UPD753012GC [NEC]

4-BIT SINGLE-CHIP MICROCONTROLLER; 4位单片微控制器
UPD753012GC
型号: UPD753012GC
厂家: NEC    NEC
描述:

4-BIT SINGLE-CHIP MICROCONTROLLER
4位单片微控制器

微控制器
文件: 总80页 (文件大小:563K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD753012, 753016, 753017  
4-BIT SINGLE-CHIP MICROCONTROLLER  
DESCRIPTION  
The µPD753017 is one of the 75XL series 4-bit single-chip microcontroller chips and has a data processing  
capability comparable to that of an 8-bit microcontroller.  
It has an on-chip LCD controller/driver with a larger ROM capacity and extended CPU functions compared with  
the conventional µPD75316B, and can provide high-speed operation. It can be supplied in a small plastic TQFP  
package (12 × 12 mm) and is suitable for small sets using LCD panels.  
For details of functions refer to the following User’s Manual.  
µPD753017 User’s Manual : U11282E  
FEATURES  
Low voltage operation: VDD = 2.2 to 5.5 V  
· Can be driven by two 1.5 V batteries  
On-chip memory  
Capable of high-speed operation and variable in-  
struction execution time for power saving  
· 0.95, 1.91, 3.81, 15.3 µs (at 4.19 MHz operation)  
· 0.67, 1.33, 2.67, 10.7 µs (at 6.0 MHz operation)  
· 122 µs (at 32.768 kHz operation)  
· Program memory (ROM):  
12288 × 8 bits (µPD753012)  
16384 × 8 bits (µPD753016)  
24576 × 8 bits (µPD753017)  
· Data memory (RAM):  
Internal programmable LCD controller/driver  
Small plastic TQFP (12 × 12 mm)  
· Suitable for small sets such as cameras  
One-time PROM: µPD75P3018  
1024 × 4 bits  
APPLICATION  
Remote controllers, camera-contained VCRs, cameras, gas meters, etc.  
ORDERING INFORMATION  
Part number  
Package  
µPD753012GC-XXX-3B9  
µPD753012GK-XXX-BE9  
µPD753016GC-XXX-3B9  
µPD753016GK-XXX-BE9  
µPD753017GC-XXX-3B9  
µPD753017GK-XXX-BE9  
80-pin plastic QFP (14 × 14 mm)  
80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
80-pin plastic QFP (14 × 14 mm)  
80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
80-pin plastic QFP (14 × 14 mm)  
80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
Remark XXX indicates a ROM code suffix.  
In this document, unless otherwise specified, the description is made based on µPD753017  
as typical product.  
The information in this document is subject to change without notice.  
Document No. U10140EJ2V0DS00 (2nd edition)  
Date Published December 1997 N  
Printed in Japan  
The mark shows major revised points.  
1995  
©
µPD753012, 753016, 753017  
FUNCTIONAL OUTLINE  
Parameter  
Function  
Instruction execution time  
• 0.95, 1.91, 3.81, 15.3 µs (main system clock: at 4.19 MHz operation)  
• 0.67, 1.33, 2.67, 10.7 µs (main system clock: at 6.0 MHz operation)  
• 122 µs (subsystem clock: at 32.768 kHz operation)  
On-chip memory  
ROM 12288 × 8 bits (µPD753012)  
16384 × 8 bits (µPD753016)  
24576 × 8 bits (µPD753017)  
RAM 1024 × 4 bits  
General-purpose register  
• 4-bit operation: 8 × 4 banks  
• 8-bit operation: 4 × 4 banks  
Input/  
output  
port  
CMOS input  
8
16  
8
On-chip pull-up resistors can be specified by using software: 23  
CMOS input/output  
CMOS output  
Also used for segment pins  
N-ch open-drain  
input/output  
8
Withstands 13 V, on-chip pull-up resistors can be specified by using mask  
option  
Total  
40  
LCD controller/driver  
• Segment number selection : 24/28/32 segments (can be changed to CMOS  
output port in 4 time-unit; max. 8)  
• Display mode selection  
: Static 1/2 duty (1/2 bias)  
1/3 duty (1/2 bias)  
1/3 duty (1/3 bias)  
1/4 duty (1/3 bias)  
On-chip split resistor for LCD drive can be specified by using mask option  
Timer  
5 channels  
• 8-bit timer/event counter: 3 channels (can be used for 16-bit timer/event counter,  
carrier generator, or timer with gate)  
• Basic interval timer/watchdog timer: 1 channel  
• Watch timer: 1 channel  
Serial interface  
• 3-wire serial I/O mode ... MSB or LSB can be selected for transferring top bit  
• 2-wire serial I/O mode  
• SBI mode  
Bit sequential buffer  
Clock output (PCL)  
16 bits  
Φ, 524, 262, 65.5 kHz (main system clock: at 4.19 MHz operation)  
Φ, 750, 375, 93.8 kHz (main system clock: at 6.0 MHz operation)  
Buzzer output (BUZ)  
• 2, 4, 32 kHz  
(main system clock: at 4.19 MHz operation  
or subsystem clock: at 32.768 kHz operation)  
• 2.93, 5.86, 46.9 kHz (main system clock: at 6.0 MHz operation)  
Vectored interrupts  
Test input  
External: 3, Internal: 5  
External: 1, Internal: 1  
System clock oscillator  
• Ceramic or crystal oscillator for main system clock oscillation  
• Crystal oscillator for subsystem clock oscillation  
Standby function  
Power supply voltage  
Package  
STOP/HALT mode  
VDD = 2.2 to 5.5 V  
• 80-pin plastic QFP (14 × 14 mm)  
• 80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
2
µPD753012, 753016, 753017  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW) ...................................................................................................5  
2. BLOCK DIAGRAM...............................................................................................................................7  
3. PIN FUNCTION ....................................................................................................................................8  
3.1 Port Pins ......................................................................................................................................8  
3.2 Pins Other than Port Pins ........................................................................................................10  
3.3 Pin Input/Output Circuits .........................................................................................................12  
3.4 Recommended Connection for Unused Pins .........................................................................14  
4. SWITCHING FUNCTION BETWEEN MK I MODE AND MK II MODE ......................................15  
4.1 Differences between Mk I Mode and Mk II Mode ....................................................................15  
4.2 Setting Method of Stack Bank Select Register (SBS) ...........................................................16  
5. MEMORY CONFIGURATION ............................................................................................................17  
6. PERIPHERAL HARDWARE FUNCTIONS .......................................................................................21  
6.1 Digital Input/Output Ports ........................................................................................................21  
6.2 Clock Generator ........................................................................................................................22  
6.3 Subsystem Clock Oscillator Control Functions ....................................................................23  
6.4 Clock Output Circuit .................................................................................................................24  
6.5 Basic Interval Timer/Watchdog Timer.....................................................................................25  
6.6 Watch Timer ..............................................................................................................................26  
6.7 Timer/Event Counter.................................................................................................................27  
6.8 Serial Interface ..........................................................................................................................31  
6.9 LCD Controller/Driver ...............................................................................................................33  
6.10 Bit Sequential Buffer … 16 Bits ...............................................................................................35  
7. INTERRUPT FUNCTION AND TEST FUNCTION ...........................................................................36  
8. STANDBY FUNCTION.......................................................................................................................38  
9. RESET FUNCTION ............................................................................................................................39  
10. MASK OPTION ..................................................................................................................................42  
11. INSTRUCTION SETS AND THEIR OPERATIONS ........................................................................43  
12. ELECTRICAL SPECIFICATIONS......................................................................................................55  
13. PACKAGE DRAWINGS.....................................................................................................................68  
14. RECOMMENDED SOLDERING CONDITIONS................................................................................70  
3
µPD753012, 753016, 753017  
APPENDIX A µPD75316B, 753017 AND 75P3018 FUNCTION LIST ................................................72  
APPENDIX B DEVELOPMENT TOOLS .................................................................................................74  
APPENDIX C RELATED DOCUMENTS .................................................................................................78  
4
µPD753012, 753016, 753017  
1. PIN CONFIGURATION (TOP VIEW)  
80-pin plastic QFP (14 × 14 mm)  
µPD753012GC-XXX-3B9, 753016GC-XXX-3B9,  
µPD753017GC-XXX-3B9  
80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
µPD753012GK-XXX-BE9, 753016GK-XXX-BE9,  
µPD753017GK-XXX-BE9  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
60  
S12  
S13  
1
P60/KR0  
X2  
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
S14  
3
X1  
S15  
4
ICNote  
S16  
5
XT2  
S17  
6
XT1  
S18  
V
DD  
7
S19  
P33  
8
S20  
P32  
9
S21  
P31/SYNC  
P30/LCDCL  
P23/BUZ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
S22  
S23  
S24/BP0  
S25/BP1  
S26/BP2  
S27/BP3  
S28/BP4  
S29/BP5  
S30/BP6  
S31/BP7  
P22/PCL/PTO2  
P21/PTO1  
P20/PTO0  
P13/TI0  
P12/INT2/TI1/TI2  
P11/INT1  
P10/INT0  
P03/SI/SB1  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Note Connect the IC (Internally Connected) pin directly to VDD.  
5
µPD753012, 753016, 753017  
Pin Name  
P00-P03  
P10-P13  
P20-P23  
P30-P33  
P40-P43  
P50-P53  
P60-P63  
P70-P73  
BP0-BP7  
KR0-KR7  
SCK  
: Port 0  
VLC0-VLC2  
BIAS  
: LCD Power Supply 0-2  
: LCD Power Supply Bias Control  
: LCD Clock  
: Port 1  
: Port 2  
LCDCL  
SYNC  
: Port 3  
: LCD Synchronization  
: Timer Input 0-2  
: Port 4  
TI0-TI2  
PTO0-PTO2  
BUZ  
: Port 5  
: Programmable Timer Output 0-2  
: Buzzer Clock  
: Port 6  
: Port 7  
PCL  
: Programmable Clock  
: Bit Port  
INT0, INT1, INT4 : External Vectored Interrupt 0, 1, 4  
: Key Return  
: Serial Clock  
: Serial Input  
: Serial Output  
: Serial Bus 0, 1  
: Reset Input  
: Segment Output 0-31  
INT2  
X1, X2  
XT1, XT2  
VDD  
: External Test Input 2  
: Main System Clock Oscillation 1, 2  
: Subsystem Clock Oscillation 1, 2  
: Positive Power Supply  
: Ground  
SI  
SO  
SB0, SB1  
RESET  
S0-S31  
VSS  
IC  
: Internally Connected  
COM0-COM3 : Common Output 0-3  
6
TI1/TI2/  
P12/INT2  
PTO1/P21  
PTO2/P22/PCL  
TOUT0  
INTT2  
TIMER/EVENT  
COUNTER #1  
TIMER/EVENT  
COUNTER #2  
INTT1  
BASIC INTERVAL  
/WATCHDOG  
TIMER  
4
4
4
PORT0  
PORT1  
PORT2  
P00-P03  
P10-P13  
P20-P23  
PROGRAM  
INTBT  
SP (8)  
SBS  
COUNTERNote 1  
TIMER/EVENT  
COUNTER  
#0  
CY  
TI0/P13  
ALU  
PTO0/P20  
4
4
4
4
PORT3  
PORT4  
PORT5  
PORT6  
PORT7  
P30-P33  
P40-P43  
P50-P53  
P60-P63  
P70-P73  
BANK  
INTT0 TOUT0  
WATCH  
TIMER  
BUZ/P23  
GENERAL REG.  
INTW  
fLCD  
ROMNote 2  
PROGRAM  
MEMORY  
DECODE  
AND  
CONTROL  
SI/SB1/P03  
SO/SB0/P02  
SCK/P01  
CLOCKED  
SERIAL  
INTERFACE  
4
RAM  
DATA  
MEMORY  
1024 X 4 BITS  
µ
24  
8
S0-S23  
INTCSI TOUT0  
S24/BP0-  
S31/BP7  
INT0/P10  
INT1/P11  
LCD  
INTERRUPT  
CONTROL  
CONTROLLER  
/DRIVER  
4
COM0-COM3  
INT2/P12  
INT4/P00  
3
V
LC0-VLC2  
fx/2N  
CPU CLOCK Φ  
KR0/P60-  
KR7/P73  
8
SYSTEM CLOCK  
GENERATOR  
LCD  
BIAS  
f
CLOCK  
OUTPUT  
CONTROL  
CLOCK  
DIVIDER  
STAND BY  
CONTROL  
LCDCL/P30  
BIT SEQ.  
BUFFER (16)  
SUB  
MAIN  
SYNC/P31  
PCL/PTC2/P22  
XT1 XT2 X1 X2  
IC  
VDD  
VSS RESET  
Notes 1. µPD753012 and 753016 have a 14-bit configuration, and µPD753017 has a 15-bit configuration.  
2. Capacity of the ROM depends on the product.  
µPD753012, 753016, 753017  
3. PIN FUNCTION  
3.1 Port Pins (1/2)  
Dual  
8-bit  
I/O  
I/O Circuit  
Pin Name  
P00  
Input/Output  
Function  
At Reset  
Input  
Note 1  
Function Pin  
TYPE  
Input  
INT4  
SCK  
4-bit input port (PORT0).  
×
×
×
×
B
For P01 to P03, on-chip pull-up resistors  
can be specified in software in 3-bit units.  
P01  
Input/Output  
Input/Output  
Input/Output  
Input  
F -A  
F -B  
M -C  
B -C  
P02  
SO/SB0  
SI/SB1  
INT0  
P03  
P10  
4-bit input port (PORT1).  
input  
Input  
Input  
On-chip pull-up resistors can be specified  
in software in 4-bit units.  
P11  
INT1  
P12  
TI1/TI2/INT2  
TI0  
Noise eliminator can be selected (Only  
P10/INT0)  
P13  
P20  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
PTO0  
PTO1  
PCL/PTO2  
BUZ  
4-bit input/output port (PORT2).  
On-chip pull-up resistors can be specified  
in software in 4-bit units.  
E-B  
E-B  
M-D  
M-D  
P21  
P22  
P23  
Programmable 4-bit input/output port  
(PORT3).  
P30  
LCDCL  
SYNC  
P31  
This port can be specified input/output in  
bit units.  
P32  
On-chip pull-up resistor can be specified in  
software in 4-bit units.  
P33  
P40-P43Note 2  
High level  
(when pull-up  
resistors are  
contained) or  
high  
N-ch open-drain 4-bit input/output port  
(PORT4).  
A pull-up resistor can be contained bit-wise  
(mask option).  
impedance  
Withstand voltage is 13 V in open-drain mode.  
P50-P53Note 2  
N-ch open-drain 4-bit input/output port  
(PORT5).  
High level  
(when pull-up  
resistors are  
provided) or  
high  
A pull-up resistor can be contained bit-wise  
(mask option).  
impedance  
Withstand voltage is 13 V in open-drain mode.  
Notes 1. Circled characters indicate the Schmitt-trigger input.  
2. If on-chip pull-up resistors are not specified by mask option (when used as N-ch open-drain input port),  
low level input leakage current increases when input or bit manipulation instruction is executed.  
8
µPD753012, 753016, 753017  
3.1 Port Pins (2/2)  
Dual  
8-bit  
I/O  
I/O Circuit  
Pin Name  
P60  
Input/Output  
Function  
At Reset  
Input  
Note 1  
Function Pin  
TYPE  
Programmable 4-bit input/output port  
(PORT6).  
Input/Output  
Input/Output  
Output  
KR0  
KR1  
KR2  
KR3  
KR4  
KR5  
KR6  
KR7  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
F -A  
F -A  
H-A  
P61  
P62  
P63  
P70  
P71  
P72  
P73  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
This port can be specified for input/output  
bit-wise.  
On-chip pull-up resistors can be specified  
in software in 4-bit units.  
Input  
4-bit input/output port (PORT7).  
On-chip pull-up resistors can be specified  
in software in 4-bit units.  
×
Note 2  
1-bit output port (BIT PORT)  
Also used for segment output pins.  
Output  
Notes 1. Circled characters indicate the Schmitt-trigger input.  
2. For BP0 to BP7, VLC1 is selected as an input source.  
The output levels differ depending on BP0 to BP7 and the external circuit of the VLC1.  
Example BP0 to BP7 are connected each other internally in the µPD753017 as shown below. Therefore, the  
output levels of BP0 to BP7 are determined by the levels of R1, R2, and R3  
V
DD  
µ
PD753017  
R2  
BP0  
BP1  
ON  
ON  
V
LC1  
R
1
R3  
9
µPD753012, 753016, 753017  
3.2 Pins Other than Port Pins (1/2)  
Dual  
I/O Circuit  
Pin Name  
TI0  
Input/Output  
Input  
Function  
At Reset  
Note 1  
Function Pin  
TYPE  
P13  
Inputs external event pulses to the timer/event  
counter.  
Input  
B -C  
TI1  
P12/INT2  
TI2  
PTO0  
PTO1  
PTO2  
PCL  
BUZ  
Output  
P20  
P21  
Timer/event counter output  
Clock output  
Input  
E-B  
P22/PCL  
P22/PTO2  
P23  
Any frequency output (for buzzer output  
or system clock trimming)  
SCK  
Input/Output  
P01  
P02  
Serial clock input/output  
Input  
F -A  
F -B  
SO/SB0  
Serial data output  
Serial bus data input/output  
SI/SB1  
INT4  
P03  
P00  
P10  
Serial data input  
M -C  
B
Serial bus data input/output  
Input  
Input  
Edge detection vectored interrupt input (both  
rising edge and falling edge detection)  
Input  
Input  
Edge detection vectored  
interrupt input (detection  
edge can be selected)  
Noise eliminator can be  
selected. (Only P10/INT0)  
With noise eliminator  
asynchronous selection  
possible  
INT0  
B -C  
Asynchronous  
Asynchronous  
INT1  
P11  
INT2  
Input  
Input  
Input  
Output  
Output  
Output  
P12/TI1/TI2 Edge-detection-testable input  
Input  
Input  
Input  
Note 2  
Note 2  
Note 2  
B -C  
F -A  
F -A  
G-D  
H-A  
G-B  
KR0-KR3  
KR4-KR7  
S0-S23  
P60-P63  
Falling edge detection testable input  
Falling edge detection testable input  
P70-P73  
Segment signal output  
Segment signal output  
Common signal output  
S24-S31  
COM0-COM3  
VLC0-VLC2  
BP0-BP7  
LCD drive power  
On-chip split resistor is enable (mask option).  
BIAS  
Output  
Output  
Output  
Output for external split resistor disconnect  
Clock output for externally expanded driver  
Clock output for externally expanded driver sync  
Note 3  
Input  
Input  
Note 4  
LCDCL  
P30  
P31  
E-B  
E-B  
Note 4  
SYNC  
X1  
X2  
Input  
Crystal/ceramic connection pin for the main  
system clock oscillator. When inputting the  
external clock, input the external clock to pin  
X1, and the reverse phase of the external clock  
to pin X2.  
Notes 1. Circled characters indicate the Schmitt trigger input.  
2. Each displays output selects the following VLCX as input source.  
S0-S31: VLC1, COM0-COM2: VLC2, COM3: VLC0.  
3. When a split resistor is contained .......  
Low level  
When no split resistor is contained ...... High impedance  
4. These pins are provided for future system expansion. At present, these pins are used only as pins  
P30 and P31.  
10  
µPD753012, 753016, 753017  
3.2 Pins Other than Port Pins (2/2)  
Dual  
I/O Circuit  
Pin Name  
XT1  
Input/Output  
Function  
At Reset  
Note  
Function Pin  
TYPE  
Input  
Crystal connection pin for the subsystem clock os-  
cillator. When the external clock is used, input the  
external clock to pin XT1. In this case, pin XT2 must  
be left unconnected. Pin XT1 can be used as a 1-  
bit input (test) pin.  
XT2  
RESET  
IC  
Input  
System reset input (low level active)  
Internally connected. Connect directly to VDD.  
Positive power supply  
B
VDD  
VSS  
GND  
Note Circled characters indicate the Schmitt trigger input.  
11  
µPD753012, 753016, 753017  
3.3 Pin Input/Output Circuits  
The µPD753017 pin input/output circuits are shown schematically.  
TYPE A  
TYPE D  
VDD  
VDD  
data  
P-ch  
OUT  
P-ch  
IN  
N-ch  
output  
disable  
N-ch  
Push-pull output that can be placed in output  
high impedance (both P-ch, N-ch off).  
CMOS specification input buffer.  
TYPE B  
TYPE E-B  
VDD  
P.U.R.  
P.U.R.  
enable  
P-ch  
IN  
data  
IN/OUT  
Type D  
output  
disable  
Type A  
Schmitt trigger input having hysteresis characteristic.  
P.U.R. : Pull-Up Resistor  
TYPE F-A  
TYPE B-C  
VDD  
V
DD  
P.U.R.  
P-ch  
P.U.R.  
enable  
P.U.R.  
P.U.R.  
enable  
P-ch  
data  
IN/OUT  
Type D  
output  
disable  
IN  
Type B  
P.U.R. : Pull-Up Resistor  
P.U.R. : Pull-Up Resistor  
12  
µPD753012, 753016, 753017  
TYPE F-B  
TYPE H-A  
V
DD  
P.U.R.  
P-ch  
P.U.R.  
enable  
SEG  
data  
IN/OUT  
Type G-D  
output  
disable  
(P)  
V
DD  
P-ch  
IN/OUT  
data  
bit port  
data  
output  
disable  
N-ch  
Type D  
output  
output  
disable  
(N)  
disable  
P.U.R. : Pull-Up Resistor  
TYPE G-B  
TYPE M-C  
V
DD  
V
V
LC0  
LC1  
P.U.R.  
P.U.R.  
enable  
P-ch  
P-ch N-ch  
IN/OUT  
OUT  
data  
N-ch  
COM  
data  
output  
disable  
N-ch P-ch  
VLC2  
N-ch  
P.U.R. : Pull-Up Resistor  
TYPE G-D  
TYPE M-D  
VDD  
P.U.R.  
(Mask Option)  
V
V
LC0  
LC1  
IN/OUT  
data  
N-ch  
(+13 V  
withstand  
voltage)  
output  
disable  
V
DD  
P-ch N-ch  
Input  
instruction  
P-ch  
P.U.R.Note  
OUT  
Voltage  
limitation  
circuit  
SEG  
data  
N-ch  
N-ch  
(+13 V withstand voltage)  
VLC2  
P.U.R. : Pull-Up Resistor  
This pull-up resistor operates only when an input  
instruction is executed if the pull-up resistor is not  
connected by the mask option. (When the pin  
is at low level, current flows from VDD to the pin.)  
Note  
13  
µPD753012, 753016, 753017  
3.4 Recommended Connection for Unused Pins  
Table 3-1. List of Recommended Connection for Unused Pins  
Pin  
Recommended Connection  
Connect to VSS or VDD.  
P00/INT4  
P01/SCK  
Independently connect to VSS or VDD via resistor.  
P02/SO/SB0  
P03/SI/SB1  
P10/INT0, P11/INT1  
P12/TI1/TI2/INT2  
P13/TI0  
Connected to VSS.  
Connect to VSS or VDD.  
P20/PTO0  
P21/PTO1  
P22/PTO2/PCL  
P23/BUZ  
Input state : Individually connect to VSS or VDD via  
resistor.  
Output state: Leave unconnected.  
P30/LCDCL  
P31/SYNC  
P32  
P33  
P40-P43  
Input state : Connect to VSS.  
P50-P53  
Output state: Connected to VSS. (Do not connect the  
pull-up resistor by mask option).  
P60/KR0-P63/KR3  
Input state  
:
Individually connected to VSS or VDD via  
resistor  
.
P70/KR4-P73/KR7  
S0-S23  
Output state: Leave unconnected.  
Leave unconnected.  
S24/BP0-S31/BP7  
COM0-COM3  
VLC0-VLC2  
Connect to VSS.  
BIAS  
Only if all of VLC0-VLC2 are unused, connect to VSS.  
In other cases, leave unconnected.  
XT1  
XT2  
IC  
Connect to VSS.  
Leave unconnected.  
Directly connect to VDD.  
14  
µPD753012, 753016, 753017  
4. SWITCHING FUNCTION BETWEEN MK I MODE AND MK II MODE  
4.1 Differences between Mk I Mode and Mk II Mode  
The CPU of µPD753017 has the following two modes: Mk I and Mk II, either of which can be selected. The  
mode can be switched by the bit 3 of the stack bank select register (SBS).  
Mk I mode: Upward compatible with µPD75316B.  
Can be used in the 75XL CPU with a ROM capacity of up to 16K bytes.  
Mk II mode: Incompatible with µPD75316B.  
Can be used in all the 75XL CPU’s including those products whose ROM capacity is more  
than 16K bytes.  
Table 4-1. Differences between Mk I Mode and Mk II Mode  
Mk I Mode  
Mk II Mode  
Program memory (bytes)  
µPD753012 : 12288  
µPD753012 : 12288  
µPD753016 : 16384  
µPD753017 : 24576  
µPD753016, 753017 : 16384  
Number of stack bytes  
2 bytes  
3 bytes  
for subroutine instructions  
BRA !addr1 instruction  
Not available  
Available  
CALLA !addr1 instruction  
CALL !addr instruction  
CALLF !faddr instruction  
3-machine cycles  
2-machine cycles  
4-machine cycles  
3-machine cycles  
Caution The Mk II mode supports a program area which exceeds 16K bytes in the 75X and 75XL  
series. This mode enhances the software compatibility with products which have more  
than 16K bytes.  
When Mk II mode is selected, the number of stack bytes (usable area) in the execution  
of a subroutine call instruction increases by 1 per stack compared to Mk I mode.  
Furthermore, when a CALL !addr, or CALLF !faddr instruction is used, each instruction  
takes another machine cycle. Therefore, when more importance is attached to RAM  
utilization or throughput than software compatibility, use the Mk I mode.  
15  
µPD753012, 753016, 753017  
4.2 Setting Method of Stack Bank Select Register (SBS)  
Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format.  
The SBS is set by a 4-bit memory manipulation instruction. When using the Mk I mode, the SBS must be  
initialized to 10XXBNote at the beginning of a program. When using the Mk II mode, it must be initialized to 00XXBNote  
.
Figure 4-1. Stack Bank Select Register Format  
3
2
1
0
Address  
F84H  
Symbol  
SBS  
SBS3 SBS2 SBS1 SBS0  
Stack area specification  
0
0
1
1
0
1
0
1
Memory bank 0  
Memory bank 1  
Memory bank 2  
Memory bank 3  
0 must be set in the bit 2 position.  
0
Mode switching specification  
0
1
Mk II mode  
Mk I mode  
Note The desired numbers must be set in the XX positions.  
Caution Since SBS. 3 is set to “1” after a RESET signal is generated, the CPU operates in the Mk  
I mode. When executing an instruction in the Mk II mode, set SBS. 3 to “0” to select the  
Mk II mode.  
16  
µPD753012, 753016, 753017  
5. MEMORY CONFIGURATION  
Program memory (ROM) ............... 12288 × 8 bits (µPD753012)  
............... 16384 × 8 bits (µPD753016)  
............... 24576 × 8 bits (µPD753017)  
Data memory (RAM)  
·
·
Data area …1024 words × 4 bits (000H to 3FFH)  
Peripheral hardware area…128 × 4 bits (F80H to FFFH)  
Figure 5-1. Program Memory Map (1/3)  
(a) µPD753012  
7
6
5
0
0000H  
0002H  
0004H  
0006H  
0008H  
000AH  
000CH  
RBE Internal reset start address  
MBE  
(high-order 6 bits)  
Internal reset start address (Iow-order 8 bits)  
MBE RBE INTBT/INT4 start address  
INTBT/INT4 start address  
(high-order 6 bits)  
(Iow-order 8 bits)  
(high-order 6 bits)  
(Iow-order 8 bits)  
(high-order 6 bits)  
(Iow-order 8 bits)  
MBE RBE INT0 start address  
INT0 start address  
Branch address of  
BR BCXA, BR BCDE,  
BR !addr1, BRA !addr1Note  
or CALLA !addr1Note  
instruction  
CALLF !faddr  
instruction  
entry address  
MBE RBE INT1 start address  
INT1 start address  
BRCB !caddr  
instruction  
branch address  
MBE RBE INTCSI start address  
INTCSI start address  
(high-order 6 bits)  
(Iow-order 8 bits)  
(high-order 6 bits)  
CALL !addr instruction  
subroutine entry address  
INTT0 start address  
MBE RBE  
INTT0 start address  
(Iow-order 8 bits)  
(high-order 6 bits)  
INTT1, INTT2 start address  
MBE RBE  
INTT1, INTT2 start address (Iow-order 8 bits)  
BR $addr instruction  
relative branch address  
(–15 to –1, +2 to +16)  
0020H  
GETI instruction reference table  
Branch destination  
007FH  
0080H  
address and  
subroutine entry  
address when GETI  
instruction is executed  
07FFH  
0800H  
0FFFH  
1000H  
BRCB !caddr instruction  
branch address  
1FFFH  
2000H  
BRCB !caddr instruction  
branch address  
2FFFH  
Note Can be used in Mk II mode only.  
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order  
eight bits of PC by executing the BR PCDE, BR PCXA instruction.  
17  
µPD753012, 753016, 753017  
Figure 5-1. Program Memory Map (2/3)  
(b) µPD753016  
7
6
5
0
0000H  
0002H  
0004H  
MBE RBE  
MBE RBE  
MBE RBE  
Internal reset start address (high-order 6 bits)  
Internal reset start address (Iow-order 8 bits)  
INTBT/INT4 start address (high-order 6 bits)  
INTBT/INT4 start address (Iow-order 8 bits)  
Branch address of  
BR BCXA, BR BCDE,  
BR !addr, BRA !addr1Note  
or CALLA !addr1Note  
instruction  
INT0 start address  
INT0 start address  
(high-order 6 bits)  
(Iow-order 8 bits)  
CALLF !faddr  
instruction  
entry address  
0006H  
0008H  
MBE RBE  
MBE RBE  
MBE RBE  
INT1 start address  
INT1 start address  
INTCSI start address  
INTCSI start address  
INTT0 start address  
INTT0 start address  
(high-order 6 bits)  
(Iow-order 8 bits)  
(high-order 6 bits)  
(Iow-order 8 bits)  
(high-order 6 bits)  
(Iow-order 8 bits)  
BRCB !caddr  
instruction  
branch address  
CALL !addr instruction  
subroutine entry address  
000AH  
000CH  
MBE RBE INTT1,INTT2 start address (high-order 6 bits)  
INTT1,INTT2 start address (Iow-order 8 bits)  
BR $addr instruction  
relative branch address  
(–15 to –1, +2 to +16)  
0020H  
GETI instruction reference table  
007FH  
0080H  
Branch destination  
address and  
subroutine entry  
address when GETI  
instruction is executed  
07FFH  
0800H  
0FFFH  
1000H  
BRCB !caddr instruction  
branch address  
1FFFH  
2000H  
BRCB !caddr instruction  
branch address  
2FFFH  
3000H  
BRCB !caddr instruction  
branch address  
3FFFH  
Note Can be used in Mk II mode only.  
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order  
eight bits of PC by executing the BR PCDE, BR PCXA instruction.  
18  
µPD753012, 753016, 753017  
Figure 5-1. Program Memory Map (3/3)  
(c) µPD753017  
7
6
5
0
MBE RBE Internal reset start address (high-order 6 bits)  
Internal reset start address (Iow-order 8 bits)  
0000H  
0002H  
0004H  
MBE RBE INTBT/INT4 start address  
INTBT/INT4 start address  
(high-order 6 bits)  
(Iow-order 8 bits)  
(high-order 6 bits)  
(Iow-order 8 bits)  
CALLF !faddr  
instruction  
entry address  
MBE RBE INT0 start address  
INT0 start address  
0006H  
0008H  
000AH  
000CH  
MBE RBE INT1 start address  
INT1 start address  
(high-order 6 bits)  
(Iow-order 8 bits)  
(high-order 6 bits)  
(Iow-order 8 bits)  
(high-order 6 bits)  
(Iow-order 8 bits)  
BRCB !caddr  
instruction  
branch address  
MBE RBE INTCSI start address  
INTCSI start address  
BR !addr  
instruction  
branch address  
MBE RBE INTT0 start address  
INTT0 start address  
BR BCDE  
BR BCXA  
branch address  
CALL !addr  
instruction  
branch address  
MBE RBE INTT1,INTT2 start address (high-order 6 bits)  
INTT1,INTT2 start address (Iow-order 8 bits)  
BRA !addr1Note  
instruction  
branch address  
GETI instruction  
branch/call  
address  
0020H  
GETI instruction reference table  
CALLA !addr1Note  
instruction  
007FH  
0080H  
branch address  
07FFH  
0800H  
BR $addr instruction  
relative branch address  
(–15 to –1, +2 to +16)  
0FFFH  
1000H  
BRCB !caddr instruction  
branch address  
1FFFH  
2000H  
BRCB !caddr instruction  
branch address  
2FFFH  
3000H  
BRCB !caddr instruction  
branch address  
3FFFH  
4000H  
BRCB !caddr instruction  
branch address  
4FFFH  
5000H  
BRCB !caddr instruction  
branch address  
5FFFH  
Note Can be used in Mk II mode only.  
Caution The interrupt vector start address shown above consists of 14 bits. Set it in 16K space (0000H-  
3FFFH).  
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order  
eight bits of PC by executing the BR PCDE, BR PCXA instruction.  
19  
µPD753012, 753016, 753017  
Figure 5-2. Data Memory Map  
Data memory  
Memory bank  
000H  
(32 × 4)  
General-purpose register area  
01FH  
020H  
0
256 × 4  
(224 × 4)  
0FFH  
100H  
256 × 4  
(224 × 4)  
1DFH  
1E0H  
1
(32 × 4)  
Display data memory  
1FFH  
200H  
Stack areaNote  
Data area  
static RAM  
(1024 × 4)  
256 × 4  
2
2FFH  
300H  
256 × 4  
3
3FFH  
F80H  
Not incorporated  
Peripheral  
hardware area  
128 × 4  
15  
FFFH  
Note For stack area, one memory bank can be selected among memory bank 0-3.  
20  
µPD753012, 753016, 753017  
6. PERIPHERAL HARDWARE FUNCTIONS  
6.1 Digital Input/Output Ports  
There are four types of I/O ports as follows.  
· CMOS input (PORT0, 1)  
:
8
· CMOS input/output (PORT2, 3, 6, 7)  
· N-channel open-drain input/output (PORT4, 5)  
· Bit port output (BP0-BP7)  
Total  
: 16  
:
:
8
8
40  
Table 6-1. Types and Features of Digital Ports  
Port (Pin Name)  
Function  
Operation & Features  
Remarks  
PORT0  
(P00-P03)  
4-bit input  
Dual function pins also function as output pins depending on  
the operation mode when the serial interface function is used.  
Also used for the INT4,  
SCK, SO/SB0, SI/SB1 pins.  
PORT1  
(P10-P13)  
Dedicated 4-bit I/O port  
Also used for the INT0-  
INT2 and TI0-TI2 pins.  
PORT2  
(P20-P23)  
4-bit I/O  
Can be set to input mode or output mode in 4-bit  
units.  
Also used for the PTO0-  
PTO2, PCL, BUZ pins.  
PORT3  
(P30-P33)  
Can be set to input mode or output mode in 1/4 bit  
units.  
Also used for the LCDCL,  
SYNC pins.  
PORT4  
(P40-P43)  
4-bit I/O  
Can be set to input mode  
or output mode in 4-bit  
units.  
Ports 4 and 5 are paired  
and data can be input/  
output in 8-bit units.  
On-chip pull-up resistor can  
be specified bit-wise by  
mask option.  
(N-channel  
open-drain,  
13 V  
PORT5  
(P50-P53)  
withstanding)  
PORT6  
(P60-P63)  
4-bit I/O  
Can be set to input mode  
or output mode in 1/4-bit  
units.  
Ports 6 and 7 are paired  
and data can be input/  
output in 8-bit units.  
Also used for the KR0-KR3  
pins.  
PORT7  
(P70-P73)  
Can be set to input mode  
or output mode in 4-bit  
units.  
Also used for the KR4-KR7  
pins.  
BP0-BP7  
1-bit output  
Outputs data bit-wise. Can be switched to LCD drive  
segment output S24-S31 by software.  
21  
µPD753012, 753016, 753017  
6.2 Clock Generator  
Operation of the clock generator is determined by the processor clock control register (PCC) and system clock  
control register (SCC).  
The two clocks, the main system clock and subsystem clock, are available.  
The instruction excution time can be altered.  
• 0.95 µs, 1.91 µs, 3.81 µs, 15.3 µs (main system clock : at 4.19 MHz operation)  
• 0.67 µs, 1.33 µs, 2.67 µs, 10.7 µs (main system clock : at 6.0 MHz operation)  
• 122 µs (subsystem clock : at 32.768 kHz operation)  
Figure 6-1. Clock Generator Block Diagram  
· Basic interval timer (BT)  
XT1  
· Timer/event counter  
· Serial interface  
· Watch timer  
· LCD controller/driver  
· INT0 noise eliminator  
· Clock output circuit  
VDD  
LCD controller/driver  
Watch timer  
Subsystem  
clock oscillator  
fXT  
XT2  
X1  
1/1~1/4096  
Divider  
VDD  
f
X
Main system  
clock oscillator  
X2  
1/2 1/41/16  
Selector  
WM.3  
SCC  
Oscillation  
stop  
Divider  
1/4  
SCC3  
SCC0  
Selector  
Φ
· CPU  
· INT0 noise eliminator  
· Clock output circuit  
PCC  
PCC0  
PCC1  
4
HALT F/F  
S
PCC2  
PCC3  
HALTNote  
STOPNote  
R
Q
PCC2,  
PCC3  
Clear  
STOP F/F  
Wait release signal from BT  
S
Q
RESET signal  
R
Standby release signal from  
interrupt control circuit  
Note Instruction execution  
Remarks 1. fX = Main system clock frequency  
2. fXT = Subsystem clock frequency  
3. Φ = CPU clock  
4. PCC: Processor Clock Control Register  
5. SCC: System Clock Control Register  
6. One clock cycle (tCY) of Φ equal to one machine cycle of the instruction.  
22  
µPD753012, 753016, 753017  
6.3 Subsystem Clock Oscillator Control Functions  
The µPD753017 subsystem clock oscillator has the following two control functions.  
Selects by software whether an on-chip feedback resistor is to be used or notNote  
.
Reduces current consumption by decreasing the drive current of the on-chip inverter when the supply current  
is high (VDD 2.7 V).  
Note When not using the subsystem clock, set SOS.0 to 1 in software (on-chip feedback resistor is not used),  
connect XT1 to VSS, and leave XT2 unconnected, so that the current consumption of the subsystem clock  
oscillator can be reduced.  
The above functions can be used by switching the bits 0 and 1 of the sub-oscillator control register (SOS).  
(Refer to Figure 6-2.)  
Figure 6-2. Subsystem Clock Oscillator  
V
DD  
SOS.0  
Feedback resistor  
Inverter  
µ
PD753017  
SOS.1  
XT1  
XT2  
V
DD  
23  
µPD753012, 753016, 753017  
6.4 Clock Output Circuit  
The clock output circuit is provided to output the clock pulses from the P22, PTO2, and PCL pins to the remote  
control waveform outputs and peripheral LSI’s, etc.  
Clock output (PCL) : Φ, 524, 262, 65.5 kHz (at 4.19 MHz operation)  
Φ, 750, 375, 93.8 kHz (at 6.0 MHz operation)  
Figure 6-3. Clock Output Circuit Block Diagram  
From clock  
generator  
From timer/event  
Φ
counter (channel 2)  
Output buffer  
f
X
X
/23  
/24  
Selector  
PCL/PTO2/P22  
f
f
X
/26  
PORT2.2  
Bit 2 of PMGB  
P22  
output latch  
Port 2 I/O mode  
specification bit  
CLOM3  
0
CLOM1 CLOM0 CLOM  
4
Internal bus  
Remark Special care has been taken in designing the chip so that small-width pulses may not be output  
when switching clock output enable/disable.  
24  
µPD753012, 753016, 753017  
6.5 Basic Interval Timer/Watchdog Timer  
The basic interval timer/watchdog timer has the following functions.  
Interval timer operation to generate a reference time interrupt  
Watchdog timer operation to detect a runaway of program and reset the CPU  
Selects and counts the wait time when the standby mode is released  
Reads the contents of counting  
Figure 6-4. Basic Interval Timer/Watchdog Timer Block Diagram  
From clock  
generator  
Clear  
Clear  
fX  
fX  
fX  
/25  
/27  
/29  
BT  
Basic interval timer  
(8-bit frequency divider)  
Set  
MPX  
interrupt  
request flag  
Vectored  
interrupt  
IRQBT request signal  
BT  
f
/212  
X
3
Wait release signal  
when standby is  
released.  
Internal reset  
signal  
WDTM  
1
BTM3 BTM2 BTM1 BTM0 BTM  
4
SET1Note  
8
SET1Note  
Internal bus  
Note Instruction execution  
25  
µPD753012, 753016, 753017  
6.6 Watch Timer  
The µPD753017 has one channel of watch timer. The watch timer has the following functions.  
Sets the test flag (IRQW) with 0.5 sec interval.  
The standby mode can be released by the IRQW.  
0.5 sec interval can be created by both the main system clock and subsystem clock. Take fX = 4.194304  
MHz for the main system clock frequency and fXT = 32.768 kHz for the subsystem clock.  
Convenient for program debugging and checking as interval becomes 128 times longer (3.91 ms) with the  
fast feed mode.  
Outputs the frequencies (2.048, 4.096, 32.768 kHz) to the P23 and BUZ pins, usable for buzzer and trimming  
of system clock frequencies.  
Clears the frequency divider to make the clock start with zero seconds.  
Figure 6-5. Watch Timer Block Diagram  
fW  
(512 Hz : 1.95 ms)  
26  
fLCD  
fW  
(256 Hz : 3.91 ms)  
27  
fX  
128  
Selector  
fW  
fW  
INTW  
IRQW  
set signal  
214  
From  
clock  
generator  
(32.768 kHz)  
(32.768 kHz)  
Selector  
Divider  
2 Hz  
0.5 sec  
fXT  
4 kHz 2 kHz  
(32.768 kHz)  
fW  
23  
fW  
Clear  
24  
Selector  
Output buffer  
P23/BUZ  
WM  
PORT2.3  
PMGB bit 2  
Port 2 input/  
P23  
output latch  
WM7  
0
WM5 WM4 WM3 WM2 WM1 WM0  
output mode  
8
Bit test instruction  
Internal bus  
The values enclosed in parentheses are applied when fX = 4.194304 MHz and fXT = 32.768 kHz.  
26  
µPD753012, 753016, 753017  
6.7 Timer/Event Counter  
The µPD753017 has three channels of timer/event counter. The timer/event counter has the following functions.  
Programmable interval timer operation  
Square wave output of any frequency to the PTOn pin  
Event counter operation  
Divides the frequency of signal input via the TIn pin to 1-Nth of the original signal and outputs the divided  
frequency to the PTOn pin (frequency divider operation).  
Supplies the serial shift clock to the serial interface circuit.  
Calls the counting status.  
The timer/event counter operates in the following four modes as set by the mode register.  
Table 6-2. Operation Modes of Timer/Event Counter  
Channel  
Channel 0 Channel 1 Channel 2  
Mode  
8-bit timer/event counter mode  
Note  
Gate control function  
PWM pulse generator mode  
16-bit timer/event counter mode  
Gate control function  
×
×
×
×
×
×
×
Note  
Carrier generator mode  
Note Used for gate control signal generation  
27  
Figure 6-6. Timer/Event Counter Block Diagram (channel 0)  
Internal bus  
SET1Note  
8
8
8
TOE0  
PORT2.0  
PGMB bit 2  
TMOD0  
TM0  
0
Port 2  
TO  
P20  
input/output  
mode  
TM06 TM05 TM04 TM03 TM02  
0
Modulo register (8)  
8
enable flag  
output latch  
To serial interface  
PORT1.3  
TOUT0  
Match  
TOUT  
F/F  
Comparator (8)  
8
PTO0/P20  
Output buffer  
Input  
Reset  
buffer  
T0  
TI0/P13  
INTT0  
IRQT0  
set signal  
Count register (8)  
Clear  
f
f
f
x
x
x
/24  
/26  
/28  
MPX  
CP  
From  
clock  
generator  
f
/210  
x
Timer operation start  
RESET  
IRQT0  
clear signal  
µ
To timer/event counter (channel 2)  
Note Instruction execution  
Caution When setting data to the TM0, be sure to set bits 0 and 1 to 0.  
Figure 6-7. Timer/Event Counter Block Diagram (channel 1)  
Internal bus  
8
TOE1  
PORT2.1  
PMGB.2  
TM1  
Port 2  
input/output  
mode  
8
T1  
enable flag  
P21  
output latch  
TM16 TM15 TM14 TM13 TM12 TM11 TM10  
Decoder  
TMOD1  
Modulo register (8)  
PORT1.2  
8
P21/PTO1  
Match  
TOUT  
F/F  
Comparator (8)  
8
Input buffer  
Output buffer  
TI1/TI2/P12/INT2  
Reset  
Timer/event counter  
output (channel 2)  
T1  
f
f
x
/25  
Count register (8)  
Clear  
MPX  
CP  
x
/26  
From clock  
generator  
f
x
/28  
f
f
x
/210  
/212  
x
RESET  
µ
Timer operation start  
16 bit timer/event counter mode  
IRQT1 clear signal  
Selector  
INTT1  
IRQT1  
set signal  
Timer/event counter match signal (channel 2)  
(When 16-bit timer/event counter mode)  
Timer/event counter reload signal (channel 2)  
Timer/event counter comparator (channel 2)  
(When 16-bit timer/event counter mode)  
Figure 6-8. Timer/Event Counter Block Diagram (channel 2)  
Internal bus  
8
8
8
8
TMOD2H  
TMOD2  
TC2  
PORT2.2 PMGB.2  
TM2  
P22  
output latch  
Port 2  
input/output  
Modulo register for high level period setup (8)  
Modulo register (8)  
8
TM26 TM25 TM24 TM23 TM22 TM21 TM20  
Decoder  
TGCE  
TOE2REMC NRZB NRZ  
Reload  
8
PORT1.2  
MPX (8)  
P22/PCL/PTO2  
8
Match  
Output buffer  
TOUT  
F/F  
Comparator (8)  
Iuput buffer  
TI1/TI2/  
P12/INT2  
Reset  
8
Timer/event counter  
clock input (channel 1)  
T2  
f
x
Overflow  
Carrier generator mode  
f
x
/2  
Count register (8)  
Clear  
MPX  
CP  
/24  
/26  
/28  
From clock  
generator  
f
f
f
x
x
x
f
x
/210  
INTT2  
IRQT2  
set signal  
16-bit timer/event counter mode  
IRQT2 clear signal  
Timer operation start  
RESET  
Timer/event counter  
clear signal (channel 1)  
(When 16-bit timer/event  
counter mode)  
Timer event counter  
TOUT F/F (channel 0)  
µ
Timer/event counter  
Timer/event counter  
match signal (channel 1)  
(When carrier generator mode)  
match signal (channel 1)  
(When 16-bit timer/event  
counter mode)  
From clock  
output circuit  
µPD753012, 753016, 753017  
6.8 Serial Interface  
The µPD753017 is provided with an 8-bit clocked serial interface. This serial interface operates in the following  
four modes:  
· Operation stop mode  
· 3-wire serial I/O mode  
· 2-wire serial I/O mode  
· SBI mode  
31  
Figure 6-9. Serial Interface Block Diagram  
Internal bus  
Bit test  
8
Bit manipulation  
Bit test  
8/4  
8
8
Slave address register (SVA) (8)  
SBIC  
CSIM  
Match  
signal  
RELT  
CMDT  
Address comparator  
Shift register (SIO)  
(8)  
(8)  
SO latch  
P03/SI/SB1  
P02/SO/SB0  
SET CLR  
Selector  
D
Q
Busy/  
acknowledge  
output circuit  
Selector  
RELD  
CMDD  
ACKD  
Bus release/  
command/  
acknowledge  
detector  
µ
INTCSI  
P01/SCK  
INTCSI  
control circuit  
IRQCSI  
set signal  
Serial clock counter  
f
f
f
X
X
X
/23  
/24  
/26  
P01  
output Iatch  
Serial clock  
selector  
Serial clock control  
circuit  
TOUT F/F  
(from timer/event counter)  
External SCK  
µPD753012, 753016, 753017  
6.9 LCD Controller/Driver  
The µPD753017 incorporates a display controller which generates segment and common signals according to  
the display data memory contents and incorporates segment and common drivers which can drive the LCD panel  
directly.  
The µPD753017 LCD controller/driver functions are as follows:  
Display data memory is read automatically by DMA operation and segment and common signals are  
generated.  
Display mode can be selected from among the following five:  
<1> Static  
<2> 1/2 duty (time multiplexing by 2), 1/2 bias  
<3> 1/3 duty (time multiplexing by 3), 1/2 bias  
<4> 1/3 duty (time multiplexing by 3), 1/3 bias  
<5> 1/4 duty (time multiplexing by 4), 1/3 bias  
A frame frequency can be selected from among four in each display mode.  
A maximum of 32 segment signal output pins (S0-S31) and four common signal output pins (COM0-COM3).  
The segment signal output pins (S24-S27 and S28-S31) can be changed to the output ports in 4-pin units.  
Split-resistor can be incorporated to supply LCD drive power. (Mask option)  
· Various bias methods and LCD drive voltages can be applicable.  
· When display is off, current flow to the split resistor is cut.  
Display data memory not used for display can be used for normal data memory.  
It can also operate by using the subsystem clock.  
33  
Figure 6-10. LCD Controller/Driver Block Diagram  
Internal bus  
4
8
4
4
8
Display  
control  
register  
Port 3  
Port mode  
Display data  
memory  
1FFH  
1FEH  
1F9H  
1F8H  
1E0H  
Display mode register  
register group A  
output latch  
3 2  
1
0
0
3 2  
1
0
0
3 2  
1
0
0
3 2  
1
0
0
3 2  
1
0
0
1
0
1 0  
3 2  
1
3 2  
1
3 2  
1
3 2  
1
3 2  
1
Timing  
controller  
f
LCD  
Multi-  
plexer  
µ
Selector  
LCD drive  
voltage control  
Segment driver  
S24/BP0  
Common driver  
S31/BP7  
S30/BP6  
S23  
S0  
COM3 COM2 COM1 COM0  
V
LC2  
V
LC1  
V
LC0  
P31/  
P30/  
SYNC LCDCL  
µPD753012, 753016, 753017  
6.10 Bit Sequential Buffer … 16 Bits  
The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be  
easily performed by changing the address specification and bit specification in sequence, therefore it is useful  
when processing a long data bit-wise.  
Figure 6-11. Bit Sequential Buffer Format  
Address  
Bit  
FC3H  
FC2H  
FC1H  
FC0H  
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
Symbol  
BSB3  
BSB2  
BSB1  
BSB0  
L = BH  
L = 7H  
L register  
L = FH  
L = CH  
L = 8H  
L = 4H  
L = 0H  
L = 3H  
DECS L  
INCS L  
Remarks 1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.  
2. In the pmem.@L addressing, the BSB can be manipulated regardless of MBE/MBS specification.  
35  
µPD753012, 753016, 753017  
7. INTERRUPT FUNCTION AND TEST FUNCTION  
µPD753017 has eight types of interrupt sources and two types of test sources. Among the test sources, INT2  
is provided with two testable inputs for edge detection.  
µPD753017 has the following functions in the interrupt controller.  
(1) Interrupt function  
Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the  
interrupt enable flag (IEXXX) and interrupt master enable flag (IME).  
Can set any interrupt start address.  
Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register  
(IPS).  
Test function of interrupt request flag (IRQXXX). An interrupt generated can be checked by software.  
Release the standby mode. A release interrupt can be selected by the interrupt enable flag.  
(2) Test function  
Test request flag (IRQXXX) generation can be checked by software.  
Release the standby mode. The test source to be released can be selected by the test enable flag.  
36  
Figure 7-1. Interrupt Control Circuit Block Diagram  
Internal bus  
2
1
4
IME IPS  
IST1 IST0  
Interruput enable flag (IE×××  
)
IM2  
IM1  
IM0  
Decoder  
IRQBT  
IRQ4  
INTBT  
VRQn  
Both edge  
detector  
INT4/P00  
INT0/P10  
Edge  
detector  
Selec-  
tor  
Note  
IRQ0  
Edge  
detector  
IRQ1  
INT1/P11  
Vector table  
address  
generator  
Priority control  
circuit  
INTCSI  
INTT0  
INTT1  
INTT2  
INTW  
IRQCSI  
IRQT0  
IRQT1  
IRQT2  
IRQW  
IRQ2  
µ
Rising edge  
detector  
INT2/TI1/TI2/P12  
Selec-  
tor  
Standby release  
signal  
KR0/P60  
KR3/P63  
Falling edge  
detector  
IM2  
Note Noise eliminator (Standby release is disabled when noise eliminator is selected.)  
µPD753012, 753016, 753017  
8. STANDBY FUNCTION  
In order to save power consumption while a program is in a standby mode, two types of standby modes (STOP  
mode and HALT mode) are provided for the µPD753017.  
Table 8-1. Operation Status in Standby Mode  
STOP Mode  
STOP instruction  
HALT Mode  
HALT instruction  
Set instruction  
System clock when set  
Settable only when the main system  
clock is used.  
Settable both by the main system  
clock and subsystem clock.  
Operation Clock generator  
status  
Only the main system clock stops  
oscillation.  
Only the CPU Φ halts (oscillation  
continues).  
Note 1  
Basic interval timer  
Operation stops  
Operation.  
BT mode : Sets IRQBT at reference  
time intervals.  
WT mode: Generates reset signal  
when BT overflows.  
Note 1  
Serial interface  
Operable only when an external SCK  
input is selected as the serial clock.  
Operable  
Note 1  
Timer/event counter  
Operable only when a signal input to  
the TI0-TI2 pins is specified as the  
count clock.  
Operable  
Watch timer  
Operable when fXT is selected as the  
count clock.  
Operable  
Operable  
LCD controller/driver  
External interrupt  
Operable only when fXT is selected as  
the LCDCL.  
The INT1, 2, and 4 are operable.  
Only the INT0 is not operated.Note 2  
CPU  
The operation stops.  
Release signal  
Interrupt request signal sent from the operable hardware enabled by the  
interrupt enable flag or RESET signal input.  
Notes 1. Cannot operate only when the main system clock stops.  
2. Can operate only when the noise eliminator is not used (IM02 = 1) by bit 2 of the edge detection mode  
register(IM0).  
38  
µPD753012, 753016, 753017  
9. RESET FUNCTION  
There are two reset inputs: external reset signal (RESET) and reset signal sent from the basic interval timer/  
watchdog timer. When either one of the reset signals are input, an internal reset signal is generated. Figure 9-  
1 shows the circuit diagram of the above two inputs.  
Figure 9-1. Configuration of Reset Function  
RESET  
Internal reset signal  
Reset signal sent from the basic  
interval timer/watchdog timer  
WDTM  
Internal bus  
The µPD753017 is set by the RESET signal generated and each device is initialized as listed in Table 9-1.  
Figure 9-2 shows the timing chart of the reset operation.  
Figure 9-2. Reset Operation by RESET Signal Generation  
Wait Note  
RESET  
signal  
generated  
Operation mode or  
standby mode  
HALT mode  
Operation mode  
Internal reset operation  
Note The following two times can be selected by the mask option.  
217/fX (21.8 ms : at 6.00 MHz operation, 31.3 ms : at 4.19 MHz operation)  
215/fX (5.46 ms : at 6.00 MHz operation, 7.81 ms : at 4.19 MHz operation)  
39  
µPD753012, 753016, 753017  
Table 9-1. Status of Each Device After Reset (1/2)  
RESET Signal Generation  
in Standby Mode  
RESET Signal Generation  
in Operation  
Hardware  
Program counter (PC)  
µPD753012,  
Sets the low-order 6 bits of  
program memory’s address  
Sets the low-order 6 bits of  
program memory’s address  
753016  
0000H to the PC13-PC8 and the 0000H to the PC13-PC8 and the  
contents of address 0001H to  
the PC7-PC0.  
contents of address 0001H to  
the PC7-PC0.  
µPD753017  
Sets the low-order 7 bits of  
program memory’s address  
Sets the low-order 7 bits of  
program memory’s address  
0000H to the PC14-PC8 and the 0000H to the PC14-PC8 and the  
contents of address 0001H to  
the PC7-PC0.  
contents of address 0001H to  
the PC7-PC0.  
PSW  
Carry flag (CY)  
Held  
Undefined  
Skip flag (SK0-SK2)  
0
0
0
0
Interrupt status flag (IST0)  
Bank enable flag (MBE, RBE)  
Sets the bit 6 of program  
memory’s address 0000H to  
the RBE and bit 7 to the MBE.  
Sets the bit 6 of program  
memory’s address 0000H to  
the RBE and bit 7 to the MBE.  
Stack pointer (SP)  
Undefined  
Undefined  
Stack bank select register (SBS)  
Data memory (RAM)  
1000B  
1000B  
Held  
Undefined  
General-purpose register (X, A, H, L, D, E, B, C)  
Bank select register (MBS, RBS)  
Held  
Undefined  
0, 0  
0, 0  
Basic interval/  
watchdog  
timer  
Counter (BT)  
Undefined  
Undefined  
Mode register (BTM)  
Watchdog timer enable flag (WDTM)  
Counter (T0)  
0
0
0
0
Timer/event  
counter (T0)  
0
0
Modulo register (TMOD0)  
Mode register (TM0)  
TOE0, TOUT F/F  
FFH  
0
FFH  
0
0, 0  
0
0, 0  
0
Timer/event  
counter (T1)  
Counter (T1)  
Modulo register (TMOD1)  
Mode register (TM1)  
TOE1, TOUT F/F  
FFH  
0
FFH  
0
0, 0  
0
0, 0  
0
Timer/event  
counter (T2)  
Counter (T2)  
Modulo register (TMOD2)  
FFH  
FFH  
FFH  
FFH  
High level period setting modulo  
register (TMOD2H)  
Mode register (TM2)  
TOE2, TOUT F/F  
REMC, NRZ, NRZB  
TGCE  
0
0, 0  
0, 0, 0  
0
0
0, 0  
0, 0, 0  
0
Watch timer  
Mode register (WM)  
0
0
40  
µPD753012, 753016, 753017  
Table 9-1. Status of Each Device After Reset (2/2)  
RESET Signal Generation  
in Standby Mode  
RESET Signal Generation  
in Operation  
Hardware  
Serial interface  
Shift register (SIO)  
Held  
Undefined  
Operating mode register (CSIM)  
SBI control register (SBIC)  
0
0
0
0
Slave address register (SVA)  
Processor clock control register (PCC)  
System clock control register (SCC)  
Clock output mode register (CLOM)  
Held  
Undefined  
Clock generator,  
clock output  
circuit  
0
0
0
0
0
0
Sub-oscillator control register (SOS)  
0
0
LCD controller  
/driver  
Display mode register (LCDM)  
0
0
Display control register (LCDC)  
Interrupt request flag (IRQXXX)  
Interrupt enable flag (IEXXX)  
Interrupt master enable flag (IME)  
INT0, 1, 2 mode registers (IM0, IM1, IM2)  
Priority selection register (IPS)  
Output buffer  
0
0
Interrupt  
Reset (0)  
Reset (0)  
function  
0
0
0
0
0, 0, 0  
0, 0, 0  
0
0
Digital port  
Off  
Off  
Output latch  
Cleared (0)  
Cleared (0)  
I/O mode registers (PMGA, PMGB)  
Pull-up resistor setting register (POGA)  
0
0
0
0
Bit sequential buffer (BSB0-BSB3)  
Held  
Undefined  
41  
µPD753012, 753016, 753017  
10. MASK OPTION  
The µPD753017 has the following mask options.  
Mask option of P40 to P43 and P50 to P53  
An on-chip pull-up resistor can be selected.  
<1> Specifies an on-chip pull-up resistor in bit units.  
<2> Does not specify an on-chip pull-up resistor.  
Mask option of VLC0 to VLC2 and BIAS pins  
An on-chip split resistor for LDC driving can be selected.  
<1> Does not specify an on-chip divider resistor  
<2> Specifies four 10-k(typ.) on-chip split resistors at the same time.  
<3> Specifies four 100-k(typ.) on-chip split resistors at the same time.  
Standby function mask option  
Wait time can be selected by RESET signai input.  
<1> 217/fX (21.8 ms: at fX = 6.0 MHz, 31.3 ms: at fX = 4.19 MHz)  
<2> 215/fX (5.46 ms: at fX = 6.0 MHz, 7.81 ms: at fX = 4.19 MHz)  
Subsystem clock mask option  
Selectable an on-chip feedback resistor can be used/cannot be used  
<1> Make an on-chip feedback resistor usable  
(Switch on-chip feedback resistor ON/OFF in software)  
<2> Make an on-chip feedback resistor unusable  
(Disconnects on-chip feedback resistor in hardware)  
42  
µPD753012, 753016, 753017  
11. INSTRUCTION SETS AND THEIR OPERATIONS  
(1) Operand identifiers and methods of use  
Operands are written in the operand column of each instruction in accordance with the method of use for  
the operand identifier of the instruction. For details, refer to RA75X Assembler Package User’s Manual—  
Language (U12385E). If there are several elements, one of them is selected. Capital letters and the +  
and – symbols are key words and are written as they are.  
For immediate data, appropriate numbers and labels are written.  
Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the registers can be written.  
However, there are restrictions in the labels that can be written for fmem and pmem. For details, refer to  
User’s Manual.  
Identifier  
Format  
reg  
X, A, B, C, D, E, H, L  
X, B, C, D, E, H, L  
reg1  
rp  
XA, BC, DE, HL  
BC, DE, HL  
BC, DE  
rp1  
rp2  
rp'  
XA, BC, DE, HL, XA’, BC’, DE’, HL’  
BC, DE, HL, XA’, BC’, DE’, HL’  
rp'1  
rpa  
HL, HL+, HL–, DE, DL  
DE, DL  
rpa1  
n4  
n8  
4-bit immediate data or label  
8-bit immediate data or label  
Note  
mem  
bit  
8-bit immediate data or label  
2-bit immediate data or label  
fmem  
FB0H-FBFH, FF0H-FFFH immediate data or label  
FC0H-FFFH immediate data or label  
pmem  
addr  
0000H-2FFFH immediate data or label (µPD753012)  
0000H-3FFFH immediate data or label (µPD753016, 753017)  
0000H-5FFFH immediate data or label  
addr1  
caddr  
faddr  
12-bit immediate data or label  
11-bit immediate data or label  
taddr  
20H-7FH immediate data (where bit 0 = 0) or label  
PORTn  
IEXXX  
RBn  
PORT0-PORT7  
IEBT, IET0-IET2, IE0-IE2, IE4, IECSI, IEW  
RB0-RB3  
MBn  
MB0, MB1, MB2, MB3, MB15  
Note mem can be only used even address in 8-bit data processing.  
43  
µPD753012, 753016, 753017  
(2) Legend in explanation of operation  
A
: A register, 4-bit accumulator  
: B register  
B
C
: C register  
D
: D register  
E
: E register  
H
: H register  
L
: L register  
X
: X register  
XA  
BC  
DE  
HL  
XA’  
BC’  
DE’  
HL’  
PC  
SP  
CY  
PSW  
MBE  
RBE  
: XA register pair; 8-bit accumulator  
: BC register pair  
: DE register pair  
: HL register pair  
: XA’ expanded register pair  
: BC’ expanded register pair  
: DE’ expanded register pair  
: HL’ expanded register pair  
: Program counter  
: Stack pointer  
: Carry flag, bit accumulator  
: Program status word  
: Memory bank enable flag  
: Register bank enable flag  
PORTn : Port n (n = 0-7)  
IME  
IPS  
: Interrupt master enable flag  
: Interrupt priority selection register  
: Interrupt enable flag  
IEXXX  
RBS  
MBS  
PCC  
.
: Register bank selection register  
: Memory bank selection register  
: Processor clock control register  
: Separation between address and bit  
: The contents addressed by XX  
: Hexadecimal data  
(XX)  
XXH  
44  
µPD753012, 753016, 753017  
(3) Explanation of symbols under addressing area column  
*1  
MB = MBE•MBS  
(MBS = 0-3, 15)  
*2  
*3  
MB = 0  
MBE = 0 : MB = 0 (00H-7FH)  
MB = 15 (F80H-FFFH)  
Data memory addressing  
MBE = 1 : MB = MBS (MBS = 0-3, 15)  
*4  
*5  
*6  
MB = 15, fmem = FB0H-FBFH, FF0H-FFFH  
MB = 15, pmem = FC0H-FFFH  
µPD753012  
addr = 0000H-2FFFH  
addr = 0000H-3FFFH  
µPD753016  
753017  
*7  
µPD753012  
753016  
addr = (Current PC) – 15 to (Current PC) – 1  
(Current PC) + 2 to (Current PC) + 16  
753017  
(In Mk I mode)  
µPD753017  
addr1 = (Current PC) – 15 to (Current PC) – 1  
(Current PC) + 2 to (Current PC) + 16  
(In Mk II mode)  
*8  
µPD753012  
caddr = 0000H-0FFFH(PC13, 12 = 00B) or  
1000H-1FFFH(PC13, 12 = 01B) or  
2000H-2FFFH(PC13, 12 = 10B)  
µPD753016  
caddr = 0000H-0FFFH(PC13, 12 = 00B) or  
1000H-1FFFH(PC13, 12 = 01B) or  
2000H-2FFFH(PC13, 12 = 10B) or  
3000H-3FFFH(PC13, 12 = 11B)  
Program memory addressing  
µPD753017  
caddr = 0000H-0FFFH(PC14, 13, 12 = 000B) or  
1000H-1FFFH(PC14, 13, 12 = 001B) or  
2000H-2FFFH(PC14, 13, 12 = 010B) or  
3000H-3FFFH(PC14, 13, 12 = 011B) or  
4000H-4FFFH(PC14, 13, 12 = 100B) or  
5000H-5FFFH(PC14, 13, 12 = 101B)  
*9  
faddr = 0000H-07FFH  
taddr = 0020H-007FH  
*10  
*11  
µPD753012  
µPD753016  
µPD753017  
addr1 = 0000H-2FFFH  
addr1 = 0000H-3FFFH  
addr1 = 0000H-5FFFH  
Remarks 1. MB indicates memory bank that can be accessed.  
2. In *2, MB = 0 independently of how MBE and MBS are set.  
3. In *4 and *5, MB = 15 independently of how MBE and MBS are set.  
4. *6 to *11 indicate the areas that can be addressed.  
45  
µPD753012, 753016, 753017  
(4) Explanation of number of machine cycles column  
S denotes the number of machine cycles required by skip operation when a skip instruction is executed.  
The value of S varies as follows.  
When no skip is made: S = 0  
When the skipped instruction is a 1- or 2-byte instruction: S = 1  
When the skipped instruction is a 3-byte instructionNote: S = 2  
Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr or CALLA !addr1 instruction  
Caution The GETI instruction is skipped in one machine cycle.  
One machine cycle is equal to one cycle of CPU clock Φ (= tCY); time can be selected from among four  
types by setting PCC.  
46  
µPD753012, 753016, 753017  
Number  
of Machine  
Cycles  
Instruction  
Group  
Number  
of Bytes  
Addressing  
Mnemonic  
MOV  
Operand  
Operation  
Skip Condition  
String effect A  
Area  
Transfer  
instruction  
A, #n4  
1
2
2
2
2
1
1
1
1
2
1
2
2
2
2
2
2
2
2
2
1
1
1
1
2
2
2
1
2
1
2
A n4  
reg1, #n4  
XA, #n8  
HL, #n8  
rp2, #n8  
A, @HL  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
@HL, A  
@HL, XA  
A, mem  
XA, mem  
mem, A  
mem, XA  
A, reg  
reg1 n4  
XA n8  
HL n8  
rp2 n8  
A (HL)  
2
String effect A  
String effect B  
2
2
1
*1  
*1  
*1  
*2  
*1  
*1  
*1  
*3  
*3  
*3  
*3  
2+S  
2+S  
1
A (HL), then L L+1  
A (HL), then L L–1  
A (rpa1)  
L = 0  
L = FH  
2
XA (HL)  
1
(HL) A  
2
(HL) XA  
2
A (mem)  
2
XA (mem)  
(mem) A  
2
2
(mem) XA  
A reg  
2
XA, rp’  
2
XA rp’  
reg1, A  
2
reg1 A  
rp’1, XA  
A, @HL  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
A, mem  
XA, mem  
A, reg1  
2
rp’1 XA  
XCH  
1
A (HL)  
*1  
*1  
*1  
*2  
*1  
*3  
*3  
2+S  
2+S  
1
A (HL), then L L+1  
A (HL), then L L–1  
A (rpa1)  
L = 0  
L = FH  
2
XA (HL)  
2
A (mem)  
2
XA (mem)  
A reg1  
1
XA, rp’  
2
XA rp’  
47  
µPD753012, 753016, 753017  
Number  
of Machine  
Cycles  
Instruction  
Group  
Number  
of Bytes  
Addressing  
Mnemonic  
Operand  
Operation  
Skip Condition  
Area  
Table  
MOVTNote 1 XA, @PCDE  
1
1
1
1
3
3
3
3
XA (PC13–8+DE)ROM  
µPD753017  
XA (PC14–8+DE)ROM  
XA, @PCXA  
XA (PC13–8+XA)ROM  
µPD753017  
XA (PC14–8+XA)ROM  
XA, @BCDENote 2  
XA (B1,0+CDE)ROM  
*6  
µPD753017  
XA (B2–0+CDE)ROM  
*11  
XA, @BCXANote 2  
XA (B1,0+CXA)ROM  
*6  
µPD753017  
*11  
XA (B2–0+CXA)ROM  
Bit transfer  
MOV1  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
fmem.bit, CY  
pmem.@L, CY  
@H+mem.bit, CY  
A, #n4  
2
2
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
CY (fmem.bit)  
*4  
*5  
*1  
*4  
*5  
*1  
CY (pmem7–2+L3–2.bit(L1–0))  
CY (H+mem3–0.bit)  
(fmem.bit) CY  
2
2
2
(pmem7–2+L3–2.bit(L1–0)) CY  
(H+mem3–0.bit) CY  
A A+n4  
2
Operation  
ADDS  
1+S  
2+S  
1+S  
2+S  
2+S  
1
carry  
carry  
carry  
carry  
carry  
XA, #n8  
XA XA+n8  
A, @HL  
A A+(HL)  
*1  
*1  
*1  
*1  
XA, rp’  
XA XA+rp’  
rp’1, XA  
rp’1 rp’1+XA  
ADDC  
SUBS  
SUBC  
A, @HL  
A, CY A+(HL)+CY  
XA, CY XA+rp’+CY  
rp’1, CY rp’1+XA+CY  
A A–(HL)  
XA, rp’  
2
rp’1, XA  
2
A, @HL  
1+S  
2+S  
2+S  
1
borrow  
borrow  
borrow  
XA, rp’  
XA XA–rp’  
rp’1, XA  
rp’1 rp’1–XA  
A, @HL  
A, CY A–(HL)–CY  
XA, CY XA–rp’–CY  
rp’1, CY rp’1–XA–CY  
XA, rp’  
2
rp’1, XA  
2
Notes 1. The above operations in the shaded boxes can be performed only in the Mk II mode. The other  
operations can be performed only in the Mk I mode.  
2. Only the following bits are valid for the B register.  
µPD753012, 753016 : low-order 2 bits  
µPD753017  
: low-order 3 bits  
Remark PC14 is fixed to 0 when the µPD753017 is set in the Mk I mode.  
48  
µPD753012, 753016, 753017  
Number  
of Machine  
Cycles  
Instruction  
Group  
Number  
of Bytes  
Addressing  
Mnemonic  
AND  
Operand  
Operation  
Skip Condition  
Area  
Operating  
instructions  
A, #n4  
2
1
2
2
2
1
2
2
2
1
2
2
1
2
1
1
2
2
1
2
2
2
1
2
2
2
1
1
1
1
2
1
A A n4  
A, @HL  
XA, rp’  
rp’1, XA  
A, #n4  
A, @HL  
XA, rp’  
rp’1, XA  
A, #n4  
A, @HL  
XA, rp’  
rp’1, XA  
A
A A (HL)  
XA XA rp’  
rp’1 rp’1 XA  
A A n4  
*1  
2
2
OR  
2
1
A A (HL)  
XA XA rp’  
rp’1 rp’1 XA  
A A n4  
*1  
*1  
2
2
XOR  
2
1
A A (HL)  
XA XA rp’  
rp’1 rp’1 XA  
2
2
Accumulator RORC  
manipulation  
instructions  
1
CY A  
A A  
0, A  
3
CY, An–1 A  
n
NOT  
A
2
Increment  
and  
Decrement  
instructions  
INCS  
reg  
1+S  
1+S  
2+S  
2+S  
1+S  
2+S  
2+S  
2+S  
1+S  
2+S  
2+S  
2+S  
1
reg reg+1  
rp1 rp1+1  
reg=0  
rp1  
rp1=00H  
(HL)=0  
@HL  
(HL) (HL)+1  
(mem) (mem)+1  
reg reg–1  
rp’ rp’–1  
*1  
*3  
mem  
(mem)=0  
reg=FH  
rp'=FFH  
reg=n4  
DECS  
reg  
rp’  
Comparison SKE  
instruction  
reg, #n4  
@HL, #n4  
A, @HL  
XA, @HL  
A, reg  
XA, rp’  
CY  
Skip if reg = n4  
Skip if (HL) = n4  
Skip if A = (HL)  
Skip if XA = (HL)  
Skip if A = reg  
Skip if XA = rp’  
CY 1  
*1  
*1  
*1  
(HL) = n4  
A = (HL)  
XA = (HL)  
A=reg  
XA=rp’  
Carry flag  
manipulation  
instruction  
SET1  
CLR1  
SKT  
CY  
1
CY 0  
CY  
1+S  
1
Skip if CY = 1  
CY CY  
CY=1  
NOT1  
CY  
49  
µPD753012, 753016, 753017  
Number  
of Machine  
Cycles  
Instruction  
Group  
Number  
of Bytes  
Addressing  
Mnemonic  
SET1  
Operand  
Operation  
Skip Condition  
Area  
Memory bit  
manipulation  
instructions  
mem.bit  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
(mem.bit) 1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
fmem.bit  
(fmem.bit) 1  
pmem.@L  
2
(pmem7–2+L3–2.bit(L1–0)) 1  
(H+mem3–0.bit) 1  
@H+mem.bit  
mem.bit  
2
CLR1  
2
(mem.bit) 0  
fmem.bit  
2
(fmem.bit) 0  
pmem.@L  
2
(pmem7–2+L3–2.bit(L1–0)) 0  
(H+mem3–0.bit) 0  
@H+mem.bit  
mem.bit  
2
SKT  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2
Skip if (mem.bit)=1  
(mem.bit)=1  
fmem.bit  
Skip if (fmem.bit)=1  
(fmem.bit)=1  
(pmem.@L)=1  
(@H+mem.bit)=1  
(mem.bit)=0  
pmem.@L  
Skip if (pmem7–2+L3–2.bit(L1–0))=1  
Skip if (H+mem3–0.bit)=1  
Skip if (mem.bit)=0  
@H+mem.bit  
mem.bit  
SKF  
fmem.bit  
Skip if (fmem.bit)=0  
(fmem.bit)=0  
(pmem.@L)=0  
(@H+mem.bit)=0  
(fmem.bit)=1  
(pmem.@L)=1  
(@H+mem.bit)=1  
pmem.@L  
Skip if (pmem7–2+L3–2.bit(L1–0))=0  
Skip if (H+mem3–0.bit)=0  
Skip if (fmem.bit)=1 and clear  
Skip if (pmem7–2+L3–2.bit(L1–0))=1 and clear  
Skip if (H+mem3–0.bit)=1 and clear  
CY CY (fmem.bit)  
@H+mem.bit  
fmem.bit  
SKTCLR  
AND1  
OR1  
pmem.@L  
@H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
2
CY CY (pmem7–2+L3–2.bit(L1–0))  
CY CY (H+mem3–0.bit)  
CY CY (fmem.bit)  
2
2
2
CY CY (pmem7–2+L3–2.bit(L1–0))  
CY CY (H+mem3–0.bit)  
CY CY (fmem.bit)  
2
XOR1  
2
2
CY CY (pmem7–2+L3–2.bit(L1–0))  
CY CY (H+mem3–0.bit)  
2
50  
µPD753012, 753016, 753017  
Number  
of Machine  
Cycles  
Instruction  
Group  
Number  
of Bytes  
Addressing  
Mnemonic  
BRNote 1  
Operand  
Operation  
Skip Condition  
Area  
Branch  
addr  
PC13–0 addr  
*6  
instructions  
Select appropriate instruction from  
among BR !addr, BRCB !caddr, and  
BR $addr according to the assembler  
being used.  
BR !addr  
BRCB !caddr  
BR $addr  
addr1  
µPD753017  
*11  
PC14–0 addr1  
Select appropriate instruction from  
among BR !addr, BRA !caddr1 BRCB  
!caddr, and BR $addr according to  
the assembler being used.  
BR !addr  
BRA !addr1  
BRCB !caddr  
BR $addr  
!addr  
3
3
PC13–0 addr  
*6  
*7  
µPD753017  
PC14 0, PC13–0 addr  
$addr  
1
1
2
2
PC13–0 addr  
$addr1  
µPD753017  
PC14–0 addr1  
PCDE  
2
2
2
2
3
3
3
3
PC13–0 PC13–8+DE  
µPD753017  
PC14–0 PC14–8+DE  
PCXA  
PC13–0 PC13–8+XA  
µPD753017  
PC14–0 PC14–8+XA  
BCDENote 2  
PC13–0 B1,0+CDE  
*6  
µPD753017  
PC14–0 B2–0+CDE  
*11  
BCXANote2  
PC13–0 B1,0+CXA  
*6  
µPD753017  
*11  
PC14–0 B2–0+CXA  
BRANote1  
!addr  
3
3
3
3
µPD753012, 753016  
PC13–0 addr  
*6  
!addr1  
µPD753017  
*11  
PC14–0 addr1  
Notes 1. The above operations in the shaded boxes can be performed only in the Mk II mode. The other  
operations can be performed only in the Mk I mode.  
2. Only the following bits are valid for the B register.  
µPD753012, 753016 : low-order 2 bits  
µPD753017  
: low-order 3 bits  
Remark PC14 is fixed to 0 when the µPD753017 is set in the Mk I mode.  
51  
µPD753012, 753016, 753017  
Number  
of Machine  
Cycles  
Instruction  
Group  
Number  
of Bytes  
Addressing  
Mnemonic  
BRCBNote  
Operand  
Operation  
Skip Condition  
Area  
Branch  
instructions  
!caddr  
2
3
3
3
2
3
3
PC13–0 PC13,12+caddr11-0  
*8  
µPD753017  
PC14–0 PC14,13,12+caddr11–0  
Subroutine  
stack control  
instructions  
CALLANote !addr  
µPD753012, 753016  
(SP–5)(SP–6)(SP–3)(SP–4) 0, 0, PC13–0  
(SP–2) ← ×, ×, MBE, RBE  
*6  
*11  
*6  
PC13–0 addr, SP SP–6  
!addr1  
!addr  
µPD753017  
(SP–5)(SP–6)(SP–3)(SP–4) 0, PC14–0  
(SP–2) ← ×, ×, MBE, RBE  
PC14–0 addr1, SP SP–6  
CALLNote  
3
4
(SP–4)(SP–1)(SP–2) PC11–0  
(SP–3) MBE, RBE, PC13, PC12  
PC13–0 addr, SP SP–4  
µPD753012, 753016  
(SP–5)(SP–6)(SP–3)(SP–4) 0, 0, PC13–0  
(SP–2) ← ×, ×, MBE, RBE  
PC13–0 addr, SP SP–6  
4
µPD753017  
(SP–5)(SP–6)(SP–3)(SP–4) 0, PC14–0  
(SP–2) ← ×, ×, MBE, RBE  
PC14 0, PC13–0 addr, SP SP–6  
CALLFNote !faddr  
2
2
3
(SP–4)(SP–1)(SP–2) PC11–0  
(SP–3) MBE, RBE, PC13, PC12  
PC13–0 000+faddr, SP SP–4  
*9  
µPD753012, 753016  
(SP–5)(SP–6)(SP–3)(SP–4) 0, 0, PC13–0  
(SP–2) ← ×, ×, MBE, RBE  
PC13–0 000+faddr, SP SP–6  
3
µPD753017  
(SP–5)(SP–6)(SP–3)(SP–4) 0, PC14–0  
(SP–2) ← ×, ×, MBE, RBE  
PC14–0 0000+faddr, SP SP–6  
Note The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations  
can be performed only in the Mk I mode.  
Remark PC14 is fixed to 0 when the µPD753017 is set in the Mk I mode.  
52  
µPD753012, 753016, 753017  
Number  
of Machine  
Cycles  
Instruction  
Group  
Number  
of Bytes  
Addressing  
Mnemonic  
RETNote  
Operand  
Operation  
Skip Condition  
Area  
Subroutine  
stack control  
instructions  
1
3
MBE, RBE, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2),  
SP SP+4  
µPD753012, 753016  
×, ×, MBE, RBE (SP+4)  
0, 0, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2), SP SP+6  
µPD753017  
×, ×, MBE, RBE (SP+4)  
0, PC14, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2), SP SP+6  
RETSNote  
1
3+S  
MBE, RBE, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2),  
SP SP+4  
Unconditional  
then skip unconditionally  
µPD753012, 753016  
×, ×, MBE, RBE (SP+4)  
0, 0, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2), SP SP+6  
then skip unconditionally  
µPD753017  
×, ×, MBE, RBE (SP+4)  
0, PC14, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2), SP SP+6  
then skip unconditionally  
RETINote  
1
3
MBE, RBE, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2)  
PSW (SP+4)(SP+5), SP SP+6  
µPD753012, 753016  
0, 0, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2)  
PSW (SP+4)(SP+5), SP SP+6  
µPD753017  
0, PC14, PC13, PC12 (SP+1)  
PC11–0 (SP)(SP+3)(SP+2)  
PSW (SP+4)(SP+5), SP SP+6  
Note The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations  
can be performed only in the Mk I mode.  
Remark PC14 is fixed to 0 when the µPD753017 is set in the Mk I mode.  
53  
µPD753012, 753016, 753017  
Number  
of Machine  
Cycles  
Instruction  
Group  
Number  
of Bytes  
Addressing  
Mnemonic  
PUSH  
Operand  
Operation  
Skip Condition  
Area  
Subroutine  
stack control  
instructions  
rp  
1
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
1
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
2
3
(SP–1)(SP–2) rp, SP SP–2  
(SP–1) MBS, (SP–2) RBS, SP SP–2  
rp (SP+1)(SP), SP SP+2  
MBS (SP+1), RBS (SP), SP SP+2  
IME(IPS.3) 1  
BS  
rp  
POP  
EI  
BS  
Interrupt  
control  
instructions  
IEXXX  
IEXXX 1  
DI  
IME(IPS.3) 0  
IEXXX  
IEXXX 0  
Input/output  
instructions  
INNote 1  
A, PORTn  
XA, PORTn  
PORTn, A  
PORTn, XA  
A PORTn  
(n = 0-7)  
(n = 4, 6)  
(n = 2-7)  
(n = 4, 6)  
XA PORTn+1, PORTn  
PORTn A  
OUTNote 1  
PORTn+1, PORTn XA  
Set HALT mode (PCC.2 1)  
Set STOP mode (PCC.3 1)  
No operation  
CPU control HALT  
instruction  
STOP  
NOP  
Special  
instruction  
SEL  
RBn  
MBn  
RBS n  
MBS n  
(n = 0-3)  
(n = 0-3, 15)  
GETINotes 2, 3 taddr  
• When TBR instruction  
*10  
PC13–0 (taddr)5–0+(taddr+1)  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – –  
• When TCALL instruction  
(SP–4)(SP–1)(SP–2) PC11–0  
(SP–3) MBE, RBE, PC13, PC12  
PC13–0 (taddr)5–0+(taddr+1)  
SP SP–4  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – –  
• When instruction other than TBR and  
TCALL instructions  
(taddr) (taddr+1) instruction is executed  
Depending on  
the reference  
instruction  
1
3
µPD753017  
• When TBR instruction  
PC13–0 (taddr)5–0+(taddr+1)  
PC14 0  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – –  
4
• When TCALL instruction  
(SP–5)(SP–6)(SP–3)(SP–4) 0, PC14–0  
(SP–2) ← ×, ×, MBE, RBE  
PC13–0 (taddr)5–0+(taddr+1)  
SP SP–6, PC14 0  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – – –  
3
• When instruction other than TBR and  
TCALL instructions  
(taddr) (taddr+1) instruction is executed  
Depending on  
the reference  
instruction  
Notes 1. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 and  
MBS must be set to 15.  
2. The shaded area is applicable only to the Mk II mode. The other area is applicable only to Mk I mode.  
3. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI  
instruction.  
Remark PC14 is fixed to 0 when the µPD753017 is set in the Mk I mode.  
54  
µPD753012, 753016, 753017  
12. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25 ˚C)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
Ratings  
–0.3 to +7.0  
–0.3 to VDD +0.3  
–0.3 to VDD +0.3  
–0.3 to +14  
–0.3 to VDD +0.3  
–10  
Unit  
V
Input voltage  
VI1  
Other than ports 4 and 5  
V
VI2  
Ports 4 Pull-up resistor provided  
V
and 5  
N-ch open drain  
V
Output voltage  
VO  
IOH  
V
High-level output current  
Per pin  
mA  
mA  
mA  
mA  
˚C  
Total of all pins  
Per pin  
–30  
Low-level output current  
IOL  
30  
Total of all pins  
200  
Operating ambient  
temperature  
TA  
–40 to +85  
Storage temperature  
Tstg  
–65 to +150  
˚C  
Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality  
of the product may be impaired. The absolute maximum ratings are values that may physically  
damage the product(s). Be sure to use the product(s) within the ratings.  
Capacitance (TA = 25 ˚C, VDD = 0 V)  
Parameter  
Input capacitance  
Output capacitance  
I/O capacitance  
Symbol  
CIN  
Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
f = 1 MHz  
Pins other than tested pins: 0 V  
COUT  
CIO  
15  
pF  
15  
pF  
55  
µPD753012, 753016, 753017  
Main System Clock Oscillator Characteristics (TA = –40 to +85 ˚C)  
Recommended  
Constants  
Oscillator  
Parameter  
Conditions  
MIN. TYP. MAX.  
Unit  
Ceramic  
oscillator  
Oscillation frequency  
(fX)Note 1  
VDD = 2.2 to 5.5 V  
1.0  
6.0Note 2 MHz  
X1  
X2  
Oscillation  
stabilization timeNote 3  
After VDD has  
4
ms  
C1  
C2  
reached MIN. value of  
oscillation voltage  
range  
V
DD  
Crystal  
oscillator  
Oscillation frequency  
(fX)Note 1  
VDD = 2.2 to 5.5 V  
1.0  
6.0Note 2 MHz  
X1  
X2  
Oscillation  
VDD = 4.5 to 5.5 V  
VDD = 2.2 to 5.5 V  
VDD = 1.8 to 5.5 V  
10  
30  
ms  
C1  
C2  
stabilization timeNote 3  
V
DD  
External  
clock  
X1 input frequency  
(fX)Note 1  
1.0  
6.0Note 4 MHz  
X1  
X2  
X1 input high-,  
low-level widths  
(tXH, tXL)  
VDD = 1.8 to 5.5 V  
83.3  
500  
ns  
Notes 1. The oscillation frequency and X1 input frequency shown above indicate characteristics of the oscillator  
only. For the instruction execution time, refer to AC Characteristics.  
2. When the oscillation frequency is 4.7 MHz < fX 6.0 MHz at 2.2 V VDD < 2.7 V, assign a value other  
than 0011 to the processor clock control register (PCC). If 0011 is assigned to PCC, one machine cycle  
falls short of the rated value of 0.85 µs.  
3. The oscillation stabilization time is the time required for oscillation to stabilize after VDD has been  
applied or STOP mode has been released.  
4. When the X1 input frequency is 4.19 MHz < fX 6.0 MHz at 1.8 V VDD < 2.7 V, assign a value other  
than 0011 to the processor clock control register (PCC). If 0011 is assigned to PCC, one machine cycle  
falls short of the rated value of 0.95 µs.  
Caution When using the main system clock oscillator, wire the portion enclosed by the dotted line in  
the above figure as follows to prevent adverse influence from wiring capacitance:  
· Keep the wiring length as short as possible.  
· Do not cross the wiring with any other signal lines.  
· Do not route the wiring in the vicinity of a line through which a high alternating current flows.  
· Always keep the ground point of the capacitor of the oscillator at the same potential as VDD.  
· Do not ground to a power supply pattern through which a high current flows.  
· Do not extract any signal from the oscillator.  
56  
µPD753012, 753016, 753017  
Subsystem Clock Oscillator Characteristics (TA = –40 to +85 ˚C)  
Recommended  
Constants  
Oscillator  
Parameter  
Conditions  
MIN. TYP. MAX.  
Unit  
kHz  
Crystal  
oscillator  
Oscillation frequency  
(fXT)Note 1  
VDD = 2.2 to 5.5 V  
32  
32.768  
35  
XT1  
XT2  
R
Oscillation  
VDD = 4.5 to 5.5 V  
VDD = 2.2 to 5.5 V  
VDD = 1.8 to 5.5 V  
1.0  
2
s
C3  
C4  
stabilization timeNote 2  
10  
V
DD  
External  
clock  
XT1 input frequency  
(fXT)Note 1  
32  
5
100  
kHz  
XT1  
XT2  
XT1 input high-,  
low-level widths  
(tXTH, tXTL)  
VDD = 1.8 to 5.5 V  
15  
µs  
Notes 1. The oscillation frequency shown above indicate characteristics of the oscillator only. For the instruction  
execution time, refer to AC Characteristics.  
2. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been  
applied.  
Caution When using the subsystem clock oscillator, wire the portion enclosed by the dotted line in the  
above figure as follows to prevent adverse influence from to wiring capacitance:  
· Keep the wiring length as short as possible.  
· Do not cross the wiring with any other signal lines.  
· Do not route the wiring in the vicinity of a line through which a high alternating current flows.  
· Always keep the ground point of the capacitor of the oscillator at the same potential as VDD.  
· Do not ground to a power supply pattern through which a high current flows.  
· Do not extract any signal from the oscillator.  
The subsystem clock oscillator has a low amplification factor to reduce current dissipation and  
is more susceptible to noise than the main system clock oscillator. Therefore, exercise utmost  
care in wiring the subsystem clock oscillator.  
57  
µPD753012, 753016, 753017  
Recommended Oscillator Constants  
Ceramic oscillator (TA = –40 to +85 ˚C)  
Recommended  
Frequency Circuit Constant  
(MHz) (pF)  
Oscillation  
Voltage Range  
(VDD)  
Manufacturer  
Part Number  
Remark  
C1  
100  
100  
C2  
100  
100  
MIN.  
2.7  
MAX.  
5.5  
Murata Mfg.  
Co., Ltd.  
CSB1000JNote  
CSA2.00MG040  
CST2.00MG040  
CSA4.19MG  
1.0  
Rd = 5.6 kΩ  
2.0  
Capacitor-contained model  
Capacitor-contained model  
Capacitor-contained model  
Capacitor-contained model  
4.19  
30  
30  
2.5  
2.2  
2.7  
2.5  
5.5  
5.5  
5.5  
5.5  
CST4.19MGW  
CSA4.19MGU  
CST4.19MGWU  
CSA6.00MG  
30  
30  
6.0  
30  
30  
CST6.00MGW  
CSA6.00MGU  
CST6.00MGWU  
KBR-1000F/Y  
KBR-2.0MS  
30  
30  
Capacitor-contained model  
–20 to +85 ˚C  
Kyocera Corp.  
1.0  
220  
82  
33  
220  
82  
33  
2.9  
3.1  
2.7  
5.5  
5.5  
5.5  
2.0  
KBR-4.19MSA  
KBR-4.19MKS  
PBRC 4.19A  
PBRC 4.19B  
KBR-6.0MSA  
KBR-6.0MKS  
PBRC 6.00A  
PBRC 6.00B  
FCR2.0MC3  
4.19  
Capacitor-contained model  
–20 to +85 ˚C  
6.0  
33  
33  
2.8  
5.5  
–20 to +85 ˚C  
Capacitor-contained model  
–20 to +85 ˚C  
TDK Corp.  
2.0  
30  
30  
2.0  
2.5  
2.7  
5.5  
5.5  
5.5  
FCR4.19MC5  
FCR6.0MC5  
4.19  
6.0  
Note When using the CSB1000J (1.00 MHz) by Murata Mfg. Co., Ltd. as a ceramic oscillator, a limiting resistor  
(Rd = 5.6 k) is necessary (refer to the figure below). The resistor is not necessary when using the other  
recommended oscillators.  
Example of recommended main system clock oscillator (when using CSB1000J by Murata Mfg. Co., Ltd.)  
X1  
X2  
Rd  
C2  
CSB1000J  
C1  
V
DD  
58  
µPD753012, 753016, 753017  
DC Characteristics (TA = –40 to +85 ˚C, VDD = 2.2 to 5.5 V)  
Parameter  
Low-level output  
current  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
mA  
mA  
IOL  
Per pin  
Total of all pins  
120  
High-level input  
voltage  
VIH1  
VIH2  
VIH3  
Ports 2, 3  
2.7 V VDD 5.5 V 0.7 VDD  
2.2 V VDD < 2.7 V 0.9 VDD  
2.7 V VDD 5.5 V 0.8 VDD  
2.2 V VDD < 2.7 V 0.9 VDD  
2.7 V VDD 5.5 V 0.7 VDD  
2.2 V VDD < 2.7 V 0.9 VDD  
VDD  
VDD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Ports 0, 1, 6, 7, RESET  
VDD  
VDD  
Ports 4, 5 Pull-up resistor  
provided  
VDD  
VDD  
N-ch open drain 2.7 V VDD 5.5 V 0.7 VDD  
2.2 V VDD < 2.7 V 0.9 VDD  
VDD – 0.1  
13  
13  
VIH4  
VIL1  
X1, XT1  
VDD  
Low-level input  
voltage  
Ports 2, 3, 4, 5  
Ports 0, 1, 6, 7, RESET  
X1, XT1  
2.7 V VDD 5.5 V  
2.2 V VDD < 2.7 V  
2.7 V VDD 5.5 V  
2.2 V VDD < 2.7 V  
0
0.3 VDD  
0.1 VDD  
0.2 VDD  
0.1 VDD  
0.1  
0
VIL2  
0
0
0
VIL3  
VOH  
High-level output  
voltage  
SCK, SO, ports 0, 2, 3, 6, 7, BP0 to 7  
IOH = –1 mA  
VDD – 0.5  
Low-level output  
voltage  
VOL1  
SCK, SO, ports 0, 2, 3, 4,  
5, 6, 7, BP0 to 7  
IOL = 15 mA  
0.2  
2.0  
V
VDD = 4.5 to 5.5 V  
IOL = 1.6 mA  
0.4  
V
V
VOL2  
SB0, 1  
N-ch open drain  
0.2 VDD  
Pull-up resistor 1 kΩ  
Pins other than X1, XT1  
X1, XT1  
High-level input  
leakage current  
ILIH1  
ILIH2  
ILIH3  
ILIL1  
ILIL2  
ILIL3  
VIN = VDD  
3
20  
20  
–3  
–20  
–3  
µA  
µA  
µA  
µA  
µA  
µA  
VIN = 13 V Ports 4, 5 (N-ch open drain)  
VIN = 0 V Pins other than X1, XT1, ports 4 and 5  
Low-level input  
leakage current  
X1, XT1  
Ports 4, 5 (N-ch open drain)  
When input instruction is not executed  
Ports 4, 5 (N-ch open  
drain)  
When input instruction  
–30  
–27  
–8  
µA  
µA  
µA  
µA  
VDD = 5 V  
–10  
–3  
is executed  
VDD = 3 V  
High-level output  
ILOH1  
VOUT = VDD SCK, SO/SB0, SB1, ports 2, 3, 6, 7,  
ports 4, 5 (with on-chip pull-up resistor),  
BP0 to 7  
3
leakage current  
Low-level output  
leakage current  
Internal pull-up  
resistor  
ILOH2  
ILOL  
VOUT = 13 V Ports 4, 5 (N-ch open drain)  
VOUT = 0 V  
20  
–3  
µA  
µA  
RL1  
RL2  
VIN = 0 V  
Ports 0, 1, 2, 3, 6, 7 (except P00 pin)  
Ports 4, 5 (mask option)  
50  
15  
100  
30  
200  
60  
kΩ  
kΩ  
59  
µPD753012, 753016, 753017  
DC Characteristics (TA = –40 to +85 ˚C, VDD = 2.2 to 5.5 V)  
Parameter  
LCD drive voltage  
LCD divider  
Symbol  
VLCD  
Conditions  
MIN.  
2.2  
50  
5
TYP.  
MAX.  
VDD  
Unit  
V
RLCD1  
RLCD2  
VODC  
100  
10  
200  
20  
kΩ  
kΩ  
V
resistorNote 1  
LCD output voltage  
deviationNote 2  
(common)  
IO = ±5µA  
IO = ±1µA  
VLCD0 = VLCD  
0
±0.2  
VLCD1 = VLCD × 2/3  
VLCD2 = VLCD × 1/3  
2.2 V VLCD VDD  
LCD output voltage  
deviationNote 2  
(segment)  
VODS  
0
±0.2  
V
Supply currentNote 3  
IDD1  
IDD2  
IDD1  
IDD2  
IDD3  
6.00 MHzNote 4  
crystal  
VDD = 5.0 V ± 10 %Note 5  
VDD = 3.0 V ± 10 %Note 6  
1.9  
0.4  
0.72  
0.27  
1.5  
0.25  
0.7  
0.23  
12  
6.0  
1.3  
2.1  
0.8  
4.0  
0.75  
2.0  
0.7  
35  
12  
24  
18  
12  
25  
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
oscillation  
C1 = C2  
HALT  
mode  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
= 22 pF  
4.19 MHzNote 4  
crystal  
VDD = 5.0 V ± 10 %Note 5  
VDD = 3.0 V ± 10 %Note 6  
oscillation  
C1 = C2  
HALT  
mode  
Low-  
VDD = 5.0 V ± 10 %  
= 22 pF  
VDD = 3.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 2.5 V ± 10 %  
32.768  
kHzNote 7  
voltage  
4.5  
12  
crystal  
modeNote 8 VDD = 3.0 V, TA = 25 ˚C  
Low current  
oscillation  
VDD = 3.0 V ± 10 %  
6
dissipation  
9
modeNote  
VDD = 3.0 V, TA = 25 ˚C  
6
IDD4  
HALT  
mode  
Low-  
V
V
DD = 3.0 V ± 10 %  
DD = 2.5 V ± 10 %  
8.5  
3
voltage  
modeNote 8  
V
DD = 3.0 V, T  
A
= 25 ˚C  
DD = 3.0 V ± 10 %  
= 25 ˚C  
8.5  
3.5  
3.5  
0.05  
0.02  
0.02  
17  
12  
7
Low power  
dissipation  
V
modeNote  
9
V
DD = 3.0 V, T  
A
IDD5  
XT1 = 0 V VDD = 5.0 V ± 10 %  
10  
5
STOP  
VDD = 3.0 V ± 10 %  
modeNote 10  
TA = 25 ˚C  
3
Notes 1. Either RLCD1 or RLCD2 can be selected by mask option.  
2. Voltage deviation is the difference between the ideal values (VLCDn; n = 0, 1, 2) of the segment and  
common outputs and the output voltage.  
3. The current flowing through the internal pull-up resistor and the LCD split resistor is not included.  
4. Including the case when the subsystem clock oscillates.  
5. When the device operates in high-speed mode with the processor clock control register (PCC) set to  
0011.  
6. When the device operates in low-speed mode with PCC set to 0000.  
7. When the device operates on the subsystem clock, with the system clock control register (SCC) set  
to 1001 and oscillation of the main system clock stopped.  
8. When 0000 is assigned to the sub-oscillator control register (SOS).  
9. When 0010 is assigned to the SOS.  
10. When the sub-oscillator feedback resistor is not used with the SOS set to 00X1 (X: don’t care).  
60  
µPD753012, 753016, 753017  
AC Characteristics (TA = –40 to +85 ˚C, VDD = 2.2 to 5.5 V)  
Parameter  
CPU clock cycle timeNote 1  
(minimum instruction  
execution time = 1  
machine cycle)  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
64  
Unit  
µs  
When using  
ceramic or  
crystal  
tCY  
VDD = 2.7 to 5.5 V 0.67  
0.85  
Operates  
with main  
system  
clock  
64  
µs  
When using  
external  
clock  
VDD = 2.7 to 5.5 V 0.67  
VDD = 1.8 to 5.5 V 0.95  
64  
µs  
64  
µs  
Operates with subsystem clock  
VDD = 2.7 to 5.5 V  
114  
0
122  
125  
1
µs  
TI0, TI1, TI2 input frequency fTI  
MHz  
kHz  
µs  
0
275  
TI0, TI1, TI2 high-, low-level  
widths  
tTIH, tTIL  
VDD = 2.7 to 5.5 V  
0.48  
1.8  
Note 2  
10  
µs  
Interrupt input high-,  
low-level widths  
tINTH, tINTL  
INT0  
IM02 = 0  
IM02 = 1  
µs  
µs  
INT1, 2, 4  
KR0-7  
10  
µs  
10  
µs  
RESET low-level width  
tRSL  
10  
µs  
Notes 1. The cycle time of the CPU clock (Φ) is  
determined by the oscillation frequency  
of the connected oscillator (and exter-  
nal clock), the system clock control  
register (SCC), and processor clock  
control register (PCC).  
t
CY vs VDD  
(with main system clock)  
70  
64  
60  
6
5
The figure on the right shows the sup-  
ply voltage VDD vs. cycle time tCY char-  
acteristics when the device operates  
with the main system clock.  
Operation guaranteed range  
4
3
µ
2. 2tCY or 128/fX depending on the setting  
of the interrupt mode register (IM0).  
2
1
0.95  
0.85  
0.67  
0.5  
0
1
2
3
4
5
5.5 6  
1.8 2.2 2.7  
Supply voltage VDD [V]  
Remark The shaded portion is guaranteed  
only when using the external clock.  
61  
µPD753012, 753016, 753017  
Serial transfer operation  
2-wire and 3-wire serial I/O modes (SCK ··· internal clock output): (TA = –40 to +85 ˚C, VDD = 2.2 to 5.5 V)  
Parameter  
SCK cycle time  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
1300  
3800  
tKCY1/2–50  
tKCY1/2–150  
150  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY1  
SCK high-, low-level widths  
tKL1,  
tKH1  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
SINote 1 setup time (vs. SCK ) tSIK1  
500  
SINote 1hold time (vs. SCK )  
tKSI1  
400  
600  
SCK ↓ → SONote 1 output  
tKSO1  
RL = 1 kNote 2  
VDD = 2.7 to 5.5 V  
0
250  
delay time  
CL = 100 pF  
0
1000  
Notes 1. Replace the parameter with SB0 or SB1 in the 2-wire serial I/O mode.  
2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.  
2-wire and 3-wire serial I/O modes (SCK ··· external clock input): (TA = –40 to +85 ˚C, VDD = 2.2 to 5.5 V)  
Parameter  
SCK cycle time  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY2  
SCK high-, low-level widths  
tKL2,  
tKH2  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
SINote 1 setup time (vs. SCK ) tSIK2  
SINote 1 hold time (vs. SCK ) tKSI2  
SCK ↓ → SONote 1 output  
tKSO2  
RL = 1 kNote 2  
VDD = 2.7 to 5.5 V  
300  
delay time  
CL = 100 pF  
0
1000  
Notes 1. Replace the parameter with SB0 or SB1 in the 2-wire serial I/O mode.  
2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.  
62  
µPD753012, 753016, 753017  
SBI mode (SCK ··· internal clock output (master)): (TA = –40 to +85 ˚C, VDD = 2.2 to 5.5 V)  
Parameter  
SCK cycle time  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
1300  
3800  
tKCY3/2–50  
tKCY3/2–150  
150  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY3  
SCK high-, low-level widths  
tKL3,  
tKH3  
tSIK3  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
SB0, 1 setup time  
(vs. SCK )  
500  
SB0, 1 hold time (vs. SCK ) tKSI3  
tKCY3/2  
0
SCK ↓ → SB0, 1 output  
delay time  
tKSO3  
RL = 1 kNote  
VDD = 2.7 to 5.5 V  
250  
CL = 100 pF  
0
1000  
SCK ↑ → SB0, 1 ↓  
SB0, 1 ↓ → SCK ↓  
SB0, 1 low-level width  
SB0, 1 high-level width  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY3  
tKCY3  
tKCY3  
tKCY3  
Note RL and CL respectively indicate the load resistance and load capacitance of the SB0 and 1 output lines.  
SBI mode (SCK ··· external clock input (slave)): (TA = –40 to +85 ˚C, VDD = 2.2 to 5.5 V)  
Parameter  
SCK cycle time  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
tKCY4/2  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY4  
SCK high-, low-level widths  
tKL4,  
tKH4  
tSIK4  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
SB0, 1 setup time  
(vs. SCK )  
SB0, 1 hold time (vs. SCK ) tKSI4  
SCK ↓ → SB0, 1 output  
delay time  
tKSO4  
RL = 1 kNote  
VDD = 2.7 to 5.5 V  
300  
CL = 100 pF  
0
1000  
SCK ↑ → SB0, 1 ↓  
SB0, 1 ↓ → SCK ↓  
SB0, 1 low-level width  
SB0, 1 high-level width  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
Note RL and CL respectively indicate the load resistance and load capacitance of the SB0 and 1 output lines.  
63  
µPD753012, 753016, 753017  
AC timing test points (except X1 and XT1 inputs)  
VIH (MIN.)  
VIL (MAX.)  
VIH (MIN.)  
VIL (MAX.)  
VOH (MIN.)  
VOL (MAX.)  
VOH (MIN.)  
VOL (MAX.)  
Clock timing  
1/f  
X
t
XL  
t
XH  
VDD – 0.1 V  
X1 input  
0.1 V  
1/fXT  
t
XTL  
t
XTH  
VDD – 0.1 V  
XT1 input  
0.1 V  
TI0, TI1, TI2 timing  
1/fTI  
t
TIL  
t
TIH  
TI0, TI1, TI2  
64  
µPD753012, 753016, 753017  
Serial transfer timing  
3-wire serial I/O mode  
t
KCY1  
t
KL1  
t
KH1  
SCK  
t
SIK1  
t
KSI1  
Input data  
SI  
t
KSO1  
Output data  
SO  
2-wire serial I/O mode  
t
KCY2  
t
KL2  
t
KH2  
SCK  
t
SIK2  
t
KSI2  
SB0, 1  
t
KSO2  
65  
µPD753012, 753016, 753017  
Serial transfer timing  
Bus release signal transfer  
t
KCY3, 4  
t
KL3, 4  
t
KH3, 4  
SCK  
t
SIK3, 4  
t
KSB  
t
SBL  
t
SBH  
t
SBK  
t
KSI3, 4  
SB0, 1  
t
KSO3, 4  
Command signal transfer  
t
KCY3, 4  
t
KL3, 4  
t
KH3, 4  
SCK  
t
SIK3, 4  
t
KSB  
t
SBK  
t
KSI3, 4  
SB0, 1  
t
KSO3, 4  
Interrupt input timing  
t
INTL  
t
INTH  
INT0, 1, 2, 4  
KR0-7  
RESET input timing  
t
RSL  
RESET  
66  
µPD753012, 753016, 753017  
Data retention characteristics of data memory in STOP mode and at low supply voltage  
(TA = –40 to +85 ˚C)  
Parameter  
Release signal setup time  
Oscillation stabilization  
wait timeNote 1  
Symbol  
Conditions  
MIN.  
0
TYP.  
MAX.  
Unit  
µs  
tSREL  
tWAIT  
Released by RESET  
Note 2  
Note 3  
ms  
ms  
Released by interrupt request  
Notes 1. The oscillation stabilization wait time is the time during which the CPU stops operating to prevent  
unstable operation when oscillation is started.  
2. Either 217/fX or 215/fX can be selected by mask option.  
3. Set by the basic interval timer mode register (BTM). (Refer to the table below.)  
Wait Time  
BTM3  
BTM2  
BTM1  
BTM0  
fx = 4.19 MHz  
fx = 6.0 MHz  
0
0
1
1
0
1
0
1
0
1
1
1
220/fx (approx. 250 ms)  
217/fx (approx. 31.3 ms)  
215/fx (approx. 7.82 ms)  
213/fx (approx. 1.95 ms)  
220/fx (approx. 175 ms)  
217/fx (approx. 21.8 ms)  
215/fx (approx. 5.46 ms)  
213/fx (approx. 1.37 ms)  
Data retention timing (when STOP mode released by RESET)  
Internal reset operation  
Oscillation stabilization wait time  
Operation mode  
STOP mode  
Data retention mode  
VDD  
tSREL  
STOP instruction execution  
RESET  
tWAIT  
Data retention timing (standby release signal: when STOP mode released by interrupt signal)  
Oscillation stabilization wait time  
STOP mode  
Operation mode  
Data retention mode  
t
SREL  
VDD  
V
DDDR  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
67  
µPD753012, 753016, 753017  
13 . PACKAGE DRAWINGS  
80 PIN PLASTIC QFP (14x14)  
A
B
60  
61  
41  
40  
detail of lead end  
S
C D  
R
Q
21  
20  
80  
1
F
P
J
G
M
H
I
K
M
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.13 mm (0.005 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
17.2±0.4  
14.0±0.2  
0.677±0.016  
+0.009  
0.551  
–0.008  
+0.009  
0.551  
C
14.0±0.2  
–0.008  
D
F
17.2±0.4  
0.825  
0.677±0.016  
0.032  
G
0.825  
0.032  
+0.004  
0.012  
H
0.30±0.10  
–0.005  
I
0.13  
0.005  
J
K
0.65 (T.P.)  
1.6±0.2  
0.026 (T.P.)  
0.063±0.008  
+0.009  
0.031  
L
0.8±0.2  
–0.008  
+0.004  
0.006  
+0.10  
0.15  
M
–0.003  
–0.05  
N
P
0.10  
0.004  
+0.005  
0.106  
2.7±0.1  
–0.004  
Q
R
S
0.1±0.1  
5°±5°  
0.004±0.004  
5°±5°  
3.0 MAX.  
0.119 MAX.  
S80GC-65-3B9-5  
68  
µPD753012, 753016, 753017  
80 PIN PLASTIC TQFP (FINE PITCH) (12×12)  
A
B
60  
41  
61  
40  
detail of lead end  
C
D
S
Q
R
80  
21  
1
20  
F
P
M
G
H
I
J
K
M
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
A
14.00±0.20  
0.551±0.008  
+0.009  
0.472  
B
12.00±0.20  
–0.008  
+0.009  
0.472  
C
12.00±0.20  
–0.008  
D
F
14.00±0.20  
1.25  
0.551±0.008  
0.049  
G
1.25  
0.049  
+0.05  
0.22  
H
0.009±0.002  
–0.04  
I
0.10  
0.004  
J
0.50 (T.P.)  
0.020 (T.P.)  
+0.009  
0.039  
K
L
1.00±0.20  
0.50±0.20  
–0.008  
+0.008  
0.020  
–0.009  
+0.055  
0.145  
M
0.006±0.002  
–0.045  
N
P
Q
R
S
0.10  
0.004  
1.05  
0.041  
0.10±0.05  
5°±5°  
0.004±0.002  
5°±5°  
1.27 MAX.  
0.050 MAX.  
P80GK-50-BE9-5  
69  
µPD753012, 753016, 753017  
14. RECOMMENDED SOLDERING CONDITIONS  
Solder the µPD753017 under the following recommended conditions.  
For the details on the recommended soldering conditions, refer to Information Document Semiconductor  
Device Mounting Technology Manual (C10535E).  
For the soldering methods and conditions other than those recommended, consult NEC.  
Table 14-1. Soldering Conditions of Surface Mount Type  
(1) µPD753012GC-XXX-3B9: 80-pin plastic QFP (14 × 14 mm)  
µPD753016GC-XXX-3B9: 80-pin plastic QFP (14 × 14 mm)  
µPD753017GC-XXX-3B9: 80-pin plastic QFP (14 × 14 mm)  
Symbol of  
Soldering Method  
Infrared reflow  
VPS  
Soldering Conditions  
Recommended  
Condition  
Package peak temperature: 235 ˚C, Time: 30 seconds max. (210 ˚C min.),  
Number of times: 3 max.  
IR35-00-3  
VP15-00-3  
WS60-00-1  
Package peak temperature: 215 ˚C, Time: 40 seconds max. (200 ˚C min.),  
Number of times: 3 max.  
Wave soldering  
Solder bath temperature: 260 ˚C max., Time: 10 seconds max.,  
Number of times: 1  
Preheating temperature: 120 ˚C max. (package surface temperature)  
Partial heating  
Pin temperature: 300 ˚C max., Time: 3 seconds max. (per side of device)  
Caution Do not use two or more soldering methods in combination (except partial heating).  
70  
µPD753012, 753016, 753017  
(2) µPD753012GK-XXX-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
µPD753016GK-XXX-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
µPD753017GK-XXX-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
Symbol of  
Recommended  
Condition  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Package peak temperature: 235 ˚C, Time: 30 seconds max. (210 ˚C min.),  
Number of times: 2 max., Number of days: 7Note (After that, prebaking  
is necessary at 125 ˚C for 10 hours.)  
IR35-107-2  
VP15-107-2  
<Precaution>  
Products other than those packed in heat-resistant trays (such as those  
packed in a magazine, taping, or non-heat-resistant tray) cannot be baked  
while they are in their packaging.  
VPS  
Package peak temperature: 215 ˚C, Time: 40 seconds max. (200 ˚C min.),  
Number of times: 2 max., Number of days: 7Note (After that, prebaking  
is necessary at 125 ˚C for 10 hours.)  
<Precaution>  
Products other than those packed in heat-resistant trays (such as those  
packed in a magazine, taping, or non-heat-resistant tray) cannot be baked  
while they are in their packaging.  
Pin partial heating  
Pin temperature: 300 ˚C max., Time: 3 seconds max. (per side of device)  
Note The number of days for storage after the dry pack has been opened. The storing conditions are  
25 ˚C, 65% RH max.  
Caution Do not use two or more soldering methods in combination (except partial heating).  
71  
µPD753012, 753016, 753017  
APPENDIX A µPD75316B, 753017 AND 75P3018 FUNCTION LIST  
Parameter  
Program memory  
µPD75316B  
µPD753017  
µPD75P3018  
Mask ROM  
0000H-3F7FH  
(16256 × 8 bits)  
Mask ROM  
0000H-5FFFH  
(24576 × 8 bits)  
One-time PROM  
0000H-7FFFH  
(32768 × 8 bits)  
Data memory  
CPU  
000H-3FFH  
(1024 × 4 bits)  
Standard CPU  
75XL CPU  
Instruction  
execution  
time  
When main system  
clock is selected  
0.95, 1.91, 15.3 µs  
(at 4.19 MHz operation)  
0.95, 1.91, 3.81, 15.3 µs (at 4.19 MHz operation)  
0.67, 1.33, 2.67, 10.7 µs (at 6.0 MHz operation)  
When subsystem  
clock is selected  
122 µs (32.768 kHz operation)  
Pin  
connection  
44  
P12/INT2  
P21  
P12/INT2/TI1/TI2  
P21/PTO1  
47  
48  
P22/PCL  
P30-P33  
IC  
P22/PCL/PTO2  
50-53  
P30/MD0-P33/MD3  
57  
V
PP  
Stack  
SBS register  
None  
SBS.3 = 1: Mk I mode selection  
SBS.3 = 0: Mk II mode selection  
Stack area  
000H-0FFH  
2-byte stack  
n00H-nFFH (n = 0-3)  
Subroutine call  
instruction stack  
operation  
Mk I mode: 2-byte stack  
Mk II mode: 3-byte stack  
Instruction  
BRA !addr1  
CALLA !addr1  
Unavailable  
Mk I mode: unavailable  
Mk II mode: available  
MOVT XA, @BCDE  
MOVT XA, @BCXA  
BR BCDE  
Available  
BR BCXA  
CALL !addr  
3 machine cycles  
2 machine cycles  
Mk I mode: 3 machine cycles, Mk II mode: 4 machine cycles  
Mk I mode: 2 machine cycles, Mk II mode: 3 machine cycles  
CALLF !faddr  
Timer  
3 channels  
5 channels  
• Basic interval timer:  
1 channel  
• 8-bit timer/event counter:  
1 channel  
• Basic interval timer/watchdog timer: 1 channel  
• 8-bit timer/event counter: 3 channels  
(can be used as 16-bit timer/event counter, carrier generator,  
or timer with gate)  
• Watch timer: 1 channel  
• Watch timer: 1 channel  
72  
µPD753012, 753016, 753017  
Parameter  
Clock output (PCL)  
µPD75316B  
µPD753017  
µPD75P3018  
Φ, 524, 262, 65.5 kHz  
(Main system clock:  
at 4.19 MHz operation)  
Φ, 524, 262, 65.5 kHz  
(Main system clock: at 4.19 MHz operation)  
Φ, 750, 375, 93.8 kHz  
(Main system clock: at 6.0 MHz operation)  
BUZ output  
2 kHz  
• 2, 4, 32 kHz  
(Main system clock:  
at 4.19 MHz operation)  
(Main system clock: at 4.19 MHz operation or  
subsystem clock: at 32.768 kHz operation)  
• 2.93, 5.86, 46.9 kHz  
(Main system clock: at 6.0 MHz operation)  
Serial interface  
3 modes are available  
• 3-wire serial I/O mode ... MSB/LSB can be selected for transfer top bit  
• 2-wire serial I/O mode  
• SBI mode  
SOS  
register  
Feedback resistor cut flag  
(SOS.0)  
None  
None  
Provided  
Provided  
Sub-oscillator current cut  
flag (SOS.1)  
Register bank selection register (RBS)  
Standby release by INT0  
Vectored interrupt  
None  
Yes  
No  
Yes  
External: 3, internal: 3  
External: 3, internal: 5  
Supply voltage  
V
DD = 2.0 to 6.0 V  
= –40 to +85˚C  
VDD = 2.2 to 5.5 V  
Operation ambient temperature  
Package  
T
A
• 80-pin plastic TQFP (fine pitch) (12 × 12 mm)  
• 80-pin plastic QFP (14 × 14 mm)  
73  
µPD753012, 753016, 753017  
APPENDIX B DEVELOPMENT TOOLS  
The following development tools are provided for system development using the µPD753017. The 75XL series  
uses a common relocatable assembler, in combination with a device file matching each machine.  
Language processor  
RA75X relocatable assembler  
Part Number  
Host Machine  
(product name)  
OS  
Distribution media  
3.5-inch 2HD  
5-inch 2HD  
PC-9800 series  
MS-DOSTM  
Ver. 3.30 to  
Ver. 6.2Note  
µS5A13RA75X  
µS5A10RA75X  
IBM PC/ATTM and  
compatible machines  
Refer to  
3.5-inch 2HC  
5-inch 2HC  
µS7B13RA75X  
µS7B10RA75X  
OS for IBM PC  
Device file  
Part Number  
(product name)  
Host Machine  
OS  
Distribution media  
3.5-inch 2HD  
5-inch 2HD  
PC-9800 series  
MS-DOSTM  
Ver. 3.30 to  
Ver. 6.2Note  
µS5A13DF753017  
µS5A10DF753017  
3.5-inch 2HC  
5-inch 2HC  
µS7B13DF753017  
µS7B10DF753017  
IBM PC/AT and  
compatible machines  
Refer to  
OS for IBM PC  
Note Ver. 5.00 and later have the task swap function, but cannot be used for this software.  
Remark  
The operation of the assembler and device file is guaranteed only on the above host machines and  
OSs.  
74  
µPD753012, 753016, 753017  
PROM write tools  
Hardware  
PG-1500  
PG-1500 is a PROM programmer which enables you to program single chip microcomputers  
containing PROM by stand-alone or host machine operation by connecting an attached  
board and optional programmer adapter to PG-1500.  
It also enables you to program typical PROM devices of 256K bits to 4M bits.  
PA-75P316BGC  
PA-75P316BGK  
PG-1500 controller  
PROM programmer adapter for µPD75P3018GC. Connect the programmer adapter to PG-  
1500 for use.  
PROM programmer adapter for µPD75P3018GK. Connect the programmer adapter to PG-  
1500 for use.  
Software  
PG-1500 and a host machine are connected by serial and parallel interfaces and PG-1500  
is controlled on the host machine.  
Part number  
(product name)  
Host machine  
OS  
Distribution media  
3.5-inch 2HD  
5-inch 2HD  
PC-9800 series  
MS-DOS  
Ver. 3.30 to  
Ver. 6.2Note  
µS5A13PG1500  
µS5A10PG1500  
3.5-inch 2HC  
5-inch 2HC  
µS7B13PG1500  
µS7B10PG1500  
IBM PC/AT and  
compatible machines  
Refer to  
OS for IBM PC  
Note Ver.5.00 and later have the task swap function, but it cannot be used for this software.  
Remark The operation of the PG-1500 controller is guaranteed only on the above host machines and OSs.  
75  
µPD753012, 753016, 753017  
Debugging tool  
The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the  
µPD753017.  
The system configurations are described as follows.  
Hardware  
IE-75000-RNote1  
In-circuit emulator for debugging the hardware and software when developing the  
application systems that use the 75X series and 75XL series. When developing a  
µPD753017 subseries, the emulation board IE-75300-R-EM and emulation probe that  
are sold separately must be used with the IE-75000-R.  
By connecting with the host machine and the PROM programmer, efficient debugging  
can be made.  
It contains the emulation board IE-75000-R-EM which is connected.  
IE-75001-R  
In-circuit emulator for debugging the hardware and software when developing the  
application systems that use the 75X series and 75XL series. When developing a  
µPD753017 sub-series, the emulation board IE-75300-R-EM and emulation probe which  
are sold separately must be used with the IE-75001-R.  
It can debug the system efficiently by connecting the host machine and PROM program-  
mer.  
IE-75300-R-EM  
EP-753017GC-R  
Emulation board for evaluating the application systems that use the µPD753017  
subseries. It must be used with the IE-75000-R or IE-75001-R.  
Emulation probe for the µPD753017GC.  
It must be connected to IE-75000-R (or IE-75001-R) and IE-75300-R-EM.  
It is supplied with the 80-pin conversion socket EV-9200GC-80 which facilitates  
connection to a target system.  
EV-9200GC-80  
EP-753017GK-R  
Emulation probe for the µPD753017GK.  
It must be connected to the IE-75000-R (or IE-75001-R) and IE-75300-R-EM.  
It is supplied with the 80-pin conversion adapter TGK-080SDW which facilitates  
TGK-080SDWNote 2 connection to a target system.  
Software  
IE control program Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronix  
I/F and controls the above hardware on a host machine.  
Host machine  
Part number  
(product name)  
OS  
Distribution media  
PC-9800 series  
MS-DOS  
3.5-inch 2HD  
5-inch 2HD  
µS5A13IE75X  
µS5A10IE75X  
Ver. 3.30 to  
Ver. 6.2Note 3  
3.5-inch 2HC  
5-inch 2HC  
µS7B13IE75X  
µS7B10IE75X  
IBM PC/AT and its  
compatible machines  
Refer to  
OS for IBM PC  
Notes 1. Maintenance parts  
2. This is a product of Tokyo Eletech Corp. (Tokyo 03-5295-1661)  
When purchasing this product, consult your NEC distributor.  
3. Ver.5.00 and later have the task swap function, but it cannot be used for this software.  
Remark The operation of the IE control program is guaranteed only on the above host machines and OSs.  
76  
µPD753012, 753016, 753017  
OS for IBM PC  
The following IBM PC OS’s are supported.  
OS  
Version  
PC DOSTM  
Ver. 3.1 to Ver. 6.3  
J6.1/V Note to J6.3/V Note  
MS-DOS  
Ver. 5.0 to Ver. 6.22  
5.0/V Note to 6.2/V Note  
IBM DOSTM  
J5.02/V Note  
Note Only English version is supported.  
Caution Ver. 5.0 and later have the task swap function, but it cannot be used for this software.  
77  
µPD753012, 753016, 753017  
APPENDIX C RELATED DOCUMENTS  
Some of the following related documents are preliminary.  
Device Related Documents  
Document No.  
Document Name  
Japanese  
U10140J  
U10956J  
U11282J  
IEM-5598  
U10453J  
English  
U10140E (This manual)  
U10956E  
µPD753012, 753016, 753017 Data Sheet  
µPD75P3018 Data Sheet  
µPD753017 User’s Manual  
µPD753017 Instruction  
U11282E  
75XL Series Selection Guide  
U10453E  
Development Tool Related Documents  
Document No.  
Document Name  
Japanese  
EEU-846  
U11354J  
EEU-967  
U11940J  
U12622J  
U12385J  
EEU-704  
English  
IE-75000 R/IE-75001-R User’s Manual  
EEU-1416  
U11354E  
EEU-1494  
U11940E  
EEU-1346  
EEU-1363  
EEU-1291  
IE-75300-R-EM User’s Manual  
Hardware  
EP-753017GC/GK-R User’s Manual  
PG-1500 User’s Manual  
RA75X Assembler Package  
User’s Manual  
Operation  
Language  
PG-1500 Controller User’s Manual  
PC-9800 Series  
(MS-DOS) Base  
Software  
IBM PC Series  
(PC DOS) Base  
EEU-5008  
U10540E  
Other Documents  
Document No.  
C10943X  
Document Name  
Japanese  
English  
IC Package Manual  
Semiconductor Device Mounting Technology Manual  
Quality Grades on NEC Semiconductor Devices  
C10535J  
C11531J  
C10983J  
C11892J  
C10535E  
C11531E  
C10983E  
C11892E  
NEC Semiconductor Device Reliability/Quality Control System  
Guide to Prevent Damage for Semiconductor Devices by  
Electrostatic Discharge (ESD)  
Semiconductor Devices Quality Guarantee Guide  
C11893J  
U11416J  
MEI-1202  
Guide for Products Related to Microcomputer : Other Companies  
Caution The above related documents are subject to change without notice. For design purpose, etc.,  
be sure to use the latest documents.  
78  
µPD753012, 753016, 753017  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Produc-  
tion process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
79  
µPD753012, 753016, 753017  
MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States  
and/or other countries.  
IBM DOS, PC/AT and PC DOS are trademarks of IBM Corporation.  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPD753012GC-XXX-3B9

4-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD753012GK

4-BIT SINGLE-CHIP MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD753012GK-XXX-BE9

4-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD753016

4-BIT SINGLE-CHIP MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD753016A

4-BIT SINGLE-CHIP MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD753016AGC

4-BIT SINGLE-CHIP MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD753016AGC-XXX-3B9

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PQFP80, 14 X 14 MM, PLASTIC, QFP-80

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD753016AGC-XXX-3B9-A

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PQFP80, 14 X 14 MM, LEAD FREE, PLASTIC, QFP-80

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD753016AGC-XXX-3B9-A

UPD753016AGC-XXX-3B9-A

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD753016AGC-XXX-8BT-A

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PQFP80, 14 X 14 MM, LEAD FREE, PLASTIC, QFP-80

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD753016AGK

4-BIT SINGLE-CHIP MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD753016AGK-XXX-9EU

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PQFP80, 12 X 12 MM, PLASTIC, TQFP-80

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC