UPD72001L-11 [NEC]

MULTI-PROTOCOL SERIAL CONTROLLERS; 多协议串行控制器
UPD72001L-11
型号: UPD72001L-11
厂家: NEC    NEC
描述:

MULTI-PROTOCOL SERIAL CONTROLLERS
多协议串行控制器

微控制器和处理器 串行IO控制器 通信控制器 外围集成电路
文件: 总40页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD72001-11, 72001-A8  
MULTI-PROTOCOL SERIAL CONTROLLERS  
DESCRIPTION  
The µPD72001-11 is an MPSC (Multi-Protocol Serial Controller) which is a general-purpose communication LSI  
equipped with two sets of bidirectional parallel/serial converter circuits for data communication. This controller has  
a transmitter function to convert the parallel data output by a data terminal into serial data and transmit this data to  
a data transmission system such as a modem, and a receiver function to convert the serial data output by the data  
transmission system into parallel data.  
The MPSC can be used with data communications equipment with a variety of communication modes such as the  
generally and widely used start-stop synchronization mode, and the HDLC mode which is used for high-speed  
communication.  
The µPD72001-A8 is a low-voltage model.  
For this product, the following documents are separately available. Read these documents as well as this Data  
Sheet.  
User’s Manual (S12472E)  
(I) (S12753E)  
Application Notes  
(II) (On preparation)  
(III) (On preparation)  
FEATURES  
• Two sets of parallel/serial circuits supporting three modes: start-stop synchronization, character synchronization,  
and bit synchronization modes  
Easy application to a system supporting two or more communication protocols such as a protocol converter or  
ISDN terminal adapter  
DPLL (Digital Phase Locked Loop), baud rate generator, and crystal oscillation circuit for transmission/reception  
clock  
Helps reduce cost by decreasing the number of external circuits  
Many variations with power-saving features and small package size  
Easy application to portable terminals and high-accuracy portable terminals  
The features common to the µPD72001-11 and 72001-A8 are explained as the features of the MPSC in this  
document.  
The information in this document is subject to change without notice.  
Document No. S12184EJ7V0DS00 (7th edition)  
Date Published November 1997 N  
Printed in Japan  
The mark  
shows major revised points.  
1997  
©
µPD72001-11, 72001-A8  
ORDERING INFORMATION  
Part Number  
µPD72001C-11  
Package  
40-pin plastic DIP (600 mil)  
µPD72001G-11-22  
µPD72001GC-11-3B6  
µPD72001L-11  
44-pin plastic QFP (10 × 10 mm) (resin thickness: 1.45 mm)  
52-pin plastic QFP (14 × 14 mm) (resin thickness: 2.7 mm)  
52-pin plastic QFJ (750 × 750 mil)  
µPD72001C-A8  
40-pin plastic DIP (600 mil)  
µPD72001G-A8-22  
µPD72001GC-A8-3B6  
44-pin plastic QFP (10 × 10 mm) (resin thickness: 1.45 mm)  
52-pin plastic QFP (14 × 14 mm) (resin thickness: 2.7 mm)  
2
µPD72001-11, 72001-A8  
SPECIFICATIONS  
Item  
Part number  
Specifications  
µPD72001-11  
µPD72001-A8  
Supply voltage  
5 V ±10 %  
3.3 V ±0.3 V  
System clock frequency  
11 MHz MAX.  
8 MHz MAX. (at TA = –10 to +70 °C)  
7.14 MHz MAX. (at TA = –40 to +85 °C)  
Maximum transfer rate  
2.2 Mbps  
CMOS  
1.6 Mbps (at TA = –10 to +70 °C)  
1.43 Mbps (at TA = –40 to +85 °C)  
Process  
Internal circuit  
Parallel/serial converter circuit: Full-duplex channel × 2  
Transmit buffer : Double  
Receive buffer : Quadruple  
Interrupt control function  
DMA request signal output: 2 for transmission, 2 for reception  
Overrun error detection  
DPLL  
Baud rate generator  
Crystal oscillation circuit for transmission/reception clock generation  
Self-loopback test function  
Standby function  
General-purpose I/O pin: 4 pins × 2  
Communication protocol  
Start-stop  
Character bit length: 5, 6, 7, 8  
Stop bit length: 1, 1.5, 2  
Clock rate: ×1, ×16, ×32, ×64  
Parity generation, check  
Framing error detection  
synchronization  
Break generation, detection  
COP  
Operation mode: Mono-sync, Bi-sync, External sync  
Character bit length: 5, 6, 7, 8  
(Character  
Oriented  
Protocol)  
SYNC character bit length: 6, 8  
Character synchronization: Internal/external  
BCS (Block Check Sequence) generation, check:  
CRC-16  
CRC-CCITT  
Parity generation, check  
SYNC character automatic transmission, detection, rejection  
BOP  
Operation mode:  
(Bit Oriented  
Protocol)  
HDLC (High-level Data Link Control)  
SDLC (Synchronous Data Link Control)  
SDLC Loop  
Flag transmission, detection  
Zero insertion, rejection  
Address field detection (1 byte)  
FCS (Frame Check Sequence) generation, detection  
Short frame detection  
Abort automatic transmission, detection  
Idle detection  
Go Ahead detection  
Transmit number data control  
Processing data format  
Encode/decode of NRZ (Non-Return to Zero)  
Encode/decode of NRZI (Non-Return to Zero Inverted)  
Encode/decode of FM (Frequency Modulation)  
Decode in Manchester mode  
3
µPD72001-11, 72001-A8  
PIN CONFIGURATION (Top View)  
• 40-pin plastic DIP (600 mil) : µPD72001C-11, µPD72001C-A8  
DCDA  
D7  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
CTSA  
DA  
XI1A/STR  
XI2A/SYNCA  
TR CA  
DA  
R
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
CA  
X
T
X
RTSA  
DRQR  
X
A
9
RESET  
CLK  
GND  
WR  
RD  
C/D  
B/A  
PRO  
PRI  
INTAK  
INT  
CTSB  
DCDB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VDD  
DRQT  
XA  
DTRA/DRQT B  
X
DTRB/DRQR  
RTSB  
X
B
TX  
DB  
XI2B/SYNCB  
XI1B/STR CB  
DB  
TR CB  
X
RX  
X
• 44-pin plastic QFP (10 × 10 mm) : µPD72001G-11-22, µPD72001G-A8-22  
44 43 42 41 40 39 38 37 36 35 34  
RTSB  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PRO  
B/A  
C/D  
RD  
DTRB/DRQR  
DTRA/DRQT  
DRQT  
XB  
XB  
XA  
2
3
4
V
DD  
5
WR  
GND  
GND  
D0  
VDD  
6
CLK  
7
RESET  
8
DRQR  
RTSA  
DA  
XA  
9
D1  
10  
D2  
T
X
11  
D3  
12 13 14 15 16 17 18 19 20 21 22  
IC: Internally Connected (Leave this pin unconnected)  
4
µPD72001-11, 72001-A8  
• 52-pin plastic QFP (14 × 14 mm) : µPD72001GC-11-3B6, µPD72001GC-A8-3B6  
52 51 50 49 48 47 46 45 44 43 42 41 40  
TXDA  
1
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
RTSB  
TXDB  
TRXCA  
2
XI2A/SYNCA  
3
XI2B/SYNCB  
XI1B/STRXCB  
RXDB  
XI1A/STRXCA  
4
RXCA  
CTSA  
IC  
5
6
TRXCB  
IC  
7
DCDA  
D7  
8
DCDB  
CTSB  
INT  
9
D6  
10  
11  
12  
13  
D5  
INTAK  
PRI  
D4  
D3  
PRO  
14 15 16 17 18 19 20 21 22 23 24 25 26  
NC: No Connection  
IC : Internally Connected (Leave this pin unconnected.)  
• 52-pin plastic QFJ (750 × 750 mil) : µPD72001L-11  
7
6
5
4
3
2
1 52 51 50 49 48 47  
46  
D2  
NC  
8
9
NC  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
RTSA  
D1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DRQRXA  
NC  
NC  
D0  
RESET  
CLK  
GND  
GND  
WR  
RD  
VDD  
VDD  
DRQTXA  
DTRA/DRQTXB  
NC  
C/D  
NC  
B/A  
NC  
DTRB/DRQRXB  
NC  
21 22 23 24 25 26 27 28 29 30 31 32 33  
5
System CLK  
CLK/Stby  
Cont.  
CLK  
Ch.B  
DB  
Buf.  
D7-0  
Internal Bus  
CR  
BRG  
-H,L  
SR  
12-15  
CR/SR  
8-9  
CR  
6-7  
T
Buf.  
X
RD  
WR  
Cont.  
Sign.  
SR0  
R
X
0-5  
10-15  
RD/WR  
Cont.  
0-3 4-7  
Buf.  
T
X
RX  
CLK  
C/D  
SR1-4  
10-11  
B/A  
BRG  
DPLL  
RESET  
T
X
RX  
Cont.  
Transmitter  
R
X
CLK  
CLK  
DRQR  
XA  
XA  
XB  
XB  
T
X
R
X
CLK  
Cont.  
T
X
DMA  
Cont.  
DRQT  
DTRB/DRQR  
DTRA/DRQT  
µ
OSC  
Receiver  
INT  
INTAK  
PRI  
INT  
Ch.A  
Cont.  
PRO  
Interface  
Cont.  
µPD72001-11, 72001-A8  
1. PIN FUNCTIONS  
The functions of the MPSC can be broadly classified into “system interface functions” that control interfacing with  
the host system, and “transmission/reception functions” to transmit or receive data. This section explains the functions  
of the pins of the MPSC by classifying the pins into those related to system interfacing and those related to transmission  
and reception.  
Hereafter, “H” (voltage level satisfying VIH in the case of an input pin, or voltage level satisfying VOH in the case  
of an output pin) and “L” (voltage level satisfying VIL in the case of an input pin, or voltage level satisfying VOL in the  
case of an output pin) are used to indicate the input/output status of a pin.  
1.1 Pins Related to System Interface  
(1) VDD  
Supply voltage pin  
(2) GND  
GND pin  
(3) RESET ... Input  
This pin inputs a signal from an external device to reset the MPSC. When “L” is input to this pin for the duration  
of 2 clock cycles (2tCYK) or longer, the MPSC is reset (this is called system reset).  
As a result of system reset, the transmitter, receiver, and interrupt/DMA functions of the MPSC are disabled, and  
the TXD pin and general-purpose output pins go high. In this case, because all bits of the control register (CR)  
are also reset, CR must be set again if a system reset has been executed.  
Table 1-1 shows the status of each pin at system reset, in comparison with the pin status at channel reset (CR0:  
D5, D4, D3 = “0, 1, 1”).  
The MPSC automatically enters the standby mode at system reset, lowering the power consumption from that  
in the normal operation mode.  
7
µPD72001-11, 72001-A8  
Table 1-1. Pin Status at Reset  
Pin Status  
Pin Name  
I/O  
RESET (system reset)  
Channel reset  
WR  
RD  
I
I
B/A  
I
C/D  
I
D7 to D0  
INT  
I/O  
O
I
High impedance  
High impedance  
INTAK  
PRI  
I
PRO  
O
O
O
O
Depends on PRI  
Depends on PRI  
DRQTXA  
DRQRXA  
“L”  
“L”  
“L”  
“L”  
DTRA/DRQTXB,  
DTRB/DRQRXB  
DTR function, “H”  
Retains current status  
TXDA, TXDB  
RXDA, RXDB  
O
I
“H”  
“H”  
TRXCA, TRXCB  
I/O  
I
Input status  
Retains current status  
XI1A/STRXCA  
XI1B/STRXCB  
XI2A/SYNCA  
XI2B/SYNCB  
I/O  
Input status  
Retains current status  
RTSA, RTSB  
CTSA, CTSB  
DCDA, DCDB  
O
I
“H”  
“H”  
I
– : Undefined  
(4) CLK (System Clock) ... Input  
This pin inputs the system clock. The input frequency must be five times that of the data transfer rate or higher.  
(5) WR (Write) ... Input  
This pin inputs a write control signal for control words and transmit data. This pin is active-low.  
(6) RD (Read) ... Input  
This pin inputs a read control signal for status and receive data. This pin is active-low.  
(7) B/A (Channel B/Channel A) ... Input  
This pin inputs a signal to select a channel to be accessed when data is written or read. When this pin is “L”,  
channel A is selected; when it is “H”, channel B is selected.  
(8) C/D (Control/Data) ... Input  
This pin inputs a signal that determines the type of the data on the data bus when the data is written or read.  
8
µPD72001-11, 72001-A8  
Table 1-2 shows the selection operations by WR, RD, B/A, and C/D.  
Table 1-2. MPSC Control Signals and Operations  
WR RD B/A C/D  
Operation  
L
H
L
H
L
H
L
L
Channel A  
Channel B  
Channel A  
Channel B  
Channel A  
Channel B  
Channel A  
Channel B  
Writes transmit data to TX buffer  
Reads receive data from RX buffer  
Writes control register  
L
L
H
L
H
L
H
H
H
L
H
Reads status register  
H
×
H
L
H
L
×
×
High-impedance state or INTAK sequence  
Setting prohibited  
×
× : Don’s Care  
(9) D7 through D0 (Data Bus) ... I/O  
These pins constitute a three-state 8-bit bidirectional data bus. This data bus is connected to the data bus of  
the host processor to transfer control words, status, and transmit/receive data.  
(10) INT (Interrupt) ... Output (open drain)  
This pin outputs an interrupt request signal. If an interrupt occurs in the MPSC, it goes low (active). Because  
this is an open-drain output pin, it must be pulled up.  
(11) INTAK (Interrupt Acknowledge) ... Input  
This pin inputs a signal to acknowledge interrupt request signals issued by the MPSC. This pin is active-low.  
This pin is used when the vector mode (CR2A: D7 = “1”) is selected, and must be pulled up to “H” when the non-  
vector mode (CR2A: D7 = “0”) is selected.  
(12) PRI (Priority Input) ... Input  
This input pin is used for an interrupt generation request signal and for an output control signal for interrupt vectors.  
In the normal operation mode, this pin provides an interrupt generation control function. During the INTAK  
sequence, it provides an output control function for interrupt vectors. How this pin is used differs depending on  
the interrupt mode.  
(a) In vector mode (CR2A: D7 = “1”)  
In the normal operation mode, the PRI pin is used to control generation of interrupts. When interrupt vector  
output mode of Type A-3 or Type B-2 (CR2A: D5, D4, D3 = “0, 1, 0” or “1, 0, 0”) is selected, interrupts can  
be generated regardless of whether the PRI pin is “L” or “H”.  
If any other interrupt vector output mode is selected, the PRI pin must be kept “L” to enable generation of  
interrupts.  
During the INTAK sequence, an interrupt vector is output if “L” is input to the PRI pin in any interrupt vector  
output mode, and output of the interrupt vector is disabled if “H” is input to PRI.  
9
µPD72001-11, 72001-A8  
(b) Non-vector mode (CR2A: D7 = “0”)  
In this mode, the PRI pin controls only the generation of interrupts because the INTAK sequence is not used.  
If an interrupt vector output mode other than Type A-3 and Type B-2 is selected, generation of an interrupt  
signal is enabled if “L” is input to the PRI pin. The interrupt signal is not generated if “H” is input to PRI.  
If an interrupt daisy chain is configured, inputting “L” to this pin indicates that a device having a higher priority  
does not acknowledge interrupt processing or does not have an interrupt request, and only the MPSC with  
“L” input to its PRI pin can generate an interrupt.  
(13) PRO (Priority Output) ... Output  
This pin is used when an interrupt daisy chain is configured. This output pin is active-low, and controls generation  
of interrupts requests from a device with a lower priority. Usually, this pin is used along with the PRI pin, and  
its operation is as follows:  
When PRI = “H”, PRO = “H”  
When PRI = “L”, PRO goes “H” if there is an interrupt request, and goes “L” if there is no interrupt request.  
(14) DRQTXA (DMA Request TXA) ... Output  
This pin outputs a DMA request to a DMA controller. This pin is active-high. It goes “H” if the transmitter of channel  
A has entered the TX Buffer Empty status. The condition under which this pin goes “H” differs as follows depending  
on the setting of the CR1 and D2 bits.  
CR1: D2 = “0”: The DRQTXA pin goes “H” when the transmitter has entered the TX Buffer Empty status after  
the first transmit data has been written. It does not go “H” when the transmitter has entered  
the TX Buffer Empty status after reset.  
CR1: D2 = “1”: The DRQTXA pin goes “H” when the transmitter has entered the TX Buffer Empty status.  
This signal is reset when transmit data has been written to channel A.  
(15) DRQRXA (DMA Request RXA) ... Output  
This pin outputs a DMA request to a DMA controller. This pin is active-high and goes “H” if the receiver of channel  
A has entered the RX Character Available status. This signal is reset only when receive data has been read from  
channel A.  
(16) DTRA/DRQTXB (Data Terminal Ready A/DMA Request TXB) ... Output  
The function of this pin is changed as follows depending on the setting of CR2A: D1 and D0.  
(a) When CR2A: D1, D0 = “0, 0” or “0, 1”  
This pin functions as the DTRA pin. This pin is a general-purpose output pin and can be used to control a  
modem, etc. The operation of the DTRA pin is as follows:  
When CR5A: D7 = “0”, DTRA = “H”  
When CR5A: D7 = “1”, DTRA = “L”  
(b) When CR2A: D1, D0 = “1, 0”  
This pin functions as the DRQTXB output pin. The function of this pin is the same as the DRQTXA pin, except  
this pin is used with channel B.  
(17) DTRB/DRQRXB (Data Terminal Ready B/DMA Request RXB) ... Output  
The function of this pin changes as follows depending on the setting of CR2A: D1 and D0.  
10  
µPD72001-11, 72001-A8  
(a) When CR2A: D1, D0 = “0, 0” or “0, 1”  
This pin functions as the DTRB output pin. The function of this pin is the same as the DTRA pin, except this  
pin is used with channel B.  
(b) When CR2A: D1, D0 = “1, 0”  
This pin functions as the DRQRXB output pin. The function of this pin is the same as the DRQRxA pin, except  
this pin is used with channel B.  
(18) CTSA (Clear to Send A) and CTSB (Clear to Send B) ... Input  
This pin is a general-purpose input pin and can be used to control a modem, etc. Changes in the status of this  
pin affect the latching operation of the E/S bit. When E/S INT is enabled (CR1: D0 = “1”), the E/S interrupt is  
generated.  
If the Auto Enable mode (CR3: D5 = “1”) is set, the transmitter can be controlled by using the TX Enable bit (CR5:  
D3) and this pin. This is illustrated in Table 1-3.  
Table 1-3. Auto Enable Mode and CTS Pin  
CTS Pin  
TX Enable Bit  
Transmitter Status  
Enabled  
L
H
1
1
0
Disabled  
H or L  
Disabled  
(19) DCDA (Data Carrier Detect A) ... Input  
DCDB (Data Carrier Detect B) ... Input  
These are general-purpose input pins and can be used to control a modem, etc. Changes in the status of this  
pin affect the latching operation of the E/S bit. When E/S INT is enabled (CR1: D0 = “1”), the E/S interrupt is  
generated.  
If the Auto Enable mode (CR3: D5 = “1”) is set, the receiver can be controlled by using the RX Enable bit (CR3:  
D0) and this pin. This is illustrated in Table 1-4.  
Table 1-4. Auto Enable Mode and DCD Pin  
DCD Pin  
RX Enable Bit  
Receiver Status  
Enabled  
L
H
1
1
0
Disabled  
H or L  
Disabled  
(20) RTSA (Request to Send A) ... Output  
RTSB (Request to Send B) ... Output  
These are general-purpose output pins and can be used to control a modem, etc. The operations of these pins  
differ depending on the setting of the operation protocol and the setting of the Auto Enable bit, as shown in Table  
1-5.  
11  
µPD72001-11, 72001-A8  
Table 1-5. Auto Enable Bit and RTS Pin  
Function  
Auto Enable Bit  
RTS Cont. Bit  
RTS Pin Status  
Protocol  
Start-stop  
0
1
0
H
L
synchronization  
1
When “0” from beginning  
H
If set to “1” once and then reset  
to “0”  
If “L” while All SentNote = “0”,  
and “H” if All Sent = “1”  
1
0
1
L
H
L
COP/BOP  
Don’t Care  
Note SR1: D2  
1.2 Pins Related to Transmission/Reception  
(1) TXDA (Transmit Data A) and TXDB (Transmit Data B) ... Output  
These pins output transmit data.  
(2) RxDA (Receive Data A) and RxDB (Receive Data B) ... Input  
These pins input receive data.  
(3) XI1A/STRXCA (Crystal Input 1A/Source of Transmit Receive Clock A) ... Input  
XI1B/STRXCB (Crystal Input 1B/Source of Transmit Receive Clock B) ... Input  
The functions of these pins change depending on the setting of CR15: D7.  
(a) When CR15: D7 = “0”  
These pins function as the STRXC pins, and input the transmission and reception clocks, or input source  
clocks to the internal BRG (Baud Rate Generator) and DPLL (Digital Phase Locked Loop).  
(b) When CR15: D7 = “1”  
These pins function as XI1 pins and connect one end of the crystal for transmission/reception clock source  
oscillation.  
(4) XI2A/SYNCA (Crystal Input 2A/Synchronization A) ... I/O  
XI2B/SYNCB (Crystal Input 2B/Synchronization B) ... I/O  
The functions of these pins change depending on the setting of CR15: D7.  
(a) When CR15: D7 = 0  
These pins function as SYNC pins. The functions of the SYNC pins differ as shown in Table 1-6, depending  
on the setting of CR4.  
(b) When CR15: D7 = “1”  
These pins function as XI2 pins and connect one end of the crystal for transmission/reception clock source  
oscillation.  
12  
µPD72001-11, 72001-A8  
Table 1-6. Functions of SYNC Pins and Setting of CR4 (when CR15: D7 = “0”)  
CR4  
D5 D4  
Operation Synchronization  
SYNC Pin  
Function  
Function  
Protocol  
Detection Mode  
D7  
D6  
D3  
D2  
Start-stop  
synchro-  
nization  
Input  
×
×
×
0
1
1
1
0
1
The SYNC pins function as general-purpose  
input pins. Changes in the status of these pin  
(“H” “L” or “L” “H”) affect the latch  
operation of the Sync/Hunt bit (SR1: D4), and  
cause the E/S interrupt.  
COP  
Internal  
synchro-  
nization  
Output  
Input  
If a SYNC character is detected in the receive  
character, the SYNC pins go “L” for the  
duration of 1RXC cycle.  
0
0
0
1
1
1
External  
synchro-  
nization  
0
0
0
1
0
0
The SYNC pins input a signal for establishing  
character synchronization. When these pins  
go “L” from “H”, execution exits from the Hunt  
Phase and character synchronization is  
established. While SYNC input is “L”,  
character synchronization is maintained.  
Assembling a receive character is started at  
the rising edge of the receive clock preceding  
the falling of the SYNC input.  
BOP  
No function  
×
1
0
The SYNC pins do not function.  
× : Don’t Care  
Caution If a pattern in which 1 bit (“0” or “1”) is inserted in between the “Sync character assigned to CR7”  
and “Sync character assigned to CR6” is received while data is being assembled in the Bi-Sync  
mode, an “L” pulse of about 1 bit may be generated on the SYNC pin. If the Enter Hunt command  
is issued while this “L” pulse is present, the command is invalid. However, the recieve operation  
of the MPSC is not affected at all by the reception of this pattern.  
(5) TRXCA (Transmit Receive Clock A) ... I/O  
TRXCB (Transmit Receive Clock B) ... I/O  
(a) When CR15: D2 = “0”  
These pins input the transmit and receive clocks. They are used to supply external transmit and receive  
clocks.  
[Exception] If either CR15: D6, D5 = “0, 1” or D4, D3 = “0, 1”, or both are set, the TRXCA and TRXCB pins  
function as input pins, even if CR15: D2 = “1”.  
(b) When CR15: D2 = “1”  
These pins function as output pins. The source of the output clock can be selected from a crystal oscillation  
circuit, BRG, DPLL, or transmit clock, depending on the setting of CR15: D1, D0. Under the conditions  
explained in [Exception] in (a) above, they unconditionally serve as input pins, and the setting of CR15: D2,  
D1, D0 is invalid.  
13  
Terminal adapter for ISDN  
µ
PD72001-11  
µ
PD98201  
S-I/F  
HDLC  
SYNC  
Dch  
ASYNC  
µ
Trans-  
former  
ISDN circuit  
HDLC  
SYNC  
Bch  
ASYNC  
Bus  
µ
PD72002-11  
RS-232-C  
D/R  
µ
HDLC  
SYNC  
ASYNC  
CPU  
(with DMAC)  
ROM  
RAM  
Personal computer  
µPD72001-11, 72001-A8  
3. ELECTRICAL SPECIFICATIONS  
(1) µPD72001-11  
Absolute Maximum Ratings (TA = 25 °C)  
Parameter  
Supply voltage  
Symbol  
VDD  
VI  
Condition  
Ratings  
Unit  
V
–0.5 to +7.0  
–0.5 to VDD + 0.5  
–0.5 to VDD + 0.5  
–40 to +85  
Input voltage  
V
Output voltage  
VO  
V
Operating temperature  
Storage temperature  
TA  
°C  
°C  
Tstg  
–65 to +150  
Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality  
of the product may be impaired. The absolute maximum ratings are values that may physically  
damage the product(s). Be sure to use the product(s) within the ratings.  
DC Characteristics  
µPD72001-11 (TA = –40 to +85 °C, VDD = 5 V ± 10 %)  
Parameter  
Symbol  
VIHC  
VIH  
Condition  
CLK, STRXC, TRXC  
MIN.  
3.3  
TYP.  
MAX.  
VDD + 0.5  
VDD + 0.5  
+0.6  
Unit  
V
High-level input voltage  
Other pins  
2.2  
V
Low-level input voltage  
VILC  
VIL  
CLK, STRXC, TRXC  
Other pins  
–0.5  
–0.5  
0.7 VDD  
V
+0.8  
V
High-level output voltage  
Low-level output voltage  
High-level input leakage current  
Low-level input leakage current  
High-level output leakage current  
Low-level output leakage current  
Supply current  
VOH  
VOL  
ILIH  
IOH = –400 µA  
IOL = 2.0 mA  
VI = VDD  
V
0.45  
10  
V
µA  
µA  
µA  
µA  
mA  
mA  
ILIL  
VI = 0 V  
–10  
10  
ILOH  
ILOL  
IDD  
VO = VDD  
VO = 0 V  
–10  
40  
At 11 MHz  
20  
In standby modeNote  
1
Note System clock  
: 11 MHz  
: Inactive  
Input pin  
• High-level input voltage : (VDD – 0.3 V) to (VDD + 0.5 V)  
• Low-level input voltage : 0 V to 0.3 V  
Output pin  
: Leave unconnected.  
15  
µPD72001-11, 72001-A8  
Capacitance (TA = 25 °C, VDD = 0 V)  
Parameter  
Input capacitance  
I/O capacitance  
Symbol  
CIN  
Condition  
MIN.  
MAX.  
10  
Unit  
pF  
fC = 1 MHz  
Pins other than test pin: 0 V  
CIO  
20  
pF  
AC Characteristics  
µPD72001-11 (TA = –40 to +85 °C, VDD = 5 V ± 10 %)  
System interface:  
Rated Value  
Parameter  
Symbol  
Condition  
Unit  
MIN.  
MAX.  
2 000  
1 000  
1 000  
10  
Clock cycle  
tCYK  
tWKH  
tWKL  
tKR  
90  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high-pulse width  
Clock low-pulse width  
Clock rise time  
1.5 V 3.0 V  
3.0 V 1.5 V  
Clock fall time  
tKF  
10  
Address setup time (vs. RD )  
Address hold time (vs. RD )  
RD pulse width  
tSAR  
tHRA  
tWRL  
tDAD  
0
0
120  
Address data output delay time  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
100  
110  
100  
110  
85  
RD data output delay time  
tDRD  
ns  
RD data float delay time  
Address setup time (vs. WR )  
Address hold time (vs. WR )  
WR pulse width  
tFRD  
tSAW  
tHWA  
tWWL  
tSDW  
10  
0
ns  
ns  
ns  
ns  
ns  
0
120  
100  
90  
0
Data setup time (vs. WR )  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
Data hold time (vs. WR )  
tHWA  
tRV  
ns  
ns  
Recovery time between RD and WR  
140  
16  
µPD72001-11, 72001-A8  
Serial control:  
Rated Value  
Unit  
Parameter  
Symbol  
Condition  
MIN.  
MAX.  
Transmit/receive data cycle  
tCYD  
tCYC  
tWCH  
tWCL  
5
tCYK  
ns  
STRXC, TRXC input clock cycle  
90  
40  
40  
45  
STRXC, TRXC input  
clock pulse width  
High  
Low  
ns  
TA = –10 to +70 °C  
ns  
TA = –40 to +85 °C  
×1 mode, COP, BOP  
×16, 32, 64 mode  
TRXC is output  
STRXC, TRXC ↓ → TXD delay time  
tDTCTD1  
tDTCTD2  
tDTCTD3  
tSRDRC  
tHRCRD  
tDRDTD1  
tDRDTD2  
tDTDIQ  
100  
300  
100  
ns  
ns  
TRXC ↓ → TXD delay time  
0
0
ns  
RXD setup time (vs. STRXC, TRXC )  
RXD hold time (vs. STRXC, TRXC )  
RXD TXD delay time  
When DPLL is not used  
When DPLL is not used  
ECHO BACK mode  
Without SDLC Loop delay  
TX INT mode  
ns  
120  
ns  
100  
100  
6
ns  
ns  
TXD INT delay time  
4
4
7
7
tCYK  
tCYK  
tCYK  
tCYK  
ns  
TXD DRQTX delay time  
tDTDDQ  
tDRCIQ  
tDRCDQ  
tDRDQ  
TX DMA mode  
6
Note  
RXC ↑  
RXC ↑  
INT delay time  
RX INT mode  
11  
Note  
DRQRX delay time  
RX DMA mode  
11  
RD ↓ → DRQRX delay time  
WR ↓ → DRQTX delay time  
120  
120  
tDWDQ  
ns  
Note Of STRXC and TRXC, the one used as the receive clock.  
Interrupt control:  
Rated Value  
Parameter  
Symbol  
Condition  
Unit  
MIN.  
MAX.  
INTAK low-pulse width  
tWIAL  
tWIAH  
120  
120  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
INTAK high-pulse width  
PRI PRO delay time  
tDPIPO  
tDIQPO  
tDIAIQ  
50  
INT ↓ → PRO delay time  
2nd INTAK ↓ → INT delay time  
–20  
+50  
120  
300  
150  
300  
INT output level = 0.8 VNote  
INT output level = 2.2 VNote  
INT output level = 0.8 VNote  
INT output level = 2.2 VNote  
When vector output is enabled  
SR2B read RD ↓ → INT delay time  
tDRDIQ  
PRI setup time (vs. INTAK )  
PRI hold time (vs. INTAK )  
PRI setup time (vs. INTAK )  
PRI hold time (vs. INTAK )  
INTAK data output delay time  
INTAK data float delay time  
tSPIIA1  
tHIAPI1  
tSPIIA2  
tHIAPI2  
tDIAD  
0
20  
20  
20  
When vector output is disabled  
120  
85  
tFIAD  
10  
Note Measured value with 2-kpull-up resistor and 100-pF load capacitance connected  
17  
µPD72001-11, 72001-A8  
Modem control:  
Rated Value  
Unit  
Parameter  
Symbol  
Condition  
MIN.  
MAX.  
CTS, DCD, SYNC pulse  
width  
High  
Low  
tWMH  
tWML  
2
2
tCYK  
tCYK  
tCYK  
tCYK  
CTS, DCD, SYNC INT delay time  
STRXC, TRXC ↑ → SYNC setup time  
tDMIQ  
2
2
TSSYRC  
COP external synchronization  
0
Communication control:  
Rated Value  
Parameter  
Symbol  
Condition  
Unit  
MIN.  
MAX.  
Transmit enable command  
tDTETD1  
tDTETD2  
tSRERC  
ASYNC, COP  
BOP  
3
7
tCYC  
tCYC  
tCYC  
(WR , CTS ) TXD delay time  
4
1
Receive enable command (DCD )  
setup time (vs. start bit, STRXC ,  
TRXC of sync character)Note  
Receive enable command (DCD )  
hold time (vs. STRXC , TRXC )Note  
tHRCRE1  
tHRCRE2  
ASYNC  
COP  
7
tCYK  
20tCYC  
+ 8tCYK  
tHRCRE3  
BOP  
3tCYC  
+ 8tCYK  
Receive clock (STRXC, TRXC)Note  
hold time (vs. stop bit, MSB of CRC,  
MSB of end flag)  
tHRDRC1  
tHRDRC2  
tHRDRC3  
tSRCRD1  
tSRCRD2  
ASYNC  
COP  
1
22  
5
Bit  
tCYC  
tCYC  
Bit  
BOP  
Receive clock (STRXC, TRXC)Note  
setup time (vs. start bit, sync character)  
ASYNC  
COP, BOP  
1
1
tCYC  
Note Of STRXC and TRXC, the one used as the receive clock.  
Crystal oscillation and reset  
Rated Value  
Parameter  
Symbol  
Condition  
Unit  
MIN.  
MAX.  
2000  
XI1 input cycle time  
RESET pulse width  
tCYX  
90  
2
ns  
tWRSL  
tCYK  
Caution The system clock cycle in all modes must be five times that of the data rate.  
18  
µPD72001-11, 72001-A8  
AC Test Input/Output Waveform (except clock)  
2.4  
2.2  
2.2  
0.8  
Test points  
0.8  
0.45  
AC Test Clock Input Waveform  
3.3  
0.6  
3.3  
Test points  
0.6  
Load Condition  
DUT  
CL = 100 pF  
CL includes jig capacitance  
Caution If the load capacitance exceeds 100 pF due to the configuration of the circuit, keep the load  
capacitance of this device to within 100 pF by inserting a buffer or by some other means.  
Remark DUT: Tested device  
19  
µPD72001-11, 72001-A8  
(2) µPD72001-A8  
Absolute Maximum Ratings (TA = 25 °C)  
Parameter  
Supply voltage  
Symbol  
VDD  
VI  
Condition  
Ratings  
Unit  
V
–0.5 to +7.0  
–0.5 to VDD + 0.5  
–0.5 to VDD + 0.5  
–40 to +85  
Input voltage  
V
Output voltage  
VO  
V
Operating temperature  
Storage temperature  
TA  
°C  
°C  
Tstg  
–0 to +150  
Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality  
of the product may be impaired. The absolute maximum ratings are values that may physically  
damage the product(s). Be sure to use the product(s) within the ratings.  
DC Characteristics (TA = –40 to +85 °C, VDD = 3.3 V ± 0.3 V)  
Parameter  
Symbol  
VIHC  
VIH  
Condition  
CLK, STRXC, TRXC  
MIN.  
0.8 VDD  
1.8  
TYP.  
MAX.  
VDD + 0.5  
VDD + 0.5  
0.15 VDD  
+0.6  
Unit  
V
High-level input voltage  
Other pins  
CLK, STRXC, TRXC  
Other pins  
IOH = –400 µA  
IOL = 2.0 mA  
VI = VDD  
V
Low-level input voltage  
VILC  
VIL  
–0.5  
–0.5  
2.2  
V
V
High-level output voltage  
Low-level output voltage  
VOH  
VOL  
ILIH  
V
0.5  
10  
V
High-level input leakage current  
Low-level input leakage current  
µA  
µA  
µA  
ILIL  
VI = 0 V  
–10  
10  
High-level output leakage  
current  
ILOH  
VO = VDD  
Low-level output leakage  
current  
ILOL  
IDD  
VO = 0 V  
–10  
µA  
Supply current  
At 8 MHz  
5
20  
1
mA  
mA  
In standby modeNote  
Note System clock  
: 8 MHz (TA = –10 to +70 °C)/7.14 MHz (TA = –40 to +85 °C)  
Input pin  
: Inactive  
• High-level input voltage : (VDD – 0.3 V) to (VDD + 0.5 V)  
• Low-level input voltage : 0 V to 0.3 V  
Output pin  
: Leave unconnected.  
Capacitance (TA = 25 °C, VDD = 0 V)  
Parameter  
Input capacitance  
I/O capacitance  
Symbol  
Condition  
MIN.  
MAX.  
10  
Unit  
pF  
CIN  
CIO  
fC = 1 MHz  
Pins other than test pin: 0 V  
20  
pF  
20  
µPD72001-11, 72001-A8  
AC Characteristics (TA = –40 to +85 °C, VDD = 3.3 V ± 0.3 V)  
System interface:  
Rated Value  
Unit  
Parameter  
Symbol  
Condition  
TA = –10 to +70 °C  
MIN.  
125  
140  
50  
MAX.  
2000  
2000  
1000  
1000  
10  
Clock cycle  
tCYK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TA = –40 to +85 °C  
Clock high-pulse width  
Clock low-pulse width  
Clock rise time  
tWKH  
tWKL  
tKR  
50  
1.5 V 2.2 V  
Clock fall time  
tKF  
2.2 V 1.5 V  
10  
Address setup time (vs. RD )  
tSAR  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
0
5
Address hold time (vs. RD )  
RD pulse width  
tHRA  
tWRL  
tDAD  
tDRD  
0
ns  
ns  
ns  
ns  
5
150  
155  
Address data output delay time  
RD data output delay time  
120  
125  
120  
125  
120  
RD data float delay time  
Address setup time (vs. WR )  
Address hold time (vs. WR )  
tFRD  
tSAW  
tHWA  
10  
0
ns  
ns  
ns  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
0
5
WR pulse width  
tWWL  
tSDW  
tHWD  
tRV  
150  
155  
120  
125  
0
ns  
ns  
ns  
ns  
Data setup time (vs. WR )  
Data hold time (vs. WR )  
Recovery time between RD and WR  
5
180  
190  
21  
µPD72001-11, 72001-A8  
Serial control:  
Rated Value  
Unit  
Parameter  
Symbol  
Condition  
MIN.  
MAX.  
Transmit/receive data cycle  
tCYD  
tCYC  
5
tCYK  
ns  
STRXC, TRXC input clock cycle  
TA = –10 to +70 °C  
125  
140  
50  
DC  
DC  
DC  
DC  
DC  
DC  
140  
145  
300  
305  
100  
TA = –40 to +85 °C  
ns  
STRXC, TRXC input  
clock pulse width  
tWCH  
tWCL  
High level  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
ns  
55  
ns  
Low level  
60  
ns  
65  
ns  
STRXC, TRXC↓ → delay time  
tDTCTD1  
tDTCTD2  
×1 mode, COP,  
ns  
BOP  
ns  
×16, 32, 64 mode  
ns  
ns  
TRXC↓ → TxD delay time  
tDTCTD3  
tSRDRC  
TRXC is output  
0
0
ns  
RXD setup time (vs. STRXC, TRXC )  
When DPLL is  
not used  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
ns  
5
ns  
RXD hold time (vs. STRXC, TRXC )  
RXD TXD delay time  
tHRCRD  
When DPLL is  
not used  
140  
145  
ns  
ns  
tDRDTD1  
tDRDTD2  
tDTDIQ  
tDTDDQ  
tDRCIQ  
tDRCDQ  
tDRDQ  
ECHO BACK mode  
100  
100  
6
ns  
Without SDLC Loop delay  
TX INT mode  
ns  
TXD INT delay time  
4
4
7
7
tCYK  
tCYK  
tCYK  
tCYK  
ns  
TXD DRQTX delay time  
TX DMA mode  
6
Note  
RxC ↑  
RxC ↑  
INT delay time  
RX INT mode  
11  
Note  
DRQRX delay time  
RX DMA mode  
11  
RD ↓ → DRQRX delay time  
WR ↓ → DRQTX delay time  
140  
140  
tDWDQ  
ns  
Note Of STRXC and TRXC, the one used as the receive clock.  
22  
µPD72001-11, 72001-A8  
Interrupt control:  
Rated Value  
Unit  
Parameter  
Symbol  
Condition  
MIN.  
150  
150  
MAX.  
INTAK low-pulse width  
tWIAL  
tWIAH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
INTAK high-pulse width  
PRI PRO delay time  
tDPIPO  
tDIQPO  
tDIAIQ  
50  
INT↓ → PRO delay time  
2nd INTAK ↓ → INT delay time  
–20  
+50  
120  
300  
170  
180  
350  
INT output level = 0.8 VNote  
INT output level = 1.8 VNote  
SR2B read RD ↓ → INT delay time  
tDRDIQ  
INT output level  
= 0.8 VNote  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
INT output level = 1.8 VNote  
PRI setup time (vs. INTAK )  
PRI hold time (vs. INTAK )  
PRI setup time (vs. INTAK )  
PRI hold time (vs. INTAK )  
tSPIIA1  
tHIAPI1  
tSPIIA2  
tHIAPI2  
When vector output is enabled  
0
20  
20  
20  
25  
When vector output  
is disabled  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
INTAK data output delay time  
INTAK data float delay time  
tDIAD  
120  
130  
tFIAD  
10  
Note Measured value with 2-kpull-up resistor and 100-pF load capacitance connected  
Modem control:  
Rated Value  
Parameter  
Symbol  
Condition  
Unit  
MIN.  
MAX.  
CTS, DCD, SYNC  
pulse width  
High  
Low  
tWMH  
tWML  
2
2
tCYK  
tCYK  
tCYK  
tCYK  
CTS, DCD, SYNC INT delay time  
STRXC, TRXC ↑ → SYNC setup time  
tDMIQ  
tSSYRC  
2
2
COP external synchronization  
0
23  
µPD72001-11, 72001-A8  
Communication control:  
Rated Value  
Unit  
Parameter  
Symbol  
Condition  
MIN.  
MAX.  
Transmit enable command (WR ,  
CTS ) TXD delay time  
tDTETD1  
tDTETD2  
tSRERC  
ASYNC, COP  
BOP  
3
7
tCYC  
tCYC  
tCYC  
4
1
Receive enable command (DCD )  
setup time (vs. start bit, STRXC ,  
TRXC of sync character)Note  
Receive enable command (DCD )  
hold time (vs. STRXC , TRXC )Note  
tHRCRE1  
tHRCRE2  
ASYNC  
COP  
7
tCYK  
20 tCYC  
+ 8tCYK  
tHRCRE3  
BOP  
3tCYC  
+ 8tCYK  
Receive clock (STRXC, TRXC)Note  
hold time (vs. start bit, MSB of CRC,  
MSB of end flag)  
tHRDRC1  
tHRDRC2  
tHRDRC3  
tSRCRD1  
tSRCRD2  
ASYNC  
COP  
1
22  
5
Bit  
tCYC  
tCYC  
Bit  
BOP  
Receive clock (STRXC, TRXC)Note  
setup time (vs. start bit, sync character)  
ASYNC  
COP, BOP  
1
1
tCYC  
Note Of STRXC and TRXC, the one used as the receive clock.  
Crystal oscillation and reset:  
Rated Value  
Parameter  
XI1 input cycle time  
Symbol  
Condition  
Unit  
ns  
MIN.  
MAX.  
1000  
1000  
tCYX  
TA = –10 to +70 °C  
TA = –40 to +85 °C  
125  
140  
2
RESET pulse width  
tWRSL  
tCYK  
Caution The system clock cycle in all modes must be five times that of the data rate.  
24  
µPD72001-11, 72001-A8  
AC Test Input Waveform (except clock)  
2.2  
0.5  
1.8  
0.6  
1.8  
0.6  
Test points  
AC Test Clock Input Waveform  
0.8 VDD  
0.8 VDD  
Test points  
0.15 VDD  
0.15 VDD  
Load Condition  
DUT  
CL = 100 pF  
CL includes jig capacitance  
Caution If the load capacitance exceeds 100 pF due to the configuration of the circuit, keep the load  
capacitance of this device to within 100 pF by inserting a buffer or by any other means.  
Remark DUT: Tested device  
25  
µPD72001-11, 72001-A8  
Clock Timing  
t
CYK  
t
WKH  
t
WKL  
CLK  
t
KF  
t
KR  
Read Cycle Timing  
C/D, B/A  
t
SAR  
t
HRA  
t
WRL  
RD  
t
DRD  
t
FRD  
Hi-Z  
Hi-Z  
D7-0  
t
DAD  
Write Cycle Timing  
C/D, B/A  
t
SAW  
t
HWA  
t
WWL  
WR  
t
SDW  
t
HWD  
Hi-Z  
Hi-Z  
D7-0  
Read/Write Cycle Timing (except transfer of transmit/receive data)  
t
RV  
RD, WR  
26  
µPD72001-11, 72001-A8  
Transmit Cycle Timing  
t
CYC  
t
WCL  
t
WCH  
STR  
X
CA/B  
CA/B  
TRX  
t
CYD  
t
DTCTD3  
T
XDA/B  
t
DTDIQ  
INT  
t
DTDDQ  
DRQT A/B  
X
Receive Cycle Timing  
t
CYC  
t
WCL  
t
WCH  
STR  
X
CA/B  
CA/B  
TRX  
t
HRCRD  
t
CYD  
t
SRDRC  
RXDA/B  
t
DRCIQ  
INT  
t
DRCDQ  
DRQR A/B  
X
27  
µPD72001-11, 72001-A8  
Transmitter Enable Timing  
CTS  
WR  
t
DTETD1, tDTETD2  
TXD  
Receiver Enable Timing  
STR  
X
C
C
TRX  
RX  
D
Note  
t
SRERC  
DCD  
Note LSB of the first receive data (SYNC, flag)  
Receive Clock Setting Timing  
a. In ASYNC mode  
STR  
X
C
C
TRX  
t
SRCRD1  
Start bit  
RXD  
b. In COP/BOP mode  
STR  
X
X
C
C
TR  
t
SRCRD2  
RX  
D
Note  
Note LSB of sync pattern (SYNC, flag)  
28  
µPD72001-11, 72001-A8  
DCD Timing, Receive Clock Hold Timing  
a. In ASYNC mode  
21 tDCY  
STRXC  
TRXC  
tHRDRC1  
Stop bit  
RXD  
tHRCRE1  
DCD  
b. COP/BOP mode  
STR  
X
C
C
TRX  
t
HRDRC2, tHRDRC3  
RXD  
Note  
t
HRCRE2, tHRCRE3  
DCD  
Note This bit is the MSB of BCS in the COP mode and MSB of the end flag in the BOP mode.  
In ECHO BACK Mode and LOOP Mode  
R
X
D
D
t
DRDTD1, tDRDTD2  
T
X
29  
µPD72001-11, 72001-A8  
DMA Cycle Timing  
DRQT  
X
A/B  
A/B  
DRQR  
X
t
DRDQ  
RD  
t
DWDQ  
WR  
PRO Output Timing  
PRI  
INT  
t
DPIPO  
t
DIQPO  
PRO  
INTAK Cycle Timing  
PRI  
(when vector  
output is disabled)  
t
t
SPIIA2  
SPIIA1  
t
HIAPI2  
PRI  
(when vector  
output is enabled)  
t
WIAH  
t
HIAPI1  
INTAK  
RD  
t
WIAL  
t
DIAD  
t
FIAD  
Hi-Z  
Hi-Z  
D7-0  
INT  
t
DIAIQ  
t
DRDIQ  
30  
µPD72001-11, 72001-A8  
E/S Timing  
t
WML  
t
WMH  
CTSA/B, DCDA/B, SYNCA/B  
t
DMIQ  
INT  
SYNC Input Timing (external synchronization mode)  
STR  
X
X
CA/B  
CA/B  
TR  
Last Bit of  
SYNC Character  
1st Bit of  
Data Character  
t
SSYRC  
SYNCA/B Note  
Note SYNCA/B input must be cleared to “0” at the rising edge of RXC two clock cycles after the last bit of the SYNC  
character.  
XI1 Input Timing  
t
CYX  
XI1  
RESET Pulse  
RESET  
t
WRSL  
31  
µPD72001-11, 72001-A8  
4. PACKAGE  
40PIN PLASTIC DIP (600 mil)  
40  
21  
20  
1
A
K
L
I
J
H
M
G
R
C
F
M
D
N
B
NOTES  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.25 mm (0.01 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
53.34 MAX.  
2.54 MAX.  
2.54 (T.P.)  
2.100 MAX.  
0.100 MAX.  
0.100 (T.P.)  
2) ltem "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
1.2 MIN.  
3.6±0.3  
0.047 MIN.  
0.142±0.012  
0.020 MIN.  
0.170 MAX.  
0.226 MAX.  
0.600 (T.P.)  
0.520  
0.51 MIN.  
4.31 MAX.  
5.72 MAX.  
15.24 (T.P.)  
13.2  
J
K
L
+0.10  
0.25  
+0.004  
0.010  
M
–0.05  
–0.003  
N
R
0.25  
0.01  
0~15°  
0~15°  
P40C-100-600A-1  
32  
µPD72001-11, 72001-A8  
44 PIN PLASTIC QFP ( 10)  
A
B
33  
34  
23  
22  
detail of lead end  
44  
1
12  
11  
G
M
H
I
J
K
N
L
P44G-80-22-2  
NOTE  
ITEM  
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15  
mm (0.006 inch) of its true position (T.P.) at  
maximum material condition.  
+0.017  
13.6 0.4  
10.0 0.2  
10.0 0.2  
13.6 0.4  
1.0  
A
B
C
D
F
0.535  
–0.016  
+0.008  
–0.009  
0.394  
0.394  
0.535  
0.039  
0.039  
0.014  
0.006  
+0.008  
–0.009  
+0.017  
–0.016  
1.0  
G
H
I
+0.004  
–0.005  
0.35 0.10  
0.15  
J
0.8 (T.P.)  
1.8 0.2  
0.031 (T.P.)  
+0.008  
K
L
0.071  
–0.009  
+0.009  
1.0 0.2  
0.039  
–0.008  
+0.10  
+0.004  
M
N
P
0.15  
0.006  
–0.05  
–0.003  
0.15  
0.006  
+0.005  
1.45 0.1  
0.05 0.05  
1.65 MAX.  
0.057  
–0.004  
Q
S
0.002 0.002  
0.065 MAX.  
33  
µPD72001-11, 72001-A8  
52 PIN PLASTIC QFP ( 14)  
A
B
27  
26  
39  
40  
detail of lead end  
52  
1
14  
13  
G
M
I
H
J
K
N
L
P52GC-100-3B6,3BH-2  
NOTE  
ITEM  
A
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.20  
mm (0.008 inch) of its true position (T.P.) at  
maximum material condition.  
17.6 0.4  
14.0 0.2  
14.0 0.2  
17.6 0.4  
1.0  
0.693 0.016  
+0.009  
B
0.551  
–0.008  
+0.009  
C
0.551  
–0.008  
D
F
0.693 0.016  
0.039  
G
H
I
1.0  
0.039  
+0.004  
0.40 0.10  
0.20  
0.016  
–0.005  
0.008  
J
1.0 (T.P.)  
1.8 0.2  
0.039 (T.P.)  
+0.008  
K
0.071  
–0.009  
+0.009  
L
0.8 0.2  
0.031  
–0.008  
+0.10  
+0.004  
M
N
P
0.15  
0.006  
–0.05  
–0.003  
0.10  
0.004  
2.7  
0.106  
Q
S
0.1 0.1  
3.0 MAX.  
0.004 0.004  
0.119 MAX.  
34  
µPD72001-11, 72001-A8  
52 PIN PLASTIC QFJ ( 750 mil)  
A
B
52  
1
E
F
T
Q
K
M
M
N
P
P52L-50A1-2  
NOTE  
ITEM  
MILLIMETERS  
20.1 0.2  
19.12  
INCHES  
Each lead centerline is located within 0.12  
mm (0.005 inch) of its true position (T.P.) at  
maximum material condition.  
+0.009  
A
B
C
D
E
F
0.791  
–0.008  
0.753  
0.753  
0.791  
0.076  
0.024  
0.173  
0.110  
19.12  
+0.009  
–0.008  
20.1 0.2  
1.94 0.15  
0.6  
+0.007  
–0.006  
+0.009  
–0.008  
G
H
I
4.4 0.2  
2.8 0.2  
0.9 MIN.  
3.4  
+0.009  
–0.008  
0.035 MIN.  
0.134  
J
K
M
N
P
Q
T
1.27 (T.P.)  
0.40 0.10  
0.12  
0.050 (T.P.)  
+0.004  
0.016  
–0.005  
0.005  
+0.009  
18.04 0.20  
0.15  
0.710  
–0.008  
0.006  
R 0.8  
R 0.031  
+0.10  
+0.004  
U
0.20  
0.008  
–0.05  
–0.002  
35  
µPD72001-11, 72001-A8  
5. RECOMMENDED SOLDERING CONDITIONS  
It is recommended to solder this product under the following conditions.  
For details on the recommended soldering conditions, refer to Information Document Semiconductor Device  
Mounting Technology Manual (C10535E).  
For soldering methods and conditions other than those recommended, consult NEC.  
Surface mount type  
µPD72001G-11-22 : 44-pin plastic QFP (10 × 10 mm)  
µPD72001G-A8-22: 44-pin plastic QFP (10 × 10 mm)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Condition  
Condition Symbol  
Package peak temperature: 235 °C, Time: 30 seconds MAX.  
(210 °C MIN.), Number of times: 2 MAX., Number of days: 7Note  
(After that, prebaking for 10 hours at 125 °C is necessary.)  
<Precaution>  
IR35-107-2  
VP15-107-2  
WS60-107-1  
Products other than in heat-resistance trays (such as those packaged  
in a magazine, taping, or non-heat-resistance tray) cannot be baked  
while they are in their package.  
VPS  
Package peak temperature: 215 °C, Time: 40 seconds MAX.  
(200 °C MIN.), Number of times: 2 MAX., Number of days: 7Note  
(After that, prebaking for 10 hours at 125 °C is necessary.)  
<Precaution>  
Products other than in heat-resistance trays (such as those packaged  
in a magazine, taping, or non-heat-resistance tray) cannot be baked  
while they are in their package.  
Wave soldering  
Solder bath temperature: 260 °C MAX., Time: 10 seconds MAX.,  
Number of times: 1, Preheating temperature: 120 °C MAX.  
(package surface temperature), Number of days: 7Note  
(After that, prebaking for 10 hours at 125 °C is necessary.)  
<Precaution>  
Products other than in heat-resistance trays (such as those packaged  
in a magazine, taping, or non-heat-resistance tray) cannot be baked  
while they are in their package.  
Partial heating  
Pin temperature: 300 °C MAX., Time: 3 seconds MAX.  
(per side of device)  
Note The number of days the product can be stored at 25 °C, 65 % RH MAX. after the dry pack has been opened.  
Caution Do not use two or more soldering methods in combination (except partial heating).  
36  
µPD72001-11, 72001-A8  
µPD72001GC-11-3B6 : 52-pin plastic QFP (14 × 14 mm)  
µPD72001GC-A8-3B6: 52-pin plastic QFP (14 × 14 mm)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Condition  
Package peak temperature: 235 °C, Time: 30 seconds MAX.  
Condition Symbol  
IR35-00-3  
VP15-00-3  
WS60-00-1  
(210 °C MIN.), Number of times: 3 MAX.  
VPS  
Package peak temperature: 215 °C, Time: 40 seconds MAX.  
(200 °C MIN.), Number of times: 3 MAX.  
Wave soldering  
Solder bath temperature: 260 °C MAX., Time: 10 seconds MAX.,  
Number of times: 1  
Preheating temperature: 120 °C MAX. (package surface temperature)  
Partial heating  
Pin temperature: 300 °C MAX., Time: 3 seconds MAX.  
(per side of device)  
Caution Do not use two or more soldering methods in combination (except partial heating).  
µPD72001L-11: 52-pin plastic QFJ (750 × 750 mil)  
Recommended  
Soldering Method  
Soldering Condition  
Condition Symbol  
VPS  
Package peak temperature: 215 °C, Time: 40 seconds MAX.  
(200 °C MIN.), Number of times: 1  
VP15-00-1  
Partial heating  
Pin temperature: 300 °C MAX., Time: 3 seconds MAX.  
(per side of device)  
Through-hole type  
µPD72001C-11 : 40-pin plastic DIP (600 mil)  
µPD72001C-A8: 40-pin plastic DIP (600 mil)  
Soldering Method  
Soldering Condition  
Wave soldering (pins only)  
Partial heating  
Solder bath temperature: 260 °C MAX., Time: 10 seconds MAX.  
Pin temperature: 300 °C MAX., Time: 3 seconds MAX.  
(per pin)  
Caution When soldering this product using of wave soldering, exercise care that the solder does not come  
in direct contact with the package.  
37  
µPD72001-11, 72001-A8  
[MEMO]  
38  
µPD72001-11, 72001-A8  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Produc-  
tion process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
39  
µPD72001-11, 72001-A8  
The export of these products from Japan is regulated by the Japanese government. The export of some or all of these  
products may be prohibited without governmental license. To export or re-export some or all of these products from a  
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
License not needed : µPD72001-A8  
License needed  
: µPD72001-11  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPD72001L11

Multi Protocol Controller, 2 Channel(s), 0.3125MBps, CMOS, PQCC52, PLASTIC, LCC-52
NEC

UPD72002C

Communications Controller
ETC

UPD72002GB

Communications Controller
ETC

UPD72002GB-113B4

IC,COMMUNICATIONS CONTROLLER,CMOS,QFP,44PIN
RENESAS

UPD72002L

Communications Controller
ETC

UPD720100A

MOS INTEGRATED CIRCUIT
NEC

UPD720100AGM-8ED

MOS INTEGRATED CIRCUIT
NEC

UPD720100AGM-8ED-A

USB Bus Controller, CMOS, PQFP160, 24 X 24 MM, PLASTIC, LQFP-160
NEC

UPD720100AGM-8EY

MOS INTEGRATED CIRCUIT
NEC
NEC

UPD720100AS1-2C

MOS INTEGRATED CIRCUIT
NEC

UPD720100AS1-2C-A

USB Bus Controller, CMOS, PBGA176, 15 X 15 MM, 0.80 MM PITCH, PLASTIC, FBGA-176
NEC