFR/W, INTAK and REFRQ signals.  
3. tKKH + 2tCYK – 10 (reference value when a 1.1-kpull-up resistor is connected)  
Data Sheet U13225EJ4V0DS00  
81  
µPD70208H, 70216H  
(2) µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 3 V ±10%) (3/3)  
Output Pin Load Capacitance: CL = 100 pF  
µPD70208H-20  
Parameter  
Symbol  
µPD70216H-20  
Unit  
MIN.  
MAX.  
200  
<71> tDTX  
<72> tSGK  
<73> tSGTK  
<74> tHKG  
<75> tHTKG  
<76> tGGH  
<77> tGGL  
<78> tDKTO  
<79> tDTKTO  
<80> tDGTO  
<81> tTKR  
<82> tTKF  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TOUT1 ↓ → TxD delay time  
TCTL2 setup time (vs. CLKOUT )  
TCTL2 setup time (vs. TCLK )  
TCTL2 hold time (vs. CLKOUT )  
TCTL2 hold time (vs. TCLK )  
TCTL2 high-level width  
40  
40  
80  
40  
40  
40  
TCTL2 low-level width  
150  
100  
90  
TOUT output delay time (vs. CLKOUT )  
TOUT output delay time (vs. TCLK )  
TOUT output delay time (vs. TCTL2 )  
TCLK rise time  
25  
25  
TCLK fall time  
<83>  
t
TKTKH  
45  
45  
TCLK high-level width  
<84> tTKTKL  
<85> tCYTK  
<86> tAI  
TCLK low-level width  
100  
DC  
TCLK cycle  
Note 1  
2tCYK–40  
tKKL–30  
4tCYK  
Access interval  
Note 2  
<87>  
t
DRQHRH  
REFRQ delay time (vs. MRD )  
Note 3  
<88> tWRESL  
RESET pulse width  
Notes 1. This rating is to guarantee the read/write recovery time for the I/O device.  
2. This rating is to guarantee that REFRQ is always behind MRD , and is guaranteed only when the EREF  
bit of the STCL register is 0.  
3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation  
stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending  
on the characteristics of the resonator and oscillator used, evaluate the oscillation stabilization time with the  
resonator and oscillator actually used.  
Data Sheet U13225EJ4V0DS00  
82  
µPD70208H, 70216H  
RECOMMENDED OSCILLATOR  
The clock input circuits (1) and (2) shown below are recommended.  
(1) Ceramic resonator connection (TA = –40 to +85 °C, VDD = 3 V ±10%Note  
)
X1  
X2  
C2  
C1  
Cautions 1. The oscillator should be as close as possible to the X1 and X2 pins.  
2. No other signal lines should pass through the area enclosed in dashed line.  
3. V40HL, V50HL and resonator matching requires careful evaluation.  
4. The values of the oscillator constants C1 and C2 depend on the characteristics of the  
resonator used. Evaluate them with the resonator actually used.  
Recommended  
Frequency  
Constant  
Product Name  
Manufacturer  
(fXX) [MHz]  
C1 [pF]  
C2 [pF]  
Note  
10  
15  
10  
15  
20  
16  
CSA20.00MXZ040  
Murata Mfg.  
Co., Ltd.  
CSA16.00MXZ040  
CSA16.00MXW0C3  
CSA12.5MTZ  
CSA12.5MTW  
CSA10.0MTZ  
CST10.0MXW  
FCR20.0M2G  
FCR16.0M2G  
FCR10.0MC  
30  
30  
12.5  
10  
30  
30  
10  
15  
10  
15  
20  
16  
10  
TDK Corp.  
Note Use the CAS20.00MXZ040 within the range of VDD = 2.9 to 3.3 V.  
(2) External clock input  
X1  
X2  
X1  
X2  
Open  
or  
High-speed  
CMOS  
Inverter  
High-speed  
CMOS  
Inverter  
External Clock  
External Clock  
Caution The high-speed CMOS inverter should be as close as possible to the X1 and X2 pins.  
Data Sheet U13225EJ4V0DS00  
83  
µPD70208H, 70216H  
AC Test Input Waveform (Except X1 and X2) (at 5 V operation)  
2.4 V  
2.2 V  
Test  
2.2 V  
0.8 V  
points  
0.8 V  
0.4 V  
