UPD720130 [NEC]

USB2.0 to IDE Bridge; USB2.0转IDE桥接
UPD720130
型号: UPD720130
厂家: NEC    NEC
描述:

USB2.0 to IDE Bridge
USB2.0转IDE桥接

文件: 总44页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD720130  
USB2.0 to IDE Bridge  
The µPD720130 is designed to perform a bridge between USB 2.0 and ATA/ATAPI. The µPD720130 complies  
with the Universal Serial Bus Specification Revision 2.0 full-/high-speed signaling and works up to 480 Mbps. The  
µPD720130 is integrated CISC processor, ATA/ATAPI controller, endpoint controller (EPC), serial interface engine  
(SIE), and USB2.0 transceiver into a single chip. The USB2.0 protocol and class specific protocol (bulk only  
protocol) are handled by USB2.0 transceiver, SIE, and EPC. And the transport layer is performed by V30MZ CISC  
processor which is in the µPD720130. The software to control the µPD720130 is located in an embedded ROM. In  
the future, the µPD720130 will be released to support external Flash Memory / EEPROM™ option to update function  
by firmware.  
Detailed function descriptions are provided in the following user’s manual. Be sure to read the manual before designing.  
µPD720130 User’s Manual: S16412E  
FEATURES  
Compliant with Universal Serial Bus Specification Revision 2.0 (Data Rate 12/480 Mbps)  
Compliant with ATA/ATAPI-6 (LBA48, PIO Mode 0-4, Multi Word DMA Mode 0-2, Ultra DMA Mode 0-4)  
USB2.0 high-speed bus powered device capability  
Certified by USB implementers forum and granted with USB 2.0 high-speed Logo (TID :40320125)  
One USB2.0 high-speed transceiver / receiver with full-speed transceiver / receiver  
USB2.0 High-speed or Full-speed packet protocol sequencer (Serial Interface Engine)  
Automatic chirp assertion and full-/high-speed mode change  
USB Reset, Suspend and Resume signaling detection  
Supports power control functionality for IDE device as CD-ROM and HDD  
Supports set feature (TEST_MODE) functionality  
System Clock is generated by 30 MHz X’tal  
2.5 V and 3.3 V power supply  
ORDERING INFORMATION  
Part Number  
Package  
µPD720130GC-9EU  
100-pin plastic TQFP (fine pitch) (14 × 14)  
100-pin plastic TQFP (fine pitch) (14 × 14)  
µPD720130GC-9EU-SIN  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S16302EJ3V0DS00 (3rd edition)  
Date Published June 2003 NS CP (K)  
Printed in Japan  
The mark shows major revised points.  
2002  
µPD720130  
BLOCK DIAGRAM  
EPC2_V2  
RAM  
4 Kbytes×2  
ROM  
8 Kbytes  
PHY_V2  
CPU Core  
(V30MZ)  
USB Bus  
IDE Bus  
DCC  
Bus Bridge  
DMAC  
IDEC_V2  
GPIO  
GPIO  
or  
FSIO  
Timer  
INTC  
FSIO  
PIO  
Serial  
ROM  
Direct Bus  
Direct Command Bus  
Ext. Bus (Data 8-bit Bus) or PIO  
V30MZ  
RAM  
: CISC CPU core  
: 8-Kbyte work RAM for firmware  
: 8-Kbyte ROM for built-in firmware  
: USB2.0 transceiver with serial interface engine  
: Endpoint controller  
ROM  
PHY_V2  
EPC_V2  
IDEC_V2  
DCC  
: IDE controller  
: ATA direct command controller  
: Internal / external bus controller and DMA controller  
: Interrupt controller (82C59 like)  
: General purpose 8-bit I/O controller  
: Multipurpose 14-bit I/O controller  
: Flexible serial I/O  
Bus Bridge  
INTC  
GPIO  
PIO  
FSIO  
2
Data Sheet S16302EJ3V0DS  
µPD720130  
PIN CONFIGURATION (TOP VIEW)  
100-pin plastic TQFP (fine pitch) (14 × 14)  
µPD720130GC-9EU  
µPD720130GC-9EU-SIN  
V
V
DD25  
DD33  
75  
70  
65  
V
V
DD25  
DD33  
1
5
XIN  
CMB_STATE  
PIO5  
XOUT  
VSS  
CMB_BSY  
PWR  
RESETB  
V
DD33  
CLC  
IRQ0  
MD0  
SPD  
V
SS  
MD1  
10  
15  
20  
25  
DV0  
IDECS1B  
IDECS0B  
IDEA2  
DV1  
DCC  
PIO14  
PIO15  
GPIO0  
IDEA0  
IDEA1  
VSS  
60  
55  
V
SS  
IDEINT  
IDEDAKB  
IDEIORDY  
IDEIORB  
TEST0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
TEST1  
TEST3  
V
V
DD33  
DD25  
V
V
DD33  
DD25  
3
Data Sheet S16302EJ3V0DS  
µPD720130  
Pin No.  
1
Pin Name  
VDD25  
Pin No.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Pin Name  
VSS  
Pin No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Pin Name  
VDD25  
Pin No.  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Pin Name  
VSS  
2
VDD33  
IDEIOWB  
IDEDRQ  
IDED15  
IDED0  
VDD33  
VDD33  
DPC  
SDA  
SCL  
3
XIN  
GPIO7  
GPIO6  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
VSS  
4
XOUT  
VSS  
5
TEST2  
VDD25  
RPU  
6
RESETB  
VDD33  
7
IDED14  
IDED1  
IDED13  
IDED2  
VDD25  
8
IRQ0  
VDD25  
VSS  
9
MD0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
MD1  
RSDP  
DP  
IDECS1B  
IDECS0B  
IDEA2  
IDEA0  
IDEA1  
VSS  
GPIO0  
PIO15  
PIO14  
DCC  
VSS  
VDD33  
DM  
IDED12  
IDED3  
IDED11  
IDED4  
IDED10  
VDD33  
RSDM  
VSS  
DV1  
DV0  
AVDD25  
AVSS  
RREF  
AVSS(R)  
AVDD25  
AVSS  
VDD25  
VBUS  
SMC  
VSS  
IDEINT  
IDEDAKB  
IDEIORDY  
IDEIORB  
TEST0  
TEST1  
TEST3  
VDD33  
VSS  
SPD  
IDED5  
IDED9  
IDED6  
IDED8  
IDED7  
IDERSTB  
VSS  
CLC  
PWR  
CMB_BSY  
PIO5  
CMB_STATE  
VDD33  
VDD25  
VDD25  
Remark AVSS(R) should be used to connect RREF through 1 % precision reference resistor of 2.43 k.  
4
Data Sheet S16302EJ3V0DS  
µPD720130  
1. PIN INFORMATION  
(1/2)  
Pin Name  
I/O  
Buffer Type  
Active  
Level  
Function  
XIN  
I
2.5 V Input  
System clock input or oscillator In  
Oscillator out  
XOUT  
O
2.5 V Output  
RESETB  
MD(1:0)  
IDECS(1:0)B  
IDEA(2:0)  
IDEINT  
IDEDAKB  
IDEIORDY  
IDEIORB  
IDEIOWB  
IDEDRQ  
IDED(15:0)  
IDERSTB  
DCC  
I
3.3 V Schmitt Input  
3.3 V Input  
Low  
Asynchronous reset signaling  
Function mode setting  
I
O (I/O)  
O (I/O)  
I (I/O)  
O (I/O)  
I (I/O)  
O (I/O)  
O (I/O)  
I (I/O)  
I/O  
5 V tolerant Output  
5 V tolerant Output  
5 V tolerant Input  
5 V tolerant Output  
5 V tolerant Input  
5 V tolerant Output  
5 V tolerant Output  
5 V tolerant Input  
5 V tolerant I/O  
5 V tolerant Output  
3.3 V Input  
Low  
IDE host chip select  
IDE address bus  
High  
Low  
High  
Low  
Low  
High  
IDE interrupt request from device to host  
IDE DMA acknowledge  
IDE IO channel ready  
IDE IO read strobe  
IDE IO write strobe  
IDE DMA request from device to host  
IDE data bus  
O (I/O)  
I (I/O)  
I (I/O)  
I (I/O)  
I (I/O)  
O (I/O)  
I (I/O)  
O (I/O)  
I/O  
Low  
IDE reset from host to device  
IDE controller operational mode setting  
Device select  
DV(1:0)  
CLC  
3.3 V Input  
3.3 V Input  
System clock setting  
PWR  
3.3 V Input  
Bus powered /self-powered select  
Combo IDE bus busy  
CMB_BSY  
CMB_STATE  
DPC  
3.3 V Output  
3.3 V Input  
Combo IDE bus state  
3.3 V Output  
Power control signaling for IDE device  
Serial ROM data signaling  
Serial ROM clock signaling  
VBUS monitoring  
SDA  
3.3 V I/O  
SCL  
I/O  
3.3 V I/O  
VBUS  
I
5 V Schmitt Input Note  
USB high speed D+ I/O  
USB high speed DI/O  
DP  
I/O  
USBs high speed D+ signal  
USBs high speed Dsignal  
DM  
I/O  
RSDP  
O
USB full speed D+ Output  
USBs full speed D+ signal  
USBs full speed Dsignal  
USBs 1.5 kpull-up resistor control  
Reference resistor  
USB full speed DOutput  
