UPD72107L [NEC]

LAP-B CONTROLLER(Link Access Procedure Balanced mode); LAP -B控制器(链路访问过程平衡模式)
UPD72107L
型号: UPD72107L
厂家: NEC    NEC
描述:

LAP-B CONTROLLER(Link Access Procedure Balanced mode)
LAP -B控制器(链路访问过程平衡模式)

微控制器和处理器 串行IO控制器 通信控制器 外围集成电路 数据传输 时钟
文件: 总32页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD72107  
LAP-B CONTROLLER  
Link Access Procedure Balanced mode  
The µPD72107 is an LSI that supports LAP-B protocol specified by the ITU-T recommended X.25 on a single  
chip.  
FEATURES  
• Memory-based interface  
Memory-based command  
Memory-based status  
• Complied with ITU-T recommended X.25 (LAP-B84  
edition)  
HDLC frame control  
Memory-based transmit/receive data  
• MAX.4 Mbps serial transfer rate  
• NRZ, NRZI coding  
Sequence control  
Flow control  
• ITU-T recommended X.75 supported  
• TTC standard JT-T90 supported  
• Optional functions  
Option frame  
Global address frame  
Error check deletion frame  
• Powerful test functions  
Data loopback function  
Loopback test link function  
Frame trace function  
• Abundant statistical information  
• Detailed mode setting function  
• Modem control function  
• On-chip DMAC (Direct Memory Access Controller)  
24-bit address  
Byte/word transfer enabled (switch with external pin)  
ORDERING INFORMATION  
Part Number  
µPD72107CW  
µPD72107GC-3B9  
µPD72107L  
Package  
64-pin plastic shrink DIP (750 mils)  
80-pin plastic QFP (14 x 14 mm)  
68-pin plastic QFJ (950 x 950 mils)  
The information in this document is subject to change without notice.  
Document No. S12962EJ5V0DS00 (5th edition)  
Date Published October 1998 N CP(K)  
Printed in Japan  
1998  
©
µPD72107  
BLOCK DIAGRAM  
D0-D7  
A16D8  
TxC  
TxD  
RTS  
CTS  
-A23D15  
A0-A15  
IORD  
IOWR  
MRD  
Internal controller  
TxFIFO  
Transmitter  
MWR  
UBE  
CS  
Bus  
interface  
ASTB  
AEN  
READY  
HLDRQ  
HLDAK  
CRQ  
Internal bus  
INT  
CLRINT  
B/W  
CD  
Receiver  
RxFIFO  
PU  
DMAC  
RxC  
RxD  
VCC  
GND  
RESET  
CLK  
Name  
Function  
Bus interface  
An interface between the µPD72107 and external memory or external host processor  
Internal controller  
Manages LAP-B protocol including control of the DMAC block, transmitter block, and receiver block  
DMAC  
Controls the transfer of data on the external memory to the internal controller or transmitter block,  
and controls the writing of data in the internal controller or receiver block to the external memory  
(Direct Memory  
Access Controller)  
TxFIFO  
A 16-byte buffer for when transmit data is sent from the DMAC to the transmitter block  
A 32-byte buffer for when receive data is sent from the receiver block to the DMAC  
Converts the contents of TxFIFO into an HDLC frame and transmits it as serial data  
Receives HDLC frame and writes internal data to RxFIFO  
RxFIFO  
Transmitter  
Receiver  
Internal bus  
An 8-bit address bus and 8-bit data bus that connect the internal controller, DMAC, FIFO, serial block,  
and bus interface block  
2
µPD72107  
PIN CONFIGURATION (Top View)  
64-pin plastic shrink DIP (750 mils)  
µPD72107CW  
IC  
RxC  
RxD  
TxC  
TxD  
CTS  
IC  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RTS  
2
CD  
3
CRQ  
AEN  
4
5
ASTB  
READY  
HLDAK  
HLDRQ  
CLRINT  
INT  
6
7
RESET  
NC  
8
9
IC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
B/W  
PU  
UBE  
MWR  
MRD  
GND  
IOWR  
IORD  
CS  
CLK  
GND  
A0  
A1  
A2  
VCC  
A3  
A4  
D7  
A5  
D6  
A6  
D5  
A7  
D4  
A8  
D3  
A9  
D2  
A10  
A11  
A12  
A13  
A14  
A15  
A16D8  
A17D9  
D1  
D0  
A23D15  
A22D14  
A21D13  
A20D12  
A19D11  
A18D10  
3
µPD72107  
80-pin plastic QFP (14 × 14 mm)  
µPD72107GC-3B9  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
