UPD72850A [NEC]

IEEE1394 400Mbps PHY; IEEE 1394 400Mbps的PHY
UPD72850A
型号: UPD72850A
厂家: NEC    NEC
描述:

IEEE1394 400Mbps PHY
IEEE 1394 400Mbps的PHY

文件: 总48页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD72850A  
IEEE1394 400Mbps PHY  
The µPD72850A is the 3-port physical layer LSI which complies with the P1394a draft 2.0 specifications.  
The µPD72850A works up to 400 Mbps. It is an upgrade of NEC's µPD72850.  
FEATURES  
The Three-port Physical Layer LSI complies to IEEE P1394a draft 2.0  
Connection debounce  
Arbitration enhancements  
• Arbitrated short bus reset  
• Ack-accelerated arbitration  
• Fly-by concatenation  
• Multiple-speed packet concatenation  
• Arbitration enhancements and cycle start (controlled by the Link layer)  
Performance optimization via PHY pinging  
Priority arbitration (controlled by the Link layer)  
Data rate: 393.216 / 196.608 / 98.304 Mbps  
Compliant with Suspend/Resume function as defined in P1394a draft 2.1  
3.3 V single power supply  
Electrical isolated Link interface  
24.576 MHz crystal clock generation, 393.216 MHz PLL multiplying frequency  
System power management by signaling of node power class information  
Cable power monitor (CPS) is equipped  
Fully interoperable with IEEE1394 std 1394 Link (FireWireTM, i.LINKTM  
)
Cable bias and terminal voltage driver supply function (for 3-port each)  
Separate digital power and analog GND  
Enable/Disable port control switch when power supply is powered on  
Support Suspend/Resume Off mode (Compliant with P1394a draft 1.3)  
Number of supported port are selectable  
• 1port, 2port, 3port. This selection is only under Suspend/Resume Off mode  
Compliant with MD8405E (FUJIFILM MICRODEVICES CO., LTD)  
ORDERING INFORMATION  
Part number  
Package  
µPD72850AGK-9EU  
80-pin plastic TQFP (Fine pitch) (12 x 12 mm)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S14452EJ1V0DS00 (1st edition)  
Date Published October 1999 NS CP(K)  
Printed in Japan  
1999  
µPD72850A  
BLOCK DIAGRAM  
TpA0p  
TpA0n  
CMC  
PC0  
PC1  
PC2  
PORTDIS  
PSEL  
SUS/RES  
Cable  
Port1  
TpB0p  
TpB0n  
LREQ  
Arbitration  
and Control  
State Machine  
Logic  
LPS  
DIRECT  
SCLK  
LKON  
CTL0  
CTL1  
D0  
TpA1p  
TpA1n  
Cable  
Port2  
TpB1p  
TpB1n  
Link  
Interface  
I/O  
D1  
D2  
D3  
D4  
D5  
D6  
TpA2p  
TpA2n  
Cable  
Port3  
TpB2p  
TpB2n  
D7  
TpBias0  
TpBias1  
TpBias2  
R0  
Voltage  
and  
Current  
Generator  
Receive Data  
Decoder and  
Retimer  
R1  
Crystal  
Oscillator  
PLL  
XI  
XO  
FIL0  
FIL1  
Transmit Data  
Encoder  
RESETB  
CPS  
System  
and  
Cable  
Power  
Status  
Transmit  
Clock  
Generator  
2
Data Sheet S14452EJ1V0DS00  
µPD72850A  
PIN CONFIGURATION (Top View)  
80-pin plastic TQFP (Fine pitch) (12 x 12 mm)  
PC1  
PC0  
TpA0p  
TpA0n  
TpB0p  
TpB0n  
TpA1p  
TpA1n  
TpB1p  
TpB1n  
TpA2p  
TpA2n  
TpB2p  
TpB2n  
TpBias0  
TpBias1  
TpBias2  
AV  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
CMC  
DGND  
LPS  
3
4
5
LREQ  
6
DD  
DV  
7
DGND  
SCLK  
8
9
DD  
DV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DGND  
CTL0  
CTL1  
DD  
DV  
D0  
D1  
DD  
DGND  
D2  
AGND  
CPS  
D3  
RI1  
DGND  
RI0  
3
Data Sheet S14452EJ1V0DS00  
µPD72850A  
PIN NAME  
AGND  
AVDD  
: Analog GND  
: Analog Power  
CMC  
: Configuration Manager Capable  
: Cable Power Status  
CPS  
CTL0  
: Link Interface Control (bit 0)  
CTL1  
: Link Interface Control (bit 1)  
D0-D7  
DGND  
Direct  
DVDD  
: Data Input/Output  
: Digital GND  
: PHY/Link Isolation Barrier Control Input  
: Digital VDD  
FIL0  
: APLL Filter Ground  
FIL1  
: APLL Filter  
IC(H)  
: Internally Connected (High Clamped)  
: Link-on Signal Output  
LKON  
LPS  
: Link Power Status Input  
LREQ  
PC0-PC2  
PORTDIS  
PSEL  
RESETB  
RI0  
: Link Request Input  
: Power Class Set Input  
: Port Disable  
: Support Number of Port Select  
: Power on Reset Input  
: Reference Power Set, Connect Resistor 0  
: Reference Power Set, Connect Resistor 1  
: Link Control Output Clock  
RI1  
SCLK  
SUS/RES  
TpA0n  
TpA0p  
TpA1n  
TpA1p  
TpA2n  
TpA2p  
TpB0n  
TpB0p  
TpB1n  
TpB1p  
TpB2n  
TpB2p  
TpBias0  
TpBias1  
TpBias2  
XI  
: Suspend/Resume Function Select  
: First Port Twisted Pair Cable A Negative Phase I/O  
: First Port Twisted Pair Cable A Positive Phase I/O  
: Second Port Twisted Pair Cable A Negative Phase I/O  
: Second Port Twisted Pair Cable A Positive Phase I/O  
: Third Port Twisted Pair Cable A Negative Phase I/O  
: Third Port Twisted Pair Cable A Positive Phase I/O  
: First Port Twisted Pair Cable B Negative Phase I/O  
: First Port Twisted Pair Cable B Positive Phase I/O  
: Second Port Twisted Pair Cable B Negative Phase I/O  
: Second Port Twisted Pair Cable B Positive Phase I/O  
: Third Port Twisted Pair Cable B Negative Phase I/O  
: Third Port Twisted Pair Cable B Positive Phase I/O  
: First port Twisted Pair Output  
: Second Port Twisted Pair Output  
: Third Port Twisted Pair Output  
: Crystal Oscillator Connection XI  
: Crystal Oscillator Connection XO  
XO  
4
Data Sheet S14452EJ1V0DS00  
µPD72850A  
CONTENTS  
1. PIN FUNCTIONS .....................................................................................................................................7  
1.1 Cable Interface Pins.........................................................................................................................7  
1.2 Link Interface Pins...........................................................................................................................8  
1.3 Control Pins......................................................................................................................................8  
1.4 IC........................................................................................................................................................9  
1.5 Power Supply Pins...........................................................................................................................9  
1.6 Other Pins.........................................................................................................................................9  
2. PHY REGISTERS...................................................................................................................................10  
2.1 Complete Structure for PHY Registers........................................................................................10  
2.2 Port Status Page (Page 000) .........................................................................................................13  
2.3 Vendor ID Page (Page 001) ...........................................................................................................14  
3. INTERNAL FUNCTION ..........................................................................................................................15  
3.1 Link Interface..................................................................................................................................15  
3.1.1 Connection Method............................................................................................................................... 15  
3.1.2 LPS (Link Power Status)....................................................................................................................... 15  
3.1.3 LREQ, CTL0,CTL1, and D0-D7 Pins .................................................................................................... 15  
3.1.4 SCLK..................................................................................................................................................... 15  
3.1.5 LKON .................................................................................................................................................... 16  
3.1.6 Direct .................................................................................................................................................... 16  
3.1.7 Isolation Barrier..................................................................................................................................... 16  
3.2 Cable Interface ...............................................................................................................................18  
3.2.1 Connections.......................................................................................................................................... 18  
3.2.2 Cable Interface Circuit .......................................................................................................................... 19  
3.2.3 Unused Ports ........................................................................................................................................ 19  
3.2.4 CPS....................................................................................................................................................... 19  
3.3 Suspend/Resume...........................................................................................................................19  
3.3.1 Suspend/Resume On Mode (SUS/RES = “H”)...................................................................................... 19  