AC Test Output Test Points (at 5 V operation)  
2.2 V  
0.8 V  
2.2 V  
0.8 V  
Test  
points  
AC Test Input Waveform (Except X1 and X2) (at 3 V operation)  
0.8 VDD  
0.7 VDD  
Test  
0.7 VDD  
0.2 VDD  
points  
0.2 VDD  
0.4 V  
AC Test Output Waveform (at 3 V operation)  
0.7 VDD  
0.2 VDD  
0.7 VDD  
0.2 VDD  
Test  
points  
Load Conditions  
DUT  
L
C
= 100pF  
Caution If the load capacitance exceeds 100 pF due to the configuration of the circuit, the load capacitance  
of this device should be reduced to 100 pF or less by insertion of a buffer, etc.  
Data Sheet U13225EJ4V0DS00  
84  
µPD70208H, 70216H  
Clock Timing  
<1>  
<2>  
<4>  
<5>  
External Clock (Input)  
(X1)  
<11>  
<3>  
<11>  
<6>  
<9>  
<10>  
<7>  
CLKOUT (Output)  
<8>  
Reset Timing  
CLKOUT (Output)  
RESET (Input)  
<16>  
<17>  
<16>  
<88>  
Note  
<18>  
<18>  
RESOUT (Output)  
Ready Timing (1)  
T1  
T2  
T3  
T4  
T1  
CLKOUT (Output)  
<22>  
<21>  
READY (Input)  
Variation Range  
Variation Range  
Ready Timing (2)  
T1  
T2  
T3  
TW  
T4  
CLKOUT (Output)  
READY (Input)  
<22>  
<19>  
<21>  
Variation Range  
Note  
Variation Range  
<20>  
Note Variation range  
Data Sheet U13225EJ4V0DS00  
85  
µPD70208H, 70216H  
Read Timing  
T4  
T1  
T2  
T3  
T4  
CLKOUT (Output)  
<27>  
<28>  
<30>  
A16/PS0-  
A19/PS3  
(Output)  
A16-A19  
PS0-PS3  
<29>  
<27>  
<27>  
<31>  
A8-A15 (Output): V40HL  
UBE (Output): V50HL  
<25>  
<31>  
<28>  
<32>  
AD0-AD7 (I/O): V40HL  
AD0-AD15 (I/O): V50HL  
A0-A7(Output)  
A0-A15(Output): V50HL  
:
V40HL  
D0-D7(Intput) : V40HL  
D0-D15(Intput): V50HL  
<33>  
<36>  
<35>  
<26>  
ASTB (Output)  
BUFEN (Output)  
BUFR/W (Output)  
<34>  
<38>  
<38>  
<44>  
Note  
<38>  
<38>  
<39>  
<40>  
<41>  
MRD (Output)  
IORD (Output)  
Note  
<43>  
<42>  
BS0-BS2 (Output)  
Bus Status  
<49>  
<50>  
Note High-level signal is output in case of internal access.  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
86  
µPD70208H, 70216H  
Write Timing  
T4  
T1  
T2  
T3  
T4  
CLKOUT (Output)  
<27>  
<28>  
<30>  
A16/PS0-  
A19/PS3  
(Output)  
A16-A19  
PS0-PS3  
<27>  
<27>  
<29>  
<45>  
<31>  
A8-A15 (Output): V40HL  
UBE (Output): V50HL  
<46>  
AD0-AD7 (I/O): V40HL  
AD0-AD15 (I/O): V50HL  
A0-A7 (Output) : V40HL  
A0-A15 (Output): V50HL  
D0-D7 (Output) : V40HL  
D0-D15 (Output): V50HL  
<28>  
<31>  
<35>  
ASTB (Output)  
<34>  
<38>  
<33>  
<36>  
<38>  
<38>  
BUFEN (Output)  
BUFR/W (Output)  
Note  
<48>  
<38>  
<38>  
<38>  
MWR (Output)  
IOWR (Output)  
Note  
<47>  
BS0-BS2 (Output)  
Bus Status  
<49>  
<50>  
Note High-level signal is output in case of internal access.  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
87  
µPD70208H, 70216H  
Status Timing  
T4  
T1  
T2  
T3  
T4  
CLKOUT (Output)  
<28>  
<30>  
<27>  
<29>  
A16/PS0-  
A19/PS3  
(Output)  
A16-A19  
PS0-PS3  
<27>  
<31>  
A8-A15 (Output): V40HL  
UBE (Output): V50HL  
<25>  
<27>  
<33>  
<28>  
<32>  
<26>  
<31>  
AD0-AD7 (I/O): V40HL  
AD0-AD15 (I/O): V50HL  
A0-A7 (Output) : V40HL  
A0-A15 (Output): V50HL  
D0-D7 (Input) : V40HL  
D0-D15 (Input): V50HL  
<36>  
<42>  
<35>  
ASTB (Output)  
BS0-BS2 (Output)  
Note 1  
<34>  
<50>  
Bus Status  
<39>  
<49>  
<27>  
<41>  
Note 2  
<40>  
<43>  
QS0, QS1 (Output)  
Notes 1. MRD, IORD, MWR, IOWR (all output)  
2. High-level signal is output in case of internal access.  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
88  
µPD70208H, 70216H  
Interrupt Acknowledge Timing (V40HL)  
T1  
T2  
T3  
T4  
T1  
T2  
T3  
TI  
CLKOUT (Output)  
A8-A15 (Output)  
Note 1  
<26>  
<25>  
<27>  
<32>  
<32>  
Note 2  
Note 1  
AD0-AD7 (I/O)  
Vector Number  
ASTB (Output)  
<38>  
INTAK (Output)  
<38>  
<38>  
Note 3  
Note 3  
BUFEN (Output)  
BUFR/W (Output)  
<27>  
BUSLOCK (Output)  
Notes 1. Slave address in case of interrupt from external µPD71059.  
Invalid data in case of interrupt from internal ICU.  
2. Data read as vector address in case of interrupt from external µPD71059.  
High impedance in case of interrupt from internal ICU.  
*
3. Low-level output in case of interrupt from external µPD71059.  
High-level output in case of interrupt from internal ICU.  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
89  
µPD70208H, 70216H  
Interrupt Acknowledge Timing (V50HL)  
T2  
T1  
TI×3  
T4  
T1  
T2  
T3  
TI  
T3  
CLKOUT (Output)  
AD0-AD15 (I/O)  
<27>  
<25>  
<26>  
<32>  
<32>  
Note 2  
Note 1  
Vector Number  
ASTB (Output)  
INTAK (Output)  
BUFEN (Output)  
BUFR/W (Output)  
<38>  
<38>  
<38>  
Note 3  
Note 3  
<27>  
BUSLOCK (Output)  
Notes 1. Slave address in case of interrupt from external µPD71059.  
Invalid data in case of interrupt from internal ICU.  
2. Data read as vector address in case of interrupt from external µPD71059.  
High impedance in case of interrupt from internal ICU.  
*
3. Low-level output in case of interrupt from external µPD71059.  
High-level output in case of interrupt from internal ICU.  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
90  
µPD70208H, 70216H  
HLDRQ/HLDAK Timing (1)  
TI  
TI  
T4  
T1  
CLKOUT (Output)  
<51>  
<51>  
HLDRQ (Input)  
<52>  
<52>  
<32>  
HLDAK (Output)  
<27>  
Note  
<27>  
<32>  
BS0-BS2 (Output)  
Note A16/PS0 to A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR, IOWR (all output): V40HL, V50HL  
A8-A15 (output): V40HL AD0-AD7 (input/output): V40HL AD0-AD15 (input/output) V50HL  
Remark A dashed line indicates high impedance.  
HLDRQ/HLDAK Timing (2)  
TI  
TI  
TI  
TI  
T4  
T1  
T2  
CLKOUT (Output)  
HLDRQ (Input)  
<51>  
Variation Range  
<52>  
<6> or longer  
HLDAK (Output)  
<27>  
Highest-Priority Refresh  
Cycle or DMA Cycle  
Note  
<49>  
BS0-BS2 (Output)  
Highest-Priority Refresh  
Cycle or DMA Cycle  
Note A16/PS0 to A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR, IOWR (all output): V40HL, V50HL  
A8-A15 (output): V40HL AD0-AD7 (input/output): V40HL AD0-AD15 (input/output) V50HL  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
91  
µPD70208H, 70216H  
POLL, NMI Input Timing  
Tn  
CLKOUT (Output)  
<24>  
<23>  
POLL (Input)  
NMI (Input)  
BUSLOCK Output Timing  
CLKOUT (Output)  
<27>  
<27>  
BUSLOCK (Output)  
Access Interval  
<86>  
MRD (Output)  
IORD (Output)  
<86>  
<86>  
MWR (Output)  
IOWR (Output)  
<86>  
Data Sheet U13225EJ4V0DS00  
92  
µPD70208H, 70216H  
Refresh Timing (V40HL)  
T4  
T1  
T2  
T3  
T4  
CLKOUT (Output)  
<28>  
<29>  
<27>  
A16/PS0-  
A19/PS3  
(Output)  
Invalid  
<27>  
Refresh Address  
A8-A15 (Output)  
AD0-AD7 (I/O)  
<28>  
<32>  
<27>  
<33>  
<31>  
Refresh Address  
