UPD703003GC [NEC]

V853TM 32/16-BIT SINGLE-CHIP MICROCONTROLLER; V853TM一十六分之三十二位单芯片微控制器
UPD703003GC
型号: UPD703003GC
厂家: NEC    NEC
描述:

V853TM 32/16-BIT SINGLE-CHIP MICROCONTROLLER
V853TM一十六分之三十二位单芯片微控制器

微控制器
文件: 总82页 (文件大小:444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD703003  
V853TM  
32/16-BIT SINGLE-CHIP MICROCONTROLLER  
The µPD703003 is a member of the V850 FamilyTM of 32-bit single-chip microcontrollers designed for real-time  
control operations. This microcontroller provides on-chip features, including a 32-bit CPU core, ROM, RAM, interrupt  
controller, real-time pulse unit, a serial interface, an A/D converter, a D/A converter, and PWM signal units.  
See the following manuals for a detailed description of this product’s functions. Be sure to use these  
manuals as a reference for design.  
V853 USER’S MANUAL, HARDWARE:  
U10913E  
U10243E  
V850 FAMILY USER’S MANUAL, ARCHITECTURE:  
FEATURES  
Number of instructions: 74  
Minimum instruction execution time  
30 ns (during 33-MHz operation)  
General registers  
32 bits × 32 registers  
Instruction set optimized for control applications  
On-chip memory  
ROM: 128 Kbytes  
RAM: 4 Kbytes  
Advanced on-chip interrupt controller  
Real-time pulse unit suitable for control operations  
Powerful serial interface (on-chip dedicated baud rate generator)  
On-chip clock generator  
10-bit resolution A/D converter: 8 channels  
8-bit resolution D/A converter: 2 channels  
8/9/10/12-bit resolution PWM: 2 channels  
Power saving functions  
APPLICATIONS  
AV: Video cameras, VCRs, etc.  
Office equipment: PPCs, LBPs, printers, etc.  
Industrial equipment: motor controllers, NC machine tools, etc.  
Communications equipment: Mobile telephones, etc.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for availability  
and additional information.  
Document No. U12261EJ2V1DS00 (2nd edition)  
Date Published April 1999 N CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
1997  
©
µPD703003  
ORDERING INFORMATION  
Part Number  
Package  
Maximum operating frequency (MHz)  
µPD703003GC-25-xxx-7EA 100-pin plastic QFP (fine pitch) (14 × 14 mm)  
µPD703003GC-33-xxx-7EA 100-pin plastic QFP (fine pitch) (14 × 14 mm)  
25  
33  
Remark “xxx” indicates ROM code suffix.  
PIN CONFIGURATION  
100-Pin Plastic QFP (fine pitch) (14 × 14 mm)  
µPD703003GC-25-xxx-7EA  
µPD703003GC-33-xxx-7EA  
P31/TO131  
P32/TCLR13  
P33/TI13  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P75/ANI5  
2
P74/ANI4  
3
P73/ANI3  
P34/INTP130  
P35/INTP131/SO3  
P36/INTP132/SI3  
P37/INTP133/SCK3  
P63/A19  
4
P72/ANI2  
5
P71/ANI1  
6
P70/ANI0  
7
ANO0  
8
ANO1  
P62/A18  
9
AVREF2  
P61/A17  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AVREF3  
P60/A16  
P07/INTP113/ADTRG  
P06/INTP112  
P05/INTP111  
P04/INTP110  
P03/TI11  
VSS  
VDD  
P57/AD15  
P56/AD14  
P55/AD13  
P54/AD12  
P53/AD11  
P52/AD10  
P51/AD9  
P02/TCLR11  
P01/TO111  
P00/TO110  
P117/INTP143  
P116/INTP142  
P115/INTP141  
P114/INTP140  
P113/TI14  
P50/AD8  
P47/AD7  
P46/AD6  
P45/AD5  
P112/TCLR14  
P111/TO141  
P44/AD4  
Caution  
Connect the IC pin directly to VSS.  
Data Sheet U12261EJ2V1DS00  
2
µPD703003  
PIN NAMES  
A16 to A19  
AD0 to AD15  
ADTRG  
ANI0 to ANI7  
ANO0, ANO1  
ASTB  
: Address Bus  
P30 to P37  
P40 to P47  
P50 to P57  
P60 to P63  
P70 to P77  
P90 to P96  
P110 to P117  
PWM0, PWM1  
RESET  
: Port3  
: Port4  
: Port5  
: Port6  
: Port7  
: Port9  
: Port11  
: Address/Data Bus  
: AD Trigger Input  
: Analog Input  
: Analog Output  
: Address Strobe  
: Analog VDD  
AVDD  
AVREF1 to AVREF3  
AVSS  
: Analog Reference Voltage  
: Analog VSS  
: Pulse Width Modulation  
: Reset  
CVDD  
: Power Supply for Clock Generator R/W  
: Read/Write Status  
: Receive Data  
: Serial Clock  
CVSS  
: Ground for Clock Generator  
: Clock Select  
RXD0, RXD1  
CKSEL  
SCK0 to SCK3  
SI0 to SI3  
CLKOUT  
DSTB  
: Clock Output  
: Serial Input  
: Data Strobe  
SO0 to SO3  
: Serial Output  
: Timer Output  
HLDAK  
: Hold Acknowledge  
: Hold Request  
TO110, TO111,  
TO120, TO121,  
TO130, TO131,  
HLDRQ  
IC  
: Internally Connected  
INTP110 to INTP113, : Interrupt Request from Peripherals TO140, TO141  
INTP120 to INTP123,  
INTP130 to INTP133,  
INTP140 to INTP143  
LBEN  
TCLR11 to TCLR14 : Timer Clear  
TI11 to TI14  
TXD0, TXD1  
UBEN  
: Timer Input  
: Transmit Data  
: Upper Byte Enable  
: Wait  
: Lower Byte Enable  
MODE  
: Mode  
WAIT  
NMI  
: Non-maskable Interrupt Request  
X1, X2  
VDD  
: Crystal  
P00 to P07  
: Port0  
: Port1  
: Port2  
: Power Supply  
: Ground  
P10 to P17  
VSS  
P20 to P27  
Data Sheet U12261EJ2V1DS00  
3
µPD703003  
INTERNAL BLOCK DIAGRAM  
Mask ROM  
CPU  
ASTB  
DSTB  
R/W  
UBEN  
LBEN  
WAIT  
A16 to A19  
AD0 to AD15  
NMI  
Instruction  
queue  
PC  
INTC  
RPU  
INTP110 to INTP113  
INTP120 to INTP123  
INTP130 to INTP133  
INTP140 to INTP143  
128  
Kbytes  
32-bit  
barrel shifter  
Multiplier  
16×1632  
BCU  
System  
register  
TO110, TO111  
TO120, TO121  
TO130, TO131  
TO140, TO141  
HLDRQ  
HLDAK  
RAM  
General  
register  
32 bits × 32  
ALU  
TCLR11 to TCLR14  
TI11 to TI14  
4
Kbytes  
SIO  
SO0/TXD0  
SI0/RXD0  
SCK0  
UART0/CSI0  
BRG0  
UART1/CSI1  
BRG1  
SO1/TXD1  
SI1/RXD1  
SCK1  
CKSEL  
CLKOUT  
X1  
Port  
A/D  
D/A  
CG  
converter converter  
X2  
SO2  
SI2  
SCK2  
MODE  
RESET  
CSI2  
BRG2  
V
V
DD  
SS  
SO3  
SI3  
SCK3  
CVDD  
CVSS  
CSI3  
PWM0, PWM1  
PWM  
Data Sheet U12261EJ2V1DS00  
4
µPD703003  
CONTENTS  
1. DIFFERENCES AMONG PRODUCTS ...........................................................................................  
2. LIST OF PIN FUNCTIONS ...............................................................................................................  
6
7
7
9
2.1  
2.2  
2.3  
Port Pins ................................................................................................................................................  
Non-port Pins ........................................................................................................................................  
I/O Circuits of Pins and Processing of Unused Pins ......................................................................... 11  
3. FUNCTION BLOCKS ....................................................................................................................... 14  
3.1  
Internal Units ......................................................................................................................................... 14  
4. CPU FUNCTIONS ............................................................................................................................ 16  
5. BUS CONTROL FUNCTIONS ......................................................................................................... 17  
6. INTERRUPT/EXCEPTION HANDLING FUNCTIONS ..................................................................... 18  
7. CLOCK GENERATION FUNCTIONS .............................................................................................. 21  
8. TIMER/COUNTER FUNCTIONS (REAL-TIME PULSE UNIT) ........................................................ 22  
9. SERIAL INTERFACE FUNCTIONS (SIO) ....................................................................................... 24  
9.1  
9.2  
9.3  
Asynchronous Serial Interface 0, 1 (UART0, UART1) ........................................................................ 24  
Clock-synchronized Serial Interface 0 to 3 (CSI0 to CSI3) ................................................................ 26  
Baud Rate Generator 0 to 2 (BRG0 to BRG2) ..................................................................................... 28  
10. PWM UNIT ....................................................................................................................................... 29  
11. A/D CONVERTER ............................................................................................................................ 30  
12. D/A CONVERTER ............................................................................................................................ 31  
13. PORT FUNCTIONS.......................................................................................................................... 32  
14. RESET FUNCTIONS........................................................................................................................ 45  
15. INSTRUCTION SET ......................................................................................................................... 46  
16. ELECTRICAL SPECIFICATIONS.................................................................................................... 53  
17. PACKAGE DRAWINGS................................................................................................................... 77  
18. RECOMMENDED SOLDERING CONDITIONS............................................................................... 78  
Data Sheet U12261EJ2V1DS00  
5
µPD703003  
1. DIFFERENCES AMONG PRODUCTS  
Item  
µPD703003 µPD703003A µPD703004A µPD703025A µPD70F3003 µPD70F3003A µPD70F3025A  
Internal ROM  
Internal RAM  
Mask ROM  
128 Kbytes  
Flash memory  
96 Kbytes 256 Kbytes 128 Kbytes  
256 Kbytes  
8 Kbytes  
4 Kbytes  
8 Kbytes  
4 Kbytes  
Operation Normal  
Single-chip Implemented  
mode  
operation mode  
mode  
ROM-less Implemented Not implemented  
mode  
Implemented Not implemented  
Implemented  
Flash memory  
Not implemented  
programming mode  
VPP pin  
Not implemented  
Implemented  
Value of CKC register when reset 00H  
MODE = 0 : 03H  
MODE = 1 : 00H  
00H  
MODE = 0 : 03H  
MODE = 1 : 00H  
Electrical specifications  
Others  
Power consumption levels vary (see specific product’s data sheet).  
Noise tolerance and noise emission vary, depending on the circuit scale and mask layout.  
Data Sheet U12261EJ2V1DS00  
6
µPD703003  
2. LIST OF PIN FUNCTIONS  
2.1 Port Pins  
(1/2)  
Alternate Function Pin  
TO110  
Pin Name  
P00  
I/O  
I/O  
Function  
Port 0  
8-bit I/O port  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P40 to P47  
TO111  
Input/output mode can be specified bitwise  
TCLR11  
TI11  
INTP110  
INTP111  
INTP112  
INTP113/ADTRG  
TO120  
I/O  
I/O  
I/O  
Port 1  
8-bit I/O port  
TO121  
Input/output mode can be specified bitwise  
TCLR12  
TI12  
INTP120  
INTP121/SO2  
INTP122/SI2  
INTP123/SCK2  
PWM0  
Port 2  
8-bit I/O port  
PWM1  
Input/output mode can be specified bitwise  
TXD0/SO0  
RXD0/SI0  
SCK0  
TXD1/SO1  
RXD1/SI1  
SCK1  
Port 3  
TO130  
8-bit I/O port  
TO131  
Input/output mode can be specified bitwise  
TCLR13  
TI13  
INTP130  
INTP131/SO3  
INTP132/SI3  
INTP133/SCK3  
AD0 to AD7  
I/O  
I/O  
Port 4  
8-bit I/O port  
Input/output mode can be specified bitwise  
P50 to P57  
Port 5  
AD8 to AD15  
8-bit I/O port  
Input/output mode can be specified bitwise  
Data Sheet U12261EJ2V1DS00  
7
µPD703003  
(2/2)  
Pin Name  
I/O  
I/O  
Function  
Alternate Function Pin  
P60 to P63  
Port 6  
A16 to A19  
4-bit I/O port  
Input/output mode can be specified bitwise  
P70 to P77  
Input  
I/O  
Port 7  
ANI0 to ANI7  
8-bit input port  
P90  
Port 9  
LBEN  
7-bit I/O port  
P91  
UBEN  
Input/output mode can be specified bitwise  
P92  
R/W  
P93  
DSTB  
P94  
ASTB  
P95  
HLDAK  
HLDRQ  
TO140  
TO141  
TCLR14  
TI14  
P96  
P110  
P111  
P112  
P113  
P114  
P115  
P116  
P117  
I/O  
Port 11  
8-bit I/O port  
Input/output mode can be specified bitwise  
INTP140  
INTP141  
INTP142  
INTP143  
Data Sheet U12261EJ2V1DS00  
8
µPD703003  
2.2 Non-port Pins  
(1/2)  
Alternate Function Pin  
P00  
Pin Name  
TO110  
I/O  
Function  
Output  
Pulse signal output from timers 11 to 14  
TO111  
TO120  
TO121  
TO130  
TO131  
TO140  
TO141  
TCLR11  
TCLR12  
TCLR13  
TCLR14  
TI11  
P01  
P10  
P11  
P30  
P31  
P110  
P111  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
External clear signal input for timers 11 to 14  
External count clock input for timers 11 to 14  
P02  
P12  
P32  
P112  
P03  
TI12  
P13  
TI13  
P33  
TI14  
P113  
INTP110  
INTP111  
INTP112  
INTP113  
INTP120  
INTP121  
INTP122  
INTP123  
INTP130  
INTP131  
INTP132  
INTP133  
INTP140  
INTP141  
INTP142  
INTP143  
SO0  
External maskable interrupt request input,  
P04  
shared as external capture trigger input for timer 11  
P05  
P06  
P07/ADTRG  
P14  
External maskable interrupt request input,  