RSDM  
O
RPU  
A
USB Pull-up control  
Analog  
RREF  
A
SPD  
I (I/O)  
I
3.3 V Input  
3.3 V Input  
3.3 V Input  
NEC private  
SMC  
Scan mode control  
TEST(3:0)  
I
Test mode setting  
Note  
VBUS pin may be used to monitor for VBUS line even if VDD33, VDD25, and AVDD25 are shut off. System must  
ensure that the input voltage level for VBUS pin is less than 3.0 V due to the absolute maximum rating is  
not exceeded.  
5
Data Sheet S16302EJ3V0DS  
µPD720130  
(2/2)  
Pin Name  
I/O  
Buffer Type  
Active  
Level  
Function  
GPIO(7:0)  
I/O  
I/O  
I/O  
I
3.3 V Schmitt I/O  
General purpose IO port (for future extension)  
IO port (for future extension)  
IO port (for future extension)  
External interrupt input (for future extension)  
2.5 V VDD for Analog circuit  
2.5 V VDD  
PIO(15:14)  
PIO(5)  
IRQ0  
3.3 V I/O  
3.3 V Schmitt I/O  
3.3 V Schmitt Input  
High  
AVDD25  
VDD25  
VDD33  
3.3 V VDD  
AVSS  
VSS for Analog circuit  
VSS  
VSS  
Remarks 1. 5 V tolerantmeans that the buffer is 3.3 V buffer with 5 V tolerant circuit.  
2. The signal marked as (I/O)in the above table operates as I/O signals during testing. However, they  
do not need to be considered in normal use.  
6
Data Sheet S16302EJ3V0DS  
µPD720130  
2. FUNCTION INFORMATION  
USB to IDE system can be realized by the µPD720130, Serial ROM which has USB vender ID, product ID, etc,  
and power control circuit. The µPD720130 can be selected bus powered mode or self powered mode. If all power  
consumption for USB to IDE system is less than the specification of bus powered device, it will be possible to realize  
high-speed capable bus powered system. The µPD720130 has some features for bus powered system. Also, some  
system may control target IDE device by two IDE controllers. At the time, IDE bus arbitration should be required to  
each IDE controller. The µPD720130 has a feature of IDE bus arbitration, too.  
The setting of IDE controller in the µPD720130 is controlled by data in serial ROM or external pin setting. If there  
is any inconsistency between data in serial ROM and external pin setting, the data in serial ROM is higher priority than  
external pin setting.  
2.1  
Data in Serial ROM  
The µPD720130 loads some data such as Vendor ID, Product ID and some additional USB related information,  
etc from serial ROM when the µPD720130 is initialized. Example of data in serial ROM is as follows. ExPinReset  
and ExPinSet fields hold data which is related to the external pin setting.  
Table 2-1. Data in Serial ROM  
Data size  
1 Word  
1 Byte  
Symbol  
Description  
Control for descriptor overwrite  
Flags  
ExPinReset  
PWR, CLC, DCC, DV[1:0] Reset bit map field  
PWR, CLC, DCC, DV[1:0] Set bit map field  
idVendor field in Device descriptor  
1 Byte  
ExPinSet  
1 Word  
1 Word  
1 Word  
1 Byte  
idVendor  
idProduct  
idProduct field in Device descriptor  
bcdDevice  
bcdDevice field in Device descriptor  
MaxPower BUS  
MaxPower Self  
bInterfaceClass  
bInterfaceSubClass  
bInterfaceProtocol  
TxMode Reset  
TxMode Set  
MaxPower field in Configuration descriptor for Bus powered mode  
MaxPower field in Configuration descriptor for Self powered mode  
bInterfaceClass field in Interface descriptor  
bInterfaceSubClass field in Interface descriptor  
bInterfaceProtocol field in Interface descriptor  
IDE transmission type such as Ultra DMA 66 Reset bit map field  
IDE transmission type such as Ultra DMA 66 Set bit map field  
String descriptor for Manufacturer  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Word  
1 Word  
32 Bytes  
32 Bytes  
32 Bytes  
ManufactureString  
ProductString  
SerialString  
String descriptor for Product  
String descriptor for Device serial number  
7
Data Sheet S16302EJ3V0DS  
µPD720130  
2.2  
External Pin Setting  
Usually, serial ROM should be used to keep Vendor ID, Product ID and some additional USB related  
information. And then, the external pin setting of the µPD720130 is not so important to realize USB to IDE bridge  
system. The recommended external pin setting is as follows.  
Table 2-2. Recommended External Pin Setting  
Pin Name  
Setting  
MD1  
MD0  
SCL  
SDA  
DV1  
DV0  
CLC  
PWR  
DCC  
1
0
Pull Up Note 1  
Pull Up  
Lclamp  
Lclamp  
Lclamp  
Lclamp  
Pull Down Note 2  
Lclamp  
Lclamp  
Lclamp  
Hclamp  
Lclamp  
Lclamp  
Lclamp  
GPIO(7:0)  
PIO(14:15)  
PIO5  
SPD  
TEST(3:0)  
SMC  
IRQ0  
Notes 1. If serial ROM size is more than 2 Kbytes, SCL should be pull down.  
2. If target IDE device is not fixed, it is preferable that DCC pin can  
switch pull-up or pull-down.  
The setting for any other pins such as CMB_BSY, CMB_STATE depends on USB2.0 to IDE Bridge system.  
For example, if two IDE controllers control one target IDE device and one of two IDE controllers is the µPD720130,  
CMB_BSY and CMB_STATE are used to handshake between two IDE controller chips. On the other hand, when  
the µPD720130 is only controller of target IDE device, CMB_BSY should be opened and CMB_STATE should be  
clamped to L.  
8
Data Sheet S16302EJ3V0DS  
µPD720130  
2.3  
Control Bit in Serial ROM or External Pin Setting  
The following tables show IDE status and control bit in serial ROM or external pin setting.  
Table 2-3. DV1/DV0, CLC, PWR Setting  
No.  
Device Power  
Bus Powered  
Internal  
Clock  
ATA/ATAPI  
Setting in Serial ROM or External Pin  
PWR  
1
CLC  
1
DV1  
1
DV0  
1
0
7.5 MHz  
60 MHz  
60 MHz  
No device connected  
ATA  
1
1
1
1
0
2
ATAPI  
1
1
0
1
3
Reserved  
1
1
0
0
4
No device connected  
ATA  
1
0
1
1
5
1
0
1
0
6
ATAPI  
1
0
0
1
7
Reserved  
1
0
0
0
8
Self Powered  
No device connected  
Combo (ATA)  
Combo (ATAPI)  
Reserved  
0
1
1
1
9
0
1
1
0
10  
11  
12  
13  
14  
15  
0
1
0
1
0
1
0
0
No device connected  
ATA  
0
0
1
1
0
0
1
0
ATAPI  
0
0
0
1
Auto device detect  
0
0
0
0
Remark Setting No. 0, 3, 4, 7, 8, 11, and 12 are prohibited to use.  
9
Data Sheet S16302EJ3V0DS  
µPD720130  
Table 2-4. DV1/DV0, DCC Setting  
Condition  
Mode  
DCC  
Pin  
DCC Setting  
in Serial  
ROM  
Description  
DV1  
1
DV0  
0
Target  
Device  
Setting  
ATA  
ATA  
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
No setting  
Reset  
Ultra, Multi Word DMA are disabled  
Ultra, Multi Word DMA are disabled  
Ultra, Multi Word DMA are enabled.  
Ultra, Multi Word DMA are enabled.  
Ultra, Multi Word DMA are disabled  
Ultra, Multi Word DMA are enabled.  
Ultra DMA is disabled  
Set  
No setting  
Reset  
Set  
0
1
ATAPI  
ATAPI  
No setting  
Reset  
Ultra DMA is disabled  
Set  
Ultra, Multi Word DMA are enabled.  
Ultra, Multi Word DMA are enabled.  
Ultra DMA is disabled  
No setting  
Reset  
Set  
Ultra, Multi Word DMA are enabled.  
Ultra, Multi Word DMA are disabled  
Ultra, Multi Word DMA are disabled  
Ultra, Multi Word DMA are enabled.  
Ultra, Multi Word DMA are enabled.  
Ultra, Multi Word DMA are disabled  
Ultra, Multi Word DMA are enabled.  
Ultra DMA is disabled  
