UPD75402A [NEC]

4 BIT SINGLE-CHIP MICROCOMPUTER; 4位单片机
UPD75402A
型号: UPD75402A
厂家: NEC    NEC
描述:

4 BIT SINGLE-CHIP MICROCOMPUTER
4位单片机

计算机
文件: 总48页 (文件大小:502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD75402A(A)  
4 BIT SINGLE-CHIP MICROCOMPUTER  
The µPD75402A(A) is a CMOS single-chip microcomputer which uses the 75X series architecture. It operates  
at high speed with a minimum instruction execution time of 0.95 µs.  
The µPD75P402 is also available for system development evaluation. It contains one-time PROM instead  
of mask ROM used in the µPD75402A(A).  
The following user's manual describes the details of the functions of the µPD75402A(A). Be sure to read  
it before designing an application system.  
µPD75402A User's Manual: IEU-644  
FEATURES  
More reliable than the µPD75402A  
High-speed operation with a minimum instruction execution time of 0.95 µs (when the microcomputer  
operates at 4.19 MHz)  
Low voltage and low-speed instruction execution time of 15.3 µs (when the microcomputer operates at  
4.19 MHz)  
Memory mapping by on-chip peripheral hardware  
NEC standard serial bus interface (SBI)  
8-bit basic interval timer (watchdog timer applicable)  
Interrupt function  
Three vectored interrupts (one external and two internal interrupts)  
One external test input  
Clock output function (remote controller output applicable)  
Capable of specifying the incorporation of 16 pull-up resistors by software  
APPLICATIONS  
Electronic units for automobiles, and suchlike  
ORDERING INFORMATION  
Part number  
Package  
Quality grade  
Special  
µPD75402AC(A)-×××  
µPD75402ACT(A)-×××  
µPD75402AGB(A)-×××-3B4  
28-pin plastic DIP (600 mil)  
28-pin plastic shrink DIP (400 mil)  
44-pin plastic QFP (10 × 10 mm)  
Special  
Special  
Remark ××× indicates the ROM code number.  
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
The information in this document is subject to change without notice.  
Document No. IC-2841B  
(O.D.No. IC-8273B)  
Major changes in this revision are indicated by stars ( ) in the margins.  
Date Published November 1993 P  
Printed in Japan  
NEC CORPORATION 1991  
1
©
DIFFERENCES BETWEEN THE µPD75402A(A) AND µPD75402A  
Product  
µPD75402A(A)  
µPD75402A  
Standard  
Item  
Quality grade  
Special  
FUNCTIONAL OVERVIEW  
Item  
Function  
Number of basic  
instructions  
37  
Minimum instruction  
execution time  
0.95, 1.91, or 15.3 µs (when operating at 4.19 MHz)  
Switchable among three speeds  
Built-in  
ROM  
RAM  
1920 × 8 bits  
memory  
64 × 4 bits  
General register  
I/O line  
4 bits × 4 or 8 bits × 2 (memory mapping)  
CMOS input ports  
CMOS I/O ports  
:
6 lines  
: 12 lines (8 lines can drive the LED directly.)  
N-ch open-drain I/O ports : 4 lines (All lines can drive the LED directly.)  
Pull-up resistor  
Clock output  
Capable of controlling the incorporation of 16 pull-up resistors by software  
Capable of controlling the incorporation of 4 pull-up resistors by mask option  
1.05 MHz, 524 kHz, or 65.5 kHz (when operating at 4.19 MHz)  
Applicable to remote controller output  
Timer/counter  
Serial interface  
8-bit basic interval timer (watchdog timer applicable)  
8 bits  
Two transfer modes (three-wire synchronous mode and SBI mode)  
Vectored interrupt  
Test input  
One external and two internal interrupts  
One external input (See Chapter 6 for details.)  
STOP/HALT mode  
Standby  
Instruction set  
Bit manipulation instructions (set, clear, test, and Boolean operation)  
1-byte relative branch instructions  
4-bit operation instructions (add, Boolean operation, and compare)  
4- and 8-bit transfer instructions  
Package  
28-pin plastic DIP (600 mil)  
28-pin plastic shrink DIP (400 mil)  
44-pin plastic QFP (10 × 10 mm)  
µPD75402A(A)  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW) ......................................................................................  
2. BLOCK DIAGRAM ......................................................................................................................  
3. PIN FUNCTIONS .......................................................................................................................  
4
6
7
7
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
PORT PINS .....................................................................................................................................  
NON-PORT PINS ...........................................................................................................................  
PIN INPUT/OUTPUT CIRCUITS ..................................................................................................  
SELECTION OF A MASK OPTION ...........................................................................................  
HANDLING UNUSED PINS .........................................................................................................  
NOTES ON USING THE P00 AND RESET PINS .................................................................  
8
8
10  
11  
11  
4. MEMORY CONFIGURATION ................................................................................................... 12  
5. PERIPHERAL HARDWARE FUNCTIONS................................................................................ 14  
5.1  
5.2  
5.3  
5.4  
5.5  
PORTS..............................................................................................................................................  
CLOCK GENERATOR ....................................................................................................................  
CLOCK OUTPUT CIRCUIT ...........................................................................................................  
BASIC INTERVAL TIMER ............................................................................................................  
SERIAL INTERFACE ......................................................................................................................  
14  
15  
16  
17  
18  
6. INTERRUPT FUNCTION ........................................................................................................... 20  
7. STANDBY FUNCTION .............................................................................................................. 22  
8. RESET FUNCTION .................................................................................................................... 23  
9. INSTRUCTION SET ................................................................................................................... 25  
10. ELECTRICAL CHARACTERISTICS ........................................................................................... 29  
11. PACKAGE DIMENSIONS.......................................................................................................... 38  
12. RECOMMENDED SOLDERING CONDITIONS ......................................................................... 42  
APPENDIX A DIFFERENCES BETWEEN THE µPD75402A(A) AND µPD75P402 ................... 43  