<36>  
<35>  
ASTB (Output)  
BUFEN (Output)  
MRD (Output)  
<34>  
<41>  
<39>  
<40>  
<43>  
<38>  
<38>  
REFRQ (Output)  
BS0-BS2 (Output)  
<49>  
<50>  
BS2 = 1, BS1 = 0, BS0 = 1  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
93  
µPD70208H, 70216H  
Refresh Timing (V50HL)  
T4  
T1  
T2  
T3  
T4  
CLKOUT (Output)  
<28>  
<29>  
<27>  
A16/PS0-  
A19/PS3  
(Output)  
Invalid  
<27>  
<27>  
<33>  
UBE (Output)  
<28>  
<32>  
<31>  
AD0-AD15 (I/O)  
Refresh Address  
<36>  
<35>  
ASTB (Output)  
BUFEN (Output)  
MRD (Output)  
<34>  
<39>  
<41>  
<40>  
<43>  
<50>  
<38>  
<38>  
REFRQ (Output)  
<49>  
BS0-BS2 (Output)  
BS2 = 1, BS1 = 0, BS0 = 1  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
94  
µPD70208H, 70216H  
TCU Timing (1)  
CLKOUT (Output)  
<72>  
<72>  
<74>  
<77>  
<76>  
<74>  
TCTL2 (Input)  
<80>  
Note  
<78>  
TOUTn (Output)  
(n=1, 2)  
Note Applies to TOUT2 output.  
TCU Timing (2)  
<82>  
<81>  
<83>  
<85>  
TCLK (Input)  
<84>  
<75>  
<73>  
<76>  
<75>  
<73>  
TCTL2 (Input)  
<77>  
<80>  
Note  
<79>  
TOUTn (Output)  
(n=1, 2)  
Note Applies to TOUT2 output.  
Data Sheet U13225EJ4V0DS00  
95  
µPD70208H, 70216H  
SCU Timing  
RxD (Input)  
<68>  
<69>  
TOUT1 (Output)  
16 Cycles or 64 Cycles  
16 Cycles or 64 Cycles  
TxD (Output)  
<71>  
CLKOUT (Output)  
SRDY (Output)  
<70>  
Data Sheet U13225EJ4V0DS00  
96  
µPD70208H, 70216H  
DMAU Timing (1)  
T4  
T1  
T2  
T3  
T4  
CLKOUT (Output)  
<49>  
<50>  
BS0-BS2 (Output)  
ASTB (Output)  
Bus Status  
<36>  
<33>  
<35>  
<34>  
<29>  
<27>  
<27>  
<27>  
<28>  
A16/PS0-  
A19/PS3  
(Output)  
A8-A15 (Output): V40HL  
UBE (Output): V50HL  
<28>  
<32>  
AD0-AD7 (I/O): V40HL  
AD0-AD15 (I/O): V50HL  
<53>  
<53>  
DMAAK (Output)  
<39>  
<58>  
<59>  
<41>  
<40>  
<43>  
<57>  
MRD (Output)  
IORD (Output)  
<37>  
<57>  
<37>  
<37>  
<55>  
<56>  
MWR (Output)  
IOWR (Output)  
Note  
Note Low-level signal is output in extended write mode.  
Remark A dashed line indicates high impedance.  
Data Sheet U13225EJ4V0DS00  
97  
µPD70208H, 70216H  
DMAU Timing (2)  
T1  
T2  
T3  
T4  
CLKOUT (Output)  
<61>  
<63>  
<60>  
TC (Input/Output)  
END (Input/Output)  
<64>  
<62>  
<65>  
CLKOUT (Output)  
<66>  
DMARQn (Input)  
(n=0-3)  
Data Sheet U13225EJ4V0DS00  
98  
µPD70208H, 70216H  
DMAU Timing (3) (Cascade Mode)  
In Normal Operation:  
T1  
T4  
CLKOUT (Output)  
<66>  
<66>  
DMARQ (Input)  
DMAAK (Output)  
<54>  
<54>  
When Refresh Cycle is Inserted:  
CLKOUT (Output)  
DMARQ (Input)  
DMAAK (Output)  
<54>  
<54>  
ICU Timing  
<67>  
INTPn (Input)  
(n=1-7)  
Data Sheet U13225EJ4V0DS00  
99  
µPD70208H, 70216H  
17. PACKAGE DRAWINGS  
80 PIN PLASTIC QFP (14x20)  
A
B
41  
40  
64  
65  
detail of lead end  
S
C D  
R
Q
25  
24  
80  
1
F
G
J
M
H
I
K
P
M
N
S
L
S
NOTE  
1. Controlling dimension  
millimeter.  
ITEM MILLIMETERS  
INCHES  
A
23.6±0.4  
0.929±0.016  
2. Each lead centerline is located within 0.15 mm (0.006 inch) of  
its true position (T.P.) at maximum material condition.  
+0.009  
0.795  
B
20.0±0.2  
–0.008  
+0.009  
0.551  
C
14.0±0.2  
–0.008  
D
F
17.6±0.4  
1.0  
0.693±0.016  
0.039  
G
0.8  
0.031  
+0.08  
0.37  
+0.003  
0.015  
H
–0.07  
–0.004  
I
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P.)  