shared as external capture trigger input for timer 12  
P15/SO2  
P16/SI2  
P17/SCK2  
P34  
External maskable interrupt request input,  
shared as external capture trigger input for timer 13  
P35/SO3  
P36/SI3  
P37/SCK3  
P114  
External maskable interrupt request input,  
shared as external capture trigger input for timer 14  
P115  
P116  
P117  
Serial transmit data output (3-wire) for CSI0 to CSI3  
Serial receive data input (3-wire) for CSI0 to CSI3  
P22/TXD0  
P25/TXD1  
P15/INTP121  
P35/INTP131  
P23/RXD0  
P26/RXD1  
P16/INTP122  
P36/INTP132  
SO1  
SO2  
SO3  
SI0  
SI1  
SI2  
SI3  
Data Sheet U12261EJ2V1DS00  
9
µPD703003  
(2/2)  
Pin Name  
SCK0  
I/O  
I/O  
Function  
Alternate Function Pin  
Serial clock I/O (3-wire) for CSI0 to CSI3  
P24  
SCK1  
P27  
SCK2  
P17/INTP123  
SCK3  
P37/INTP133  
TXD0  
Output  
Input  
Output  
I/O  
Serial transmit data output for UART0 and UART1  
Serial receive data input for UART0 and UART1  
PWM pulse signal output  
P22/SO0  
TXD1  
P25/SO1  
RXD0  
P23/SI0  
RXD1  
P26/SI1  
PWM0  
PWM1  
AD0 to AD7  
AD8 to AD15  
A16 to A19  
LBEN  
P20  
P21  
16-bit multiplexed address/data bus for external memory expansion  
P40 to P47  
P50 to P57  
Output  
Output  
High-order address bus used for external memory expansion  
External data bus’s low-order byte enable signal output  
External data bus’s high-order byte enable signal output  
External read/write status output  
P60 to P63  
P90  
UBEN  
R/W  
P91  
Output  
P92  
DSTB  
External data strobe signal output  
External address strobe signal output  
Bus hold acknowledge output  
P93  
ASTB  
P94  
HLDAK  
HLDRQ  
ANI0 to ANI7  
ANO0, ANO1  
NMI  
Output  
Input  
Input  
Output  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
P95  
Bus hold request input  
P96  
Analog input to A/D converter  
P70 to P77  
Analog output to D/A converter  
Nonmaskable interrupt request input  
System clock output  
CLKOUT  
CKSEL  
WAIT  
Input for specifying clock generator’s operation mode  
Control signal input for inserting wait in bus cycle  
Operation mode select  
CVDD  
MODE  
RESET  
X1  
System reset input  
Oscillator connection for system clock. Input is via X1 when using an  
external clock.  
X2  
ADTRG  
AVREF1  
AVREF2  
AVREF3  
AVDD  
Input  
Input  
Input  
A/D converter external trigger input  
P07/INTP113  
Reference voltage input for A/D converter  
Reference voltage input for D/A converter  
Positive power supply for A/D converter  
Ground potential for A/D converter  
Positive power supply for on-chip clock generator  
Ground potential for on-chip clock generator  
Positive power supply  
AVSS  
CVDD  
CKSEL  
CVSS  
VDD  
VSS  
Ground potential  
IC  
Internally connected pin (connect directly to VSS)  
Data Sheet U12261EJ2V1DS00  
10  
µPD703003  
2.3 I/O Circuits of Pins and Processing of Unused Pins  
Table 2-1 lists I/O circuit type of respective pins and processing method (recommended connection method) when  
not used. Figure 2-1 illustrates the various circuit types using partially abridged diagrams.  
When connecting to VDD or VSS via a resistor, a resistance value in the range of 1 to 10 kis recommended.  
Table 2-1. I/O Circuits of Pins and Processing of Unused Pins (1/2)  
Pin  
I/O Circuit Type  
Recommended Connection Method  
P00/TO110, P01/TO111  
5
8
Input: Connect to VDD or VSS separately via a resistor  
Output: Leave open  
P02/TCLR11, P03/TI11,  
P04/INTP110 to P07/INTP113/ADTRG  
P10/TO120, P11/TO121  
5
8
P12/TCLR12, P13/TI12  
P14/INTP120  
P15/INTP121/SO2  
P16/INTP122/SI2  
P17/INTP123/SCK2  
P20/PWM0, P21/PWM1  
P22/TXD0/SO0  
5
P23/RXD0/SI0, P24/SCK0  
P25/TXD1/SO1  
8
5
8
5
8
P26/RXD1/SI1, P27/SCK1  
P30/TO130, P31/TO131  
P32/TCLR13, P33/TI13  
P34/INTP130  
P35/INTP131/SO3  
P36/INTP132/SI3  
P37/INTP133/SCK3  
10-A  
5
P40/AD0 to P47/AD7  
P50/AD8 to P57/AD15  
P60/A16 to P63/A19  
P70/ANI0 to P77/ANI7  
P90/LBEN  
9
5
Connect directly to VSS  
Input: Connect to VDD or VSS separately via a resistor  
Output: Leave open  
P91/UBEN  
P92/R/W  
P93/DSTB  
P94/ASTB  
P95/HLDAK  
P96/HLDRQ  
P110/TO140, P111/TO141  
P112/TCLR14, P113/TI14  
8
P114/INTP140 to P117/INTP143  
ANO0, ANO1  
NMI  
12  
2
Leave open  
Connect directly to VSS  
Data Sheet U12261EJ2V1DS00  
11  
µPD703003  
Table 2-1. I/O Circuits of Pins and Processing of Unused Pins (2/2)  
Pin  
I/O Circuit Type  
Recommended Connection Method  
CLKOUT  
3
1
2
Leave open  
WAIT  
Connect directly to VDD  
MODE  
RESET  
CVDD/CKSEL  
AVREF1 to AVREF3, AVSS  
Connect directly to VSS  
Connect directly to VDD  
Connect directly to VSS  
AVDD  
IC  
Data Sheet U12261EJ2V1DS00  
12  
µPD703003  
Figure 2-1. I/O Circuits of Pins  
Type 1  
Type 8  
Data  
VDD  
P-ch  
VDD  
IN/OUT  
P-ch  
Output  
disable  
IN  
N-ch  
N-ch  
Type 2  
Type 9  
P-ch  
Comparator  
+
IN  
IN  
N-ch  
VREF (threshold voltage)  
Input enable  
Schmitt trigger input with hysteresis characteristics  
Type 3  
Type 10-A  
VDD  
VDD  
Pull-up  
P-ch  
enable  
VDD  
P-ch  
OUT  
Data  
P-ch  
IN/OUT  
N-ch  
Open-drain  
N-ch  
output disable  
Type 5  
Type 12  
VDD  
P-ch  
Data  
IN/OUT  
P-ch  
N-ch  
Analog output voltage  
Output  
disable  
OUT  
N-ch  
Input  
enable  
Data Sheet U12261EJ2V1DS00  
13  
µPD703003  
3. FUNCTION BLOCKS  
3.1 Internal Units  
3.1.1 CPU  
The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic  
operations, data transfers, and almost all other instruction processing.  
Other dedicated on-chip hardware, such as the multiplier (16 bits × 16 bits) and the barrel shifter (32 bits) help  
accelerate processing of complex instructions.  
3.1.2 Bus control unit (BCU)  
The BCU starts a required bus cycle based on the physical address obtained by the CPU. When an instruction  
is fetched from external memory space and the CPU does not send a bus cycle start request, the BCU generates a  
prefetch address and prefetches the instruction code. The prefetched instruction code is stored in a prefetch queue.  
3.1.3 ROM  
ROM is mapped to the address space starting at 00000000H. The MODE pin can be used to select an access  
enable/disable setting. ROM can be accessed by the CPU in one clock cycle when an instruction is fetched.  
3.1.4 RAM  
RAM is mapped to the address space starting at FFFFE000H. RAM can be accessed by the CPU in one clock  
cycle when data accessed.  
3.1.5 Ports  
In addition to the 75 pins (port 0 to port 11) comprising I/O ports (of which eight pins comprise an input-only port),  
various port pin and control pin functions can be selected for these pins.  
3.1.6 Interrupt controller (INTC)  
This controller handles hardware interrupt requests (NMI, INTP110 to INTP113, INTP120 to INTP123, INTP130  
to INTP133, and INTP140 to INTP143) from on-chip peripheral hardware and external hardware. Eight interrupt  
priority levels can be specified for these interrupt requests, and multiplexed servicing control can be performed for  
interrupt sources.  
3.1.7 Clock generator (CG)  
An on-chip PLL enables the CPU operating clock to be supplied to resonators connected to pins X1 and X2 at 5×  
frequency, 1× frequency, and 1/2× frequency. It can also be connected to an external clock instead of to the resonator.  
3.1.8 Real-time pulse unit (RPU)  
The RPU includes a four-channel 16-bit timer/event counter and a one-channel 16-bit interval timer, which enables  
measurement of pulse intervals and frequency as well as programmable pulse output.  
Data Sheet U12261EJ2V1DS00  
14  
µPD703003  
3.1.9 Serial interface (SIO)  
Four channels are comprised of two kinds of serial interfaces: an asynchronous serial interface (UART) and a clock-  
synchronized serial interface (CSI). Two of these four channels are switchable between the UART and CSI and the  
other two channels are fixed as CSI.  
For UART, data is transferred via the TXD and RXD pins. The baud rate is determined by the on-chip baud rate  
generator. For CSI, data is transferred via the SO, SI, and SCK pins. The baud rate can be determined by the on-  
chip baud rate generator or it can be supplied from an external source.  
One of the two CSI-fixed channels is used as the serial clock output, and serial output is sent via an N-ch open  
drain output.  
3.1.10 Pulse width modulation (PWM)  
There are two channels of selectable 8/9/10/12-bit resolution PWM signal outputs. When a low pass filter is  
externally connected, PWM output can be used as D/A converter output. This is suitable for actuator control  
applications, such as in motors.  
3.1.11 A/D converter (ADC)  
This is a high-speed, high-resolution 10-bit A/D converter that includes eight analog input pins. It converts using  
the sequential conversion method.  
3.1.12 D/A converter (DAC)  
This is an 8-bit resolution D/A converter that includes two channels. It converts using the R-2R conversion method.  
Data Sheet U12261EJ2V1DS00  
15  
µPD703003  
4. CPU FUNCTIONS  
The CPU employs a RISC-based architecture and uses five-stage pipeline control to enable single-clock execution  
of almost all instructions.  
The features of the CPU functions are shown below.  
Minimum instruction execution time  
30 ns (during internal 33-MHz operation)  
Address space: 16-Mbyte linear  
General registers: 32 bits × 32 registers  
Internal 32-bit architecture  
5-stage pipeline control  
Multiply/divide instructions  
Saturated operation instructions  
32-bit shift instruction: 1 clock  
Long/short format  
Four types of bit manipulation instructions  
Set  
Clear  
Not  
Test  
Data Sheet U12261EJ2V1DS00  
16  
µPD703003  
5. BUS CONTROL FUNCTIONS  
The features of the bus control functions are shown below.  
Shared as port pins, connectable to external device  
Wait functions  
Programmable wait function for up to three states per two blocks  
External wait function using WAIT pin  
Idle state insertion function  
Bus mastering arbitration function  
Bus hold function  
Data Sheet U12261EJ2V1DS00  
17  
µPD703003  
6. INTERRUPT/EXCEPTION HANDLING FUNCTIONS  
The features of the interrupt/exception handling functions are shown below.  
Interrupts  
Nonmaskable interrupt: 1 source  
Maskable interrupt: 32 sources  
8-level programmable priority control  
Multiple interrupt control based on priority levels  
Mask specification for each maskable interrupt request  
Noise elimination, edge detection, and valid edge specification for external interrupt requests  
Exceptions  
Software exceptions: 32 sources  
Exception trap: 1 source (invalid instruction code exception)  
The configuration of the interrupt/exception handling functions is shown below.  
Figure 6-1. Block Diagram of Maskable Interrupt  
Internal bus  
7
0
ISPR  
XXMKn (interrupt mask flag)  
INTOV11  
OVIF11  
INTOV12  
INTOV13  
INTOV14  
OVIF12  
OVIF13  
OVIF14  
P11IF0  
INTP110/INTCC110  
INTP111/INTCC111  
Handler  
address  
generator  
RPU  
P11IF1  
P11IF2  
P11IF3  
P12IF0  
P12IF1  
P12IF2  
P12IF3  
P13IF0  
P13IF1  
P13IF2  
P13IF3  
P14IF0  
P14IF1  
P14IF2  
P14IF3  
INTP112/INTCC112  
INTP113/INTCC113  
INTP120/INTCC120  
INTP121/INTCC121  
INTP122/INTCC122  
INTP123/INTCC123  
INTP130/INTCC130  
INTP131/INTCC131  
INTP132/INTCC132  
INTP133/INTCC133  
INTP140/INTCC140  
INTP141/INTCC141  
INTP142/INTCC142  
INTP143/INTCC143  
INTCM4  
INTP110  
INTP111  
INTP112  
INTP113  
INTP120  
INTP121  
INTP122  
INTP123  
INTP130  
INTP131  
INTP132  
INTP133  
INTP140  
INTP141  
INTP142  
INTP143  
INTM1  
INTM2  
INTM3  
INTM4  
Interrupt  
request  
CPU  
CMIF4  
CSIF0  
CSIF1  
CSIF2  
CSIF3  
SEIF0  
SRIF0  
STIF0  
SEIF1  
SRIF1  
STIF1  
ADIF  
INTCSI0  
INTCSI1  
INTCSI2  
INTCSI3  
INTSER0  
INTSR0  
INTST0  
INTSER1  
INTSR1  
INTST1  
Interrupt  
request  
acknowledge  
PSW  
ID  
HALT mode  
release signal  
SIO  
INTAD  
A/D converter  
XX: Name of peripheral unit (OV, P11 to P14, CM, CS, SE, SR, ST, AD)  
n: Peripheral unit number (if none exists, then 0 to 4 or 11 to 14)  
Data Sheet U12261EJ2V1DS00  
18  
µPD703003  
Interrupt/exception sources are shown in Table 6-1.  
Table 6-1. List of Interrupts (1/2)  
Interrupt/Exception Source  
Default  
Exception Handler Restored  
Priority  
Level  
Type  
Category  
Name  
Control  
Trigger Source  
Unit  
Code  
Address  
PC  
Register  
Reset  
Interrupt RESET  
Reset input  
0
0000H  
0010H  
00000000H Undefined  
00000010H nextPC  
Nonmaskable Interrupt NMI  
NMI input  
Software  
exception  
Exception TRAP0nNote  
Exception TRAP1nNote  
TRAP instruction  