0
0
Auto  
ATA  
No setting  
Reset  
device  
detect  
Set  
No setting  
Reset  
Set  
ATAPI  
No setting  
Reset  
Ultra DMA is disabled  
Set  
Ultra, Multi Word DMA are enabled.  
Ultra, Multi Word DMA are enabled.  
Ultra DMA is disabled  
No setting  
Reset  
Set  
Ultra, Multi Word DMA are enabled.  
Remark PIO mode 0-4 are always enabled.  
10  
Data Sheet S16302EJ3V0DS  
µPD720130  
2.4  
Combo Mode Function  
The µPD720130 can be used to realize that two IDE controller chips control one target IDE device in one  
system. To realize IDE bus arbitration between two IDE controller chips, the µPD720130 has CMB_BSY and  
CMB_STATE. Combo mode is enabled when PWR = 0 and CLC = 1.  
CMB_BSY and CMB_STATE connect to other IDE controller chip as follows.  
Figure 2-1. CMB_BSY and CMB_STATE Connection between Two IDE Controller Chips  
µ
Other IDE controller  
PD720130  
IDE Bus Grant  
CMB_STATE  
CMB_BSY  
IDE Bus Request  
Table 2-5. Description of CMB_BSY and CMB_STATE  
Pin Name  
Direction  
IN  
Value  
Description  
CMB_STATE  
0
1
0
1
Other IDE controller does not require or does not use IDE bus.  
Other IDE controller requires or is using IDE bus.  
The µPD720130 does not require or does not use IDE bus.  
The µPD720130 requires or is using IDE bus.  
CMB_BSY  
OUT  
11  
Data Sheet S16302EJ3V0DS  
µPD720130  
The IDE bus arbitration will be done by following sequence. The µPD720130 will confirm whether other  
IDE controller requires or is using IDE bus or not. If other IDE controller does not require or does not use IDE  
bus, the µPD720130 will use IDE bus.  
Figure 2-2. IDE Bus Arbitration Sequence  
START  
Chip Init  
Other IDE controller requires or  
is using IDE bus.  
CMB_STATE = 1?  
Yes.  
No.  
CMB_BSY = 1  
CMB_STATE = 0?  
Yes.  
No.  
µ
The PD720130 can not use IDE bus  
CMB_BSY = 0  
IDE bus is used  
µ
by the PD720130  
END  
12  
Data Sheet S16302EJ3V0DS  
µPD720130  
2.5  
Power Control  
To realize bus-powered or high performance self-powered USB2.0 to IDE Bridge system, the µPD720130 has  
two internal system clock mode. One is 7.5 MHz for bus-powered mode and the other is 60 MHz for self-powered  
mode. The µPD720130 controls the power state by events as follows. The word with under line shows event.  
The Italic word shows the power state.  
Figure 2-3. Power State Control  
(a) Bus-powered Mode  
Vbus OFF  
Power OFF  
Power OFF  
Vbus ON  
Connect  
Hardware Reset  
Idle Mode  
Power = PRESET  
Default State  
Bus Reset  
FS CONNECT  
HS CONNECT  
FS Enumeration  
State  
Power = PENUM_FS  
HS Enumeration  
State  
Power = PENUM_HS  
Resume  
Resume  
Suspend  
Suspend  
Set Configuration  
Set Configuration  
Suspend  
Resume  
Suspend  
Configured  
Suspend  
Mode  
Configured  
State  
Suspend  
Mode  
State  
Resume  
Suspend  
Power = PSPND  
Power = PSPND  
Suspend  
Resume  
Resume  
FS Operation  
State  
HS Operation  
State  
Power = PHS_B  
Power = PFS_B  
(b) Self-powered Mode  
Power OFF  
Power OFF  
Power ON  
Hardware Reset  
Disconnect  
Mode  
Vbus ON  
Connect  
Default  
State  
Vbus OFF  
Idle Mode  
Power = PRESET  
CMB_STATE = 0  
CMB_STATE = 1  
Bus Reset  
IDE Bus  
Release  
State  
FS CONNECT  
HS CONNECT  
Power = PCOMBO  
FS Enumeration  
State  
Power = PENUM_FS  
HS Enumeration  
State  
Power = PENUM_HS  
Resume  
Suspend  
Suspend  
Resume  
Suspend  
Resume  
Suspend  
Suspend  
Resume  
Suspend  
Set Configuration  
Set Configuration  
Configured  
State  
Suspend  
Mode  
Configured  
State  
Suspend  
Mode  
Power = PSPND  
Power = PSPND  
Resume  
Resume  
HS Operation  
State  
FS Operation  
State  
Power = PFS_S  
Power = PHS_S  
13  
Data Sheet S16302EJ3V0DS  
µPD720130  
To realize bus-powered USB2.0 to IDE Bridge system, the power consumption for IDE device should be  
controlled by the power state of the µPD720130. The µPD720130 has DPC pin to control IDE devices power  
circuit. DPC pins output level relates to USB device states. DPC should be pull up to 3.3 V because DPC  
output becomes high impedance state until the µPD720130 is initialized.  
Figure 2-4. DPC Pin to Control IDE Devices Power Circuit  
High impedance state  
Default  
Un-configured  
Configured  
Suspend  
Configured  
Normal  
Normal  
Operation  
DPC  
Operation  
Power ON  
Hardware Reset  
Set  
Configuration  
Suspend  
Occured  
Resume  
Occured  
Bus Reset  
Following reference circuit can cut off power supply to IDE device during the µPD720130 is under default  
and un-configured state. Also, the power supply to IDE device is disabled during suspend state, too.  
Power consumption of total system under default, un-configured, and suspend state can be reduced by  
DPC pin.  
Figure 2-5. Power Control Circuit Example  
Power supply rail  
IDE Device  
Power  
3.3 V  
IN  
OUT  
Regulator  
µ
PD720130  
Pull  
Up  
P-Channel Switch  
DPC  
ON  
14  
Data Sheet S16302EJ3V0DS  
µPD720130  
3. ELECTRICAL SPECIFICATIONS  
3.1  
Buffer List  
2.5 V oscillator interface  
XIN, XOUT  
3.3 V input buffer  
MD(1:0), TEST(3:0), SMC  
3.3 V schmitt input buffer  
RESETB, IRQ0  
3.3 V input buffer with enable (OR type)  
DCC, DV(1:0), SPD, CLC, PWR, CMB_STATE  
3.3 V IOL = 6 mA 3-state output buffer  
CMB_BSY, DPC  
3.3 V IOL = 3 mA bi-directional schmitt buffer with input enable (OR-type)  
GPIO(7:0), PIO5, SDA, SCL  
3.3 V IOL = 6 mA bi-directional buffer with input enable (OR-type)  
PIO(15:14)  
5 V schmitt input buffer  
VBUS  
5 V IOL = 6 mA 3-state output buffer  
IDECS(1:0)B, IDEA(2:0), IDEDAKB, IDEIORB, IDEIOWB, IDERSTB  
5 V IOL = 6 mA bi-directional buffer with input enable (OR-type)  
IDED(15:0), IDEINT, IDEIORDY, IDEDRQ  
USB interface  
DP, DM, RSDP, RSDM, RREF, RPU  
Remark Above, 5 Vrefers to a 3.3 V buffer with 5-V tolerant circuit. Therefore, it is possible to have a 5-V  
connection for an external bus, but the output level will be only up to 3.3 V, which is the VDD33 voltage.  
15  
Data Sheet S16302EJ3V0DS  
µPD720130  
3.2  
Terminology  
Terms Used in Absolute Maximum Ratings  
Parameter  
Symbol  
Meaning  
Power supply voltage  
VDD33, VDD25 Indicates voltage range within which damage or reduced reliability will not result when  
power is applied to a VDD pin.  
Input voltage  
Output voltage  
Output current  
VI  
VO  
IO  
Indicates voltage range within which damage or reduced reliability will not result when  
power is applied to an input pin.  
Indicates voltage range within which damage or reduced reliability will not result when  
power is applied to an output pin.  
Indicates absolute tolerance value for DC current to prevent damage or reduced  
reliability when a current flows out of or into an output pin.  
Operating temperature  
Storage temperature  
TA  
Indicates the ambient temperature range for normal logic operations.  
Tstg  
Indicates the element temperature range within which damage or reduced reliability  