3.3.2 Suspend/Resume Off Mode (SUS/RES = “L”)...................................................................................... 19  
3.4 PLL and Crystal Oscillation Circuit..............................................................................................20  
3.4.1 Crystal Oscillation Circuit...................................................................................................................... 20  
3.4.2 PLL ....................................................................................................................................................... 20  
3.5 PC0-PC2, CMC................................................................................................................................20  
3.6 RESETB...........................................................................................................................................20  
3.7 RI1, RI0............................................................................................................................................20  
4. PHY/LINK INTERFACE..........................................................................................................................21  
4.1 Initialization of Link Power Status (LPS) and PHY/Link Interface.............................................21  
4.2 Link-on Indication..........................................................................................................................22  
4.3 PHY/Link Interface Operation (CTL0, CTL1, LREQ, D0-D7) .......................................................23  
4.3.1 CTL0,CTL1 ........................................................................................................................................... 23  
4.3.2 LREQ .................................................................................................................................................... 23  
4.3.3 PHY/Link Interface Timing .................................................................................................................... 27  
4.4 Acceleration Control......................................................................................................................28  
4.5 Transmit Status..............................................................................................................................29  
5
Data Sheet S14452EJ1V0DS00  
µPD72850A  
4.6 Transmit..........................................................................................................................................30  
4.7 Cancel .............................................................................................................................................31  
4.8 Receive............................................................................................................................................32  
5. CABLE PHY PACKET............................................................................................................................33  
5.1 Self_ID Packet ................................................................................................................................33  
5.2 Link-on Packet ...............................................................................................................................34  
5.3 PHY Configuration Packet ............................................................................................................34  
5.4 Extended PHY Packet....................................................................................................................34  
5.4.1 Ping Packet........................................................................................................................................... 35  
5.4.2 Remote Access Packet......................................................................................................................... 35  
5.4.3 Remote Reply Packet ........................................................................................................................... 36  
5.4.4 Remote Command Packet.................................................................................................................... 36  
5.4.5 Remote Confirmation Packet................................................................................................................ 37  
5.4.6 Resume Packet..................................................................................................................................... 37  
6. ELECTRICAL SPECIFICATIONS..........................................................................................................38  
7. APPLICATION CIRCUIT EXAMPLE......................................................................................................43  
7.1 IEEE1394 Interface.........................................................................................................................43  
7.2 NEC/FFM Board Sharing ...............................................................................................................44  
8. PACKAGE DRAWING............................................................................................................................45  
9. RECOMMENDED SOLDERING CONDITIONS...................................................................................46  
6
Data Sheet S14452EJ1V0DS00  
µPD72850A  
1. PIN FUNCTIONS  
1.1 Cable Interface Pins  
Name  
TpA0p  
Pin No.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Function  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
64  
First port twisted pair cable A positive phase I/O  
First port twisted pair cable A negative phase I/O  
First port twisted pair cable B positive phase I/O  
First port twisted pair cable B negative phase I/O  
Second port twisted pair cable A positive phase I/O  
Second port twisted pair cable A negative phase I/O  
Second port twisted pair cable B positive phase I/O  
Second port twisted pair cable B negative phase I/O  
Third port twisted pair cable A positive phase I/O  
Third port twisted pair cable A negative phase I/O  
Third port twisted pair cable B positive phase I/O  
Third port twisted pair cable B negative phase I/O  
Port disable.  
TpA0n  
TpB0p  
TpB0n  
TpA1p  
TpA1n  
TpB1p  
TpB1n  
TpA2p  
TpA2n  
TpB2p  
TpB2n  
PORTDIS  
SUS/RES(71pin)=“1”  
This selected state will be loaded to Disabled bit which allocated PHY register  
Port Status Page when power-on reset.  
The PORTDIS pin is ignored except power-on reset.  
1: All 3 ports will be disabled.  
0: All 3 ports will be enabled.  
SUS/RES(71pin)=“0”  
Combination with PSEL(66pin) input the supported number of port will be  
selected.  
Please refer to PSEL.  
PSEL  
66  
I
Supported number of Port select (This function will be activated only under  
SUS/RES=“0”).  
64pin  
66pin  
1Port(Port0)  
0
1
0
1
0
0
2Port(Port0,1)  
3Port(Port0-2)  
When SUS/RES=“1”, this pin should be connected to AGND.  
Suspend/Resume function select  
SUS/RES  
CPS  
71  
43  
I
I
1: Suspend/Resume on (P1394a draft 2.1 compliant)  
0: Suspend/Resume off (P1394a draft 1.3 compliant)  
Power cable status.  
Connect to the cable through a 390 kresistor.  
0: Cable power fail  
1: Cable power on  
7
Data Sheet S14452EJ1V0DS00  
µPD72850A  
1.2 Link Interface Pins  
Name  
Pin No.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Function  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
15  
16  
18  
19  
21  
22  
24  
25  
12  
13  
6
Data input/output (bit 0)  
Data input/output (bit 1)  
Data input/output (bit 2)  
Data input/output (bit 3)  
Data input/output (bit 4)  
Data input/output (bit 5)  
Data input/output (bit 6)  
Data input/output (bit 7)  
Link interface control (bit 0)  
Llink interface control (bit 1)  
Link request input  
CTL0  
CTL1  
LREQ  
SCLK  
9
O
Link control output clock  
LPS 1: 49.152 MHz output  
LPS 0: Clamp to 0 (The clock signal will be output within 25 µsec after change  
to “0”)  
LPS  
5
I
Link power status input  
0: Link power off  
1: Link power on (PHY/Link direct connection)  
Clock signal of about 300 kHz (if isolation)  
Link-on signal output pin  
LKON  
Direct  
78  
77  
O
I
Link-on signal is 6.144 MHz clock output.  
Please refer to 4.2 Link-on Indication.  
PHY/Link isolation barrier control input  
0: Isolation barrier  
1: PHY/Link direct connection  
1.3 Control Pins  
Name  
PC0  
Pin No.  
I/O  
Function  
2
I
I
I
I
Power class set input  
This pin status will be loaded to Pwr_class bit which allocated to PHY register 4H.  
IEEE1394-1995 chapter [4.3.4.1]  
PC1  
PC2  
CMC  
1
79  
3
Configuration manager capable setting.  
This pin status will be loaded to Contender bit which allocated to PHY register 4H.  
0: Non contender  
1: Contender  
RESETB  
30  
I
Power on reset input.  
Connect to DGND through a 0.1 µF capacitor.  
0: Reset  
1: Normal  
8
Data Sheet S14452EJ1V0DS00  
µPD72850A  
1.4 IC  
Name  
Pin No.  
75, 76  
I/O  
I
Function  
Internally Connected (High Clamped)  
IC  
1.5 Power Supply Pins  
Name  
AVDD  
Pin No.  
31, 36  
I/O  
Function  
-
-
-
-
-
-
-
-
-
Analog power 1 (APLL, OSC)  
Analog power 2 (Bias)  
Analog power 3 (Cable Interface)  
Analog GND1 (PLL, OSC)  
Analog GND2 (Bias)  