TRAP instruction  
Undefined instruction code  
004nHNote 00000040H nextPC  
005nHNote 00000050H nextPC  
Exception trap Exception ILGOP  
0060H  
0080H  
0090H  
00A0H  
00B0H  
00C0H  
00D0H  
00E0H  
00F0H  
0100H  
0110H  
0120H  
0130H  
0140H  
0150H  
0160H  
0170H  
0180H  
0190H  
01A0H  
01B0H  
01C0H  
01D0H  
01E0H  
01F0H  
00000060H nextPC  
00000080H nextPC  
00000090H nextPC  
000000A0H nextPC  
000000B0H nextPC  
000000C0H nextPC  
000000D0H nextPC  
000000E0H nextPC  
000000F0H nextPC  
00000100H nextPC  
00000110H nextPC  
00000120H nextPC  
00000130H nextPC  
00000140H nextPC  
00000150H nextPC  
00000160H nextPC  
00000170H nextPC  
00000180H nextPC  
00000190H nextPC  
000001A0H nextPC  
000001B0H nextPC  
000001C0H nextPC  
000001D0H nextPC  
000001E0H nextPC  
000001F0H nextPC  
Maskable  
Interrupt INTOV11  
Interrupt INTOV12  
Interrupt INTOV13  
Interrupt INTOV14  
OVIC11 Timer 11 overflow  
OVIC12 Timer 12 overflow  
OVIC13 Timer 13 overflow  
OVIC14 Timer 14 overflow  
RPU  
RPU  
1
RPU  
2
RPU  
3
Interrupt INTP110/INTCC110 P11IC0 Match between INTP110 and CC110  
Interrupt INTP111/INTCC111 P11IC1 Match between INTP111 and CC111  
Interrupt INTP112/INTCC112 P11IC2 Match between INTP112 and CC112  
Interrupt INTP113/INTCC113 P11IC3 Match between INTP113 and CC113  
Interrupt INTP120/INTCC120 P12IC0 Match between INTP120 and CC120  
Interrupt INTP121/INTCC121 P12IC1 Match between INTP121 and CC121  
Interrupt INTP122/INTCC122 P12IC2 Match between INTP122 and CC122  
Interrupt INTP123/INTCC123 P12IC3 Match between INTP123 and CC123  
Interrupt INTP130/INTCC130 P13IC0 Match between INTP130 and CC130  
Interrupt INTP131/INTCC131 P13IC1 Match between INTP131 and CC131  
Interrupt INTP132/INTCC132 P13IC2 Match between INTP132 and CC132  
Interrupt INTP133/INTCC133 P13IC3 Match between INTP133 and CC133  
Interrupt INTP140/INTCC140 P14IC0 Match between INTP140 and CC140  
Interrupt INTP141/INTCC141 P14IC1 Match between INTP141 and CC141  
Interrupt INTP142/INTCC142 P14IC2 Match between INTP142 and CC142  
Interrupt INTP143/INTCC143 P14IC3 Match between INTP143 and CC143  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
RPU  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Interrupt INTCM4  
Interrupt INTCSI0  
Interrupt INTCSI1  
Interrupt INTCSI2  
CMIC4 Signal matches CM4  
CSIC0  
CSIC1  
CSIC2  
CSI0 send/receive completion  
SIO  
CSI1 send/receive completion  
CSI2 send/receive completion  
SIO  
SIO  
Note n represents a value between 0 and FH.  
Remarks 1. Default priority: The default priority level is the level that takes precedence when multiple  
maskable interrupt requests having the same priority level occur at the same  
time. The highest priority level is level 0.  
Restored PC: This is the PC value that is saved to EIPC or FEPC when interrupt or exception  
handling is activated. However, if an interrupt occurs during execution of the  
DIVH (divide) instruction, the recovered PC value is the PC value of the current  
instruction (DIVH).  
2. The invalid instruction execution address can be obtained (using restored PC-4) when an invalid  
instruction code exception occurs.  
Data Sheet U12261EJ2V1DS00  
19  
µPD703003  
Table 6-1. List of Interrupts (2/2)  
Interrupt/Exception Source  
Default  
Priority  
Level  
Exception Handler Restored  
Type  
Category  
Name  
Control  
Trigger Source  
Unit  
Code  
Address  
PC  
Register  
Maskable  
Interrupt INTCSI3  
Interrupt INTSER0  
Interrupt INTSR0  
Interrupt INTST0  
Interrupt INTSER1  
Interrupt INTSR1  
Interrupt INTST1  
Interrupt INTAD  
CSIC3  
SEIC0  
SRIC0  
STIC0  
SEIC1  
SRIC1  
STIC1  
ADIC  
CSI3 transmit/receive completion  
UART0 receive error  
SIO  
SIO  
SIO  
SIO  
SIO  
SIO  
SIO  
ADC  
24  
25  
26  
27  
28  
29  
30  
31  
0200H  
0210H  
0220H  
0230H  
0240H  
0250H  
0260H  
0270H  
00000200H nextPC  
00000210H nextPC  
00000220H nextPC  
00000230H nextPC  
00000240H nextPC  
00000250H nextPC  
00000260H nextPC  
00000270H nextPC  
UART0 receive completion  
UART0 transmit completion  
UART1 receive error  
UART1 receive completion  
UART1 transmit completion  
A/D conversion completion  
Remarks 1. Default priority: The default priority level is the level that takes precedence when multiple  
maskable interrupt requests having the same priority level occur at the same  
time. The highest priority level is level 0.  
Restored PC: This is the PC value that is saved to EIPC or FEPC when interrupt or exception  
handling is started. However, if an interrupt occurs during execution of the DIVH  
(divide) instruction, the restored PC value is the PC value of the current instruction  
(DIVH).  
2. The invalid instruction execution address can be obtained using (restored PC-4) when an invalid  
instruction code exception occurs.  
Data Sheet U12261EJ2V1DS00  
20  
µPD703003  
7. CLOCK GENERATION FUNCTIONS  
The features of the clock generation functions are shown below.  
Multiplier function using PLL clock synthesizer  
Clock sources  
Oscillation via resonator connection (PLL mode): fXX = φ, 2 × φ, φ/5  
External clock (PLL mode): fXX = φ, 2 × φ, φ/5  
External clock (direct mode): fXX = 2 × φ  
Power saving control  
HALT mode  
IDLE mode  
Software STOP mode  
Clock output inhibit mode  
The configuration of the clock generation functions is shown below.  
Figure 7-1. Block Diagram of Clock Generation Functions  
φ
X1  
(fXX  
CPU, On-chip peripheral I/O  
)
Clock generator  
X2  
CLKOUT  
CKSEL  
Remark φ : internal system clock  
Data Sheet U12261EJ2V1DS00  
21  
µPD703003  
8. TIMER/COUNTER FUNCTIONS (REAL-TIME PULSE UNIT)  
The features of the timer/counter functions are shown below.  
Measurement of pulse interval and frequency, programmable pulse output  
16-bit measurements enabled  
Generates a variety of pulse patterns (interval pulse, one-shot pulse, etc.)  
Timer 1  
16-bit timer/event counter  
Count clock sources: two types (selection of an internal system clock division, external pulse input)  
Capture/compare (shared) registers: 16  
Count clear pins: TCLR11 to TCLR14  
Interrupt sources: 20 types  
External pulse outputs: 8  
Timer 4  
16-bit interval timer  
Count clock: selected from an internal system clock division  
Compare register: 1  
Interrupt sources: 1  
Data Sheet U12261EJ2V1DS00  
22  
µPD703003  
The configurations of the timer/counter functions are shown below.  
Figure 8-1. Block Diagram of Timer 1 (16-bit timer/event counter)  
Edge  
detect  
Clear and  
start  
TCLR1n  
Clear and start  
φ m  
Note 1  
φ m/4  
φ m/8  
φ /2 φ m  
φ /4  
INTOV1n  
TM1n (16 bits)  
φ
m/32  
Note 2  
Edge detect  
TI1n  
INTCC1n0  
INTCC1n1  
INTP1n0  
INTP1n1  
INTP1n2  
INTP1n3  
S
CC1n0  
CC1n1  
CC1n2  
CC1n3  
Edge detect  
Edge detect  
Edge detect  
Edge detect  
Q
Q
TO1n0  
TO1n1  
RNote3  
S
Q
Q
RNote3  
INTCC1n2  
INTCC1n3  
Notes 1. Internal count clock  
2. External count clock  
3. Priority to reset  
Remark φ : internal system clock  
n = 1 to 4  
Figure 8-2. Block Diagram of Timer 4 (16-bit interval timer)  
φ /2  
Note  
φ /4 φ m  
φ /16  
φ m  
φ m/32  
TM4 (16-bit)  
φ /32  
Clear and start  
INTCM4  
CM4  
Note Internal count clock  
Remark φ : Internal system clock  
Data Sheet U12261EJ2V1DS00  
23  
µPD703003  
9. SERIAL INTERFACE FUNCTIONS (SIO)  
Two types and six channels of serial interfaces are provided.  
Up to four channels may be used at the same time.  
(1) Asynchronous serial interfaces 0, 1 (UART0, UART1): 2 channels  
(2) Clock-synchronized serial interfaces 0 to 3 (CSI0 to CSI3): 4 channels  
Caution  
UART0 and CSI0 are a shared pin, as are UART1 and CSI1. Either one can be selected via a  
register (ASIM00, ASIM10).  
9.1 Asynchronous Serial Interfaces 0, 1 (UART0, UART1)  
The features of the asynchronous serial interfaces 0, 1 (UART0, UART1) are shown below.  
Transfer rate  
150 bps to 76800 bps (@ φ = 33-MHz operation, using baud rate generator)  
110 bps to 307200 bps (@ φ = 20-MHz operation, using baud rate generator)  
Maximum 1031 Kbytes (@ φ = 33-MHz operation, using φ/2)  
Full duplex communications: Receive buffer (RXBn) included  
Two-pin configuration  
TXDn: output pin for transmit data  
RXDn: input pin for receive data  
Reception error detection function  
Parity error  
Framing error  
Overrun error  
Three types of interrupt sources  
Reception error interrupt (INTSERn)  
Reception completion interrupt (INTSRn)  
Transmission completion interrupt (INTSTn)  
The character length of transmit and receive data is specified via the ASIMn0, ASIMn1 register  
Character lengths: 7 or 8 bits, or 9 bits (if using expansion bit)  
Parity function: even, odd, zero, or no parity  
Transmission stop bits: 1 or 2 bits  
On-chip baud rate generator  
Remark n = 0, 1  
φ : internal system clock  
Data Sheet U12261EJ2V1DS00  
24  
µPD703003  
The configuration of the asynchronous serial interfaces 0, 1 (UART0, UART1) are shown below.  
Figure 9-1. Block Diagram of Asynchronous Serial Interfaces 0, 1 (UART0, UART1)  
Internal bus  
8
8
16/8  
ASIMn0  
ASIMn1  
16/8  
RXBn  
Receive  
buffer  
EBSn  
TXEn RXEn PSn1 PSn0 CLn SLn SCLSn  
8
RXBnL  
ASISn  
TXSn  
Receive  
shift register  
Transmit  
shift register  
RXDn  
TXDn  
PEn FEn OVEn SOTn  
TXSnL  
Reception  
control  
parity check  
Transmission  
control parity  
attachment  
INTSERn  
INTSTn  
INTSRn  
1
1
16  
16  
φ
1
2
Baud rate generator  
Remark n = 0, 1  
φ : internal system clock  
Data Sheet U12261EJ2V1DS00  
25  
µPD703003  
9.2 Clock-synchronized Serial Interfaces 0 to 3 (CSI0 to CSI3)  
The features of the clock-synchronized serial interfaces 0 to 3 (CSI0 to CSI3) are shown below.  
Number of channels: 4 channels (CSIn)  
High-speed transfer  
MAX 8.25 Mbps (@ φ = 33-MHz operation)  
Half-duplex communications  
Character length uses 8-bit unit  
Switchable byte ordering (MSB first or LSB first)  
Selectable external serial clock input/internal serial clock output  
3-wire type  
SOn: Serial data output  
SIn: Serial data input  
SCKn: Serial clock I/O  
Interrupt source: 1 type  
Transmission/reception completion interrupt (INTCSIn)  
Remark n = 0 to 3  
φ : internal system clock  
Data Sheet U12261EJ2V1DS00  
26  
µPD703003  
The configuration of the clock-synchronized serial interfaces 0 to 3 (CSI0 to CSI3) is shown below.  
Figure 9-2. Block Diagram of Clock-synchronized Serial Interfaces 0 to 3 (CSI0 to CSI3)  
Internal bus  
CSIMn  
CTXEn CRXEn CSOTn MODn  
CLSn1 CLSn0  
SO latch  
SIn  
D
Q
Shift register (SIOn)  
SOn  
Note  
Note  
Baud rate generator  
Serial clock  
control circuit  
1
2
φ
φ
/2  
SCKn  
Serial clock  
counter  
Interrupt  
control circuit  
INTCSIn  
Note SO0 to SO2, SCK0 to SCK2: CMOS outputs  
SO3, SCK3:  
N-ch open-drain outputs  
Remark n = 0 to 3  
φ : internal system clock  
Data Sheet U12261EJ2V1DS00  
27  
µPD703003  
9.3 Baud Rate Generators 0 to 2 (BRG0 to BRG2)  
The features of the baud rate generators 0 to 2 (BRG0 to BRG2) are shown below.  
Serial clock can be selected via baud rate generator output and φ (internal system clock)  
Identical baud rates during transmission and reception  
The configuration of the baud rate generators 0 to 2 (BRG0 to BRG2) is shown below.  
Figure 9-3. Block Diagram of Baud Rate Generators 0 to 2 (BRG0 to BRG2)  
Baud rate generator 0  
BPRM0  
BRG0  
Match  
UART0  
CSI0  
φ
Clear  
1
2
TMBRG0  
Prescaler  
UART1  
CSI1  
Baud rate generator 1  
CSI2  
CSI3  
Baud rate generator 2  
Data Sheet U12261EJ2V1DS00  
28  
µPD703003  
10. PWM UNIT  
The features of the PWM unit are shown below.  
PWMn: 2 channels  
Selectable active level for PWMn output pulse  
Operating clock selectable as φ, φ/2, φ/4, φ/8, or φ/16 (φ : internal system clock)  
PWMn output resolution selectable as 8, 9, 10, or 12 bits  
Remark n = 0, 1  
The configuration of the PWM unit is shown below.  
Figure 10-1. Block Diagram of PWM Unit  
7
8
φ
φ
φ
φ
φ
9
Overflow  
/2  
/4  
/8  
/16  
11  
TMPn (12 bits)  
Comparator  
ALVn  
0-7  
0-8  
0-9  
0-11  
S
Q
PWMn  
Match  
RNote  
CMPn (12 bits)  
PWMn (12 bits)  
Note Priority to reset  
Remark n = 0, 1  
φ : internal system clock  
Data Sheet U12261EJ2V1DS00  
29  
µPD703003  
11. A/D CONVERTER  
The features of the A/D converter are shown below.  
Analog inputs: 8 channels  
On-chip 10-bit A/D converter  
On-chip A/D conversion result registers (ADCR0 to ADCR7)  
10 bits × 8 registers  
A/D conversion trigger modes  
A/D trigger mode  
Timer trigger mode  