+0.008  
0.071  
K
L
1.8±0.2  
0.8±0.2  
–0.009  
+0.009  
0.031  
–0.008  
+0.08  
0.17  
+0.003  
0.007  
M
N
P
–0.07  
–0.004  
0.10  
0.004  
+0.005  
0.106  
2.7±0.1  
–0.004  
Q
R
S
0.1±0.1  
5°±5°  
0.004±0.004  
5°±5°  
3.0 MAX.  
0.119 MAX.  
P80GF-80-3B9-4  
Data Sheet U13225EJ4V0DS00  
100  
µPD70208H, 70216H  
80 PIN PLASTIC TQFP (FINE PITCH) ( 12)  
A
B
60  
61  
41  
40  
detail of lead end  
80  
1
21  
20  
G
M
H
I
J
K
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
14.0±0.2  
12.0±0.2  
0.551±0.008  
+0.009  
0.472  
–0.008  
+0.009  
0.472  
C
12.0±0.2  
–0.008  
0.551±0.008  
0.049  
D
F
14.0±0.2  
1.25  
G
1.25  
0.049  
+0.002  
0.009  
H
0.22±0.05  
–0.003  
0.004  
I
0.10  
J
0.5 (T.P.)  
0.020 (T.P.)  
+0.009  
0.039  
K
L
1.0±0.2  
0.5±0.2  
–0.008  
+0.008  
0.020  
–0.009  
+0.002  
0.006  
M
N
P
Q
R
S
0.145±0.05  
0.10  
–0.003  
0.004  
+0.002  
0.040  
1.0±0.05  
–0.003  
0.1±0.05  
0.004±0.002  
+7°  
3°  
+7°  
3°  
–3°  
–3°  
1.2 MAX.  
0.048 MAX.  
S80GK-50-9EU  
Data Sheet U13225EJ4V0DS00  
101  
µPD70208H, 70216H  
68 PIN PLASTIC QFJ (950 x 950 mil)  
A
B
68  
1
C D  
G
H
J
F
E
S
U
T
ITEM MILLIMETERS  
INCHES  
K
Q
S
A
B
25.2±0.2  
0.992±0.008  
M
M
N
+0.004  
0.953  
24.20±0.1  
0.005  
P
I
+0.004  
0.953  
C
24.20±0.1  
0.005  
D
E
25.2±0.2  
0.992±0.008  
NOTES  
1. Controlling dimension  
+0.007  
0.076  
1.94±0.15  
0.006  
millimeter.  
F
0.6  
0.024  
+0.009  
0.173  
2. Each lead centerline is located within 0.12 mm of  
its true position (T.P.) at maximum material condition.  
G
4.4±0.2  
0.008  
+0.009  
H
2.8±0.2  
0.110  
0.008  
I
0.9 MIN.  
0.035 MIN.  
+0.004  
0.134  
J
3.4±0.1  
0.005  
K
1.27 (T.P.)  
0.050 (T.P.)  
+0.003  
M
0.42±0.08  
0.017  
0.004  
N
P
0.12  
0.005  
+0.009  
23.12±0.2  
0.910  
0.008  
0.006  
Q
T
0.15  
R 0.8  
R 0.031  
+0.08  
0.22  
+0.003  
0.009  
U
0.07  
0.004  
P68L-50A1-3  
Data Sheet U13225EJ4V0DS00  
102  
µPD70208H, 70216H  
18. RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered and mounted under the conditions recommended in the table below.  
For the details of recommended soldering conditions for the surface mounting type, refer to the information document  
Semiconductor Device Mounting Technology Manual (C10535E).  
For soldering methods and conditions other than those recommended below, contact our salesman.  
Table 18-1. Soldering Conditions  
(1) µPD70208HGF-×-3B9 : 80-pin plastic QFP (14 × 20 mm)  
µPD70216HGF-×-3B9 : 80-pin plastic QFP (14 × 20 mm)  
(a) K, E, X masks  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Conditions Symbol  
Package peak temperature : 230 °C, Time: 30 sec. max. (210 °C min.),  
IR30-107-1  
Note  
Number of times: 1, Number of days  
: 7 days (after this, prebaking is necessary  
at 125 °C for 10 hours)  
VPS  
Package peak temperature: 215 °C, Time: 40 sec. max. (200 °C min.),  
VP15-107-1  
WS60-107-1  
Note  
Number of times: 1, Number of days  
: 7 days (after this, prebaking is necessary  
at 125 °C for 10 hours)  
Wave soldering  
Solder bath temperature: 260 °C max. Time: 10 sec. max., Number of times: 1,  
Preheating temperature: 120 °C max. (Package surface temperature), Number of  
Note  
days  
: 7 days (after this, prebaking is necessary at 125 °C for 10 hours).  
Partial pin heating  
Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)  
(b) P, M masks  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Conditions Symbol  
Package peak temperature: 235 °C, Time: 30 sec. max. (210 °C min.),  
IR35-207-2  
Note  
Number of times: 2 max., Number of days  
: 7 days (after this, prebaking is  
necessary at 125 °C for 20 hours).  
VPS  
Package peak temperature: 215 °C, Time: 40 sec. (200 °C min.)  
VP15-207-2  
Note  
Number of times: 2 max., Number of days  
: 7 days (after this prebaking is  
necessary at 125 °C for 20 hours).  
Wave soldering  
Solder bath temperature: 260 °C max., Time: 10 sec. max.,  
WS60-207-1  
Number of times: 1, Preheating temperature: 120 °C max. (Package surface  
Note  
temperature). Number of days  
: 7 days (after this, prebaking is necessary at  
125 °C for 20 hours).  
Partial pin heating  
Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)  
Note This means the number of days after unpacking the dry pack. Storage conditions are 25 °C and 65% RH  
max.  
Data Sheet U13225EJ4V0DS00  
103  
µPD70208H, 70216H  
(c) L, F masks  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Conditions Symbol  
Package peak temperature: 235 °C, Time: 30 sec. max. (210 ˚C min.),  
IR35-00-3  
VP15-00-3  
WS60-00-1  
Number of times: 3 max.  
VPS  
Package peak temperature: 215 °C, Time: 40 sec. (200 °C min.)  
Number of times: 3 max.  
Wave soldering  
Solder bath temperature: 260 °C max., Time: 10 sec. max.,  
Number of times: 1, Preheating temperature: 120 °C max. (Package surface  
temperature)  
Partial pin heating  
Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)  
Caution Do not use one soldering method in combination with another. (however, partial pin heating can  
be performed with other soldering methods).  
Data Sheet U13225EJ4V0DS00  
104  
µPD70208H, 70216H  
(2) µPD70208HGK-×-9EU : 80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
µPD70216HGK-×-9EU : 80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
(a) K, E, X masks  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Conditions Symbol  
Package peak temperature : 230 °C, Time: 30 sec. max. (210 °C min.),  
IR30-101-1  
VP15-101-1  
Note  
Number of timers: 1, Number of days  
: 1 day (after this, prebaking is necessary  
at 125 °C for 10 hours)  
VPS  
Package peak temperature: 215 °C, Time: 40 sec. max. (200 °C min.),  
Note  
Number of times: 1, Number of days  
: 1 day (after this, prebaking is necessary  
at 125 °C for 10 hours)  
Partial pin heating  
Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)  
(b) P, M, L, F masks  
Recommended  
Soldering Method  
Soldering Conditions  
Conditions Symbol  
Infrared reflow  
Package peak temperature: 235 °C, Time: 30 sec. max. (210 °C min.),  
IR35-107-2  
Note  
Number of times: 2 max., Number of days  
: 7 days (after this, prebaking is  
necessary at 125 °C for 10 hours).  
VPS  
Package peak temperature: 215 °C, Time: 40 sec. (200 °C min.), Number of times:  
VP15-107-2  
Note  
2 max., Number of days  
for 10 hours).  
: 7 days (after this prebaking is necessary at 125 °C  
Partial heating  
Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)  
Note This means the number of days after unpacking the dry pack. Storage conditions are 25 °C and 65% RH  
max.  
