UPD75218CW-XXX [NEC]

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64;
UPD75218CW-XXX
型号: UPD75218CW-XXX
厂家: NEC    NEC
描述:

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64

计算机
文件: 总62页 (文件大小:525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD75218  
4-BIT SINGLE-CHIP MICROCOMPUTER  
The µPD75218 is a microcomputer with a CPU capable of 1-, 4-, and 8-bit-wise data processing, ROM, RAM,  
I/O ports, an FIP controller/driver, a watch timer, a timer/pulse generator capable of outputting 14-bit PWM pulses,  
a serial interface and a vectored interrupt function integrated on a single chip.  
It is most suitable for applications which use fluorescent display tubes as display devices and require the timer/  
watch function and high-speed interrupt servicing, such as VCR, CD and ECR. It can help to provide the unit with  
many functions and to decrease performance costs.  
The µPD75218 has larger ROM and RAM capacity than its predecessor, µPD75217. So several codes required  
before have been reduced to only one code in the µPD75218 specifications.  
The one-time PROM product, µPD75P218 and various development tools (IE-75001-R, assembler, etc.) are  
available for system development evaluation or small production.  
The following manual provides detailed description of the functions of theµPD75218. Be sure to read this manual  
when you design an application system.  
µPD75218 User’s Manual: IEU-692  
FEATURES  
On-chip large-capacity ROM and RAM  
• Program memory (ROM): 32K × 8 bits  
• Data memory (RAM)  
: 1K × 4 bits  
Architecture equal to that of an 8-bit microcomputer  
High-speed operation: Minimum instruction execution time : 0.67 µs (when the microcomputer operates at  
6.0 MHz)  
Instruction execution time variable function realizing a wide range of operating voltages  
On-chip programmable fluorescent indication panel (FIP) controller/driver  
Timer function : 4 ch  
• 14-bit PWM output capability with the voltage synthesizer type electronic tuner  
• Buzzer output capability  
Interrupt function with importance attached to applications  
• For power-off detection  
• For reception of remote-controller signal  
Product with an on-chip PROM : µPD75P218 (on-chip EPROM : WQFN package)  
The information in this document is subject to change without notice.  
Document No. IC-3035  
Major changes in this version are indicated by stars () in the margins.  
(O. D. No. IP-8484)  
Date Published November 1993 P  
Printed in Japan  
© NEC Corporation 1993  
µPD75218  
ORDERING INFORMATION  
Part number  
Package  
Quality grade  
µPD75218CW-×××  
64-pin plastic shrink DIP (750 mil)  
Standard  
Standard  
µPD75218GF-×××-3BE  
64-pin plastic QFP (14 × 20 mm)  
Remark ××× is a ROM code.  
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications  
LIST OF FUNCTIONS  
Item  
Function  
ROM: 32640 × 8 bits, RAM: 1024 × 4 bits  
Built-in memory  
®
• CMOS input : 8 lines  
I/O line (including FIP dual-  
function pins and excluding  
FIP dedicated pins)  
• CMOS I/O  
: 20 lines (LED drive: 8 lines)  
• CMOS output : 1 line (PWM/pulse output)  
P-ch open-drain output with high withstand voltage and high current: 4 lines (LED drive)  
33 lines  
• 0.67 µs, 1.33 µs, 10.7 µs (with main system clock operating at 6.0 MHz)  
• 0.95 µs, 1.91 µs, 15.3 µs (with main system clock operating at 4.19 MHz)  
• 122 µs (with subsystem clock operating at 32.768 kHz)  
Instruction cycle  
• Number of segments : 9 to 16 segments  
FIP controller/driver  
• Number of digits  
• Dimmer function  
: 9 to 16 digits  
: 8 levels  
• Mask option for pull-down resistors  
• Key scan interrupt generation  
• Timer/pulse generator : 14-bit PWM output enabled  
Timer  
• Watch timer  
• Timer/event counter  
• Basic interval timer  
: Buzzer output enabled  
4 channels  
: Watchdog timer application capability  
• MSB start/LSB start switchable  
Serial interface  
• Serial bus configuration capability  
External : 3, Internal : 5  
External : 1, Internal : 1  
Vectored interrupt  
Test input  
• Ceramic/crystal oscillator for main system clock oscillation : 6.0 MHz standard  
• Ceramic/crystal oscillator for main system clock oscillation : 4.19 MHz standard  
System clock oscillator  
• Crystal oscillator for subsystem clock oscillation  
: 32.768 kHz standard  
• High withstand-voltage port (pull-down resistor)  
• Port 6 (pull-down resistor)  
Mask option  
–40 to +85 °C  
Operating temperature range  
Operating supply voltage  
Package  
2.7 to 6.0 V (standby data hold : 2.0 to 6.0 V)  
• 64-pin plastic shrink DIP (750 mil)  
• 64-pin plastic QFP (14 × 20 mm)  
2
µPD75218  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW) .........................................................................................  
2. BLOCK DIAGRAM ......................................................................................................................  
3. PIN FUNCTIONS ........................................................................................................................  
5
6
7
7
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
PORT PINS ......................................................................................................................................  
NON-PORT PINS ............................................................................................................................  
PIN INPUT/OUTPUT CIRCUIT LIST..............................................................................................  
HANDLING UNUSED PINS ...........................................................................................................  
NOTES ON USE OF THE P00/INT4 PIN AND RESET PIN .........................................................  
NOTES ON USE OF THE XT1, XT2 AND P50 PIN ......................................................................  
8
9
10  
11  
11  
4. MEMORY CONFIGURATION .................................................................................................... 12  
5. PERIPHERAL HARDWARE FUNCTIONS .................................................................................. 15  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
PORTS..............................................................................................................................................  
CLOCK GENERATOR......................................................................................................................  
BASIC INTERVAL TIMER ...............................................................................................................  
WATCH TIMER ..............................................................................................................................  
TIMER/EVENT COUNTER .............................................................................................................  
TIMER/PULSE GENERATOR .........................................................................................................  
SERIAL INTERFACE .......................................................................................................................  
FIP CONTROLLER/DRIVER............................................................................................................  
15  
16  
17  
18  
19  
20  
21  
23  
6. INTERRUPT FUNCTIONS .......................................................................................................... 24  
7. STANDBY FUNCTIONS ............................................................................................................. 26  
8. RESET FUNCTIONS ................................................................................................................... 27  
9. INSTRUCTION SET .................................................................................................................... 29  
10. MASK OPTION SELECTION...................................................................................................... 38  
11. APPLICATION BLOCK DIAGRAM ............................................................................................. 39  
11.1 VCR TIMER TUNER ........................................................................................................................  
11.2 COMPACT DISK PLAYER ..............................................................................................................  
11.3 ECR...................................................................................................................................................  
39  
40  
41  
3
µPD75218  
12. ELECTRICAL SPECIFICATIONS ............................................................................................... 42  
13. CHARACTERISTIC CURVES (FOR REFERENCE)..................................................................... 53  
14. PACKAGE DIMENSIONS ........................................................................................................... 55  
15. RECOMMENDED SOLDERING CONDITIONS ........................................................................ 57  
APPENDIX A FUNCTIONS OF µPD752×× SERIES PRODUCTS ................................................ 58  
APPENDIX B DEVELOPMENT TOOLS ......................................................................................... 59  
APPENDIX C RELATED DOCUMENTS ........................................................................................ 60  
4
µPD75218  
1. PIN CONFIGURATION (TOP VIEW)  
S3  
S2  
S1  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
VDD  
S4  
S5  
S6  
S7  
S8  
S9  
VPRE  
VLOAD  
T15/S10  
T14/S11  
T13/S12/PH0  
T12/S13/PH1  
T11/S14/PH2  
T10/S15/PH3  
T9  
T8  
T7  
T6  
T5  
T4  
T3  
S0  
P00/INT4  
P01/SCK  
P02/SO  
P03/SI  
P10/INT0  
P11/INT1  
P12/INT2  
P13/TI0  
P20  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
µ
P21  
P22  
P23/BUZ  
P30  
P31  
P32  
P33  
P60  
P61  
P62  
23  
42  
T2  
P63  
P40  
P41  
P42  
P43  
PPO  
X1  
24  
25  
26  
27  
28  
29  
30  
31  
41  
40  
39  
38  
37  
36  
35  
34  
T1  
T0  
RESET  
P53  
P52  
P51  
P50  
XT2  
X2  
VSS  
32  
33  
XT1  
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