NC  
1
60  
D1  
D0  
HLDRQ  
HLDAK  
READY  
ASTB  
AEN  
NC  
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
3
A23D15  
A22D14  
A21D13  
NC  
4
5
6
7
A20D12  
A19D11  
A18D10  
NC  
CRQ  
CD  
8
9
RTS  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NC  
IC  
A17D9  
A16D8  
A15  
RxC  
RxD  
NC  
A14  
TxC  
TxD  
CTS  
IC  
A13  
A12  
A11  
A10  
NC  
NC  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
4
µPD72107  
68-pin plastic QFJ (950 × 950 mils)  
µPD72107L  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
RESET  
IC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
CLRINT  
INT  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
B/W  
PU  
UBE  
MWR  
MRD  
GND  
IOWR  
IORD  
CS  
CLK  
GND  
GND  
A0  
A1  
A2  
VCC  
A3  
VCC  
A4  
D7  
A5  
D6  
A6  
D5  
A7  
D4  
A8  
D3  
A9  
D2  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
5
µPD72107  
1. PINS  
1.1 Pin Functions  
SDIP  
QFP  
QFJ  
Active  
Level  
Pin Name  
I/O  
Function  
Pin No. Pin No. Pin No.  
VCC  
47  
68  
70  
27  
28  
74  
26  
50  
51  
15  
16  
55  
14  
+5 V power supply  
Ground (0 V)  
GND  
14  
51  
Note that there is more than one ground pin.  
CLK  
13  
8
I
I
L
System clock input  
(Clock)  
RESET  
(Reset)  
Input clock of 1 MHz to 8.2 MHz.  
22  
10  
Initializes the internal µPD72107. Active width of  
more than 7 CLK clock cycles is required (clock  
input is required).  
After reset, this pin becomes a bus slave.  
Pull up to high level when using in normal operation.  
PU  
12  
48  
25  
71  
13  
52  
I
I
L
(Pull Up)  
CS  
When bus master  
(Chip Select)  
Set to disable.  
When bus slave  
Read/write operation from the host processor at low  
level is enabled.  
MRD  
52  
53  
75  
76  
56  
57  
O
L
L
When bus master  
(Memory Read)  
3-state  
Reads the data of the external memory at low level.  
When bus slave  
High impedance  
MWR  
O
When bus master  
(Memory Write)  
3-state  
Writes the data to the external memory at low level.  
When bus slave  
High impedance  
IORD  
49  
50  
60  
72  
73  
5
53  
54  
64  
I
I
L
L
This pin is used when the external host processor  
reads the contents of the internal registers of the  
µPD72107.  
(I/O Read)  
IOWR  
This pin is used when the external host processor  
writes the data to the internal registers of the  
µPD72107.  
(I/O Write)  
ASTB  
O
H
This pin is used to latch the address output from  
the µPD72107 externally.  
(Address Strobe)  
6
µPD72107  
SDIP  
QFP  
QFJ  
Active  
Level  
Pin Name  
I/O  
Function  
Pin No. Pin No. Pin No.  
NC  
9
1, 7,  
11, 15,  
20, 21,  
29, 40,  
41, 50,  
51, 55,  
61, 69,  
80  
1
5
Use this pin open.  
(No Connection)  
35  
IC  
1
7
12  
2
9
Do not connect anything to this pin.  
(Internally  
Connected)  
UBE  
19  
10  
54  
23  
11  
58  
77  
I/O  
L/H  
When bus master (output)  
(Upper Byte  
Enable)  
3-state  
The signal output from this pin changes according  
to the input value of the B/W pin.  
• Byte transfer mode (B/W = 0)  
UBE is always high impedance.  
• Word transfer mode (B/W = 1)  
Indicates that valid data is either in pins D0 to D7  
or pins A16D8 to A23D15 (or both).  
UBE  
A0  
0
D0 to D7 A16D8 to A23D15  
0
0
1
1
1
×
0
×
1
×
×
When bus slave (input)  
UBE pin becomes input, and indicates that valid  
data is either in pins D0 to D7 or pins A16D8 to  
A23D15.  
UBE  
A0  
0
D0 to D7 A16D8 to A23D15  
0
0
1
1
×
1
×
×
×
0
1
7
µPD72107  
SDIP  
Pin No. Pin No. Pin No.  
11 24 12  
QFP  
QFJ  
Active  
Level  
L/H  
Pin Name  
I/O  
I
Function  
B/W  
Specifies the data bus that accesses the external  
memory when bus master.  
(Byte/Word)  
B/W = 0  
B/W = 1  
