UPD75308BGF [NEC]

4-BIT SINGLE-CHIP MICROCOMPUTER; 4位单片机
UPD75308BGF
型号: UPD75308BGF
厂家: NEC    NEC
描述:

4-BIT SINGLE-CHIP MICROCOMPUTER
4位单片机

计算机
文件: 总76页 (文件大小:565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD75304B,75306B,75308B  
4-BIT SINGLE-CHIP MICROCOMPUTER  
DESCRIPTION  
The µPD75308B is a 75X Series 4-bit single-chip microcomputer capable of the same data processing as an  
8-bit microcomputer.  
It is a low voltage operation version of the µPD75308 with on-chip LCD controller/driver. Operation at an  
ultra-low voltage of 2.0 V is possible. An ultra small-sized plastic QFP (12 × 12 mm) is also provided and it is  
perfect for small-sized set that uses an LCD panel.  
Functions, etc., are described in detail in the User's Manual. Please be sure to read this manual when  
carrying out design work.  
µPD75308 User's Manual: IEM-5016  
FEATURES  
Ultra-low-voltage operation possible: VDD = 2.0 to 6.0 V  
• Can be driven by two 1.5 V manganese batteries.  
On-chip memory  
• Program memory (ROM) : 8064 × 8 bit (µPD75308B)  
: 6016 × 8 bit (µPD75306B)  
: 4096 × 8 bit (µPD75304B)  
• Data memory (RAM)  
: 512 × 4 bit  
Instruction execution time adjustment function convenient in high-speed operation and power saving  
• 0.95 µs, 1.91 µs, 15.3 µs (4.19 MHz operation)  
• 122 µs (32.768 kHz operation)  
Built-in programmable LCD controller/driver  
• LCD drive voltage: 2.0 V to VDD  
An ultra small-sized plastic QFP (12 × 12 mm) is provided.  
• Suitable for small-sized set, such as a camera.  
On-chip PROM products available  
• On-chip one-time PROM products : µPD75P308, 75P316A  
• On-chip EPROM products  
: µPD75P308, 75P316B  
APPLICATIONS  
Remote control, integrated camera type VCR, camera, gas meter, etc.  
Unless there are any particular functional differences, the µPD75308B is described in this document as a  
representative product.  
The information in this document is subject to change without notice.  
Document No. IC-2913C  
The mark shows major revised points.  
(O. D. No. IC-8082D)  
Date Published January 1994 P  
Printed in Japan  
© NEC Corporation 1991  
µPD75304B,75306B,75308B  
ORDERING INFORMATION  
Ordering Code  
Package  
Quality Grade  
µPD75304BGC-×××-3B9  
µPD75304BGF-×××-3B9  
µPD75304BGK-×××-BE9  
µPD75306BGC-×××-3B9  
µPD75306BGF-×××-3B9  
µPD75306BGK-×××-BE9  
µPD75308BGC-×××-3B9  
µPD75308BGF-×××-3B9  
µPD75308BGK-×××-BE9  
80-pin plastic QFP (14 mm)  
80-pin plastic QFP (14 × 20 mm)  
Standard  
Standard  
80-pin plastic TQFP(fine pitch)(12 mm)  
80-pin plastic QFP (14 mm)  
80-pin plastic QFP (14 × 20 mm)  
80-pin plastic TQFP(fine pitch)(12 mm))  
80-pin plastic QFP (14 mm)  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
80-pin plastic QFP (14 × 20 mm)  
80-pin plastic TQFP(fine pitch)(12 mm)  
Remarks ××× is the ROM code number.  
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
2
µPD75304B,75306B,75308B  
FUNCTION OUTLINE (1/2)  
Item  
Function  
Number of basic instructions  
41  
0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz operation)  
122 µs (subsystem clock: 32.768 kHz operation)  
Instruction cycle  
ROM  
8064 × 8 bits (µPD75308B), 6016× 8 bits (µPD75306B), 4096× 8 bits (µPD75304B)  
512 × 4 bits  
On-chip memory  
RAM  
• 4-bit manipulation: 8 (B, C, D, E, H, L, X, A)  
• 8-bit manipulation: 4 (BC, DE, HL, XA)  
General register  
• Bit accumulator (CY)  
• 4-bit accumulator (A)  
• 8-bit accumulator (XA)  
Accumulators  
Instruction set  
• Various bit manipulation instructions  
• Efficient 4-bit data manipulation instructions  
• 8-bit data transfer instructions  
• GETI instruction that can implement arbitrary 2-byte/3-byte instructions with 1  
byte  
8
CMOS input  
Pull-up by software possible : 23  
16  
CMOS input/output  
40  
I/O lines  
8
8
CMOS output  
Used with segment pin  
N-ch open-drain  
input/output  
10 V withstand voltage, pull-up by mask option  
possible : 8  
• Number of segments selection: 24/28/32 segments (4/8 can be switched at bit  
port output.)  
• Display mode selection: Static, 1/2 duty, 1/3 duty (1/2 bias), 1/3 duty (1/3 bias),  
1/4 duty  
LCD controller/driver  
Supply voltage range  
• LCD drive division resistor can be incorporated by mask option  
VDD = 2.0 to 6.0 V  
• 8-bit timer/event counter  
• Clock source: 4 stages  
• Event count possible  
Timer  
3 channels  
• 8-bit basic interval timer  
• Standard clock generation: 1.95 ms, 7.82 ms, 31.3 ms, 250 ms  
(4.19 MHz operation)  
• Watchdog timer application possible  
3
µPD75304B,75306B,75308B  
FUNCTION OUTLINE (2/2)  
Item  
Function  
• Watch timer  
• 0.5 seconds time interval generation  
• Count clock source: Main system clock and subsystem clock  
switchable  
3 channels  
Timer  
• Fast watch mode (3.9 ms time interval generation)  
• Buzzer output possible (2 kHz)  
• Three modes application possible  
• 3-wire serial I/O mode  
• 2-wire serial I/O mode  
• SBI mode  
8-bit serial interface  
Bit sequential buffer  
Clock output function  
• LSB top/MSB top switchable  
Special bit manipulation memory: 16 bits  
• Perfect for remote control application  
Timer/event counter output (PTO0): Arbitrary frequency square wave output  
Clock output (PCL): Φ, 524, 262, 65.5 kHz (4.19 MHz operation)  
Buzzer output (BUZ): 2 kHz (4.19 MHz or 32.768 kHz operation)  
• External: 3  
• Internal: 3  
Vectored interrupt  
Test input  
• External: 1  
• Internal: 1  
• Main system clock oscillation ceramic/crystal oscillation circuit: 4.194304 MHz  
• Subsystem clock oscillation crystal oscillation circuit: 32.768 kHz  
System clock oscillator  
Standby  
STOP/HALT mode  
• 80-pin plastic QFP (14 × 20 mm)  
• 80-pin plastic QFP (14 mm)  
Package  
• 80-pin plastic TQFP (fine pitch) (12 mm)  
4
µPD75304B,75306B,75308B  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW)...............................................................................................  
6
8
2. BLOCK DIAGRAM............................................................................................................................  
3. PIN FUNCTIONS ..............................................................................................................................  
3.1 PORT PINS ..............................................................................................................................................  
3.2 NON-PORT PINS .....................................................................................................................................  
3.3 PIN INPUT/OUTPUT CIRCUITS ..............................................................................................................  
3.4 RECOMMENDED CONNECTION OF UNUSED PINS .............................................................................  
9
9
11  
13  
15  
16  
3.5  
PRECAUTIONS CONCERNING P00/INT4 PIN AND RESET PIN ...........................................................  
4. MEMORY CONFIGURATION .......................................................................................................... 16  
5. PERIPHERAL HARDWARE FUNCTIONS ........................................................................................ 21  
5.1 PORTS .....................................................................................................................................................  
5.2 CLOCK GENERATOR ...............................................................................................................................  
5.3 CLOCK OUTPUT CIRCUIT .......................................................................................................................  
5.4 BASIC INTERVAL TIMER ........................................................................................................................  
5.5 WATCH TIMER ........................................................................................................................................  
5.6 TIMER/EVENT COUNTER .......................................................................................................................  
5.7 SERIAL INTERFACE .................................................................................................................................  
5.8 LCD CONTROLLER/DRIVER ....................................................................................................................  
5.9 BIT SEQUENTIAL BUFFER ......................................................................................................................  
21  
22  
23  
24  
25  
26  
28  
30  
32  
6. INTERRUPT FUNCTION ................................................................................................................. 32  
7. STANDBY FUNCTION .................................................................................................................... 34  
8. RESET FUNCTION .......................................................................................................................... 35  
9. INSTRUCTION SET ......................................................................................................................... 37  
10. MASK OPTION SELECTION ............................................................................................................ 45  
11. ELECTRICAL SPECIFICATIONS ...................................................................................................... 46  
12. PACKAGE INFORMATION .............................................................................................................. 64  
13. RECOMMENDED SOLDERING CONDITIONS ................................................................................ 67  
APPENDIX A. DIFFERENCES AMONG SERIES PRODUCTS .............................................................. 70  
APPENDIX B. DEVELOPMENT TOOLS ............................................................................................... 72  
APPENDIX C. RELATED DOCUMENTS .............................................................................................. 73  
5
µPD75304B,75306B,75308B  
1. PIN CONFIGURATION (TOP VIEW)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
2
3
4
5
6
7
8
9
P60/KR0  
X2  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
60  
59  
58  
X1  
57  
56  
55  
54  
53  
52  
NC  
XT2  
XT1  
µ
µ
µ
µ
µ
µ
VDD  
P33  
P32  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P31/SYNC  
P30/LCDCL  
P23/BUZ  
P22/PCL  
P21  
S22  
S23  
S24/BP0  
S25/BP1  
S26/BP2  
S27/BP3  
S28/BP4  
S29/BP5  
S30/BP6  
P20/PTO0  
P13/TI0  
P12/INT2  
P11/INT1  
P10/INT0  
P03/SI/SB1  
S31/BP7  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
6
µPD75304B,75306B,75308B  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
P70/KR4  
P63/KR3  
S12  
S13  
1
2
64  
63  
S14  
S15  
S16  
S17  
S18  
P62/KR2  
P61/KR1  
P60/KR0  
X2  
3
62  
4
5
6
7
61  
60  
59  
58  
X1  
µ
µ
µ
S19  
S20  
S21  
S22  
NC  
XT2  
XT1  
8
9
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VDD  
S23  
P33  
P32  
S24/BP0  
S25/BP1  
S26/BP2  
S27/BP3  
S28/BP4  
S29/BP5  
S30/BP6  
S31/BP7  
COM0  
P31/SYNC  
P30/LCDCL  
P23/BUZ  
P22/PCL  
P21  
P20/PTO0  
P13/TI0  
P12/INT2  
P11/INT1  
21  
22  
23  
24  
44  
43  
42  
41  
COM1  
COM2  
COM3  
P10/INT0  
P03/SI/SB1  
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
P00 to 03 : Port 0  
P10 to 13 : Port 1  
P20 to 23 : Port 2  
P30 to 33 : Port 3  
P40 to 43 : Port 4  
P50 to 53 : Port 5  
P60 to 63 : Port 6  
P70 to 73 : Port 7  
S0 to 31  
: Segment Output 0 to 31  
COM0 to 3 : Common Output 0 to 3  
VLC0-2  
BIAS  
LCDCL  
SYNC  
TI0  
PTO0  
BUZ  
PCL  
INT0, 1, 4  
INT2  
X1, 2  
XT1, 2  
NC  
: LCD Power Supply 0 to 2  
: LCD Power Supply Bias Control  
: LCD Clock  
: LCD Synchronization  
: Timer Input 0  
: Programmable Timer Output 0  
: Buzzer Clock  
: Programmable Clock  
: External Vectored Interrupt 0, 1, 4  
: External Test Input 2  
: Main System Clock Oscillation 1, 2  
: Subsystem Clock Oscillation 1, 2  
: No Connection  
BP0 to 7  
KR0 to 7  
SCK  
: Bit Port  
: Key Return  
: Serial Clock  
: Serial Input  
: Serial Output  
: Serial Bus 0, 1  
: Reset Input  
SI  
SO  
SB0,1  
RESET  
7
BASIC  
INTERVAL  
TIMER  
PORT 0  
PORT 1  
PORT 2  
PORT 3  
4
4
4
4
P00-P03  
P10-P13  
P20-P23  
P30-P33  
P40-P43  
P50-P53  
P60-P63  
P70-P73  
INTBT  
PROGRAM  
COUNTER *  
SP(8)  
CY  
TIMER/EVENT  
COUNTER  
#0  
ALU  
TI0/P13  
PTO0/P20  
BANK  
INTT0  
WATCH  
TIMER  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
4
4
4
4
BUZ/P23  
PROGRAM  
MEMORY  
(ROM)  
8064×8BITS  
: µPD75308B  
6016×8BITS  
: µPD75306B  
4096×8BITS  
GENERAL REG.  
INTW  
LfCD  
DECODE  
AND  
CONTROL  
SI/SB1/P03  
CLOCKED  
SERIAL  
INTERFACE  
SO/SB0/P02  
SCK/P01  
DATA  
MEMORY  
(RAM)  
: µPD75304B  
512 × 4 BITS  
INTCSI  
24  
8
S0-S23  
INT0/P10  
INT1/P11  
INT2/P12  
S24/BP0  
–S31/BP7  
INTER-  
RUPT  
µ
CONTROL  
INT4/P00  
LCD  
CONTROL-  
LER  
4
COM0–COM3  
KR0/P60  
–KR7/P73  
8
f
/ 2N  
X
/DRIVER  
3
VLC0–VLC2  
SYSTEM CLOCK  
GENERATOR  
CLOCK  
OUTPUT  
CONTROL  
CPU  
CLOCK  
CLOCK  
DIVIDER  
STAND BY  
CONTROL  
BIT SEQ.  
BUFFER (16)  
f
LCD  
BIAS  
LCDCL/P30  
SYNC/P31  
SUB  
MAIN  
V
DD  
VSS  
RESET  
PCL/P22  
XT1 XT2 X1 X2  
*
13bits : µPD75306B, 75308B  
12bits : µPD75304B  
µPD75304B,75306B,75308B  
3. PIN FUNCTIONS  
3.1 PORT PINS (1/2)  
Dual-  
Function Pin  
After  
Reset  
I/O Circuit  
Type *1  
Function  
Pin Name  
Input/Output  
8-bit I/O  
INT4  
SCK  
SO/SB0  
SI/SB1  
INT0  
INT1  
INT2  
TI0  
B
P00  
P01  
Input  
4-bit input port (PORT 0)  
On-chip pull-up resistor can be specified for  
P01 to P03 as a 3-bit unit by software.  
F - A  
F - B  
M - C  
Input/output  
Input/output  
Input/output  
×
Input  
Input  
Input  
Input  
P02  
P03  
With noise elimination function  
P10  
P11  
4-bit input port (PORT 1)  
On-chip pull-up resistor can be specified as a  
4-bit unit by software.  
B - C  
E - B  
E - B  
Input  
×
×
×
P12  
P13  
PTO0  
P20  
P21  
4-bit input/output port (PORT 2)  
On-chip pull-up resistor can be specified as a  
4-bit unit by software.  
Input/output  
Input/output  
PCL  
P22  
BUZ  
LCDCL  
SYNC  
P23  
P30 *2  
P31 *2  
P32 *2  
P33 *2  
Programmable 4-bit input/output port (PORT 3)  
Input/output can be specified bit-wise.  
On-chip pull-up resistor can be specified as a  
4-bit unit by software.  
High level (on-  
chip pull-up  
resistor) or high-  
impedance  
N-ch open-drain 4-bit input/output port (PORT  
4)  
On-chip pull-up resistor can be specified bit-  
wise (mask option).  
M
M
Input/output  
Input/output  
P40 to P43 *2  
P50 to P53 *2  
Open-drain: 10 V withstand voltage  
High level (on-  
chip pull-up  
resistor) or high-  
impedance  
N-ch open-drain 4-bit input/output port (PORT  
5)  
On-chip pull-up resistor can be specified bit-  
wise (mask option).  
Open-drain: 10 V withstand voltage  
*
1.  
: Schmitt trigger input  
2. LED direct drive possible  
9
µPD75304B,75306B,75308B  
3.1 PORT PINS (2/2)  
After  
Reset  
Dual-  
Function Pin  
I/O Circuit  
Type *1  
Pin Name  
Function  
Input/Output  
Input/output  
8-bit I/O  
P60  
P61  
P62  
P63  
P70  
P71  
P72  
P73  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
KR0  
KR1  
KR2  
KR3  
KR4  
KR5  
KR6  
KR7  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
Programmable 4-bit input/output port (PORT 6)  
Input/output can be specified bit-wise.  
On-chip pull-up resistor can be specified as a  
4-bit unit by software.  
Input  
Input  
F - A  
4-bit input/output port (PORT 7)  
On-chip pull-up resistor can be specified as a  
4-bit unit by software.  
Input/output  
F - A  
Output  
1-bit output port (BIT PORT)  
Also used as segment output pin.  
×
* 2  
G - C  
Output  
*
1.  
: Schmitt trigger input  
2. BP0 to BP7 select VLC1 as the input source.  
However, the output level depends on BP0 to BP7 and VLC1 external circuit.  
Example BP0 to BP7 are connected mutually within the µPD75308B. Therefore, the output level of BP0 to BP7  
is determined by the value of R1, R2 and R3.  
µPD75308B  
V
DD  
R2  
BP0  
BP1  
ON  
ON  
V
LC1  
R1  
R3  
10  
µPD75304B,75306B,75308B  
3.2 NON-PORT PINS  
Dual-  
Function Pin  
I/O Circuit  
Type *1  
After  
Reset  
Input/Output  
Pin Name  
Function  
Input  
P13  
P20  
P22  
B - C  
E - B  
E - B  
TI0  
PTO0  
PCL  
External event pulse input pin to timer/event counter  
Timer/event counter output pin  
Clock output pin  
Input  
Input  
Input  
Input/output  
Input/output  
Fixed frequency output pin (for buzzer or system clock  
trimming)  
E - B  
F - A  
F - B  
Input  
Input  
Input  
P23  
P01  
BUZ  
SCK  
Input/output  
Input/output  
Serial clock input/output pin  
Serial data output pin  
Serial bus input/output pin  
P02  
P03  
SO/SB0  
SI/SB1  
Input/output  
Input/output  
Serial data input pin  
Serial bus input/output pin  
Input  
Input  
M - C  
B
Edge detection vectored interrupt input pin (both rising  
edge and falling edge detection effective)  
P00  
P10  
INT4  
Input  
Clock synchronous  
system  
Edge detection vectored  
interrupt input pin (detection  
INT0  
INT1  
Input  
Input  
Input  
Input  
B - C  
B - C  
edge selectable)  
Asynchronous  
P11  
P12  
Edge detection testable input  
pin (rising edge detection)  
INT2  
Asynchronous  
Input/output  
Input/output  
Output  
P60 to P63  
P70 to P73  
F - A  
F - A  
G - A  
G - C  
G - B  
KR0 to KR3  
KR4 to KR7  
S0 to S23  
Parallel falling edge detection testable input pin  
Parallel falling edge detection testable input pin  
Segment signal output pin  
Input  
Input  
*2  
Output  
BP0 to BP7  
S24 to S31  
Segment signal output pin  
*2  
Output  
COM0 to COM3  
Common signal output pin  
*2  
LCD drive power supply pin  
On-chip split resistor (mask option)  
VLC0 to VLC2  
Output  
BIAS  
External split resistor cut output pin  
*3  
Input/output  
P30  
E - B  
LCDCL *4  
External expansion driver drive clock output pin  
Input  
External expansion driver synchronization clock output  
pin  
P31  
Input/output  
Input  
Input  
E - B  
SYNC *4  
Main system clock oscillation crystal/ceramic connection  
pin. For external clock, the external clock signal is input  
to X1 and its opposite phase is input to X2.  
X1, X2  
Subsystem clock oscillation crystal connection pin. For  
external clock, the external clock signal is input to XT1  
and XT2 is opened. XT1 can be used as a 1-bit input  
(test) pin.  
XT1  
XT2  
Input  
B
System reset input pin  
NO CONNECTION  
RESET  
Input  
NC *5  
VDD  
VSS  
Positive power supply pin  
GND potential pin  
*
1.  
: Schmitt trigger input  
2. Display outputs are selected with VLCX shown below as the input source.  
S0 to S31: VLC1, COM0 to COM2: VLC2, COM3: VLC0  
However, the level of each display output depends on the display output and VLCX external circuit.  
11  
µPD75304B,75306B,75308B  
*
3. On-chip split resistor ........ Low level  
No on-chip split resistor ... High-impedance  
4. Pins provided for system expansion. Currently, only used as P30 and P31.  
5. If a printed wiring board is shared with the µPD75P316A/75P316B, the NC pin should be connected to  
VDD.  
12  
µPD75304B,75306B,75308B  
3.3 PIN INPUT/OUTPUT CIRCUITS  
The input/output circuits of each pin of the µPD75308B are shown by in abbreviated form.  
TYPE D (For TYPE E-B, F-A)  
TYPE A (For TYPE E-B)  
V
DD  
VDD  
data  
P-ch  
P-ch  
OUT  
IN  
output  
disable  
N-ch  
N-ch  
Push-pull output that can be made high-impedance output  
(P-ch and N-ch OFF)  
CMOS Standard Input Buffer  
TYPE B  
TYPE E-B  
VDD  
P.U.R.  
P.U.R.  
enable  
P-ch  
data  
IN/OUT  
IN  
Type D  
Type A  
output  
disable  
P.U.R.  
:
Pull-Up Resistor  
Schmitt-Trigger Input with Hysteresis Characteristic  
TYPE B-C  
TYPE F-A  
VDD  
P.U.R.  
VDD  
P.U.R.  
enable  
P.U.R.  
P-ch  
P.U.R.  
enable  
data  
P-ch  
IN/OUT  
Type D  
Type B  
output  
disable  
IN  
P.U.R. : Pull-Up Resistor  
P.U.R.  
:
Pull-Up Resistor  
13  
µPD75304B,75306B,75308B  
TYPE F-B  
TYPE G-C  
V
DD  
P.U.R.  
P-ch  
VDD  
P.U.R.  
enable  
P-ch  
V
DD  
V
LC0  
output  
disable  
(P)  
P-ch  
V
LC1  
IN/OUT  
data  
P-ch  
SEG  
output  
disable  
OUT  
N-ch  
N-ch  
data/Bit Port data  
output  
disable  
(N)  
V
LC2  
N-ch  
P.U.R.  
:
Pull-Up Resistor  
TYPE G-A  
TYPE M  
V
DD  
P.U.R.  
enable  
(Mask Option)  
IN/OUT  
VLC0  
P-ch  
data  
VLC1  
N-ch  
P-ch  
output  
disable  
SEG  
data  
OUT  
N-ch  
VLC2  
N-ch  
Middle-High Voltage Input Buffer  
(+10 V Withstand Voltage)  
P.U.R.  
:
Pull-Up Resistor  
TYPE G-B  
TYPE M-C  
VDD  
V
LC0  
P-ch  
P.U.R.  
P-ch  
IN/OUT  
VLC1  
P.U.R.  
enable  
N-ch  
P-ch  
OUT  
data  
N-ch  
COM  
data  
output  
disable  
N-ch P-ch  
VLC2  
N-ch  
P.U.R.  
:
Pull-Up Resistor  
14  
µPD75304B,75306B,75308B  
3.4 RECPMMENDED CONNECTION OF UNUSED PINS  
Table 3-1 Connection of Unused Pins  
Pin  
Recommended Connection  
Connect to VSS  
P00/INT4  
P01/SCK  
P02/SO/SB0  
P03/SI/SB1  
Connect to VSS or VDD  
Connect to VSS  
P10/INT0-P12/INT2  
P13/TI0  
P20/PTO0  
P21  
P22/PCL  
P23/BUZ  
P30/LCDCL  
P31/SYNC  
Input state  
:
Connect to VSS or VDD  
Outputstate : Leave open  
P32  
P33  
P40 to P43  
P50 to P53  
P60/KR0 to P63/KR3  
P70/KR4 to P73/KR7  
S0 to S23  
S24/BP0 to S31/BP7  
COM0 to COM3  
VLC0 to VLC2  
Leave open  
Connect to VSS  
Connect to VSS only when VLC0 to VLC2  
are all unused; otherwise leave open  
BIAS  
XT1  
XT2  
Connect to VSS or VDD  
Leave open  
15  
µPD75304B,75306B,75308B  
3.5  
PRECAUTIONS CONCERNING P00/INT4 PIN AND RESET PIN  
In addition to the functions shown in 3.1 and 3.2, the P00/INT4 pin and RESET pin are also used to set the  
test mode for testing internal µPD75308B operation (for IC testing).  
The test mode is set when a voltage greater than VDD is applied to either of these pins. Consequently, if  
noise exceeding VDD is applied during normal operation, the test mode may be entered, making it impossible  
for normal operation to continue.  
For example, misoperation may result if inter-wiring noise is applied to the P00/INT4 or RESET pin due to  
the length of the wiring from these pins, and the pin voltage exceeds VDD.  
Wiring should therefore be carried out so that inter-wiring noise is suppressed as far as possible. If it is  
completely impossible to suppress noise, noise prevention measures should be taken using an external compo-  
nent as shown below.  
o Diode connected between  
o Capacitor connected between  
P00/INT4 or RESET and VDD  
P00/INT4 or RESET and VDD  
VDD  
VDD  
Diode with  
Small VF  
VDD  
VDD  
P00/INT4, RESET  
P00/INT4, RESET  
4. MEMORY CONFIGURATION  
Program memory (ROM) ... 8064 × 8 bits (0000H to 1F7FH): µPD75308B  
6016 × 8 bits (0000H to 177FH): µPD75306B  
4096 × 8 bits (0000H to 0FFFH): µPD75304B  
• 0000H to 0001H: Vector table in which the program start address after a reset is written.  
• 0002H to 000BH: Vector table in which program start addresses in case of interrupts are written.  
• 0020H to 007FH: Table area referenced by the GETI instruction.  
Data memory  
• Data area ... 512 × 4 bits (000H to 1FFH)  
• Peripheral hardware area ... 128 × 4 bits (F80H to FFFH)  
16  
µPD75304B,75306B,75308B  
Fig. 4-1 Program Memory Map  
(a) µPD75308B  
Address  
7
6
0
5
0
0
0000H MBE  
0002H MBE  
0004H MBE  
0006H MBE  
0008H MBE  
000AH MBE  
Internal Reset Start Address (High-Order 5 Bits)  
Internal Reset Start Address (Low-Order 8 Bits)  
INTBT/INT4 Start Address (High-Order 5 Bits)  
INTBT/INT4 Start Address (Low-Order 8 Bits)  
INT0 Start Address (High-Order 5 Bits)  
INT0 Start Address (Low-Order 8 Bits)  
INT1 Start Address (High-Order 5 Bits)  
INT1 Start Address (Low-Order 8 Bits)  
INTCSI Start Address (High-Order 5 Bits)  
INTCSI Start Address (Low-Order 8 Bits)  
INTT0 Start Address (High-Order 5 Bits)  
INTT0 Start Address (Low-Order 8 Bits)  
0
0
0
0
0
0
0
0
0
0
CALL !addr  
Instruction  
Subroutine  
Entry Address  
CALLF  
! faddr  
Instruction  
Entry  
Address  
BR !addr  
Instruction  
Branch Address  
BRCB  
! caddr  
Instruction  
Branch  
Address  
BR $addr  
Instruction  
Relative  
Branch Address  
(-15 to -1,  
+2 to +16)  
0020H  
GETI Instruction Reference Table  
007FH  
0080H  
Branch Destination  
Address and  
Subroutine Entry Address  
by GETI Instruction  
07FFH  
0800H  
0FFFH  
1000H  
BRCB  
! caddr  
Instruction  
Branch  
Address  
1F7FH  
17  
µPD75304B,75306B,75308B  
(b) µPD75306B  
Address  
7
6
0
5
0
0
0000H MBE  
0002H MBE  
0004H MBE  
0006H MBE  
0008H MBE  
000AH MBE  
Internal Reset Start Address (High-Order 5 Bits)  
Internal Reset Start Address (Low-Order 8 Bits)  
INTBT/INT4 Start Address (High-Order 5 Bits)  
INTBT/INT4 Start Address (Low-Order 8 Bits)  
INT0 Start Address (High-Order 5 Bits)  
INT0 Start Address (Low-Order 8 Bits)  
INT1 Start Address (High-Order 5 Bits)  
INT1 Start Address (Low-Order 8 Bits)  
INTCSI Start Address (High-Order 5 Bits)  
INTCSI Start Address (Low-Order 8 Bits)  
INTT0 Start Address (High-Order 5 Bits)  
INTT0 Start Address (Low-Order 8 Bits)  
0
0
0
0
0
0
0
0
0
0
CALL !addr  
Instruction  
Subroutine  
Entry Address  
CALLF  
! faddr  
Instruction  
Entry  
Address  
BR !addr  
Instruction  
Branch Address  
BRCB  
! caddr  
Instruction  
Branch  
Address  
BR $addr  
Instruction  
Relative  
Branch Address  
(-15 to -1,  
+2 to +16)  
0020H  
GETI Instruction Reference Table  
007FH  
0080H  
Branch Destination  
Address and  
Subroutine Entry Address  
by GETI Instruction  
07FFH  
0800H  
0FFFH  
1000H  
BRCB  
! caddr  
Instruction  
Branch  
Address  
177FH  
18  
µPD75304B,75306B,75308B  
(c) µPD75304B  
Address  
7
6
0
5
0
0
0000H MBE  
0002H MBE  
0004H MBE  
0006H MBE  
0008H MBE  
000AH MBE  
Internal Reset Start Address (High-Order 4 Bits)  
Internal Reset Start Address (Low-Order 8 Bits)  
INTBT/INT4 Start Address (High-Order 4 Bits)  
INTBT/INT4 Start Address (Low-Order 8 Bits)  
INT0 Start Address (High-Order 4 Bits)  
INT0 Start Address (Low-Order 8 Bits)  
INT1 Start Address (High-Order 4 Bits)  
INT1 Start Address (Low-Order 8 Bits)  
INTCSI Start Address (High-Order 4 Bits)  
INTCSI Start Address (Low-Order 8 Bits)  
INTT0 Start Address (High-Order 4 Bits)  
INTT0 Start Address (Low-Order 8 Bits)  
0
0
0
0
0
0
0
0
0
0
CALL !addr  
Instruction  
Subroutine  
Entry Address  
CALLF  
! faddr  
Instruction  
Entry  
Address  
BR !caddr  
Instruction  
Branch Address  
BR $addr  
Instruction  
Relative  
Branch Address  
(-15 to -1,  
+2 to +16)  
0020H  
GETI Instruction Reference Table  
007FH  
0080H  
Branch Destination  
Address and  
Subroutine Entry Address  
by GETI Instruction  
07FFH  
0800H  
0FFFH  
19  
µPD75304B,75306B,75308B  
Fig. 4-2 Data Memory Map  
Data Memory  
Memory Bank  
000H  
General  
Register Area  
(8 × 4)  
007H  
008H  
0
Stack Area  
256 × 4  
(248 × 4)  
0FFH  
100H  
Data Area  
Static RAM  
(512 × 4)  
256 × 4  
(224 × 4)  
1
1DFH  
1E0H  
Display Data Memory Area  
(32 × 4)  
1FFH  
Not On-Chip  
F80H  
Peripheral Hardware Area  
15  
128 × 4  
FFFH  
20  
µPD75304B,75306B,75308B  
5. PERIPHERAL HARDWARE FUNCTIONS  
5.1 PORTS  
There are four kinds of I/O ports, as follows.  
CMOS input (PORT0, 1)  
: 8  
CMOS input/output (PORT2, 3, 6, 7) : 16  
N-ch open drain (PORT4, 5)  
CMOS output (BP0 to BP7)  
:
:
8
8
Total  
40  
Fig. 5-1 Port Functions  
Port (Symbol)  
Function  
Operation/Features  
Remarks  
Dual function as INT4, SCK, SO/  
SB0 & SI/SB1 pins  
PORT 0  
PORT 1  
PORT 2  
PORT 7  
PORT 3 *  
PORT 6  
Always readable or testable irrespective of  
dual-function pin operating mode.  
4-bit input  
Dual function as pins INT0 to  
INT2 & TI0  
Dual function as PTO0, PCL &  
BUZ pins  
Can be set to input or output mode as 4-bit  
unit. Ports 6 & 7 can be paired for 8-bit data  
input/output.  
Dual function as pins KR4 to  
KR7  
4-bit input/output  
Dual function as LCDCL & SYNC  
pins  
Can be set to input or output mode bit-wise.  
Dual function as pins KR0 to  
KR3  
4-bit input/output  
(N-ch open-drain  
10 V withstand  
voltage)  
Incorporation of pull-up resistor  
can be specified bit-wise by  
mask option.  
Can be set to input or output mode as 4-bit  
unit. Ports 4 & 5 can be paired for 8-bit data  
input/output.  
PORT 4 *  
PORT 5 *  
Outputs data bit-wise. Switchable by  
software with LCD drive segment outputs  
S24 to S31.  
Small drive capability.  
For CMOS load drive.  
BP0 to BP7  
1-bit output  
*
Direct LED drive capability  
21  
µPD75304B,75306B,75308B  
5.2 CLOCK GENERATOR  
The operation of the clock generator is determined by the processor clock control register (PCC) and system  
clock control register (SCC).  
There are two kinds of clock, the main system clock and subsystem clock, and the instruction execution time  
can be changed.  
0.95 µs/1.91 µs/15.3 µs (4.19 MHz main system clock operation)  
122 µs (32.768 kHz subsystem clock operation)  
Fig. 5-1 Clock Generator Block Diagram  
• Basic Interval Timer (BT)  
• Timer/Event Counter  
• Serial Interface  
XT1  
V
DD  
Subsystem  
Clock Oscil-  
lation Circuit  
LCD Controller/  
Driver  
Watch Timer  
f
XT  
• Watch Timer  
• LCD Controller/Driver  
• INT0 Noise Elimination Circuit  
• Clock Output Circuit  
XT2  
X1  
V
DD  
Main System  
Clock Oscil-  
lation Circuit  
fX  
1/8 to 1/4096  
Frequency Divider  
X2  
1/2 1/16  
Oscil-  
lation  
Stop  
WM. 3  
SCC  
Frequency  
Divider  
SCC3  
Φ
1/4  
SCC0  
PCC  
• CPU  
• INT0 Noise  
Elimination Circuit  
• Clock Output Circuit  
PCC0  
PCC1  
PCC2  
PCC3  
4
HALT F/F  
S
HALT *  
STOP *  
R
Q
PCC2,  
PCC3  
Clear  
Wait Release Signal from BT  
RESET Signal  
STOP F/F  
Q
S
R
Standby Release Signal from  
Interrupt Control Circuit  
Remarks 1. fX = Main system clock frequency  
2. fXT = Subsystem clock frequency  
3. PCC: Processor clock control register  
4. SCC: System clock control register  
5. * indicates instruction execution.  
6. One Φ clock cycle (tCY) is one machine cycle. See "AC CHARACTERISTICS" in 11. "ELECTRICAL  
SPECIFICATIONS" for details of tCY.  
22  
µPD75304B,75306B,75308B  
5.3 CLOCK OUTPUT CIRCUIT  
The clock output circuit is a circuit which outputs a clock pulse from P22/PCL pin and is used to supply clock  
pulses to remote control outputs or peripheral LSI’s.  
Clock output (PCL) : Φ 524, 262, 65.5 kHz (at 4.19 MHz operation)  
Buzzer output (BUZ): 2 kHz (at 4.19 MHz or 32.768 kHz operation)  
The configuration of the clock output circuit is shown below.  
Fig. 5-2 Clock Output Circuit Configuration  
From Clock  
Generator  
Φ
/23  
/24  
Output Buffer  
f
X
X
Selector  
f
PCL/P22  
fX  
/26  
PORT2.2  
Bit 2 of PMGB  
Bit Specified  
P22  
Output Latch  
In Port 2  
Input/Output  
Mode  
CLOM3  
0
CLOM1 CLOM0CLOM  
4
Internal Bus  
Remarks Consideration is given so that a low amplitude pulse is not output when switching between clock  
output enable and disable.  
23  
µPD75304B,75306B,75308B  
5.4 BASIC INTERVAL TIMER  
The basic interval timer includes the following functions.  
It operates as an interval timer which generates reference time interrupts.  
It can be applied as a watchdog timer which detects when a program is out of control.  
Selects and counts wait times when the standby mode is released.  
It reads count contents.  
Fig. 5-3 Basic Interval Timer Configuration  
From Clock  
Generator  
Clear  
Clear  
f
f
X
X
/25  
/27  
Set  
Basic Interval Timer  
(8-Bit Frequency Divider)  
BT Interrupt  
Request Flag  
MPX  
Vectored  
Interrupt  
Request  
Signal  
f
f
X
X
/29  
/212  
BT  
IRQBT  
3
Wait Release  
Signal During  
Standby Release  
BTM3  
BTM2  
BTM1  
BTM0  
BTM  
*SET1  
4
8
Internal Bus  
Remarks * indicates instruction execution.  
24  
µPD75304B,75306B,75308B  
5.5 WATCH TIMER  
The µPD75308B incorporates a single watch timer channel. The watch timer has the following functions.  
Sets test flags (IRQW) at 0.5 second intervals. The standby mode can be released with IRQW.  
0.5 sec. time intervals can be created in either the main system clock or the subsystem clock.  
In the fast watch mode, time intervals which are 128 times normal (3.91 ms) can be set, making this  
function convenient for program debugging and testing.  
A fixed frequency (2.048 kHz) can be output to the P23/BUZ pin for use in generating buzzer sounds and  
trimming system clock oscillation frequencies.  
The frequency divider can be cleared, so this clock can be started at 0 second.  
Fig. 5-4 Watch Timer Block Diagram  
f
W
26  
(512 Hz : 1.95 ms)  
f
LCD  
f
W
27  
(256 Hz : 3.91 ms)  
INTW  
IRQW  
Set Signal  
f
W
Selector  
f
W
214  
128  
(32.768 kHz)  
From  
Clock  
Generator  
f
W
Selector  
Frequency Divider  
Clear  
(32.768 kHz)  
2Hz  
f
XT  
0.5 sec  
(32.768 kHz)  
f
16  
W
(2.048 kHz)  
Output Buffer  
P23/BUZ  
WM  
PORT2.3  
Bit 2 of PMGB  
P23  
Port 2  
Input/Output  
Mode  
Output  
WM7  
0
0
0
8
WM3 WM2  
WM1  
WM0  
Latch  
Bit Test Instruction  
Internal Bus  
Remarks Values in parentheses are when fX = 4.194304 MHz and fXT = 32.768 kHz.  
25  
µPD75304B,75306B,75308B  
5.6 TIMER/EVENT COUNTER  
The µPD75308B incorporates a single timer/event counter channel. The timer/event counter has the following  
functions.  
Operates as a programmable interval timer.  
Outputs square waves in the desired frequency to the PTO0 pin.  
Operates as an event counter.  
Divides the TI0 pin input into N divisions and outputs it to the PTO0 pin (frequency divider operation).  
Supplies a serial shift clock to the serial interface circuit.  
Count status read function.  
26  
Fig. 5-5 Timer/Event Counter Block Diagram  
Internal Bus  
*1  
8
SET1  
8
8
TM0  
TMOD0  
TOE0  
PORT2.0  
Bit 2 of PGMB  
Port 2  
TO  
Enable  
Flag  
P20  
Output  
Latch  
Modulo Register (8)  
TM06 TM05 TM04 TM03 TM02  
Input/  
Output  
Mode  
To Serial  
Interface  
8
PORT1.3  
Match  
TOUT  
F/F  
Comparator (8)  
P20/PTO0  
Output  
Buffer  
Input Buffer  
8
Reset  
P13/TI0  
T0  
INTT0  
IRQT0  
Set Signal  
Count Register (8)  
Clear  
*2  
From Clock  
Generator  
MPX  
CP  
µ
Timer Operation Start  
RESET  
IRQT0  
Clear Signal  
*
1
2
SET1: Instruction execution  
For detail, see Fig. 5-1.  
µPD75304B,75306B,75308B  
5.7 SERIAL INTERFACE  
The µPD75308B incorporates a clocked 8-bit serial interface. The serial interface has the following three  
modes.  
3-wire serial I/O mode  
2-wire serial I/O mode  
SBI mode (serial bus interface mode)  
28  
Fig. 5-6 Serial Interface Block Diagram  
Internal Bus  
8
Bit  
Test  
Bit Manipulation  
(8)  
Bit Test  
8/4  
8
8
Slave Address Register (SVA)  
Addres Comparator  
Shift Register (SIO)  
CSIM  
SBIC  
Match  
Signal  
(8)  
RELT  
CMDT  
P03/SI/SB1  
P02/SO/SB0  
SO  
Latch  
SET CLR  
D
Q
(8)  
Busy/  
Acknowledge  
Output Circuit  
RELD  
CMDD  
ACKD  
Bus Release/  
Command/  
Acknowledge  
Detection Circuit  
P01/SCK  
INTCSI  
Serial Clock  
Counter  
INTCSI Control  
Circuit  
IRQCSI  
µ
Set Signal  
/23  
/24  
/26  
P01  
Output  
Latch  
f
f
f
X
X
X
Serial  
Clock  
Slector  
Serial Clock  
Control Circuit  
TOUT F/F  
(From Timer/  
Event Counter)  
External  
SCK  
µPD75304B,75306B,75308B  
5.8 LCD CONTROLLER/DRIVER  
The µPD75308B has an on-chip display controller which generates segment signals and common signals in  
accordance with data in display data memory as well as a segment driver and common driver capable of  
directly driving the LCD panel.  
The configuration of the LCD controller/driver is shown in Fig. 5-7  
The functions of the on-chip LCD controller/driver of the µPD75308B are as follows.  
Display data memory are read automatically through DMA operations and segment signals and common  
signals are generated.  
5 different display modes can be selected.  
Static  
1/2 duty (1/2 bias)  
1/3 duty (1/2 bias)  
4 1/3 duty (1/3 bias)  
1/4 duty (1/3 bias)  
In each of the display modes, 4 types of frame frequency can be selected.  
The segment signal output is a maximum of 32 segments (S0 to S31) and 4 common outputs (COM0 to  
COM3).  
Segment signal outputs (S24 to S27, S28 to S31) are in 4-segment units and they can be switched for use  
as output ports (BP0 to BP3, BP4 to BP7).  
Split resistors can be built-in for the LCD driver power supply (mask option).  
Conformity to various bias methods and LCD driver voltages is possible.  
When the display is OFF, the current flowing to the split resistors is cut.  
Display data memory not used for the display can be used as ordinary data memory.  
Operation by the subsystem clock is also possible.  
.
30  
Fig. 5-7 LCD Controller/Driver Block Diagram  
4
8
4
4
8
Port Mode  
Register  
Group A  
Port 3  
Output  
Latch  
1FFH  
1FEH  
1E9H  
1E8H  
1E0H  
Display  
Control  
Register  
Display Mode  
Register  
Display Data  
Memory  
3
3
2
1
0
0
3
3
2
1
0
0
3
3
2
1
0
0
3
3
2
1
0
0
3
3
2
1
0
0
1
0
1
0
2
1
2
1
2
1
2
1
2
1
Timing  
Controller  
f
LCD  
Multi-  
plexer  
µ
Selector  
LCD Driver Voltage  
Control  
Segment Driver  
S24/PB0  
Common Driver  
S31/PB7  
S30/PB6  
S23  
S0 COM3 COM2 COM1 COM0LC2 VVLC1  
VLC0 P31/ P30/  
SYNC LCDCL  
µPD75304B,75306B,75308B  
5.9 BIT SEQUENTIAL BUFFER ..... 16 BITS  
The bit sequential buffer is special data memory for bit manipulations and can be used easily particularly for  
bit manipulations where addresses and bit specifications are changed sequentially, so it is convenient for  
processing data with long bit lengths bit-wise.  
Fig. 5-8 Bit Sequential Buffer Format  
FC3H  
2
FC2H  
2
FC1H  
3
FC0H  
3
Address  
Bit  
3
1
0
3
1
0
2
1
0
2
1
0
Symbol  
BSB3  
BSB2  
BSB1  
BSB0  
L Register  
L = F  
L = C L = B  
L = 8 L = 7  
L = 4 L = 3  
L = 0  
DECS L  
INCS L  
Remarks In pmem.@L addressing, the specified bit corresponding to the L register is moved.  
6. INTERRUPT FUNCTION  
The µPD75218has 8 interrupt sources, and prioritized multiple interrupts are possible.  
There are also two test sources, of which INT2 is an edge-detected testable input.  
The µPD75218 interrupt control circuit has the following functions  
Hardware control vectored interrupt function that can control interrupt acceptance by interrupt flag  
(IE×××) and interrupt master enable flag (IME).  
Arbitrary setting of interrupt start address.  
Multiple interrupt function with priority specifiable by the interrupt priority selection register (IPS).  
Interrupt request flag (IRQ×××) test function (interrupt generation confirmation by software possible).  
Standby mode release (selection of interrupt that releases the standby mode by interrupt enable flag  
possible).  
32  
Fig. 6-1 Interrupt Control Circuit Block Diagram  
Internal Bus  
2
1
3
IM2  
IM1  
IM0  
IME  
IST0  
Interrupt Enable Flag (IEXXX  
)
Decoder  
INT  
BT  
IRQBT  
IRQ4  
Both Edges  
Detection  
Circuit  
INT4  
/P00  
VRQn  
Edge  
INT0  
/P10  
Detection  
Circuit  
IRQ0  
*
Vector  
Table  
Address  
Generator  
Edge  
INT1  
/P11  
IRQ1  
Detection  
Circuit  
Priority Control  
Circuit  
INTCSI  
IRQCSI  
IRQT0  
IRQW  
IRQ2  
INTT0  
INTW  
µ
Rising Edge  
Detection  
Circuit  
INT2  
/P12  
Standby Release  
Signal  
KR0/P60  
KR7/P73  
Falling Edge  
Detection  
Circuit  
IM2  
*
Noise elimination circuit  
µPD75304B,75306B,75308B  
7. STANDBY FUNCTION  
To reduce the power consumption during program wait, the µPD75308B has two standby modes: STOP  
mode and HALT mode.  
Table 7-1 Operation Status at Standby Mode  
STOP Mode  
STOP instruction  
HALT Mode  
HALT instruction  
Setting instruction  
Main system clock or subsystem  
clock settable  
Only main system clock settable  
System clock at setting  
Only main system clock oscillation  
stopped  
Only CPU clock Φ stopped  
Clock oscillator  
(oscillation continued)  
Operating (IRQBT set at reference time  
Basic interval timer  
Stopped  
intervals)*  
Operable only when external SCK  
input selected as serial clock  
Operable*  
Operable*  
Serial interface  
Operable only when TI0 pin input  
specified as count clock  
Timer/event counter  
Operable only when fXT selected as  
count clock  
Operable  
Operable  
Watch timer  
Operable only when fXT selected as  
LCDCL  
LCD controller  
INT1, 2, 4: Operable  
Only INT0 inoperable  
External interrupt  
CPU  
Stopped  
Interrupt request signal from operable  
hardware enabled by interrupt enable  
flag, or RESET input  
Interrupt request signal from operable  
hardware enabled by interrupt enable  
flag, or RESET input  
Release signal  
*
In-operable only with main system clock oscillation stopped.  
34  
µPD75304B,75306B,75308B  
8. RESET FUNCTION  
The µPD75308B is reset and the hardware is initialized as shown in Table 8-1 by RESET input. The reset  
operation timing is shown in Fig. 8-1.  
Fig. 8-1 Reset Operation by RESET Input  
Wait  
(31.3 ms/4.19 MHz)  
RESET Input  
Operating Mode or Standby  
Mode  
HALT Mode  
Operating Mode  
Internal Reset Operation  
Table 8-1 Status of Each Hardware after Resetting (1/2)  
RESET Input in Standby  
RESET Input during  
Operation  
Hardware  
Mode  
Low-order 5(4)*1 bits of  
program memory address  
0000H are set in PC12(11)*1  
to 8 and the contents of  
address 0001H are set in  
PC7 to 0.  
Low-order 5(4)*1 bits of  
program memory address  
0000H are set in  
Program counter (PC)  
Carry flag (CY)  
PC12(11)*1 to 8 and the  
contents of address 0001H  
are set in PC7 to 0.  
Held  
0
Undefined  
0
Skip flag (SK0 to 2)  
PSW  
0
0
Interrupt status flag (IST0)  
Bit 7 of program memory  
address 0000H is set in  
MBE.  
Bit 7 of program memory  
address 0000H is set in  
MBE.  
Bank enable flag (MBE)  
Undefined  
Stack pointer (SP)  
Undefined  
Undefined  
Data memory (RAM)  
Held*2  
General register  
Undefined  
0
Held  
0
(X, A, H, L, D, E, B, C)  
Bank selection register (MBS)  
*
1. Figures in parentheses apply to the µPD75304B.  
2. Data of data memory addresses 0F8H to 0FDH becomes undefined by RESET input.  
35  
µPD75304B,75306B,75308B  
Table 8-1 Status of Each Hardware after Resetting (2/2)  
RESET Input in Standby  
Mode  
RESET Input during  
Operation  
Hardware  
Undefined  
Counter (BT)  
Undefined  
Basic interval  
timer  
0
Mode register (BTM)  
0
0
Counter (To)  
0
FFH  
Modulo register (TMOD0)  
Mode Register (TM0)  
Timer/event  
counter  
FFH  
0
0
0,0  
TOE0, TOUT F/F  
0,0  
0
Mode register (WM)  
Watch timer  
0
Held  
Shift register (SIO)  
Undefined  
Serial interface  
0
Operating mode register (CSIM)  
SBI control register (SBIC)  
Slave address register (SVA)  
Processor clock control register (PCC)  
System clock control register (SCC)  
Clock output mode register (CLOM)  
Display mode register (LCDM)  
Display control register (LCDC)  
Interrupt request flag (IRQ×××)  
Interrupt enable flag (IE×××)  
Interrupt master enable flag (IME)  
INT0, 1, 2 mode registers (IM0, 1, 2)  
Output buffer  
0
0
0
Held  
Undefined  
0
0
Clock generator,  
clock output  
circuit  
0
0
0
0
0
0
LCD controller  
0
0
Reset (0)  
Reset (0)  
0
0
0
0
Interrupt function  
0, 0, 0  
OFF  
Clear (0)  
0
0, 0, 0  
OFF  
Clear (0)  
0
Output latch  
Digital port  
I/O mode register (PMGA, B)  
Pull-up resistor specification register  
(POGA)  
0
0
Bit sequential buffer (BSB0 to 3)  
Undefined  
Held  
36  
µPD75304B,75306B,75308B  
9. INSTRUCTION SET  
(1) Operand identifier and description  
The operand is described in the operand field of each instruction in accordance with the description for the  
operand identifier of the instruction. (See the RA75X Assembler Package User's Manual Language Volume  
(EEU-730) for details.) When there are multiple elements in the description, one of the elements is selected.  
Upper case letters and symbols (+,–) are keywords and are described unchanged.  
For immediate data, a suitable value or label is described.  
Various register or flag symbols can be used as a label instead of mem, fmem, pmem, bit, etc. (See the  
µPD75308 User’s Manual (IEM-5016) for details). However, there are restrictions on the labels for which fmem  
and pmem can be used (see the table on the previous page).  
Identifier  
Description  
reg  
X, A, B, C, D, E, H, L  
X, B, C, D, E, H, L  
regl  
rp  
XA, BC, DE, HL  
BC, DE, HL  
BC, DE  
rpl  
rp2  
rpa  
HL, DE, DL  
DE, DL  
rpal  
n4  
n8  
4-bit immediate data or label  
8-bit immediate data or label  
mem*  
8-bit immediate data or label  
2-bit immediate data or label  
bit  
fmem  
pmem  
FB0H to FBFH, FF0H to FFFH immediate data or label  
FC0H to FFFH immediate data or label  
µPD75304B  
µPD75306B  
µPD75308B  
0000H to 0FFFH immediate data or lebel  
0000H to 177FH immediate data or lebel  
0000H to 1F7FH immediate data or lebel  
addr  
caddr  
faddr  
taddr  
12-bit immediate data or label  
11-bit immediate data or label  
20H to 7FH immediate data (however, bit0 = 0) or label  
PORTn  
IE×××  
MBn  
PORT 0 to PORT 7  
IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW  
MB0, MB1, MB15  
*
Only an even address can be written for mem in the case of 8-bit data processing.  
37  
µPD75304B,75306B,75308B  
(2) Operation description legend  
A
: A register; 4-bit accumulator  
B
: B register;  
C
: C register;  
D
: D register;  
E
: E register;  
H
: H register;  
L
: L register;  
X
: X register; 4-bit accumulator  
: Register pair (XA); 8-bit accumulator  
: Register pair (BC)  
XA  
BC  
DE  
HL  
PC  
SP  
CY  
PSW  
MBE  
PORTn  
IME  
IE×××  
MBS  
PCC  
: Register pair (DE)  
: Register pair (HL)  
: Program counter  
: Stack pointer  
: Carry flag; bit accumulator  
: Program status word  
: Memory bank enable flag  
: Portn (n = 0 to 7)  
: Interrupt master enable flag  
: Interrupt enable flag  
: Memory bank selection register  
: Processor clock control register  
: Address, bit delimiter  
: Contents addressed by ××  
: Hexadecimal data  
(××)  
××H  
38  
µPD75304B,75306B,75308B  
(3) Description of addressing area field symbols  
*1  
*2  
MB = MBE • MBS (MBS = 0, 1, 15)  
MB = 0  
MBE = 0 : MB = 0 (00H to 7FH)  
MB = 15 (80H to FFH)  
Data memory  
addressing  
*3  
MBE = 1 : MB = MBS (MBS = 0, 1, 15)  
MB = 15, fmem = FB0H to FBFH,  
FF0H to FFFH  
*4  
*5  
MB = 15, pmem = FC0H to FFFH  
µPD75304B  
µPD75306B  
µPD75308B  
addr=0000H to 0FFFH  
addr=0000H to 177FH  
addr=0000H to 1F7FH  
*6  
*7  
addr = (Current PC) –15 to (Current PC) –1  
(Current PC) + 2 to (Current PC) + 16  
µPD75304B  
µPD75306B  
caddr= 0000H to 0FFFH  
Program memory  
addressing  
caddr= 0000H to 0FFFH (PC12=0) or  
1000H to 177FH (PC12=1)  
*8  
caddr=0000H to 0FFFH (PC12=0) or  
1000H to 1F7FH (PC12=1)  
µPD75308B  
faddr = 0000H to 07FFH  
taddr = 0020H to 007FH  
*9  
*10  
Remarks 1. MB indicates the accessible memory bank.  
2. For *2, MB = 0 without regard to MBE and MBS.  
3. For *4 and *5, MB = 15 without regard to MBE and MBS.  
4. *6 to *10 indicate the addressable area.  
(4) Explanation of machine cycle field  
S shows the number of machine cycles required when skip is performed by an instruction with skip. The  
value of S changes as follows:  
• No skip ....................................................................................................................................................................... S = 0  
• When instruction to be skipped is 1-byte or 2-byte instruction ......................................................................... S = 1  
• When instruction to be skipped is 3-byte instruction (BR !addr, CALL !addr instruction)............................. S = 2  
Note One machine cycle is required to skip a GETI instruction.  
One machine cycle is equivalent to one cycle (=tCY) of the CPU clock Φ. Three times can be selected by PCC  
setting.  
39  
µPD75304B,75306B,75308B  
Address-  
Mne-  
Machine  
Cycles  
Note  
Operand  
Skip Condition  
ing Area  
Bytes  
Operation  
monic  
A, #n4  
A n4  
Stack A  
1
2
2
2
2
1
1
2
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
1
2
1
2
2
2
2
1
1
2
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
1
2
regl, #n4  
XA, #n8  
HL, #n8  
rp2, #n8  
A, @HL  
A, @rpal  
XA, @HL  
@HL, A  
@HL, XA  
A, mem  
XA, mem  
mem, A  
mem, XA  
A, reg  
regl n4  
XA n8  
Stack A  
Stack B  
HL n8  
rp2 n8  
*1  
*2  
*1  
*1  
*1  
*3  
*3  
*3  
*3  
A (HL)  
A (rpal)  
XA (HL)  
(HL) A  
MOV  
(HL) XA  
A (mem)  
XA (mem)  
(mem) A  
(mem) XA  
A reg  
XA, rp  
XA rp  
regl, A  
regl A  
rpl, XA  
rpl XA  
A, @HL  
A, @rpal  
XA, @HL  
A, mem  
XA, mem  
A,regl  
*1  
*2  
*1  
*3  
*3  
A (HL)  
A (rpal)  
XA (HL)  
A (mem)  
XA (mem)  
A regl  
XCH  
XA, rp  
XA rp  
µPD75304B  
XA (PC11–8 + DE)ROM  
XA, @PCDE  
XA, @PCXA  
1
1
3
3
µPD75306B, 75308B  
XA (PC12–8 + DE)ROM  
MOVT  
ADDS  
µPD75304B  
XA (PC11–8 + XA)ROM  
µPD75306B, 75308B  
XA (PC12–8 + XA)ROM  
A, #n4  
carry  
1
1
1
1
1
1 + S  
1 + S  
1
A A + n4  
A, @HL  
A, @HL  
A, @HL  
A, @HL  
*1  
*1  
*1  
*1  
carry  
A A + (HL)  
ADDC  
SUBS  
SUBC  
A, CY A + (HL) + CY  
A A – (HL)  
borrow  
1 + S  
1
A, CY A – (HL) – CY  
Note Instruction Group  
40  
µPD75304B,75306B,75308B  
Note Mne-  
Machine  
Cycles  
Address-  
Bytes  
Operand  
Operation  
Skip Condition  
1
monic  
AND  
OR  
ing Area  
A, #n4  
2
1
2
1
2
1
1
2
1
2
2
1
2
2
1
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
A A n4  
A A (HL)  
A A n4  
A A (HL)  
A A n4  
A A (HL)  
A, @HL  
A, #n4  
*1  
*1  
*1  
2
A, @HL  
A, #n4  
1
2
XOR  
A, @HL  
A
1
RORC  
NOT  
1
CY A0, A3 CY, An–1 An  
A A  
A
2
reg  
1 + S  
2 + S  
2 + S  
1 + S  
2 + S  
2 + S  
1 + S  
2 + S  
1
reg reg + 1  
reg = 0  
INCS  
@HL  
(HL) (HL) + 1  
*1  
*3  
(HL) = 0  
(mem) = 0  
reg = FH  
reg = n4  
(HL) = n4  
A = (HL)  
A = reg  
mem  
(mem) (mem) + 1  
reg reg – 1  
DECS  
reg  
reg, #n4  
@HL, #n4  
A, @HL  
A, reg  
Skip if reg = n4  
Skip if (HL) = n4  
*1  
*1  
SKE  
Skip if A = (HL)  
Skip if A = reg  
SET1  
CLR1  
SKT  
CY  
CY 1  
CY  
1
CY 0  
CY  
1 + S  
1
Skip if CY = 1  
CY = 1  
NOT1  
CY  
CY CY  
mem.bit  
fmem.bit  
pmem.@L  
@H + mem.bit  
mem.bit  
fmem.bit  
pmem.@L  
@H + mem.bit  
mem.bit  
fmem.bit  
pmem.@L  
@H + mem.bit  
mem.bit  
fmem.bit  
pmem.@L  
@H + mem.bit  
2
(mem.bit) 1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
2
(fmem.bit) 1  
SET1  
CLR1  
SKT  
2
(pmem7–2 + L3–2.bit (L1–0)) 1  
(H + mem3–0.bit) 1  
(mem.bit) 0  
2
2
2
(fmem.bit) 0  
2
(pmem7–2 + L3–2.bit (L1–0)) 0  
(H + mem3–0.bit) 0  
Skip if (mem.bit) = 1  
Skip if (fmem.bit) = 1  
Skip if (pmem7–2 + L3–2.bit (L1–0)) = 1  
Skip if (H + mem3–0.bit) = 1  
Skip if (mem.bit) = 0  
Skip if (fmem.bit) = 0  
Skip if (pmem7–2 + L3–2.bit (L1–0)) = 0  
Skip if (H + mem3–0.bit) = 0  
2
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
(mem.bit) = 1  
(fmem.bit) = 1  
(pmem.@L) = 1  
(@H + mem.bit) = 1  
(mem.bit) = 0  
(fmem.bit) = 0  
(pmem.@L) = 0  
(@H + mem.bit) = 0  
SKF  
Note 1. Instruction Group  
2. Accumulator operation  
3. Increment and decrement  
4. Carry flag operation  
41  
µPD75304B,75306B,75308B  
Machine  
Cycles  
Address-  
Mne-  
Note  
Bytes  
Operand  
Operation  
Skip Condition  
ing Area  
monic  
fmem.bit  
2
2
2
2
2
2
2
2
2
2
2
2
2 + S Skip if (fmem.bit) = 1 and clear  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
(fmem.bit) = 1  
pmem.@L  
2 + S Skip if (pmem7–2 + L3–2.bit (L1–0)) = 1 and clear  
2 + S Skip if (H + mem3–0.bit) = 1 and clear  
(pmem.@L) = 1  
(@H + mem.bit) = 1  
SKTCLR  
AND1  
OR1  
@H + mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H + mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H + mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H + mem.bit  
2
2
2
2
2
2
2
2
2
CY CY (fmem.bit)  
CY CY (pmem7–2 + L3–2.bit (L1–0))  
CY CY (H + mem3-0.bit)  
CY CY (fmem.bit)  
CY CY (pmem7–2 + L3–2.bit (L1–0))  
CY CY (H + mem3-0.bit)  
CY CY (fmem.bit)  
CY CY (pmem7–2 + L3–2.bit (L1–0))  
CY CY (H + mem3-0.bit)  
XOR1  
µPD75304B  
PC11–0 addr  
(The assembler selects the optimum  
instruction from among the BRCB !caddr,  
and BR $addr instructions.)  
addr  
*6  
µPD75306B, 75308B  
PC12–0 addr  
(The assembler selects the optimum  
instruction from among the BR !addr, BRCB  
!caddr, and BR $addr instructions.)  
BR  
µPD75306B, 75308B  
PC12–0 addr  
*6  
*7  
!addr  
$addr  
3
1
3
2
µPD75304B  
PC11–0 addr  
µPD75306B, 75308B  
PC12–0 addr  
µPD75304B  
PC11–0 caddr11–0  
!caddr  
!addr  
BRCB  
CALL  
2
3
2
3
*8  
*6  
µPD75306B, 75308B  
PC12–0 PC12 + caddr11–0  
µPD75304B  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, 0, 0, 0  
PC11–0 addr, SP SP – 4  
µPD75306B, 75308B  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, 0, 0, PC12  
PC12–0 addr, SP SP – 4  
Note Instruction Group  
42  
µPD75304B,75306B,75308B  
Address-  
Mne-  
Note  
1
Machine  
Cycles  
Bytes  
Operand  
Operation  
Skip Condition  
ing Area  
monic  
µPD75304B  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, 0, 0, 0  
PC11–0 0, faddr, SP SP – 4  
*9  
2
2
!faddr  
CALLF  
µPD75306B, 75308B  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, 0, 0, PC12  
PC12–0 00, faddr, SP SP – 4  
µPD75304B  
MBE, ×, ×, × ← (SP + 1)  
PC11–0 (SP) (SP + 3) (SP + 2)  
SP SP + 4  
RET  
3
1
1
1
µPD75306B, 75308B  
MBE, ×, ×, PC12 (SP + 1)  
PC11–0 (SP) (SP + 3) (SP + 2)  
SP SP + 4  
µPD75304B  
MBE, ×, ×, × ← (SP + 1)  
PC11–0 (SP) (SP + 3) (SP + 2)  
SP SP + 4 the skip unconditionally  
RETS  
Unconditional  
3+S  
µPD75306B, 75308B  
MBE, ×, ×, PC12 (SP + 1)  
PC11–0 (SP) (SP + 3) (SP + 2)  
SP SP + 4 the skip unconditionally  
µPD75304B  
MBE, ×, ×, × ← (SP + 1)  
PC11–0 (SP) (SP + 3) (SP + 2)  
PSW (SP + 4) (SP + 5), SP SP + 6  
RETI  
3
µPD75306B, 75308B  
MBE, ×, ×, PC12 (SP + 1)  
PC11–0 (SP) (SP + 3) (SP + 2)  
PSW (SP + 4) (SP + 5), SP SP + 6  
rp  
1
2
1
2
2
2
2
2
1
2
1
2
2
2
2
2
(SP – 1) (SP – 2) rp, SP SP – 2  
(SP – 1) MBS, (SP – 2) 0, SP SP – 2  
rp (SP + 1) (SP), SP SP + 2  
MBS (SP + 1), SP SP + 2  
IME 1  
PUSH  
POP  
EI  
BS  
rp  
BS  
IE × × ×  
IE × × ×  
IE × × × ← 1  
IME 0  
DI  
IE × × × ← 0  
Note 1. Instruction Group  
2. Interrupt control  
43  
µPD75304B,75306B,75308B  
Machine  
Cycles  
Note  
1
Address-  
Mne-  
Bytes  
Operand  
Operation  
Skip Condition  
ing Area  
monic  
A, PORTn  
2
2
2
2
2
2
1
2
2
2
2
2
2
2
1
2
A PORTn  
(n = 0–7)  
IN*  
XA, PORTn  
PORTn, A  
XA PORTn+1, PORTn  
PORTn A  
(n = 4, 6)  
(n = 2–7)  
(n =4, 6)  
OUT*  
PORTn, XA  
PORTn+1, PORTn XA  
Set HALT Mode (PCC.2 1)  
Set STOP Mode (PCC.3 1)  
No Operation  
HALT  
STOP  
NOP  
SEL  
MBn  
MBS n (n = 0, 1, 15)  
µPD75304B  
• TBR Instruction  
PC11-0 (taddr) 3–0 + (taddr + 1)  
-----------------------------  
-----------------------------------------------------------------  
• TCALL Instruction  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, 0, 0, 0  
PC11–0 (taddr) 3–0 (taddr + 1)  
SP SP – 4  
-----------------------------------------------------------------  
• Other than TBR and TCALL Instruction  
-----------------------------  
Conforms to  
referenced  
instruction.  
Execution of an instruction addressed at  
(taddr) and (taddr + 1)  
GETI  
taddr  
1
3
*10  
µPD75306, 75308BB  
• TBR Instruction  
PC12-0 (taddr) 4–0 + (taddr + 1)  
-----------------------------------------------------------------  
-----------------------------  
• TCALL Instruction  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, 0, 0, PC12  
PC12–0 (taddr) 4–0 (taddr + 1)  
SP SP – 4  
-----------------------------  
Conforms to  
-----------------------------------------------------------------  
• Other than TBR and TCALL Instruction  
Execution of an instruction addressed at  
(taddr) and (taddr + 1)  
referenced  
instruction.  
*
At IN/OUT instruction execution, MBE = 0 or MBE = 1, MBS = 15 must be set in advance.  
Note 1. Instruction Group  
2. CPU control  
Remarks The TBR and TCALL instructions are assembler pseudo-instructions for GETI instruction table  
definition.  
44  
µPD75304B,75306B,75308B  
10. MASK OPTION SELECTION  
The following pin mask options are available.  
Pin Functions  
Mask Options  
P40 to P43,  
P50 to P53  
VLC0 to VLC2,  
BIAS  
Pull-up resistor incorporated (specifiable bit-wise)  
No pull-up resistor (specifiable bit-wise)  
LCD drive power supply split resistor incorporated (specifiable as 4-bit unit)  
No LCD drive power supply split resistor (specifiable as 4-bit unit)  
45  
µPD75304B,75306B,75308B  
11. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
RATING  
UNIT  
V
Power supply  
voltage  
VDD  
VI1  
–0.3 to +7.0  
Except ports 4 and 5  
–0.3 to VDD +0.3  
V
Input voltage  
On-chip pull-up resistor  
Open–drain  
–0.3 to VDD +0.3  
V
V12  
VO  
IOH  
Ports 4 and 5  
–0.3 to +11  
V
Output voltage  
–0.3 to VDD +0.3  
V
Output current  
high  
One pin  
All pins  
–15  
–30  
30  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Peak value  
rms  
One pin  
15  
Peak value  
100  
60  
Output current low  
IOL*  
Total of ports 0, 2, 3 and 5  
Total of ports 4, 6, and 7  
rms  
Peak value  
rms  
100  
60  
Operating  
temperature  
–40 to +85  
°C  
°C  
Topt  
Tstg  
Storage  
temperature  
–65 to +150  
*
Rms is calculated using the following expression: [rms] = [peak value] × √duty  
CAPACITANCE (Ta = 25 °C, VDD = 0 V)  
PARAMETER  
Input capacitance  
Output capacitance  
I/O capacitance  
SYMBOL  
CIN  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
pF  
15  
15  
15  
f = 1 MHz  
Unmeasured pins returned to 0 V.  
COUT  
pF  
CIO  
pF  
46  
µPD75304B,75306B,75308B  
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
RECOMMENDED  
CONSTANT  
TEST  
RESONATOR  
PARAMETER  
Oscillator  
MIN.  
1.0  
TYP.  
MAX.  
UNIT  
MHz  
CONDITIONS  
5.0*3  
frequency (fx)*1  
X1  
X2  
After VDD  
reached the  
MIN. of the  
oscillation  
voltage  
Ceramic  
resonator*3  
Oscillation  
stabilization time*2  
C2  
C1  
4
ms  
V
DD  
range  
Oscillator  
frequency (fx)*1  
1.0  
4.19  
5.0*3  
MHz  
ms  
X1  
X2  
VDD = 4.5  
to 6.0 V  
10  
Crystal  
resonator*3  
Oscillation  
C2  
C1  
stabilization time*2  
30  
ms  
V
DD  
X1 input  
frequency (fx)*1  
1.0  
5.0*3  
MHz  
X1  
X2  
External  
clock  
X1 input  
high-/low-level  
width (tXH, tXL)  
100  
500  
ns  
µPD74HCU04  
*
1. The oscillator frequency and X1 input frequency indicate only the oscillator characteristics. For the  
instruction execution time refer to the AC characteristics.  
2. The oscillation stabilization time is necessary for oscillation to stabilize after applying VDD or releasing the  
STOP mode.  
3. When the oscillation frequency is 4.19 MHz < fX 5.0 MHz, PCC = 0011 should not be selected as the  
instruction execution time. If PCC = 0011 is selected, one machine cycle is less than 0.95 s, and the  
specification MIN. value of 0.95 µs will not be achieved.  
47  
µPD75304B,75306B,75308B  
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
RECOMMENDED  
CONSTANT  
TEST  
MIN.  
32  
TYP.  
MAX.  
UNIT  
RESONATOR  
PARAMETER  
CONDITIONS  
Oscillator  
frequency (fXT)  
32.768  
1.0  
35  
2
kHz  
s
XT1  
XT2  
VDD = 4.5  
to 6.0 V  
R
Crystal  
resonator  
Oscillation  
stabilization time*  
C3  
C4  
10  
s
V
DD  
XT1 input  
frequency (fXT)  
32  
5
100  
kHz  
XT1  
XT2  
Leave  
Open  
External  
clock  
XT1 input high-/  
low-level width  
(tXTH,tXTL)  
15  
µs  
*
This is the time required for oscillation to stabilize after VDD reaches the MIN. value of the oscillation voltage  
range.  
Note  
When the main system clock and subsystem clock oscillators are used, the following should be noted  
concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring  
capacitance, etc.  
• The wiring should be kept as short as possible.  
• No other signal lines should be crossed. Keep away from lines carrying a high fluctuating current.  
• The oscillator capacitor grounding point should be at the same potential as VDD. Do not ground to a  
ground pattern carrying a high current.  
• A signal should not be taken from the oscillator.  
The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption  
current, and is more prone to misoperation due to noise than the main system clock oscillator. Particu-  
lar care is therefore required with the wiring method when the subsystem clock is used.  
48  
µPD75304B,75306B,75308B  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (1/2)  
PARAMETER  
SYMBOL  
VIH1  
TEST CONDITIONS  
MIN.  
0.7 VDD  
0.8 VDD  
0.7 VDD  
0.7 VDD  
VDD –0.5  
0
TYP.  
MAX.  
VDD  
UNIT  
Ports 2 and 3  
V
V
V
V
V
V
V
V
VIH2  
Ports 0,1,6,7, RESET  
Ports 4 and 5  
VDD  
Input voltage  
high  
On-chip pull-up resistor  
Open–drain  
VDD  
VIH3  
10  
VIH4  
VIL1  
VIL2  
VIL3  
X1, X2, XT1  
VDD  
Ports 2, 3, 4 and 5  
Ports 0, 1, 6, 7 RESET  
X1, X2, XT1  
0.3 VDD  
0.2 VDD  
0.4  
Input voltage  
low  
0
0
VDD = 4.5 to 6.0 V  
IOH = –1 mA  
VDD –1.0  
V
Ports 0, 2,3, 6, 7,  
BIAS  
VOH1  
VOH2  
IOH = -100 µA  
VDD –0.5  
VDD –2.0  
V
V
Output voltage  
high  
VDD = 4.5 to 6.0 V  
IOH = –100 µA  
BP0 to BP7  
(with 2 IOH outputs)  
IOH = –30 µA  
VDD –1.0  
V
V
Ports 3, 4 and 5  
VDD = 4.5 to 6.0 V  
IOL = 15 mA  
0.5  
2.0  
Ports  
0, 2, 3, 4, 5, 6 and 7  
VDD = 4.5 to 6.0 V  
IOL = 1.6 mA  
0.4  
0.5  
V
V
VOL1  
IOL = 400 µA  
Output voltage  
low  
Open–drain  
pull-up resistor 1 kΩ  
SB0, 1  
0.2 VDD  
1.0  
V
V
VDD = 4.5 to 6.0 V  
IOL = 100 µA  
BP0 to BP7  
(with 2 IOL outputs)  
VOL2  
IOL = 50 µA  
1.0  
3
V
IL1H1  
Other than below  
X1, X2, XT1  
µA  
µA  
VIN = VDD  
VIN = 10 V  
VIN = 0 V  
ILIH2  
20  
Input leakage  
current high  
Ports 4 and 5  
(when open–drain)  
ILIH3  
20  
µA  
ILIL1  
ILIL2  
Other than below  
X1, X2, XT1  
–3  
–20  
3
µA  
µA  
µA  
Input leakage  
current low  
ILOH1  
VOUT = VDD  
VOUT = 10 V  
VOUT = 0 V  
Other than below  
Output leakage  
current high  
Ports 4 and 5  
(when open–drain)  
ILOH2  
ILOL  
20  
–3  
µA  
µA  
Output leakage  
current low  
49  
µPD75304B,75306B,75308B  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (2/2)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
15  
TYP.  
40  
MAX.  
80  
UNIT  
kΩ  
kΩ  
kΩ  
kΩ  
V
Ports 0, 1, 2, 3, 6  
and 7 (Except P00)  
VIN = 0 V  
VDD = 5.0 V ±10%  
VDD = 3.0 V ±10%  
VDD = 5.0 V ±10%  
VDD = 3.0 V ±10%  
RL1  
30  
300  
70  
On-chip pull-up  
resistor  
15  
40  
Ports 4 and 5  
RL2  
VOUT = VDD –2.0 V  
10  
60  
LCD drive voltage  
LCD split resistor  
VLCD  
RLCD  
2.0  
VDD  
60  
0
100  
150  
kΩ  
LCD output voltage  
deviation*1  
(common)  
VODC  
IO = ±5 µA  
IO = ±1 µA  
±0.2  
V
VLCD0 = VLCD  
VLCD1 = VLCD × 2/3  
VLCD2 = VLCD × 1/3  
2.7 V VLCD VDD  
LCD output voltage  
deviation  
VODS  
0
±0.2  
V
(segment)  
VDD = 5 V ±10%*4  
VDD = 3 V ±10%*5  
3.0  
0.4  
600  
180  
40  
9
mA  
mA  
µA  
IDDI  
4.19 MHz*3  
crystal oscillation  
C1 = C2 = 22 pF  
1.2  
VDD = 5 V ±10%  
1800  
540  
120  
HALT  
mode  
IDD2  
µA  
DD  
V
= 3 V ±10%  
IDD3  
VDD = 3 V ±10%  
µA  
Supply current*2  
32 kHz*6  
crystal oscillation  
HALT  
mode  
VDD = 3 V ±10%  
IDD4  
12  
36  
µA  
VDD = 5 V ±10%  
1
25  
15  
5
µA  
µA  
µA  
XT1 = 0 V  
STOP mode  
IDD5  
0.5  
0.5  
VDD =  
3 V ±10%  
Ta = 25 °C  
*
1. The voltage deviation is the difference between the output voltage and the segment or common output  
desired value (VLCDn ; n= 0, 1, 2).  
2. Current which flows in the on-chip pull-up resistor or LCD split resistor is not included.  
3. Including oscillation of the subsystem clock.  
4. When the processor clock control register (PCC) is set to 0011 and the device is operated in the high-  
speed mode.  
5. When PCC is set to 0000 and the device is operated in the low-speed mode.  
6. When the system clock control register (SCC) is set to 1001 and the device is operated on the subsystem  
clock, with main system clock oscillation stopped.  
50  
µPD75304B,75306B,75308B  
AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
0.95  
3.8  
TYP.  
122  
MAX.  
64  
UNIT  
µs  
CPU clock  
cycle time  
(minimum  
instruction  
Operating on main  
system clock  
64  
µs  
tCY  
Operating on  
execution time)*1  
114  
125  
µs  
subsystem clock  
VDD = 4.5 to 6.0 V  
0
0
1
MHz  
kHz  
µs  
TI0 input  
frequency  
fTI  
275  
VDD = 4.5 to 6.0 V  
0.48  
1.8  
*2  
10  
10  
10  
tTIH,  
tTIL  
TI0 input width  
high/low  
µs  
INT0  
µs  
tINTH,  
tINTL  
Interrupt input  
width high/low  
INT1, 2, 4  
KR0 to KR7  
µs  
µs  
RESET width low  
tRSL  
µs  
*
1. The CPU clock (Φ ) cycle time (minimum  
instruction execution time) is determined by  
the oscillatior frequency of the connected  
resonator, the system clock control register  
t
CY vs VDD  
(Operating on Main System Clock)  
70  
(SCC) and the processor clock control register  
(PCC). The figure at the right indicates the  
cycle time tCY versus supply voltage VDD  
characteristic with the main system clock  
operating.  
64  
30  
6
5
Guaranteed  
Operation Range  
4
3
2. 2tCY or 128/fX is set by setting the interrupt  
mode register (IM0).  
2
1
0.5  
0
1
2
3
4
5
6
Supply Voltage VDD [V]  
51  
µPD75304B,75306B,75308B  
SERIAL TRANSFER OPERATION  
2-Wired and 3-Wired Serial I/O Modes (SCK ... Internal clock output): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY1  
3800  
ns  
VDD = 4.5 to 6.0 V  
tKCY1/2-50  
tKCY1/2-150  
ns  
tKL1  
tKH1  
SCK width high/  
low  
ns  
SI setup time  
(to SCK)  
tSIK1  
tKSI1  
150  
400  
ns  
ns  
SI hold time  
(from SCK)  
SO output  
delay time  
from SCK↓  
VDD = 4.5 to 6.0 V  
250  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO1  
1000  
2-Wired and 3-Wired Serial I/O Modes (SCK ... External clock input): (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
tKCY2  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
3200  
400  
ns  
VDD = 4.5 to 6.0 V  
ns  
tKL2  
tKH2  
SCK width high/  
low  
1600  
ns  
SI setup time  
(to SCK)  
tSIK2  
tKSI2  
100  
400  
ns  
ns  
SI hold time  
(from SCK )  
SO output  
delay time  
from SCK↓  
VDD = 4.5 to 6.0 V  
300  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO2  
1000  
*
RL and CL are load resistor and load capacitance of the SO output line.  
52  
µPD75304B,75306B,75308B  
SBI Mode (SCK ... Internal clock output (Master)): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
tKCY3  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
3800  
ns  
VDD = 4.5 to 6.0 V  
tKCY3/2-50  
tKCY3/2-150  
ns  
tKL3  
tKH3  
SCK width high/  
low  
ns  
SB0, 1 setup time  
(to SCK )  
tSIK3  
tKSI3  
150  
ns  
ns  
SB0, 1 hold time  
(from SCK )  
tKCY3/2  
SB0, 1 output  
delay time from  
SCK ↓  
VDD = 4.5 to 6.0 V  
0
250  
ns  
ns  
ns  
ns  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO3  
0
1000  
SB0, 1 from SCK ↑  
SCK from SB0, 1 ↓  
SB0, 1 width low  
SB0, 1 width high  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY3  
tKCY3  
tKCY3  
tKCY3  
SBI Mode (SCK ... External clock input (Slave)): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY4  
3200  
400  
ns  
VDD = 4.5 to 6.0 V  
ns  
tKL4  
tKH4  
SCK width high/  
low  
1600  
ns  
SB0, 1 setup time  
(to SCK )  
tSIK4  
tKSI4  
100  
ns  
ns  
SB0, 1 hold time  
(from SCK )  
tKCY4/2  
SB0, 1 output  
delay time from  
SCK ↓  
VDD = 4.5 to 6.0 V  
0
300  
ns  
ns  
ns  
ns  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO4  
0
1000  
SB0, 1 from SCK ↑  
SCK from SB0, 1 ↓  
SB0, 1 width low  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
SB0, 1 width high  
*
RL and CL are load resistor and load capacitance of the SB0, 1 output lines.  
53  
µPD75304B,75306B,75308B  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V) (1/2)  
PARAMETER  
SYMBOL  
VIH1  
TEST CONDITIONS  
Ports 2 and 3  
MIN.  
0.8 VDD  
0.8 VDD  
0.8 VDD  
0.8 VDD  
VDD –0.3  
0
TYP.  
MAX.  
VDD  
UNIT  
V
V
V
V
V
V
V
V
VIH2  
Ports 0, 1, 6, 7, RESET  
Ports 4 and 5  
VDD  
Input voltage  
high  
On-chip pull-up resistor  
Open–drain  
VDD  
VIH3  
10  
VIH4  
VIL1  
VIL2  
VIL3  
X1, X2, XT1  
VDD  
Ports 2, 3, 4 and 5  
Ports 0, 1, 6, 7, RESET  
X1, X2, XT1  
0.2 VDD  
0.2 VDD  
0.3  
Input voltage  
low  
0
0
Ports 0, 2, 3, 6,  
7, BIAS  
VOH1  
VOH2  
IOH = –100 µA  
IOH = –10 µA  
IOL = 400 µA  
VDD –0.5  
VDD –0.4  
V
V
V
Output voltage  
high  
BP0 to BP7 (with  
2 IOH outputs)  
Ports 0, 2, 3, 4, 5  
6, and 7  
0.5  
0.2 VDD  
0.4  
VOL1  
Output voltage  
low  
Open–drain,  
pull-up resistor 1 kΩ  
SB0, 1  
V
V
BP0 to BP7  
(with 2 IOL outputs)  
VOL2  
IOL = 10 µA  
ILIH1  
Other than below  
X1, X2, XT1  
3
µA  
µA  
VIN = VDD  
VIN = 10 V  
VIN = 0 V  
Input leakage  
current high  
ILIH2  
20  
Ports 4 and 5  
(with open–drain)  
ILIH3  
20  
µA  
ILIL1  
ILIL2  
Other than below  
X1, X2, XT1  
–3  
–20  
3
µA  
µA  
µA  
Input leakage  
current low  
ILOH1  
VOUT = VDD  
Other than below  
Output leakage  
current high  
Ports 4 and 5  
(with open–drain)  
ILOH2  
ILOL  
VOUT = 10 V  
20  
–3  
µA  
µA  
Output leakage  
current low  
VOUT = 0 V  
54  
µPD75304B,75306B,75308B  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V) (2/2)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Ports 0, 1, 2, 3, 6  
and 7 (Except P00) VDD = 2.5 V ±10%  
VIN = 0 V  
MIN.  
50  
TYP.  
MAX.  
600  
UNIT  
RL1  
kΩ  
On-chip pull-up  
resistor  
Ports 4 and 5  
VOUT = VDD –1.0 V  
RL2  
VDD = 2.5 V ±10%  
10  
60  
kΩ  
LCD drive voltage  
LCD split resistor  
VLCD  
2.0  
60  
VDD  
V
RLCD  
100  
150  
kΩ  
LCD output voltage  
deviation *1  
(common)  
VODC  
VODS  
IDDI  
IO = ±5 µA  
0
0
±0.2  
±0.2  
V
V
VLCDO = VLCD  
VLCD1 = VLCD × 2/3  
VLCD2 = VLCD × 1/3  
LCD output  
voltage deviation  
(segment)  
2.0 V VLCD VDD  
IO = ±1 µA  
VDD = 3 V ±10%*4  
4.19 MHz*3  
crystal oscillation  
C1 = C2 = 22 pF  
low-speed mode  
0.4  
0.3  
180  
120  
40  
1.2  
0.9  
540  
360  
120  
75  
36  
27  
15  
5
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5 V ±10%*4  
HALT VDD = 3 V ±10%  
IDD2  
IDD3  
IDD4  
mode VDD = 2.5 V ±10%  
VDD = 3 V ±10%  
Supply current*2  
VDD = 2.5 V ±10%  
32 kHz*5  
crystal oscillation  
25  
HALT VDD = 3 V ±10%  
12  
mode VDD = 2.5 V ±10%  
9
0.5  
0.5  
0.4  
0.4  
VDD = 3 V ±10%  
Ta = 25 °C  
XT1 = 0 V  
STOP mode  
IDD5  
15  
5
VDD = 2.5 V  
±10%  
Ta = 25°C  
*
1. The voltage deviation is the difference between the output voltage and the segment or common output  
desired value (VLCDn; n = 0, 1, 2).  
2. Current which flows in the on-chip pull-up resistor or LCD split resistor is not included.  
3. Including oscillation of the subsystem clock.  
4. When PCC is set to 0000 and the device is operated in the low-speed mode.  
5. When the system clock control register (SCC) is set to 1001 and the device is operated on the subsystem  
clock, with main system clock oscillation stopped.  
55  
µPD75304B,75306B,75308B  
AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER SYMBOL TEST CONDITIONS  
VDD = 2.7 to 6.0 V  
MIN.  
3.8  
5
TYP.  
MAX.  
64  
UNIT  
µs  
Operation on main  
system clock  
VDD = 2.0 to 6.0 V  
64  
µs  
CPU clock  
cycle time  
(minimum  
instruction  
tCY  
Ta = –40 to + 60 °C  
VDD = 2.2 to 6.0 V  
3.4  
64  
µs  
µs  
execution time)*1  
Operation on  
114  
122  
125  
subsystem clock  
TI0 input  
frequency  
fTI  
0
275  
kHz  
TI0 input width  
high/low  
tTIH,  
tTIL  
1.8  
µs  
INT0  
*2  
10  
10  
10  
µs  
µs  
µs  
µs  
Interrupt input  
width high/low  
tINTH,  
tINTL  
INT1, 2, 4  
KR0 to KR7  
RESET width low  
tRSL  
*
1. The CPU clock (Φ ) cycle time (minimum  
instruction execution time) is determined by  
the oscillatior frequency of the connected  
resonator, the system clock control register  
t
CY vs VDD  
(Operating on Main System Clock)  
70  
64  
30  
(SCC) and the processor clock control register  
(PCC). The figure at the right indicates the  
cycle time tCY versus supply voltage VDD  
characteristic with the main system clock  
operating.  
6
5
Guaranteed  
4
3
Operation Range  
2. 2tCY or 128/fX is set by setting the interrupt  
mode register (IM0).  
2
1
0.5  
0
1
2
3
4
5
6
Supply Voltage VDD [V]  
56  
µPD75304B,75306B,75308B  
SERIAL TRANSFER OPERATION  
2-Wired and 3-Wired Serial I/O Mode (SCK ... Internal clock output): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY1  
3800  
ns  
VDD = 4.5 to 6.0 V  
tKCY1/2-50  
tKCY1/2-150  
ns  
tKL1  
tKH1  
SCK width high/  
low  
ns  
SI setup time  
(to SCK )  
tSIK1  
250  
400  
ns  
ns  
SI hold time  
(from SCK )  
tKSI1  
SO output  
delay time  
from SCK ↓  
VDD = 4.5 to 6.0 V  
250  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO1  
1000  
2-Wired and 3-Wired Serial I/O Mode (SCK ... External clock input): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY2  
3200  
400  
ns  
VDD = 4.5 to 6.0 V  
ns  
tKL2  
tKH2  
SCK width high/  
low  
1600  
ns  
SI setup time  
(to SCK)  
tSIK2  
tKSI2  
100  
400  
ns  
ns  
SI hold time  
(from SCK)  
SO output  
delay time  
from SCK↓  
VDD = 4.5 to 6.0 V  
300  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO2  
1000  
*
RL and CL are load resistor and load capacitance of the SO output line.  
57  
µPD75304B,75306B,75308B  
SBI Mode (SCK ... Internal clock output (Master)): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY3  
3800  
ns  
VDD = 4.5 to 6.0 V  
tKCY3/2-50  
tKCY3/2-150  
ns  
tKL3  
tKH3  
SCK width high/  
low  
ns  
SB0, 1 setup  
time (to SCK)  
tSIK3  
tKSI3  
250  
ns  
ns  
SB0, 1 hold  
time (from SCK)  
tKCY3/2  
SB0, 1 output  
delay time  
from SCK↓  
VDD = 4.5 to 6.0 V  
0
250  
ns  
ns  
ns  
ns  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO3  
0
1000  
SB0, 1 from SCK↑  
SCK from SB0, 1 ↓  
SB0, 1 width low  
SB0, 1 width high  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY3  
tKCY3  
tKCY3  
tKCY3  
SBI Mode (SCK ... External clock input (Slave)): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY4  
3200  
400  
ns  
VDD = 4.5 to 6.0 V  
ns  
tKL4  
tKH4  
SCK width high/  
low  
1600  
ns  
SB0, 1 setup  
time (to SCK )  
tSIK4  
100  
ns  
ns  
SB0, 1 hold  
time (from SCK )  
tKSI4  
tKCY4/2  
SB0, 1  
output delay  
time from SCK ↓  
VDD = 4.5 to 6.0 V  
0
300  
ns  
ns  
ns  
ns  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO4  
0
1000  
SB0, 1 from SCK ↑  
SCKfrom SB0, 1 ↓  
SB0, 1 width low  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
SB0, 1 width high  
*
RL and CL are load resistor and load capacitance of the SB0, 1 output lines.  
58  
µPD75304B,75306B,75308B  
AC Timing Test Point (Excluding X1 and XT1 inputs)  
0.8 VDD  
0.8 VDD  
0.2 VDD  
Test Points  
0.2 VDD  
Clock Timings  
1/fX  
t
XL  
tXH  
VDD -0.5 V  
0.4 V  
X1 Input  
1/fXT  
t
XTL  
t
XTH  
VDD -0.5 V  
0.4 V  
XT1 Input  
TI0 Timing  
1/fTI  
t
TIL  
tTIH  
TI0  
59  
µPD75304B,75306B,75308B  
Serial Transfer Timing  
3-wired serial I/O mode:  
t
KCY1  
t
KL1  
t
KH1  
SCK  
t
SIK1  
t
KSI1  
Input Data  
SI  
t
KSO1  
SO  
Output Data  
2-wired serial I/O mode:  
tKCY2  
tKL2  
tKH2  
SCK  
tSIK2  
tKSI2  
SB0,1  
t
KSO2  
60  
µPD75304B,75306B,75308B  
Serial Transfer Timing  
Bus release signal transfer:  
t
KCY3,4  
t
KL3,4  
t
KH3,4  
SCK  
t
SIK3,4  
t
KSB  
t
SBL  
t
SBH  
t
SBK  
t
KSI3,4  
SB0,1  
t
KSO3,4  
Command signal transfer:  
tKCY3,4  
t
KL3,4  
tKH3,4  
SCK  
t
SIK3,4  
tKSB  
tSBK  
t
KSI3,4  
SB0,1  
tKSO3,4  
Interrupt Input Timing  
tINTL  
t
INTH  
INT0,1,2,4  
KR0-7  
RESET Input Timing  
t
RSL  
RESET  
61  
µPD75304B,75306B,75308B  
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40 to 85 °C)  
PARAMETER  
SYMBOL  
VDDDR  
TEST CONDITIONS  
MIN.  
2.0  
TYP.  
0.3  
MAX.  
6.0  
UNIT  
V
Data retention supply voltage  
Data retention supply current*1  
Release signal setup time  
IDDDR  
VDDDR = 2.0 V  
15  
µA  
µs  
tSREL  
0
Release by RESET  
217/fx  
ms  
ms  
Oscillation stabilization  
wait time*2  
tWAIT  
Release by interrupt request  
*3  
*
1. Current which flows in the on-chip pull-up resistor is not included.  
2. The oscillation stabilization wait time is the time during which the CPU operation is stopped to prevent  
unstable operation at the oscillation start.  
3. Depends on the basic interval timer mode register (BTM) setting (table below).  
WAIT TIME  
BTM3  
BTM2  
BTM1  
BTM0  
(Figures in parentheses are for operation at fx = 4.19 MHz)  
0
0
1
1
0
1
0
1
0
1
1
1
220/fx (approx. 250 ms)  
217/fx (approx. 31.3 ms)  
215/fx (approx. 7.82 ms)  
213/fx (approx. 1.95 ms)  
62  
µPD75304B,75306B,75308B  
Data Retention Timing (STOP mode release by RESET)  
Internal Reset Operation  
HALT Mode  
STOP Mode  
Operating  
Mode  
Data Retention Mode  
V
DD  
V
DDDR  
t
SREL  
STOP Instruction Execution  
RESET  
tWAIT  
Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)  
HALT Mode  
STOP Mode  
Operating  
Mode  
Data Retention Mode  
V
DD  
VDDDR  
t
SREL  
STOP Instruction Execution  
Standby Release Signal  
(Interrupt Request)  
t
WAIT  
63  
µPD75304B,75306B,75308B  
12. PACKAGE INFORMATION  
80 PIN PLASTIC QFP ( 14)  
A
B
60  
61  
41  
40  
detail of lead end  
21  
20  
80  
1
G
M
I
H
J
K
N
L
S80GC-65-3B9-3  
NOTE  
ITEM  
A
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.13  
mm (0.005 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
17.2 0.4  
0.677 0.016  
+0.009  
±
B
14.0 0.2  
0.551  
–0.008  
+0.009  
±
C
14.0 0.2  
0.551  
–0.008  
±
±
D
F
0.677 0.016  
17.2 0.4  
0.8  
0.8  
0.031  
G
H
I
0.031  
+0.004  
±
0.30 0.10  
0.012  
–0.005  
0.13  
0.005  
J
0.65 (T.P.)  
0.026 (T.P.)  
±
±
K
1.6 0.2  
0.063 0.008  
+0.009  
±
0.031  
L
0.8 0.2  
–0.008  
+0.10  
+0.004  
0.15  
M
N
P
0.006  
–0.05  
–0.003  
0.10  
2.7  
0.004  
0.106  
±
Q
S
0.1 0.1  
±
0.004 0.004  
3.0 MAX.  
0.119 MAX.  
64  
µPD75304B,75306B,75308B  
80 PIN PLASTIC QFP (14×20)  
A
B
41  
40  
64  
65  
detail of lead end  
25  
24  
80  
1
G
H
M
N
I
J
K
L
P80GF-80-3B9-2  
NOTE  
ITEM  
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15  
mm (0.006 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
A
B
C
D
F
23.6 0.4  
0.929 0.016  
+0.009  
±
20.0 0.2  
0.795  
–0.008  
+0.009  
±
14.0 0.2  
0.551  
–0.008  
±
±
0.693 0.016  
17.6 0.4  
1.0  
0.8  
0.039  
G
H
I
0.031  
+0.004  
±
0.35 0.10  
0.014  
–0.005  
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P.)  
+0.008  
±
K
L
1.8 0.2  
0.071  
–0.009  
+0.009  
±
0.031  
0.8 0.2  
–0.008  
+0.10  
+0.004  
0.15  
M
N
P
Q
S
0.006  
–0.05  
–0.003  
0.15  
2.7  
0.006  
0.106  
±
±
0.1 0.1  
0.004 0.004  
3.0 MAX.  
0.119 MAX.  
65  
µPD75304B,75306B,75308B  
80 PIN PLASTIC TQFP (FINE PITCH) ( 12)  
A
B
60  
41  
61  
40  
detail of lead end  
80  
21  
1
20  
G
M
I
J
H
K
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
+0.009  
A
B
C
D
14.0±0.2  
12.0±0.2  
12.0±0.2  
14.0±0.2  
0.551  
0.472  
0.472  
0.551  
–0.008  
+0.009  
–0.008  
+0.009  
–0.008  
+0.009  
–0.008  
F
1.25  
1.25  
0.049  
0.049  
G
+0.05  
0.22  
H
0.009±0.002  
–0.04  
I
0.10  
0.004  
J
0.5 (T.P.)  
0.020 (T.P.)  
+0.009  
0.039  
K
L
1.0±0.2  
0.5±0.2  
–0.008  
+0.008  
0.020  
–0.009  
+0.055  
M
0.145  
0.006±0.002  
–0.045  
N
P
Q
R
S
0.10  
1.05  
0.004  
0.041  
0.05±0.05  
5°±5°  
0.002±0.002  
5°±5°  
1.27 MAX.  
0.050 MAX.  
P80GK-50-BE9-4  
66  
µPD75304B,75306B,75308B  
13. RECOMMENDED SOLDERING CONDITIONS  
These products should be soldered and mounted under the conditions recommended below.  
For details of recommended soldering conditions, refer to the information document "Surface Mount  
Technology Manual (IEI 1207)".  
For soldering methods and conditions other than those recommended, please contact our salesman.  
Table 13-1 Surface Mount Type Soldering Conditions  
(1) µPD75304BGC-×××-3B9: 80-Pin Plastic QFP (14 mm)  
µPD75306BGC-×××-3B9: 80-Pin Plastic QFP (14 mm)  
µPD75308BGC-×××-3B9: 80-Pin Plastic QFP (14 mm)  
Soldering Method  
Infrared reflow  
Soldering ConditionsRecommended  
Condition Symbol  
IR30-207-1  
Package peak temperature: 230°C Duration: 30 sec. max. (210°C or above)  
Number of applications: one  
Time limit: 7 days* (thereafter 20 hours 125°C prebaking required)  
Package peak temperature: 215°C Duration: 40 sec. max. (200°C or above)  
Number of applications: one  
VPS  
VP15-207-1  
Time limit: 7 days* (thereafter 20 hours 125°C prebaking required)  
Pin part temperature: 300°C or less  
Pin part heating  
Duration: 3 sec. max. (per side of device)  
(2) µPD75304BGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)  
µPD75306BGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)  
µPD75308BGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)  
Soldering Method  
Infrared reflow  
VPS  
Soldering ConditionsRecommended  
Condition Symbol  
IR30-00-1  
Package peak temperature: 230°C Duration: 30 sec. max. (210°C or above)  
Number of applications: one  
Package peak temperature: 215°C Duration: 40 sec. max. (200°C or above)  
VP15-00-1  
Number of applications: one  
Solder bath temperature: 260°C or less Duration: 10 sec. max.  
Number of applications: one  
Wave soldering  
Pin part heating  
WS60-00-1  
Preparatory heating temperature: 120°C max. (package surface temperature)  
Pin part temperature: 300°C or less  
Duration: 3 sec. max. (per side of device)  
*
For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.  
Note Use of more than one soldering method should be avoided (except in the case of pin part heating).  
67  
µPD75304B,75306B,75308B  
(3) µPD75304BGK-×××-3B9: 80-Pin Plastic TQFP (12 mm)  
µPD75306BGK-×××-3B9: 80-Pin Plastic TQFP (12 mm)  
µPD75308BGK-×××-3B9: 80-Pin Plastic TQFP (12 mm)  
Soldering Method  
Infrared reflow  
Soldering ConditionsRecommended  
Package peak temperature: 230°C Duration: 30 sec. max. (210°C or above)  
Condition Symbol  
IR30-161-1  
VP15-161-1  
Number of applications: one  
Time limit: 1 day* (thereafter 16 hours 125°C prebaking required)  
Package peak temperature: 215°C Duration: 40 sec. max. (200°C or above)  
Number of applications: one  
VPS  
Time limit: 1 day* (thereafter 16 hours 125°C prebaking required)  
Pin part temperature: 300°C or less  
Pin part heating  
Duration: 3 sec. max. (per side of device)  
*
For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.  
Note Use of more than one soldering method should be avoided (except in the case of pin part heating).  
NOTICE  
Recommended soldering conditions have been improved for some of these products.  
(Improvements: Relaxation of infrared reflow peak temperature (235°C, number of applications (two),  
time limit, etc.)  
Please contact your NEC sales representative for details.  
68  
µPD75304B,75306B,75308B  
[MEMO]  
69  
µPD75304B,75306B,75308B  
APPENDIX A. DIFFERENCES AMONG SERIES PRODUCTS  
Product Name  
µPD75304/75306/75308  
µPD75312/75316  
µPD75P308  
µPD75P316  
Item  
Supply voltage range  
2.0 to 6.0 V  
5V±5%  
EPROM/One-  
time  
One-time  
PROM  
ROM configuration  
Mask ROM  
4096/6016/8064  
Program memory (bytes)  
12160/16256  
512  
8064  
16256  
Data memory (× 4 bits)  
0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz operation)  
122 µs (subsystem clock: 32.768 kHz operation)  
Instruction cycle  
CMOS input  
8
Pull-up resistor incorporation spesifiable by software: 23  
16  
CMOS input/output  
Input/output  
ports  
40  
8
8
Used with segment pin  
CMOS output  
10 V withstand voltage. Pull-up  
resistor incorporation spesifiable by  
mask option.  
10 V withstand voltage. Pull-up  
resistor incorporation spesifiable  
by mask option  
N-ch open–drain  
input/output  
(without pull-up resistor)  
• Common output: Static – 1/4 duty selected  
• Segment output: Max. 32  
LCD controller/driver  
LCD drive split resistor can be incorporated by  
mask option.  
No LCD drive split resistor.  
LCD drive voltage  
Timer/counter  
2.0 to VDD  
• 8-bit timer/event counter  
• 8-bit basic interval timer  
• Watch timer  
• NEC standard serial bus interface (SBI)  
• Clock synchronous serial interface  
Serial interface  
• External: 3  
• Internal: 3  
Vectored interrupt  
• External: 1  
• Internal: 1  
Test input  
Clock output (PCL)  
Buzzer output (BUZ)  
Φ, 524 kHz, 262 kHz, 65.5 kHz (main system clock: 4.19 MHz operation)  
2 kHz (Main system clock: in 4.19 MHz operation or subsystem clock: in 32.768 kHz  
operation)  
80-pin plastic QFP  
(14 × 20 mm)  
80-pin plastic QFP  
(14 × 20 mm)  
80-pin ceramic  
WQFN (LCC with  
window)  
Package  
80-pin plastic QFP (14 × 20 mm)  
µPD75P316  
µPD75P308  
On-chip PROM product  
µPD75P316A  
70  
µPD75304B,75306B,75308B  
Product Name  
µPD75304B/75306B/75308B µPD75312B  
µPD75316B  
µPD75P316B* µPD75P316A  
Item  
2.0 to 6.0 V  
Supply voltage range  
ROM configuration  
One-time  
PROM  
EPROM/One-  
time  
Mask ROM  
4096/6016/8064  
512  
12160  
16256  
Program memory (bytes)  
1024  
Data memory (× 4 bits)  
0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz operation)  
122 µs (subsystem clock: 32.768 kHz operation)  
Instruction cycle  
CMOS input  
8
Pull-up resistor incorporation spesifiable by software: 23  
16  
CMOS input/output  
Input/output  
ports  
40  
CMOS output  
8
8
Used with segment pin  
10 V withstand voltage. Pull-  
up resistor incorporation  
spesifiable by mask option  
10 V withstand voltage. Pull-up resistor  
incorporation spesifiable by mask option.  
(without pull-up resistor)  
N-ch open–drain  
input/output  
• Common output: Static – 1/4 duty selected  
• Segment output: Max. 32  
LCD controller/driver  
LCD drive split resistor can be incorporat-  
ed by mask option.  
No LCD drive split resistor.  
LCD drive voltage  
Timer/counter  
2.0 to VDD  
• 8-bit timer/event counter  
• 8-bit basic interval timer  
• Watch timer  
• NEC standard serial bus interface (SBI)  
• Clock synchronous serial interface  
Serial interface  
Vectored interrupt  
Test input  
• External: 3  
• Internal: 3  
• External: 1  
• Internal: 1  
Φ, 524 kHz, 262 kHz, 65.5 kHz (main system clock: 4.19 MHz operation)  
Clock output (PCL)  
Buzzer output (BUZ)  
2 kHz (Main system clock: in 4.19 MHz operation or subsystem clock: in 32.768 kHz  
operation)  
80-pin  
ceramic  
WQFN  
80-pin plastic  
QFP  
(14 × 20 mm)  
80-pin plastic QFP  
• (14 × 20 mm)  
• (14mm)  
80-pin plastic QFP (14mm)  
80-pin plastic TQFP(12mm)  
Package  
80-pin  
plastic TQFP(12mm)  
GF package: µPD75P316A  
GC/GK package: µPD75P316B  
µPD75P316B  
On-chip PROM product  
Under development  
*
71  
µPD75304B,75306B,75308B  
APPENDIX B. DEVELOPMENT TOOLS  
The following development tools are available for system development using the µPD75304B/75306B/  
75308B.  
IE-75000-R*1  
75X series in-circuit emulator  
IE-75001-R  
Emulation board for the IE-75000-R or IE-75001-R  
IE-75000-R-EM*2  
Emulation probe for the µPD75304BGF, 75306BGF and 75308BGF.  
EP-75308GF-R  
An 80-pin conversion socket (EV-9200G-80) is also provided.  
EV-9200G-80  
EV-9200GC-80  
EV-9500GK-80  
Emulation probe for the µPD75304BGC, 75306BGC and 75308BGC.  
EP-75308BGC-R  
EP-75308BGK-R  
An 80-pin conversion socket (EV-9200GC-80) is also provided.  
Emulation probe for the µPD75304BGK, 75306BGK and 75308BGK.  
An 80-pin conversion adapter (EV-9200GK-80) is also provided.  
PROM programmer  
PG-1500  
PROM programmer adapter for the µPD75P316AGF, connected to the  
PA-75P308GF  
PG-1500.  
PROM programmer adapter for the µPD75P316BGC, connected to the  
PA-75P316BGC  
PA-75P316BGK  
PG-1500.  
PROM programmer adapter for the µPD75P316BGK, connected to the  
PG-1500.  
IE Control Program  
PG-1500 Controller  
Host machines  
PC-9800 series (MS-DOS™ Ver. 3.30 to Ver. 5.00A*3)  
IBM PC/AT™(PC DOS™ Ver. 3.1)  
RA75X Relocatable Assembler  
*
1. Maintenance product  
2. Not incorporated in the IE-75001-R.  
3. A task swapping function is provided in Ver. 5.00/5.00A, but this function cannot be used with this  
software.  
Remarks Please refer to the 75X Series Selection Guide (IF-151) for third party development tools.  
72  
µPD75304B,75306B,75308B  
APPENDIX C. RELATED DOCUMENTS  
Device Related Documents  
Document Name  
User's Manual  
Document Number  
IEM-5016  
Instruction Application Table  
IEM-994  
IEM-5035  
IEM-5041  
IF-151  
Application Note  
75X Series Selection Guide  
Development Tools Documents  
Document Name  
Document Number  
EEU-846  
IE-75000-R/IE-75001-R User's Manual  
IE-75000-R-EM User's Manual  
EP-75308GF-R User's Manual  
EP-75308BGC-R User's Manual  
EP-75308BGK-R User's Manual  
PG-1500 User's Manual  
EEU-673  
EEU-689  
EEU-825  
EEU-838  
EEU-651  
Operation  
Language  
EEU-731  
EEU-730  
EEU-704  
RA75X Assembler Package User's Manual  
PG-1500 Controller User's Manual  
Other Documents  
Document Name  
Document Number  
Package Manual  
IEI-635  
IEI-1207  
IEI-1209  
IEM-5068  
MEM-539  
MEI-603  
MEI-604  
Surface Mount Technology Manual  
Quality Grande on NEC Semiconductor Device  
NEC Semiconductor Device Reliability & Quality Control  
Electrostatic Discharge(ESD) Test  
Semiconductor Devices Quality Guarantee Guide  
Microcomputer Related Products Guide Other Manufacturers Volume  
*
The contents of the above related documents are subject to change without notice. The latest documents  
should be used for design, etc.  
73  
µPD75304B,75306B,75308B  
[MEMO]  
74  
µPD75304B,75306B,75308B  
75  
µPD75304B,75306B,75308B  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights  
or other intellectual property rights of NEC Corporation or others.  
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear  
reactor control systems and life support systems. If customers intend to use NEC devices for above applications  
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact  
our sales people in advance.  
Application examples recommended by NEC Corporation  
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,  
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.  
Special  
:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,  
Anticrime systems, etc.  
M4 92.6  
MS-DOS is a trademark of MicroSoft Corporation.  
PC DOS, PC/AT is a trademark of IBM Corporation.  

相关型号:

UPD75308BGF-XXX-3B9

4-Bit Microcontroller
ETC

UPD75308BGK

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75308BGK-XXX-BE9

4-Bit Microcontroller
ETC

UPD75308GF

Microcontroller, 4-Bit, MROM, 4.19MHz, CMOS, PQFP80, PLASTIC, QFP-80
NEC

UPD75308GF(A)-XXX-3B9

4-Bit Microcontroller
ETC

UPD75308GF-XXX-3B9

4-Bit, Single-Chip Microcontrollers With LCD Controller/Driver
NEC

UPD75308GFA-XXX-3B9

4-Bit, Single-Chip Microcontrollers With LCD Controller/Driver
NEC

UPD753104

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD753104GC

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD753104GC-XXX-8BS

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PQFP64, 14 X 14 MM, PLASTIC, LQFP-64
NEC

UPD753104GC-XXX-8BS-A

Microcontroller, 4-Bit, MROM, 6MHz, MOS, PQFP64, 14 X 14 MM, PLASTIC, LQFP-64
NEC

UPD753104GC-XXX-AB8

UPD753104GC-XXX-AB8
RENESAS