52  
P41  
P42  
P43  
PPO  
X1  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P01/SCK  
P00/INT4  
S0  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
S1  
S2  
X2  
S3  
µ
PD75218GF-× × ×-3BE  
VSS  
VDD  
S4  
XT1  
XT2  
P50  
P51  
P52  
P53  
S5  
S6  
S7  
S8  
S9  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19  
5
Port 0  
Port 1  
4
4
P00–P03  
P10–P13  
Basic interval  
timer  
SP(8)  
SBS(4)  
CY  
Program counter (15)  
ALU  
INTBT  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
4
4
4
4
4
P20–P23  
P30–P33  
P40–P43  
P50–P53  
P60–P63  
TI0/P13  
Timer/event  
counter #0  
Bank  
INTT0  
Timer/pulse  
generator  
General register  
PPO  
ROM  
Program memory  
32640 × 8 bits  
INTTPG  
SI/P03  
SO/P02  
SCK/P01  
RAM  
Decode and control  
Data memory  
1024 × 4 bits  
Serial interface  
10  
4
T0–T9  
INTSIO  
T10/S15/PH3–  
T13/S12/PH0  
INT0/P10  
INT1/P11  
INT2/P12  
FIP  
controller/  
driver  
T14/S11,  
T15/S10  
2
Interrupt control  
S0–S9  
10  
INTW  
f
/2N  
X
INT4/P00  
V
V
PRE  
System clock  
generator  
LOAD  
CPU clock  
Φ
Watch timer  
Clock divider  
Standby control  
Sub  
Main  
INTKS  
Port H  
µ
4
PH0–PH3  
BUZ/P23  
XT1 XT2 X1 X2  
V
DD  
VSS RESET  
µPD75218  
3. PIN FUNCTIONS  
3.1 PORT PINS  
Dual-  
8-bit  
I/O  
Input / output  
circuit typeNote  
Pin  
I/O  
Function  
4-bit input port (PORT0)  
After reset  
Input  
function pin  
×
P00  
P01  
Input  
Input/output  
Input/output  
Input  
INT4  
SCK  
SO  
B
F
P02  
G
B
B
P03  
SI  
P10  
INT0  
INT1  
INT2  
TI0  
Noise elimination function available  
Noise elimination function available  
Input  
Input  
Input  
P11  
P12  
4-bit input port (PORT1)  
P13  
4-bit input/output port (PORT2)  
P20  
Input/  
–––  
×
E
output  
P21  
–––  
P22  
–––  
P23  
BUZ  
–––  
Input/  
Programmable 4-bit input/ output port (PORT3).  
Input/output specifiable in 1-bit units.  
Input  
Input  
Input  
Input  
P30 to P33  
E
E
E
V
output  
×
Input/  
P40 to P43  
P50 to P53  
P60 to P63  
–––  
–––  
–––  
4-bit input/output port (PORT4).  
LED direct drive capability.  
output  
Input/  
4-bit input/output port (PORT5).  
LED direct drive capability.  
output  
Programmable 4-bit input/output port (PORT6).  
Input/output specifiable in 1-bit units.  
On-chip pull-down resistor available (mask  
option). Suitable for key input.  
Input/  
output  
×
4-bit P-ch open-drain output port with high  
withstand voltage and high current (PORTH).  
LED direct drive capability. On-chip pull-down  
resistor available (mask option).  
I
PH0  
PH1  
PH2  
PH3  
Output  
T13/S12  
T12/S13  
T11/S14  
T10/S15  
Low level  
(with an on-  
chip pull-  
down resistor)  
or high  
impedance.  
Note The circuit-type codes enclosed in circles indicate that the corresponding circuits have a Schmitt-triggered  
input.  
7
µPD75218  
3.2 NON-PORT PINS  
Dual-  
Input / output  
circuit typeNote  
After reset  
Pin  
I/O  
Function  
function pin  
Output  
FIP controller/ Output pins with high withstand voltage Low level  
–––  
I
T0 to T9  
(with an on-  
driver output and high current for digit output  
chip pull-  
pins.  
down  
resistor ) or  
high  
impedance  
(without a  
pull-down  
resistor)  
Output pins with high withstand voltage  
and high current also used for digit/seg-  
ment output  
T10/S15 to  
T13/S12  
PH3 to PH0  
Pull-down  
resistor can  
be incorpo-  
rated in bit  
units (mask  
option).  
Extra pins can be used as PORTH.  
Output pins with high withstand voltage  
and high current also used for digit/  
segment output  
T14/S11,  
T15/S10  
–––  
Static output also possible.  
S9  
Highwithstand-voltageoutputforsegment  
output. Static output also possible.  
High withstand-voltage output for segment  
output  
S0 to S8  
PPO  
Output  
Input  
–––  
Timer/pulse generator pulse output  
High  
D
impedance  
–––  
External event pulse input for timer/event counter  
Serial clock input/output  
TI0  
SCK  
SO  
P13  
P01  
P02  
B
F
Input  
Input  
Input/output  
Input/output  
Serial data output or serial data input/output  
Serial data input or normal input  
G
SI  
Input  
Input  
P03  
P00  
Input  
–––  
B
B
INT4  
Edge-detected vectored interrupt input (rising and falling  
edge detection).  
–––  
Edge-detected vectored interrupt input with noise  
INT0  
Input  
P10  
B
elimination function (detection edge selection possible).  
INT1  
INT2  
BUZ  
P11  
P12  
P23  
–––  
Input  
Edge-detected testable input (rising edge detection).  
B
E
Fixed frequency output (for buzzer or system clock  
trimming).  
Input  
Input/output  
–––  
–––  
X1  
X2  
Input  
–––  
–––  
Crystal/ceramic connection pin for main system clock  
–––  
oscillation.  
External clock input to X1 and its inverted clock input to  
X2.  
Crystal connection pin for subsystem clock oscillation.  
External clock input to XT1. Leave XT2 open.  
–––  
XT1  
Input  
–––  
–––  
–––  
XT2  
Input  
–––  
System reset input (low level active).  
RESET  
VPRE  
–––  
–––  
B
I
FIP controller/driver output buffer power supply.  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
FIP controller/driver pull-down resistor connection pin.  
Positive power supply.  
–––  
–––  
–––  
I
VLOAD  
VDD  
–––  
–––  
VSS  
GND potential.  
Note The circuit-type codes enclosed in circles indicate that the corresponding circuits have a Schmitt-triggered  
input.  
8
µPD75218  
3.3 PIN INPUT/OUTPUT CIRCUIT LIST  
Type A  
Type F  
Data  
V
DD  
IN/OUT  
Type D  
Type B  
Output  
disable  
P-ch  
IN  
N-ch  
Input/output circuit consisting of type D push-pull output  
and type B schmitt trigger input  
CMOS-specified input buffer  
Type B  
Type G  
V
DD  
P-ch output  
disable  
P-ch  
Data  
IN/OUT  
IN  
N-ch  
Type B  
Schmitt trigger input having hysteresis characteristics  
Type D  
Input/output circuit capable of switching between push-pull  
output and N-ch open-drain output (with P-ch off).  
Type V  
VDD  
Data  
Data  
IN/OUT  
P-ch  
Type D  
Output  
disable  
OUT  
Output  
disable  
N-ch  
Type A  
Pull-down  
resistor  
Push-pull output which can be set to high-impedance output  
(off for both P-ch and N-ch)  
(Mask option)  
Type E  
Type I  
V
DD  
V
DD  
Data  
IN/OUT  
Type D  
Output  
disable  
Data  
P-ch  
P-ch  
OUT  
Pull-down resistor  
(Mask option)  
N-ch  
Type A  
V
LOAD  
V
PRE  
Input/output circuit consisting of type D push-pull output  
and type A input buffer  
9
µPD75218  
3.4 HANDLING UNUSED PINS  
Pin  
P00/INT4  
Recommended connection  
Connect to VSS  
P01/SCK  
Connect to VSS or VDD  
P02/SO  
P03/SI  
P10/INT0 to P12/INT2  
P13/TI0  
Connect to VSS  
P20 to P22  
P23/BUZ  
Input state : Connect to VSS or VDD  
Output state : Leave open  
P30 to P33  
P40 to P43  
P50 to P53  
P60 to P63  
PPO  
Leave open  
S0 to S9  
T15/S10 to T14/S11  
T0 to T9  
T10/S15/PH3 to T13/S12/PH0  
XT1  
Connect to VSS or VDD  
Leave open  
XT2  
VLOAD when there is no on-  
chip load resistor  
Connect to VSS or VDD  
10  
µPD75218  
3.5 NOTES ON USE OF THE P00/INT4 PIN AND RESET PIN  
P00/INT4 and RESET pins have the function (especially for IC test) to test µPD75218 internal operations in addition  
to the functions described in sections 3.1 and 3.2.  
The test mode is set when a voltage larger than VDD is applied to one of these pins. If noise larger than VDD is  
applied in normal operation, the test mode may be set thereby adversely affecting normal operation.  
Since there is a display output pin having a high-voltage amplitude (35 V) next to the P00/INT4 and RESET pins,  
if cables for the related signals are routed in parallel, wiring noise larger than VDD may be applied to the P00/INT4  
and RESET pins causing errors.  
Thus, carry out wiring so that wiring noise can be minimized, If noise still cannot be suppressed, take the measure  
against noise using the following external components.  
Connecting a diode between the pins and VDD  
Connecting a capacitor between the pins and VDD  
VDD  
VDD  
VDD  
VDD  
P00/INT4, RESET  
P00/INT4, RESET  
3.6 NOTES ON USE OF THE XT1, XT2 AND P50 PIN  
When selecting the 32.768 kHz subsystem clock connected to the XT1 and XT2 pins as the watch timer source  
clock, the signal to be input or output to the P50 pin next to the XT2 pin must be a signal required to be switched  
between high and low the minimum number of times (once/second or less).  
If the P50 pin signal is switched frequently between high and low, a spike is generated in the XT2 pin because  
of capacitance coupling of the P50 and XT2 pins and the correct watch functions cannot be achieved (the watch  
becomes fast).  
If it is necessary to allow the P50 pin signal to switch between high and low, mount an external capacitor to the  
P50 pin as shown below.  
µPD75218  
P50  
XT1  
XT2  
0.0068 µF  
32.768 kHz  
11  
µPD75218  
4. MEMORY CONFIGURATION  
Program memory (ROM): 32640 words × 8 bits  
0000H and 0001H: Vector table which contains the program start address after reset  
0002H to 000FH : Vector table which contains the program start addresses when interrupts occur  
0020H to 007FH : Table area referenced by a GETI instruction  
Data memory  
Data area  
: 1024 words × 4 bits (000H to 3FFH)  
Peripheral hardware area : 128 words × 4 bits (F80H to FFFH)  
12  
µPD75218  
Fig. 4-1 Program Memory Map  
Internal reset start address  
MBE RBE  
(high-order 6 bits)  
0000H  
Internal reset start address (low-order 8 bits)  
(high-order 6 bits)  
INTBT/INT4 start address (low-order 8 bits)  
0002H MBE RBE INTBT/INT4 start address  
MBE RBE INT0 start address  
(high-order 6 bits)  
(low-order 8 bits)  
(high-order 6 bits)  
(low-order 8 bits)  
(high-order 6 bits)  
(low-order 8 bits)  
(high-order 6 bits)  
(low-order 8 bits)  
(high-order 6 bits)  
(low-order 8 bits)  
(high-order 6 bits)  
(low-order 8 bits)  
0004H  
0006H  
Entry address  
specified in  
CALLF !faddr  
instruction  
INT0 start address  
INT1 start address  
INT1 start address  
MBE RBE  
Branch address  
specified in BRA !addr  
instruction  
0008H MBE RBE INTSO start address  
INTSO start address  
Branch address  
Branch address  
specified in CALLA !addr  
instruction  
000AH MBE RBE INTT0 start address  
INTT0 start address  
specified in  
BRCB !caddr  
instruction  
MBE RBE INTTPG start address  
INTTPG start address  
000CH  
Relative branch address  
specified in BR $addr  
instruction (–15 to –1,  
+2 to +16)  
MBE RBE  
000EH  
INTKS start address  
INTKS start address  
Branch address  
specified in BR !addr  
instruction  
Branch address  
specified in CALL !addr  
instruction  
0020H  
GETI instruction reference table  
007FH  
0080H  
Branch/call  
address specified  
in GETI instruction  
07FFH  
0800H  
0FFFH  
1000H  
Branch address speci-  
fied in BRCB !caddr  
instruction  
1FFFH  
2000H  
Branch address speci-  
fied in BRCB !caddr  
instruction  
2FFFH  
3000H  
Branch address speci-  
fied in BRCB !caddr  
instruction  
3FFFH  
4000H  
Branch address speci-  
fied in BRCB !caddr  
instruction  
4FFFH  
5000H  
Branch address speci-  
fied in BRCB !caddr  
instruction  
5FFFH  
6000H  
Branch address speci-  
fied in BRCB !caddr  
instruction  
6FFFH  
7000H  
Branch address speci-  
fied in BRCB !caddr  
instruction  
7F7FH  
Caution The start address of an interrupt vector shown above consists of 14 bits. So the start address must be  
set within a 16K-byte space (0000H to 3FFFH).  
Remark In all cases other than those listed above, branch to the address with only the lower 8 bits of the PC changed  
is enabled by BR PCDE and BR PCXA instructions.  
13  
µPD75218  
Fig. 4-2 Data Memory Map  
Data memory  
Memory bank  
000H  
General  
register  
(32 × 4)  
area  
01FH  
0
1
020H  
256 × 4  
0FFH  
100H  
Stack  
area  
256 × 4  
(64 × 4)  
1BFH  
1C0H  
Display  
data  
memory,  
etc.  
Data area  
Static RAM  
(1024 × 4)  
1FFH  
200H  
256 × 4  
2
3
2FFH  
300H  
256 × 4  
3 FFH  
Not contained  
F80H  
FFFH  
Peripheral  
hardware area  
15  
128 × 4  
14  
µPD75218  
5. PERIPHERAL HARDWARE FUNCTIONS  
5.1 PORTS  
The µPD75218 has the following three types of I/O port:  
• 8 CMOS input pins (PORT0 and PORT1)  
• 20 CMOS I/O pins (PORT2, PORT3, PORT4, PORT5, and PORT6)  
• 4 P-ch open-drain output pins with high withstand voltage and high current (PORTH)  
Total: 32 pins  
Table 5-1 Functions of Ports  
Port  
Function  
Operation and feature  
Always read or test possible irrespective of the dual-function Shares the pins with SI, SO, SCK  
pin operating mode. and INT4.  
Always read or test possible, P10 and P11 are inputs with the Shares the pins with INT0 to  
Remarks  
PORT0  
4-bit input  
PORT1  
noise elimination function.  
INT2 and TI0.  
PORT2  
PORT4  
PORT5  
4-bit  
Can be set to the input or output mode in 4-bit units.  
Ports 4 and 5 can input/output data in pairs in 8-bit units.  
Ports 4 and 5 can directly drive LEDs.  
P23 shares the pin with BUZ.  
input/output  
PORT3  
PORT6  
Can be set bit-wise to the input or output mode. Port 6 can  
incorporate a pull-down resistor by mask option.  
PORTH  
4-bit output  
P-ch open-drain output port with high withstand voltage and Shares the pins with T10/S15 to  
high current. Can drive an FIP and LED directly. Can T13/S12.  
incorporate a pull-down resistor in bit units by mask option.  
15  
µPD75218  
5.2 CLOCK GENERATOR  
Operation of the clock generator is specified by the processor clock control register (PCC) and system clock control  
register (SCC).  
The main system clock or subsystem clock can be selected.  
The instruction execution time is variable.  
0.67 µs, 1.33 µs, 10.7 µs (main system clock: 6.0 MHz)  
0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz)  
122 µs (subsystem clock: 32.768 kHz)  
Fig. 5-1 Clock Generator Block Diagram  
XT1  
• FIP controller  
• Basic interval timer (BT)  
• Timer/event counter  
• Serial interface  
• Watch timer  
• INT0 noise eliminator  
f
XT  
Subsystem  
clock generator  
Watch timer  
XT2  
X1  
Timer/pulse  
generator  
1/8 to 1/4096  
Main system  
clock generator  
fXX  
Frequency divider  
f
X
X2  
1/2 1/6  
SCC  
Oscillation  
stop  
Frequency  
divider  
SCC3  
1/4  
Φ
SCC0  
PCC  
• CPU  
• INT0 noise eliminator  
• INT1 noise eliminator  
PCC0  
PCC1  
4
HALT F/F  
S
PCC2  
PCC3  
HALTNote  
STOPNote  
Q
R
PCC2 and  
PCC3  
clear  
Wait release signal from BT  
RES signal (internal reset)  
STOP F/F  
Q
S
Note Instruction execution  
R
Standby release signal from  
interrupt control circuit  
Remarks 1. fX = Main system clock frequency  
2. fXT = Subsystem clock frequency  
3. fXX = System clock frequency  
4. Φ = CPU clock  
5. PCC: Processor clock control register  
6. SCC: System clock control register  
7. 1 clock cycle (tCY) of Φ is 1 machine cycle of an instruction. For tCY, see ”AC Characteristics“ in  
Chapter 12.  
16  
µPD75218  
5.3 BASIC INTERVAL TIMER  
The basic interval timer has the following functions:  
Interval timer operation to generate reference time  
Watchdog timer application to detect inadvertent program loop  
Wait time select and count upon standby mode release  
Count contents read  
Fig. 5-2 Basic Interval Timer Configuration  
From clock  
generator  
Clear  
Clear  
f
f
f
XX/25  
XX/27  
XX/29  
Set  
Basic interval timer  
(8-bit frequency divider)  
BT interrupt  
request flag  
MPX  
Vectored  
interrupt  
request  
signal  
BT  
IRQBT  
f
XX/212  
3
Wait release  
signal during  
standby release  
BTM3  
BTM2  
BTM1  
BTM0 BTM  
SET1Note  
4
8
Internal bus  
Note Instruction execution  
17  
µPD75218  
5.4 WATCH TIMER  
The µPD75218 incorporates one channel of watch timer. The watch timer has the following functions:  
Sets the test flag (IRQW) at 0.5 sec intervals.  
The standby mode can be released by IRQW.  
0.5 second interval can be set with the main system clock and subsystem clock.  
The fast mode enables to set 128-time (3.91 ms) interval useful to program debugging and inspection.  
The fixed frequencies (2.048 kHz) can be output to the P23/BUZ pin for use to generate buzzer sound  
and trim the system clock oscillator frequency.  
Since the frequency divider can be cleared, the watch can be started from zero second.  
Fig. 5-3 Watch Timer Block Diagram  
f
W
27  
(256 Hz : 3.91 ms)  
INTW  
IRQW  
set signal  
f
XX  
Selector  
f
W
214  
128  
(32.768 kHz)  
From  
clock  
generator  
f
W
Selector  
Frequency divider  
Clear  
(32.768 kHz)  
2 Hz  
0.5 sec  
f
XT  
(32.768 kHz)  
f
16  
W
(2.048 kHz)  
Output buffer  
P23/BUZ  
WM  
WM7 WM6 WM5 WM4 WM3 WM2 WM1 WM0  
PORT2.3  
Bit 2 of PMGB  
P23  
Port 2  
output  
latch  
input/output  
mode  
8
Internal bus  
Remark Values when fXX is 4.194304 MHz and fXT is 32.768 kHz are indicated in parentheses.  
Caution When the main system clock operates at 6.0 MHz, a time interval of 0.5 second cannot be produced.  
Before producing this time interval, the main system clock must be changed to the subsystem clock.  
18  
µPD75218  
5.5 TIMER/EVENT COUNTER  
The µPD75218 incorporates one channel of timer/event counter. The timer/event counter has the following  
functions:  
Program interval timer operation  
Event counter operation  
Count state read function  
Fig. 5-4 Timer/Event Counter Block Diagram  
Internal bus  
SET1Note  
8
8
8
TM0  
TMOD0  
Modulo register (8)  
TMn7 TMn6 TMn5 TMn4 TMn3 TMn2 TMn1 TMn0  
8
Match  
Comparator (8)  
INTT0  
IRQT0  
set signal  
Input buffer  
8
T0  
P13/TI0  
Count register (8)  
Clear  
MPX  
CP  
From clock  
generator  
Timer operation start  
(See Fig. 5-1.)  
IRQT0  
clear  
Note Instruction execution  
19  
µPD75218  
5.6 TIMER/PULSE GENERATOR  
The µPD75218 incorporates one channel of timer/pulse generator which can be used as a timer or a pulse  
generator. The timer/pulse generator has the following functions:  
(a) Functions available in the timer mode  
8-bit interval timer operation (IRQTPG generation) enabling the clock source to be varied at 5 levels  
Square wave output to PPO pin  
(b) Functions available in the PWM pulse generation mode  
14-bit accuracy PWM pulse output to the PPO pin (Used as a digital-to-analog converter and applicable  
to tuning)  
215  
fX  
Fixed time interval (  
= 5.46 ms when the microcomputer operates at 6.0 MHz)Note interrupt generation  
If pulse output is not necessary, the PPO pin can be used as a 1-bit output port.  
Note 7.81 ms when the microcomputer operates at 4.19 MHz  
Caution If the STOP mode is set while the timer/pulse generator is in operation, erroneous operation may result.  
To prevent that from occurring, preset the timer/pulse generator to the stop state using its mode  
register.  
Fig. 5-5 Block Diagram of Timer/Pulse Generator (Timer Mode)  
Internal bus  
8
8
MODL  
MODH  
Modulo register L (8)  
Modulo register H (8)  
TPGM3  
(Set to 1)  
INTTPG  
IRQTPG  
set signal  
Modulo latch H (8)  
8
Match  
Output buffer  
PPO  
Comparator (8)  
8
T F/F  
Selector  
Set  
Frequency  
divider  
CP  
fX  
1/2  
Prescalar select latch (5)  
Clear  
Count register (8)  
Clear  
TPGM4 TPGM5 TPGM7  
TPGM1  
20  
µPD75218  
Fig. 5-6 Timer/Pulse Generator Block Diagram (PWM Pulse Generation Mode)  
Internal bus  
8
8
MODH  
MODL  
(2)  
Modulo register H (8)  
Modulo register L (8)  
TPGM3  
MODH (8)  
Modulo latch (14)  
MODL7-2 (6)  
Output buffer  
TPGM1  
1/2  
PWM pulse generator  
Selector  
TPGM5  
PPO  
fX  
Frequency divider  
INTTPG  
(IRQTPG set signal)  
215  
TPGM7  
(
= 5.46 ms : when f  
is 6.0 MHz)Note  
X
f
X
Note 7.81 ms when the microcomputer operates at 4.19 MHz.  
5.7 SERIAL INTERFACE  
The serial interface has the following functions:  
Clock synchronous 8-bit send/receive operation (simultaneous send/receive)  
Clock synchronous 8-bit serial bus operation (data input/output from the SO pin. N-ch open-drain SO output)  
Start LSB/MSB switching  
These functions facilitate data communication with another microcomputer of µPD7500 series or 78K series via  
a serial bus and coupling with peripheral devices.  
21  
Fig 5-7 Serial Interface Block Diagram  
Internal bus  
8
SET1Note 2  
8
8
P03/SI  
SIO0  
SIO7  
SIO  
SIOM  
Shift register (8)  
SIOM7 SIOM6 SIOM5 SIOM4 SIOM3 SIOM2 SIOM1 SIOM0  
Note 1  
SO output  
latch  
P02/SO  
INTSIO  
IRQSIO  
Overflow  
Serial clock  
counter (3)  
set signal  
IRQSIO  
clear signal  
Clear  
Serial start  
P01/SCK  
R
S
Q
Φ
f
f
XX/24  
MPX  
XX/210  
µ
Notes 1. CMOS output and N-ch open-drain output switchable output buffer.  
2. Instruction execution  
µPD75218  
5.8 FIP CONTROLLER/DRIVER  
The FIP controller/driver in the µPD75218 has the same functions as that in its predecessor, µPD75216A:  
The FIP controller/driver outputs the segment signal by automatically reading display data (DMA operation)  
and automatically generates the digit signal.  
The FIP controller/driver can control the FIP of 9 to 16 segments and 9 to 16 digits with the display mode register  
(DSPM) and the digit select register (DIGS) (within the range of up to 26 display outputs).  
The display outputs unused for dynamic display can be used as static outputs.  
The dimmer function provides eight levels of intensity.  
Such hardware is contained that a key scan application is possible.  
A key scan interrupt (IRQKS) is caused. (A key scan timing is detected.)  
Key scan data can be output from key scan registers (KS0 and KS1) onto a segment output pin.  
A high-voltage output pin (40 V) is provided which can directly drive the FIP.  
Pins dedicated to segments (S0 to S9): VOD = 40 V, IOD = 3 mA  
Digit output pins (T0 to T15): VOD = 40 V, IOD = 15 mA  
A mask option enables a pull-down resistor to be incorporated for each bit.  
Fig. 5-8 FIP Controller/Driver Block Diagram  
Internal bus  
Key scan  
flag (KSF)  
4
4
4
Display  
mode  
register  
Digit  
select  
register  
Dimmer  
select  
register  
Display data memory  
(64 × 4 bits)  
Key scan registers  
(KS0 and KS1)  
Port H  
12  
4
Digit signal  
generator  
IRQKS  
generation  
signal  
Segment data latch (16)  
4
4
Selector  
10  
2
2
4
4
Selector  
4
10  
2
Output buffer with a high withstand voltage  
10  
2
4
10  
S0-S9  
T15/S10  
T13/S12/PH0-  
T0-T9  
V
LOAD  
V
PRE  
and T14/S11 T10/S15/PH3  
Caution The FIP controller/driver can only operate at the high and intermediate speeds (PCC = 0011B or 0010B)  
of the main system clock (SCC.0 = 0). It may cause errors with any other clock or in the standby mode.  
Thus, be sure to stop FIP controller operation (DSPM.3 = 0) and then shift the unit to any other clock mode  
or the standby mode.  
23  
µPD75218  
6. INTERRUPT FUNCTIONS  
The µPD75218 has eight types of interrupt sources and can generate multiple interrupts with priority order.  
It is also equipped with two types of test sources. INT2 is an edge detected testable input.  
The µPD75218 interrupt control circuit has the following functions:  
Hardware-controlled vectored interrupt function which can control interrupt acknowledge with the interrupt  
enable flag (IE×××) and the interrupt master enable flag (IME).  
Function of setting any interrupt start address.  
Multiple interrupt function which can specify priority order with the interrupt priority select register (IPS).  
Interrupt request flag (IRQ×××) test function. (Interrupt generation can be checked by software.)  
Standby mode release function (Interrupts to be released can be selected by interrupt enable flags.)  
24  
Fig. 6-1 Interrupt Control Circuit Block Diagram  
Internal bus  
4
2
2
2
(IME)  
IPS  
IST  
IM1  
IM0  
Interrupt enable flag (IEXXX  
)
Decoder  
INT  
IRQBT  
IRQ4  
BT  
Both edges  
detection  
circuit  
INT4/  
P00  
VRQn  
Edge  
INT0/  
P10  
Note  
detection  
circuit  
IRQ0  
Edge  
INT1/  
P11  
Vector  
table  
address  
generator  
circuit  
Note  
IRQ1  
detection  
circuit  
Priority control  
circuit  
INTSIO  
IRQSIO  
IRQT0  
IRQTPG  
IRQKS  
IRQW  
IRQ2  
INTT0  
INTTPG  
INTKS  
INTW  
Standby release  
signal  
Rising edge  
detection  
circuit  
INT2/  
P12  
Note Noise eliminator  
µ
µPD75218  
7. STANDBY FUNCTIONS  
Two standby modes (STOP mode and HALT mode) are available for the µPD75218 to decrease power consump-  
tion in the program standby mode.  
Table 7-1 Operation Status in Standby Mode  
HALT mode  
HALT instruction  
STOP mode  
STOP instruction  
Set instruction  
Setting enabled only for main system  
clock  
Setting enabled for either main system  
clock or subsystem clock  
System clock when set  
Oscillator stops only for main system  
clock  
Stops only for CPU clock Φ (oscillation  
Clock oscillator  
continued)  
Operation stopped  
Operation continued (IRQBT set at reference  
time intervals)  
Basic interval timer  
Serial interface  
Operation enabled only when external  
SCK input is selected for serial clock  
Operation enabled when serial clock other  
than Φ is specified  
Operation enabled only when TI0 pin  
input is specified for count clock  
Operation enabled  
Timer/event counter  
Operation stopped  
Operation enabled  
Timer/pulse generator  
Watch timer  
Operation enabled only fXT is selected for Operation enabled  
count clock  
Operation disabled (display off mode set before disabling)  
Operation stopped  
FIP controller/driver  
CPU  
Interrupt request signals (except INT0, INT1, and INT2) from operable hardware  
enabled by interrupt enable flags, or RESET input.  
Release signal  
26  
µPD75218  
8. RESET FUNCTIONS  
The reset signal (RES) generator has a configuration shown in Fig. 8-1.  
Fig. 8-1 Reset Signal Generator  
Internal reset signal  
(RES)  
RESET  
Fig. 8-2 shows the reset operation.  
Fig. 8-2 Reset Operation by RESET Input  
Wait  
(21.8 ms/when the microcomputer  
operates at 6.0 MHz)Note  
RESET input  
Normal operation  
mode  
Normal operation mode or  
standby mode  
HALT mode  
Internal reset operation  
Note 31.3 ms when the microcomputer operates at 4.19 MHz  
Table 8-1 lists the hardware statuses after reset operation.  
27  
µPD75218  
Table 8-1 Hardware Statuses after Reset Operation  
RESET input in standby mode  
Hardware  
Program counter (PC)  
RESET input during operation  
Set the low-order six bits at  
address 0000H in program  
memory to PC13-8, set the  
contents of address 0001H to  
PC7-0, and set PC14 to zero.  
Set the low-order six bits at  
address 0000H in program  
memory to PC13-8, set the  
contents of address 0001H to  
PC7-0, and set PC14 to zero.  
PSW Carry flag (CY)  
Skip flag (SK0-SK2)  
Retained  
Undefined  
0
0
0
0
Interrupt status flag (IST0, IST1)  
Bank enable flag (MBE, RBE)  
Set bit 6 of address 0000H in  
program memory to RBE and  
set bit 7 to MBE.  
Set bit 6 of address 0000H in  
program memory to RBE and  
set bit 7 to MBE.  
Stack pointer (SP)  
Undefined  
Undefined  
Undefined  
Stack bank selection register (SBS)  
Data memory (RAM)  
Undefined  
Note  
Retained  
Undefined  
General register (X, A, H, L, D, E, B, C)  
Bank selection register (MBS, RBS)  
Basic interval timer Counter (BT)  
Mode register (BTM)  
Retained  
Undefined  
0, 0  
0, 0  
Undefined  
Undefined  
0
0
Timer/event counter  
0
0
Counter (T0)  
FFH  
FFH  
Modulo register (TMOD0)  
Mode register (TM0)  
Modulo register (MODH, MODL)  
Mode register (TPGM)  
Mode register (WM)  
Shift register (SIO)  
0
0
Timer/pulse  
generator  
Retained  
Undefined  
0
0
0
Clock timer  
0
Serial interface  
Retained  
Undefined  
Set bit 4 to 1 and other bits to 0. Set bit 4 to 1 and other bits to 0.  
Mode register (SIOM)  
Clock generator  
Interrupt  
0
0
Processor clock control  
register (PCC)  
0
0
System clock control register  
(SCC)  
Reset (0)  
Reset (0)  
Interrupt request flag (IRQ×××)  
Interrupt enable flag (IE×××)  
Priority specification flag (IPS)  
0
0
0
0
0, 0  
0, 0  
INT0/INT1 mode register (IM0,  
IM1)  
Digital port  
PORT H  
Off  
Off  
Output buffer  
Output latch  
Cleared (0)  
Cleared (0)  
0
Retained  
0
0
I/O mode register (PMGA, PMGB)  
Output latch  
Undefined  
0
1000B  
0
FIP controller/driver Display mode register (DSPM)  
Digit selection register (DIGS)  
Dimmer selection register (DIMS)  
Display data memory  
1000B  
0
Retained  
Off  
Undefined  
Off  
Output buffer  
Note Data from address 0F8H to address 0FDH in the data memory becomes undefined by RESET input.  
28  
µPD75218  
9. INSTRUCTION SET  
(1) Representation format and description method of operands  
An operand is described in the operand field of each instruction according to the description method  
corresponding to the operand representation format of the instruction (refer to "RA75X Assembler Package  
User's Manual, Language" (EEU-1363) for details). When two or more elements are described in the  
description method field, select one of them. Uppercase letters, a plus sign (+), and a minus sign (-) are  
keywords, so they can be used without alteration.  
Specify an appropriate numeric value or label for immediate data.  
Representa-  
Description method  
tion format  
reg  
X, A, B, C, D, E, H, L  
X, B, C, D, E, H, L  
reg1  
rp  
XA, BC, DE, HL  
rp1  
BC, DE, HL  
rp2  
BC, DE  
rp’  
XA, BC, DE, HL, XA’, BC’, DE’, HL’  
BC, DE, HL, XA’, BC’, DE’, HL’  
HL, HL+, HL-, DE, DL  
DE, DL  
rp’1  
rpa  
rpa1  
n4  
4-bit immediate data or label  
8-bit immediate data or label  
n8  
Note  
mem  
bit  
8-bit immediate data or label  
2-bit immediate data or label  
fmem  
pmem  
addr1  
addr  
caddr  
faddr  
taddr  
PORTn  
IE×××  
RBn  
MBn  
FB0H-FBFH/FF0H-FFFH immediate data or label  
FC0H-FFFH immediate data or label  
0000H-7F7FH immediate data or label  
0000H-3F7FH immediate data or label  
12-bit immediate data or label  
11-bit immediate data or label  
20H-7FH immediate data (bit 0 = 0) or label  
PORT0-PORT6  
IEBT, IESIO, IET0, IETPG, IE0, IE1, IEKS, IEW, IE4  
RB0-RB3  
MB0, MB1, MB2, MB3, MB15  
Note Only even addresses can be specified for 8-bit data processing.  
29  
µPD75218  
(2) Legend  
A
: A register, 4-bit accumulator  
: B register, 4-bit accumulator  
: C register, 4-bit accumulator  
: D register, 4-bit accumulator  
: E register, 4-bit accumulator  
: H register, 4-bit accumulator  
: L register, 4-bit accumulator  
: X register, 4-bit accumulator  
: Register pair (XA), 8-bit accumulator  
: Register pair (BC), 8-bit accumulator  
: Register pair (DE), 8-bit accumulator  
: Register pair (HL), 8-bit accumulator  
: Extended register pair (XA’)  
: Extended register pair (BC’)  
: Extended register pair (DE’)  
: Extended register pair (HL’)  
: Program counter  
B
C
D
E
H
L
X
XA  
BC  
DE  
HL  
XA’  
BC’  
DE’  
HL’  
PC  
SP  
CY  
: Stack pointer  
: Carry flag, bit accumulator  
PSW : Program status word  
MBE : Memory bank enable flag  
RBE : Register bank enable flag  
PORTn: Port n (n = 0 to 6)  
IME  
IPS  
: Interrupt master enable flag  
: Interrupt priority specification register  
IE××× : Interrupt enable flag  
RBS : Register bank select register  
MBS : Memory bank select register  
PCC : Processor clock control register  
.
: Address/bit delimiter  
: Contents addressed by ××  
: Hexadecimal data  
(××)  
××H  
30  
µPD75218  
(3) Explanation of the symbols in the addressing area field  
MB = MBE•MBS  
*1  
(MBS = 0, 1, 2, 3, or 15)  
MB = 0  
*2  
*3  
MBE = 0: MB = 0 (00H-7FH)  
MB = 15 (80H-FFH)  
Data memory  
addressing  
MBE = 1: MB = MBS (MBS = 0, 1, 2, 3, or 15)  
MB = 15, fmem = FB0H-FBFH or  
FF0H-FFFH  
*4  
MB = 15, pmem = FC0H-FFFH  
addr = 0000H-3F7FH  
*5  
*6  
*7  
addr = (Current PC) - 15 to (Current PC) - 1 or  
(Current PC) + 2 to (Current PC) + 16  
caddr = 0000H-0FFFH (PC14,13,12 = 000B) or  
1000H-1FFFH (PC14,13,12 = 001B) or  
2000H-2FFFH (PC14,13,12 = 010B) or  
3000H-3FFFH (PC14,13,12 = 011B) or  
4000H-4FFFH (PC14,13,12 = 100B) or  
5000H-5FFFH (PC14,13,12 = 101B) or  
6000H-6FFFH (PC14,13,12 = 110B) or  
7000H-7F7FH (PC14,13,12 = 111B)  
*8  
Program  
memory  
addressing  
faddr = 0000H-07FFH  
taddr = 0020H-007FH  
addr1 = 0000H-7F7FH  
*9  
*10  
*11  
Remarks 1. MB indicates an accessible memory bank.  
2. For *2, MB is always 0 irrespective of MBE and MBS.  
3. For *4 and *5, MB is always 15 irrespective of MBE and MBS.  
4. *6 to *11 indicate each addressable area.  
(4) Explanation of the machine cycle column  
S represents the number of machine cycles required when a skip instruction with the skip function performs  
a skip operation. S assumes one of the following values:  
• When no skip operation is performed  
: S = 0  
• When a 1-byte instruction or 2-byte instruction is skipped : S = 1  
• When a 3-byte instruction is skipped  
: S = 2  
Caution The GETI instruction is skipped in one machine cycle.  
One machine cycle is equal to one cycle of the CPU clock Φ (= tCY), and three types of times are available for  
selection according to the PCC setting.  
31  
µPD75218  
Number Machine  
of bytes cycle  
Address- Skip  
Operand  
A,#n4  
Mnemonic  
MOV  
Operation  
Instruction  
Transfer  
ing area  
condition  
1
2
2
2
2
1
1
1
1
2
1
2
2
2
2
2
2
2
2
2
1
1
1
1
2
2
2
1
2
1
1
1
1
A n4  
StringeffectA  
1
reg1,#n4  
XA,#n8  
reg1 n4  
XA n8  
HL n8  
rp2 n8  
A (HL)  
2
StringeffectA  
Stringeffect B  
2
HL,#n8  
2
rp2,#n8  
A,@HL  
2
1
*1  
*1  
*1  
*2  
*1  
*1  
*1  
*3  
*3  
*3  
*3  
A,@HL+  
A,@HL-  
A,@rpa1  
XA,@HL  
@HL,A  
A (HL), then L L + 1  
A (HL), then L L - 1  
A (rpa1)  
L = 0  
2 + S  
L = FH  
2 + S  
1
XA (HL)  
2
(HL) A  
1
@HL,XA  
A,mem  
(HL) XA  
2
A (mem)  
2
XA,mem  
mem,A  
XA (mem)  
(mem) A  
2
2
mem,XA  
A,reg  
(mem) XA  
A reg  
2
2
XA,rp’  
XA rp’  
2
reg1,A  
reg1 A  
2
rp’1,XA  
A,@HL  
rp’1 XA  
2
XCH  
A (HL)  
1
*1  
*1  
*1  
*2  
*1  
*3  
*3  
A,@HL+  
A,@HL-  
A,@rpa1  
XA,@HL  
A,mem  
A (HL), then L L + 1  
A (HL), then L L - 1  
A (rpa1)  
L = 0  
2 + S  
L = FH  
2 + S  
1
2
2
2
1
2
3
3
3
3
XA (HL)  
A (mem)  
XA,mem  
A,reg1  
XA (mem)  
A reg1  
XA,rp’  
XA rp’  
MOVT  
XA,@PCDE  
XA,@PCXA  
XA, @BCDE  
XA, @BCXA  
XA (PC14-8+DE)ROM  
XA (PC14-8+XA)ROM  
XA (BCDE)ROM  
XA (BCXA)ROM  
Table  
reference  
*11  
*11  
32  
µPD75218  
Number Machine  
of bytes cycle  
Address- Skip  
Operand  
Mnemonic  
MOV1  
Operation  
CY (fmem.bit)  
Instruction  
ing area  
condition  
CY,fmem.bit  
CY,pmem.@L  
CY,@H+mem.bit  
fmem.bit,CY  
pmem.@L,CY  
@H+mem.bit,CY  
A,#n4  
2
2
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
1
2
2
2
1
2
2
2
1
2
2
1
2
*4  
2
Bit  
transfer  
*5  
2
CY (pmem7-2+L3-2.bit(L1-0))  
CY (H+mem3-0.bit)  
(fmem.bit) CY  
*1  
2
2
*4  
*5  
2
(pmem7-2+L3-2.bit(L1-0)) CY  
(H+mem3-0.bit) CY  
A A + n4  
2
*1  
carry  
carry  
carry  
carry  
carry  
ADDS  
1 + S  
Arithme-  
tic/logical  
XA,#n8  
A,@HL  
2 + S  
XA XA + n8  
*1  
*1  
*1  
*1  
1 + S  
A A + (HL)  
XA,rp’  
2 + S  
XA XA + rp’  
rp’1,XA  
A,@HL  
2 + S  
rp’1 rp’1 + XA  
ADDC  
SUBS  
SUBC  
AND  
1
A,CY A + (HL) + CY  
XA,CY XA + rp’ + CY  
rp’1,CY rp’1 + XA + CY  
A A - (HL)  
XA,rp’  
2
rp’1,XA  
A,@HL  
2
borrow  
borrow  
borrow  
1 + S  
XA,rp’  
2 + S  
XA XA - rp’  
rp’1,XA  
A,@HL  
2 + S  
rp’1 rp’1 - XA  
1
2
2
2
1
2
2
2
1
2
2
2
1
2
2
1
2
A,CY A - (HL) - CY  
XA,CY XA - rp’ - CY  
rp’1,CY rp’1 - XA - CY  
XA,rp’  
rp’1,XA  
A,#n4  
A A  
n4  
A,@HL  
*1  
*1  
*1  
A A  
(HL)  
XA,rp’  
XA XA  
rp’  
XA  
rp’1,XA  
A,#n4  
rp’1 rp’1  
OR  
A A  
n4  
(HL)  
rp’  
XA  
A,@HL  
A A  
XA,rp’  
XA XA  
rp’1 rp’1  
rp’1,XA  
A,#n4  
XOR  
A A  
n4  
(HL)  
A,@HL  
A A  
XA,rp’  
XA XA  
rp’1 rp’1  
rp’  
XA  
rp’1,XA  
A
Accumula-  
tor manipu-  
lation  
RORC  
NOT  
CY A0, A3 CY, An-1 An  
A A  
A
33  
µPD75218  
Number  
of bytes  
Machine  
cycle  
Address- Skip  
Operand  
Mnemonic  
INCS  
Operation  
reg reg + 1  
Instruction  
ing area  
condition  
reg = 0  
1 + S  
1 + S  
2 + S  
2 + S  
1 + S  
2 + S  
2 + S  
2 + S  
1 + S  
2 + S  
2 + S  
2 + S  
1
reg  
rp1  
1
1
2
2
1
2
2
2
1
2
2
2
1
1
1
1
Increment/  
decrement  
rp1 = 00H  
(HL) = 0  
rp1 rp1 + 1  
(HL) (HL) + 1  
(mem) (mem) + 1  
reg reg - 1  
rp’ rp’ - 1  
Skip if reg = n4  
Skip if (HL) = n4  
Skip if A = (HL)  
Skip if XA = (HL)  
Skip if A = reg  
Skip if XA = rp’  
CY 1  
@HL  
mem  
reg  
*1  
*3  
(mem) = 0  
reg = FH  
rp’ = FFH  
reg = n4  
(HL) = n4  
A = (HL)  
XA = (HL)  
A = reg  
DECS  
SKE  
rp’  
reg,#n4  
@HL,#n4  
A,@HL  
XA,@HL  
A,reg  
XA,rp’  
CY  
Compari-  
son  
*1  
*1  
*1  
XA = rp’  
SET1  
CLR1  
SKT  
Carry flag  
manipula-  
tion  
1
CY 0  
CY  
CY = 1  
1 + S  
1
Skip if CY = 1  
CY CY  
CY  
NOT1  
CY  
34  
µPD75218  
Number  
of bytes  
Machine  
cycle  
Address- Skip  
Operand  
mem.bit  
Mnemonic  
SET1  
Operation  
(mem.bit) 1  
Instruction  
ing area  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*11  
condition  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Memory  
bit  
(fmem.bit) 1  
fmem.bit  
2
manipula-  
tion  
(pmem7-2+L3-2.bit(L1-0)) 1  
(H+mem3-0.bit) 1  
pmem.@L  
2
@H+mem.bit  
mem.bit  
2
(mem.bit) 0  
CLR1  
SKT  
SKF  
2
2
(fmem.bit) 0  
fmem.bit  
(pmem7-2+L3-2.bit(L1-0)) 0  
(H+mem3-0.bit) 0  
pmem.@L  
2
2
@H+mem.bit  
mem.bit  
Skip if (mem.bit) = 1  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2
(mem.bit) = 1  
(fmem.bit) = 1  
(pmem.@L) = 1  
(@H+mem.bit) = 1  
(mem.bit) = 0  
(fmem.bit) = 0  
(pmem.@L) = 0  
(@H+mem.bit) = 0  
(fmem.bit) = 1  
(pmem.@L) = 1  
(@H+mem.bit) = 1  
Skip if (fmem.bit) = 1  
fmem.bit  
Skip if (pmem7-2+L3-2.bit(L1-0)) = 1  
Skip if (H+mem3-0.bit) = 1  
Skip if (mem.bit) = 0  
pmem.@L  
@H+mem.bit  
mem.bit  
Skip if (fmem.bit) = 0  
fmem.bit  
Skip if (pmem7-2+L3-2.bit(L1-0)) = 0  
Skip if (H+mem3-0.bit) = 0  
Skip if (fmem.bit) = 1 and clear  
Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1 and clear  
Skip if (H+mem3-0.bit) = 1 and clear  
pmem.@L  
@H+mem.bit  
fmem.bit  
SKTCLR  
AND1  
OR1  
pmem.@L  
@H+mem.bit  
CY,fmem.bit  
CY,pmem.@L  
CY,@H+mem.bit  
CY,fmem.bit  
CY,pmem.@L  
CY,@H+mem.bit  
CY,fmem.bit  
CY,pmem.@L  
CY,@H+mem.bit  
addr1  
CY CY  
CY CY  
CY CY  
CY CY  
CY CY  
CY CY  
CY CY  
CY CY  
CY CY  
(fmem.bit)  
(pmem7-2+L3-2.bit(L1-0))  
(H+mem3-0.bit)  
(fmem.bit)  
2
2
2
(pmem7-2+L3-2.bit(L1-0))  
(H+mem3-0.bit)  
(fmem.bit)  
2
2
XOR1  
BR  
2
(pmem7-2+L3-2.bit(L1-0))  
(H+mem3-0.bit)  
2
2
PC14-0 addr1  
Branch  
(The assembler selects an appropri-  
ate instruction from the BR !addr, BRA  
!addr1, BRCB !caddr, and BR $addr  
instructions.)  
PC14-0 addr  
$addr  
!addr  
PCDE  
PCXA  
BCDE  
BCXA  
!addr1  
!caddr  
1
3
2
2
2
2
3
2
2
3
3
3
3
3
3
2
*7  
*6  
PC14 0, PC13-0 !addr  
PC14-0 PC14-8 + DE  
PC14-0 PC14-8 + XA  
PC14-0 BCDE  
PC14-0 BCXA  
PC14-0 !addr1  
BRA  
*11  
*8  
PC14-0 PC14,13,12 + caddr11-0  
BRCB  
35  
µPD75218  
Number Machine  
of bytes cycle  
Address- Skip  
Operand  
!addr  
Mnemonic  
CALL  
Operation  
Instruction  
ing area  
condition  
Subrou-  
tine stack  
control  
3
3
2
1
1
4
(SP-6)(SP-3)(SP-4) PC11-0  
(SP-5) 0,PC14,PC13, PC12  
(SP-2) ← ×,×,MBE,RBE  
*6  
PC14 0, PC13-0 addr, SP SP - 6  
3
3
CALLA  
CALLF  
RET  
!addr1  
!faddr  
(SP-6)(SP-3)(SP-4) PC11-0  
(SP-5) 0,PC14,PC13, PC12  
(SP-2) ← ×,×,MBE,RBE  
*11  
*9  
PC14-0 addr1, SP SP - 6  
(SP-6)(SP-3)(SP-4) PC11-0  
(SP-5) 0,PC14,PC13, PC12  
(SP-2) ← ×,×,MBE,RBE  
PC14-0 0000, faddr, SP SP - 6  
3
×,×,MBE,RBE (SP+4)  
PC11-0 (SP)(SP+3)(SP+2)  
×,PC14,PC13,PC12 (SP+1)  
SP SP + 6  
Uncondition-  
ally  
RETS  
3 + S  
×,×,MBE,RBE (SP+4)  
PC11-0 (SP)(SP+3)(SP+2)  
×,PC14,PC13,PC12 (SP+1)  
SP SP + 6  
then skip unconditionally  
RETI  
1
3
×,PC14,PC13,PC12 (SP+1)  
PC11-0 (SP)(SP+3)(SP+2)  
PSW (SP+4)(SP+5), SP SP + 6  
PUSH  
1
2
1
2
(SP-1)(SP-2) rp, SP SP - 2  
rp  
BS  
(SP-1) MBS, (SP-2) RBS, SP ←  
SP - 2  
POP  
rp  
1
2
1
2
rp (SP+1)(SP), SP SP + 2  
MBS (SP+1), RBS (SP), SP ←  
BS  
SP + 2  
Interrupt  
control  
EI  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IME(IPS.3) 1  
IE××× ← 1  
IE×××  
DI  
IME(IPS.3) 0  
IE××× ← 0  
IE×××  
Note  
IN  
A,PORTn  
XA,PORTn  
PORTn,A  
PORTn,XA  
A PORTn (n=0 to 6)  
XA PORTn+1,PORTn (n=4)  
PORTn A (n=2 to 6)  
PORTn+1,PORTn XA (n=4)  
I/O  
Note  
OUT  
Note MBE = 0, or MBE = 1 and MBS = 15 must be set when an IN/OUT instruction is executed.  
36  
µPD75218  
Number Machine  
of bytes cycle  
Address- Skip  
Operand  
Mnemonic  
Operation  
Instruction  
ing area  
condition  
Set HALT mode (PCC.2 1)  
Set STOP mode (PCC.3 1)  
No operation  
2
2
1
2
2
1
2
2
1
2
2
3
HALT  
STOP  
NOP  
SEL  
CPU  
control  
RBS n (n=0-3)  
RBn  
Special  
MBS n (n=0,1,2,3,15)  
MBn  
Note  
• For a TBR instruction  
PC13-0 (taddr)5-0 + (taddr+1)  
PC14 0  
*10  
GETI  
taddr  
• For a TCALL instruction  
(SP-6)(SP-3)(SP-4) PC11-0  
(SP-5) 0, PC14, PC13, PC12  
(SP-2) ← ×,×,MBE,RBE  
4
PC13-0 (taddr)5-0 + (taddr+1)  
SP SP-6 PC14 0  
Depends  
• For an instruction other than TBR  
and TCALL  
3
upon the  
referenced  
instruction.  
Executes the instruction in  
(taddr)(taddr+1).  
Note The TBR and TCALL instructions are table definition assembler pseudo instructions of the GETI  
instructions.  
37  
µPD75218  
10. MASK OPTION SELECTION  
The µPD75218 has the following mask options enabling or disabling on-chip components.  
Pin  
Mask option  
Pull-up resistor incorporation enabled in bit units  
P60 to P63  
T0/T9  
T10/S15/PH3 to T13/S12/PH0  
T14/S11, T15/S10  
S0 to S9  
XT1, XT2  
The feedback resistor for the subsystem clock oscillator can be  
removed  
Cautions 1. In a system not using subsystem clocks, power consumption in the STOP mode can be decreased by  
removing the feedback resistor from the oscillator.  
2. The feedback resistor must be incorporated when the subsystem clock is used.  
38  
µPD75218  
11. APPLICATION BLOCK DIAGRAM  
11.1 VCR TIMER TUNER  
Main power supply  
Power  
+
V
Super capacitor  
V
DD  
SS  
failure  
INT4  
PPO  
10  
T0–T9  
detection  
Fluorescent indication panel (FIP)  
LPF  
S0–S15 16  
Electronic  
tuner  
16 segments × 10 digits  
µ
PD75218  
Timer  
Tuner  
Remote-  
controller  
signal  
reception  
Tape counter  
Tape count pulse  
Tape up/down  
INT1  
Key matrix  
(16 × 4)  
PORT6  
INT0  
SCK  
SCK  
SO  
System  
controller  
SO  
SI  
microcomputer  
Remote-controller  
signal  
µPD75104 or µPD75106  
µPC2800A  
EEPROM™  
µPD6252  
µPD6253  
µPD6254  
BUZ  
XT2  
BZ  
Piezoelectric buzzer  
X1  
X2  
XT1  
39  
µPD75218  
11.2 COMPACT DISK PLAYER  
14  
T0–T13  
SIO  
SCK  
SI/SO  
Servo  
control IC  
Fluorescent indication panel (FIP)  
S0–S11 12  
12 segments × 14 digits  
Loading  
circuit  
µPD75218  
Key matrix  
(12 × 4)  
PORT6  
INT0  
BUZ  
BZ  
Remote-controller  
signal  
µPC2800A  
X1  
X2  
40  
µPD75218  
11.3 ECR  
Main power supply  
+
VDD  
VSS  
Power  
failure  
INT4  
16  
T0–T15  
detection  
Fluorescent indication panel (FIP)  
S0–S9 10  
10 segments × 16 digits  
RAM  
µ
PD75218  
Key matrix  
(10 × 4)  
Printer  
PPO  
XT2  
BZ  
X1  
X2  
XT1  
41  
µPD75218  
12. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)  
Parameter  
Symbol  
Conditions  
Rating  
Unit  
–0.3 to +7.0  
V
V
VDD  
VLOAD  
VPRE  
VI  
VDD – 40 to VDD + 0.3  
Power supply voltage  
VDD – 11 to VDD + 0.3  
V
–0.3 to VDD + 0.3  
V
Input voltage  
–0.3 to VDD + 0.3  
V
VO  
Pins except display output pins  
Display output pins  
Output voltage  
VDD – 40 to VDD + 0.3  
V
VOD  
–15  
–15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
°C  
Per pin except display output pins  
Per pin for S0 to S9  
–30  
Output high current  
Output low current  
IOH  
Per pin for T0 to T15  
Total of pins except display output pins  
Total of display output pins  
Per pin  
–20  
–120  
17  
IOL  
PT  
60  
Total of pins  
450  
Plastic QFP  
Note 1  
Total loss  
600  
Plastic shrink DIP  
Topt  
Tstg  
–40 to +85  
–65 to +150  
Operatingtemperature  
Storage temperature  
°C  
OPERATING SUPPLY VOLTAGE (Ta = –40 to +85 °C)  
Min.  
Max.  
Parameter  
Conditions  
Unit  
Note 2  
Note 3  
4.5  
V
V
V
V
CPU  
6.0  
6.0  
6.0  
6.0  
Display controller  
4.5  
Timer/pulse generator  
Note 2  
2.7  
Other hardware  
42  
µPD75218  
Notes 1. Calculation of total loss  
Design so that the sum of the following three power consumption values for the µPD75218CW/GF will be  
less than the total loss PT (It is recommended to use the system with 80 % or less of the rating).  
CPU loss  
: Given as VDD (Max.) × IDD1 (Max.)  
Output pin loss  
: There are normal output pin loss and display output pin loss. It is necessary  
to add a loss derived from the flow of maximum current to each output pin.  
Pull-down register loss: Power loss due to a pull-down resistor incorporated in the display output  
pin by mask option.  
Example Suppose 4-LED output with 9 segments and 11 digits, VDD = 5 V + 10 % and 4.19 MHz oscillation and let  
a maximum of 3 mA, 15 mA and, 10 mA flow to a segment pin, timing pin and LED output pin, respectively.  
Further, let the voltage of fluorescent display tube (VLOAD voltage) be –30 V and normal voltage be small.  
CPU loss : 5.5 V × 9.0 mA = 49.5 mW  
Pin loss : Segment pin ..... 2 V × 3 mA × 9 = 54 mW  
Timing pin ......... 2 V × 15 mA = 30 mW  
10  
× 2 V × 10 mA × 4 = 53 mW  
LED output ........  
15  
(30 + 5.5 V)2  
Pull-down resistor loss ........  
× 10 = 504.1 mW  
25 kΩ  
PT = + + = 690.6 mW  
In this example, the power consumption of 690.6 mW is higher than the allowable total loss for the shrink  
DIP package (600 mW). It is necessary to decrease power consumption by decreasing the number of on-  
chip pull-down resistors. In this example, power consumption can be adjusted to 577.8 mW by  
incorporating pull-down resistors in only 11 digit outputs and 7 segment outputs and externally  
mounting pull-down resistors to the 2 remaining segment outputs.  
2. Except the system clock oscillator, display controller and timer/pulse generator.  
3. The operating voltage range varies depending on the cycle time. Refer to the AC characteristics.  
CAPACITANCE (Ta = 25 °C, VDD = 0 V)  
Unit  
Max.  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Input capacitance  
CIN  
pF  
pF  
pF  
pF  
15  
15  
35  
15  
Except display output  
Display output  
f = 1 MHz  
0 V for pins other than pins  
to be measured  
Output capacitance  
Input /output capacitance  
COUT  
CIO  
43  
µPD75218  
CHARACTERISTICS OF THE MAIN SYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)  
Recommended  
constants  
Resonator  
Ceramic  
resonator  
Note 3  
Parameter  
Min.  
2.0  
Max.  
6.2  
Typ.  
Unit  
MHz  
Conditions  
VDD = Oscillation  
voltage range  
Oscillator  
frequency  
X1  
X2  
Note 1  
(fXX)  
4
ms  
Oscillation  
settling time  
Note 2  
After VDD reaches  
Min. of the oscilla-  
tion voltage range  
C1  
C1  
C2  
C2  
6.2  
MHz  
4.19  
2.0  
Crystal  
resonator  
Note 3  
Oscillator  
frequency  
X1  
X2  
Note 1  
(fXX)  
10  
30  
ms  
ms  
Oscillation  
settling time  
Note 2  
VDD = 4.5 to 6.0 V  
2.0  
MHz  
External  
clock  
X1 input  
6.2  
frequency  
X1  
X2  
Note 1  
(fX)  
ns  
100  
X1 input  
high/low  
level width  
(tXH, tXL)  
250  
µPD74HCU04  
Notes 1. The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item  
of AC characteristics for the instruction execution time.  
2. The oscillation settling time means the time required for the oscillation to settle after VDD reaches Min.  
of the oscillation voltage range or after the STOP mode is released.  
3. See "Recommended Parameters for the Oscillation Circuit" for the resonators.  
Caution When the main system clock oscillator is used, conform to the following guidelines when wiring at the  
portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity.  
The wiring must be as short as possible.  
Other signal lines must not run in these areas. Any line carrying a high fluctuating current must be  
kept away as far as possible.  
The grounding point of the capacitor of the oscillator must have the same potential as that of VDD. It  
must not be grounded to ground patterns carrying a large current.  
No signal must be taken from the oscillator.  
44  
µPD75218  
CHARACTERISTICS OF THE SUBSYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)  
Recommended  
constants  
Resonator  
Crystal  
resonator  
Note 3  
Conditions  
Parameter  
Min.  
32  
Typ.  
Max.  
35  
Unit  
kHz  
Oscillator  
frequency  
32.768  
XT1  
XT2  
Note 1  
(fXT)  
330 kΩ  
Oscillation  
settling time  
Note 2  
VDD = 4.5 to 6.0 V  
1.0  
2
s
s
C3  
C4  
10  
V
DD  
XT1 input  
frequency  
(fXT)  
32  
10  
kHz  
External  
clock  
100  
32  
XT1  
XT2  
Leave open  
XT1 input  
high/low  
µs  
level width  
(tXTH, tXTL)  
Notes 1. The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item  
of AC characteristics for the instruction execution time.  
2. The oscillation settling time means the time required for the oscillation to settle after VDD reaches Min.  
of the oscillation voltage range.  
3. Recommended resonators are listed on the next page.  
Caution When the subsystem clock oscillator is used, conform to the following guidelines when wiring at the  
portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity.  
The wiring must be as short as possible.  
Other signal lines must not run in these areas. Any line carrying a high fluctuating current must be  
kept away as far as possible.  
The grounding point of the capacitor of the oscillator must have the same potential as that of VDD.  
It must not be grounded to ground patterns carrying a large current.  
No signal must be taken from the oscillator.  
When the subsystem clock is used, pay special attention to its wiring; the subsystem clock oscillator  
has low amplification to minimize current consumption and is more likely to malfunction due to noise  
than the main system clock oscillator.  
45  
µPD75218  
RECOMMENDED PARAMETERS FOR THE OSCILLATION CIRCUIT  
When a ceramic resonator is used for the main system clock (Ta = -40 to +70 ˚C)  
External capacitance Oscillation voltage  
Manu-  
facturer  
Oscillation frequency  
(MHz)  
(pF)  
range (V)  
Product name  
Min.  
C1  
C2  
30  
Max.  
6.0  
Murata  
Mfg.  
CSA×××MG  
2.00 to 2.44  
2.45 to 3.50  
2.51 to 6.00  
2.45 to 3.50  
2.51 to 6.00  
30  
Built-in  
30  
2.7  
CST×××MG  
Built-in  
30  
CSA×××MG093  
CST×××MGW093  
CSA×××MGU  
CST×××MGWU  
CSA×××MG  
Built-in  
30  
Built-in  
30  
Built-in  
30  
Built-in  
30  
3.0  
3.3  
CST×××MGW  
CSA×××MG  
Built-in  
30  
Built-in  
30  
CST×××MGW  
Built-in  
Built-in  
When a ceramic resonator is used for the main system clock (Ta = -20 to +80 ˚C)  
External capacitance Oscillation voltage  
Manu-  
facturer  
Oscillation frequency  
(MHz)  
(pF)  
range (V)  
Product name  
Min.  
C1  
C2  
47  
Max.  
6.0  
Kyocera  
KBR-2.0MS  
2.0  
4.0  
47  
33  
2.7  
KBR-4.0MWS  
KBR-4.19MWS  
KBR-4.19MSA  
KBR-4.19MKS  
PBRC 4.19A  
33  
4.19  
Built-in  
33  
Built-in  
33  
Built-in  
33  
Built-in  
33  
KBR-6.0MWS  
KBR-6.0MSA  
KBR-6.0MKS  
PBRC 6.00A  
6.0  
Built-in  
33  
Built-in  
33  
Built-in  
33  
Built-in  
33  
When a crystal resonator is used for the main system clock (Ta = -20 to +70 ˚C)  
External capacitance Oscillation voltage  
Oscillation frequency  
(MHz)  
Manu-  
facturer  
(pF)  
C1  
18  
range (V)  
Min.  
Product name  
HC-49/U-S  
C2  
18  
Max.  
6.0  
Kinseki  
3.072 to 6.000  
2.7  
When a crystal resonator is used for the subsystem clock (Ta = -15 to +60 ˚C)  
External capacitance and  
Oscillation voltage  
range (V)  
Oscillation  
frequency (MHz)  
Manu-  
resistance  
C1 (pF) C2 (pF)  
18 18  
Product name  
KF-38G  
facturer  
Min.  
R (k)  
Max.  
6.0  
Kyocera  
32.768  
220  
4.0  
Caution When finely adjusting the oscillation frequency of a crystal resonator, adjust external capacitance C1 or  
C3.  
46  
µPD75218  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Parameter  
Symbol  
Conditions  
Min.  
Unit  
Typ.  
Max.  
VIH1  
VIH2  
VIH3  
VIH4  
0.7VDD  
0.75VDD  
VDD–0.4  
0.65VDD  
0.7VDD  
0
Input high voltage  
Except below  
Ports 0, 1, RESET  
X1, X2, XT1  
Port 6  
V
V
VDD  
VDD  
V
VDD  
VDD = 4.5 to 6.0 V  
V
VDD  
V
VDD  
Except below  
VIL1  
VIL2  
VIL3  
V
0.3VDD  
0.2VDD  
0.4  
Input low voltage  
Ports 0, 1, 6, RESET  
X1, X2, XT1  
0
V
0
V
VDD = 4.5 to 6.0 V, IOH = –1 mA VDD–1.0  
V
Output high voltage  
Output low voltage  
VOH  
All output pins  
IOH = –100 µA  
VDD = 4.5 to 6.0 V, IOL = 15 mA  
VDD = 4.5 to 6.0 V, IOL = 1.6 mA  
IOL = 400 µA  
VDD–0.5  
V
Ports 4, 5  
VOL  
V
2.0  
0.4  
0.5  
3
0.5  
All output pins  
V
V
ILIH1  
ILIH2  
ILIL1  
ILIL2  
ILOH  
ILOL1  
ILOL2  
Input high leakage  
current  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
kΩ  
kΩ  
kΩ  
mA  
mA  
µA  
µA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
Except X1,X2,XT1  
X1, X2, XT1  
VIN = VDD  
20  
–3  
Input low leakage  
current  
Except X1,X2,XT1  
VIN = 0 V  
–20  
3
X1, X2, XT1  
VOUT = VDD  
VOUT = 0 V  
Output high leakage current  
All output pins  
Output low leakage  
current  
Except display output  
Display output  
S0 to S9  
–3  
–10  
VOUT = VLOAD = VDD – 35 V  
VPRE = VDD – 9 ±1 VNote 1  
–3  
–1.5  
–15  
–7  
VDD =  
IOD  
–5.5  
–3.5  
–22  
–15  
80  
Display output current  
4.5 to 6.0 V  
VOD =  
VPRE = 0 V  
VPRE = VDD – 9 ±1 VNote 1  
T0 to T15  
VDD – 2 V  
VPRE = 0 V  
RP6  
20  
Port 6  
VIN = VDD  
VDD = 4.5 to 6.0 V  
200  
1000  
135  
13.5  
1.8  
Built-in pull-down  
resistor (mask option)  
20  
RL  
Display output  
25  
VOD – VLOAD = 35 V  
70  
4.0  
0.55  
600  
200  
3.0  
0.45  
550  
180  
40  
Note 3  
Note 4  
Note 2  
IDD1  
6.0 MHz crys-  
tal oscillation  
C1 = C2 = 15pF  
VDD = 5 V ±10 %  
VDD = 3 V ±10 %  
Supply current  
VDD = 5 V ±10 %  
VDD = 3 V ±10 %  
Note 3  
1800  
600  
9.0  
IDD2  
IDD1  
IDD2  
HALT mode  
VDD = 5 V ±10 %  
4.19 MHz crys-  
tal oscillation  
C1 = C2 = 15pF  
Note 4  
VDD = 4 V ±10 %  
1.5  
1800  
600  
120  
15  
HALT mode VDD = 5 V ±10 %  
VDD = 3 V ±10 %  
IDD3  
IDD4  
VDD = 3 V ±10 %  
32 kHz crystal  
oscillationNote 5  
HALT mode VDD = 3 V ±10 %  
5
IDD5  
XT1 = 0 V  
STOP mode  
VDD = 5 V ±10 %  
VDD = 3 V ±10 %  
20  
0.5  
0.1  
10  
47  
µPD75218  
Notes 1. The following external circuit is recommended.  
µPD75218  
+5 V  
VDD  
RD9. 1EL  
RD9. 1EL : Zener diode (NEC)  
VPRE  
Zener voltage = 8.29 to 9.30 V  
68 kΩ  
VLOAD  
–30 V  
VSS  
2. Current to the on-chip pull-down resistor (mask option) is not included.  
3. When the processor clock control register (PCC) is set to 0011 and is operated in the high-speed mode.  
4. When the PCC register is set to 0000 and is operated in the low-speed mode.  
5. When the system clock control register (SCC) is set to 1001 and is operated with the subsystem clock  
with main system clock oscillation stopped.  
48  
µPD75218  
AC CHARACTERISTICS (Ta = –40 to +85 °C , VDD = 2.7 to 6.0 V)  
Parameter  
Symbol  
tCY  
Conditions  
VDD = 4.5 to 6.0 V  
Min.  
0.67  
Typ.  
122  
Max.  
Unit  
µs  
µs  
µs  
32  
32  
Operation with main  
system clock  
CPU clock cycle time  
(minimum instruction  
execution time = 1  
2.6  
114  
125  
Operation with sub-  
system clock  
Note 1  
machine cycle)  
VDD = 4.5 to 6.0 V  
MHz  
kHz  
µs  
0.6  
0
0
fTI  
TI0 input frequency  
165  
tTIH,  
tTIL  
0.83  
3
TI0 input high and low-  
level widths  
VDD = 4.5 to 6.0 V  
VDD = 4.5 to 6.0 V  
µs  
Input  
SCK cycle time  
0.8  
0.95  
tKCY  
µs  
µs  
Output  
Input  
µs  
3.2  
3.8  
0.4  
µs  
Output  
µs  
tKH,  
tKL  
VDD = 4.5 to 6.0 V  
Input  
SCK high and low-level  
widths  
ns  
µs  
Output  
Input  
tKCY/2–50  
1.6  
Output  
ns  
ns  
t
KCY/2–150  
tSIK  
tKSI  
100  
SI setup time (referred to  
SCK)  
SI hold time (referred to  
ns  
400  
SCK)  
VDD = 4.5 to 6.0 V  
300  
Delay from SCKto SO  
output  
tKSO  
ns  
ns  
µs  
µs  
µs  
1000  
Note 2  
Interrupt input high and  
low-level widths  
tINTH,  
tINTL  
INT0  
INT1  
2tCY  
10  
INT2,  
INT4  
RESET low-level width  
10  
µs  
tRSL  
t
CY VS  
V
DD  
Notes 1. CPU clock (Φ) cycle time is determined by the  
oscillator frequency of the connected resona-  
tor, the system clock control register (SCC)  
and the processor clock control register (PCC).  
The cycle time tCY characteristics for power  
supply voltage VDD when the main system  
clock is in operation is shown on the right.  
2. 2tCY or 128/fXX is set by interrupt mode register  
(IM0) setting.  
(Operation with main system clock)  
40  
32  
30  
6
5
Guaranteed operation  
range  
4
3
µ
2
1
0.5  
0
1
2
3
4
5
6
Power supply voltage VDD [V]  
49  
µPD75218  
AC Timing Measurement Values (Except X1 and XT1 Inputs)  
0.75VDD  
Test points  
0.2VDD  
0.75VDD  
0.2VDD  
Clock Timing  
1/fX  
t
XL  
t
XH  
X1 input  
VDD - 0.4 V  
0.4 V  
1/fXT  
t
XTL  
t
XTH  
XT1 input  
VDD - 0.4 V  
0.4 V  
TI0 Timing  
1/fTI  
t
TIL  
t
TIH  
TI0  
50  
µPD75218  
Serial Transfer Timing  
tKCY  
tKH  
t
KL  
SCK  
t
SIK  
tKSI  
SI  
Input data  
t
KSO  
SO  
Output data  
Interrupt Input Timing  
tINTL  
tINTH  
INT0, INT1,  
INT2 and INT4  
RESET Input Timing  
tRSL  
RESET  
51  
µPD75218  
DATA RETENTION CHARACTERISTICS FOR DATA MEMORY AT LOW SUPPLY VOLTAGE IN STOP MODE  
(Ta = –40 to +85 °C)  
Parameter  
Symbol  
Conditions  
Min.  
2.0  
Typ.  
Max.  
Unit  
Data retention supply voltage  
6.0  
10  
V
VDDDR  
IDDDR  
tSREL  
Note 1  
Data retention supply current  
VDDDR = 2.0 V  
0.1  
µA  
µs  
Release signal set time  
0
17  
Note 2  
tWAIT  
Release by RESET  
2
/fX  
ms  
ms  
Oscillation settling time  
Release by interrupt request  
Note 3  
Notes 1. Current to the on-chip pull-down resistor (mask option) is not included.  
2. Oscillation settling time is time to stop CPU operation to prevent unstable operation upon oscillation  
start.  
3. According to the setting of the basic interval timer mode register (BTM) (See below.)  
BTM3  
BTM2  
BTM1  
BTM0  
Settling time (values at fXX = 6.0 MHz in parentheses)  
20  
0
0
1
1
0
1
0
1
0
1
1
1
2
2
2
2
/fXX (approx. 175 ms)  
/fXX (approx. 21.8 ms)  
/fXX (approx. 5.46 ms)  
/fXX (approx. 1.37 ms)  
17  
15  
13  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
Normal operation  
mode  
STOP mode  
Data retention mode  
V
DD  
t
SREL  
VDDDR  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
Normal operation  
mode  
STOP mode  
Data retention mode  
V
DD  
t
SREL  
V
DDDR  
STOP instruction execution  
Standby release signal  
(Interrupt request)  
t
WAIT  
52  
µPD75218  
13. CHARACTERISTIC CURVES (FOR REFERENCE)  
IDD vs VDD (Main system clock: 6.0 MHz)  
(T  
a = 25 ˚C)  
PCC = 0011  
PCC = 0010  
5000  
PCC = 0000  
Main system clock  
HALT mode + 32 kHz  
oscillation  
1000  
500  
µ
Subsystem clock  
Normal operation  
mode  
100  
50  
Main system clock  
STOP mode + 32 kHz  
oscillation  
Subsystem clock  
HALT mode  
10  
5
X1  
X2 XT1  
XT2  
Crystal  
Crystal  
resonator  
6.0 MHz  
resonator  
32.768 kHz  
330 kΩ  
15 pF  
15 pF  
15 pF  
15 pF  
1
0
1
2
3
4
5
6
7
Supply voltage  
VDD (V)  
53  
µPD75218  
IDD vs VDD (Main system clock: 4.19 MHz)  
(Ta = 25 ˚C)  
5000  
PCC = 0011  
PCC = 0010  
PCC = 0000  
Main system clock  
HALT mode + 32 kHz  
oscillation  
1000  
500  
µ
Subsystem clock  
Normal operation  
mode  
100  
50  
Main system clock  
STOP mode + 32 kHz  
oscillation  
Subsystem clock  
HALT mode  
10  
5
X1  
X2 XT1  
XT2  
Crystal  
Crystal  
resonator  
4.19 MHz  
resonator  
32.768 kHz  
330 kΩ  
15 pF  
15 pF  
15 pF  
15 pF  
1
0
1
2
3
4
5
6
7
Supply voltage  
VDD (V)  
54  
µPD75218  
14. PACKAGE DIMENSIONS  
64 PIN PLASTIC SHRINK DIP (750 mil)  
64  
33  
32  
1
A
K
L
F
D
M
R
B
C
M
N
NOTE  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
58.68 MAX.  
1.78 MAX.  
1.778 (T.P.)  
2.311 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.750 (T.P.)  
0.669  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
19.05 (T.P.)  
17.0  
J
K
L
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0~15°  
0~15°  
P64C-70-750A,C-1  
55  
µPD75218  
64 PIN PLASTIC QFP (14×20)  
A
B
detail of lead end  
51  
52  
33  
32  
S
C
D
R
Q
64  
1
20  
19  
F
H
I
M
J
G
K
L
M
P
N
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.20 mm (0.008 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
23.6±0.4  
20.0±0.2  
14.0±0.2  
0.929±0.016  
+0.008  
0.795  
–0.009  
+0.009  
0.551  
–0.008  
D
F
17.6±0.4  
1.0  
0.693±0.016  
0.039  
G
1.0  
0.039  
+0.004  
0.016  
H
0.40±0.10  
–0.005  
I
0.20  
0.008  
J
1.0 (T.P.)  
0.039 (T.P)  
+0.008  
0.071  
K
L
1.8±0.2  
0.8±0.2  
–0.009  
+0.009  
0.031  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
M
–0.05  
–0.003  
N
P
Q
R
S
0.10  
0.004  
2.7  
0.106  
0.1±0.1  
5°±5°  
3.0 MAX.  
0.004±0.004  
5°±5°  
0.119 MAX.  
P64GF-100-3B8,3BE,3BR-2  
56  
µPD75218  
15. RECOMMENDED SOLDERING CONDITIONS  
The following conditions (see table below) must be met when soldering this product.  
For the details of the recommended soldering conditions refer to our document SMD Surface Mount Technology  
Manual(IEI-1207).  
Please consult with our sales offices in case other soldering process is used, or in case soldering is done under  
different conditions.  
Table 15-1 Soldering Conditions for Surface-Mount Devices  
µPD75218GF-×××-3BE: 64-pin plastic QFP (14 × 20 mm)  
Soldering process  
Wave soldering  
Soldering conditions  
Symbol  
WS60-202-1  
Temperature in the soldering vessel: 260 ˚C or less  
Soldering time: 10 seconds or less  
Number of soldering processes: 1  
Pre-heating temperature: 120 ˚C max.  
(package surface temperature)  
Note  
Exposure limit  
: 2 days  
(20 hours of pre-baking is required at 125 ˚C afterward.)  
IR30-202-1  
VP15-202-1  
Infrared ray reflow  
Peak package’s surface temperature: 230 ˚C  
Reflow time: 30 seconds or less (at 210 ˚C or more)  
Number of reflow processes: 1  
Note  
Exposure limit  
: 2 days  
(20 hours of pre-baking is required at 125 ˚C afterward.)  
VPS  
Peak package’s surface temperature: 215 ˚C  
Reflow time: 40 seconds or less (at 200 ˚C or more)  
Number of reflow processes: 1  
Note  
Exposure limit  
: 2 days  
(20 hours of pre-baking is required at 125 ˚C afterward.)  
Partial heating method  
Terminal temperature: 300 ˚C or less  
Flow time: 3 seconds or less (one side per device)  
Note Exposure limit before soldering after dry-pack package is opened.  
Storage conditions: Temperature of 25 ˚C and maximum relative humidity at 65 % or less  
Caution Do not apply more than a single process at once, except for "Partial heating method."  
Table 15-2 Soldering Conditions for Inserted Devices  
µPD75218CW-×××: 64-pin plastic shrink DIP (750 mil)  
Soldering conditions  
Soldering process  
Temperature in the soldering vessel: 260 °C or less  
Wave soldering (only for leads)  
Soldering time: 10 seconds or less  
Terminal temperature: 260 °C or less  
Partial heating method  
Flow time: 10 seconds or less  
Caution In wave soldering, apply solder only to the lead section. Care must be taken that jet solder does not  
contact the main body of the package.  
Notice  
Other versions of the products are available. For these versions, the recommended reflow  
soldering conditions have been mitigated as follows:  
Higher peak temperature (235 °C), two-stage, and longer exposure limit.  
Contact an NEC representative for details.  
57  
µPD75218  
APPENDIX A FUNCTIONS OF µPD752×× SERIES PRODUCTS  
Item  
µPD75218  
µPD75P218  
µPD75216A  
16256 × 8  
512 × 4  
µPD75217  
24448 × 8  
768 × 4  
ROM  
RAM  
32640 × 8  
1024 × 4  
Instruction  
cycle  
0.95 µs/1.91 µs/15.3 µs (When the mi-  
crocomputer operates at 4.19 MHz)  
0.67 µs/1.33 µs/10.7 µs (When the micro-  
computer operates at 6.0 MHz)  
0.95 µs/1.91 µs/15.3 µs (When the micro-  
computer operates at 4.19 MHz)  
When main  
system clock is  
selected  
122 µs (When the microcomputer operates at 32.768 kHz)  
Whensub-system  
clock is selected  
33  
8
Total number of  
I/O lines  
I/O lines  
including  
FIP dual-  
function  
pins and  
excluding  
FIP dedi-  
cated pins  
CMOS input  
lines  
20: 8 lines for driving LED  
CMOS I/O lines  
Port 6: Pull-down resistors contained (mask option)  
Port6: Nopull-down  
resistors contained  
1: Timer/pulse generator output  
CMOS output  
lines  
4 lines for driving LED: Pull-down resistors contained  
(mask option)  
P-ch open-drain  
output with high  
withstandvoltage  
and high current  
No pull-down  
resistors contained  
FIP controller/  
driver  
26 lines: 40 V max.  
Output with high  
withstand  
voltage  
Whether built-in pull-down resistors are used or the pins are  
used as open-drain output is selected bit by bit (mask option).  
S0-S8,T0-T9:  
Built-in pull-down  
resistors used  
S9,T10-T15:  
Open-drain output  
9 to 16  
9 to 16  
Number of  
segments  
Number of digits  
Timer  
Timer/event counter  
Basic interval timer  
Timer/pulse generator : 14-bit PWM output is possible.  
Watch timer : Buzzer output is possible.  
: Watchdog timer operation is possible.  
4 channels  
Serial interface  
MSB or LSB first can be selected. Serial bus can be configured.  
External: 3, internal: 5  
Vectored interrupt  
Test input  
External: 1, internal: 1  
System clock oscillator  
• When main system clock is selected:  
6.0 MHz (the µPD75218 and µPD75P218 only)  
4.19 MHz  
2 built-in circuits  
• When subsystem clock is selected: 32.768 kHz  
Incorporated  
(mask option)  
None  
Power-on reset circuit  
Possible (2 V)  
-40 to +85 °C  
2.7 to 6.0 V  
Data retention at low supply voltage  
Operating temperature range  
Operating supply voltage  
Package  
-40 to +70 °C  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 20 mm)  
64-pin ceramic WQFN (the µPD75P218 only)  
58  
µPD75218  
APPENDIX B DEVELOPMENT TOOLS  
The following development tools are provided for developing systems including the µPD75218:  
Note 1  
IE-75000-R  
IE-75001-R  
In-circuit emulator for the 75X series  
Note 2  
IE-75000-R-EM  
Emulation board for the IE-75000-R and IE-75001-R  
EP-75216ACW-R  
EP-75216AGF-R  
Emulation probe for the µPD75218CW  
Emulation probe for the µPD75218GF. A 64-pin conversion socket, the EV-9200G-64, is attached  
to the probe.  
EV-9200G-64  
PG-1500  
PROM programmer  
PA-75P216ACW  
PA-75P218GF  
PA-75P218KB  
PROM programmer adapter for the µPD75P218CW. Connected to the PG-1500.  
PROM programmer adapter for the µPD75P218GF. Connected to the PG-1500.  
PROM programmer adapter for the µPD75P218KB. Connected to the PG-1500.  
Host machine  
IE control program  
PG-1500 controller  
TM  
Note 3  
• PC-9800 series (MS-DOS  
Ver. 3.30 to Ver. 5.00A  
Ver. 3.1)  
)
TM  
TM  
• IBM PC/AT  
(PC DOS  
RA75X relocatable  
assembler  
Notes 1. Maintenance service only  
2. Not contained in the IE-75001-R  
3. These software cannot use the task swap function, which is available in MS-DOS Ver. 5.00 and Ver. 5.00A.  
Remark Refer to "75X Series Selection Guide" (IF-1027) for development tools manufactured by third parties.  
59  
µPD75218  
APPENDIX C RELATED DOCUMENTS  
Documents related to the device  
Document name  
Document No.  
User’s manual  
75X series selection guide  
IEU-692  
IF-1027  
Documents related to development tools  
Document name  
Document No.  
IE-75000-R/IE-75001-R User’s Manual  
IE-75000-R-EM User’s Manual  
EP-75216ACW-R User’s Manual  
EP-75216AGF-R User’s Manual  
PG-1500 User’s Manual  
EEU-1416  
EEU-1294  
EEU-1321  
EEU-1309  
EEU-1335  
EEU-1346  
Operation  
Language  
RA75X Assembler Package User’s Manual  
EEU-1363  
EEU-1291  
PG-1500 Controller User’s Manual  
Other related documents  
Document name  
Document No.  
Package Manual  
IEI-1213  
IEI-1207  
IEI-1209  
IEI-1203  
IEI-1201  
MEI-1202  
SMD Surface Mount Technology Manual  
Quality Grades on NEC Semiconductor Devices  
NEC Semiconductor Device Reliability/Quality Control System  
Electrostatic Discharge (ESD) Test  
Guide to Quality Assurance for Semiconductor Devices  
Caution The above documents may be revised without notice. Use the latest versions when you design an  
application system.  
60  
µPD75218  
Cautions on CMOS Devices  
1
Countermeasures against static electricity for all MOSs  
Caution When handling MOS devices, take care so that they are not electrostatically charged.  
Strong static electricity may cause dielectric breakdown in gates. When transporting or  
storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal  
cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during  
assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.  
Also handle boards on which MOS devices are mounted in the same way.  
2
CMOS-specific handling of unused input pins  
Caution Hold CMOS devices at a fixed input level.  
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an  
intermediate-level input may be caused by noise. This allows current to flow in the CMOS  
device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input  
level. Since unused pins may function as output pins at unexpected times, each unused  
pin should be separately connected to the VDD or GND pin through a resistor.  
If handling of unused pins is documented, follow the instructions in the document.  
3
Statuses of all MOS devices at initialization  
Caution The initial status of a MOS device is unpredictable when power is turned on.  
Since characteristics of a MOS device are determined by the amount of ions implanted  
in molecules, the initial status cannot be determined in the manufacture process. NEC  
has no responsibility for the output statuses of pins, input and output settings, and the  
contents of registers at power on. However, NEC assures operation after reset and items  
for mode setting if they are defined.  
When you turn on a device having a reset function, be sure to reset the device first.  
61  
µPD75218  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights  
or other intellectual property rights of NEC Corporation or others.  
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear  
reactor control systems and life support systems. If customers intend to use NEC devices for above applications  
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact  
our sales people in advance.  
Application examples recommended by NEC Corporation  
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,  
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.  
Special  
:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,  
Anticrime systems, etc.  
M4 92.6  
EEPROM is a trademark of NEC Corporation.  
FIP is a trademark of NEC Corporation.  
MS-DOS is a trademark of Microsoft Corporation.  
PC DOS and PC/AT are a trademarks of IBM Corporation.  

相关型号:

UPD75218GF

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75218GF-XXX-3BE

4-BIT, MROM, 6MHz, MICROCONTROLLER, PQFP64, 14 X 20 MM, PLASTIC, QFP-64
RENESAS

UPD75218GF-XXX-3BE

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PQFP64, 14 X 20 MM, PLASTIC, QFP-64
NEC

UPD75236

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75236GJ

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75236GJ-XXX-5BG

4-Bit Microcontroller
ETC

UPD75237

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75237GJ

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75237GJ-XXX-5BG

4-Bit Microcontroller
ETC

UPD75238

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75238GJ

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75238GJ-XXX-5BG

4-Bit Microcontroller
ETC