40, 45  
63, 67, 73  
32, 33  
AGND  
39, 44  
61  
Analog GND3 (Common)  
Analog GND4 (Speed signal)  
Analog GND5 (Port)  
62  
65, 68-70, 72  
7, 10, 14,  
26-28, 80  
4, 8, 11, 17,  
20, 23, 29, 74  
DVDD  
Digital VDD  
DGND  
-
Digital GND  
1.6 Other Pins  
Name  
Pin No.  
I/O  
O
O
O
-
Function  
TpBias0  
TpBias1  
TpBias2  
RI0  
48  
47  
46  
41  
First port twisted pair output  
Second port twisted pair output  
Third port twisted pair output  
Resistor connection pin0 for reference current generator.  
Please connect to RI1 pin via 9.1 kresistor.  
Resistor connection pin1 for reference current generator.  
Please connect to RI0 pin via 9.1 kresistor.  
APLL filter (No need to assemble)  
RI1  
42  
-
FIL1  
FIL0  
XI  
34  
35  
37  
38  
-
-
-
-
APLL filter ground (No need to assemble)  
Crystal oscillator connection XI  
XO  
Crystal oscillator connection XO  
9
Data Sheet S14452EJ1V0DS00  
µPD72850A  
2. PHY REGISTERS  
2.1 Complete Structure for PHY Registers  
Figure 2-1. Complete Structure of PHY Registers  
0
1
2
3
4
5
6
7
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Physical_ID  
R
PS  
RHB  
IBR  
Gap_count  
Extended (7)  
Max_speed  
Contender  
ISBR  
Reserved  
Reserved  
Jitter  
Total_ports  
Delay  
Link_active  
Resume_int  
Pwr_class  
Loop  
Pwr_fail  
Timeout  
Port_event Enab_accel Enab_multi  
Reserved  
Reserved  
Page_select  
Port_select  
Register0 (page_select)  
Register1 (page_select)  
Register2 (page_select)  
Register3 (page_select)  
Register4 (page_select)  
Register5 (page_select)  
Register6 (page_select)  
Register7 (page_select)  
10  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Table 2-1. Bit Field Description (1/2)  
Reset value Description  
Field  
Physical_ID  
R
Size  
6
R/W  
R
000000  
0
Physical_ID value selected from Self_ID period.  
If this bit is 1, the node is root.  
1: Root  
1
R
0: Not root  
PS  
1
R
Cable power status.  
1: Cable power on  
0: Cable power off  
RHB  
IBR  
1
1
R/W  
R/W  
0
0
Root Hold -off bit. If 1, becomes root at the bus reset.  
Initiate bus reset.  
Setting to 1 begins a long bus reset.  
Long bus reset signal duration: 166 µsec.  
Returns to 0 at the beginning of bus reset.  
Gap count value.  
Gap_count  
6
R/W  
111111  
It is updated by the changes of transmitting and receiving the PHY  
configuration packet Tx/Rx.  
The value is maintained after first bus reset.  
After the second bus reset it returns to reset value.  
Shows the extended register map.  
Supported port number.  
Extended  
3
4
R
R
111  
Total_ports  
0011  
When SUS/RES(71pin)=“1”  
0011 : 3 ports  
When SUS/RES(71pin)=“0”  
Combination with PSEL(66pin) input the supported number of port will be  
selected. Please refer to 1.1 Cable Interface Pins.  
0001 : 1 port  
0010 : 2 port  
0011 : 3 port  
Max_speed  
3
R
010  
Indicate the maximum speed that this node supports.  
010: 98.304, 196.608 and 393.216 Mbps  
Indicate worst case repeating delay time. 144+(2 x 20)=184 nsec  
Link active.  
Delay  
4
1
R
0010  
1
Link_active  
R/W  
1 : Enable  
0 : Disable  
The logical AND status of this bit and LPS pin.  
State will be referred to “L bit” of Self-ID Packet#0.  
Contender.  
Contender  
1
R/W  
See  
Description  
“1” indicate this node support bus manager function. This bit will be referred  
to “C bit” of Self-ID Packet#0.  
The reset data is depending on CMC pin setting.  
CMC pin condition  
1: Pull up (Contender)  
0: Pull down (Non Contender)  
Jitter  
3
R
010  
The difference of repeating time (Max.-Min.). (2+1) x 20=60 nsec  
11  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Table 2-1. Bit Field Description (2/2)  
Reset value Description  
Field  
Size  
3
R/W  
R/W  
Pwr_class  
See  
Power class.  
Description  
Please refer to IEEE1394 -1995 [4.3.4.1].  
This bit will be referred to Pwr field of Self-ID Packet#0.  
The reset data will be determined by PC0-PC2 Pin status.  
Resume interrupt enable. When set to 1, if any one port does resume, the  
Port_event bit becomes 1.  
Resume_int  
ISBR  
1
1
R/W  
R/W  
0
0
Initiate short (arbitrated) bus reset.  
Setting to 1 acquires the bus and begins short bus reset.  
Short bus reset signal output : 1.3 µsec  
Returns to 0 at the beginning of the bus reset.  
Loop detection output.  
Loop  
1
1
R/W  
R/W  
0
0
1: Detection  
Writing 1 to this bit clears it to 0.  
Writing 0 has no effect.  
Pwr_fail  
Power cable disconnect detect.  
It becomes 1 when there is a change from 1 to 0 in the CPS bit.  
Writing 1 to this bit clears it to 0.  
Writing 0 has no effect.  
Timeout  
1
1
R/W  
R/W  
0
0
Arbitration state machine time-out.  
Writing 1 to this bit clears it to 0.  
Writing 0 has no effect.  
Port_event  
Set to 1 when the Int_Enable bit in the register map of each port is 1 and  
there is a change in the ports connected, Bias, Disabled and Fault bits.  
Set to 1 when the Resume_int bit is 1 and any one port does resume.  
Writing 1 to this bit clears it to 0.  
Writing 0 has no effect.  
Enab_accel  
1
R/W  
0
Enables arbitration acceleration.  
Ack-acceleration and Fly-by arbitration are enabled.  
1: Enabled  
0: Disabled  
If this bit changes while the bus request is pending, the operation is not  
guaranteed.  
Enab_multi  
Page_select  
Port_select  
1
3
4
R/W  
R/W  
R/W  
0
Enable multi-speed packet concatenation.  
Setting this bit to 1 follows multi-speed transmission.  
When this bit is set to 0,the packet will be transmitted with the same speed  
as the first packet.  
000  
0000  
Select page address between 1000 to 1111.  
000: Port Status Page  
001: Vendor Definition Page  
Others: Unused  
Port Selection.  
Selecting 000 (Port Status Page) with the page selection selects the port.  
0000: Port 0  
0001: Port 1  
0010: Port 2  
Others: Unused  
Reserved  
-
R
000…  
Reserved. Read as 0.  
12  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
2.2 Port Status Page (Page 000)  
Figure 2-2. Port Status Page  
0
1
2
3
4
5
6
7
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AStat  
Negotiated_speed  
BStat  
Int_enable  
Reserved  
Child  
Connected  
Bias  
Disabled  
Fault  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table 2-2. Bit Field Description  
Field  
Size  
2
R/W  
R
Reset value  
Description  
AStat  
XX  
A port status value.  
00:---, 10: “0”  
01: “1”, 11: “Z”  
BStat  
Child  
2
1
1
1
R
R
R
R
XX  
B port status value.  
00:---, 10: “0”  
01: “1”, 11: “Z”  
Child node status value.  
1: Connected to child node  
0: Connected to parent node  
Connection status value.  
1: Connected  
Connected  
Bias  
0
0: Disconnected  
Bias voltage status value.  
1: Bias voltage  
0: No bias voltage  
Disabled  
1
3
R/W  
R
See  
The reset value is set by the PORTDIS pin.  
1: Disable  
Description  
Negotiated_  
Speed  
Shows the maximum data transfer rate of the node connected to this port.  
000: 100 Mbps  
001: 200 Mbps  
010: 400 Mbps  
Int_enable  
Fault  
1
1
R/W  
R/W  
0
0
The Port_event is set to 1 by a change to 1 of the Connected, Bias, Disable,  
and Fault bits.  
Set to 1 if an error occurs during Suspend/Resume.  
Writing 1 to this bit clears it to 0.  
Writing 0 has no effect.  
Reserved  
-
R
000…  
Reserved. Read as 0.  
13  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
2.3 Vendor ID Page (Page 001)  
Figure 2-3. Vendor ID Page  
0
1
2
3
4
5
6
7
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Compliance_level  
Reserved  
Vendor_ID  
Product_ID  
Table 2-3. Bit Field Description  
Reset value  
Field  
Size  
8
R/W  
R
Description  
Compliance_level  
Vendor_ID  
00000001  
00004CH  
According to IEEE P1394a.  
24  
24  
-
R
Company ID Code value, NEC IEEE OUI.  
Product code.  
Product_ID  
Reserved  
R
R
000…  
Reserved. Read as 0.  
14  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
3. INTERNAL FUNCTION  
3.1 Link Interface  
3.1.1 Connection Method  
Figure 3-1. PHY/Link Connection Method  
D0-D7  
CTL0,CTL1  
LREQ  
SCLK  
LPS  
PHY  
Link  
µ
PD72850A  
LKON  
Note  
DIRECT  
DD  
Note Clamping to V  
provides direct connection to Link.  
Clamping to GND connects through isolation barrier to Link.  
The isolation barrier connection circuit is described in 3.1.7 Isolation Barrier.  
3.1.2 LPS (Link Power Status)  
LPS is a function to monitor the On/Off status of the Link power supply. After 1.2 µsec or more, LPS is Low, the  
PHY/Link is reset and D and CTL are output Low (when the isolation barrier is Hi-Z). After 2.5 µsec or more, LPS is  
Low, moreover, the PHY stops the supply of SCLK and SCLK outputs Low (when the isolation barrier is Hi-Z).  
3.1.3 LREQ, CTL0,CTL1, and D0-D7 Pins  
LREQ  
: Indicates that a request is received from Link.  
CTL0,CTL1 : Bi-directional pin which controls the functions between the PHY/Link interface.  
D0-D7  
: Bi-directional pin which controls the data Transfer/Receive status signal, and the speed code  
Transfer/Receive status signal.  
3.1.4 SCLK  
49.152 MHz clock supplied by PHY for the PHY/Link interface synchronization.  
15  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
3.1.5 LKON  
When the Link power is off, it outputs a clock of 6.144 MHz. LKON outputs under the following conditions: LPS is  
Low and the internal PHY register of the Link_active bit is 0.  