Caution Do not use one soldering method in combination with another. (however, partial pin heating can  
be performed with other soldering methods).  
Data Sheet U13225EJ4V0DS00  
105  
µPD70208H, 70216H  
(3) µPD70208HLP-× : 68-pin plastic QFJ (950 × 950 mil)  
µPD70216HLP-× : 68-pin plastic QFJ (950 × 950 mil)  
(a) K, E, X masks  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Conditions Symbol  
Package peak temperature : 230 °C, Time: 30 sec. max. (210 °C min.),  
IR30-367-1  
VP15-367-1  
Note  
Number of timers: 1, Number of days  
: 7 days (after this, prebaking is necessary  
at 125 °C for 36 hours)  
VPS  
Package peak temperature: 215 °C, Time: 40 sec. max. (200 °C min.),  
Note  
Number of times: 1, Number of days  
: 7 days (after this, prebaking is necessary  
at 125 °C for 36 hours)  
Partial pin heating  
Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)  
(b) P, M, L, F masks  
Recommended  
Soldering Method  
Soldering Conditions  
Conditions Symbol  
Infrared reflow  
Package peak temperature: 235 °C, Time: 30 sec. max. (210 ˚C min.),  
IR35-367-3  
Note  
Number of times: 3 max., Number of days  
: 7 days (after this, prebaking is  
necessary at 125 °C for 36 hours).  
VPS  
Package peak temperature: 215 °C, Time: 40 sec. (200 °C min.),  
VP15-367-3  
Note  
Number of times: 3 max., Number of days  
: 7 days (after this prebaking is  
necessary at 125 °C for 36 hours).  
Partial pin heating  
Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)  
Note This means the number of days after unpacking the dry pack. Storage conditions are 25 °C and 65% RH  
max.  
Caution Do not use one soldering method in combination with another. (however, partial pin heating can  
be performed with other soldering methods).  
Data Sheet U13225EJ4V0DS00  
106  
µPD70208H, 70216H  
[MEMO]  
Data Sheet U13225EJ4V0DS00  
107  
µPD70208H, 70216H  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
Data Sheet U13225EJ4V0DS00  
108  
µPD70208H, 70216H  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 2886-9022/9044  
Fax: 408-588-6130  
800-729-9288  
Fax: 040-2444580  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
Tel: 02-528-0303  
Fax: 02-528-4411  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
Fax: 01-30-67 58 99  
Fax: 0211-65 03 490  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 65-253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
Fax: 65-250-3583  
Tel: 91-504-2787  
Fax: 01908-670-290  
Fax: 91-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
NEC Electronics Italiana s.r.l.  
Milano, Italy  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Tel: 02-66 75 41  
Fax: 02-2719-5951  
Taeby, Sweden  
Fax: 02-66 75 42 99  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Fax: 08-63 80 388  
Electron Devices Division  
Rodovia Presidente Dutra, Km 214  
07210-902-Guarulhos-SP Brasil  
Tel: 55-11-6465-6810  
Fax: 55-11-6465-6829  
J99.1  
Data Sheet U13225EJ4V0DS00  
109  
µPD70208H, 70216H  
[MEMO]  
V20, V20HL, V30, V30HL, V40, V40HL, V50, V50HL and V series are trademarks of NEC Corporation.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights  
or other intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated “quality assurance program“ for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98.8  

相关型号:

UPD70216HLP-16

V40HLTM, V50HLTM 16/8, 16-BIT MICROPROCESSOR
NEC

UPD70216HLP-20

V40HLTM, V50HLTM 16/8, 16-BIT MICROPROCESSOR
NEC

UPD70216HR-16

IC,MICROPROCESSOR,16-BIT,CMOS,PGA,68PIN,CERAMIC
RENESAS

UPD70216L(A)-10

Microprocessor, 16-Bit, 10MHz, MOS, PQCC68, 0.950 X 0.950 INCH, PLASTIC, QFJ-68
NEC

UPD70216L(A)-8

Microprocessor, 16-Bit, 8MHz, MOS, PQCC68, 0.950 X 0.950 INCH, PLASTIC, QFJ-68
NEC

UPD70216L-8

Microprocessor, 16-Bit, 8MHz, MOS, PQCC68, 0.950 INCH, PLASTIC, QFJ-68
NEC

UPD70216L10

16-BIT, 10MHz, MICROPROCESSOR, PQCC68, PLASTIC, LCC-68
RENESAS

UPD70216L8

IC,MICROPROCESSOR,16-BIT,CMOS,LDCC,68PIN,PLASTIC
RENESAS

UPD70216LA-10

16-Bit Microprocessor
ETC

UPD70216LA-8

16-Bit Microprocessor
ETC

UPD70216R

IC,MICROPROCESSOR,16-BIT,CMOS,PGA,68PIN,CERAMIC
RENESAS

UPD70216R-10

Microprocessor, 16-Bit, 10MHz, MOS, CPGA68, CERAMIC, PGA-68
NEC