Byte units (8 bits)  
Word units (16 bits)  
After power-on, fix the status of the B/W pin.  
In the case of word access, the lower data bus is the  
contents data of even addresses.  
READY  
(Ready)  
59  
4
63  
I
H
An input signal that is used to extend the MRD and  
MWR signal widths output by the µPD72107 to  
adapt to low-speed memory. When the READY  
signal is low level, the MRD and MWR signals  
maintain active low. Do not change the READY  
signal at any time other than the specified setup/  
hold time.  
HLDRQ  
57  
58  
2
61  
62  
O
H
H
H
A hold request signal to the external host processor.  
WhenaDMAoperationisperformedintheµPD72107,  
this signal is activated to switch from bus slave to  
bus master.  
(Hold Request)  
HLDAK  
3
6
I
A hold acknowledge signal from the external host  
processor. When the µPD72107 detects that this  
signal is active, the bus slave switches to bus  
master, and a DMA operation is started.  
When bus master, this signal enables the latched  
higher addresses and outputs them to system ad-  
dress bus. This signal is also used for disabling  
other system bus drivers.  
(Hold Acknowledge)  
AEN  
61  
65  
O
(Address Enable)  
A0, A1  
15, 16  
30, 31  
17, 18  
I/O  
Bidirectional 3-state address lines.  
3-state  
When bus master (output)  
Indicatethelower2-bitaddressesofmemoryaccess.  
When bus slave (input)  
Input addresses when the external host processor  
I/O accesses the µPD72107.  
A2 to A15  
17 to 30 32 to 47 19 to 32  
O
When bus master  
(except  
40, 41)  
3-state  
Output bit 2 to bit 15 of memory access addresses.  
When bus slave  
Become high impedance.  
8
µPD72107  
SDIP  
Pin No. Pin No. Pin No.  
A16D8 to A23D15 31 to 38 48 to 58 33 to 41  
QFP  
QFJ  
Active  
Level  
Pin Name  
I/O  
I/O  
Function  
Bidirectional 3-state address/data buses. Multiplex  
pins of the higher 16 bits to 23 bits of addresses  
and the higher 8 bits to 15 bits of data.  
Bidirectional 3-state data buses.  
(except 50,(except 35) 3-state  
51, 55)  
D0 to D7  
39 to 46 59 to 67 42 to 49  
(except 61)  
I/O  
3-state  
When bus master  
Whenwritingtoexternalmemory, thesepinsbecome  
input if reading at output.  
When bus slave  
Usually, these pins become high impedance. When  
theexternalhostprocessorreadsI/OoftheµPD72107,  
the internal register data is output.  
CRQ  
62  
8
66  
I
H
A signal requesting command execution to the  
µPD72107 by the external host processor. The  
µPD72107 starts fetching commands from on the  
external memory at the rising edge of this signal.  
An interrupt signal from the µPD72107 to the  
external host processor.  
(Command  
Request)  
INT  
55  
56  
78  
79  
59  
60  
O
I
H
H
(Interrupt)  
CLRINT  
A signal inactivating the INT signal being output by  
theµPD72107. TheµPD72107generatestheCLRINT  
signal in the LSI internal circuit at the rising edge of  
this signal, and forcibly makes the INT output signal  
low.  
(Clear Interrupt)  
CTS  
6
18  
8
I
A general-purpose input pin.  
(Clear To Send)  
TheµPD72107reportstheCTSpinchangedetection  
status” to the external host processor when the  
input level of this pin is changed in the general-  
purpose input/output pin support (setting RSSL to  
1 by the “system initialization command”). The  
change of input level is recognized only when the  
same level is sampled twice in succession after  
sampling in 8-ms cycles and detecting the change.  
Moreover, when the external host processor issues  
a “general-purpose input/output pin read command”  
to the µPD72107, the µPD72107 reports the pin  
information of this pin to the external host processor  
byageneral-purposeinput/outputpinreadresponse  
status”.  
The change can be detected even in the clock input  
stop status of TxC and RxC.  
9
µPD72107  
SDIP  
Pin No. Pin No. Pin No.  
64 10 68  
QFP  
QFJ  
Active  
Level  
Pin Name  
RTS  
I/O  
O
Function  
A general-purpose output pin.  
(Request To Send)  
The output value of this pin can be changed by  
issuinganRTSpinwritecommandfromtheexternal  
host processor to the µPD72107. Moreover, when  
theexternalhostprocessorissuesageneral-purpose  
input/output pin read command” to the µPD72107,  
the µPD72107 reports the pin information of this pin  
to the external host processor by a “general-purpose  
input/output pin read response status”.  
CD  
63  
9
67  
I
A general-purpose input pin.  
(Carrier Detect)  
The µPD72107 reports the “CD pin change detection  
status” to the external host processor when the  
input level of this pin is changed in the general-  
purpose input/output pin support (setting RSSL to  
1 by the “system initialization command”). The  
change of input level is recognized only when the  
same level is sampled twice in succession after  
sampling in 8-ms cycles and detecting the change.  
Moreover, when the external host processor issues  
a “general-purpose input/output pin read command”  
to the µPD72107, the µPD72107 reports the pin  
information of this pin to the external host processor  
byageneral-purposeinput/outputpinreadresponse  
status”.  
The change can be detected even in the clock input  
stop status of TxC and RxC.  
TxD  
5
4
17  
16  
7
6
O
A serial transmit data output pin.  
(Transmit Data)  
TxC  
I/O  
When CLK is set to 01 or 10 by “operation mode  
setting LCW” (output)  
(Transmit Clock)  
3-state  
Outputs a clock that divides by 16 the input signal  
of the RxC pin or CLK pin made by the µPD72107.  
Caution TxC becomes input because CLK = 00  
is the default after reset. It becomes  
output after setting CLK to 01 or 10 by  
“operation mode setting LCW”.  
When CLK is set to 00 by “operation mode setting  
LCW” (input)  
Inputs transmit clock externally.  
Remark LCW: abbreviation for Link Command Word  
10  
µPD72107  
SDIP  
QFP  
QFJ  
Active  
Level  
Pin Name  
RxD  
I/O  
I
Function  
Pin No. Pin No. Pin No.  
3
2
14  
13  
4
3
A serial receive data input pin.  
(Receive Data)  
RxC  
I
When CLK is set to 01 or 10 by “operation mode  
setting LCW”  
(Receive Clock)  
Sixteen times the clock input of the transmit/receive  
clock for the on-chip DPLL of the µPD72107  
When CLK is set to 00 by “operation mode setting  
LCW”  
One time the clock input of the receive clock  
Remark LCW: abbreviation for Link Command Word  
1.2 Pin Status after Reset of µPD72107  
The status of the output pins and input/output pins after reset in the µPD72107 is as shown in Table 1-1.  
Table 1-1. Pin Status after Reset  
Pin Number  
During Reset  
Pin Name  
I/O  
64-pin SDIP  
80-pin QFP  
68-pin QFJ  
Note  
4
5
16  
17  
6
7
TxC  
TxD  
I/O  
High impedance  
H
O
Note  
15, 16  
17 to 30  
30, 31  
17, 18  
19 to 32  
A0, A1  
I/O  
High impedance  
High impedance  
Note  
Note  
32 to 47  
A2 to A15  
O
(except 40, 41)  
31 to 38  
39 to 46  
48 to 58  
33 to 41  
A16D8 to A23D15  
D0 to D7  
I/O  
High impedance  
High impedance  
(except 50, 51, 55)  
(except 35)  
Note  
59 to 67  
42 to 49  
I/O  
(except 61)  
Note  
Note  
Note  
52  
53  
54  
55  
57  
60  
61  
64  
75  
76  
77  
78  
2
56  
57  
58  
59  
61  
64  
65  
68  
MRD  
MWR  
UBE  
O
O
High impedance  
High impedance  
I/O  
High impedance  
INT  
O
L
L
HLDRQ  
ASTB  
AEN  
O
O
O
O
5
L
6
L
10  
RTS  
H
Note 3-state  
Remarks 1. The status after reset is released is the same as the status during reset.  