• Link-on packet is received.  
• Any bit of Loop, Pwr_fail, Timeout or Port_event is the PHY internal register becomes 1, and moreover either  
LPS or Link_active bit is 0.  
When LPS is asserted, LKON returns to Low.  
3.1.6 Direct  
Set Direct to Low for using the isolation barrier.  
3.1.7 Isolation Barrier  
The IEEE1394 cable holds signals for Data/Strobe in addition to power and ground.  
When the ground potential is different between connecting devices, the DC and AC current flows through the  
ground line in the cable and there is a possibility of malfunction due to ground difference between the two PHY.  
The µPD72850A uses the isolation barrier to couple the AC between the PHY/Link interface to overcome the  
ground difference problem. Connecting the Direct pin to Low enables the digital differential circuit of the µPD72850A.  
The differential circuit propagates only the change in the signal; the interface will be driven only during transitions  
High Low or Low High. The interface will assume the high impedance state when there is no signal change.  
The µPD72850A uses Schmitt trigger input buffers for D, CTL, LREQ and LPS pins to prevent noise when the bus  
assumes a high impedance state.  
The digital differential circuit and the Schmitt trigger input buffers are needed on the Link layer controller LSI to  
implement the isolation barrier.  
Figure 3-2. Waveforms of the Isolation Barrier  
Isolation Barrier not used  
0
0
1
1
1
Z
0
0
0
Z
0
Z
1
1
0
0
0
Z
Using Isolation Barrier  
(Digital differential circuit)  
16  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Figure 3-3. Isolation Barrier Circuits  
(a) CTL0,CTL1, D0-Dn Isolation Barrier Circuit  
Required when LinkVDD is 5 V  
LinkVDD  
DVDD  
Link  
µ
PD72850A  
5 k  
5 k  
100  
µ
F
µ
F
0.001  
0.001  
5 k  
5 k  
300  
LinkGND  
LinkGND  
DGND  
(b) Link-on Isolation Barrier Circuit  
LinkVDD  
Link  
µ
PD72850A  
5 k  
100  
µ
F
0.001  
1.6 k  
LinkGND  
(c) LPS Isolation Barrier Circuit  
DVDD  
Link  
µ
PD72850A  
8.4 k  
10 k  
µ
F
0.033  
1.6 k  
DGND  
(d) LREQ Isolation Barrier Circuit  
Required when LinkVDD is 5 V  
DVDD  
LinkVDD  
5k  
Link  
µ
PD72850A  
5 k  
100  
µ
F
µ
F
0.001  
0.001  
5 k  
5 k  
300  
LinkGND  
LinkGND  
DGND  
(e) SCLK Isolation Barrier Circuit  
LinkVDD  
5 k  
DVDD  
Link  
µ
PD72850A  
5 k  
µ
F
0.001  
5 k  
5 k  
LinkGND  
DGND  
17  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
3.2 Cable Interface  
3.2.1 Connections  
Figure 3-4. Cable Interface  
Connection Detection Current  
Connection Detection Comparator  
Common Mode Speed Current driver  
TpBias  
TpAp  
+
-
TpBp  
Driver  
Driver  
7 k  
7 k  
56  
56  
7 k  
7 k  
56  
56  
TpAn  
TpBn  
Receiver  
+
Receiver  
+
µ
µ
5.1 k  
1
F
0.01  
F
270 pF  
-
-
Arbitration Comparators  
Arbitration Comparators  
+
-
+
-
+
-
+
-
Common Mode Comparators  
Common Mode Comparator  
+
+
-
-
+
-
Connection Detection Current  
Connection Detection Comparator  
Common Mode Speed Current Driver  
TpBias  
TpAp  
+
-
TpBp  
Driver  
Driver  
7 k  
7 k  
56  
56  
56  
56  
7 k  
TpBn  
7 k  
TpAn  
Receiver  
Receiver  
+
+
-
µ
F
µ
1
0.01  
F
270 pF  
5.1 k  
-
Arbitration Comparators  
Arbitration Comparators  
+
-
+
-
+
-
+
-
Common Mode Comparator  
Common Mode Comparators  
+
+
-
-
+
-
18  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
3.2.2 Cable Interface Circuit  
Each port is configured with two twisted-pairs of TpA and TpB.  
TpA and TpB are used to monitor the state of the Transmit/Receive line, control signals, data and cables.  
During transmission to the IEEE1394 bus, the Data/Strobe signal received from the Link layer controller is  
encoded, converted from parallel to serial and transmitted.  
While receiving from the IEEE1394 bus, the Data/Strobe signal from TpA, TpB is converted from serial to parallel  
after synchronization by SCLK, then transmitted to the Link layer controller in 2/4/8 bits according to the data rate of  
100/200/400 Mbps.  
The bus arbitration for TpA and TpB and the state of the line are monitored by the built-in comparator. The state of  
the IEEE1394 bus is transmitted to the state machine in the LSI.  
3.2.3 Unused Ports  
TpAp, TpAn : Not connected  
TpBp, TpBn : AGND  
TpBias  
: Connected to AGND using a 1.0 µF load capacitor  
3.2.4 CPS  
An external resistance of 390 kis connected in series to the power cable to monitor the power of the power  
cable. If the cable power falls under 7.5 V there is an indication to the Link layer controller that the power has failed.  
3.3 Suspend/Resume  
3.3.1 Suspend/Resume On Mode (SUS/RES = “H”)  
There are two ways of transition from the active status to the suspended status.  
One is when the receipt of a remote command packet that sets the initiate suspend command. After that, the PHY  
transmits a remote confirmation packet with the ok bit set, subsequently signals TX_SUSPEND to the connected  
peer PHY with the port which specified by the port field in the remote command packet, and then the PHY port  
transitions to the suspended state.  
The other is when the receipt of a RX_SUSPEND or RX_DISABLE_NOTIFY signal. When the port observes  
RX_SUSPEND, it transmits TX_SUSPEND to the active ports.  
The TX_SUSPEND transmitted propagates until it reaches a leaf node. The PHY port transitions to the suspended  
state. The propagation of the suspended domain may be blocked by a PHY compliant with IEEE Std 1394-1995, a  
disabled or a suspended port.  
Any one of a number of reasons may cause a suspended port to attempt to resume normal operations:  
• Bias is detected and there is no fault condition;  
• A resume packet is received or transmitted by the PHY;  
• A remote command packet that sets the resume port command is received; or  
• Either port of a node without active ports detects bias.  
3.3.2 Suspend/Resume Off Mode (SUS/RES = “L”)  
• Remote command packet is ignored.  
• Resume packet is ignored.  
• Disabled, Int_enable and resume_int bits in PHY register are ignored.  
• Responses to Remote access packet.  
• Detects the connection of the port in TpBias.  
19  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
3.4 PLL and Crystal Oscillation Circuit  
3.4.1 Crystal Oscillation Circuit  
To supply the clock of 24.576 MHz ± 100 ppm, use an external capacitor of 10 pF and a crystal of 50 ppm.  
3.4.2 PLL  
The crystal oscillator multiplies the 24.576 MHz frequency by 16 (393.216 MHz).  
3.5 PC0-PC2, CMC  
CMC shows the bus manager function which corresponds to the c bit of the Self_ID packet and the Contender bit  
in the PHY register when the input is High.  
The value of CMC can be changed with software through the Link layer; this pin sets the initial value during Power-  
on Reset. Use a pull-up or pull-down resistor of 10 k, based on the device’s specification.  
The PC0-PC2 pin corresponds to the power field of the Self_ID packet and Pwr_class in the PHY register. Refer to  
Section 4.3.4.1 of the IEEE1394-1995 specification for information regarding the Pwr_class. The value of Pwr can be  
changed with software through the Link layer controller; this pin sets the initial value during Power-on Reset. Use a  
pull-up or pull-down resistor of 10 kbased on the application.  
3.6 RESETB  
Connect an external capacitor of 0.1 µF between the pins RESETB and GND. If the voltage drops below 0 V, a  
reset pulse is generated. All of the circuits are initialized, including the contents of the PHY register.  
3.7 RI1, RI0  
Connect an external resistor of 9.1 kto limit the LSI’s current.  
20  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
4. PHY/LINK INTERFACE  
4.1 Initialization of Link Power Status (LPS) and PHY/Link Interface  
The LPS pin monitors the On/Off status of the Link power state. This pin is used during the PHY/Link interface  
Enable/Disable (initialization).  
Reset  
When the LPS input pin is Low for TLPS_RESET:  
• CTL0,CTL1 and D0-D7 output Low (When the isolation barrier is Hi-Z).  
• SCLK continuously supplies the clock signal to the Link.  
Disable  
When the LPS input pin is Low for TLPS_DISABLE:  
CTL0,CTL1, D0-D7 continue to output Low as TLPS_RESET has already occurred (When the isolation barrier is Hi-Z).  
• SCLK to Link stops and it outputs Low (When the isolation barrier is Hi-Z).  
Table 4-1. LPS Timing Parameters  
Parameter  
LPS = Low propagation delay (with isolation barrier)  
LPS = High propagation delay (with isolation barrier)  
Reset active  
Symbol  
MIN.  
0.09  
0.09  
1.2  
MAX.  
1.00  
1.00  
2.75  
30  
Unit  
µs  
tLPSL  
tLPSH  
µs  
tLPS_RESET  
tLPS_DISABLE  
tRESTORE  
µs  
Disable active  
25  
µs  
Setup time when using isolation barrier  
15  
20  
µs  
Figure 4-1. LPS Waveform when Connected to Isolation Barrier  
tLPSH  
tLPSL  
21  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Figure 4-2. PHY/Link Interface Reset and Disable  
(a) Reset  
D, CTL, LREQ  
LPS  
LPS  
(with isolation barrier)  
SCLK  
tLPS_RESET  
tRESTORE  
(b) Disable  
D, CTL, LREQ  
LPS  
LPS  
(with isolation barrier)  
SCLK  
tRESTORE  
tLPS_DISABLE  
4.2 Link-on Indication  
When the power supply of Link is off (LPS is Low and the internal PHY register Link_active bit is 0), the pin LKON  
outputs High according to the following conditions: (With isolation barrier, it outputs a clock of 6.144 MHz)  
• Link-on packet is received.  
• When any bit of the µPD72850A PHY register’s loop, Pwr fail, Timeout or Port_event becomes 1, and either LPS  
or the Link_active bit is 0.  
Table 4-2. Link-on Timing  
Parameter  
MIN.  
4
MAX.  
8
Unit  
MHz  
%
Frequency  
Duty Cycle  
40  
60  
Propagation delay before the Link becomes active (LPS is  
asserted and the Link_active bit in the PHY register is 1).  
500  
ns  
• If LPS or the Link_active bit is 0, the Link is considered inactive.  
When the Link is inactive and any of Loop, PWR_fail, Timeout, Port_event becomes 1, then Link-on is asserted  
High.  
• When the Link is active (both LPS and Link_active become 1) and Loop, Pwr_fail, Timeout and Port_event  
become 1, Status transfer is sent on the PHY/Link interface.  
22  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
• The µPD72850A activates the PHY/Link interface when LPS is 1, regardless of the value of the Link active bit.  
4.3 PHY/Link Interface Operation (CTL0, CTL1, LREQ, D0-D7)  
The PHY/Link Interface consists of the following operations:  
• Status transfer to the Link layer controller by CTL  
• Transmit packet  
• Receive packet  
• Request from the Link layer controller by LREQ  
4.3.1 CTL0,CTL1  
CTL0,CTL1 controls the PHY/Link interface as shown in the Table 4-3.  
Table 4-3. CTL Controls PHY  
CTL0,CTL1  
Type  
Content  
00  
01  
10  
11  
Idle  
PHY is in idle function  
Status  
Receive  
Grant  
PHY transmitting status information to Link  
PHY receiving data from the Link  
PHY allows Link to transmit data  
This is the operation by which, after Grant, the Link obtains the right to control the interface.  
Table 4-4. CTL Controls Link  
CTL0,CTL1  
Type  
Content  
00  
01  
Idle  
Link completes the packet transmission and releases the PHY/Link interface.  
1) Link transmits Hold until the data is ready for transmission.  
2) Link transmits the interface connect packet.  
Link transmits the data to PHY.  
Hold  
10  
11  
Transmit  
-
Not used.  
4.3.2 LREQ  
Access to the PHY register and the bus is controlled from the Link layer controller through the LREQ pin of PHY.  
Figure 4-3. LREQ and CTL Timing  
LREQ  
(n-2)  
(n-1)  
LR0  
LR1  
LR2  
LR3  
LR  
LR  
CTL0,CTL1  
A
B
C
C
A
C
C
: CTL before generation of LREQ  
: CTL during LREQ execution  
B
23  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
(1) LREQ format  
Bus Request  
Table 4-5. Bus Request Format  
Content  
Bit  
Type  
0
start  
Signal that starts a request : 1  
Bus request type:  
1-3  
4-6  
7
request  
000: ImmReq acknowledge packet transmit  
001: IsoReq isochronous packet transmit  
010: PriReq cycle start packet transmit  
011: FairReq asynchronous packet transmit  
Transmit speed:  
speed  
000: 100 Mbps  
010: 200 Mbps  
100: 400 Mbps  
other: reserved  
stop  
End request signal : 0 (optional)  
PHY Register Read Request  
Table 4-6. Read Request Register Format  
Bit  
Type  
Content  
0
start  
Signal that starts a request : 1  
Read Request.  
1-3  
request  
100 : ReadReq  
4-7  
8
access address  
stop  
PHY register address.  
End request signal : 0  
PHY Register Write Request  
Table 4-7. Write Request Register Format  
Bit  
Type  
Content  
0
start  
Signal that starts a request : 1  
Write Request.  
1-3  
request  
101 : WriteReq  
4-7  
8-15  
16  
access address  
write data  
stop  
PHY register address.  
Write data.  
End request signal : 0  
24  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Acceleration Controller  
Table 4-8. Acceleration Controller Request Format  
Bit  
Type  
Content  
Signal that starts a request : 1  
0
start  
1-3  
4
request  
110 : Acc Ctrl accelerate controller  
access address  
0: Accelerate disable  
1: Accelerate enable  
End request signal : 0  
5
stop  
Table 4-9. Request Type List  
Bit  
Type  
Content  
000  
001  
ImmReq  
Used to acknowledge packet transmit.  
When Idle is detected, PHY immediately controls the bus.  
Used to transmit isochronous packet.  
IsoReq  
PHY does arbitration after isochronous gap is detected and acquires the bus.  
010  
011  
100  
101  
110  
111  
PriReq  
FairReq  
RdReg  
WrReg  
AccCtrl  
-
Used for Cycle master request.  
Fair request.  
PHY register read request.  
PHY register write request.  
Disable/enable of arbitration acceleration.  
Unused.  
For the Link to execute Priority request and Fair, start the request using LREQ when CTL0,CTL1 becomes  
idle, after one clock. When request is acknowledged, the µPD72850A outputs Grant to CTL0,CTL1.  
The Link of cycle master uses PriReq to transmit the cycle start packet. IsoReq transmits the isochronous  
packet.  
IsoReq becomes effective only as follows:  
• The transmission of the cycle start packet is performed on the same isochronous period as Receive. (The  
period until the subaction gap is detected.)  
• During isochronous packet Transmit or Receive.  
The µPD72850A cancels IsoReq with the subaction gap detection or bus reset. To meet the timing, do not  
issue the IsoReq to PHY when CRC operation is performed.  
The Link cancel method is described later.  
After the packet is received, Link issues ImmReq as the acknowledge packet transmission. The purpose is to  
prevent another node from detecting subaction gap as ACK_RESPONSE_TIME. The µPD72850A acquires  
the bus after packet receive and returns Grant to CTL0,CTL1. When CRC fails, before Link detects Grant,  
assert 3 Idle cycles to CTL0,CTL1.  
When the bus reset is generated, the unprocessed requests are canceled.  
The µPD72850A updates the data of the Write request register and the contents of the Read register are  
changed. The contents of the register of the specified address are output to the Link as a status transfer in the  
Read request register, When the status transmission is interrupted by transmitting/receiving packets, the  
status transmission will re-start from the first bit after completing the transmit/receive of the packets.  
25  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
The bus request (ImmReq, IsoReq, PriReg, FairReq) is completed (in case of ImmReq, IsoReq, when the  
subaction gap is detected) when the packet is transmitted or canceled by canceling the bus request.  
(2) LREQ rules  
The Link request and the status of the serial bus are asynchronous; the bus request can be canceled by the  
status of the serial bus.  
The following rules apply to a request by LREQ:  
• Link cannot issue a bus request (ImmReq, IsoReq, PriReq, FairReq) if Grant is given to an LREQ request or  
until the Link’s request is canceled. The request can be canceled by the µPD72850A if it detects subaction  
gap at ImmReq, IsoReq.  
• Do not issue a RdReg or WrReg request when the status transmission is not completed by the Read request  
register.  
• All of the bus requests (ImmReq, IsoReq, PriReq, FairReq) are canceled by a bus reset.  
In addition, there is a limitation in the request of LREQ according to the state of CTL as shown in Table 4-10.  
Table 4-10. Rules for Other Requests  
Request  
State of CTL in CA to  
which LREQ is allowed  
when PHY drives CTL  
LREQ issues  
permission when Link  
drives CTL  
Note  
Fair, Priority  
Immediate  
Idle, Status  
wrong  
Fair, Priority request cannot be issued until the  
unprocessed bus request is completed.  
Receive, Idle  
wrong  
Link issues the request after completing the decoding of  
Destination_ID, when the acknowledge packet is ready.  
After the packet is received, it is necessary to transmit the  
first bit of the request within four cycles.  
Isochronous  
any  
correct  
If the isochronous packet transmission is prepared for the  
isochronous period, it is issued.  
Do not issue the request to transmit the isochronous  
packet appending to the currently transmitted isochronous  
packet (Using Hold).  
Register Read  
Register Write  
AccCtrl  
any  
any  
correct  
correct  
Do not issue this request if the unprocessed Read request  
has not been completed.  
To set acceleration bit 0:  
When the isochronous period starts, if the Enab_accel bit  
is one, Cycle slave should adjust accelerate bit to 0.  
To set acceleration bit 1:  
Do not set the cycle master.  
It is issued when the isochronous period ends.  
26  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Table 4-11. PHY Operation Before LREQ Request to the CTL Function Changes  
Request  
State of CTL in C B after  
LREQ was issued  
Operation of the PHY (µPD72850A)  
Fair, Priority  
Receive  
Hold the request if the acceleration of arbitration packet transmitted with  
enable is 8 bits (ACK).  
Except for 8 bits, the requests are ignored.  
Ignore the request when the acceleration of arbitration is disabled.  
Arbitration Won.  
Grant  
Idle, Status  
Excluding when the bus reset is generated, Hold the requests.  
Immediate  
Grant  
Receive  
The packet is being transmitted to Link. Request Hold.  
Excluding when the bus reset is generated, hold the request.  
Request Hold.  
Idle, Status  
Isochronous  
Transmit Idle (driven by Link)  
Grant  
Arbitration Won.  
Receive  
Status  
Request Hold.  
Request is ignored when sub-action gap is detected.  
Idle  
Register Read  
Any (driven by Link)  
Grant  
Request Hold.  
Receive  
Status  
Request Hold.  
Hold the request until the corresponding register value is returned.  
Idle  
Register Write, Any  
Acceleration  
control  
Request is completed.  
4.3.3 PHY/Link Interface Timing  
(1) SCLK timing  
Table 4-12. SCLK Timing  
Timing Constant  
Comment  
MIN.  
2
MAX.  
9
Unit  
BUS_TO_LINK_DELAY  
Period from receiving RX_DATA_PREFIX until  
Receive to CTL is output.  
SCLK cycle  
DATA_PREFIX_TO_GRANT Period when the Grant is output to CTL after  
TX_DATA_PREFIX is output to a port.  
25  
5
SCLK cycle  
SCLK cycle  
LINK_TO_BUS_DELAY  
Period when TX_DATA_END is output to all ports  
after transmitting the packet by Link after idle was  
asserted to CTL.  
2
MAX_HOLD  
Maximum period when Hold can be asserted by Link  
to confirm Grant.  
47  
SCLK cycle  
27  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
(2) AC timing  
Table 4-13. PHY/Link Interface Timing  
Parameter  
D, CTL propagation delay  
Symbol  
tpd  
tsu  
th  
MIN.  
0.5  
6
MAX.  
13.5  
Unit  
ns  
D, CTL, LREQ setup time  
D, CTL, LREQ Hold time  
ns  
0
ns  
Figure 4-4. PHY/Link Interface AC Timing  
SCLK  
pd  
pd  
pd  
t
t
t
D, CTL  
SCLK  
su  
h
t
t
D, CTL, LREQ  
4.4 Acceleration Control  
Enable of ack-acceleration and fly-by on the same isochronous period may create a problem. The isochronous  
cycle may extend unintentionally when transmitting the asynchronous packet by a node using ack-acceleration and  
fly-by.  
To avoid this problem, Link should control Disable/Enable of these enhancements (ack-Acceleration, fly-by), by  
Acceleration Control requests. Cycle master cannot issue the Acceleration Control request.  
The enhancements should not be used from the generation of the local cycle synchronization event to the  
confirmation of cycle start. In this period, all Links except for Cycle Master use Acceleration Control as follows:  
• Do not issue Fair nor Priority request to Link after generating local cycle synchronization, if the Acceleration  
Control request’s Accelerate bit is not set to 0.  
• Link must not use Hold when transmitting continuous primary asynchronous packet after the Acknowledge  
packet, except after ack_pending to complete the split transaction.  
• Ending the Link during the isochronous period issues the acceleration control request to set the Accelerate bit to  
1, enabling these enhancements.  
The µPD72850A does not require setting the Acceleration Control during isochronous transmit to enable the  
isochronous request fly-by acceleration.  
It is not necessary to issue Acceleration Control request when the cycle master is absent from the serial bus.  
These enhancements are enabled if the Enab_accel bit in the PHY register is set. The µPD72850A supports Variable  
Acceleration controlled by the Acceleration Control during power-on reset.  
28  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
4.5 Transmit Status  
Pin D0,D1 of the µPD72850A transmits status information to the Link. Status is asserted to CTL while transmitting  
Status. The status transmission is interrupted if the serial bus receives a packet which contains states other than  
status to CTL. Between two status transmissions, assert Idle to CTL for at least one SCLK cycle.  
The µPD72850A transmits status in 16 bits as follows:  
• In response to the register request  
• After deciding the new Physical_ID for the Self_ID period resetting the bus (after a Self_ID packet is transmitted)  
The event indication is the only 4-bit transmission of the µPD72850A.  
Figure 4-5. Status Timing  
PHY CTL0,CTL1  
PHY D0-D7  
00  
00  
01  
01  
01  
00  
00  
00  
00  
S14,  
S15  
S0,S1  
S2,S3  
Table 4-14. Status Data Format  
Bit(s)  
Name  
ARB_RESET_GAP  
SUBACTION_GAP  
BUS_RESET_START  
Phy_interrupt  
Description  
0
1
2
3
Arbitration Reset gap detect  
Subaction gap detect  
Bus reset detect  
Either of the following states is detected:  
The topology of the bus is a loop  
Voltage drop on the power cable  
Arbitration state machine timeout  
Port Event  
4-7  
Address  
Data  
PHY register address  
8-15  
Register data  
The bits already transmitted are set to 0.  
Example If the status transmission is interrupted after S0,S1 bit was transmitted, then in the next status transfer,  
S0,S1 becomes 0.  
Therefore one of the following situations will occur when the µPD72850A re-transmits status after an  
interruption of the status transmission:  
• At least one bit of S0-S3 is 1  
• The PHY register data contains the interrupt status information  
The status transmission always begins with S0,S1.  
If the Link executes read request, and Subaction gap and arbitration reset gap are detected, priority is given to the  
transmission of gap status, postponing the response to the register read request.  
29  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
4.6 Transmit  
The µPD72850A arbitrates the serial bus using Link’s LREQ.  
• When the µPD72850A acquires the bus, a Grant period of 1 SCLK is executed to CTL0,CTL1. After that, an Idle  
period of 1 SCLK cycle is executed.  
• Link controls the interface executing Idle, Hold of Transmit to CTL0,CTL1 after 1 SCLK cycle when Grant from  
PHY is detected.  
• Before asserting Hold and Transmit, assert 1 Idle cycle. Do not execute Idle for 2 or more cycles.  
• If the packet transmit is not ready, the Hold period can be extended up to MAX_HOLD.  
• The µPD72850A outputs DATA_PREFIX to the serial bus while Hold is being asserted to CTL.  
• When the packet transmit is ready, Link outputs the first bit of the packet and Transmit is asserted to CTL at the  
same time.  
• After transmitting the last bit of the packet, Link outputs for Idle or Hold to CTL for 1 cycle. After that, it outputs  
Idle for 1 cycle.  
When PHY/Link releases the bus, output Low to CTL and D0-D7 within 1 cycle.  
Figure 4-6. Transmit Timing  
(a) Single Packet  
PHY CTL0,CTL1  
PHY D0-D7  
00  
00  
ZZ  
ZZ  
11  
00  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
01  
00  
ZZ  
ZZ  
01  
00  
ZZ  
ZZ  
10  
ZZ  
ZZ  
10  
D1  
ZZ  
ZZ  
10  
ZZ  
ZZ  
10  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
00  
00  
00  
00  
ZZ  
ZZ  
Link CTL0,CTL1  
Link D0-D7  
n
D
D0  
D2  
(b) Concatenated Packet  
PHY CTL0,CTL1  
PHY D0-D7  
ZZ  
ZZ  
10  
ZZ  
ZZ  
10  
ZZ  
ZZ  
01  
ZZ  
ZZ  
00  
00  
00  
00  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
11  
00  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
01  
00  
ZZ  
ZZ  
10  
ZZ  
ZZ  
10  
ZZ  
ZZ  
01  
00  
Link CTL0,CTL1  
Link D0-D7  
n-1  
n
D
D
SP  
D0  
D1  
Note In case of packet transmission after Grant, before actual transmission, Hold does not need to be asserted.  
Link can transmit continuous packets without releasing the bus.  
• Hold is asserted to CTL. This function is used when the Link transmits continuous packets after acknowledge and  
isochronous packets. Link outputs the transfer rate signal of the following packet to D0-D7 and asserts Hold  
simultaneously.  
• After Hold is detected by MIN_PACKET_SEPARATION, the µPD72850A outputs Grant to CTL.  
30  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
• Link controls the interface by generating Idle, Hold or Transmit to CTL0,CTL1, after 1 SCLK cycle when Grant  
from PHY is detected.  
• Assert 1 Idle cycle before asserting Hold and Transmit (do not output 2 or more Idle cycles). When the packet  
transmission is not ready, assert Hold. The Hold output period after Grant is detected should not exceed the  
period provided by MAX_HOLD.  
The following limitations exist though Link can transmit the concatenated packet with a different transfer rate. Link  
cannot transmit other than S100 connecting packets after S100 (concatenated) packets have been transmitted. A  
new request to transmit must be issued in order to transmit S100 packets at a transfer rate of S200 or more.  
If the En_Multi bit in the PHY register is 0, the µPD72850A assumes the same speed as the first packet, for all of  
the concatenated packets.  
At the end of packet transmission, Link asserts Idle to CTL for a period of 2 cycles.  
After sampling Idle from Link, the µPD72850A asserts Idle to CTL for a period of 1 cycle.  
4.7 Cancel  
This section describes how Link operates, when after the bus has been acquired by the request of LREQ, there is  
no data transmission. In this case, a Null packet with no data is transmitted to the serial bus (DATA_PREFIX →  
DATA_END).  
Following are two method for canceling the Link:  
1. As explained in Section 4.6, the Link outputs Idle or Hold, then outputs Transmit to CTL after confirming Grant.  
Here, the Link asserts Idle for two cycles to CTL, then switches to high impedance.  
The µPD72850A confirms Cancel at the second Idle cycle. To prevent the bus from switching to high  
impedance, a third Idle cycle is needed.  
Figure 4-7. Link Cancel Timing (After Grant)  
PHY CTL0,CTL1  
PHY D0-D7  
00  
00  
ZZ  
ZZ  
11  
00  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
00  
00  
00  
00  
ZZ  
ZZ  
Link CTL0,CTL1  
Link D0-D7  
2. To cancel after asserting Hold, assert Idle between two cycles; it switches to high impedance. This method  
cancels the packet transmission connection (concatenated) after Grant is received. The µPD72850A cancels  
with the next Idle cycle of Hold. To prevent CTL from switching to high impedance, assert a second Idle cycle.  
31  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Figure 4-8. Link Cancel Timing (After Hold)  
PHY CTL0,CTL1  
PHY D0-D7  
00  
00  
ZZ  
ZZ  
11  
00  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
01  
00  
ZZ  
ZZ  
01  
00  
ZZ  
ZZ  
00  
00  
ZZ  
ZZ  
00  
00  
00  
00  
ZZ  
ZZ  
Link CTL0,CTL1  
Link D0-D7  
4.8 Receive  
This section shows the operation when the packet is received from the serial bus.  
• When the µPD72850A detects DATA_PREFIX on the serial bus, it asserts receive to CTL and all of the D pins  
assume the logic value of 1.  
• The µPD72850A shows the speed code of the transfer rate ahead of the packet using bits D0-D7. Transmitting  
the speed code with the speed signal is the protocol of the PHY/Link interface. The speed code is not included in  
the CRC calculation.  
• The µPD72850A continues to assert Receive to CTL until the packet is finally transmitted.  
• Idle is asserted to CTL, indicating completion of the packet transmission.  
Figure 4-9. Receive Timing  
PHY CTL0,CTL1  
00  
00  
10  
10  
10  
10  
10  
10  
00  
00  
00  
00  
(Binary)  
PHY D0-D7  
(Hex)  
n
FF  
FF  
SP  
D0  
D1  
D
The packet transfer rate of the serial bus depends on the topology of the bus. The µPD72850A checks if the node  
can receive at the faster transfer rate. At this time, DATA_PREFIX DATA_END is transmitted to the µPD72850A.  
After DATA_PREFIX is transmitted to the Link, Receive from the serial bus is completed, asserting Idle.  
Table 4-15 shows the speed code encoding.  
Table 4-15. Speed Encoding  
D0-D7  
Data rate  
Transmitted  
00000000  
01000000  
01010000  
11111111  
Observed  
00xxxxxx  
0100xxxx  
01010000  
11xxxxxxxx  
S100  
S200  
S400  
Data Prefix  
32  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
5. CABLE PHY PACKET  
The node on the serial bus transmits and receives the PHY packet to control the bus.  
The PHY packet is composed of 2 quadlets (64-bit); the second quadlet (32-bit) contains the inverse value of the  
first quadlet.  
The PHY packet is transmitted at a transfer rate of S100. All of the PHY packets received from the serial bus are  
transmitted to the Link.  
Though the PHY packet from the µPD72850A is transmitted to the Link, the PHY packet which was transmitted  
from the Link of the node is not transmitted to the Link.  
There are four types of PHY packets, as follows:  
• Self_ID packet  
• Link-on packet  
• PHY configuration packet  
• Extended PHY packet  
The Self_ID packet transmitted automatically by the µPD72850A is also transmitted to the Link of a local node.  
The µPD72850A PHY packet Receive from the serial bus operates similar to the PHY packet transmitted by the  
Link (when the packet transmission to the Link is executed).  
5.1 Self_ID Packet  
During the Self_ID phase of the initialization or when the Ping packet responds, the µPD72850A transmits the  
Self_ID packet.  
Figure 5-1. Self_ID Packet Format  
10  
phy_ID  
0
L
gap_cnt  
sp  
rsv  
c
pwr  
p0  
p1  
p2  
i
m
Logical Inverse of the first quadlet  
Table 5-1. Self_ID Packet  
Field  
Description  
phy_ID  
Physical ID of the node.  
L
Logical product of Link_active and LPS in the PHY register.  
Gap_count value in the PHY register.  
gap_cnt  
sp  
c
Physpeed 10 (corresponds to 98.304, 196.608, 393.216 Mbps).  
C bit values in the PHY register.  
pwr  
pwr value in the PHY register.  
000: The node does not need the power supply. No power repeat.  
001: Obtains power supply for the node. Can supply 15W or more.  
010: Obtains power supply for the node. Can supply 30W or more.  
011: Obtains power supply for the node. Can supply 45W or more.  
100: The node consumes 3W maximum power.  
110: The node consumes 3W maximum power. At least 3W are necessary to enable Link.  
111: The node consumes 3W maximum power. At least 7W are necessary to enable Link.  
i
It shows that the node issued Bus Reset and the bus was reset.  
m
rsv  
Read as 0.  
Read as 00.  
33  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
5.2 Link-on Packet  
The µPD72850A outputs the Link-on signal of 6.144 MHz from the pin LKON when receiving the Link-on packet.  
Figure 5-2. Link-on Packet Format  
01  
phy_ID  
0000  
0000  
0000  
0000  
0000  
0000  
Logical Inverse of the first quadlet  
Table 5-2. Link-on Packet  
Field  
Description  
phy_ID  
Physical_ID of the destination of the Link-on packet  
5.3 PHY Configuration Packet  
Use the PHY configuration packet to set the gap count for the bus.  
Figure 5-3. PHY Configuration Packet Format  
gap_cnt 0000 0000  
Logical Inverse of the first quadlet  
00  
root_ID  
R
T
0000  
0000  
Table 5-3. PHY Configuration Packet  
Field  
Description  
root_ID  
R
Sets the Physical_ID node as root contender (for the next reset).  
When this bit is set to 1 and the Phyisical_ID of the node corresponds to the rootID of this packet, the  
µPD72850A sets the force_root bit. The force_root bit is cleared if there is discrepancy.  
If this bit is 1, the gap_cnt value of this packet is used as the gap_count value. The gap_count value  
must not be cleared by the following bus reset, set the gap_count_reset_disable flag in the µPD72850A  
to TRUE.  
T
gap_cnt  
When this packet is received, the gap count is set to this value. While it remains effective for the next  
bus reset, it will be cleared by the second bus reset to 3FH.  
Remark Applying 0 to both R,T, regards the following packets as extended PHY packets, the PHY configuration is  
not recognized.  
5.4 Extended PHY Packet  
An extended PHY packet is defined when both the R (in the PHY configuration packet) and T bits are transmitted  
as 0. The extended PHY packet does not influence the force_root_bit and the gap_count bit on any node.  
Following are the types of extended PHY packets:  
• Ping packet  
• Remote access packet  
• Remote reply packet  
• Remote command packet  
• Remote confirmation packet  
• Resume packet  
34  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
5.4.1 Ping Packet  
When the µPD72850A receives the Ping packet, it will transmit the Self_ID packet within the RESPONSE_TIME.  
Figure 5-4. Ping Packet Format  
00  
phy_ID  
00  
type (0)  
00  
0000  
0000  
0000  
0000  
Logical Inverse of the first quadlet  
Table 5-4. Ping Packet  
Field  
Description  
phy_ID  
type  
Physical ID of the destination node of the Ping packet  
Indicates that there is a Ping packet with a value of 0  
5.4.2 Remote Access Packet  
The Remote access packet reads information in the PHY register of another node. The PHY specified by the  
Remote access packet transmits the value in the register using the Remote Reply packet.  
Figure 5-5. Remote Access Packet Format  
00  
phy_ID  
00  
type  
page  
port  
reg  
reserved  
Logical Inverse of the first quadlet  
Table 5-5. Remote Access Packet  
Field  
Description  
phy_ID  
type  
page  
port  
Physical ID of the destination node of the Remote access packet  
1 = read register (base register), 5 = read register (page register)  
Specifies the page of the PHY register  
Specifies the register of each port in the PHY register  
Specifies the address when reading the base register.  
reg  
In case of the Page and port registers, specifies the address with 1000+reg.  
35  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
5.4.3 Remote Reply Packet  
The µPD72850A transmits the value in the register by using the Remote reply packet as a response to the Remote  
access packet.  
Figure 5-6. Remote Reply Packet Format  
00  
phy_ID  
00  
type  
page  
port  
reg  
data  
Logical Inverse of the first quadlet  
Table 5-6. Remote Reply Packet  
Field  
Description  
phy_ID  
type  
page  
port  
Physical ID of the node (Node’s original packet transmit)  
3 = register read (base register), 7 = read register (page register)  
Used when specifying the page of the PHY register  
Used to specify the register of each port in the PHY register  
Specifies the address when reading the base register.  
reg  
In case of the Page and port registers, specify the address with 1000+reg.  
Contents of the specified register  
data  
5.4.4 Remote Command Packet  
Use the Remote command packet to operate the function of the port of the PHY of another node.  
Figure 5-7. Remote Command Packet Format  
00  
phy_ID  
00  
type(8)  
000  
port  
0000  
0000  
cmnd  
Logical Inverse of the first quadlet  
Table 5-7. Remote Command Packet  
Field  
Description  
phy_ID  
type  
Physical ID of the destination packet  
Extended PHY packet type; set to 8 for Remote command packet  
port  
Port of the PHY of the operating node  
cmnd  
Command  
0: NOP  
1: Disables the port after transmission of the TX_DISABLE_NOTIFY  
2: Suspend initiator  
4: Clears to 0 the Fault bit of the port  
5: Enables the port  
6: Resumes the port  
36  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
5.4.5 Remote Confirmation Packet  
The µPD72850A transmits the Remote confirmation when the Remote command packet is received, responding  
whether Cmnd can be executed.  
Figure 5-8. Remote Confirmation Packet Format  
00  
phy_ID  
00  
type(A16)  
000  
port  
000  
f
c
b
d
ok  
cmnd  
Logical Inverse of the first quadlet  
Table 5-8. Remote Confirmation Packet  
Field  
Description  
phy_ID  
Physical ID of the node (node’s original packet transmit)  
Extended PHY packet type; set to A16 for Remote confirmation packet  
Port set from the Remote command packet  
type  
port  
f
Fault bit value of the PHY register of this port  
c
Connected bit value of the PHY register of this port  
Bias bit value of the PHY register of this port  
b
d
Disable bit value of the PHY register of this port  
1 indicates executing; otherwise it is 0  
ok  
cmnd  
Specifies the command value with the Remote command packet  
5.4.6 Resume Packet  
When the µPD72850A receives the Resume packet, all of the ports that were suspended resume the connection.  
The Resume packet does the broadcast.  
Figure 5-9. Resume Packet Format  
00  
phy_ID  
00  
type (F16)  
00  
0000  
0000  
0000  
0000  
Logical Inverse of the first quadlet  
Table 5-9. Resume Packet  
Field  
Description  
phy_ID  
type  
Physical ID of the original packet transmit  
Extended PHY packet type; set to F16 for Resume packet  
37  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
6. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
Parameter  
Power supply voltage  
Input voltage  
Symbol  
Condition  
Rating  
Unit  
VDDm  
VIN  
–0.5 to +4.6  
–0.5 to VDD+0.5  
–0.5 to VDD+0.5  
–40 to +125  
V
V
Output voltage  
VOUT  
Tstg  
V
Storage temperature  
°C  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Ranges  
Parameter  
Power supply voltage  
Symbol  
VDD  
Condition  
MIN.  
3.0  
TYP.  
3.3  
MAX.  
3.6  
Unit  
V
Operating temperature  
Power dissipation  
TA  
0.0  
70.0  
0.9  
°C  
W
PD  
38  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
DC Characteristics  
Common  
Parameter  
Symbol  
IDD  
Condition  
MIN.  
TYP.  
135  
MAX.  
240  
Unit  
mA  
mA  
Supply current  
3-port, S400, VDD = 3.6 V  
1-port transmit or receive,  
S400, VDD = 3.3 V  
PHY/Link Interface  
Parameter  
Symbol  
VOH  
Condition  
IOH = –4 mA  
IOH = –9 mA  
IOH = 4 mA  
MIN.  
2.8  
TYP.  
MAX.  
Unit  
V
High-level output voltage (Undifferentiated)  
High-level output voltage (Differentiated)  
Low-level output voltage (Undifferentiated)  
Low-level output voltage (Differentiated)  
High-level input voltage (Undifferentiated)  
Low-level input voltage (Undifferentiated)  
Input rising threshold voltage (LPS)  
Input falling threshold voltage (LPS)  
VOHD  
VOL  
VDD–0.4  
V
0.4  
0.4  
V
VOLD  
VIH  
IOH = 9 mA  
V
2.6  
V
DD+10%  
V
VIL  
0.7  
V
VLIT+  
VLIT-  
VLREF+1  
V
VLREF  
+0.2  
VREF  
+0.3  
VREF  
–0.9  
V
Hysteresis input rising threshold  
voltage(Differentiated)  
Hysteresis input falling threshold  
voltage(Differentiated)  
Reference voltage  
VIT+  
VREF  
+0.9  
VREF  
–0.3  
V
V
VIT-  
VREF  
VLREF  
CIN  
VDD/2±1%  
V
V
Reference voltage (LPS)  
Input capacitance  
0.5  
1.6  
7.5  
pF  
Cable Interface  
Parameter  
Symbol  
VID  
Condition  
MIN.  
142  
TYP.  
MAX.  
260  
Unit  
mV  
mV  
mV  
V
Differential input voltage  
Cable input, 100 Mbps operation  
Cable input, 200 Mbps operation  
Cable input, 400 Mbps operation  
100 Mbps speed signaling off  
200 Mbps speed signaling  
400 Mbps speed signaling  
132  
260  
118  
260  
TpB common mode input voltage  
VICM  
1.165  
0.935  
0.523  
172.0  
1.665  
1.438  
1.030  
–0.81  
–4.84  
–12.40  
2.515  
2.515  
2.515  
265.0  
2.015  
2.015  
2.015  
+0.44  
–2.53  
–8.10  
7.5  
V
V
Differential output voltage  
VOD  
Cable output (Test load 55  
)
mV  
V
TpA common mode output voltage  
VOCM  
100 Mbps speed signaling off  
200 Mbps speed signaling  
400 Mbps speed signaling  
100 Mbps speed signaling off  
200 Mbps speed signaling  
400 Mbps speed signaling  
CPS  
V
V
TpA common mode output current  
ICM  
mA  
mA  
mA  
V
Power status threshold voltage  
TpBias output voltage  
VTH  
VTPBIAS  
1.665  
2.015  
V
39  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
AC Characteristics  
PHY/Link Interface  
Parameter  
D, CTL, LREQ setup time  
D, CTL, LREQ hold time  
D, CTL output timing  
SCLK cycle time  
Symbol  
tSU  
Condition  
MIN.  
6
TYP.  
MAX.  
12  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHD  
0
tD  
2
tSCLK  
tSCLKH  
tSCLKL  
tLINKON  
20  
9
SCLK high level time  
SCLK low level time  
LKON cycle time  
11  
11  
9
160  
Link Interface Timing (SCLK, LKON)  
SCLK  
tSCLKH  
tSCLKL  
tSCLK  
LKON  
tLINKON  
40  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Link Interface Timing (CTL, D)  
SCLK  
tD  
tD  
tD  
Transmit  
CTL0,CTL1  
tD  
tD  
tD  
D0-D7  
tSU  
tH  
Receive  
CTL0,CTL1  
tSU  
H
t
D0-D7  
Link Interface Timing (LREQ)  
SCLK  
tSU  
tH  
LREQ  
41  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
Cable Interface  
Parameter  
Symbol  
tJITTER  
tSKEW  
Condition  
MIN.  
TYP.  
MAX.  
±0.15  
±0.10  
1.2  
Unit  
ns  
TpA, TpB transfer jitter  
Between TpA and TpB  
Between TpA and TpB  
10% to 90%, via 55and  
10 pF  
TpA strobe, TpB data transfer  
TPA, TPB rise time/fall time  
ns  
tR/tF  
ns  
42  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
7. APPLICATION CIRCUIT EXAMPLE  
7.1 IEEE1394 Interface  
Note  
Note  
Note  
µ
µ
µ
µ
µ
µ
µ
AGND  
AGND  
AVDD 40  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
µ
0.1  
F
AGND  
XO  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
DD  
AV  
10 pF  
10 pF  
PORTDIS  
AGND  
XI  
DD  
AV  
0.1 µF  
PSEL  
FIL0  
FIL1  
DD  
AV  
µ
F
0.1  
AGND  
AGND  
AGND  
AGND  
µ
F
0.1  
DD  
AGND  
AV  
µ
F
0.1  
SUS/RES  
AGND  
RESETB  
DGND  
µ
22  
F
µ
DD  
AV  
DD  
DV  
µ
F
0.1  
µ
0.1  
0.1  
F
DD  
DV  
DGND  
IC(H)  
DD  
DV  
µ
IC(H)  
D7  
D6  
µ
F
DIRECT  
LKON  
PC2  
DGND  
D5  
µ
DD  
DV  
D4  
µ
µ
µ
µ
µ
µ
µ
Note Common mode choke.  
Recommendation : TOKO Part No.857CM-0009 (TYPE B5W)  
43  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
7.2 NEC/FFM Board Sharing  
AVDD  
22 µF  
AGND  
0.1 µF  
+
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
2
3
4
5
6
7
8
9
10  
MD8405E  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AGND  
µ
F
0.33  
µ
F
µ
F
0.33  
0.33  
Vp  
1.8 kΩ  
220 kΩ  
11 kΩ  
2.7 kΩ  
18 kΩ  
AVDD  
0.1 µF  
33 pF  
AGND  
MD8405E (FUJIFILM MICRODEVICED CO.,LTD)  
220 pF  
510 620 Ω  
AVDD  
0.1 µF  
+
22 µF  
AGND  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
µPD72850A  
AGND  
µ
1 . 0  
F
1 . 0  
µ
µ
F
F
1 . 0  
Vp  
390 kΩ  
9.1 kΩ  
AVDD  
AGND  
44  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
8. PACKAGE DRAWING  
80-PIN PLASTIC TQFP (FINE PITCH) (12x12)  
A
B
60  
41  
61  
40  
detail of lead end  
S
C
D
Q
R
80  
21  
1
20  
F
G
J
M
I
H
K
P
S
N
S
L
M
NOTE  
Each lead centerline is located within 0.10 mm of  
its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
A
B
C
D
F
G
H
I
14.0±0.2  
12.0±0.2  
12.0±0.2  
14.0±0.2  
1.25  
1.25  
0.22±0.05  
0.10  
J
0.5 (T.P.)  
1.0±0.2  
0.5±0.2  
0.145±0.05  
0.10  
K
L
M
N
P
Q
1.0±0.05  
0.1±0.05  
+7°  
3°  
R
S
3°  
1.2 MAX.  
S80GK-50-9EU-1  
45  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
9. RECOMMENDED SOLDERING CONDITIONS  
The µPD72850A should be soldered and mounted under the following recommended conditions.  
For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting  
Technology Manual (C10535E).  
For soldering methods and conditions other than those recommended below, contact your NEC sales  
representative.  
Table 9-1. Surface Mounting Type Soldering Conditions  
µPD72850AGK-9EU : 80-pin plastic TQFP (Fine pitch) (12 x 12 mm)  
Soldering  
Method  
Soldering Conditions  
Recommended  
Condition Symbol  
Infrared reflow  
Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher).  
Count: three times or less  
IR35-103-3  
Exposure limit: 3 daysNote (after that prebake at 125°C for 10 hours)  
Partial heating  
Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)  
Note After opening the dry pach, store it at 25°C or less and 65% RH or less for the allowable storage period.  
46  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
47  
Data Sheet S14452EJ1V0DS00  
µPD72850A  
FireWire is a trademark of Apple Computer, Inc.  
i.LINK is a trademark of Sony Corporation.  
The export of this product from Japan is prohibited without governmental license. To export or re-export this product from  
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98. 8  

相关型号:

UPD72850AGK-9EU

IEEE1394 400Mbps PHY
NEC

UPD72851GT-E2

Serial I/O Controller, 4 Channel(s), 50MBps, CMOS, PDSO48, 9.53 MM, PLASTIC, SSOP-48
NEC

UPD72852

MOS INTEGRATED CIRCUIT
NEC

UPD72852A

IEEE1394a-2000 COMPLIANT 400 Mbps TWO-PORT PHY LSI
NEC

UPD72852AGB-8EU

IEEE1394a-2000 COMPLIANT 400 Mbps TWO-PORT PHY LSI
NEC

UPD72852AGB-8EU-A

暂无描述
NEC

UPD72852GB-8EU

MOS INTEGRATED CIRCUIT
NEC

UPD72852GB-8EU-A

Interface Circuit, MOS, PQFP64, 10 X 10 MM, PLASTIC, LQFP-64
NEC

UPD72862

IEEE1394 OHCI HOST CONTROLLER
NEC

UPD72862GC-9EU

IEEE1394 OHCI HOST CONTROLLER
NEC

UPD72870

IEEE1394 1-CHIP OHCI HOST CONTROLLER
NEC

UPD72870A

IEEE1394 1-CHIP OHCI HOST CONTROLLER
NEC