External trigger mode  
Sequential conversion method  
The configuration of the A/D converter is shown below.  
Figure 11-1. Block Diagram of A/D Converter  
Series resistor string  
ANI0  
ANI1  
ANI2  
ANI3  
ANI4  
ANI5  
ANI6  
ANI7  
Sample & hold circuit  
AVREF1  
R/2  
R
R/2  
AVSS  
AVDD  
Voltage comparator  
0
9
9
SAR (10)  
10  
10  
INTAD  
0
ADCR0  
ADCR1  
ADCR2  
ADCR3  
ADCR4  
ADCR5  
ADCR6  
ADCR7  
INTCC110  
INTCC111  
INTCC112  
Controller  
INTCC113  
ADTRG  
Noise  
Edge  
elimination detection  
7
0
7
0
ADM0 (8)  
8
ADM1 (8)  
8
10  
Internal bus  
Data Sheet U12261EJ2V1DS00  
30  
µPD703003  
12. D/A CONVERTER  
The features of the D/A converter are shown below.  
8-bit resolution D/A converter: 2 channels  
R-2R conversion method  
The configuration of the D/A converter is shown below.  
Figure 12-1. Block Diagram of D/A Converter  
2R  
2R  
AVREF2  
ANOn  
R
R
Selector  
2R  
2R  
AVREF3  
DACSn  
DACEn  
Internal bus  
Remark n = 0, 1  
Data Sheet U12261EJ2V1DS00  
31  
µPD703003  
13. PORT FUNCTIONS  
The features of the port functions are shown below.  
Number of ports  
Input-only ports:  
I/O ports:  
8
67  
Alternated as I/O pins for other peripheral functions  
I/O setting can be specified bitwise  
Noise elimination  
Edge detection  
The configurations of the port functions are shown below.  
Figure 13-1. Block Diagram of P00 and P01 (Port 0)  
WRPMC  
WRPM  
PMC0n  
PM0n  
WRPORT  
TO11n  
P0n  
P0n  
RDIN  
Address  
Remark n = 0, 1  
Data Sheet U12261EJ2V1DS00  
32  
µPD703003  
Figure 13-2. Block Diagram of P02 to P07 (Port 0)  
WRPMC  
PMC0n  
WRPM  
PM0n  
WRPORT  
P0n  
P0n  
Address  
RDIN  
INTP110-INTP112,  
INTP113/ADTRG,  
Noise elimination  
Edge detection  
TCLR11, TI11  
Remark n = 2 to 7  
Figure 13-3. Block Diagram of P10 and P11 (Port 1)  
WRPMC  
PMC1n  
WRPM  
PM1n  
TO12n  
WRPORT  
P1n  
P1n  
Address  
RDIN  
Remark n = 0, 1  
Data Sheet U12261EJ2V1DS00  
33  
µPD703003  
Figure 13-4. Block Diagram of P12 to P14 (Port 1)  
WRPMC  
PMC1n  
WRPM  
PM1n  
WRPORT  
P1n  
P1n  
Address  
RDIN  
Noise elimination  
Edge detection  
TCLR12, TI12  
INTP120  
Remark n = 2 to 4  
Figure 13-5. Block Diagram of P15 (Port 1)  
PCM1  
WRPMC  
PMC15  
WRPM  
PM15  
WRPORT  
SO2  
P15  
P15  
Address  
RDIN  
Noise elimination  
Edge detection  
INTP121  
PCM1  
Data Sheet U12261EJ2V1DS00  
34  
µPD703003  
Figure 13-6. Block Diagram of P16 (Port 1)  
WRPMC  
PMC16  
WRPM  
PM16  
WRPORT  
P16  
P16  
Address  
RDIN  
Noise elimination  
Edge detection  
INTP122  
SI2  
PCM1  
Figure 13-7. Block Diagram of P17 (Port 1)  
SCK2 I/O  
switch  
PCM1  
WRPMC  
WRPM  
PMC17  
PM17  
WRPORT  
SCK2 output  
P17  
P17  
Address  
RDIN  
Noise elimination  
Edge detection  
INTP123  
SCK2 output  
PCM1  
Data Sheet U12261EJ2V1DS00  
35  
µPD703003  
Figure 13-8. Block Diagram of P20 and P21 (Port 2)  
WRPMC  
PMC2n  
WRPM  
PM2n  
WRPORT  
PWM0, PWM1  
P2n  
P2n  
RDIN  
Address  
Remark n = 0, 1  
Figure 13-9. Block Diagram of P22 and P25 (Port 2)  
SO0, SO1 output  
enable  
WRPMC  
WRPM  
PMC2n  
PM2n  
TXD0/SO0  
TXD1/SO1  
WRPORT  
P2n  
P2n  
RDIN  
Address  
Remark n = 2, 5  
Data Sheet U12261EJ2V1DS00  
36  
µPD703003  
Figure 13-10. Block Diagram of P23 and P26 (Port 2)  
WRPMC  
PMC2n  
WRPM  
PM2n  
WRPORT  
P2n  
P2n  
Address  
RXD0/SI0  
RXD1/SI1  
RDIN  
Remark n = 3, 6  
Figure 13-11. Block Diagram of P24 and P27 (Port 2)  
SCK0, SCK1  
I/O switch  
WRPMC  
PMC2n  
WRPM  
PM2n  
SCK0 output  
SCK1 output  
WRPORT  
P2n  
P2n  
Address  
SCK0 input  
RDIN  
SCK1 input  
Remark n = 4, 7  
Data Sheet U12261EJ2V1DS00  
37  
µPD703003  
Figure 13-12. Block Diagram of P30 and P31 (Port 3)  
WRPMC  
PMC3n  
WRPM  
PM3n  
WRPORT  
TO13n  
P3n  
P3n  
RDIN  
Address  
Remark n = 0, 1  
Figure 13-13. Block Diagram of P32 to P34 (Port 3)  
WRPMC  
PMC3n  
WRPM  
PM3n  
WRPORT  
P3n  
P3n  
Address  
RDIN  
Noise elimination  
Edge detection  
TCLR13, TI13  
INTP130  
Remark n = 2 to 4  
Data Sheet U12261EJ2V1DS00  
38  
µPD703003  
Figure 13-14. Block Diagram of P35 (Port 3)  
SO3 output  
enable  
PCM3  
PUO3  
WRPMC  
PMC35  
PM35  
V
DD  
WRPM  
P
WRPORT  
P
N
SO3  
P35  
P35  
Address  
RDIN  
Noise elimination  
Edge detection  
INTP131  
PCM3  
Figure 13-15. Block Diagram of P36 (Port 3)  
WRPMC  
PUO3  
PMC36  
VDD  
WRPM  
P
PM36  
P36  
WRPORT  
P
N
P36  
Address  
RDIN  
Noise elimination  
Edge detection  
INTP132  
SI3  
PCM3  
Data Sheet U12261EJ2V1DS00  
39  
µPD703003  
Figure 13-16. Block Diagram of P37 (Port 3)  
SCK3 I/O  
switch  
WRPMC  
PCM3  
PUO3  
PMC37  
PM37  
V
DD  
WRPM  
P
WRPORT  
P
N
SCK3 output  
P37  
P37  
Address  
RDIN  
Noise elimination  
Edge detection  
INTP133  
SCK3 input  
PCM3  
Figure 13-17. Block Diagram of P40 to P47 (Port 4)  
MODE  
MM0 to MM2  
I/O control circuit  
WRPM  
PM4n  
WRPORT  
AD0 to AD7 output  
P4n  
P4n  
Address  
RDIN  
AD0 to AD7 input  
Remark n = 0 to 7  
Data Sheet U12261EJ2V1DS00  
40  
µPD703003  
Figure 13-18. Block Diagram of P50 to P57 (Port 5)  
MODE  
MM0 to MM2  
I/O control circuit  
WRPM  
PM5n  
WRPORT  
AD8 to AD15 output  
P5n  
P5n  
Address  
RDIN  
AD8 to AD15 input  
Remark n = 0 to 7  
Figure 13-19. Block Diagram of P60 to P63 (Port 6)  
MODE  
MM0 to MM2  
I/O control circuit  
WRPM  
PM6n  
WRPORT  
A16 to A19 output  
P6n  
P6n  
Address  
RDIN  
Remark n = 0 to 3  
Data Sheet U12261EJ2V1DS00  
41  
µPD703003  
Figure 13-20. Block Diagram of P70 to P77 (Port 7)  
P7n  
ANI0 to ANI7  
Sample & hold  
circuit  
RDIN  
Remark n = 0 to 7  
Figure 13-21. Block Diagram of P90 to P95 (Port 9)  
MODE MM0 to MM3  
I/O control circuit  
WRPM  
PM9n  
LBEN, UBEN, R/W,  
DSTB, ASTB, HLDAK  
WRPORT  
P9n  
P9n  
Address  
RDIN  
Remark n = 0 to 5  
Data Sheet U12261EJ2V1DS00  
42  
µPD703003  
Figure 13-22. Block Diagram of P96 (Port 9)  
MM3  
I/O control circuit  
WRPM  
PM96  
WRPORT  
P96  
P96  
Address  
RDIN  
HLDRQ  
Figure 13-23. Block Diagram of P110 and P111 (Port 11)  
WRPMC  
PMC11n  
WRPM  
PM11n  
WRPORT  
TO14n  
P11n  
P11n  
RDIN  
Address  
Remark n = 0, 1  
Data Sheet U12261EJ2V1DS00  
43  
µPD703003  
Figure 13-24. Block Diagram of P112 to P117 (Port 11)  
WRPMC  
PMC11n  
WRPM  
PM11n  
WRPORT  
P11n  
P11n  
Address  
RDIN  
Noise elimination  
Edge detection  
TCLR14, TI14  
INTP140 to INTP143  
Remark n = 2 to 7  
Data Sheet U12261EJ2V1DS00  
44  
µPD703003  
14. RESET FUNCTIONS  
When low-level input occurs at the RESET pin, a system reset is performed and the various on-chip hardware  
devices are reset to their initial settings.  
When the input at the RESET pin changes from low level to high level, the reset status is canceled and the CPU  
resumes program execution. The contents of the various registers should be initialized within the program as  
necessary.  
The feature of the reset functions is shown below.  
On-chip noise elimination circuit which uses analog delay ( 60 ns) for the RESET pin  
Data Sheet U12261EJ2V1DS00  
45  
µPD703003  
15. INSTRUCTION SET  
How to read instruction set tables  
Indicates the instruction group. Instructions are listed in these table according to their respective groups.  
Indicates the mnemonic abbreviation for the instruction.  
Indicates the instruction's operands (see Table 15-1).  
Indicates the instruction binary code. The binary codes for 32-bit  
instructions are shown in two levels (see Table 15-2).  
Indicates instruction operation (see Table 15-3).  
Indicates flag operations  
(see Table 15-4).  
Flags  
S
Mnemonic  
Operand  
Opcode  
Operation  
CY  
OV  
Z
SAT  
Table 15-1. Symbols Used to Indicate Operands  
Symbol  
Description  
reg1  
reg2  
ep  
General registers (r0 to r31): used as source registers  
General registers (r0 to r31): mainly used as destination registers  
Element pointer (r30)  
bit#3  
3-bit data used to specify bit number  
X bits immediate  
immX  
dispX  
regID  
vector  
cccc  
X bits displaced  
System register number  
5-bit data used to specify trap vector (00H to 1FH)  
4-bit data used to indicate condition code  
Data Sheet U12261EJ2V1DS00  
46  
µPD703003  
Table 15-2. Symbols Used to Indicate Opcodes  
Symbol  
Description  
R
1-bit data of code specifying reg1 or regID  
r
1-bit data of code specifying reg2  
1 bit of displaced data  
d
i
1 bit of immediate data  
cccc  
bbb  
4-bit data used to indicate condition code  
3-bit data used to specify bit number  
Table 15-3. Symbols Used to Indicate Operations  
Symbol  
Description  
Assign  
GR [ ]  
SR [ ]  
General register  
System register  
zero-extend (n)  
Zero-extend n up until word length  
Sign-extend n up until word length  
sign-extend (n)  
load-memory (a, b)  
store-memory (a, b, c)  
load-memory-bit (a, b)  
store-memory-bit (a, b, c)  
saturated (n)  
Read data having size b from address a  
Replace data b at address a with data having size c  
Read bit b from address a  
Write c to bit b from address a  
Execute saturation processing for n (n = complement to 2)  
Calculation of n:  
When n 7FFFFFFFH, result is 7FFFFFFFH.  
When n 80000000H, result is 80000000H.  
result  
Result is indicated by flag operations  
Byte (8 bits)  
Byte  
Halfword  
Half word (16 bits)  
Word (32 bits)  
Add  
Word  
+
Subtract  
||  
Bit linkage  
×
Multiply  
÷
Divide  
AND  
Logical AND  
OR  
Logical OR  
XOR  
Exclusive OR  
Logical NOT  
NOT  
logically shift left by  
logically shift right by  
arithmetically shift right by  
Logical shift left  
Logical shift right  
Arithmetic shift right  
Data Sheet U12261EJ2V1DS00  
47  
µPD703003  
Table 15-4. Flag Operations  
Identifier  
Description  
(Blank)  
No change  
0
×
Clear to zero  
Set or clear according to result  
Restore previously saved value(s)  
R
Table 15-5. Condition Codes  
Condition name (cond)  
Condition code (cccc)  
Conditional expression  
OV = 1  
Description  
V
0000  
1000  
0001  
Overflow  
No overflow  
Carry  
NV  
OV = 0  
CY = 1  
C/L  
Lower (Less than)  
NC/NL  
Z/E  
1001  
0010  
1010  
CY = 0  
Z = 1  
No carry  
No lower (Greater than or equal)  
Zero  
Equal  
NZ/NE  
Z = 0  
Not zero  
Not equal  
NH  
H
0011  
1011  
0100  
1100  
0101  
1101  
0110  
1110  
0111  
1111  
(CY OR Z) = 1  
(CY OR Z) = 0  
S = 1  
Not higher (Less than or equal)  
Higher (Greater than)  
Negative  
N
P
S = 0  
Positive  
T
Always (unconditional)  
Saturated  
SA  
LT  
GE  
LE  
GT  
SAT = 1  
(S XOR OV) = 1  
(S XOR OV) = 0  
((S XOR OV) OR Z) = 1  
((S XOR OV) OR Z) = 0  
Less than signed  
Greater than or equal signed  
Less than or equal signed  
Greater than signed  
Data Sheet U12261EJ2V1DS00  
48  
µPD703003  
Instruction Set List  
Instruction Mnemonic  
group  
Operand  
Opcode  
Operation  
Flags  
CY OV  
S
Z
SAT  
Load/store SLD.B  
instructions  
disp7[ep], reg2  
disp8[ep], reg2  
disp8[ep], reg2  
r r r r r 0 1 1 0 d d d d d d d adr ep + zero-extend (disp7)  
GR[reg2] sign-extend (Load-memory (adr, Byte))  
SLD.H  
SLD.W  
LD.B  
r r r r r 1 0 0 0 d d d d d d d adr ep + zero-extend (disp8)  
Note 1 GR[reg2] sign-extend (Load-memory (adr, Halfword))  
r r r r r 1 0 1 0 d d d d d d 0 adr ep + zero-extend (disp8)  
Note 2 GR[reg2] Load-memory (adr, Word)  
disp16[reg1], reg2 r r r r r 1 1 1 0 0 0RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d d GR[reg2] sign-extend (Load-memory (adr, Byte))  
LD.H  
disp16[reg1], reg2 r r r r r 1 1 1 0 0 1RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d 0 GR[reg2] sign-extend (Load-memory (adr, Halfword))  
Note 3  
LD.W  
disp16[reg1], reg2 r r r r r 1 1 1 0 0 1RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d 1 GR[reg2] Load-memory (adr, Word)  
Note 3  
SST.B  
SST.H  
SST.W  
ST.B  
reg2, disp7[ep]  
reg2, disp8[ep]  
reg2, disp8[ep]  
r r r r r 0 1 1 1 d d d d d d d adr ep + zero-extend (disp7)  
Store-memory (adr, GR[reg2], Byte)  
r r r r r 1 0 0 1 d d d d d d d adr ep + zero-extend (disp8)  
Note 1 Store-memory (adr, GR[reg2], Halfword)  
r r r r r 1 0 1 0 d d d d d d 1 adr ep + zero-extend (disp8)  
Note 2 Store-memory (adr, GR[reg2], Word)  
reg2, disp16[reg1] r r r r r 1 1 1 0 1 0RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d d Store-memory (adr, GR[reg2], Byte)  
ST.H  
reg2, disp16[reg1] r r r r r 1 1 1 0 1 1RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d 0 Store-memory (adr, GR[reg2], Halfword)  
Note 3  
ST.W  
reg2, disp16[reg1] r r r r r 1 1 1 0 1 1RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d 1 Store-memory (adr, GR[reg2], Word)  
Note 3  
Arithmetic MOV  
reg1, reg2  
imm5, reg2  
r r r r r 0 0 0 0 0 0RRRRR GR[reg2] GR[reg1]  
operation  
MOV  
r r r r r 0 1 0 0 0 0 i i i i i GR[reg2] sign-extend (imm5)  
instructions  
MOVHI  
imm16, reg1, reg2 r r r r r 1 1 0 0 1 0RRRRR GR[reg2] GR[reg1] + (imm16 || 016  
)
i i i i i i i i i i i i i i i i  
MOVEA imm16, reg1, reg2 r r r r r 1 1 0 0 0 1RRRRR GR[reg2] GR[reg1] + sign-extend (imm16)  
i i i i i i i i i i i i i i i i  
ADD  
ADD  
ADDI  
reg1, reg2  
imm5, reg2  
r r r r r 0 0 1 1 1 0RRRRR GR[reg2] GR[reg2] + GR[reg1]  
×
×
×
×
×
×
×
×
×
×
×
×
r r r r r 0 1 0 0 1 0 i i i i i GR[reg2] GR[reg2] + sign-extend (imm5)  
imm16, reg1, reg2 r r r r r 1 1 0 0 0 0RRRRR GR[reg2] GR[reg1] + sign-extend (imm16)  
i i i i i i i i i i i i i i i i  
SUB  
reg1, reg2  
reg1, reg2  
r r r r r 0 0 1 1 0 1RRRRR GR[reg2] GR[reg2] – GR[reg1]  
r r r r r 0 0 1 1 0 0RRRRR GR[reg2] GR[reg1] – GR[reg2]  
×
×
×
×
×
×
×
×
SUBR  
Notes 1. ddddddd = high-order 7 bits of disp8  
2. dddddd = high-order 6 bits of disp8  
3. ddddddddddddddd = high-order 15 bits of disp16  
Data Sheet U12261EJ2V1DS00  
49  
µPD703003  
Instruction Mnemonic  
group  
Operand  
Opcode  
Operation  
Flags  
CY OV  
S
Z
SAT  
Arithmetic MULH  
operation  
reg1, reg2  
r r r r r 0 0 0 1 1 1RRRRR GR[reg2] GR[reg2]Note × GR[reg1]Note  
(signed multiplication)  
instructions  
MULH  
imm5, reg2  
r r r r r 0 1 0 1 1 1 i i i i i GR[reg2] GR[reg2]Note × sign-extend (imm5)  
(signed multiplication)  
MULHI  
imm16, reg1, reg2 r r r r r 1 1 0 1 1 1RRRRR GR[reg2] GR[reg1]Note × imm16  
i i i i i i i i i i i i i i i i  
(signed multiplication)  
Note  
DIVH  
CMP  
CMP  
SETF  
reg1, reg2  
reg1, reg2  
imm5, reg2  
cccc, reg2  
r r r r r 0 0 0 0 1 0RRRRR GR[reg2] GR[reg2] ÷ GR[reg1]  
r r r r r 0 0 1 1 1 1RRRRR result GR[reg2] – GR[reg1]  
(signed division)  
×
×
×
×
×
×
×
×
×
×
×
r r r r r 0 1 0 0 1 1 i i i i i result GR[reg2] – sign-extend (imm5)  
r r r r r 1 1 1 1 1 1 0 c c c c if conditions are satisfied  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
then GR[reg2] 00000001H  
else GR[reg2] 00000000H  
Saturated SATADD reg1, reg2  
r r r r r 0 0 0 1 1 0RRRRR GR[reg2] saturated (GR[reg2] + GR[reg1])  
r r r r r 0 1 0 0 0 1 i i i i i GR[reg2] saturated (GR[reg2] + sign-extend (imm5))  
r r r r r 0 0 0 1 0 1RRRRR GR[reg2] saturated (GR[reg2] – GR[reg1])  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
operation  
SATADD imm5, reg2  
instructions  
SATSUB reg1, reg2  
SATSUBI imm16, reg1, reg2 r r r r r 1 1 0 0 1 1RRRRR GR[reg2] saturated (GR[reg1] – sign-extend (imm16))  
i i i i i i i i i i i i i i i i  
SATSUBR reg1, reg2  
r r r r r 0 0 0 1 0 0RRRRR GR[reg2] saturated (GR[reg1] – GR[reg2])  
r r r r r 0 0 1 0 1 1RRRRR result GR[reg2]AND GR[reg1]  
r r r r r 0 0 1 0 0 0RRRRR GR[reg2] GR[reg2]OR GR[reg1]  
×
×
0
0
0
×
×
×
×
×
×
×
×
×
Logical  
TST  
OR  
reg1, reg2  
reg1, reg2  
operation  
instruction  
ORI  
imm16, reg1, reg2 r r r r r 1 1 0 1 0 0RRRRR GR[reg2] GR[reg1]OR zero-extend (imm16)  
i i i i i i i i i i i i i i i i  
AND  
reg1, reg2  
r r r r r 0 0 1 0 1 0RRRRR GR[reg2] GR[reg2]AND GR[reg1]  
0
0
×
×
×
ANDI  
imm16, reg1, reg2 r r r r r 1 1 0 1 1 0RRRRR GR[reg2] GR[reg1]AND zero-extend (imm16)  
0
i i i i i i i i i i i i i i i i  
XOR  
reg1, reg2  
r r r r r 0 0 1 0 0 1RRRRR GR[reg2] GR[reg2]XOR GR[reg1]  
0
0
×
×
×
×
XORI  
imm16, reg1, reg2 r r r r r 1 1 0 1 0 1RRRRR GR[reg2] GR[reg1]XOR zero-extend (imm16)  
i i i i i i i i i i i i i i i i  
NOT  
SHL  
reg1, reg2  
reg1, reg2  
r r r r r 0 0 0 0 1RRRRR  
GR[reg2] NOT (GR[reg1])  
0
0
×
×
×
×
r r r r r 1 1 1 1 1 1RRRRR GR[reg2] GR[reg2]logically shift left by GR[reg1]  
×
×
×
×
×
×
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0  
SHL  
SHR  
SHR  
SAR  
SAR  
imm5, reg2  
reg1, reg2  
imm5, reg2  
reg1, reg2  
imm5, reg2  
r r r r r 0 1 0 1 1 0 i i i i i GR[reg2] GR[reg2]logically shift left by  
0
0
0
0
0
×
×
×
×
×
×
×
×
×
×
zero-extend (imm5)  
r r r r r 1 1 1 1 1 1RRRRR GR[reg2] GR[reg2]logically shift right by GR[reg1]  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
r r r r r 0 1 0 1 0 0 i i i i i GR[reg2] GR[reg2]logically shift right by  
zero-extend (imm5)  
r r r r r 1 1 1 1 1 1RRRRR GR[reg2] GR[reg2]arithmetically shift right by  
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0  
GR[reg1]  
r r r r r 0 1 0 1 0 1 i i i i i GR[reg2] GR[reg2]arithmetically shift right by  
zero-extend (imm5)  
Note Only the low-order half word is valid.  
Data Sheet U12261EJ2V1DS00  
50  
µPD703003  
Instruction Mnemonic  
group  
Operand  
Opcode  
Operation  
Flags  
CY OV  
S
Z
SAT  
Branch  
JMP  
JR  
[reg1]  
0 0 0 0 0 0 0 0 0 1 1RRRRR PC GR[reg1]  
instructions  
disp22  
0 0 0 0 0 1 1 1 1 0 d d d d d d PC PC + sign-extend (disp22)  
d d d d d d d d d d d d d d d 0  
Note 1  
JARL  
disp22, reg2  
disp9  
r r r r r 1 1 1 1 0 d d d d d d GR[reg2] PC + 4  
d d d d d d d d d d d d d d d 0 PC PC + sign-extend (disp22)  
Note 1  
Bcond  
SET1  
d d d d d 1 0 1 1 d d d c c c c if conditions are satisfied  
Note 2 then PC PC + sign-extend (disp9)  
Bit  
bit#3, disp16[reg1] 0 0 b b b 1 1 1 1 1 0RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d d Z flag Not (Load-memory-bit (adr, bit#3))  
Store-memory-bit (adr, bit#3, 1)  
×
×
×
×
manipulation  
instructions  
CLR1  
NOT1  
TST1  
bit#3, disp16[reg1] 1 0 b b b 1 1 1 1 1 0RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d d Z flag Not (Load-memory-bit (adr, bit#3))  
Store-memory-bit (adr, bit#3, 0)  
bit#3, disp16[reg1] 0 1 b b b 1 1 1 1 1 0RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d d Z flag Not (Load-memory-bit (adr, bit#3))  
Store-memory-bit (adr, bit#3, Z flag)  
bit#3, disp16[reg1] 1 1 b b b 1 1 1 1 1 0RRRRR adr GR[reg1] + sign-extend (disp16)  
d d d d d d d d d d d d d d d d Z flag Not (Load-memory-bit (adr, bit#3))  
Notes 1. ddddddddddddddddddddd = high-order 21 bits of disp22  
2. dddddddd = high-order 8 bits of disp9  
Data Sheet U12261EJ2V1DS00  
51  
µPD703003  
Instruction Mnemonic  
group  
Operand  
Opcode  
Operation  
Flags  
CY OV  
S
Z
SAT  
Special  
LDSR  
reg2, regID  
r r r r r 1 1 1 1 1 1RRRRR SR[regID] GR[reg2] regID = EIPC, FEPC  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
instructions  
regID = EIPSW, FEPSW  
Note  
regID = PSW  
×
×
×
×
×
STSR  
TRAP  
regID, reg2  
vector  
r r r r r 1 1 1 1 1 1RRRRR GR[reg2] SR[regID]  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 1 1 1 1 1 1 i i i i i EIPC PC + 4 (restored PC)  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 EIPSW PSW  
ECR.EICC Interrupt code  
PSW.EP 1  
PSW.ID 1  
PC 00000040H (when vector is 00H to 0FH)  
00000050H (when vector is 10H to 1FH)  
RETI  
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 if PSW.EP = 1  
R
R
R
R
R
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0  
then PC EIPC  
PSW EIPSW  
else if PSW.NP = 1  
then PC FEPC  
PSW FEPSW  
else PC EIPC  
PSW EIPSW  
HALT  
DI  
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 Stops  
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0  
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PSW.ID 1  
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 (maskable interrupt prohibit)  
EI  
1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PSW.ID 0  
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 (maskable interrupt enable)  
NOP  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 No operation, uses at least one clock  
Note In this instructions, “reg2” is the mnemonic abbreviation for the source register, but the reg1 field is used  
for the opcode. Consequently, these instructions differ from other instructions in a way registers are  
specified in mnemonics description and opcodes.  
rrrrr = regID specification  
RRRRR = reg2 specification  
Data Sheet U12261EJ2V1DS00  
52  
µPD703003  
16. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Symbol  
VDD  
Condition  
Rating  
Units  
V
Power supply voltage  
VDD pin  
–0.5 to +7.0  
–0.5 to VDD + 0.3  
–0.5 to +0.5  
–0.5 to VDD + 0.3  
–0.5 to +0.5  
–0.5 to VDD + 0.3  
–0.5 to VDD + 1.0  
4.0  
CVDD  
CVSS  
AVDD  
AVSS  
VI1  
CVDD pin  
CVSS pin  
AVDD pin  
AVSS pin  
V
V
V
V
Input voltage  
Note, VDD = 5.0 V ±10 %  
X1 pin, VDD = 5.0 V ±10 %  
1 pin  
V
Clock input voltage  
Low-level output current  
VK  
V
IOL  
mA  
mA  
mA  
mA  
V
Total for all pins  
1 pin  
100  
High-level output current  
IOH  
–4.0  
Total for all pins  
VDD = 5.0 V ±10 %  
P70/ANI0 to P77/ANI7  
–100  
Output voltage  
VO  
–0.5 to VDD + 0.3  
–0.5 to VDD + 0.3  
–0.5 to AVDD + 0.3  
–0.5 to VDD + 0.3  
–0.5 to AVDD + 0.3  
–40 to +85  
Analog input voltage  
VIAN  
AVDD > VDD  
VDD AVDD  
AVDD > VDD  
VDD AVDD  
V
V
Analog reference input voltage  
AVREF  
AVREF1 to AVREF3  
V
V
Operating temperature  
Storage temperature  
TA  
°C  
°C  
Tstg  
–65 to +150  
Note X1, P70/ANI0 to P77/ANI7, and AVREF1 to AVREF3 are excluded.  
Cautions 1. Be sure to avoid direct connections among the IC device output (or I/O) pins and between  
VDD or VCC and GND. However, open-drain pins and open collector pins can be directly  
connected. A direct connection to an external circuit can be made to avoid conflicting  
output from high-impedance pins if the external circuit is designed for the correct timing.  
2. If the absolute maximum rating for any of the above parameters is exceeded even  
momentarily, it may adversely affect the quality of this product. In other words, these  
absolute maximum ratings have been set to prevent physical damage to the product. Do  
not use the product in such a way as to exceed any of these ratings.  
The ratings and conditions shown below for DC characteristics and AC characteristics  
are within the range for normal operation and quality assurance.  
Capacitance (TA = 25°C, VDD = VSS = 0 V)  
Parameter  
Input capacitance  
Symbol  
CI  
Condition  
MIN.  
TYP. MAX. Units  
fC = 1 MHz  
All pins are 0 V except for testing pin.  
15  
15  
15  
pF  
pF  
pF  
I/O capacitance  
CIO  
Output capacitance  
CO  
Data Sheet U12261EJ2V1DS00  
53  
µPD703003  
Recommended Operating Conditions  
Operation Mode  
Internal Operating  
Operating Ambient  
Temperature (TA)  
Power Supply  
Clock Frequency (φ)  
Voltage (VDD)  
5.0 V ±10%  
5.0 V ±10%  
5.0 V ±10%  
Note 1  
Direct mode  
0 to 33 MHz  
–40 to +85°C  
–40 to +85°C  
–40 to +85°C  
Note 2  
5 to 33 MHz  
PLL mode  
Free-running oscillation frequency to 33 MHz  
Notes 1. When not using A/D converter  
2. When using A/D converter  
Remark The range of internal operating clock frequency in PLL mode is the assured range of function  
operation. PLL locked frequency is specified by tCYX.  
Recommended Oscillator  
(a) Ceramic oscillation resonator connection (TA = –40 to +85°C)  
X1  
X2  
C1  
C2  
Oscillation  
Frequency  
fXX (MHz)  
Recommended Circuit Oscillation Voltage Oscillation Stabilization  
Constant  
C1 (pF)  
Range  
Manufacturer  
TDK  
Part Number  
Time (MAX.)  
TOST (ms)  
C2 (pF)  
On-chip  
On-chip  
On-chip  
100  
MIN. (V) MAX. (V)  
CCR5.0MC3  
5.0  
5.0  
6.6  
5.0  
5.0  
6.6  
6.6  
On-chip  
On-chip  
On-chip  
100  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
0.36  
0.32  
0.28  
0.46  
0.46  
0.42  
0.42  
FCR5.0MC5  
CCR6.6MC3  
Murata Mfg. CSA5.00MG040  
CST5.00MGW040  
On-chip  
100  
On-chip  
100  
CSA6.60MTZ040  
CST6.60MTW040  
On-chip  
On-chip  
Cautions 1. Set the oscillator as close to the X1 and X2 pins as possible.  
2. No other signal lines should be wired in the area enclosed by broken lines.  
3. When matching µPD703003 with a resonator, be sure to perform sufficient evaluation.  
Data Sheet U12261EJ2V1DS00  
54  
µPD703003  
(b) External clock input  
X1  
X2  
Open  
High-speed CMOS inverter  
External clock  
Cautions 1. Set high-speed CMOS inverter as close as possible to the X1 pin.  
2. When matching µPD703003 and a high-speed CMOS inverter, be sure to perform  
sufficient evaluation.  
Data Sheet U12261EJ2V1DS00  
55  
µPD703003  
DC Characteristics (TA = –40 to +85°C, VDD = 5.0 V ±10%, VSS = 0 V)  
(1/2)  
Parameter  
Symbol  
Condition  
MIN.  
2.2  
TYP.  
MAX.  
Units  
V
High-level input voltage  
VIH  
Except for X1 and pins listed in Note  
VDD + 0.3  
VDD + 0.3  
+0.8  
Note  
0.8 VDD  
–0.5  
V
Low-level input voltage  
VIL  
Except for X1 and pins listed in Note  
V
Note  
–0.5  
0.2 VDD  
VDD + 0.5  
+0.6  
V
High-level clock input voltage  
Low-level clock input voltage  
VXH  
VXL  
X1  
0.8 VDD  
–0.5  
V
X1  
V
+
Schmitt trigger input  
Threshold voltage  
VT  
Note, rising edge  
Note, falling edge  
3.0  
2.0  
V
VT  
V
+
Schmitt trigger input hysteresis width VT – VT Note  
0.5  
V
High-level output voltage  
VOH  
IOH = –2.5 mA  
IOH = –100 µA  
IOL = 2.5 mA  
VI = VDD  
0.7 VDD  
VDD – 0.5  
V
V
Low-level output voltage  
VOL  
ILIH  
ILIL  
0.45  
10  
V
High-level input leak current  
Low-level input leak current  
High-level output leak current  
Low-level output leak current  
Software pull-up resistance  
µA  
µA  
µA  
µA  
kΩ  
VI = 0 V  
–10  
10  
ILOH  
ILOL  
R
VO = VDD  
VO = 0 V  
–10  
90  
P35/INTP131/SO3,  
P36/INTP132/SI3,  
P37/INTP133/SCK3  
15  
40  
Note P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/  
INTP121/SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1,  
P27/SCK1, P32/TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/  
SCK3, P112/TCLR14, P113/TI14, P114/INTP140 to P117/INTP143, RESET, NMI, MODE  
Remarks 1. TYP. values are reference values for when TA = 25°C and VDD = 5.0 V.  
2. φ = Internal system clock frequency  
Data Sheet U12261EJ2V1DS00  
56  
µPD703003  
DC Characteristics (TA = –40 to +85°C, VDD = 5.0 V ±10%, VSS = 0 V)  
(2/2)  
Parameter  
Symbol  
Condition  
MIN.  
TYP.  
MAX.  
Units  
Note  
Power supply current When  
IDD1  
Direct mode  
PLL mode  
Direct mode  
PLL mode  
Direct mode  
PLL mode  
2.4 × φ + 6 2.8 × φ + 19 mA  
2.5 × φ + 8 2.9 × φ + 22 mA  
1.4 × φ + 5 1.5 × φ + 18 mA  
1.5 × φ + 7 1.6 × φ + 20 mA  
operating  
Note  
Note  
During  
IDD2  
IDD3  
IDD4  
HALT mode  
During  
18.6 × φ + 100 22 × φ + 200  
0.05 × φ + 4 0.1 × φ + 8  
µA  
mA  
µA  
µA  
IDLE mode  
During  
–40°C TA +50°C  
50°C < TA 85°C  
2
2
50  
STOP mode  
200  
Note When using A/D converter: φ = 5 to 33 MHz  
When not using A/D converter: φ = 0 to 33 MHz  
Remarks 1. TYP. values are reference values for when TA = 25°C and VDD = 5.0 V. The power supply current  
does not include AVREF1 to AVREF3 or the current that flows across the software pull-up resistance.  
2. φ = Internal system clock frequency  
Data Sheet U12261EJ2V1DS00  
57  
µPD703003  
Data Hold Characteristics (TA = –40 to +85°C)  
Parameter  
Data hold voltage  
Symbol  
VDDDR  
IDDDR  
Conditions  
MIN.  
1.5  
TYP.  
MAX.  
Units  
V
STOP mode  
5.5  
50  
Data hold current  
VDD = VDDDR  
–40°C TA +50°C  
50°C < TA 85°C  
0.2 VDDDR  
0.2 VDDDR  
µA  
µA  
µs  
200  
Power supply voltage rise time  
Power supply voltage fall time  
tRVD  
tFVD  
tHVD  
200  
200  
0
µs  
Power supply voltage hold time  
(vs. STOP mode setting)  
ms  
STOP mode release signal input time tDREL  
0
0.9 VDDDR  
0
ns  
V
Data hold high-level input voltage  
Data hold low-level input voltage  
VIHDR  
VILDR  
Note  
Note  
VDDDR  
0.1 VDDDR  
V
Note P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/  
INTP121/SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1,  
P27/SCK1, P32/TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/  
SCK3, P112/TCLR14, P113/TI14, P114/INTP140 to P117/INTP143, RESET, NMI, MODE, X1  
Remark TYP. values are reference values for when TA = 25°C and VDD = 5.0 V.  
STOP mode setting (fifth clock after PSC register is set)  
V
DD  
V
DD  
V
DD  
VDDDR  
t
DREL  
t
HVD  
t
FVD  
t
RVD  
RESET (input)  
V
V
IHDR  
NMI (input)  
(Released at falling edge)  
IHDR  
NMI (input)  
(Released at rising edge)  
V
ILDR  
Data Sheet U12261EJ2V1DS00  
58  
µPD703003  
AC Characteristics (TA = –40 to +85°C, VDD = 5 V ±10%, VSS = 0 V)  
AC test input waveform  
(a) P02/TCLR11, P03/TI11, P04/INTP110toP07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/INTP121/  
SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, P32/  
TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/SCK3, P112/TCLR14,  
P113/TI14, P114/INTP140 to P117/INTP143, RESET, NMI, MODE, X1  
VDD  
0.8 VDD  
0.2 VDD  
0.8 VDD  
0.2 VDD  
Test points  
0 V  
(b) Pins other than those listed in (a) above  
2.4 V  
2.2 V  
2.2 V  
0.8 V  
Test points  
0.8 V  
0.4 V  
AC test output test points  
2.2 V  
0.8 V  
2.2 V  
0.8 V  
Test points  
Load condition  
DUT  
(Device Under Testing)  
CL = 50 pF  
Caution In cases where the load capacitance is greater than 50 pF due to the circuit configuration,  
insert a buffer or other element to reduce the device’s load capacitance to below 50 pF.  
Data Sheet U12261EJ2V1DS00  
59  
µPD703003  
(1) Clock timing  
Parameter  
Symbol  
<1> tCYX  
<2> tWXH  
<3> tWXL  
<4> tXR  
<5> tXF  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
20  
200  
7
MAX.  
Note 1  
250  
MIN.  
15  
150  
6
MAX.  
Note 1  
250  
X1 input cycle  
Direct mode  
ns  
ns  
PLL mode (PLL locked)  
Direct mode  
PLL mode  
X1 input high-level width  
X1 input low-level width  
X1 input rise time  
ns  
80  
7
60  
6
ns  
Direct mode  
PLL mode  
ns  
80  
60  
ns  
Direct mode  
PLL mode  
7
15  
7
10  
ns  
ns  
X1 input fall time  
Direct mode  
PLL mode  
7
7
ns  
15  
10  
ns  
CPU operating frequency  
φ
Direct mode  
PLL mode  
Note 2  
Note 3  
40  
25  
Note 2  
Note 3  
30  
33  
MHz  
MHz  
ns  
25  
33  
CLKOUT output cycle  
<6> tCYK  
<7> tWKH  
<8> tWKL  
<9> tKR  
Note 4  
Note 4  
CLKOUT input high-level width  
CLKOUT input low-level width  
CLKOUT input rise time  
0.5T – 5  
0.5T – 5  
0.5T – 5  
0.5T – 5  
ns  
ns  
5
5
5
5
ns  
CLKOUT input fall time  
<10> tKF  
<11> tDXK  
ns  
X1 ↓ → CLKOUT delay time  
Direct mode  
3
17  
3
17  
ns  
Notes 1. When using A/D converter  
When not using A/D converter  
2. When using A/D converter  
When not using A/D converter  
: 100 ns  
: DC  
: 5 MHz  
: 0 MHz  
3. Free-running oscillation frequency  
4. When using A/D converter  
When not using A/D converter  
: 200 ns  
: DC  
Remark T = tCYK  
Parameter  
Symbol  
Conditions  
PLL mode  
TYP.  
Units  
MHz  
Free-running oscillation frequency  
φP  
5
<1>  
<2>  
<3>  
X1 (input)  
<4>  
<11>  
<5>  
<6>  
<11>  
<7>  
<8>  
CLKOUT (output)  
<9>  
<10>  
Data Sheet U12261EJ2V1DS00  
60  
µPD703003  
(2) Input waveform  
(a) P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/  
INTP121/SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/  
SCK1, P32/TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/  
SCK3, P112/TCLR14, P113/TI14, P114/INTP140 to P117/INTP143, RESET, NMI, MODE  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
MAX.  
20  
MIN.  
MAX.  
20  
Input rise time  
Input fall time  
<12> tIR2  
<13> tIF2  
ns  
ns  
20  
20  
V
DD  
0.8 VDD  
0.8 VDD  
Input signal  
0.2 VDD  
<13>  
0.2 VDD  
0 V  
<12>  
(b) Pins other than those listed in (a) above  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
MAX.  
10  
MIN.  
MAX.  
10  
Input rise time  
Input fall time  
<14> tIR1  
<15> tIF1  
ns  
ns  
10  
10  
2.4 V  
0.4 V  
2.2 V  
2.2 V  
Input signal  
0.8 V  
<15>  
0.8 V  
<14>  
Data Sheet U12261EJ2V1DS00  
61  
µPD703003  
(3) Output waveform (other than CLKOUT)  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
MAX.  
12  
MIN.  
MAX.  
12  
Output rise time  
Output fall time  
<16> tOR  
<17> tOF  
ns  
ns  
12  
12  
2.2 V  
2.2 V  
Output signal  
0.8 V  
0.8 V  
<16>  
<17>  
(4) Reset timing  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
500  
MAX.  
MIN.  
500  
MAX.  
RESET high-level width  
RESET low-level width  
<18> tWRSH  
<19> tWRSL  
ns  
ns  
When power supply is ON  
and STOP mode has been  
released  
500 + TOST  
500 + TOST  
Other than when power  
supply is ON and STOP  
mode has been released  
500  
500  
ns  
Remark TOST: Oscillation stabilization time  
<18>  
<19>  
RESET (input)  
Data Sheet U12261EJ2V1DS00  
62  
µPD703003  
[MEMO]  
Data Sheet U12261EJ2V1DS00  
63  
µPD703003  
(5) Read timing (1/2)  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
MAX.  
20  
MIN.  
MAX.  
20  
CLKOUT↑ → address delay time <20> tDKA  
CLKOUT↑ → R/W, UBEN, LBEN delay time <78> tDKA2  
CLKOUT↑ → address float delay time <21> tFKA  
CLKOUT↓ → ASTB delay time <22> tDKST  
CLKOUT↑ → DSTB delay time <23> tDKD  
Data input setup time (to CLKOUT) <24> tSIDK  
Data input hold time (from CLKOUT) <25> tHKID  
WAIT setup time (to CLKOUT) <26> tSWTK  
WAIT hold time (from CLKOUT) <27> tHKWT  
Address hold time (from CLKOUT) <28> tHKA  
Address setup time (to ASTB) <29> tSAST  
Address hold time (from ASTB) <30> tHSTA  
DSTB↓ → address float delay time <31> tFDA  
Data input setup time (to address) <32> tSAID  
Data input setup time (to DSTB) <33> tSDID  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
+13  
15  
–2  
+13  
15  
3
3
–2  
+13  
+13  
–2  
+13  
+13  
–2  
–2  
7
7
5
5
8
8
5
5
0
0
0.5T – 10  
0.5T – 10  
0.5T – 10  
0.5T – 10  
0
0
(2 + n)T – 20  
(1 + n)T – 20  
(2 + n)T – 20  
(1 + n)T – 20  
ASTB↓ → DSTBdelay time  
<34> tDSTD  
0.5T – 10  
0
0.5T – 10  
0
Data input hold time (from DSTB) <35> tHDID  
DSTB↑ → address output delay time <36> tDDA  
(1 + i)T – 3  
0.5T – 10  
(1.5 + i)T – 10  
(1 + n)T – 10  
T – 10  
(1 + i)T – 3  
0.5T – 10  
(1.5 + i)T – 10  
(1 + n)T – 10  
T – 10  
DSTB↑ → ASTBdelay time  
DSTB↑ → ASTBdelay time  
DSTB low-level width  
<37> tDDSTH  
<38> tDDSTL  
<39> tWDL  
ASTB high-level width  
<40> tWSTH  
<41> tSAWT1  
<42> tSAWT2  
WAIT setup time (to address)  
n 1  
n 1  
n 1  
n 1  
1.5T – 20  
1.5T – 20  
(1.5 + n)T – 20  
(1.5 + n)T – 20  
WAIT hold time (from address) <43> tHAWT1  
<44> tHAWT2  
(0.5 + n)T  
(1.5 + n)T  
(0.5 + n)T  
(1.5 + n)T  
WAIT setup time (to ASTB)  
<45> tSSTWT1  
<46> tSSTWT2  
<47> tHSTWT1  
<48> tHSTWT2  
T – 15  
T – 15  
(1 + n)T – 15  
(1 + n)T – 15  
WAIT hold time (from ASTB)  
nT  
nT  
(1 + n)T  
(1 + n)T  
Remarks 1. T = tCYK  
2. n indicates the number of wait clocks that are inserted during a bus cycle. The sampling timing may  
vary when using the programmable wait insertion function.  
3. i indicates the number of idle states (0 or 1) that are inserted after a read cycle.  
4. Maintain at least one of the two data input hold times, either tHKID (<25>) or tHDID (<35>).  
Data Sheet U12261EJ2V1DS00  
64  
µPD703003  
(5) Read timing (2/2): 1 wait  
T1  
T2  
TW  
T3  
CLKOUT (output)  
<20>  
<28>  
A16 to A19 (output)  
<78>  
R/W (output)  
UBEN (output)  
LBEN (output)  
<32>  
<21>  
<24>  
<25>  
AD0 to AD15 (I/O)  
A0 to A15 (output)  
D0 to D15 (input)  
<35>  
<22>  
<29>  
<30>  
<22>  
ASTB (output)  
<37>  
<36>  
<40>  
<34> <31>  
<23>  
<23>  
<33>  
DSTB (output)  
<38>  
<39>  
<45> <26>  
<47>  
<27>  
<26>  
<27>  
<46>  
<48>  
WAIT (input)  
<41>  
<43>  
<42>  
<44>  
Remark Broken line indicates high impedance.  
Data Sheet U12261EJ2V1DS00  
65  
µPD703003  
(6) Write timing (1/2)  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
MAX.  
20  
MIN.  
MAX.  
20  
CLKOUT↑ → address delay time <20> tDKA  
CLKOUT↑ → R/W, UBEN, LBEN delay time <78> tDKA2  
CLKOUT↓ → ASTB delay time <22> tDKST  
CLKOUT↑ → DSTB delay time <23> tDKD  
WAIT setup time (to CLKOUT) <26> tSWTK  
WAIT hold time (from CLKOUT) <27> tHKWT  
Address hold time (from CLKOUT) <28> tHKA  
Address setup time (to ASTB) <29> tSAST  
Address hold time (from ASTB) <30> tHSTA  
3
–2  
3
–2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
+13  
+13  
+13  
+13  
+13  
+13  
–2  
–2  
–2  
–2  
8
8
5
5
0
0
0.5T – 10  
0.5T – 10  
0.5T – 10  
0.5T – 10  
(1 + n)T – 10  
T – 10  
0.5T – 10  
0.5T – 10  
0.5T – 10  
0.5T – 10  
(1 + n)T – 10  
T – 10  
ASTB↓ → DSTBdelay time  
DSTB↑ → ASTBdelay time  
DSTB low-level width  
<34> tDSTD  
<37> tDDSTH  
<39> tWDL  
ASTB high-level width  
<40> tWSTH  
<41> tSAWT1  
<42> tSAWT2  
WAIT setup time (to address)  
n 1  
n 1  
n 1  
n 1  
1.5T – 20  
1.5T – 20  
(1.5 + n)T – 20  
(1.5 + n)T – 20  
WAIT hold time (from address) <43> tHAWT1  
<44> tHAWT2  
(0.5 + n)T  
(1.5 + n)T  
(0.5 + n)T  
(1.5 + n)T  
WAIT setup time (to ASTB)  
<45> tSSTWT1  
<46> tSSTWT2  
<47> tHSTWT1  
<48> tHSTWT2  
T – 15  
T – 15  
(1 + n)T – 15  
(1 + n)T – 15  
WAIT hold time (from ASTB)  
nT  
nT  
(1 + n)T  
(1 + n)T  
CLKOUT↑ → data output delay time <49> tDKOD  
DSTB↓ → data output delay time <50> tDDOD  
Data output hold time (from CLKOUT) <51> tHKOD  
Data output setup time (to DSTB) <52> tSODD  
Data output hold time (from DSTB) <53> tHDOD  
20  
10  
20  
10  
0
0
(1 + n)T – 15  
T – 10  
(1 + n)T – 15  
T – 10  
Remarks 1. T = tCYK  
2. n indicates the number of wait clocks that are inserted during a bus cycle. The sampling timing may  
vary when using the programmable wait insertion function.  
Data Sheet U12261EJ2V1DS00  
66  
µPD703003  
(6) Write timing (2/2): 1 wait  
T1  
T2  
TW  
T3  
CLKOUT (output)  
<20>  
<28>  
A16 to A19 (output)  
<78>  
R/W (output)  
UBEN (output)  
LBEN (output)  
<49>  
<51>  
AD0 to AD15 (I/O)  
A0 to A15 (output)  
D0 to D15 (output)  
<22>  
<29>  
<30>  
<22>  
ASTB (output)  
DSTB (output)  
<23>  
<37>  
<53>  
<23>  
<50>  
<40>  
<34>  
<52>  
<39>  
<45> <26>  
<47>  
<46>  
<48>  
<27>  
<26>  
<27>  
WAIT (input)  
<41>  
<43>  
<42>  
<44>  
Remark Broken line indicates high impedance.  
Data Sheet U12261EJ2V1DS00  
67  
µPD703003  
(7) Bus hold timing (1/2)  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
MAX.  
MIN.  
MAX.  
HLDRQ setup time (to CLKOUT) <54> tSHQK  
HLDRQ hold time (from CLKOUT) <55> tHKHQ  
CLKOUT↑ → HLDAK delay time <56> tDKHA  
8
5
8
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
HLDRQ high-level width  
HLDAK low-level width  
<57> tWHQH  
<58> tWHAL  
T + 10  
T – 10  
T + 10  
T – 10  
CLKOUT↑ → bus float delay time <59> tDKF  
HLDAK↑ → bus output delay time <60> tDHAC  
HLDRQ↓ → HLDAKdelay time <61> tDHQHA1  
HLDRQ↑ → HLDAKdelay time <62> tDHQHA2  
20  
20  
–3  
–3  
(2n + 7.5)T + 20  
(2n + 7.5)T + 20  
0.5T 1.5T + 20 0.5T 1.5T + 20  
Remarks 1. T = tCYK  
2. n indicates the number of wait clocks that are inserted during a bus cycle. The sampling timing may  
vary when using the programmable wait insertion function.  
Data Sheet U12261EJ2V1DS00  
68  
µPD703003  
(7) Bus hold timing (2/2)  
TH  
TH  
TH  
TH  
TI  
CLKOUT (output)  
<54>  
<54><55>  
<57>  
HLDRQ (input)  
<56>  
<56>  
<61>  
<62>  
HLDAK (output)  
<58>  
<60>  
<59>  
A16 to A19 (output)Note  
D0 to D15  
(input or output)  
AD0 to AD15 (I/O)  
ASTB (output)  
DSTB (output)  
R/W (output)  
Note UBEN (output), LBEN (output)  
Remark Broken line indicates high impedance.  
Data Sheet U12261EJ2V1DS00  
69  
µPD703003  
(8) Interrupt timing  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
500  
500  
MAX.  
MIN.  
500  
MAX.  
NMI high-level width  
NMI low-level width  
INTPn high-level width  
<63> tWNIH  
<64> tWNIL  
<65> tWITH  
ns  
ns  
ns  
500  
n = 110 to 113, 120 to 123, 3T + 10  
130 to 133, 140 to 143  
3T + 10  
INTPn low-level width  
<66> tWITL  
n = 110 to 113, 120 to 123, 3T + 10  
130 to 133, 140 to 143  
3T + 10  
ns  
Remark T = tCYK  
<63>  
<64>  
NMI (input)  
<65>  
<66>  
INTPn (input)  
Remark n = 110 to 113, 120 to 123, 130 to 133, 140 to 143  
Data Sheet U12261EJ2V1DS00  
70  
µPD703003  
[MEMO]  
Data Sheet U12261EJ2V1DS00  
71  
µPD703003  
(9) CSI timing (1/2)  
(a) Master mode  
(i) Timing of CSI0 to CSI2  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
160  
MAX.  
MIN.  
120  
MAX.  
SCKn cycle  
<67> tCYSK1  
<68> tWSKH1  
<69> tWSKL1  
<70> tSSISK1  
<71> tHSKSI1  
Output  
Output  
Output  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKn high-level width  
0.5tCYSK1 – 20  
0.5tCYSK1 – 20  
50  
0.5tCYSK1 – 20  
0.5tCYSK1 – 20  
50  
SCKn low-level width  
SIn setup time (to SCKn)  
SIn hold time (from SCKn)  
0
0
SOn output delay time (to SCKn) <72> tDSKSO1  
SOn output hold time (from SCKn) <73> tHSKSO1  
18  
18  
0.5tCYSK1 – 5  
0.5tCYSK1 – 5  
Remark n = 0 to 2  
(ii) Timing of CSI3  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
500  
MAX.  
MIN.  
500  
MAX.  
SCK3 cycle  
<67> tCYSK3  
<68> tWSKH3  
<69> tWSKL3  
<70> tSSISK3  
<71> tHSKSI3  
Output  
Output  
Output  
RL = 1.5 kΩ  
CL = 50 pF  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK3 high-level width  
0.5tCYSK3 – 150  
0.5tCYSK3 – 70  
100  
0.5tCYSK3 – 150  
0.5tCYSK3 – 70  
100  
SCK3 low-level width  
SI3 setup time (to SCK3)  
SI3 hold time (from SCK3)  
50  
50  
SO3 output delay time (to SCK3) <72> tDSKSO3  
SO3 output hold time (from SCK3) <73> tHSKSO3  
RL = 1.5 kΩ  
150  
150  
CL = 50 pF  
tWSKH3  
tWSKH3  
Remark RL and CL are the load resistance and load capacitance of the output line for SCK3 and SO3.  
(b) Slave mode  
(i) Timing of CSI0 to CSI2  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
160  
50  
MAX.  
MIN.  
120  
30  
MAX.  
SCKn cycle  
<67> tCYSK2  
<68> tWSKH2  
<69> tWSKL2  
<70> tSSISK2  
<71> tHSKSI2  
Input  
Input  
Input  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKn high-level width  
SCKn low-level width  
50  
30  
SIn setup time (to SCKn)  
SIn hold time (from SCKn)  
10  
10  
10  
10  
SOn output delay time (to SCKn) <72> tDSKSO2  
SOn output hold time (from SCKn) <73> tHSKSO2  
45  
45  
tWSKH2  
tWSKH2  
Remark n = 0 to 2  
Data Sheet U12261EJ2V1DS00  
72  
µPD703003  
(9) CSI timing (2/2)  
(ii) Timing of CSI3  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
500  
100  
180  
100  
50  
MAX.  
MIN.  
500  
100  
180  
100  
50  
MAX.  
SCK3 cycle  
<67> tCYSK4  
<68> tWSKH4  
<69> tWSKL4  
<70> tSSISK4  
<71> tHSKSI4  
Input  
Input  
Input  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK3 high-level width  
SCK3 low-level width  
SI3 setup time (to SCK3)  
SI3 hold time (from SCK3)  
SO3 output delay time (to SCK3) <72> tDSKSO4  
SO3 output hold time (from SCK3) <73> tHSKSO4  
RL = 1.5 kΩ  
150  
150  
CL = 50 pF  
tWSKH4  
tWSKH4  
Remark RL is the load resistance and CL is the load capacitance of the output line for SCK3 and SO3.  
<67>  
<69>  
<68>  
SCKn (I/O)  
<70>  
<71>  
SIn (Input)  
Input data  
<72>  
<73>  
SOn (output)  
Output data  
Remarks 1. Broken line indicates high impedance.  
2. n = 0 to 3  
Data Sheet U12261EJ2V1DS00  
73  
µPD703003  
(10) RPU timing  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
MAX.  
MIN.  
MAX.  
TI1n high-level width  
TI1n low-level width  
<74> tWTIH  
<75> tWTIL  
<76> tWTCH  
<77> tWTCL  
3T + 10  
3T + 10  
3T + 10  
3T + 10  
3T + 10  
3T + 10  
3T + 10  
3T + 10  
ns  
ns  
ns  
ns  
TCLR1n high-level width  
TCLR1n low-level width  
Remark T = tCYK  
<74>  
<75>  
TI1n (input)  
<76>  
<77>  
TCLR1n (input)  
Remark n = 1 to 4  
Data Sheet U12261EJ2V1DS00  
74  
µPD703003  
A/D Converter Characteristics (TA = –40 to +85°C, VDD = AVDD = 5 V ±10%, VSS = AVSS = 0 V)  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
TYP.  
MAX.  
MIN.  
TYP.  
MAX.  
Resolution  
10  
10  
bit  
±0.55 %FSR  
±0.7 %FSR  
Note 1  
Total error  
4.5 V AVREF1 AVDD  
3.5 V AVREF1 AVDD  
±0.55  
±0.7  
±1/2  
Quantization error  
Conversion time  
±1/2  
LSB  
tCYK  
tCYK  
tCYK  
tCYK  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
V
tCONV  
4.5 V AVREF1 AVDD  
3.5 V AVREF1 AVDD  
4.5 V AVREF1 AVDD  
3.5 V AVREF1 AVDD  
4.5 V AVREF1 AVDD  
3.5 V AVREF1 AVDD  
4.5 V AVREF1 AVDD  
3.5 V AVREF1 AVDD  
4.5 V AVREF1 AVDD  
3.5 V AVREF1 AVDD  
48  
48  
8
60  
60  
10  
10  
Sampling time  
tSAMP  
8
Note 1  
Zero scale error  
±3.0  
±3.0  
±1.5  
±1.5  
±1.5  
±1.5  
±4.5  
±5.5  
±2.5  
±4.5  
±3.5  
±4.5  
±3.0  
±3.0  
±1.5  
±1.5  
±1.5  
±1.5  
±4.5  
±5.5  
±2.5  
±4.5  
±3.5  
±4.5  
Note 1  
Full scale error  
Nonlinearity error  
Analog input  
Note 1  
VIAN  
–0.3  
3.5  
AVDD  
–0.3  
3.5  
AVDD  
Note 2  
voltage  
+0.3  
+0.3  
Reference voltage  
AVREF1 current  
AVREF1  
AIREF1  
AIDD  
AVDD  
3.0  
AVDD  
3.0  
V
1.2  
2.3  
1.2  
2.3  
mA  
mA  
AVDD power supply  
current  
6.0  
6.0  
Notes 1. Does not include quantization error.  
2. When VIAN = 0, the conversion result becomes 000H.  
When 0 < VIAN < AVREF1, conversion has 10-bit resolution.  
When AVREF1 VIAN AVDD, the conversion result becomes 3FFH.  
Data Sheet U12261EJ2V1DS00  
75  
µPD703003  
D/A Converter Characteristics (TA = –40 to +85°C, VDD = AVDD = 5 V ±10%, VSS = AVSS = 0 V)  
Parameter  
Symbol  
Conditions  
25-MHz Version  
33-MHz Version  
Units  
MIN.  
TYP.  
MAX.  
MIN.  
TYP.  
MAX.  
Resolution  
8
8
bit  
%
Total error  
Load condition: 2 M, 30 pF  
AVREF2 = VDD  
0.8  
0.8  
AVREF3 = 0  
Load condition: 2 M, 30 pF  
AVREF2 = 0.75 VDD  
1.0  
0.6  
0.8  
10  
1.0  
0.6  
0.8  
10  
%
%
%
AVREF3 = 0.25 VDD  
Load condition: 4 M, 30 pF  
AVREF2 = VDD  
AVREF3 = 0  
Load condition: 4 M, 30 pF  
AVREF2 = 0.75 VDD  
AVREF3 = 0.25 VDD  
Settling time  
Load condition: 2 M, 30 pF  
µs  
kΩ  
V
Output resistance  
AVREF2 input voltage  
AVREF3 input voltage  
RO  
10  
5
10  
5
AVREF2  
AVREF3  
0.75 VDD  
VDD  
0.75 VDD  
VDD  
0
2
0.25 VDD  
0
2
0.25 VDD  
V
AVREF2 to AVREF3  
RAIREF DACS0, DACS1 = 55H  
kΩ  
resistance value  
Data Sheet U12261EJ2V1DS00  
76  
µPD703003  
17. PACKAGE DRAWINGS  
100 PIN PLASTIC QFP (FINE PITCH) ( 14)  
A
B
75  
76  
51  
50  
detail of lead end  
S
C
D
R
Q
100  
1
26  
25  
F
J
M
G
H
I
K
P
L
N
S
S
M
NOTE  
1. Controlling dimension  
ITEM MILLIMETERS  
INCHES  
millimeter.  
A
B
16.0±0.2  
14.0±0.2  
0.630±0.008  
+0.009  
0.551  
–0.008  
2. Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
+0.009  
0.551  
C
14.0±0.2  
–0.008  
D
F
16.0±0.2  
1.0  
0.630±0.008  
0.039  
G
1.0  
0.039  
+0.05  
0.22  
H
0.009±0.002  
–0.04  
I
0.10  
0.004  
J
0.5 (T.P.)  
0.020 (T.P.)  
+0.009  
0.039  
K
L
1.0±0.2  
0.5±0.2  
–0.008  
+0.008  
0.020  
–0.009  
+0.03  
0.17  
+0.001  
0.007  
M
–0.07  
–0.003  
N
P
0.10  
0.004  
+0.003  
0.057  
1.45±0.05  
–0.002  
Q
R
S
0.125±0.075  
5°±5°  
0.005±0.003  
5°±5°  
1.7 MAX.  
0.067 MAX.  
P100GC-50-7EA-3  
Data Sheet U12261EJ2V1DS00  
77  
µPD703003  
18. RECOMMENDED SOLDERING CONDITIONS  
The µPD703003 should be soldered and mounted under the following recommended conditions.  
For the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology  
Manual (C10535E).  
For soldering methods and conditions other than those recommended below, contact your NEC sales represen-  
tative.  
Table 18-1. Soldering Conditions  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Symbol  
IR35-107-2  
Package peak temperature: 235°C, Reflow time: 30 seconds or  
below (210°C or higher), Number of reflow processes: 2 max.,  
Note  
Exposure limit: 7 days  
(after that, prebaking is necessary at  
125°C for 10 hours)  
Package peak temperature: 215°C, Reflow time: 40 seconds or  
VPS  
VP15-107-2  
below (200°C or higher), Number of reflow processes: 2 max.,  
Note  
Exposure limit: 7 days  
(after that, prebaking is necessary at  
125°C for 10 hours)  
Pin temperature: 300°C or below, Time: 3 seconds or below  
Partial heating  
(per side of device)  
Note Exposure limit after dry-pack is opened. Storage conditions: temperature of 25°C and relative humidity  
of 65% or less.  
Caution Do not use different soldering methods together (except for partial heating).  
Data Sheet U12261EJ2V1DS00  
78  
µPD703003  
[MEMO]  
Data Sheet U12261EJ2V1DS00  
79  
µPD703003  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Production  
process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed immediately  
after power-on for devices having reset function.  
Data Sheet U12261EJ2V1DS00  
80  
µPD703003  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 2886-9022/9044  
Fax: 408-588-6130  
800-729-9288  
Fax: 040-2444580  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
Tel: 02-528-0303  
Fax: 02-528-4411  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
Fax: 01-30-67 58 99  
Fax: 0211-65 03 490  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 65-253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
Fax: 65-250-3583  
Tel: 91-504-2787  
Fax: 01908-670-290  
Fax: 91-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
NEC Electronics Italiana s.r.l.  
Milano, Italy  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Tel: 02-66 75 41  
Fax: 02-2719-5951  
Taeby, Sweden  
Fax: 02-66 75 42 99  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Fax: 08-63 80 388  
Electron Devices Division  
Rodovia Presidente Dutra, Km 214  
07210-902-Guarulhos-SP Brasil  
Tel: 55-11-6465-6810  
Fax: 55-11-6465-6829  
J99.1  
Data Sheet U12261EJ2V1DS00  
81  
µPD703003  
RELATED DOCUMENTS µPD703003A, 703004A, 703025A Data Sheet (Under preparation)  
µPD70F3003 Data Sheet (U12036E)  
µPD70F3003A, 70F3025A Data Sheet (U13189E)  
V850 Family, Instruction Table (U10229J)Note  
Note Japanese version  
The related documents indicated in this publication may include preliminary version. However, preliminary versions  
are not marked as such.  
V850 Family and V853 are trademarks of NEC Corporation.  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights  
or other intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated “quality assurance program“ for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98.8  

相关型号:

UPD703003GC-25

V853TM 32/16-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD703003GC-25-XXX-7EA

RISC Microcontroller, 32-Bit, MROM, MOS, PQFP100, 14 X 14 MM, FINE PITCH, PLASTIC, QFP-100
NEC

UPD703003GC-33

V853TM 32/16-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD703003GC-33-XXX-7EA

RISC Microcontroller, 32-Bit, MROM, MOS, PQFP100, 14 X 14 MM, FINE PITCH, PLASTIC, QFP-100
NEC

UPD703004A

V853TM 32-/16-BIT SINGLE-CHIP MICROCONTROLLERS
NEC

UPD703004AGC-25

V853TM 32-/16-BIT SINGLE-CHIP MICROCONTROLLERS
NEC

UPD703004AGC-25-XXX-8E

32-Bit Microcontroller
ETC

UPD703004AGC-25-XXX-8EU

RISC Microcontroller, 32-Bit, MROM, 25MHz, MOS, PQFP100, 14 X 14 MM, FINE PITCH, PLASTIC, LQFP-100
RENESAS

UPD703004AGC-33

V853TM 32-/16-BIT SINGLE-CHIP MICROCONTROLLERS
NEC

UPD703004AGC-33-XXX-8E

32-Bit Microcontroller
ETC

UPD703004AGC-33-XXX-8EU

32-BIT, MROM, 33MHz, MICROCONTROLLER, PQFP100, 14 X 14 MM, FINE PITCH, PLASTIC, LQFP-100
RENESAS

UPD703004AGC-33-XXX-8EU-A

RISC Microcontroller, 32-Bit, MROM, 33MHz, MOS, PQFP100, 14 X 14 MM, FINE PITCH, PLASTIC, LQFP-100
NEC