2. Input low level to the RESET pin for more than 7 clocks of the system clock.  
11  
µPD72107  
2. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = +25°C)  
Parameter  
Power supply voltage  
Input voltage  
Symbol  
VDD  
VI  
Conditions  
Ratings  
–0.5 to +7.0  
Unit  
V
–0.5 to VDD + 0.3  
–0.5 to VDD + 0.3  
–40 to +85  
V
Output voltage  
VO  
V
Operating ambient temperature  
Storage temperature  
TA  
°C  
°C  
Tstg  
–40 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for  
any parameter. That is, the absolute maximum ratings are rated values at which the product  
is on the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
DC Characteristics (TA = –40 to +85°C, VDD = 5 V ±10%)  
Parameter  
Input voltage, low  
Symbol  
VILC  
VIL  
Conditions  
MIN.  
–0.5  
–0.5  
+3.3  
+2.2  
TYP.  
MAX.  
+0.8  
Unit  
V
CLK pin  
Other pins  
+0.8  
V
Input voltage, high  
VIHC  
VIH  
CLK and PU pins  
Other pins  
VDD + 0.3  
VDD + 0.3  
0.4  
V
V
Output voltage, low  
Output voltage, high  
Power supply current  
Input leakage current  
Output leakage current  
VOL  
VOH  
IDD  
IOL = 2.5 mA  
V
IOH = –400 µA  
At operation  
0.7 × VDD  
V
20  
50  
mA  
µA  
µA  
ILI  
0 V VIN VDD  
0 V VOUT VDD  
±10  
±10  
ILO  
Capacitance (TA = +25°C, VDD = 0 V)  
Parameter Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
Input capacitance  
CI  
fC = 1 MHz  
8
8
8
Output capacitance  
I/O capacitance  
CO  
CIO  
Unmeasured pins returned to 0 V  
15  
pF  
20  
pF  
12  
µPD72107  
AC Characteristics (TA = –40 to +85°C, VDD = 5 V ±10%)  
When bus master (1)  
Parameter  
CLK cycle time  
Symbol  
tCYK  
tKKL  
Conditions  
MIN.  
121  
50  
MAX.  
1000  
Unit  
ns  
CLK low-level time  
CLK high-level time  
CLK rise time  
ns  
tKKH  
tKR  
50  
ns  
1.5 – 3.0 V  
3.0 – 1.5 V  
10  
10  
ns  
CLK fall time  
tKF  
ns  
Load condition  
DUT  
CL = 50 pF  
CL includes jig capacitance.  
Caution If the load capacitance exceeds 50 pF due to the configuration of the circuit, keep the load  
capacitance of this device to within 50 pF by inserting a buffer or by some other means.  
Remark DUT: device under test  
AC test input/output waveform (except clock)  
2.4 V  
2.2 V  
0.8 V  
2.2 V  
0.8 V  
Test points  
0.4 V  
System clock  
tKF  
tKR  
tKKL  
3.0 V  
CLK  
1.5 V  
tKKH  
tCYK  
13  
µPD72107  
When bus master (2)  
Parameter  
Symbol  
tDHQH  
tDHQL  
tSHA  
Conditions  
MIN.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HLDRQ delay time (vs. CLK )  
HLDRQ delay time (vs. CLK )  
HLDAK setup time (vs. CLK )  
HLDAK hold time (vs. CLK )  
AEN delay time (vs. CLK )  
AEN delay time (vs. CLK )  
ASTB delay time (vs. CLK )  
ASTB high-level width  
100  
100  
35  
20  
tHHA  
tDAEH  
tDAEL  
tDSTH  
tSTSTH  
tDSTL  
tDA  
100  
100  
70  
tKKH–15  
ASTB delay time (vs. CLK )  
100  
100  
ADR/UBE/MRD/MWR delay time  
(vs. CLK )  
ADR/UBE/MRD/MWR float time  
tFA  
70  
ns  
(vs. CLK )  
ADR setup time (vs. ASTB )  
ADR hold time (vs. ASTB )  
tSAST  
tHSTA  
tKKH–35  
tKKL–20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MRD delay time (vs. ADR float) tDAR  
MRD delay time (vs. CLK )  
MRD low-level width  
tDRL  
70  
70  
tRRL2  
tDRH  
tSDR  
tHRD  
tDWL  
tWWL2  
tDWH  
tSRY  
tHRY  
2tCYK–50  
MRD delay time (vs. CLK )  
Data setup time (vs. MRD )  
Data hold time (vs. MRD )  
MWR delay time (vs. CLK )  
MWR low-level width  
100  
0
70  
70  
2tCYK–50  
MWR delay time (vs. CLK )  
READY setup time (vs. CLK )  
READY hold time (vs. CLK )  
35  
20  
14  
CLK  
tDHQL  
tDHQH  
HLDRQ  
tSHA  
tHHA  
tHHA  
HLDAK  
AEN  
tDAEH  
tDAEL  
tDSTL  
tDSTH  
ASTB  
tSTSTH  
tDA  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Address  