will not result while no voltage or current are applied to the device.  
Terms Used in Recommended Operating Range  
Parameter  
Power supply voltage  
High-level input voltage  
Symbol  
Meaning  
VDD33, VDD25 Indicates the voltage range for normal logic operations occur when VSS = 0 V.  
VIH  
Indicates the voltage, which is applied to the input pins of the device, is the voltage  
indicates that the high level states for normal operation of the input buffer.  
* If a voltage that is equal to or greater than the Min.value is applied, the input  
voltage is guaranteed as high level voltage.  
Low-level input voltage  
VIL  
Indicates the voltage, which is applied to the input pins of the device, is the voltage  
indicates that the low level states for normal operation of the input buffer.  
* If a voltage that is equal to or lesser than the Max.value is applied, the input  
voltage is guaranteed as low level voltage.  
Hysteresys voltage  
Input rise time  
Input fall time  
VH  
tri  
Indicates the differential between the positive trigger voltage and the negative trigger  
voltage.  
Indicates allowable input rise time to input pins. Input rise time is transition time from  
0.1 × VDD to 0.9 × VDD.  
tfi  
Indicates allowable input fall time to input pins. Input fall time is transition time from  
0.9 × VDD to 0.1 × VDD.  
Terms Used in DC Characteristics  
Parameter  
Symbol  
Meaning  
Off-state output leakage  
current  
IOZ  
Indicates the current that flows from the power supply pins when the rated power  
supply voltage is applied when a 3-state output has high impedance.  
Output short circuit current  
IOS  
Indicates the current that flows when the output pin is shorted (to GND pins) when  
output is at high-level.  
Input leakage current  
II  
Indicates the current that flows when the input voltage is supplied to the input pin.  
Low-level output current  
IOL  
Indicates the current that flows to the output pins when the rated low-level output  
voltage is being applied.  
High-level output current  
IOH  
Indicates the current that flows from the output pins when the rated high-level output  
voltage is being applied.  
16  
Data Sheet S16302EJ3V0DS  
µPD720130  
3.3  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD33  
Condition  
3.3 V power supply rail  
2.5 V power supply rail  
Rating  
Unit  
V
0.5 to +4.6  
0.5 to +3.6  
0.5 to +6.6  
Power supply voltage  
VDD25  
VI  
V
3.0 V VDD33 3.6 V  
VI < VDD33 + 3.0 V  
Input voltage, 5 V buffer  
Input voltage, 3.3 V buffer  
Input voltage, 2.5 V buffer  
Output voltage, 5 V buffer  
Output voltage, 3.3 V buffer  
Output voltage, 2.5 V buffer  
V
3.0 V VDD33 3.6 V  
VI < VDD33 + 1.0 V  
0.5 to +4.6  
0.5 to +3.6  
0.5 to +6.6  
0.5 to +4.6  
0.5 to +3.6  
VI  
V
V
V
V
V
2.3 V VDD25 2.7 V  
VI < VDD25 + 0.9 V  
VI  
3.0 V VDD33 3.6 V  
VO < VDD33 + 3.0 V  
VO  
VO  
VO  
3.0 V VDD33 3.6 V  
VO < VDD33 + 1.0 V  
2.3 V VDD25 2.7 V  
VO < VDD25 + 0.9 V  
Output current, 5 V buffer  
Output current, 3.3 V buffer  
IO  
IO  
IOL = 6 mA  
IOL = 6 mA  
IOL = 3 mA  
20  
20  
mA  
mA  
mA  
°C  
10  
0 to +70  
65 to +150  
Operating ambient temperature  
Storage temperature  
TA  
°C  
Tstg  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameters. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions  
that ensure that the absolute maximum ratings are not exceeded.  
The ratings and conditions indicated for DC characteristics and AC characteristics represent the  
quality assurance range during normal operation.  
Two Power Supply Rails Limitation  
The µPD720130 has two power supply rails (2.5 V, 3.3 V). The system will require the time when power supply  
rail is stable at VDD level. And, there will be difference between the time of VDD25 and VDD33. The µPD720130  
requires that VDD25 should be stable before VDD33 becomes stable. At this case, the system must ensure that the  
absolute maximum ratings for VI / VO are not exceeded. System reset signaling should be asserted more than  
specified time after both VDD25 and VDD33 are stable.  
17  
Data Sheet S16302EJ3V0DS  
µPD720130  
Recommended Operating Ranges  
Parameter  
Symbol  
VDD33  
Condition  
Min.  
3.0  
2.3  
2.3  
Typ.  
3.3  
2.5  
2.5  
Max.  
3.6  
Unit  
V
Operating voltage  
3.3 V for VDD33 pins  
2.5 V for VDD25 pins  
2.5 V for AVDD25 pins  
VDD25  
VDD25  
VIH  
2.7  
V
2.7  
V
High-level input voltage  
5.0 V high-level input voltage  
3.3 V high-level input voltage  
2.5 V high-level input voltage  
Low-level input voltage  
5.0 V low-level input voltage  
3.3 V low-level input voltage  
2.5 V low-level input voltage  
Hysteresis voltage  
2.0  
2.0  
1.7  
5.5  
V
V
V
VDD33  
VDD25  
VIL  
0
0
0
0.8  
0.8  
0.7  
V
V
V
VH  
5 V hysteresis voltage  
3.3 V hysteresis voltage  
Input rise time  
0.3  
0.2  
1.5  
1.0  
V
V
tri  
Normal buffer  
0
0
200  
10  
ns  
Schmitt buffer  
ms  
Input fall time  
tfi  
Normal buffer  
0
0
200  
10  
ns  
Schmitt buffer  
ms  
18  
Data Sheet S16302EJ3V0DS  
µPD720130  
DC Characteristics (VDD33 = 3.0 to 3.6 V, VDD25 = 2.3 to 2.7 V, TA = 0 to +70°C)  
Control Pin Block  
Parameter  
Off-state output current  
Output short circuit current  
Low-level output current  
5.0 V low-level output current  
3.3 V low-level output current  
3.3 V low-level output current  
High-level output current  
5.0 V high-level output current  
3.3 V high-level output current  
3.3 V high-level output current  
Input leakage current  
Symbol  
IOZ  
Condition  
Min.  
Max.  
10  
Unit  
µA  
VO = VDD33, VDD25 or VSS  
Note  
250  
IOS  
IOL  
mA  
VOL = 0.4 V  
VOL = 0.4 V  
VOL = 0.4 V  
6.0  
6.0  
3.0  
mA  
mA  
mA  
IOH  
2.0  
6.0  
3.0  
VOH = 2.4 V  
VOH = 2.4 V  
VOH = 2.4 V  
mA  
mA  
mA  
II  
10  
10  
µA  
µA  
3.3 V buffer  
VI = VDD or VSS  
VI = VDD or VSS  
5.0 V buffer  
Note The output short circuit time is one second or less and is only for one pin on the LSI.  
19  
Data Sheet S16302EJ3V0DS  
µPD720130  
USB Interface Block  
Parameter  
Symbol  
RS  
Conditions  
Min.  
Max.  
Unit  
Serial Resistor between DP (DM) and  
RSDP (RSDM)  
38.61  
39.39  
Output pin impedance  
ZHSDRV  
RPU  
Includes RS resistor  
40.5  
49.5  
1.5 k5% consists of  
resistance of transistor and  
pull-up resistor  
Bus pull-up resistor on upstream facing  
port  
1.485  
1.515  
Termination voltage for upstream facing  
port pull-up  
VTERM  
3.0  
3.6  
V
V
Input Levels for Full-speed:  
High-level input voltage (drive)  
High-level input voltage (floating)  
Low-level input voltage  
VIH  
VIHZ  
VIL  
2.0  
2.7  
3.6  
0.8  
V
V
V
(D+) (D)  
Differential input sensitivity  
Differential common mode range  
Output Levels for Full-speed:  
High-level output voltage  
Low-level output voltage  
VDI  
0.2  
0.8  
VCM  
Includes VDI range  
2.5  
RL of 14.25 kto VSS  
RL of 1.425 kto 3.6 V  
VOH  
2.8  
0.0  
0.8  
1.3  
3.6  
0.3  
V
V
V
V
VOL  
SE1  
VOSE1  
VCRS  
Output signal crossover point voltage  
Input Levels for High-speed:  
2.0  
High-speed squelch detection threshold  
(differential signal)  
VHSSQ  
VHSDSC  
VHSCM  
100  
525  
50  
150  
625  
mV  
mV  
mV  
High-speed disconnect detection threshold  
(differential signal)  
+500  
High-speed data signaling common mode  
voltage range  
High-speed differential input signaling level  
Output Levels for High-speed:  
High-speed idle state  
See Figure 3-4.  
10.0  
+10.0  
VHSOI  
mV  
mV  
mV  
mV  
mV  
High-speed data signaling high  
High-speed data signaling low  
Chirp J level (differential signal)  
Chirp K level (differential signal)  
VHSOH  
VHSOL  
VCHIRPJ  
VCHIRPK  
360  
440  
10.0  
+10.0  
700  
1100  
900  
500  
20  
Data Sheet S16302EJ3V0DS  
µPD720130  
Figure 3-1. Differential Input Sensitivity Range for Low-/full-speed  
Differential Input Voltage Range  
Differential Output  
Crossover  
Voltage Range  
1.0  
0.0  
0.2 0.4  
0.6 0.8  
1.0 1.2 1.4  
1.6 1.8 2.0 2.2  
2.4 2.6  
2.8  
3.0  
3.2  
4.6  
Input Voltage Range (V)  
Figure 3-2. Full-speed Buffer VOH/IOH Characteristics for High-speed Capable Transceiver  
V
DD3.3  
V
DD2.8  
V
DD2.3  
V
DD1.8  
V
DD1.3  
V
DD0.8  
VDD0.3 VDD  
0
20  
40  
Min.  
Max.  
60  
80  
V
OUT (V)  
Figure 3-3. Full-speed Buffer VOL/IOL Characteristics for High-speed Capable Transceiver  
80  
Max.  
Min.  
60  
40  
20  
0
0
0.5  
1
1.5  
2.5  
3
2
V
OUT (V)  
21  
Data Sheet S16302EJ3V0DS  
µPD720130  
Figure 3-4. Receiver Sensitivity for Transceiver at DP/DM  
Level 1  
+400 mV  
Differential  
Point 3  
Point 1  
Point 4  
Point 2  
0 V  
Differential  
Point 5  
Point 6  
400 mV  
Differential  
Level 2  
0%  
Unit Interval  
100%  
Figure 3-5. Receiver Measurement Fixtures  
Test Supply Voltage  
+
15.8  
50 Ω  
To 50 Inputs of a  
USB  
Connector  
Nearest  
Device  
Vbus  
D+  
D-  
Coax  
High Speed Differential  
Oscilloscope, or 50 Ω  
Outputs of a High Speed  
Differential Data Generator  
15.8 Ω  
50 Ω  
Coax  
Gnd  
143 Ω  
143 Ω  
Pin Capacitance  
Parameter  
Symbol  
CIN  
Condition  
VDD = 0 V, TA = 25°C  
fC = 1 MHz  
Min.  
4
Max.  
Unit  
pF  
Input capacitance  
Output capacitance  
I/O capacitance  
6
6
6
COUT  
CIO  
4
pF  
Unmeasured pins returned to 0 V  
4
pF  
22  
Data Sheet S16302EJ3V0DS  
µPD720130  
Power Consumption  
(1) The power consumption when device works as bus-powered mode  
Symbol  
Condition  
Max.  
VDD33  
Unit  
VDD25  
AVDD25  
PENUM-BUS  
The power consumption under unconfigured stage  
High-speed operating  
Full-speed operating  
57  
23  
3
4
10  
10  
mA  
mA  
PW-BUS  
The power consumption when device works  
High-speed operating  
Full-speed operating  
110  
113  
22  
13  
10  
10  
mA  
mA  
µA  
PW_SPD-BUS  
The power consumption under suspend state  
10  
235  
5
(2) The power consumption when device works as self-powered mode  
Symbol  
Condition  
Max.  
VDD33  
Unit  
VDD25  
AVDD25  
PENUM-SELF  
The power consumption under unconfigured stage  
High-speed operating  
Full-speed operating  
85  
60  
5
5
10  
10  
mA  
mA  
PW-SELF  
The power consumption when device works  
High-speed operating  
Full-speed operating  
120  
113  
25  
13  
10  
10  
mA  
mA  
PW_SPD-SELF  
PW_UNP  
The power consumption under suspend state  
The power consumption under unplug state  
The power consumption under combo mode  
The device is releasing the IDE bus.  
50  
87  
90  
5
3
5
5
mA  
mA  
mA  
10  
10  
PW_COM  
23  
Data Sheet S16302EJ3V0DS  
µPD720130  
AC Characteristics (VDD33 = 3.0 to 3.6 V, VDD25 = 2.3 to 2.7 V, TA = 0 to +70°C)  
System Clock Ratings  
Parameter  
Symbol  
fCLK  
Condition  
Min.  
Typ.  
30  
Max.  
Unit  
500  
+500  
Clock frequency  
Xtal  
MHz  
ppm  
ppm  
500  
+500  
Oscillator block  
30  
50  
MHz  
%
ppm  
ppm  
Clock duty cycle  
tDUTY  
45  
55  
Remarks 1. Recommended accuracy of clock frequency is 100 ppm.  
2. Required accuracy of Xtal or Oscillator block is including initial frequency accuracy, the spread of  
Xtal capacitor loading, supply voltage, temperature, and aging, etc.  
System Reset signaling  
Parameter  
Symbol  
trst  
Conditions  
Min.  
2
Max.  
Unit  
µs  
Reset active time  
USB Interface Block  
(1/2)  
Unit  
Parameter  
Full-speed Source Electrical Characteristics  
Symbol  
Conditions  
Min.  
Max.  
Rise time (10% - 90%)  
tFR  
CL = 50 pF,  
RS = 36 Ω  
4
4
20  
20  
ns  
ns  
Fall time (90% - 10%)  
tFF  
CL = 50 pF,  
RS = 36 Ω  
Differential rise and fall time matching  
tFRFM  
(tFR/tFF)  
90  
111.11  
%
Full-speed data rate for device which are  
high-speed capable  
tFDRATHS  
Average bit rate  
11.9940  
12.0060  
Mbps  
Frame interval  
tFRAME  
tRFI  
0.9995  
1.0005  
42  
ms  
ns  
Consecutive frame interval jitter  
No clock adjustment  
Source jitter total (including frequency  
tolerance):  
3.5  
4.0  
+3.5  
+4.0  
To next transition  
tDJ1  
tDJ2  
ns  
ns  
For paired transitions  
2  
+5  
Source jitter for differential transition to  
SE0 transition  
tFDEOP  
ns  
Receiver jitter:  
18.5  
9  
+18.5  
+9  
To next transition  
For paired transitions  
tJR1  
tJR2  
ns  
ns  
Source SE0 interval of EOP  
Receiver SE0 interval of EOP  
tFEOPT  
tFEOPR  
tFST  
160  
82  
175  
ns  
ns  
ns  
Width of SE0 interval during differential  
transition  
14  
24  
Data Sheet S16302EJ3V0DS  
µPD720130  
(2/2)  
Parameter  
Symbol  
Conditions  
Min.  
Max.  
Unit  
High-speed Source Electrical Characteristics  
Rise time (10% - 90%)  
Fall time (90% - 10%)  
tHSR  
500  
500  
ps  
ps  
tHSF  
Driver waveform  
See Figure 3-6.  
tHSDRAT  
High-speed data rate  
479.760  
480.240  
Mbps  
µs  
Microframe interval  
tHSFRAM  
124.9375  
125.0625  
Consecutive microframe interval difference  
tHSRFI  
4 high-  
speed  
Bit  
times  
Data source jitter  
See Figure 3-6.  
See Figure 3-4.  
Receiver jitter tolerance  
Device Event Timings  
Time from internal power good to device  
pulling D+ beyond VIHZ (min.) (signaling  
attached)  
tSIGATT  
100  
100  
ms  
ms  
Debounce interval provided by USB  
system software after attach  
tATTDB  
Inter-packet delay for full-speed  
tIPD  
2
Bit  
times  
Inter-packet delay for device response  
w/detachable cable for full-speed  
tRSPIPD1  
6.5  
Bit  
times  
µs  
High-speed detection start time from  
suspend  
tSCA  
2.5  
µs  
ms  
ms  
µs  
Sample time for suspend vs reset  
Time to detect bus suspend state  
Power down under suspend  
tCSR  
tSPD  
tSUS  
tRHS  
100  
875  
3.125  
10  
3.000  
Reversion time from suspend to high-  
speed  
1.333  
Drive Chirp K width  
tCKO  
tFCA  
tSSC  
tFSC  
tCSI  
1
ms  
ms  
µs  
Finish Chirp K assertion  
7
Start sequencing Chirp K-J-K-J-K-J  
Finish sequencing Chirp K-J  
Detect sequencing Chirp K-J width  
Sample time for sequencing Chirp  
Reversion time to high-speed  
High-speed detection start time  
Reset completed time  
100  
100  
500  
2.5  
1
µs  
µs  
tSCS  
tRHA  
tHDS  
tDRS  
2.5  
500  
ms  
µs  
µs  
2.5  
10  
3000  
ms  
25  
Data Sheet S16302EJ3V0DS  
µPD720130  
IDE Interface Block  
PIO mode  
Parameter  
Symbol  
t0  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Cycle time (min.)  
600  
70  
383  
50  
240  
30  
180  
30  
80  
80  
70  
30  
10  
20  
5
120  
25  
70  
70  
25  
20  
10  
20  
5
Address setup time (min.)  
t1  
t2  
16 bits DIOR/DIOW pulse width (min.)  
8 bits DIOR/DIOW pulse width (min.)  
DIOR/DIOW recovery time (min.)  
DIOW data setup time (min.)  
DIOW data hold time (min.)  
DIOR data setup time (min.)  
DIOR data hold time (min.)  
165  
290  
125  
290  
100  
290  
t2i  
t3  
60  
30  
50  
5
45  
20  
35  
5
30  
15  
20  
5
t4  
t5  
t6  
DIOR 3-state delay time (max.)  
Address hold time (min.)  
t6Z  
t9  
30  
20  
0
30  
15  
0
30  
10  
0
30  
10  
0
30  
10  
0
IORDY read data valid time (min.) Note  
IORDY setup time (min.) Note  
IORDY pulse width (max.) Note  
IORDY Inactive to Hi-Z time (max.) Note  
tRD  
tA  
tB  
tC  
35  
1250  
5
35  
1250  
5
35  
1250  
5
35  
1250  
5
35  
1250  
5
Note IORDY is an option in mode 0 - 2. IORDY is essential in modes 3 and 4.  
Multi Word DMA mode  
Parameter  
Symbol  
t0  
Mode 0  
480  
215  
150  
5
Mode 1  
150  
80  
60  
5
Mode 2  
120  
70  
50  
5
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Cycle time (min.)  
DIOR/DIOW pulse width (min.)  
DIOR data access time (max.)  
DIOR data hold time (min.)  
DIOR data setup time (min.)  
DIOW data setup time (min.)  
DIOW data hold time (min.)  
DMACK setup time (min.)  
tD  
tE  
tF  
tGr  
tGw  
tH  
100  
100  
20  
30  
30  
15  
0
20  
20  
10  
0
tI  
0
DMACK hold time (min.)  
tJ  
20  
5
5
DIOR negate pulse width (min.)  
DIOW negate pulse width (min.)  
DIOR-DMARQ delay time (max.)  
DIOW-DMARQ delay time (max.)  
DMACK 3-state delay time (max.)  
CS setup time (min.)  
tKr  
tKw  
tLr  
tLw  
tZ  
50  
50  
50  
40  
40  
25  
30  
10  
25  
25  
35  
35  
25  
25  
10  
215  
120  
40  
20  
tM  
tN  
50  
CS hold time (min.)  
15  
26  
Data Sheet S16302EJ3V0DS  
µPD720130  
Ultra DMA mode  
Parameter  
Symbol  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Unit  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.  
Average cycle time for 2 cycles  
Minimum cycle time for 2 cycles  
Cycle time for 1 cycle  
t2CYC  
t2CYC  
tCYC  
tDS  
240  
235  
114  
15  
5
-
160  
156  
75  
10  
5
-
120  
117  
55  
7
-
90  
86  
39  
7
-
60  
57  
25  
5
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
-
-
-
-
Data setup time on receive side  
Data hold time on receive side  
Data setup time on transmit side  
Data hold time on transmit side  
First STROBE time  
-
-
-
-
-
tDH  
-
-
5
-
5
-
5
-
tDVS  
tDVH  
tFS  
70  
6
-
48  
6
-
34  
6
-
20  
6
-
6
-
-
-
-
-
6
-
0
230  
0
200  
0
170  
0
130  
0
120  
Interlock time with limitation  
Minimum interlock time  
tLI  
0
150  
0
150  
0
150  
0
100  
0
100  
tMLI  
tUI  
20  
0
-
-
20  
0
-
-
20  
0
-
-
20  
0
-
-
20  
0
-
-
Interlock time without limitation  
Output release time  
tAZ  
-
10  
-
-
10  
-
-
10  
-
-
10  
-
-
10  
-
Output delay time  
tZAH  
tZAD  
20  
0
20  
0
20  
0
20  
0
20  
0
Output stabilization time  
(from release)  
-
-
-
-
-
Envelope time  
tENV  
tSR  
tRFS  
tRP  
20  
-
70  
50  
75  
-
20  
-
70  
30  
60  
-
20  
-
70  
20  
50  
-
20  
-
55  
NA  
60  
-
20  
-
55  
NA  
60  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STROBE DMARDY delay time  
Last STROBE time  
Pause time  
-
-
-
-
-
160  
-
125  
-
100  
-
100  
-
100  
-
IORDY pull-up time  
IORDY wait time  
tIORYZ  
tZIORY  
tACK  
tSS  
20  
-
20  
-
20  
-
20  
-
20  
-
0
0
0
0
0
DMACK setup/hold time  
STROBE STOP time  
20  
50  
-
20  
50  
-
20  
50  
-
20  
50  
-
20  
50  
-
-
-
-
-
-
27  
Data Sheet S16302EJ3V0DS  
µPD720130  
Serial ROM interface Block  
Parameter  
Symbol  
tSCL  
Conditions  
Min.  
Max.  
100  
Unit  
KHz  
µs  
Clock frequency  
Clock pulse width low  
Clock pulse width high  
Clock Low to data valid  
Start hold time  
tLOW  
4.7  
4.0  
100  
4.0  
4.7  
0
µs  
tHIGH  
tAA  
4500  
ns  
µs  
tHD.STA  
tSU.STA  
tHD.DAT  
tSU.DAT  
tDH  
µs  
Start setup time  
Data in hold time  
Data in setup time  
Data out hold time  
Stop setup time  
ns  
µs  
0.2  
50  
ns  
µs  
µs  
tSU.STO  
tBUF  
4.7  
10  
Time the bus must be free before a new  
transmission can start  
Write cycle time  
tWR  
10  
ms  
28  
Data Sheet S16302EJ3V0DS  
µPD720130  
Figure 3-6. Transmit Waveform for Transceiver at DP/DM  
Level 1  
+400 mV  
Differential  
Point 3  
Point 4  
0 V  
Differential  
Point 1  
Point 2  
Point 5  
Point 6  
400 mV  
Differential  
Level 2  
Unit Interval  
0%  
100%  
Figure 3-7. Transmitter Measurement Fixtures  
Test Supply Voltage  
+
15.8 Ω  
50 Ω  
To 50 Inputs of a  
High Speed Differential  
Oscilloscope, or 50 Ω  
Outputs of a High Speed  
Differential Data Generator  
USB  
Connector  
Nearest  
Device  
Vbus  
D+  
D-  
Coax  
15.8 Ω  
50 Ω  
Coax  
Gnd  
143 Ω  
143 Ω  
29  
Data Sheet S16302EJ3V0DS  
µPD720130  
Timing Diagram  
System reset timing  
t
rst  
RESETB  
Remark After RESET is negated, this chip read the serial ROM first. Do not reset while the serial ROM is read. The  
serial ROM is completed to read below time, after RESET is negated.  
5 + 0.1197 × bytes (serial ROM size) + 0.5678 (ms)  
Example In the case of 512 bytes: 66.855 ms, in the case of 8 Kbytes: 986.15 ms  
USB power-on and connection events  
Hub port  
power OK  
Reset recovery  
time  
Attatch detected  
Hub port  
power-on  
4.01 V  
USB system software  
reads device speed  
V
BUS  
IH(min)  
IH  
V
V
D+  
or  
D−  
t
SIGATT  
10 ms  
t
ATTDB  
USB differential data jitter for full-speed  
t
PERIOD  
Crossover  
Points  
Differential  
Data Lines  
Consecutive  
Transitions  
N × tPERIOD + tDJ1  
Paired  
Transitions  
N × tPERIOD + tDJ2  
30  
Data Sheet S16302EJ3V0DS  
µPD720130  
USB differential-to-EOP transition skew and EOP width for full-speed  
t
PERIOD  
Crossover  
Point Extended  
Crossover  
Point  
Differential  
Data Lines  
Diff. Data-to-  
SE0 Skew  
N × tPERIOD + tFDEOP  
Source EOP Width: tFEOPT  
Receiver EOP Width: tFEOPR  
USB receiver jitter tolerance for full-speed  
t
PERIOD  
Differential  
Data Lines  
tJR  
t
JR1  
tJR2  
Consecutive  
Transitions  
N × tPERIOD + tJR1  
Paired  
Transitions  
N × tPERIOD + tJR2  
USB connection sequence on full-speed system bus  
Pull-up is active.  
Reversion to full-speed mode  
Chirp K device out  
FSJ  
FSJ  
USB bus  
tHDS  
tSCA  
tCKO  
tSCS  
tFCA  
tDRS  
T0  
USB connection sequence on high-speed system bus  
Pull-up is active.  
Reversion to high-speed mode  
Reset Complete  
Chirp state from host/hub  
Chirp K device out  
K
J
K
J
K
J
K
J
FSJ  
USB bus  
t
SCA  
tHDS  
tCKO  
tRHA  
tSSC tCSI  
tFSC  
tFCA  
tSCS  
T0  
31  
Data Sheet S16302EJ3V0DS  
µPD720130  
USB reset sequence from suspend state on full-speed system bus  
Pull-up is active.  
Chirp K device out  
FSJ  
FSJ  
USB bus  
tSCA  
tCKO  
tDRS  
tSCS  
tFCA  
T0  
USB reset sequence from suspend state on high-speed system bus  
Chrip state from host/hub  
Reversion to high-speed mode  
Reset Complete  
Pull-up is active.  
FSJ  
Chirp K device out  
K
J
K
J
K
J
K
J
USB bus  
tSCA  
t
CKO  
t
RHA  
t
SSC  
t
CSI  
t
FSC  
t
FCA  
t
SCS  
T
0
USB suspend and resume on full-speed system bus  
FS EOP  
USB bus  
FSJ  
FSK  
FSJ  
tSPD  
Note time required to relock PLL  
and stabilize oscillator.  
Power will be down  
tSUS  
USB suspend and resume on high-speed system bus  
Reversion to full-speed mode  
High-speed packet  
Reversion to high-speed mode  
High-speed packet  
FSJ  
FSK  
USB bus  
t
RHS  
t
SPD  
tCSR  
t
SUS  
Note time required to relock PLL  
and stabilize oscillator.  
Power will be down  
T0  
32  
Data Sheet S16302EJ3V0DS  
µPD720130  
IDE PIO mode timing  
IDECS1B, IDECS0B  
H
L
IDEEA2-IDEEA0  
t
1
t
9
t
0
IDEIORB  
IDEIOWB  
H
L
t
2i  
t
2
t
3
t
4
IDED15-IDED0  
(WRITE)  
H
L
t
6
6Z  
t
5
t
IDED15-IDED0  
(READ)  
H
L
t
A
t
C
t
RD  
IDEIORDY  
H
L
t
B
IDE multi word DMA mode timing  
H
IDECS1B, IDECS0B  
L
H
IDEDRQ  
L
t
M
t
N
t
Lr/tLw  
IDEDAKB  
H
L
t
0
t
I
t
D
t
Kr/tKw  
t
J
IDEIORB  
IDEIOWB  
H
L
t
E
t
Gr  
t
F
t
Z
IDED15-IDED0  
(READ)  
H
L
t
Gw  
t
H
IDED15-IDED0  
(WRITE)  
H
L
IDE ultra DMA mode data-in timing  
H
IDEDRQ  
L
tUI  
tSS  
H
IDEDAKB  
L
tLI tLI  
tMLI  
tFS  
tZAD  
tACK  
tENV  
tENV  
tACK  
IDEIOWB  
(STOP)  
H
L
tFS  
tZAD  
tACK  
tACK  
tLI  
IDEIORDY  
(HDMARDY)  
H
L
tZIORY  
t
2CYC  
tIORYZ  
tDVH  
IDEIORB  
(DSTROBE)  
H
L
tDVS  
tCYC  
tDVH  
tZAH  
t
t
CYC  
DVS  
t
AZ  
H
L
tAZ  
IDED15-IDED0  
IDECS1B, IDECS0B  
IDEA2-IDEA0  
Data  
Data  
Data  
CRC  
t
ACK  
tACK  
tACK  
H
L
t
ACK  
H
L
33  
Data Sheet S16302EJ3V0DS  
µPD720130  
IDE ultra DMA mode data-in stop timing  
H
IDEDRQ  
L
H
IDEDAKB  
L
t
RP  
IDEIOWB  
(STOP)  
H
L
t
SR  
IDEIORB  
(HDMARDY)  
H
L
t
RFS  
IDEIORDY  
(DSTROBE)  
H
L
H
L
IDED15-IDED0  
IDE ultra DMA mode data-in end timing  
H
IDEDRQ  
L
t
LI  
t
MLI  
H
IDEDAKB  
L
t
ACK  
ACK  
IDEIOWB  
(STOP)  
H
L
t
ZAH  
t
t
RP  
t
AZ  
IDEIORB  
(HDMARDY)  
H
L
t
IORYZ  
t
RPS  
t
LI  
t
MLI  
IDEIORDY  
(DSTROBE)  
H
L
t
DVS DVH  
t
H
L
IDED15-IDED0  
CRC  
t
ACK  
IDECS1B, IDECS0B  
IDEA2-IDEA0  
H
L
IDE ultra DMA mode data-out timing  
H
IDEDRQ  
L
t
RP  
t
UI  
H
IDEDAKB  
L
ACK tENV  
LI  
t
t
t
ACK  
t
MLI  
t
UI  
t
LI  
IDEIOWB  
(STOP)  
H
L
t
IORYZ  
t
RFS  
IDEIORDY  
(DDMARDY)  
t
ZIORY  
ACK  
H
L
t
LI  
t
t
ACK  
t
2CYC  
t
MLI  
IDEIORB  
(HSTROBE)  
H
L
t
DVS  
t
tCDYVCH  
t
DVS  
t
CYC  
t
DVH  
H
L
Data  
Data  
Data  
CRC  
IDED15-IDED0  
IDECS1B, IDECS0B  
IDEA2-IDEA0  
t
ACK  
t
t
ACK  
ACK  
H
L
t
ACK  
H
L
34  
Data Sheet S16302EJ3V0DS  
µPD720130  
IDE ultra DMA mode data-out stop timing  
H
IDEDRQ  
L
t
RP  
H
IDEDAKB  
L
IDEIOWB  
(STOP)  
H
L
t
SR  
IDEIORB  
(HDMARDY)  
H
L
t
RFS  
IDEIORDY  
(DSTROBE)  
H
L
H
L
IDED15-IDED0  
IDE ultra DMA mode data-out end timing  
H
IDEDRQ  
L
t
LI  
t
MLI  
H
IDEDAKB  
L
t
LI  
t
ACK  
IDEIOWB  
(STOP)  
H
L
t
IORYZ  
t
SS  
tLI  
IDEIORB  
(HDMARDY)  
H
L
t
ACK  
IDEIORDY  
(DSTROBE)  
H
L
t
DVS DVH  
t
H
L
CRC  
IDED15-IDED0  
t
ACK  
IDECS1B, IDECS0B  
IDEA2-IDEA0  
H
L
IDE ultra DMA mode data skew timing  
t2CYC  
IDEIORB  
(Output side)  
H
L
tCYC  
tDVH  
tCYC  
tDVS  
H
L
IDED15-IDED0  
(Output side)  
Data  
Data  
Data  
Delay, skew, etc., by cable  
IDEIORDY  
(Input side)  
H
L
tDS  
tDH  
IDED15-IDED0  
(Input side)  
H
L
Output side  
Input side  
xSTROBE  
DD0  
:
:
DD15  
35  
Data Sheet S16302EJ3V0DS  
µPD720130  
Serial ROM access timing  
tHIGH  
tLOW  
tLOW  
SCL  
tSU.STA  
tHD.STA  
tHD.DAT  
tSU.DAT  
tSU.STO  
SDA  
(Output)  
tAA  
tDH  
tBUF  
SDA  
(Input)  
Serial ROM write cycle timing  
PIO1  
8th bit  
ACK  
PIO0  
Word n  
t
WR  
Stop  
condition  
Start  
condition  
36  
Data Sheet S16302EJ3V0DS  
µPD720130  
4. PACKAGE DRAWING  
µPD720130GC-9EU  
100-PIN PLASTIC TQFP (FINE PITCH) (14x14)  
A
B
75  
76  
51  
50  
detail of lead end  
S
P
C
D
T
R
L
100  
1
26  
25  
U
Q
F
J
G
M
H
I
K
S
N
S
M
NOTE  
Each lead centerline is located within 0.08 mm of  
its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
A
B
C
D
F
G
H
I
16.0 0.2  
14.0 0.2  
14.0 0.2  
16.0 0.2  
1.0  
1.0  
0.22 0.05  
0.08  
J
0.5 (T.P.)  
1.0 0.2  
0.5  
K
L
+0.03  
0.17  
M
0.07  
N
P
Q
0.08  
1.0  
0.1 0.05  
+4°  
3°  
R
3°  
S
T
U
1.1 0.1  
0.25  
0.6 0.15  
P100GC-50-9EU  
37  
Data Sheet S16302EJ3V0DS  
µPD720130  
µPD720130GC-9EU-SIN  
100-PIN PLASTIC TQFP (FINE PITCH) (14x14)  
A
B
75  
76  
51  
50  
detail of lead end  
S
C
D
Q
R
100  
1
26  
25  
F
G
J
M
H
I
K
P
N
S
L
M
NOTE  
Each lead centerline is located within 0.10 mm of  
its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
A
B
C
D
F
16.0 0.2  
14.0 0.2  
14.0 0.2  
16.0 0.2  
1.0  
G
1.0  
+0.05  
0.22  
H
0.04  
I
J
0.10  
0.5 (T.P.)  
1.0 0.2  
0.5 0.2  
K
L
+0.055  
M
0.145  
0.045  
N
P
Q
0.10  
1.0 0.1  
0.1 0.05  
+7°  
3°  
R
S
3°  
1.27 MAX.  
S100GC-50-9EU-2  
38  
Data Sheet S16302EJ3V0DS  
µPD720130  
5. RECOMMENDED SOLDERING CONDITIONS  
The µPD720130 should be soldered and mounted under the following recommended conditions.  
For soldering methods and conditions other than those recommended below, contact your NEC Electronics sales  
representative.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
µPD720130GC-9EU: 100-pin plastic TQFP (Fine pitch) (14 × 14)  
Soldering Method  
Soldering Conditions  
Symbol  
Infrared reflow  
Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),  
Count: Two times or less  
IR35-103-2  
Exposure limit: 3 daysNote (after that, prebake at 125°C for 10 hours)  
Partial heating  
Pin temperature: 300°C max., Time: 3 seconds or less (per pin row)  
Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.  
µPD720130GC-9EU-SIN: 100-pin plastic TQFP (Fine pitch) (14 × 14)  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Symbol  
Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),  
Count: Two times or less  
IR35-103-2  
Exposure limit: 3 daysNote (after that, prebake at 125°C for 10 hours)  
Partial heating  
Pin temperature: 300°C max., Time: 3 seconds or less (per pin row)  
Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.  
39  
Data Sheet S16302EJ3V0DS  
µPD720130  
[MEMO]  
40  
Data Sheet S16302EJ3V0DS  
µPD720130  
[MEMO]  
41  
Data Sheet S16302EJ3V0DS  
µPD720130  
[MEMO]  
42  
Data Sheet S16302EJ3V0DS  
µPD720130  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
43  
Data Sheet S16302EJ3V0DS  
µPD720130  
EEPROM is a trademark of NEC Electronics Corporation.  
USB logo is a trademark of USB Implementers Forum, Inc.  
The information in this document is current as of June, 2003. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD720130GC-9EU

USB2.0 to IDE Bridge
NEC

UPD720130GC-9EU

UNIVERSAL SERIAL BUS CONTROLLER, PQFP100, 14 X 14 MM, PLASTIC, TQFP-100
RENESAS

UPD720130GC-9EU-A

USB Bus Controller, MOS, PQFP100, 14 X 14 MM, LEAD FREE, PLASTIC, TQFP-100
NEC

UPD720130GC-9EU-A

UNIVERSAL SERIAL BUS CONTROLLER
RENESAS

UPD720130GC-9EU-SIN

USB2.0 to IDE Bridge
NEC

UPD720130GC-9EU-SIN

UNIVERSAL SERIAL BUS CONTROLLER
RENESAS

UPD720130GC-9EU-SIN-A

USB Bus Controller, MOS, PQFP100, 14 X 14 MM, PLASTIC, TQFP-100
NEC

UPD720133

MOS Integrated Circuit
NEC

UPD720133GB-YEU

USB Bus Controller, MOS, PQFP64, 10 X 10 MM, PLASTIC, TQFP-64
NEC

UPD720133GB-YEU-A

IC,BUS CONTROLLER,CMOS,TQFP,64PIN
RENESAS

UPD720133GB-YEU-A

USB Bus Controller, MOS, PQFP64, 10 X 10 MM, LEAD FREE, PLASTIC, TQFP-64
NEC

UPD720133GB-YEU-Y

USB Bus Controller, MOS, PQFP64, 10 X 10 MM, PLASTIC, TQFP-64
NEC