APPENDIX B DEVELOPMENT TOOLS......................................................................................... 44  
APPENDIX C RELATED DOCUMENTS ........................................................................................ 45  
1. PIN CONFIGURATION (TOP VIEW)  
28-pin plastic DIP (600 mil), 28-pin plastic shrink DIP (400 mil)  
Note NC  
RESET  
1
2
3
4
5
28  
27  
26  
25  
24  
V
DD  
X1  
P00  
X2  
P01/SCK  
P02/SO/SB0  
P12/INT2  
P10/INT0  
µ
P03/SI  
P50  
6
7
23  
22  
P23  
P22/PCL  
P51  
P52  
P53  
P30  
P31  
P32  
8
21  
20  
19  
18  
17  
16  
15  
P21  
P20  
P63  
P62  
P61  
P60  
P33  
9
10  
11  
12  
13  
14  
VSS  
P00 - P03 : Port 0  
P10 and P12: Port 1  
P20 - P23 : Port 2  
P30 - P33 : Port 3  
P50 - P53 : Port 5  
P60 - P63 : Port 6  
SCK  
: Serial clock I/O  
SO/SB0 : Serial output/input-output  
SI  
: Serial input  
: Clock output  
PCL  
INT0  
INT2  
: External vectored interrupt input  
: External test input  
X1 and X2: Oscillating pins  
RESET  
VDD  
: Reset input  
: Power supply  
: Ground  
VSS  
NC  
: No connection  
Note When the µPD75402A(A) shares the printed circuit board with the µPD75P402, connect the NC pin  
directly to the VSS pin.  
µPD75402A(A)  
44-pin plastic QFP (10 × 10 mm)  
44 43 42 41 40 39 38 37 36 35 34  
33  
P30  
P31  
P32  
NC  
1
2
3
4
P01/SCK  
P00  
32  
31  
30  
RESET  
NC Note  
V
SS  
5
6
7
29  
28  
27  
NC  
NC  
NC  
NC  
NC  
µPD75402AGB(A)-×××-3B4  
P33  
P60  
P61  
NC  
8
26  
25  
24  
23  
V
DD  
9
X1  
X2  
NC  
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
Note When the µPD75402A(A) shares the printed circuit board with the µPD75P402, connect the NC pin  
(pin 30) directly to the VSS pin.  
4
2
Port 0  
Port 1  
P00 - P03  
P10, P12  
Basic  
interval  
timer  
CY  
SP  
Program  
counter (11)  
ALU  
INTBT  
4
4
4
4
Port 2  
Port 3  
Port 5  
Port 6  
P20 - P23  
P30 - P33  
P50 - P53  
P60 - P63  
SI  
SO/SB0  
Serial  
interface  
SCK  
General register  
ROM  
Program  
memory  
Decode  
and  
control  
INTCSI  
RAM  
Data memory  
64 × 4 bits  
1920 × 8 bits  
INT0  
INT2  
Interrupt  
control  
f
XX/2N  
CPU  
φ
Clock  
Clock  
output  
control  
Clock  
divider  
Clock  
generator  
Standby  
control  
µ
PCL  
X1  
X2  
V
DD  
VSS RESET  
µPD75402A(A)  
3. PIN FUNCTIONS  
3.1 PORT PINS  
Dual-  
Pin  
I /O  
Function  
function pin  
P00  
P01  
P02  
P03  
P10  
Input  
I/O  
SCK  
SO/SB0  
SI  
4-bit input port (port 0)  
P01 to P03 allow the connection of built-in pull-up resistors to be  
specified in units of three bits by software.  
I/O  
Input  
Input  
INT0  
2-bit input port (port 1)  
P10 connects with the built-in noise eliminator using a sampling clock.  
P12 connects with the built-in noise eliminator using an analog delay.  
P12 allows the connection of built-in pull-up resistor to be specified by  
software.  
P12  
INT2  
P20  
P21  
I/O  
I/O  
I/O  
I/O  
4-bit I/O port (port 2)  
Allow I/O specification in units of four bits.  
Allow the connection of built-in pull-up resistors to be specified in  
units of four bits by software.  
P22  
PCL  
P23  
P30 - P33  
Programmable 4-bit I/O port (port 3)  
Allow I/O specification bit by bit.  
Allow the connection of built-in pull-up resistors to be specified in  
units of four bits by software.  
Can directly drive LED.  
P50 - P53  
P60 - P63  
4-bit N-ch open-drain I/O port (port 5)  
Allow I/O specification in units of four bits.  
Allow the connection of built-in pull-up resistors to be specified bit by  
bit by mask option.  
Can directly drive LED.  
4-bit I/O port (port 6)  
Allow I/O specification in units of four bits.  
Allow the connection of built-in pull-up resistors to be specified in  
units of four bits by software.  
Can directly drive LED.  
Remarks 1. The µPD75402A(A) cannot perform 8-bit I/O with two ports as a pair.  
2. See Chapter 8 for each pin status during resetting.  
µPD75402A(A)  
3.2 NON-PORT PINS  
Dual-  
Pin  
I /O  
Function  
function pin  
INT0  
Input  
P10  
Edge detection vectored interrupt request input pin (A detected edge  
can be selected by the mode register.)  
Connects with the built-in noise eliminator using a sampling clock.  
INT2  
SI  
Input  
Input  
I/O  
P12  
P03  
Edge detection external test input pin (A rising edge is detected.)  
Serial data input pin  
Serial data output pin  
Serial clock I/O pin  
Serial bus I/O pin  
Clock output pin  
SO  
P02/SB0  
P01  
SCK  
SB0  
PCL  
X1, X2  
I/O  
I/O  
P02/SO  
P22  
I/O  
Input  
Pin for connection to a crystal/ceramic resonator for system clock  
generation. An external clock is applied to X1, and its reverse phase to  
X2.  
RESET  
Input  
System reset input pin, which connects with the built-in noise elimina-  
tor using an analog delay.  
VDD  
VSS  
Positive power supply pin  
Ground potential pin  
No connection  
Note  
NC  
Remark See Chapter 8 for each pin status during resetting.  
Note Connect the NC pin directly to the VSS pin when the µPD75402A(A) shares the printed circuit board  
with the µPD75P402 in emulation.  
3.3 PIN INPUT/OUTPUT CIRCUITS  
The I/O circuits of the µPD75402A(A) are roughly shown on the next and subsequent pages.  
Table 1-1 I/O Circuit Type of Pin  
Pin  
I/O type  
Pin  
P20, P21, and P23  
P22/PCL  
I/O type  
E-B  
P00  
B
P01/SCK  
P02/SO/SB0  
P03/SI  
F
F
-A  
-B  
-C  
P30 - P33  
P50 - P53  
P60 - P63  
RESET  
E-B  
M
B
P10 /INT0  
P12/INT2  
E-B  
B
B
B
-C  
Remark The types in circles have a Schmitt-triggered input.  
µPD75402A(A)  
(1/2)  
Type A (For type E-B)  
Type D (For type E-B, F-A)  
V
DD  
V
DD  
Data  
P-ch  
P-ch  
OUT  
IN  
Output  
disable  
N-ch  
N-ch  
Push-pull output which can be set to high-impedance output  
(off for both P-ch and N-ch)  
CMOS input buffer  
Type B  
Type E-B  
VDD  
P.U.R.  
P-ch  
P.U.R.  
enable  
IN  
Data  
IN/OUT  
Type D  
Type A  
Output  
disable  
P.U.R.: Pull-Up Resistor  
Schmitt trigger input with hysteresis  
Type F-A  
Type B-C  
VDD  
V
DD  
P.U.R.  
P-ch  
P.U.R.  
P.U.R.  
enable  
P.U.R.  
enable  
P-ch  
Data  
IN/OUT  
Type D  
Output  
disable  
IN  
Type B  
P.U.R.: Pull-Up Resistor  
P.U.R.: Pull-Up Resistor  
µPD75402A(A)  
(2/2)  
Type F-B  
Type M  
VDD  
VDD  
P.U.R.  
enable  
(Mask option)  
P.U.R.  
IN/OUT  
P.U.R.  
enable  
P-ch  
Output  
disable  
(P)  
VDD  
Data  
N-ch  
(Withstand  
voltage:  
+10 V)  
P-ch  
Output  
disable  
IN/OUT  
Data  
Output  
disable  
N-ch  
Output  
disable  
(N)  
Input buffer with an intermediate  
withstand voltage of +10 V  
P.U.R.: Pull-Up Resistor  
P.U.R.: Pull-Up Resistor  
3.4 SELECTION OF A MASK OPTION  
The following mask options are provided for pins:  
P50 - P53  
Pull-up resistors connected  
1
(Either can be specified bit by bit.)  
No pull-up resistors connected  
2
µPD75402A(A)  
3.5 HANDLING UNUSED PINS  
Pin  
P00  
Recommended connection method  
Connected to the VSS pin  
P01 - P03  
When a pull-up resistor is contained  
Connected to the VDD pin  
P10, P12  
When a pull-up resistor is not contained  
Connected to the VSS or VDD pin  
When a pull-up resistor is contained  
Input mode : Connected to the VDD pin  
Output mode : Open  
P20 - P23  
P30 - P33  
P50 - P53  
When a pull-up resistor is not contained  
Input mode : Connected to the VSS or VDD pin  
Output mode : Open  
P60 - P63  
NC  
Note  
Open or directly connected to the VSS pin  
Note When the µPD75402A(A) shares the printed circuit board with the µPD75P402, connect the NC pin  
directly to VSS pin.  
3.6 NOTES ON USING THE P00 AND RESET PINS  
The P00 and RESET pins have the test mode selecting function for testing the internal operation of the  
µPD75402A(A) (IC test), besides the functions shown in Sections 3.1 and 3.2.  
Applying a voltage exceeding VDD to the P00 and/or RESET pin causes the µPD75402A(A) to enter the test  
mode. When noise exceeding VDD comes in during normal operation, the device is switched to the test mode.  
For example, when the wiring from the P00 or RESET pin is too long, noise voltage induced on the wiring  
is applied to the pin, driving the voltage at the pin above VDD, which may cause malfunction.  
When installing the wiring, lay the wiring in such a way that noise is suppressed as much as possible. If  
noise yet arises, use an external part to suppress it as shown below.  
Connect a capacitor between the pin and VDD.  
Connect a diode with low VF (0.3 V or lower)  
between the pin and VDD.  
V
DD  
VDD  
Diode with  
V
DD  
V
DD  
low V  
F
P00, RESET  
P00, RESET  
µPD75402A(A)  
4. MEMORY CONFIGURATION  
Program memory (ROM): 1920 × 8 bits (000H to 77FH)  
000H and 001H: Vector table which contains the program start address after reset  
002H to 009H : Vector table which contains the program start addresses when interrupts occur  
Data memory  
Data area  
: 64 × 4 bits (000H to 03FH)  
Peripheral hardware area: 128 × 4 bits (F80H to FFFH)  
Fig. 4-1 Program Memory Map  
7
0
6
0
5
0
4
0
3
0
0
Address  
000H  
Reset start address  
(three high-order bits)  
001H  
002H  
003H  
004H  
Reset start address (eight low-order bits)  
INTBT start address  
(three high-order bits)  
0
0
0
0
0
0
0
Entry address specified in  
CALLF !faddr instruction  
INTBT start address (eight low-order bits)  
INT0 start address  
(three high-order bits)  
0
0
0
005H  
INT0 start address (eight low-order bits)  
Branch address specified in  
BRCB !caddr instruction  
Relative branch address specified in  
BR $addr instruction  
INTCSI start address  
(three high-order bits)  
008H  
009H  
0
0
0
0
0
–15 to –1,  
+2 to +16  
INTCSI start address (eight low-order bits)  
77FH  
µPD75402A(A)  
Fig. 4-2 Data Memory Map  
000H  
General register  
area  
(4 × 4)  
003H  
004H  
Data area  
Static RAM  
(64 × 4)  
Bank 0  
(64 × 4)  
020H  
03FH  
Stack area  
(32 × 4)  
No memory  
F80H  
Peripheral  
hardware  
area  
Bank 15  
128 × 4  
FFFH  
µPD75402A(A)  
5. PERIPHERAL HARDWARE FUNCTIONS  
5.1 PORTS  
The µPD75402A(A) has the following three types of I/O port:  
• 6 CMOS input pins (PORT0 and PORT1)  
• 12 CMOS I/O pins (PORT2, PORT3, and PORT6)  
• 4 N-ch open-drain I/O pins (PORT5)  
Total: 22 pins  
Table 5-1 Functions of Ports  
Port name  
PORT0  
Operation and feature  
Remarks  
Also used for SO/SB0, SI, SCK, INT0, and  
Function  
4-bit Input  
Allows read and test at any  
PORT1  
time regardless of the operation INT2.  
modes of dual function pins.  
Note  
PORT3  
Allows input or output mode  
setting bit by bit.  
4-bit I/O  
PORT2  
PORT6  
Allows input or output mode  
setting in units of 4 bits.  
Port 2 is also used for PCL.  
Note  
Note  
PORT5  
Allows input or output mode  
setting in units of 4 bits.  
This port can incorporate a pull-up  
resistor as a mask option bit by bit.  
4-bit I/O (N-ch  
open-drain I/O  
with a withstand  
voltage of 10 V)  
Note PORT3, PORT5, and PORT6 can directly drive the LED.  
µPD75402A(A)  
5.2 CLOCK GENERATOR  
Operation of the clock generator is specified by the processor clock control register (PCC).  
The instruction execution time is variable.  
• 0.95 µs, 1.91 µs, 15.3 µs (when fXX is 4.19 MHz.)  
Fig. 5-1 Block Diagram of the Clock Generator  
· Basic interval timer (BT)  
· Clock output circuit  
· Serial interface  
· INT0 noise eliminator  
X1  
X2  
1/16 to 1/512  
VDD  
System  
clock  
oscillator  
f
XX or f  
X
Frequency divider  
1/2 1/16  
Oscillation  
stops.  
Frequency  
divider  
Φ
1/4  
· CPU  
PCC  
· INT0 noise  
eliminator  
· Clock output  
circuit  
PCC0  
PCC1  
HALT flip-  
flop  
4
PCC2  
PCC3  
S
HALT*  
STOP*  
R
Q
All bits are  
cleared.  
RESET input rising edge  
detection signal  
STOP flip-  
flop  
PCC2 is  
cleared.  
Q
S
R
RESET input falling  
edge detection signal  
Standby release signal  
from interrupt control circuit  
Remarks 1. fXX = Crystal/ceramic oscillated frequency  
2. fX = External clock frequency  
3. Φ = CPU clock  
4. An asterisk (*) indicates instruction execution.  
5. PCC: Processor clock control register  
6. One clock cycle (tCY) of Φ is equal to one machine cycle of an instruction. See AC  
characteristics of Chapter 10 for details of tCY.  
µPD75402A(A)  
5.3 CLOCK OUTPUT CIRCUIT  
The clock output circuit, which outputs clock pulses from pin P22/PCL, is used for supplying clock pulses  
for peripheral LSIs or for remote control output.  
Clock output (PCL): 1.05 MHz, 524 kHz, 65.5 kHz (when fXX is 4.19 MHz).  
Fig. 5-2 shows the configuration of the clock output circuit.  
Fig. 5-2 Configuration of the Clock Output Circuit  
From the clock  
generator  
Φ
Output  
buffer  
Selector  
P22/PCL  
X
f
X
/26  
PORT2.2  
Bit 2 of PMGB  
Port 2 input/  
output mode  
specification bit  
P22 output  
latch  
CLOM3  
0
CLOM1 CLOM0 CLOM  
4
Internal bus  
Remark The clock output circuit is designed not to output high-frequency pulses when clock output is  
switched between the enable and disable states.  
µPD75402A(A)  
5.4 BASIC INTERVAL TIMER  
The basic interval timer provides the following functions:  
Interval timer operation that generates a reference time interrupt  
Can be used as a watchdog timer for detecting program crashes  
Reading the count value  
Fig. 5-3 Configuration of the Basic Interval Timer  
From the  
clock  
Clear  
Clear  
generator  
f
XX /25  
BT  
interrupt  
request flag  
Set  
Basic interval timer  
(8-bit frequency divider)  
MPX  
Vectored  
interrupt  
request  
signal  
f
XX /29  
BT  
IRQBT  
BTM3  
BTM2  
1
1
BTM  
4
8
Internal bus  
µPD75402A(A)  
5.5 SERIAL INTERFACE  
The serial interface has the following modes:  
Three-wire serial I/O mode (MSB is transferred first.)  
SBI mode (MSB is transferred first.)  
The three-wire serial I/O mode enables connections to be made with the 75X series, 78K series, and many  
other types of peripheral I/O devices.  
The SBI mode enables communication with two or more devices.  
Fig. 5-4 Block Diagram of the Serial Interface  
Internal bus  
Bit  
test  
Bit manipulation  
8
8
8
Bit test  
Slave address  
register (SVA)  
CSIM  
SBIC  
(8)  
Match  
signal  
RELT  
CMDT  
Address comparator  
Shift register (SIO)  
(8)  
P03/SI  
SET CLR SO  
Iatch  
Selector  
D
Q
(8)  
P02 /SO/SB0  
Busy/  
acknowl-  
edge  
output  
circuit  
RELD  
CMDD  
ACKD  
Bus-release/  
command/  
acknowledge  
detector  
INTCSI  
IRQCSI  
Set signal  
INTCSI  
control  
circuit  
P01/SCK  
Serial clock  
counter  
f
XX/24  
Serial clock  
control  
circuit  
µ
MPX  
External SCK  
µPD75402A(A)  
6. INTERRUPT FUNCTION  
The µPD75402A(A) has three interrupt sources and each of them has the interrupt vector table.  
The µPD75402A(A) is also provided with one edge-sensitive testable input signal.  
When a vectored interrupt request is issued, the PC and PSW are saved in the stack, and the contents of  
the vector table which corresponds to the issued vectored interrupt are set in the PC as a start address. The  
program branches to the interrupt service routine. These operations are performed automatically by the  
hardware.  
The flag is set by detecting the edge of the testable input signal, but a vectored interrupt request is not  
issued.  
During execution of the interrupt service routine, the µPD75402A(A) does not accept the other interrupt  
requests. Unlike the other 75X series, the µPD75402A(A) cannot handle multiple interrupts.  
The interrupt control circuit of the µPD75402A(A) has the following functions.  
Vectored interrupt function under hardware control which can determine whether to accept an interrupt  
by an interrupt enable flag (IE×××) and an interrupt master enable flag (IME).  
Any interrupt start address can be set.  
Test function of an interrupt request flag (IRQ×××) (Software can confirm that an interrupt occurs.)  
Release of the standby (HALT) mode (An interrupt to be released by an interrupt enable flag can be selected  
from interrupts other than INT0.)  
Fig. 6-1 Block Diagram of Interrupt Control Circuit  
3
IME  
IST0  
Interrupt enable flag (IE×××)  
IM0  
Decoder  
VRQ1  
VRQ2  
VRQ3  
INT  
BT  
IRQBT  
Edge  
detection  
circuit  
INT0/  
P10  
Note 1  
Note 2  
Vector  
table  
address  
generator  
IRQ0  
IRQCSI  
IRQ2  
Priority  
control  
circuit  
INTCSI  
Rising edge  
detection  
circuit  
INT2/  
P12  
µ
Standby release  
signal  
Notes 1. Noise eliminator using the sampling clock  
2. Noise eliminator using analog delay  
µPD75402A(A)  
7. STANDBY FUNCTION  
To reduce the power consumption when the program is in the wait state, theµPD75402A(A) has two standby  
modes, STOP and HALT.  
Table 7-1 Operation Statuses in the Standby Mode  
STOP mode  
STOP instruction  
HALT mode  
HALT instruction  
Instruction to be used to  
set mode  
Oscillation of the system clock stops.  
Operation stops.  
Opera-  
tion  
Clock generator  
Only the CPU clock (Φ) stops, but  
oscillation continues.  
status  
Basic interval  
timer  
Operates. (IRQBT is set at every refer-  
ence time interval.)  
Operable only when the external SCK  
input is selected for the serial clock.  
Serial interface  
Operable  
Operation stops.  
Clock output  
circuit  
Clocks other than CPU clock (Φ) can be  
output.  
INT2 pin is usable.  
External  
interrupt  
INT2 pin is usable.  
INT0 pin cannot be used.  
INT0 pin cannot be used.  
Operation stops.  
RESET input  
CPU  
Release signal  
RESET input or interrupt request signals  
enabled by the interrupt enable flags  
µPD75402A(A)  
8. RESET FUNCTION  
When a low level signal is input to the RESET input pin, the state changes to the system reset. Table 8-1  
shows the statuses of the hardware.  
When the RESET signal rises from the low level to the high level, the reset state is released. The three low-  
order bits of the reset vector table whose address is 000H is set in bits 10 to 8 of the program counter (PC)  
and the contents of the reset vector table whose address is 001H is set in bits 7 to 0 of the PC. The program  
branches to that address and starts execution, i.e., the reset start address is programmable.  
Initialize contents of registers in a program if necessary.  
The RESET pin connects to the Schmitt-trigger circuit whose threshold level has hysteresis in the chip. This  
pin is also connected to the noise eliminator using an analog delay to eliminate narrow noise and prevent  
errors caused by noise. (See Fig. 8-1.)  
For the power-on reset operation, be sure to allow sufficient time for oscillation to settle between power  
on and acceptance of the reset signal (see Fig. 8-2).  
Fig. 8-1 Acceptance of the Reset Signal  
RESET  
The instruction which  
is stored at the reset  
branch address is executed.  
Content of the reset  
vector table is set  
to the PC  
Analog  
delay  
Analog  
delay  
Analog  
delay  
(the initialization of the PC).  
Elimination  
as noise.  
This low level  
signal is accepted released.  
as the reset signal.  
The reset is  
Fig. 8-2 Power-On Reset Operation  
VDD  
RESET  
Oscillation  
settling time  
The instruction which is stored  
at the reset branch address is  
executed.  
Analog  
delay  
Content of the reset vector  
table is set to the PC  
(the initialization of the PC).  
The reset  
is released.  
µPD75402A(A)  
Table 8-1 Hardware Statuses after Reset Operations  
Hardware  
Program counter (PC)  
RESET input in standby mode  
RESET input during operations  
Set the three low-order bits of  
Set the three low-order bits of  
address 000H in program  
memory in PC bits 10 to 8 and  
set the contents of address  
001H in PC bits 7 to 0.  
address 000H in program  
memory in PC bits 10 to 8 and  
set the contents of address  
001H in PC bits 7 to 0.  
PSW  
Carry flag (CY)  
Retained  
Undefined  
Skip flag (SK0 - SK2)  
0
0
Interrupt status flag (IST0)  
0
0
Stack pointer (SP)  
Undefined  
Undefined  
Note  
Data memory (RAM)  
General register (X, A, H, L)  
Retained  
Undefined  
Retained  
Undefined  
Basic interval  
timer  
Counter (BT)  
Undefined  
Undefined  
Mode register (BTM)  
0
0
Serial  
Shift register (SIO)  
Retained  
Undefined  
interface  
Operation mode register (CSIM)  
SBI control register (SBIC)  
Slave address register (SVA)  
0
0
0
Retained  
0
0
Undefined  
0
Clock genera-  
tor and clock  
output circuit  
Processor clock control register  
(PCC)  
Clock output mode register  
(CLOM)  
0
0
Interrupt  
Reset (0)  
Reset (0)  
Interrupt request flag (IRQ×××)  
Interrupt enable flag (IE×××)  
0
0
0
0
Interrupt master enable flag  
(IME)  
INT0 mode register (IM0)  
Output buffer  
0
0
Digital I/O  
port  
Off  
Cleared (0)  
0
Off  
Cleared (0)  
0
Output latch  
I/O mode register  
(PMGA, PMGB)  
Pull-up resistor specification  
register (POGA)  
0
0
States of pins  
P00 - P03, P10, P12, P20 - P23,  
P30 - P33, P60 - P63  
Used as inputs  
Used as inputs  
P50 - P53  
High level when pull-up  
resistor is built in  
High level when pull-up  
resistor is built in  
High impedance when  
open drain is used in the  
internal circuit  
High impedance when  
open drain is used in the  
internal circuit  
Note Data in the data memory whose addresses are 38H to 3DH is not defined when the standby mode  
is released by the RESET input signal.  
µPD75402A(A)  
9. INSTRUCTION SET  
(1) Representation format and description method of operands  
An operand is described in the operand field of each instruction according to the description method  
corresponding to the operand representation format of the instruction refer to"RA75X Assembler Package  
User's Manual, Language" (EEU-1363) for details. When two or more elements are described in the  
description method field, select one of them. Upper-case letters, a number sign (#), and at mark (@), an  
exclamation mark (!), and a dollar sign ($) are keywords, so they can be used without alteration.  
Specify an appropriate numeric value or label for immediate data.  
The symbols of registers and flags can be used as labels instead of mem, fmem, and bit (refer to the  
"µPD75402A User's Manual" (IEU-644) for details). Some labels, however, cannot be specified in fmem.  
Representation format  
Description method  
reg  
X, A, H, L  
X, H, L  
reg1  
rp  
XA, HL  
n4  
n8  
4-bit immediate data or label  
8-bit immediate data or label  
Note  
mem  
bit  
8-bit immediate data or label  
2-bit immediate data or label  
fmem  
FB0H - FBFH/FF0H - FFFH immediate data or label  
addr  
11-bit immediate data or label  
11-bit immediate data or label  
11-bit immediate data or label  
caddr  
faddr  
PORT0 - PORT3, PORT5, PORT6  
IEBT, IECSI, IE0, IE2  
PORTn  
IE×××  
Note Only an even address can be written in mem when 8-bit data is processed.  
(2) Legend  
A
: A register, 4-bit accumulator  
: H register  
H
L
: L register  
X
: X register  
XA  
HL  
PC  
SP  
CY  
: Register pair (XA), 8-bit accumulator  
: Register pair (HL)  
: Program counter  
: Stack pointer  
: Carry flag, bit accumulator  
PSW : Program status word  
PORTn: Port n (n = 0 to 3, 5, 6)  
IME : Interrupt master enable flag  
IE××× : Interrupt enable flag  
PCC : Processor clock control register  
·
: Address/bit delimiter  
(××)  
: Contents addressed by ××  
××H : Hexadecimal data  
µPD75402A(A)  
(3) Explanation of the symbols in the addressing area field  
*1  
*2  
MB = 0  
MB = 0 (00H - 3FH)  
MB = 15 (80H - FFH)  
Data memory  
addressing  
*3  
MB = 15, fmem = FB0H - FBFH or  
FF0H - FFFH  
*4  
*5  
addr = 000H - 77FH  
addr = (Current PC) – 15 to (Current PC) – 1 or  
(Current PC) + 16 to (Current PC) + 2  
Program memory  
addressing  
*6  
*7  
caddr = 000H - 77FH  
faddr = 000H - 77FH  
Remarks 1. MB indicates an accessible memory bank.  
2. *4 to *7 indicate each addressable area.  
(4) Explanation of the machine cycle field  
S indicates the number of machine cycles required for a skip instruction to perform skipping. The following  
shows the values of S.  
When the next instruction is not skipped, S is 0.  
When the next instruction is skipped, S is 1.  
A machine cycle is equal to one cycle (= tCY) of CPU clock Φ. A PCC setting determines the machine cycle.  
It can be set to one of three different periods.  
µPD75402A(A)  
Instruc-  
tion  
Number Ma-  
Address- Skip  
Mne-  
Operand  
of  
chine  
Operation  
ing area  
condition  
monic  
group  
bytes  
cycle  
Transfer  
instruc-  
tion  
A, #n4  
1
2
2
1
1
2
2
2
2
1
2
2
1
1
1
1
1
1
1
1
1
1
String A  
String A  
String B  
MOV  
A n4  
XA, #n8  
HL, #n8  
A, @HL  
@HL, A  
A, mem  
XA, mem  
mem, A  
mem, XA  
A, @HL  
A, mem  
XA, mem  
A, reg1  
XA, @PCXA  
A, #n4  
2
XA n8  
HL n8  
A (HL)  
(HL) A  
A (mem)  
2
1
*1  
*1  
*2  
*2  
*2  
*2  
*1  
*2  
*2  
1
2
2
XA (mem)  
(mem) A  
2
2
(mem) XA  
A (HL)  
1
XCH  
2
A (mem)  
2
XA (mem)  
A reg1  
1
MOVT  
ADDS  
3
XA (PC10-8 + XA)ROM  
A A + n4  
1 + S  
carry  
carry  
Arithme-  
tic/  
A, @HL  
A, @HL  
A, @HL  
A, @HL  
A, @HL  
A
1 + S  
*1  
*1  
*1  
*1  
*1  
A A + (HL)  
A, CY A + (HL) + CY  
logical  
instruc-  
tion  
ADDC  
AND  
OR  
1
1
1
1
1
A A  
A A  
A A  
(HL)  
(HL)  
(HL)  
XOR  
RORC  
Accumu-  
lator  
CY A0, A3 CY, An–1 An  
manipu-  
lation  
A
2
2
NOT  
A A  
instruc-  
tion  
Incre-  
ment/  
decre-  
ment  
reg  
1
2
1 + S  
2 + S  
reg = 0  
INCS  
reg reg + 1  
mem  
*2  
*1  
(mem) = 0  
(mem) (mem) + 1  
reg reg – 1  
instruc-  
tion  
reg  
1
2
1 + S  
2 + S  
reg = FH  
reg = n4  
DECS  
SKE  
Skip if reg = n4  
Compari-  
son  
reg, #n4  
instruc-  
tion  
Skip if A = (HL)  
A, @HL  
1
1 + S  
A = (HL)  
Carry flag  
manipu-  
lation  
CY  
CY  
CY  
CY  
1
1
1
1
1
1
SET1  
CLR1  
SKT  
CY 1  
CY 0  
1 + S  
1
CY = 1  
Skip if CY = 1  
CY CY  
instruc-  
tion  
NOT1  
µPD75402A(A)  
Instruc-  
tion  
Number Ma-  
Address- Skip  
Mne-  
Operand  
of  
chine  
Operation  
ing area  
condition  
monic  
group  
bytes  
cycle  
Memory  
bit  
mem.bit  
2
2
2
2
2
2
2
2
2
2
2
2
2
*2  
*3  
*2  
*3  
*2  
*3  
*2  
*3  
*3  
*3  
*3  
*3  
*4  
SET1  
(mem.bit) 1  
fmem.bit  
mem.bit  
2
2
(fmem.bit) 1  
manipu-  
lation  
instruc-  
tion  
CLR1  
SKT  
SKF  
(mem.bit) 0  
fmem.bit  
mem.bit  
2
(fmem.bit) 0  
2 + S  
2 + S  
2 + S  
2 + S  
2 + S  
2
Skip if (mem.bit) = 1  
Skip if (fmem.bit) = 1  
Skip if (mem.bit) = 0  
Skip if (fmem.bit) = 0  
Skip if (fmem.bit) = 1 and clear  
(mem.bit) = 1  
(fmem.bit) = 1  
(mem.bit) = 0  
(fmem.bit) = 0  
fmem.bit  
mem.bit  
fmem.bit  
fmem.bit  
CY, fmem.bit  
CY, fmem.bit  
CY, fmem.bit  
addr  
(
fmem.bit) = 1  
SKTCLR  
AND1  
OR1  
CY CY  
CY CY  
CY CY  
(fmem.bit)  
(fmem.bit)  
(fmem.bit)  
2
2
XOR1  
BR  
Branch  
instruc-  
tion  
PC10-0 addr  
(The assembler selects an  
appropriate instruction from the  
BRCB !caddr and BR $addr  
instructions.)  
$addr  
!caddr  
!faddr  
1
2
2
2
2
2
*5  
*6  
*7  
PC10-0 addr  
PC10-0 caddr  
BRCB  
Subrou-  
tine  
CALLF  
(SP – 4)(SP – 1)(SP – 2) 0, PC10-0  
(SP – 3) 0000  
stack  
PC10-0 faddr, SP SP – 4  
control  
instruc-  
tion  
1
1
1
3
3 + S  
3
RET  
×, PC10-0 (SP)(SP + 3)(SP + 2)  
SP SP + 4  
Uncondition-  
ally  
RETS  
RETI  
×, PC10-0 (SP)(SP + 3)(SP + 2)  
SP SP + 4, then skip unconditionally  
×, PC10-0 (SP)(SP + 3)(SP + 2)  
PSW (SP + 4)(SP + 5), SP SP + 6  
rp  
rp  
1
1
2
2
2
2
2
1
1
2
2
2
2
2
PUSH  
POP  
EI  
(SP – 1)(SP – 2) rp, SP SP – 2  
rp (SP + 1)(SP), SP SP + 2  
IME (IPS.3) 1  
Interrupt  
control  
instruc-  
tion  
IE×××  
IE××× ← 1  
DI  
IME (IPS.3) 0  
IE×××  
IE××× ← 0  
Input/  
output  
instruc-  
tion  
IN  
A, PORTn  
A PORTn  
(n = 0 - 3, 5, 6)  
(n = 2, 3, 5, 6)  
2
2
OUT  
PORTn, A  
PORT n A  
CPU  
2
2
1
2
2
1
HALT  
STOP  
NOP  
Set HALT mode (PCC.2 1)  
Set STOP mode (PCC.3 1)  
No operation  
control  
instruction  
µPD75402A(A)  
10. ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS (Ta = 25 ˚C)  
Parameter  
Supply voltage  
Input voltage  
Symbol  
VDD  
Conditions  
Rated value  
Unit  
V
–0.3 to +7.0  
VI1  
Ports other than port 5  
–0.3 to VDD + 0.3  
V
VI2  
Port 5  
Built-in pull-up resistor  
Open drain  
–0.3 to VDD + 0.3  
V
–0.3 to +11.0  
V
Output voltage  
VO  
IOH  
–0.3 to VDD + 0.3  
V
High-level output  
current  
Each pin  
–15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
˚C  
Total of all output pins  
–30  
Note  
Low-level output  
current  
IOL  
One pin of port 0, 3, 5, or 6  
Peak value  
rms  
30  
15  
One pin of port 2  
Peak value  
rms  
20  
10  
Total of all pins of ports 0, 3,  
and 5 (excl. P33)  
Peak value  
rms  
100  
60  
Total of all pins of ports 2, 6,  
and P33  
Peak value  
rms  
100  
60  
Operating  
Topt  
Tstg  
–40 to +85  
temperature  
Storage tempera-  
ture  
–65 to +150  
˚C  
Note Calculate rms with [rms] = [peak value] × duty.  
Caution Absolute maximum ratings are rated values beyond which some physical damages may be  
caused to the product; if any of the parameters in the table above exceeds its rated value even  
for a moment, the quality of the product may deteriorate. Be sure to use the product within the  
rated values.  
µPD75402A(A)  
CHARACTERISTICS OF THE OSCILLATION CIRCUIT (Ta = –40 to +85 ˚C, V DD = 2.7 to 6.0 V)  
Recommended  
constant  
Typ.  
Max.  
Unit  
MHz  
Resonator  
Parameter  
Conditions  
Min.  
2.0  
Note 3  
5.0  
Ceramic  
Oscillator  
frequency  
VDD = oscillation  
voltage range  
resonator  
X1  
X1  
X2  
X2  
Note 1  
(fXX)  
4
ms  
MHz  
ms  
Oscillation  
After VDD reaches  
MIN. of the oscilla-  
tion voltage range  
C1  
C1  
C2  
C2  
settling time  
Note 2  
Note 3  
4.19  
5.0  
5.0  
Crystal  
Oscillator  
frequency  
2.0  
Note 1  
(fXX)  
10  
Oscillation  
VDD = 4.5 to 6.0 V  
settling time  
Note 2  
Note 3  
MHz  
ns  
External  
clock  
X1 input  
2.0  
frequency  
X1  
X2  
Note 1  
(fX)  
250  
X1 input  
high/low  
level width  
(tXH, tXL)  
100  
µPD74HCU04  
Notes 1. The oscillator frequency and X1 input frequency indicate only the oscillator characteristics. See  
the item of AC characteristics for the instruction execution time.  
2. The oscillation settling time means the time required for the oscillation to settle after VDD is applied  
or after the STOP mode is released.  
3. When 4.19 MHz < fX 5.0 MHz, do not select PCC = 0011 as the instruction execution time. When  
PCC = 0011, one machine cycle falls short of 0.95 µs, the minimum value for the standard.  
Caution When the clock oscillator is used, conform to the following guidelines when wiring at the  
portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring  
capacity.  
• The wiring must be as short as possible.  
• Other signal lines must not run in these areas.  
• Any line carrying a high fluctuating current must be kept away as far as possible.  
• The grounding point of the capacitor of the oscillator must have the same potential as that  
of VSS. It must not be grounded to ground patterns carrying a large current.  
• No signal must be taken from the oscillator.  
CAPACITANCE (Ta = 25 ˚C, V DD = 0 V)  
Parameter  
Input capacitance  
Output capacitance  
I/O capacitance  
Symbol  
CIN  
Conditions  
Min.  
Typ.  
Max.  
15  
Unit  
pF  
f = 1 MHz  
0 V for pins other than pins to be  
measured  
COUT  
CIO  
15  
pF  
15  
pF  
µPD75402A(A)  
DC CHARACTERISTICS (Ta = –40 to +85 ˚C, V DD = 2.7 to 6.0 V)  
Conditions  
Ports 2, 3, and 6  
Ports 0 and 1, and RESET  
Min.  
0.7VDD  
0.8VDD  
0.7VDD  
0.7VDD  
VDD – 0.5  
0
Parameter  
Symbol  
VIH1  
Typ.  
Max.  
VDD  
Unit  
V
High-level input  
voltage  
VIH2  
VDD  
V
Port 5  
Built-in pull-up resistor  
Open drain  
VIH3  
VDD  
V
10  
V
X1 and X2  
VIH4  
VIL1  
VIL2  
VIL3  
VOH  
VDD  
V
Ports 2, 3, 5, and 6  
Ports 0 and 1, and RESET  
X1 and X2  
Low-level input  
voltage  
0.3VDD  
0.2VDD  
0.4  
V
0
V
0
V
Ports 0, 2,  
3, and 6  
VDD = 4.5 to 6.0 V, IOH = –1 mA  
IOH = –100  
VDD – 1.0  
VDD – 0.5  
High-level output  
voltage  
V
µ
A
V
Ports 3, 5,  
and 6  
VDD = 4.5 to 6.0 V, IOL = 15 mA  
Low-level output  
voltage  
VOL  
0.6  
2.0  
V
Ports 0, 2,  
3, 5, and 6  
VDD = 4.5 to 6.0 V, IOL = 1.6 mA  
0.4  
0.5  
V
V
V
IOL = 400 µA  
SB0 (Open  
drain)  
Pull-up resistor : 1 kor  
0.2VDD  
more VDD = 4.5 to 6.0 V  
VIN = VDD  
Other than X1 and X2  
X1 and X2  
High-level input  
leakage current  
ILIH1  
ILIH2  
ILIH3  
ILIL1  
ILIL2  
ILOH1  
ILOH2  
ILOL  
3
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
20  
20  
– 3  
– 20  
3
VIN = 10 V  
VIN = 0 V  
Port 5 (open drain)  
Other than X1 and X2  
X1 and X2  
Low-level input  
leakage current  
VOUT = VDD  
VOUT = 10 V  
VOUT = 0 V  
Other than port 5  
Port 5 (open drain)  
High-level output  
leakage current  
20  
– 3  
Low-level output  
leakage current  
Ports 0, 1, 2, 3, and  
6 (excl. P00 and  
P10) VIN = 0 V  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
VDD = 5.0 V ±10 %  
15  
30  
Built-in pull-up  
resistor  
RL1  
40  
40  
80  
kΩ  
kΩ  
300  
Port 5  
15  
10  
RL2  
IDD1  
IDD2  
IDD3  
70  
60  
kΩ  
kΩ  
VOUT = VDD – 2.0 V  
VDD = 3.0 V ±10 %  
Note 2  
VDD = 5.0 V ±10 %  
4.19 MHz  
crystal  
Power supply  
2.5  
0.5  
500  
150  
0.5  
0.1  
0.1  
8
mA  
mA  
Note 1  
current  
Note 3  
VDD = 3.0 V ±10 %  
1.5  
1500  
450  
20  
resonance  
C1 = C2 =  
22 pF  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
HALT  
mode  
µA  
µA  
µA  
µA  
µA  
VDD = 5.0 V ±10 %  
STOP  
mode  
VDD =  
10  
3.0 V ±10 %  
Ta = 25 ˚C  
5
Notes 1. This current excludes the current which flows through the built-in pull-up resistors.  
2. Value when the processor clock control resistor (PCC) is set to 0011 and the µPD75402A(A) is  
operated in the high-speed mode  
3. Value when the PCC is set to 0000 and the µPD75402A(A) is operated in the low-speed mode  
µPD75402A(A)  
AC CHARACTERISTICS (Ta = –40 to +85 ˚C, V DD = 2.7 to 6.0 V, VSS = 0 V)  
Parameter  
Unit  
Symbol  
tCY  
Conditions  
VDD = 4.5 to 6.0 V  
Min.  
0.95  
3.8  
Typ.  
Max.  
Note 1  
µs  
CPU clock cycle time  
32  
(minimum instruction execu-  
tion time = one machine cycle)  
µs  
32  
Note 2  
10  
µs  
µs  
µs  
Interrupt input high/low level  
width  
tINTH, tINTL  
tRSL  
INT0  
INT2  
RESET low-level width  
10  
t
CY vs. VDD  
40  
32  
Notes 1. The cycle time of the CPU clock (Φ)  
(minimuminstructionexecutiontime)  
depends on the connected resonator  
frequency and the setting of the proc-  
essor clock control register (PCC).  
The figure on the right side shows  
the cycle time tCY characteristics for  
the supply voltage VDD.  
7
6
5
Guaranteed operating  
range  
4
µ
3
2
2. This value is 2tCY or 128/fXX according  
to the setting of the interrupt mode  
register (IM0).  
1
0.5  
0
1
2
3
4
5
6
Supply voltage VDD [V]  
µPD75402A(A)  
Serial transfer operation  
Three-wire serial I/O mode (SCK ··· Internal clock output):  
Conditions  
VDD = 4.5 to 6.0 V  
Parameter  
Min.  
1600  
Typ.  
Max.  
Unit  
ns  
Symbol  
tKCY1  
SCK cycle time  
3800  
ns  
VDD = 4.5 to 6.0 V  
SCK high/low level  
width  
tKCY1/2 – 50  
tKCY1/2 – 150  
150  
ns  
tKL1  
tKH1  
tSIK1  
ns  
ns  
SI setup time  
(referred to SCK)  
SI hold time  
400  
ns  
tKSI1  
(referred to SCK)  
VDD = 4.5 to 6.0 V  
0
0
ns  
ns  
Delay from SCKto  
tKSO1  
RL = 1 kΩ,  
250  
Note  
SO output  
CL = 100 pF  
1000  
Note RL and CL are the resistance and capacitance of the SO output line load respectively.  
Three-wire serial I/O mode (SCK ··· External clock input):  
Symbol  
Min.  
800  
Typ.  
Max.  
Unit  
ns  
Parameter  
Conditions  
VDD = 4.5 to 6.0 V  
tKCY2  
SCK cycle time  
3200  
400  
ns  
tKL2  
tKH2  
tSIK2  
ns  
SCK high/low level  
width  
VDD = 4.5 to 6.0 V  
1600  
100  
ns  
ns  
SI setup time  
(referred to SCK)  
tKSI2  
400  
ns  
SI hold time  
(referred to SCK)  
tKSO2  
0
0
300  
ns  
ns  
Delay from SCKto  
VDD = 4.5 to 6.0 V  
RL = 1 kΩ,  
Note  
SO output  
CL = 100 pF  
1000  
Note RL and CL are the resistance and capacitance of the SO output line load respectively.  
µPD75402A(A)  
SBI mode (SCK ··· Internal clock output (master)):  
Symbol  
Conditions  
VDD = 4.5 to 6.0 V  
Parameter  
Min.  
1600  
Typ.  
Max.  
Unit  
ns  
tKCY3  
SCK cycle time  
3800  
ns  
tKL3  
tKH3  
tSIK3  
VDD = 4.5 to 6.0 V  
SCK high/low level  
width  
tKCY3/2 – 50  
tKCY3/2 – 150  
150  
ns  
ns  
ns  
SB0 setup time  
(referred to SCK)  
tKSI3  
tKCY3/2  
ns  
SB0 hold time  
(referred to SCK)  
tKSO3  
0
250  
ns  
ns  
ns  
ns  
ns  
ns  
Delay from SCKto  
VDD = 4.5 to 6.0 V  
SB0 output  
0
1000  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY3  
tKCY3  
tKCY3  
tKCY3  
DelayfromSCKtoSB0↓  
DelayfromSB0toSCK  
SB0 low-level width  
SB0 high-level width  
SBI mode (SCK ··· External clock input (slave)):  
Symbol  
tKCY4  
Conditions  
VDD = 4.5 to 6.0 V  
Parameter  
Min.  
800  
Typ.  
Max.  
Unit  
ns  
SCK cycle time  
3200  
400  
ns  
tKL4  
tKH4  
tSIK4  
VDD = 4.5 to 6.0 V  
SCK high/low level  
width  
ns  
1600  
100  
ns  
ns  
SB0 setup time  
(referred to SCK)  
tKSI4  
tKCY4/2  
ns  
SB0 hold time  
(referred to SCK)  
tKSO4  
VDD = 4.5 to 6.0 V  
0
300  
ns  
ns  
ns  
ns  
ns  
ns  
RL = 1 kΩ,  
Delay from SCKto  
Note  
CL = 100 pF  
SB0 output  
0
1000  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
DelayfromSCKtoSB0↓  
DelayfromSB0toSCK↓  
SB0 low-level width  
SB0 high-level width  
Note RL and CL are the resistance and capacitance of the SO output line load respectively.  
µPD75402A(A)  
AC Timing Measurement Points (Excluding X1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement  
point  
Clock Timing  
1/f  
X
tXL  
t
XH  
V
DD – 0.5 V  
X1 input  
0.4 V  
Serial Transfer Timing  
Three-wire serial I/O mode:  
t
KCY1  
t
KL1  
t
KH1  
SCK  
t
SIK1  
t
KSI1  
Input data  
SI  
t
KSO1  
SO  
Output data  
µPD75402A(A)  
Serial Transfer Timing  
Bus release signal transfer:  
t
KCY3, 4  
t
KL3, 4  
tKH3, 4  
SCK  
t
SIK3, 4  
t
KSI3, 4  
t
KSB  
tSBL  
t
SBH  
t
SBK  
SB0  
t
KSO3, 4  
Command signal transfer:  
tKCY3, 4  
tKL3, 4  
tKH3, 4  
SCK  
t
SIK3, 4  
tKSI3, 4  
tKSB  
tSBK  
SB0  
t
KSO3, 4  
Interrupt Input Timing  
tINTL  
tINTH  
INT0, INT2  
RESET Input Timing  
t
RSL  
RESET  
µPD75402A(A)  
DATA HOLD CHARACTERISTICS AT LOW SUPPLY VOLTAGE IN DATA MEMORY STOP MODE  
(Ta = –40 to +85 ˚C)  
Symbol  
VDDDR  
Parameter  
Min.  
2.0  
Typ.  
0.1  
Max.  
6.0  
Unit  
V
Conditions  
Data hold supply  
voltage  
IDDDR  
Data hold supply  
current  
10  
VDDDR = 2.0 V  
µA  
tSRS  
tOS  
RESET setup time  
0
µs  
Oscillation settling  
time  
4
ms  
After VDD reaches the oscillation  
voltage range when the ceramic  
resonator is connected  
10  
ms  
After VDD reaches the oscillation  
voltage range when the crystal is  
connected  
Data Hold Timing (STOP Mode Release by RESET)  
HALT mode  
STOP mode  
Data hold mode  
Operating mode  
VDD  
V
DDDR  
tSRS  
STOP instruction execution  
RESET  
t
OS  
µPD75402A(A)  
11. PACKAGE DIMENSIONS  
28 PIN PLASTIC DIP (600 mil)  
28  
15  
1
14  
A
K
L
F
M
R
C
B
M
D
N
NOTES  
1) Each lead centerline is located within 0.25 mm (0.01 inch)  
of its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
INCHES  
1.500 MAX.  
0.100 MAX.  
0.100 (T.P.)  
+0.004  
A
B
C
38.10 MAX.  
2.54 MAX.  
2.54 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
D
0.50±0.10  
0.020  
–0.005  
F
G
H
I
1.2 MIN.  
3.6±0.3  
0.047 MIN.  
0.142±0.012  
0.020 MIN.  
0.170 MAX.  
0.226 MAX.  
0.600 (T.P.)  
0.520  
0.51 MIN.  
4.31 MAX.  
5.72 MAX.  
15.24 (T.P.)  
13.2  
J
K
L
+0.10  
0.25  
+0.004  
0.010  
M
–0.05  
–0.003  
N
R
0.25  
0.01  
0
15  
0
15  
P28C-100-600A1-1  
µPD75402A(A)  
28PIN PLASTIC SHRINK DIP (400 mil)  
28  
15  
1
14  
A
K
L
I
J
F
C
H
M
R
M
D
N
B
G
NOTES  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
28.46 MAX.  
2.67 MAX.  
1.778 (T.P.)  
1.121 MAX.  
0.106 MAX.  
0.070 (T.P.)  
2) ltem "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.400 (T.P.)  
0.339  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
10.16 (T.P.)  
8.6  
J
K
L
+0.10  
0.25  
+0.004  
0.010  
M
–0.05  
–0.003  
N
R
0.17  
0.007  
0~15°  
0~15°  
P28C-70-400A-1  
µPD75402A(A)  
44 PIN PLASTIC QFP ( 10)  
A
B
23  
22  
33  
34  
detail of lead end  
S
C
D
R
Q
12  
11  
44  
1
F
G
J
M
I
H
K
M
P
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15 mm (0.006 inch) of  
its true position (T.P.) at maximum material condition.  
+0.017  
A
B
C
D
13.6±0.4  
10.0±0.2  
10.0±0.2  
13.6±0.4  
0.535  
0.394  
0.394  
0.535  
–0.016  
+0.008  
–0.009  
+0.008  
–0.009  
+0.017  
–0.016  
F
1.0  
1.0  
0.039  
0.039  
G
+0.004  
–0.005  
H
0.35±0.10  
0.014  
I
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P)  
+0.008  
0.071  
K
L
1.8±0.2  
0.8±0.2  
–0.009  
+0.009  
0.031  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
M
–0.05  
–0.003  
N
P
Q
R
S
0.10  
0.004  
2.7  
0.106  
0.1±0.1  
5°±5°  
3.0 MAX.  
0.004±0.004  
5°±5°  
0.119 MAX.  
P44GB-80-3B4-3  
µPD75402A(A)  
PACKAGE DIMENSIONS OF THE 44-PIN CERAMIC QFP FOR ES (REF. DWG.) (UNIT: MM)  
11.43  
8.0  
44  
34  
1
33  
11  
23  
12  
22  
0.15  
0.8  
0.32  
(Bottom)  
Cautions 1. Find the location of pin 1 by checking the location of pin 17, which is connected to the metal cap.  
2. The metal cap is connected to pin 17. The electrical level of the metal cap is VSS (GND).  
3. Theleadlengthhasnotbeenspecifiedbecauseleadsarecutwithoutanydetailedspecifications.  
µPD75402A(A)  
12. RECOMMENDED SOLDERING CONDITIONS  
The following conditions shall be met when soldering the µPD75402A(A).  
For details of the recommended soldering conditions, refer to our document "SMD Surface Mount  
Technology Manual" (IEI-1207).  
Please consult with our sales offices in case other soldering process is used, or in case soldering is done  
under different conditions.  
Table 12-1 Soldering Conditions for Surface-Mount Devices  
µPD75402AGB(A)-×××-3B4: 44-pin plastic QFP (10 × 10 mm)  
Symbol  
IR30-00-1  
Soldering process  
Infrared ray reflow  
Soldering conditions  
Peak package’s surface temperature: 230 ˚C  
Reflow time: 30 seconds or less (210 ˚C or more)  
Number of reflow processes: 1  
VP15-00-1  
WS60-00-1  
VPS  
Peak package’s surface temperature: 215 ˚C  
Reflow time: 40 seconds or less (200 ˚C or more)  
Number of reflow processes: 1  
Wave soldering  
Solder temperature: 260 ˚C or less  
Flow time: 10 seconds or less  
Number of flow processes: 1  
Preheating temperature: 120 ˚C max. (measured on the package  
surface)  
Partial heating method  
Terminal temperature: 300 ˚C or less  
Flow time: 3 seconds or less (for each side of device)  
Caution Do not apply more than a single process at once, except for “Partial heating method.”  
Table 12-2 Soldering Conditions for Insertion-Mount Devices  
µPD75402AC(A)-×××: 28-pin plastic DIP (600 mil)  
µPD75402ACT(A)-×××: 28-pin plastic shrink DIP (400 mil)  
Soldering process  
Soldering conditions  
Solder temperature: 260 ˚C or less  
Wave soldering  
(Only for leads)  
Flow time: 10 seconds or less  
Partial heating method  
Terminal temperature: 260 ˚C or less  
Flow time: 10 seconds or less  
Caution In wave soldering, apply solder only to the lead section. Care must be taken that jet solder does  
not come in contact with the main body of the package.  
Notice  
Other versions of the products are available. For these versions, the recommended reflow  
soldering conditions have been mitigated as follows:  
Higher peak temperature (235 °C), two-stage, and longer exposure limit.  
Contact an NEC representative for details.  
µPD75402A(A)  
APPENDIX A DIFFERENCES BETWEEN THE µPD75402A(A) AND µPD75P402  
Product  
µPD75402A(A)  
µPD75P402  
Item  
One-time PROM  
Masked ROM  
ROM  
22  
6
I/O ports Input  
I/O  
16  
(Pull-up resistors can be connected by software.)  
12  
4 (No pull-up resistors can be connected.)  
N-ch I/O  
4 (Pull-up resistors can be connected by  
mask option.)  
VPP, PROM program-  
ming pin  
Provided  
Not provided  
Electrical Operating  
5 V ±10 %  
2.7 to 6.0 V  
charac-  
teristics  
supply  
voltage  
Operating  
tempera-  
ture  
-10 to +70 ˚C  
Standard  
-40 to +85 ˚C  
Special  
Quality grade  
µPD75402A(A)  
APPENDIX B DEVELOPMENT TOOLS  
The following development tools are provided for developing systems including the µPD75402A(A)  
Note 1  
IE-75000-R  
IE-75001-R  
In-circuit emulator for the 75X series  
Note 2  
IE-75000-R-EM  
EP-75402C-R  
EP-75402GB-R  
Emulation board for the IE-75000-R and IE-75001-R  
Emulation probe for the µPD75402AC(A) and µPD75402ACT(A)  
Emulation probe for the µPD75402AGB(A). A 44-pin conversion socket, the EV-9200G-44,  
is attached to the probe.  
EV-9200G-44  
PG-1500  
PROM programmer  
PA-75P402CT  
PROM programmer adapter for the µPD75P402C and µPD75P402CT. Connected to the  
PG-1500.  
PA-75P402GB  
PROM programmer adapter for the µPD75P402GB. Connected to the PG-1500.  
Host machine  
IE control program  
PG-1500 controller  
TM  
Note 3  
• PC-9800 series (MS-DOS  
Ver. 3.30 to Ver. 5.00A  
Ver. 3.1)  
)
TM  
TM  
• IBM PC/AT  
(PC DOS  
RA75X relocatable  
assembler  
Notes 1. Maintenance service only  
2. Not contained in the IE-75001-R  
3. These software cannot use the task swap function, which is available in MS-DOS Ver. 5.00 and  
Ver. 5.00A.  
Remark Refer to "75X Series Selection Guide" (IF-1027) for development tools manufactured by third parties.  
µPD75402A(A)  
APPENDIX C RELATED DOCUMENTS  
Documents related to the device  
Document name  
User’s manual  
Document No.  
IEU-644  
IEA-638  
IF-1027  
Application note  
75X series selection guide  
Documents related to development tools  
Document name  
Document No.  
IE-75000-R/IE-75001-R User’s Manual  
IE-75000-R-EM User’s Manual  
EP-75402C-R User’s Manual  
EP-75402GB-R User’s Manual  
PG-1500 User’s Manual  
EEU-1416  
EEU-1294  
EEU-701  
EEU-702  
EEU-1335  
EEU-1346  
Operation  
Language  
RA75X Assembler Package User’s Manual  
EEU-1363  
EEU-1291  
PG-1500 Controller User’s Manual  
Other related documents  
Document name  
Document No.  
Package Manual  
IEI-1213  
IEI-1207  
IEI-1209  
IEI-1203  
IEI-1201  
MEI-1202  
SMD Surface Mount Technology Manual  
Quality Grades on NEC Semiconductor Devices  
NEC Semiconductor Device Reliability/Quality Control System  
Electrostatic Discharge (ESD) Test  
Guide to Quality Assurance for Semiconductor Devices  
Caution The above documents may be revised without notice. Use the latest versions when you design  
an application system.  
µPD75402A(A)  
Cautions on CMOS Devices  
1
Countermeasures against static electricity for all MOSs  
Caution When handling MOS devices, take care so that they are not electrostatically charged.  
Strong static electricity may cause dielectric breakdown in gates. When transporting  
or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or  
metal cases that NEC uses for packaging and shipping. Be sure to ground MOS  
devices during assembling. Do not allow MOS devices to stand on plastic plates or  
do not touch pins.  
Also handle boards on which MOS devices are mounted in the same way.  
2
CMOS-specific handling of unused input pins  
Caution Hold CMOS devices at a fixed input level.  
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an  
intermediate-level input may be caused by noise. This allows current to flow in the  
CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold  
a fixed input level. Since unused pins may function as output pins at unexpected  
times, each unused pin should be separately connected to the VDD or GND pin  
through a resistor.  
If handling of unused pins is documented, follow the instructions in the document.  
3
Statuses of all MOS devices at initialization  
Caution The initial status of a MOS device is unpredictable when power is turned on.  
Since characteristics of a MOS device are determined by the amount of ions im-  
planted in molecules, the initial status cannot be determined in the manufacture  
process. NEC has no responsibility for the output statuses of pins, input and output  
settings, and the contents of registers at power on. However, NEC assures operation  
after reset and items for mode setting if they are defined.  
When you turn on a device having a reset function, be sure to reset the device first.  
µPD75402A(A)  
[MEMO]  
µPD75402A(A)  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written consent  
of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use of  
such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear  
reactor control systems and life support systems. If customers intend to use NEC devices for above applications  
or they intend to use “Standard” quality grade NEC devices for applications not intended by NEC, please contact  
our sales people in advance.  
Application examples recommended by NEC Corporation  
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Ma-  
chine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.  
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime  
systems, etc.  
M4 92. 6  
MS-DOS is a trademark of Microsoft Corporation.  
PC/AT and PC DOS are trademarks of IBM Corporation.  

相关型号:

UPD75402AA

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75402AC

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75402AC(A)-XXX

4-Bit Microcontroller
ETC

UPD75402AC-XXX

4-Bit Microcontroller
ETC

UPD75402ACA

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75402ACT

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75402ACT(A)-XXX

4-Bit Microcontroller
ETC

UPD75402ACT-XXX

4-Bit Microcontroller
ETC

UPD75402ACTA

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75402AGB

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75402AGB(A)-XXX-3B4

4-Bit Microcontroller
ETC

UPD75402AGB-XXX-3B4

4-Bit Microcontroller
ETC