A16D8-A23D15  
Output data  
tSAST  
tHSTA  
A0, A1/A2-A15  
UBE  
Address  
tWWL2  
MWR  
tDWL  
tHRY  
tHRY  
tDWH  
READY  
tFA  
tSRY  
tSRY  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Address  
Input data  
A16D8-A23D15  
µ
tDAR  
tSDR  
tDRH  
tFA  
tDA  
tHRD  
MRD  
tRRL2  
tDRL  
µPD72107  
When bus slave (1)  
Parameter  
Symbol  
tWWL  
Conditions  
MIN.  
100  
0
MAX.  
Unit  
ns  
IOWR low-level width  
CS low-level hold time  
tHWCS  
ns  
(vs. IOWR )  
ADR/UBE/CS low-level setup time tSAW  
0
ns  
(vs. IOWR )  
ADR/UBE hold time (vs. IOWR )  
Data setup time (vs. IOWR )  
Data hold time (vs. IOWR )  
IORD low-level width  
tHWA  
tSDW  
tHWD  
tRRL  
tSAR  
0
100  
0
ns  
ns  
ns  
ns  
ns  
150  
35  
ADR/CS low-level setup time  
(vs. IORD )  
ADR/CS low-level hold time  
tHRA  
0
ns  
(vs. IORD )  
Data delay time (vs. IORD )  
Data float time (vs. IORD )  
RESET low-level width  
tDRD  
120  
100  
ns  
ns  
ns  
ns  
ns  
ns  
tFRD  
10  
tRSTL  
tSVDD  
tSYWR  
tRVWR  
7tCYK  
1000  
2tCYK  
200  
VDD setup time (vs. RESET )  
RESET –1st • IOWR/IORD  
IOWR/IORD recovery time  
16  
µPD72107  
When bus slave  
CS  
t
SAW  
t
WWL  
t
HWCS  
IOWR  
t
HWA  
A0-A23  
UBE  
t
SDW  
t
HWD  
D0-D15  
CS  
A0-A23  
t
SAR  
t
HRA  
t
RRL  
IORD  
t
DRD  
t
FRD  
Hi-Z  
Hi-Z  
D0-D15  
V
DD  
t
SVDD  
t
RSTL  
RESET  
t
SYWR  
IORD/IOWR  
t
RVWR  
IORD  
IOWR  
t
RVWR  
t
RVWR  
t
RVWR  
17  
µPD72107  
When bus slave (2)  
Parameter  
Symbol  
Conditions  
MIN.  
–20  
MAX.  
Unit  
ns  
IOWR/IORD high-level setup time  
tSWR  
(vs. HLDAK )  
IOWR/IORD high-level hold time  
tHWR  
100  
ns  
(vs. AEN )  
HLDAK  
tSWR  
IOWR/IORD  
AEN  
tHWR  
IOWR/IORD  
When bus slave (3)  
Parameter  
Symbol  
tCLCLH  
tDIH  
Conditions  
MIN.  
100  
MAX.  
Unit  
ns  
CLRINT high-level width  
INT delay time (vs. CLK )  
INT delay time (vs. CLRINT )  
CRQ high-level width  
100  
100  
ns  
tDIL  
ns  
tCRCRH  
100  
ns  
CLK  
CLRINT  
tCLCLH  
INT  
tDIH  
tDIL  
CRQ  
tCRCRH  
18  
µPD72107  
Serial block (1)  
Parameter  
Symbol  
tCYS  
Conditions  
MIN.  
250  
110  
110  
MAX.  
DC  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TxC/RxC cycle time  
When on-chip DPLL is not used  
TxC/RxC low-level time  
TxC/RxC high-level time  
TxC/RxC rise time  
tSSL  
tSSH  
tSR  
20  
12  
TxC/RxC fall time  
tSF  
TxD delay time (vs. TxC )  
RxD setup time (vs. RxC )  
RxD hold time (vs. RxC )  
tDTXD  
tSRXD  
tHRXD  
100  
50  
70  
Serial clock (when on-chip DPLL is not used)  
tSF  
tSR  
tSSL  
2.2 V  
TxC/RxC  
0.8 V  
tSSH  
tCYS  
TxC (input)  
TxD  
tDTXD  
tDTXD  
RxC  
tSRXD  
tHRXD  
RxD  
19  
µPD72107  
Serial block (2)  
Parameter  
Symbol  
Conditions  
MIN.  
MAX.  
Unit  
ns  
RxC cycle time  
tCYR  
When on-chip DPLL is used (source clock = RxC)  
When on-chip DPLL is used (source clock = CLK)  
30.3  
125  
1000  
RxC low-level time  
RxC high-level time  
RxC rise time  
tSSRL  
tSSRH  
tSRR  
tSRF  
When on-chip DPLL is used (source clock = RxC)  
When on-chip DPLL is used (source clock = CLK)  
10  
50  
ns  
ns  
ns  
ns  
ns  
When on-chip DPLL is used (source clock = RxC)  
When on-chip DPLL is used (source clock = CLK)  
10  
50  
When on-chip DPLL is used (source clock = RxC)  
When on-chip DPLL is used (source clock = CLK)  
5
10  
RxC fall time  
When on-chip DPLL is used (source clock = RxC)  
When on-chip DPLL is used (source clock = CLK)  
5
10  
Transmit/receive data cycle  
tCYD  
When on-chip DPLL is used (source clock = RxC)  
When on-chip DPLL is used (source clock = CLK)  
500  
2000  
16000  
50  
TxC low-level time  
tTCTCL  
tTCTCH  
tDTCTD  
tHTCTD  
When on-chip DPLL is used  
0.5tCYD–25  
0.5tCYD–25  
ns  
ns  
ns  
ns  
TxC high-level time  
TxD delay time (vs. TxC )  
TxD hold time (vs. TxC )  
0.5tCYD–25  
Serial clock (when on-chip DPLL is used)  
tCYR  
tSSRL  
tSSRH  
tSRR  
tSRF  
RxC  
TxC  
TxD  
tTCTCL  
tTCTCH  
tHTCTD  
tDTCTD  
tCYD  
20  
µPD72107  
Serial block (3)  
Parameter  
Symbol  
tDRTH  
tDRTL  
tSCD  
Conditions  
MIN.  
MAX.  
100  
Unit  
ns  
RTS delay time (vs. CLK )  
RTS delay time (vs. CLK )  
CD setup time (vs. CLK )  
CD hold time (vs. CLK )  
CTS setup time (vs. CLK )  
CTS hold time (vs. CLK )  
100  
ns  
35  
20  
35  
20  
ns  
tHCD  
ns  
tSCT  
ns  
tHCT  
ns  
CLK  
RTS  
CD  
tDRTL  
tDRTH  
tHCD  
tSCD  
tHCT  
CTS  
tSCT  
21  
µPD72107  
3. APPLICATION CIRCUIT EXAMPLE  
(1) Connection with SIFC (µPD98201)  
µ
µ
PD98201  
PD72107  
TxD  
RxD  
BINA  
BOUT1  
BCLK  
LAP-B  
SIFC  
TxC  
RxC  
22  
µ
PD72107 System Configuration Example (Local Memory Type)  
Local memory 64 Kbytes  
RD  
WR  
CS  
UBE  
A0-A15  
D0-D15  
µ
Host processor  
PD72107  
MEMR  
MEMW  
IOR  
MRD  
MWR  
IORD  
IOWR  
CS  
A
B
µ
PD71086  
OE  
IOW  
Decoder  
AB0-AB7  
A
B
PD71086  
OE  
A0-A15  
A0-A15  
D0-D7  
µ
µ
µ
AB8-AB15  
AB16-AB19  
BHE  
A
B
PD71086  
OE  
A16D8-A23D15  
UBE  
DB0-DB15  
A
B
PD71086  
OE  
D0-D15  
AEN  
INT  
Local  
bus request  
INT  
Access  
contention  
resolution  
circuit  
HLDRQ  
µ
HLDAK  
WAIT  
µ
µ
PD72107 System Configuration Example (Main Memory Sharing Type)  
Host processor  
µ
PD72107  
INT  
INTP  
CS  
µ
PD70116  
PD71059  
A0  
INT  
INT  
IORD  
IOWR  
CS  
INTAK  
INTAK  
RD WR D0-D7  
MRD  
RD  
WR  
MWR  
HLDRQ  
HLDAK  
AEN  
HLDRQ  
HLDAK  
ASTB  
ASTB  
D0-D7  
Decoder  
A16-A19  
STB OE  
OE STB  
µ
PD71082  
A16D8-A23D15  
A16-A19  
AD8-AD15  
µ
PD71082×3  
A0-A15  
UBE  
A0-A15  
AD0-AD7  
UBE  
BUF R/W  
BUFEN  
D8-D15  
µ
PD71086×2  
D0-D7  
T
OE  
RD WR  
CS UBE D0-D7 D8-D15  
Memory  
µ
µPD72107  
5. PACKAGE DRAWINGS  
64 PIN PLASTIC SHRINK DIP (750 mil)  
64  
33  
32  
1
A
K
L
J
I
C
B
F
D
M
R
M
N
H
G
NOTES  
ITEM MILLIMETERS  
INCHES  
+0.028  
1. Controlling dimension  
millimeter.  
+0.68  
A
58.0  
2.283  
–0.008  
–0.20  
2. Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
B
C
1.78 MAX.  
0.070 MAX.  
0.070 (T.P.)  
1.778 (T.P.)  
3. Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.51 MIN.  
+0.011  
0.159  
+0.26  
4.05  
I
–0.008  
–0.20  
J
5.08 MAX.  
0.200 MAX.  
0.750 (T.P.)  
K
19.05 (T.P.)  
+0.009  
0.669  
L
17.0±0.2  
–0.008  
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0 to 15°  
0 to 15°  
P64C-70-750A,C-3  
25  
µPD72107  
80 PIN PLASTIC QFP (14x14)  
A
B
60  
61  
41  
40  
detail of lead end  
S
C D  
R
Q
21  
20  
80  
1
F
P
J
G
M
H
I
K
M
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.13 mm (0.005 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
17.2±0.4  
14.0±0.2  
0.677±0.016  
+0.009  
0.551  
–0.008  
+0.009  
0.551  
C
14.0±0.2  
–0.008  
D
F
17.2±0.4  
0.825  
0.677±0.016  
0.032  
G
0.825  
0.032  
+0.004  
0.012  
H
0.30±0.10  
–0.005  
I
0.13  
0.005  
J
K
0.65 (T.P.)  
1.6±0.2  
0.026 (T.P.)  
0.063±0.008  
+0.009  
0.031  
L
0.8±0.2  
–0.008  
+0.004  
0.006  
+0.10  
0.15  
M
–0.003  
–0.05  
N
P
0.10  
0.004  
+0.005  
0.106  
2.7±0.1  
–0.004  
Q
R
S
0.1±0.1  
5°±5°  
0.004±0.004  
5°±5°  
3.0 MAX.  
0.119 MAX.  
S80GC-65-3B9-5  
26  
µPD72107  
68 PIN PLASTIC QFJ (950 x 950 mil)  
A
B
68  
1
C D  
G
H
J
F
E
S
U
T
ITEM MILLIMETERS  
INCHES  
K
Q
S
A
B
25.2±0.2  
0.992±0.008  
M
M
N
+0.004  
0.953  
24.20±0.1  
0.005  
P
I
+0.004  
0.953  
C
24.20±0.1  
0.005  
D
E
25.2±0.2  
0.992±0.008  
NOTES  
1. Controlling dimension  
+0.007  
0.076  
1.94±0.15  
0.006  
millimeter.  
F
0.6  
0.024  
+0.009  
0.173  
2. Each lead centerline is located within 0.12 mm of  
its true position (T.P.) at maximum material condition.  
G
4.4±0.2  
0.008  
+0.009  
H
2.8±0.2  
0.110  
0.008  
I
0.9 MIN.  
0.035 MIN.  
+0.004  
0.134  
J
3.4±0.1  
0.005  
K
1.27 (T.P.)  
0.050 (T.P.)  
+0.003  
M
0.42±0.08  
0.017  
0.004  
N
P
0.12  
0.005  
+0.009  
23.12±0.2  
0.910  
0.008  
0.006  
Q
T
0.15  
R 0.8  
R 0.031  
+0.08  
0.22  
+0.003  
0.009  
U
0.07  
0.004  
P68L-50A1-3  
27  
µPD72107  
6. RECOMMENDED SOLDERING CONDITIONS  
The µPD72107 should be soldered and mounted under the following recommended conditions.  
For the details of the recommended soldering conditions, refer to the document Semiconductor Device  
Mounting Technology Manual (C10535E).  
Forsolderingmethodsandconditionsotherthanthoserecommendedbelow, contactyourNECsalesrepresentative.  
Surface mounting type  
µPD72107GC-3B9: 80-pin plastic QFP (14 × 14 mm)  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Recommended Condition Symbol  
IR35-00-3  
Package peak temperature: 235°C, Time: 30 sec. Max.  
(at 210°C or higher), Count: three times or less  
VPS  
Package peak temperature: 215°C, Time: 40 sec. Max.  
(at 200°C or higher), Count: three times or less  
VP15-00-3  
WS60-00-1  
Wave soldering  
Solder bath temperature: 260°C, Time: 10 sec. Max.,  
Count: one time, Preheating temperature: 120°C Max.  
(package surface temperature)  
Partial heating  
Pin temperature: 300°C Max., Duration: 3 sec. Max. (per pin row)  
Caution Do not use different soldering methods together (except for partial heating).  
µPD72107L: 68-pin plastic QFJ (950 × 950 mils)  
Soldering Method  
VPS  
Soldering Conditions  
Recommended Condition Symbol  
VP15-00-1  
Package peak temperature: 215°C, Time: 40 sec. Max.  
(at 200°C or higher), Count: one time  
Partial heating  
Pin temperature: 300°C Max., Duration: 3 sec. Max. (per pin row)  
Insertion type  
µPD72107CW: 64-pin plastic shrink DIP (750 mils)  
Soldering Method  
Soldering Conditions  
Wave soldering (pin only)  
Partial heating  
Solder bath temperature: 260°C Max., Time: 10 sec. Max.  
Pin temperature: 300°C Max., Duration: 3 sec. Max. (per a pin)  
Caution Wave soldering must be applied only to pins. Be sure to avoid jet soldering the package body.  
28  
µPD72107  
[MEMO]  
29  
µPD72107  
[MEMO]  
30  
µPD72107  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Produc-  
tion process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
31  
µPD72107  
The export of this product from Japan is prohibited without governmental license. To export or re-export this product from  
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPD7210C

GPIB Interface/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD7210D

GENERAL PURPOSE INTERFACE BUS-INTERFACE CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD72111CW

SCSI Bus Interface/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD72111GJ-5BJ

SCSI Bus Interface/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD72111L

SCSI Bus Interface/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD72120

Advenced Graphics Display Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD72120GJ-5BG

Graphics Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD72120J-5BG

Graphics Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD72120L

Graphics Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD72120R

Graphics Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD72123

Advenced Graphics Display Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD72123GJ

IC,GRAPHICS PROCESSOR,CMOS,QFP,94PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS