UPD78C11AL [NEC]

8-BIT SINGLE-CHIP MICROCOMPUTER WITH A/D CONVERTER; 带A / D转换器8位单片机
UPD78C11AL
型号: UPD78C11AL
厂家: NEC    NEC
描述:

8-BIT SINGLE-CHIP MICROCOMPUTER WITH A/D CONVERTER
带A / D转换器8位单片机

转换器 微控制器和处理器 外围集成电路 装置 输入元件 计算机 时钟
文件: 总66页 (文件大小:3241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD78C10A, 78C11A, 78C12A  
8-BIT SINGLE-CHIP MICROCOMPUTER (WITH A/D CONVERTER)  
DESCRIPTION  
The µPD78C11A is a CMOS 8-bit microprocessor which can integrate 16-bit ALU, ROM, RAM, an A/D converter,  
a multi-function timer/event counter, and a general-purpose serial interface into a single chip, then expand the  
memory (ROM/RAM) up to 60K bytes externally. The µPD78C10A is a ROM-less product of the µPD78C11A, and can  
directly address the external memory up to 64k bytes. The µPD78C12A is a product which has more built-in ROM  
capacity than the µPD78C11A, and its memory (ROM/RAM) can be externally extended up to 56K bytes. The  
µPD78C10A, µPD78C11A, and µPD78C12A operated at low power consumption, because they have a CMOS  
construction. Also, they can hold data with low power consumption by using standby function.  
On-chip PROM products, µPD78CP14 and µPD78CP18 which are ideal for evaluation or preproduction use during  
system development, early start-up and short-run multiple-device production of application sets, are available.  
FEATURES  
Abundant 159 types of instructions : 87AD series instruction set, multiplication/division instructions,  
16-bit operation instructions  
Instruction cycle : 0.8 µs (at 15 MHz operation)  
On-chip ROM : 4096W × 8 (µPD78C11A), 8192W × 8 (µPD78C12A)  
Non (µPD78C10A)  
On-chip RAM : 256W × 8  
High-precision 8-bit A/D converter : 8 analog inputs  
General-purpose serial interface : Asynchronous, synchronous, I/O interface mode  
Multi-function 16-bit timer/event counter  
Two 8-bit timers  
I/O lines : 32 (µPD78C10A), 44 (µPD78C11A, 78C12A)  
Interrupt function (external - 3, internal - 8) : Non-maskable interrupt × 1, maskable interrupt × 10  
Standby function : HALT mode, hardware/software STOP mode  
Zero-cross detection function : (2 inputs)  
On-chip pull-up resistor (port A, B, C: µPD78C11A, 78C12A only) by mask option  
Caution The µPD78C10A does not hava a mask option.  
The information in this document is subject to change without notice.  
Document No. IC-2678C  
The mark shows major revised points.  
(O. D. No. IC-7769E)  
Date Published February 1995 P  
Printed in Japan  
1990  
©
µPD78C10A,78C11A,78C12A  
ORDERING INFORMATION  
Ordering Code  
Package  
On-Chip ROM  
µPD78C10ACW  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 20 mm)  
64-pin plastic QUIP  
68-pin plastic QFJ ( 950 mil)  
64-pin plastic shirink DIP (750 mil)  
64-pin plastic QFP (14 × 20 mm)  
64-pin plastic QUIP  
64-pin plastic QUIP straight  
68-pin plastic QFJ ( 950 mil)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 20 mm)  
64-pin plastic QUIP  
None  
None  
None  
None  
µPD78C10AGF-3BE  
µPD78C10AGQ-36  
µPD78C10AL  
µPD78C11ACW-×××  
µPD78C11AGF-×××-3BE  
µPD78C11AGQ-×××-36  
µPD78C11AGQ-×××-37  
µPD78C11AL-×××  
µPD78C12ACW-×××  
µPD78C12AGF-×××-3BE  
µPD78C12AGQ-×××-36  
µPD78C12AGQ-×××-37  
µPD78C12AL-×××  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
64-pin plastic QUIP straight  
68-pin plastic QFJ ( 950 mil)  
2
µPD78C10A,78C11A,78C12A  
PIN CONFIGURATION (TOP VIEW)  
For µPD78C10ACW, µPD78C10AGQ-36, µPD78C11ACW-×××, µPD78C11AGQ-×××-36/37, µPD78C12ACW-×××,  
µPD78C12AGQ-×××-36/37.  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
STOP  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
PF7  
PF6  
PF5  
PF4  
PF3  
PF2  
PF1  
PF0  
ALE  
WR  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PC0/T  
PC1/R  
X
D
D
X
PC2/SCK  
PC3/INT2  
PC4/TO  
PC5/CI  
PC6/CO0  
PC7/CO1  
NMI  
RD  
AVDD  
V
AREF  
AN7  
AN6  
AN5  
AN4  
AN3  
AN2  
AN1  
AN0  
AVSS  
INT1  
MODE1  
RESET  
MODE0  
X2  
X1  
V
SS  
For µPD78C10AGF-3BE, µPD78C11AGF-×××-3BE, µPD78C12AGF-×××-3BE  
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
PD3  
PD4  
PD5  
PD6  
PD7  
STOP  
VDD  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
AN4  
AN3  
AN2  
AN1  
AN0  
AVSS  
VSS  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
X1  
X2  
MODE0  
RESET  
MODE1  
INT1  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
m
3
µPD78C10A,78C11A,78C12A  
For µPD78C10AL, µPD78C11AL-×××, µPD78C12AL-×××  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
PD1  
PD0  
PF7  
PF6  
PF5  
PF4  
PF3  
PF2  
PF1  
PF0  
ALE  
WR  
RD  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
PC0/T  
PC1/R  
X
D
D
X
PC2/SCK  
PC3/INT2  
IC  
AVDD  
IC  
PC4/TO  
PC5/CI  
PC6/CO0  
V
AREF  
AN7  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
4
8
16  
X1  
X2  
OSC  
PF7-0/  
AB15-8  
LATCH  
INC/DEC  
PC  
8
8
8
8
8
8
12/  
13  
SP  
PC0/TXD  
EA  
8
8
SERIAL I/O  
PC1/RXD  
V
B
D
H
A
C
E
L
8
8
PC2/SCK  
MAIN  
G.R  
16  
PD7-0/  
AD7-0  
8
NMI  
INT1  
EA'  
PROGRAM*1  
MEMORY  
V'  
B'  
D'  
H'  
A'  
C'  
E'  
L'  
INT.  
CONTROL  
DATA  
ALT  
G.R  
MEMORY  
(256-BYTE)  
8
8
8
PC7-0*2  
PB7-0*2  
PA7-0*2  
4
BUFFER  
8/16  
PC3/INT2/TI  
PC4/TO  
8
8
TIMER  
8
8
8
INTERNAL DATA BUS  
8
PC5/CI  
PC6/CO0  
PC7/CO1  
16  
16  
LATCH  
6
TIMER/  
EVENT COUNTER  
8
LATCH  
PSW  
INST.REG  
AN7-0  
8
16  
16  
A/D  
CONVERTER  
8
VAREF  
INST.  
DECODER  
ALU  
(8/16)  
AVDD  
AVSS  
µ
16  
READ/WRITE  
CONTROL  
SYSTEM  
CONTROL  
STAND BY  
CONTROL  
*
1. It depends on a product type.  
The µPD78C11A has 4K bytes, and the µPD78C12A has 8K  
bytes.  
RD  
WR  
ALE MODE1 MODE0 RESET  
STOP  
VDD  
VSS  
The µPD78C10A does not incorporate a program memory.  
2. An on-chip pull-up resistor is available by mask option  
(µPD78C11A, 78C12A only).  
µPD78C10A,78C11A,78C12A  
CONTENTS  
1. PIN FUNCTIONS .....................................................................................................................................  
7
7
9
1.1 LIST OF PIN FUNCTION ................................................................................................................................  
1.2 PIN INPUT/OUTPUT CIRCUITS ....................................................................................................................  
1.3 PIN MASK OPTIONS ...................................................................................................................................... 14  
1.4 RECOMMENDED CONNECTION OF UNUSED PINS.................................................................................. 14  
2. DIFFERENCES BETWEEN µPD78C10A AND µPD78C11A, 78C12A................................................... 15  
3. RESET OPERATIONS ............................................................................................................................. 17  
4. INSTRUCTION SET................................................................................................................................. 20  
4.1 IDENTIFIER/DESCRIPTION OF OPERAND................................................................................................... 20  
4.2 SYMBOL DESCRIPTION OF OPERATION CODE......................................................................................... 21  
4.3 INSTRUCTION EXECUTION TIME ................................................................................................................ 22  
5. LIST OF MODE REGISTERS .................................................................................................................. 34  
6. ELECTRICAL SPECIFICATIONS ............................................................................................................. 35  
7. CHARACTERISTIC CURVES (REFERENCE VALUES) ......................................................................... 47  
8. DIFFERENCES IN 87AD SERIES PRODUCTS ...................................................................................... 50  
9. PACKAGE INFORMATION ..................................................................................................................... 54  
10. RECOMMENDED SOLDERING CONDITIONS...................................................................................... 60  
APPENDIX DEVELOPMENT TOOLS ............................................................................................................ 62  
6
µPD78C10A,78C11A,78C12A  
1. PIN FUNCTIONS  
1.1 LIST OF PIN FUNCTION (1/2)  
Pin Name  
I/O  
Function  
PA7 to PA0  
(Port A)  
Input/Output  
Input/Output  
8-bit input-output port, which can specify input/output bit-wise.  
8-bit input-output port, which can specify input/output bit-wise.  
Transmit Data  
PB7 to PB0  
(Port B)  
Input-output/  
Output  
PC0/TXD  
PC1/RxD  
Output pin for serial data.  
Receive Data  
Input pin for serial data.  
Input-output/  
Input  
Serial Clock  
Input-output pin for serial clock.  
It becomes output clock for the internal  
Input-output/  
Input-output  
PC2/SCK  
clock use, and input for the external.  
Interrupt Request/Timer Input  
Maskable interrut input pin of the edge  
trigger(fallingedge),oranexternalclock  
input pin for a timer. Also, it can be used  
as a zero-cross detection pin for AC  
Input-output/  
Input/Input  
Port C  
PC3/INT2/TI  
8-bit input-output port,  
which can specify input/ output bit-wise.  
input.  
Timer Output  
Squarewavedefiningonecycleofinternal  
clock or timer counter time as half cycle  
is output.  
Input-output/  
Output  
PC4/TO  
PC5/CI  
Counter Input  
External pulse input pin to timer/event  
counter.  
Input-output/  
Input  
Counter Output 0, 1  
Programmablerectanglewaveoutputby  
timer/event counter.  
PC6/CO0  
PC7/CO1  
Input-output/  
Output  
Port D  
Address/Data Bus  
When external memory is used, it be-  
comes multiplexed address/data bus.  
Input-output/  
Input-output  
PD7 to PD0/  
AD7 to AD0  
8-bit input-output port, which can specify  
input-output in byte units (µPD78C11A).  
Address Bus  
When external memory is used, it be-  
comes address bus.  
Port F  
Input-output/  
Output  
PF7 to PF0/  
AB15 to AB8  
8-bit input-output port, which can specify  
input-output bit-wise.  
Strobe signal which is output for write operation of external memory. It becomes high in  
any cycle other than the data write machine cycle of external memory. When RESET signal  
is either low or in the hardware STOP mode, this signal becomes output high-impedance.  
WR  
Output  
Output  
Output  
(Write Strobe)  
Strobe signal which is output for read operation of external memory. It becomes high in any  
cycle other than the read machine cycle of external memory. When RESET signal is either  
low or in the hardware STOP mode, this signal becomes output high-impedance.  
RD  
(Read Strobe)  
ALE  
(AddressLatch  
Enable)  
Strobe signal to latch externally the lower address information which is output to PD7 to  
PD0 pins to access external memory. When RESET signal is either low or in the hardware  
STOP mode, this signal becomes output high-impedance.  
7
µPD78C10A,78C11A,78C12A  
1.1 LIST OF PIN FUNCTION (2/2)  
Pin Name  
I/O  
Function  
µPD78C11A and 78C12A sets MODE0 pin to “0” (low level), and MODE1 pin to “1” (high  
level*)  
µPD78C10A allows you to set MODE0, MODE1 pins to select 4K, 16K, or 64K bytes for the  
size of the memory which is installed externally.  
MODE0  
MODE1  
(Mode)  
Input-output  
MODE0  
MODE1  
External Memory  
0
1
1
0
0
1
4K bytes  
16K bytes  
64K bytes  
Also, when each of MODE0 and MODE1 pins is set to “1”*, it is synchronized to ALE to output  
a control signal.  
NMI  
(Non-Maskable  
Interrupt)  
Input  
Non-maskable interrupt input pin of the edge trigger (falling edge)  
INT1  
(Interrupt  
Request)  
A maskable interrupt input pin of the edge trigger (rising edge). Also, it can be used as a  
zero-cross detection pin for AC input.  
Input  
Input  
8 pins of analog input to A/D converter. AN7 to AN4 can be used as edge detection (falling  
edge) input.  
AN7 to AN0  
(AnalogInput)  
VAREF  
(Reference  
Voltage)  
A common pin serving both as a standard voltage input pin for A/D converter and as a  
control pin for A/D converter operation.  
Input  
AVDD  
(Analog VDD)  
Power supply pin for A/D converter.  
GND pin for A/D converter.  
AVSS  
(Analog VSS)  
Crystal connection pins for system clock oscillation. X1 should be input when a clock is  
supplied from outside. Input the clock of the reverse phase of X1 to X2.  
X1, X2  
(Crystal)  
RESET  
(Reset)  
Input  
Low-level active system reset input.  
STOP  
(Stop)  
Control signal input pin in hardware STOP mode. The oscillation stops when a clock is  
supplied from outside.  
VDD  
Positive power supply pin.  
GND pin.  
VSS  
*
Pull-up. Pull-up resister R is 4 [k] R 0.4 tCYC [k] (tCYC is ns unit).  
Remarks The µPD78C11A and µPD78C12A are pull-up resistor incorporation specifiable by mask option at ports  
A, B and C.  
8
µPD78C10A,78C11A,78C12A  
1.2 PIN INPUT/OUTPUT CIRCUITS  
Tables 1-1 and 1-2, and figures (1) to (15) show input- output circuits of each pin in a partially simplified form.  
Table 1-1 Pin Type No. (µPD78C10A)  
Pin Name  
Pin Name  
RESET  
Type No.  
Type No.  
PA7 to PA0  
PB7 to PB0  
PC1 to PC0  
PC2/SCK  
PC3/INT2  
PC7 to PC4  
PD7 to PD0  
PF7 to PF0  
NMI  
5
5
2
4
RD  
5
WR  
4
8
ALE  
4
10  
5
STOP  
2
MODE0  
MODE1  
AN3 to AN0  
AN7 to AN4  
VAREF  
11  
11  
7
5
5
5
12  
13  
INT1  
2
Table 1-2 Pin Type No. (µPD78C11A and 78C12A)  
Pin Name  
Type No.  
Pin Name  
RESET  
Type No.  
PA7 to PA0  
PB7 to PB0  
PC1 to PC0  
PC2/SCK  
PC3/INT2  
PC7 to PC4  
PD7 to PD0  
PF7 to PF0  
NMI  
5-A  
5-A  
5-A  
8-A  
10-A  
5-A  
5
2
4
RD  
WR  
4
ALE  
4
STOP  
2
MODE0  
MODE1  
AN3 to AN0  
AN7 to AN4  
VAREF  
11  
11  
7
5
2
12  
13  
INT1  
9
9
µPD78C10A,78C11A,78C12A  
(1) Type 1  
VDD  
P-  
ch  
ch  
IN  
N-  
(2) Type 2  
IN  
(3) Type 4  
VDD  
output data  
P-ch  
OUT  
N-ch  
output disable  
(4) Type 4-A  
VDD  
output data  
P-ch  
OUT  
output disable  
N-ch  
10  
µPD78C10A,78C11A,78C12A  
(5) Type 5  
(6) Type 5-A  
(7) Type 7  
output data  
IN/OUT  
Type4  
Type1  
output disable  
output data  
IN/OUT  
Type4-A  
Type1  
output disable  
AVDD  
P-ch  
N-ch  
IN  
+
-
AVDD  
Sampling  
C
AVSS  
Reference Voltage  
AVSS  
(From Voltage Tap of Series Resistance String)  
(8) Type 8  
output data  
output disable  
Type5  
Type2  
IN/OUT  
MCC  
11  
µPD78C10A,78C11A,78C12A  
(9) Type 8-A  
output data  
output disable  
Type5-A  
Type2  
IN/OUT  
MCC  
(10) Type 9  
self bias  
enable  
IN  
Type1  
data  
(11) Type 10  
output data  
output disable  
Type5  
IN/OUT  
self bias  
enable  
Type9  
MCC  
12  
µPD78C10A,78C11A,78C12A  
(12) Type 10-A  
output data  
output disable  
Type5-A  
Type9  
IN/OUT  
self bias  
enable  
MCC  
(13) Type 11  
IN/OUT  
output data  
N-ch  
Type1  
(14) Type 12  
IN  
Type7  
Type2  
Edge Detector  
(15) Type 13  
IN  
Type1  
STOP Mode  
AVSS  
13  
µPD78C10A,78C11A,78C12A  
1.3 PIN MASK OPTIONS  
µPD78C11A and 78C12A has the following mask options, which can be selected bit-wise according to the  
application.  
Pin Name  
PA7 to PA0  
Mask Options  
Pull-up resistor incorporated  
Pull-up resistor not incorporated  
PB7 to PB0  
PC7 to PC0  
Cautions 1. Zero-cross function can not be operated normally if pull-up resistor is incorporated  
in PC3.  
2. µPD78C10A has no mask option.  
1.4 RECOMMENDED CONNECTION OF UNUSED PINS  
Pin  
Recommended Connection  
PA7 to PA0  
PB7 to PB0  
PC7 to PC0  
PD7 to PD0  
PF7 to PF0  
RD  
Connect to VSS or VDD via resistor  
WR  
Leave open  
ALE  
STOP  
Connect to VDD  
Connect to VSS or VDD  
Connect to VDD  
INT1, NMI  
AVDD  
AVAREF  
Connect to VSS  
AVSS  
Connect to AVSS or AVDD  
AN7 to AN0  
14  
µPD78C10A,78C11A,78C12A  
2. DIFFERENCES BETWEEN µPD78C10A AND µPD78C11A, 78C12A  
The difference between the µPD78C10A and µPD78C11A, 78C12A is whether or not there is an on-chip mask  
programmable ROM. The memory map differs accordingly as described below.  
(1) µPD78C10A  
Since the µPD78C10A does not have an on-chip ROM, all memory, except the on-chip RAM area (addresses FF00H  
to FFFFH) can be installed outside. The size of this external memory can be selected from among 4K bytes (0000H  
to 0FFFH), 16K bytes (0000H to 3FFFH), and 64K bytes (0000H to FEFFH) by MODE0 and MODE1 pin setting as shown  
in the following table and Fig. 2-1.  
Control Pin  
Operation Mode  
External Memory  
On-Chip RAM  
MODE1 MODE0  
4K bytes access  
16K bytes access  
64K bytes access  
0
0
1
0
1
1
4K bytes (address 0000H to 0FFFH)  
16K bytes (address 0000H to 3FFFH)  
64K bytes (address 0000H to FEFFH)  
Address FF00H to FFFFH  
Address FF00H to FFFFH  
Address FF00H to FFFFH  
External memory is accessed by using PD7 to PD0 (multiplexed address/data bus), PF7 to PF0 (address bus), and  
the RD, WR, and ALE signals. When 4K-byte or 16K-byte external memory is accessed PF7 to PF0 not used as address  
lines can be used as general purpose input/output ports.  
The size of external memory can be specified by MODE0 and MODE1 pin setting. Preset each bit of MEMORY  
MAPPING reisters MM2, MM1, and MM0 to "0".  
(2) µPD78C11A and 78C12A  
The µPD78C11A has an on-chip mask programmable ROM at addresses 0000H to 0FFFH and RAM at addresses  
FF00H to FFFFH. Externally, memory can be extended up to 60K bytes (addresses 1000H to FEFFH) in steps. The  
µPD78C12A has an on-chip mask programmable ROM at address 0000H to 1FFFH and RAM at address FF00H to  
FFFFH. Externally, memory can be extended up to 56K bytes (address 2000H to FEFFH) in steps. The size of the  
external extension memory can be selected from among no external memory, 256 bytes, 4K bytes, 16K bytes, and  
56K/60K bytes* by MEMORY MAPPING register setting. External memory can be accessed by using PD7 to PD0  
(multiplexed address/data bus), PF7 to PF0 (address bus), and the RD, WR, and ALE signals. Programs and data  
can be stored in external memory. PF7 to PF0 become address lines corresponding to the size of external memory.  
The remaining pins can be used as general purpose input/output ports.  
PF7  
Port  
Port  
Port  
AB15  
PF6  
Port  
Port  
Port  
AB14  
PF5  
Port  
PF4  
Port  
PF3  
Port  
PF2  
Port  
PF1  
Port  
AB9  
AB9  
AB9  
PF0  
Port  
AB8  
AB8  
AB8  
External Memory  
Maximam 256 bytes  
Maximum 4K bytes  
Port  
Port  
AB11  
AB11  
AB11  
AB10  
AB10  
AB10  
AB13  
AB13  
AB12  
AB12  
Maximum 16K bytes  
Maximum 56K/60K bytes*  
*
µPD78C11A: 60K bytes, µPD78C12A: 56K bytes  
15  
µPD78C10A,78C11A,78C12A  
Fig. 2-1 µPD78C10A Memory Map  
4K Bytes Access  
16K Bytes Access  
64K Bytes Access  
0000H  
0FFFH  
External  
Memory  
External  
Memory  
External  
Memory  
Not Used  
3FFFH  
Not Used  
FF00H  
FFFFH  
On-Chip RAM  
On-Chip RAM  
On-Chip RAM  
MODE0 = 0  
MODE1 = 0  
MODE0 = 1  
MODE1 = 0  
MODE0 = 1  
MODE1 = 1  
16  
µPD78C10A,78C11A,78C12A  
3. RESET OPERATIONS  
When RESET Input becomes low, the system reset is activated to create the following status.  
INTERRUPT ENABLE F/F is reset and interrupt is disabled.  
All the interrupt mask registers are set (1) and interrupt is masked.  
An interrupt request flag is reset (0) and hold interrupt is eliminated.  
Each bit of PSW is reset (0).  
0000H is loaded into the program counter (PC).  
The MODE A, MODE B, MODE C, and MODE F registers are set to FFH and the bits (MM0, 1, and 2) of the MODE  
CONTROL C and MEMORY MAPPING registers are respectively reset (0), then all the  
ports (A, B, C, D, and F) become input port (output high-impedance).  
All the test flags but SB flag are reset (0).  
A timer mode register is set to FFH, and TIMER F/F is reset.  
The mode register (ETMM, EOM) of a timer/event counter is reset (0).  
The serial mode high register(SMH) of serial interface is reset (0), while the serial mode low register (SML) is  
set to 48H.  
The A/D channel mode register of the A/D converter is reset (0).  
WR, RD, ALE signals become high-impedance.  
The ZC1, ZC2 bits of the zero-cross mode register (ZCM) are set (1).  
The internal timing generator is initialized.  
Data memory and the following register contents are undefined:  
Stack pointer (SP)  
Expansion accumulator (EA, EA’), accumulator (A, A’)  
General register (B, C, D, E, H, L, B’, C’, D’, E’, H’, L’)  
Output latch of each port  
TIMER REG0, 1 (TM0, TM1)  
TIMER/EVENT COUNTER REG0, 1 (ETM0, ETM1)  
RAE bit of MEMORY MAPPING register  
SB flag of test flag  
When RESET input becomes high, the reset status is released. Then, execution of the program is started from  
0000H. The contents of various kinds of registers must be initialized or re-initialized in the program, if necessary.  
Table 3-1 shows the state of each hardware after reset.  
Table 3-2 shows the state of each pin after reset.  
17  
µPD78C10A,78C11A,78C12A  
Table 3-1 State of Each Hardware after Reset  
State after Reset  
Hardware  
Power-on reset  
Previous contents held.  
Undefined  
Write address data  
Writing  
by CPU  
Reset input  
during normal  
operation  
Internal data  
memory  
Address data other than the aboove  
Operation other than writing by CPU  
Previous contents held.  
Reset input in standby mode  
Expansion accumulator (EA, EA')  
Accumulator (A, A')  
Undefined  
General register (B, C, D, E, H, L, B', C', D', E', H', L')  
Working register vector register (V, V')  
Program counter (PC)  
0000H  
Stack pointer (SP)  
Undefined  
Mode register (MA, MB, MC, MF)  
FFH  
Port  
MCC register  
00H  
MM register (bits MM0 to MM2)  
0
Output latch of each port  
INTERRUPT ENABLE F/F  
Undefined  
0
Interrupt  
Request flag  
Mask register  
0
FFH  
Test flag (except SB flag)  
Power-on reset  
0
1
Standby flag (SB)  
Standby mode  
Previous contents held.  
Contents immediately before  
RESET input held  
Reset input during normal operation  
Timer mode register (TMM)  
FFH  
Timer  
Timer F/F  
0
Timer register (TM0, TM1)  
Undefined  
Timer/event counter mode register (ETMM)  
Timer/event counter output mode register (EOM)  
00H  
Timer/event counter Timer/event counter register (ETM0, ETM1)  
Timer/event counter capture register (ECPT)  
Timer/event counter (ECNT)  
Undefined  
Serial mode high register (SMH)  
Serial interface  
00H  
Serial mode low register (SML)  
48H  
A/D channel mode register (ANM)  
MM register (MM3; RAE bit)  
00H  
Undefined  
1
Zero cross mode register (ZC1, ZC2 bits)  
18  
µPD78C10A,78C11A,78C12A  
Table 3-2 State of Each Pin after Reset  
State after Reset  
Pin  
WR  
RD  
High-impedance  
ALE  
All ports (PA, PB, PC, PD, PF)  
19  
µPD78C10A,78C11A,78C12A  
4. INSTRUCTION SET  
4.1 IDENTIFIER/DESCRIPTION OF OPERAND  
Identifier  
Description  
r
r1  
r2  
V, A, B, C, D, E, H, L  
EAH, EAL, B, C, D, E, H, L  
A, B, C  
sr  
PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF,  
TXB, TM0, TM1, ZCM  
sr1  
sr2  
sr3  
sr4  
PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CR0, CR1, CR2, CR3  
PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM  
ETM0, ETM1  
ECNT, ECPT  
rp  
SP, B, D, H  
V, B, D, H, EA  
SP, B, D, H, EA  
B, D, H  
rp1  
rp2  
rp3  
rpa  
B, D, H, D+, H+, D–, H–  
rpa1  
rpa2  
rpa3  
B, D, H  
B, D, H, D+, H+, D–, H–, D+byte, H+A, H+B, H+EA, H+byte  
D, H, D++, H++, D+byte, H+A, H+B, H+EA, H+byte  
wa  
8 bit immediate data  
word  
byte  
bit  
16 bit immediate data  
8 bit immediate data  
3 bit immediate data  
f
CY, HC, Z  
irf  
NMI*, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, AN6, AN7, SB  
*
NMI can also be described as FNMI.  
Remarks  
1. sr to sr4 (special register)  
2. rp to rp3 (register pair)  
4. f (flag)  
CY  
HC  
Z
:
:
:
CARRY  
PA  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
PORT A  
ETMM  
EOM  
:
:
TIMER/EVENT  
SP  
B
:
:
:
:
:
:
STACK POINTER  
HALF CARRY  
ZERO  
PB  
PORT B  
COUNTER MODE  
TIMER/EVENT  
BC  
PC  
PORT C  
D
DE  
PD  
PORT D  
COUNTER OUTPUT  
MODE  
H
HL  
5. irf (interrupt flag)  
PF  
PORT F  
V
VA  
MA  
MB  
MC  
MCC  
MF  
MODE A  
ANM  
CR0  
to  
:
:
A/D CHANNEL MODE  
A/D CONVERSION  
RESULT 0 to 3  
EA  
EXTENDED  
ACCUMULATOR  
NMI  
FT0  
FT1  
F1  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
NMI INPUT  
INTFT0  
MODE B  
MODE C  
INTFT1  
3. rpa to rpa3 (rp addressing)  
MODE CONTROL C  
MODE F  
CR3  
TXB  
RXB  
SMH  
SML  
MKH  
MKL  
ZCM  
INTF1  
:
:
:
:
:
:
:
T
X
BUFFER  
BUFFER  
B
D
H
D+  
H+  
D–  
H–  
D++  
H++  
D + byte  
H + A  
H + B  
H + EA  
H + byte  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
(BC)  
(DE)  
(HL)  
(DE)+  
(HL)+  
(DE)–  
(HL)–  
(DE)++  
(HL)++  
(DE + byte)  
(HL + A)  
(HL + B)  
(HL + EA)  
(HL + byte)  
F2  
INTF2  
MM  
TM0  
TM1  
TMM  
ETM0  
MEMORY MAPPING  
TIMER REG0  
TIMER REG1  
TIMER MODE  
TIMER/EVENT  
COUNTER REG0  
TIMER/EVENT  
COUNTER REG1  
TIMER/EVENT  
COUNTER UPCOUNTER  
TIMER/EVENT  
COUNTER CAPTURE  
R
X
FE0  
FE1  
FEIN  
FAD  
FSR  
FST  
ER  
INTFE0  
SERIAL MODE High  
SERIAL MODE Low  
MASK High  
INTFE1  
INTFEIN  
INTFAD  
MASK Low  
INTFSR  
ZERO CROSS MODE  
INTFST  
ETM1  
ECNT  
ECPT  
:
:
:
ERROR  
OV  
OVERFLOW  
ANALOG INPUT 4 to 7  
AN4  
to  
AN7  
SB  
:
STANDBY  
20  
µPD78C10A,78C11A,78C12A  
4.2 SYMBOL DESCRIPTION OF OPERATION CODE  
r
r1  
rpa  
R2  
R1  
R0  
reg  
T2  
T1  
T0  
reg  
A3 A2 A1 A0  
addressing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
V
A
B
C
D
E
H
L
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
EAH  
EAL  
B
0
0
0
0
0
1
1
1
1
0
1
1
1
1
0
0
1
1
0
0
1
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
0
0
0
0
0
0
1
1
1
1
1
(BC)  
r2  
rpa1  
(DE)  
C
(HL)  
r
rpa  
D
(DE)+  
E
(HL)+  
H
(DE)-  
rpa2  
L
(HL)-  
(DE + byte)  
(HL + A)  
(HL + B)  
(HL + EA)  
(HL + byte)  
sr  
S5 S4 S3 S2 S1 S0  
Special-reg  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
PA  
PB  
PC  
PD  
rpa3  
C3 C2 C1 C0  
sr1  
sr2  
PF  
MKH  
MKL  
ANM  
SMH  
SML  
EOM  
ETMM  
TMM  
MM  
MCC  
MA  
addressing  
0
0
0
0
1
1
1
1
1
0
0
1
1
0
1
1
1
1
1
1
0
0
1
0
0
1
1
0
1
0
1
1
0
1
0
1
(DE)  
(HL)  
sr  
(DE)++  
(HL)++  
(DE + byte)  
(HL + A)  
(HL + B)  
(HL + EA)  
(HL + byte)  
MB  
MC  
MF  
TXB  
RXB  
TM0  
TM1  
CR0  
CR1  
CR2  
CR3  
ZCM  
irf  
I4  
I3  
I2  
I1  
I0  
INTF  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
NMI  
FT0  
FT1  
F1  
F2  
FE0  
FE1  
FEIN  
FAD  
FSR  
FST  
ER  
sr3  
sr4  
U0  
special-reg  
V0  
special-reg  
0
1
ETM0  
ETM1  
0
1
ECNT  
ECPT  
OV  
AN4  
AN5  
AN6  
AN7  
SB  
rp  
rp1  
f
P2  
P1  
P0  
reg-pair  
Q2  
Q1 Q0  
reg-pair  
F2  
F1  
F0  
flag  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
SP  
BC  
DE  
HL  
EA  
0
0
0
0
1
0
0
1
0
1
0
VA  
BC  
DE  
HL  
EA  
0
0
0
1
0
1
1
0
0
0
1
0
0
1
1
0
CY  
HC  
Z
rp  
rp2  
rp3  
21  
µPD78C10A,78C11A,78C12A  
4.3 INSTRUCTION EXECUTION TIME  
1 state shown here is composed of 3 clock cycles. When a clock cycle of 15 MHz is used, the execution time should  
be 200 ns (= 3 × 1/15µs). In this case, the 4-state instruction which is the minimum execution time should be execution  
time of 0.8 µs.  
22  
Operation Code  
B2  
Skip  
Condition  
Mnemonic  
Operand  
State  
Operation  
B1  
B3  
B4  
r1, A  
0 0 0 1 1 T2 T1 T0  
4
4
r1 A  
A r1  
sr A  
A sr1  
A, r1  
sr, A  
A, sr1  
0 0 0 0 1 T2 T1 T0  
*
0 1 0 0 1 1 0 1 1 1 S5 S4 S3 S2 S1 S0  
0 1 0 0 1 1 0 0 1 1 S5 S4 S3 S2 S1 S0  
0 1 1 1 0 0 0 0 0 1 1 0 1 R2 R1 R0  
10  
10  
MOV  
*
r, word  
word, r  
r, byte  
Low Adrs  
Low Adrs  
High Adrs  
High Adrs  
17  
17  
7
r (word)  
(word) r  
r byte  
0 1 1 1 1 R2 R1 R0  
Data  
0 1 1 1 0 0 0 0  
0 1 1 0 1 R2 R1 R0  
*
MVI  
Data  
Data  
sr2 byte  
sr2, byte  
0 1 1 0 0 1 0 0 S3 0 0 0 0 S2 S1 S0  
14  
*
*
*
*
*
*
wa, byte  
rpa1, byte  
wa  
Offset  
Data  
(V. wa) byte  
(rpa1) byte  
(V. wa) A  
A (V. wa)  
(rpa2) A  
MVIW  
MVIX  
STAW  
LDAW  
STAX  
LDAX  
EXX  
0 1 1 1 0 0 0 1  
0 1 0 0 1 0 A1 A0  
0 1 1 0 0 0 1 1  
13  
10  
Offset  
Offset  
Data*1  
Data*1  
10  
wa  
10  
0 0 0 0 0 0 0 1  
A3 0 1 1 1 A2 A1 A0  
A3 0 1 0 1 A2 A1 A0  
rpa2  
7/13*3  
rpa2  
A (rpa2)  
7/13*3  
µ
B B', C C', D D'  
E E', H H', L L'  
0 0 0 1 0 0 0 1  
0 0 0 1 0 0 0 0  
0 1 0 1 0 0 0 0  
4
4
4
V, A V', A', EA EA'  
EXA  
H, L H', L'  
EXH  
(DE)+(HL)+, C C – 1  
End if borrow  
13  
BLOCK  
0 0 1 1 0 0 0 1  
1 0 1 1 0 1 P1 P0  
(C + 1)  
rp3L EAL, rp3H EAH  
4
4
rp3, EA  
EA, rp3  
DMOV  
EAL rp3L, EAH rp3H  
1 0 1 0 0 1 P1 P0  
Note 1. Instruction Group  
2. 16-bit data transfer instructions  
Operation Code  
B2  
Skip  
Condition  
Mnemonic  
DMOV  
Operand  
sr3, EA  
State  
Operation  
B1  
B3  
B4  
0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 U0  
1 1 0 0 0 0 0 V0  
14  
14  
20  
20  
sr3 EA  
EA sr4  
EA, sr4  
word  
(word) C, (word + 1) B  
(word) E, (word + 1) D  
(word) L, (word + 1) H  
(word) SPL, (word + 1) SPH  
(rpa3) EAL, (rpa3 + 1) EAH  
C (word), B (word + 1)  
E (word), D (word + 1)  
SBCD  
SDED  
0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0  
0 0 1 0 1 1 1 0  
Low Adrs  
High Adrs  
word  
word  
word  
rpa3  
0 0 1 1 1 1 1 0  
0 0 0 0 1 1 1 0  
20  
20  
SHLD  
SSPD  
STEAX  
LBCD  
*3  
Data*2  
0 1 0 0 1 0 0 0 1 0 0 1 C3 C2 C1 C0  
0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1  
14/20  
word  
Low Adrs  
High Adrs  
20  
word  
word  
word  
rpa3  
rp1  
LDED  
LHLD  
LSPD  
LDEAX  
PUSH  
POP  
0 0 1 0 1 1 1 1  
0 0 1 1 1 1 1 1  
0 0 0 0 1 1 1 1  
20  
20  
20  
L (word), H (word + 1)  
SPL (word), SPH (word + 1)  
EAL (rpa3), EAH (rpa3 + 1)  
*3  
1 0 0 0 C3 C2 C1 C0  
Data*2  
0 1 0 0 1 0 0 0  
1 0 1 1 0 Q2 Q1 Q0  
1 0 1 0 0 Q2 Q1 Q0  
14/20  
(SP – 1) rp1H, (SP – 2) rp1L  
SP SP – 2  
rp1L (SP), rp1H (SP + 1)  
SP SP + 2  
13  
rp1  
10  
10  
17  
8
µ
*
Low Byte  
High Byte  
rp2 word  
LXI  
rp2, word  
0 P2 P1 P0 0 1 0 0  
C (PC + 3 + A)  
B (PC + 3 + A + 1)  
TABLE  
0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0  
0 1 1 0 0 0 0 0 1 1 0 0 0 R2 R1 R0  
A A + r  
A, r  
ADD  
ADC  
r, A  
A, r  
0 1 0 0  
1 1 0 1  
r r + A  
8
8
A A + r + CY  
r r + A + CY  
r, A  
0 1 0 1  
8
Note 1. Instruction Group  
2. 8-bit operation instructions (register)  
Operation Code  
B2  
Skip  
Condition  
Mnemonic  
ADDNC  
Operand  
State  
Operation  
B1  
B3  
B4  
No Carry  
No Carry  
A, r  
r, A  
A, r  
r, A  
0 1 1 0 0 0 0 0 1 0 1 0 0 R2 R1 R0  
A A + r  
r r + A  
A A – r  
r r – A  
8
8
8
8
0 0 1 0  
1 1 1 0  
0 1 1 0  
SUB  
A A – r – CY  
r r – A – CY  
A A – r  
A, r  
r, A  
A, r  
r, A  
1 1 1 1  
0 1 1 1  
1 0 1 1  
0 0 1 1  
8
8
8
SBB  
No  
Borrow  
No  
Borrow  
SUBNB  
ANA  
8
r r – A  
A A  
r r  
r
A, r  
r, A  
A, r  
r, A  
A, r  
r, A  
1 0 0 0 1 R2 R1 R0  
0 0 0 0  
8
8
8
8
8
8
A
1 0 0 1  
A A  
r r  
r
ORA  
XRA  
GTA  
A
0 0 0 1  
1 0 0 1 0 R2 R1 R0  
0 0 0 1  
A A  
r r  
r
A
µ
No  
Borrow  
No  
Borrow  
A, r  
r, A  
A, r  
1 0 1 0 1 R2 R1 R0  
0 0 1 0  
8
8
8
A – r – 1  
r – A – 1  
A – r  
1 0 1 1  
Borrow  
LTA  
r, A  
A, r  
0 0 1 1  
1 1 1 0  
r – A  
A – r  
Borrow  
No Zero  
No Zero  
8
8
NEA  
r, A  
0 1 1 0  
8
r – A  
Note Instruction Group  
Operation Code  
B2  
Skip  
Condition  
Mnemonic  
EQA  
Operand  
State  
Operation  
B1  
B3  
B4  
Zero  
A, r  
r, A  
A, r  
A, r  
0 1 1 0 0 0 0 0 1 1 1 1 1 R2 R1 R0  
A – r  
r – A  
8
8
8
8
0 1 1 1  
1 1 0 0  
1 1 0 1  
Zero  
A
A
r
ONA  
No Zero  
Zero  
r
OFFA  
rpa  
rpa  
rpa  
rpa  
0 1 1 1 0 0 0 0 1 1 0 0 0 A2 A1 A0  
A A + (rpa)  
ADDX  
11  
11  
11  
11  
ADCX  
1 1 0 1  
1 0 1 0  
1 1 1 0  
A A + (rpa) + CY  
A A + (rpa)  
ADDNCX  
SUBX  
No Carry  
A A – (rpa)  
A A – (rpa) – CY  
rpa  
rpa  
rpa  
rpa  
rpa  
rpa  
1 1 1 1  
SBBX  
11  
11  
11  
11  
11  
11  
No  
Borrow  
A A – (rpa)  
A A (rpa)  
A A (rpa)  
A A (rpa)  
A – (rpa) – 1  
A – (rpa)  
SUBNBX  
ANAX  
ORAX  
XRAX  
GTAX  
1 0 1 1  
1 0 0 0 1 A2 A1 A0  
1 0 0 1  
1 0 0 1 0 A2 A1 A0  
1 0 1 0 1 A2 A1 A0  
No  
Borrow  
µ
LTAX  
NEAX  
EQAX  
rpa  
1 0 1 1  
1 1 1 0  
1 1 1 1  
11  
11  
11  
Borrow  
No Zero  
Zero  
rpa  
rpa  
rpa  
rpa  
A – (rpa)  
A – (rpa)  
ONAX  
1 1 0 0  
1 1 0 1  
11  
11  
A
A
(rpa)  
(rpa)  
No Zero  
Zero  
OFFAX  
Note Instruction Group  
Operation Code  
B2  
Data  
Skip  
Condition  
Mnemonic  
Operand  
A, byte  
State  
Operation  
B1  
B3  
B4  
*
0 1 0 0 0 1 1 0  
7
11  
20  
7
A A + byte  
r r + byte  
ADI  
r, byte  
0 1 1 1 0 1 0 0 0 1 0 0 0 R2 R1 R0  
Data  
sr2, byte  
A, byte  
0 1 1 0  
S3 1 0 0 0 S2 S1 S0  
Data  
sr2 sr2 + byte  
*
*
*
*
*
0 1 0 1 0 1 1 0  
A A + byte + CY  
r, byte  
0 1 1 1 0 1 0 0 0 1 0 1 0 R2 R1 R0  
11  
20  
7
r r + byte + CY  
sr2 sr2 + byte + CY  
A A + byte  
ACI  
Data  
Data  
S3 1 0 1 0 S2 S1 S0  
Data  
sr2, byte  
A, byte  
r, byte  
0 1 1 0  
0 0 1 0 0 1 1 0  
0 1 1 1 0 1 0 0  
No Carry  
No Carry  
r r + byte  
11  
ADINC  
SUI  
0 0 1 0 0 R2 R1 R0  
sr2, byte  
A, byte  
r, byte  
sr2 sr2 + byte  
A A – byte  
0 1 1 0  
S3 0 1 0 0 S2 S1 S0  
Data  
20  
7
No Carry  
0 1 1 0 0 1 1 0  
0 1 1 1 0 1 0 0 0 1 1 0 0 R2 R1 R0  
Data  
Data  
Data  
Data  
11  
20  
7
r r – byte  
sr2 sr2 – byte  
A A – byte – CY  
r r – byte – CY  
sr2, byte  
A, byte  
r, byte  
0 1 1 0  
S3 1 1 0 0 S2 S1 S0  
Data  
0 1 1 1 0 1 1 0  
0 1 1 1 0 1 0 0  
SBI  
0 1 1 1 0 R2 R1 R0  
11  
µ
sr2, byte  
A, byte  
r, byte  
S3 1 1 1 0 S2 S1 S0  
Data  
20  
7
0 1 1 0  
sr2 sr2 – byte – CY  
A A – byte  
No  
Borrow  
No  
Borrow  
0 0 1 1 0 1 1 0  
r r – byte  
0 1 1 1 0 1 0 0 0 0 1 1 0 R2 R1 R0  
11  
SUINB  
ANI  
No  
Borrow  
sr2, byte  
A, byte  
0 1 1 0  
20  
7
sr2 sr2 – byte  
A A byte  
S3 0 1 1 0 S2 S1 S0  
Data  
*
0 0 0 0 0 1 1 1  
r r byte  
11  
0 1 1 1 0 1 0 0  
r, byte  
0 0 0 0 1 R2 R1 R0  
Note Instruction Group  
Operation Code  
B2  
0 1 1 0 0 1 0 0 S3 0 0 0 1 S2 S1 S0  
Skip  
Condition  
Mnemonic  
ANI  
Operand  
sr2, byte  
State  
Operation  
sr2 sr2 byte  
B1  
B3  
B4  
Data  
20  
7
*
A, byte  
r, byte  
0 0 0 1 0 1 1 1  
Data  
A A byte  
r r byte  
0 1 1 1 0 1 0 0 0 0 0 1 1 R2 R1 R0  
Data  
Data  
Data  
Data  
Data  
Data  
11  
20  
7
ORI  
XRI  
sr2, byte  
0 1 1 0  
S3 0 0 1 1 S2 S1 S0  
sr2 sr2 byte  
*
*
*
*
*
A, byte  
r, byte  
0 0 0 1 0 1 1 0  
0 1 1 1 0 1 0 0  
0 1 1 0  
Data  
A A byte  
r r byte  
sr2 sr2 byte  
A – byte– 1  
0 0 0 1 0 R2 R1 R0  
S3 0 0 1 0 S2 S1 S0  
Data  
11  
20  
7
sr2, byte  
A, byte  
No  
Borrow  
0 0 1 0 0 1 1 1  
No  
Borrow  
No  
Borrow  
r – byte – 1  
sr2 – byte – 1  
A – byte  
r, byte  
0 1 1 1 0 1 0 0  
0 1 1 0  
11  
14  
7
GTI  
LTI  
0 0 1 0 1 R2 R1 R0  
S3 0 1 0 1 S2 S1 S0  
Data  
sr2, byte  
A, byte  
0 0 1 1 0 1 1 1  
0 1 1 1 0 1 0 0  
0 1 1 0  
Borrow  
Borrow  
Borrow  
No Zero  
No Zero  
No Zero  
Zero  
r – byte  
r, byte  
11  
14  
7
0 0 1 1 1 R2 R1 R0  
S3 0 1 1 1 S2 S1 S0  
Data  
sr2, byte  
A, byte  
sr2 – byte  
A – byte  
0 1 1 0 0 1 1 1  
µ
0 1 1 1 0 1 0 0  
0 1 1 0  
NEI  
EQI  
0 1 1 0 1 R2 R1 R0  
S3 1 1 0 1 S2 S1 S0  
Data  
11  
14  
7
r, byte  
r – byte  
sr2 – byte  
A – byte  
sr2, byte  
A, byte  
0 1 1 1 0 1 1 1  
r, byte  
11  
14  
0 1 1 1 0 1 0 0 0 1 1 1 1 R2 R1 R0  
0 1 1 0 S3 1 1 1 1 S2 S1 S0  
r – byte  
Zero  
Zero  
sr2, byte  
sr2 – byte  
Note Instruction Group  
Operation Code  
B2  
Data  
Skip  
Condition  
Mnemonic  
Operand  
A, byte  
State  
Operation  
B1  
B3  
B4  
*
0 1 0 0 0 1 1 1  
7
11  
14  
7
A
r
byte  
byte  
No Zero  
No Zero  
No Zero  
Zero  
ONI  
r, byte  
0 1 1 1 0 1 0 0 0 1 0 0 1 R2 R1 R0  
Data  
sr2, byte  
A, byte  
0 1 1 0  
S3 1 0 0 1 S2 S1 S0  
Data  
sr2 byte  
*
0 1 0 1 0 1 1 1  
A
r
byte  
byte  
r, byte  
sr2, byte  
wa  
0 1 1 1 0 1 0 0 0 1 0 1 1 R2 R1 R0  
S3 1 0 1 1 S2 S1 S0  
0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0  
1 1 0 1  
11  
14  
14  
14  
OFFI  
Data  
Zero  
Zero  
0 1 1 0  
sr2 byte  
ADDW  
ADCW  
offset  
A A +(V. wa)  
A A + (V. wa) + CY  
wa  
wa  
wa  
wa  
wa  
wa  
wa  
wa  
wa  
wa  
A A + (V. wa)  
A A – (V. wa)  
A A – (V. wa) – CY  
A A – (V. wa)  
A A (V. wa)  
A A (V. wa)  
ADDNCW  
SUBW  
1 0 1 0  
14  
14  
14  
14  
14  
14  
No Carry  
1 1 1 0  
SBBW  
1 1 1 1  
No  
Borrow  
1 0 1 1  
SUBNBW  
ANAW  
1 0 0 0 1 0 0 0  
1 0 0 1  
ORAW  
µ
XRAW  
GTAW  
LTAW  
1 0 0 1 0 0 0 0  
1 0 1 0 1 0 0 0  
1 0 1 1  
14  
14  
14  
A A (V. wa)  
No  
Borrow  
A – (V. wa) – 1  
A – (V. wa)  
Borrow  
NEAW  
EQAW  
wa  
wa  
14  
14  
A – (V. wa)  
A – (V. wa)  
No Zero  
Zero  
1 1 1 0  
1 1 1 1  
A
(V. wa)  
ONAW  
1 1 0 0  
No Zero  
wa  
14  
Note Instruction Group  
Operation Code  
B2  
0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0  
Skip  
Condition  
Mnemonic  
OFFAW  
Operand  
State  
Operation  
B1  
B3  
B4  
wa  
Offset  
14  
19  
19  
13  
13  
13  
13  
13  
A
(V. wa)  
Zero  
*
ANIW  
ORIW  
GTIW  
wa, byte  
wa, byte  
wa, byte  
0 0 0 0 0 1 0 1  
0 0 0 1  
(V. wa) (V. wa) byte  
(V. wa) (V. wa) byte  
(V. wa) – byte – 1  
Offset  
Data  
*
*
*
*
*
*
No  
Borrow  
0 0 1 0  
wa, byte  
wa, byte  
wa, byte  
wa, byte  
(V. wa) – byte  
(V. wa) – byte  
(V. wa) – byte  
(V. wa) byte  
LTIW  
NEIW  
EQIW  
ONIW  
0 0 1 1  
0 1 1 0  
0 1 1 1  
0 1 0 0  
Borrow  
No Zero  
Zero  
No Zero  
Zero  
wa, byte  
EA, r2  
0 1 0 1  
(V. wa) byte  
EA EA + r2  
OFFIW  
EADD  
13  
11  
11  
11  
11  
11  
0 1 0 0 0 0 R1 R0  
1 1 0 0 0 1 P1 P0  
1 1 0 1  
0 1 1 1 0 0 0 0  
0 1 0 0  
EA, rp3  
EA, rp3  
EA, rp3  
EA, r2  
DADD  
DADC  
EA EA + rp3  
EA EA + rp3 +CY  
EA EA + rp3  
EA EA – r2  
No Carry  
DADDNC  
ESUB  
1 0 1 0  
0 0 0 0  
0 1 0 0  
0 1 1 0 0 0 R1 R0  
1 1 1 0 0 1 P1 P0  
1 1 1 1  
µ
EA, rp3  
EA, rp3  
EA, rp3  
DSUB  
11  
11  
11  
EA EA – rp3  
DSBB  
EA EA – rp3 – CY  
EA EA – rp3  
No  
Borrow  
1 0 1 1  
DSUBNB  
DAN  
DOR  
EA, rp3  
EA, rp3  
1 0 0 0 1 1 P1 P0  
1 0 0 1  
11  
11  
EA EA rp3  
EA EA rp3  
EA EA rp3  
1 0 0 1 0 1 P1 P0  
DXR  
EA, rp3  
11  
Note Instruction Group  
Operation Code  
B2  
Skip  
Condition  
Mnemonic  
Operand  
State  
Operation  
B1  
B3  
B4  
No  
Borrow  
EA, rp3  
0 1 1 1 0 1 0 0 1 0 1 0 1 1 P1 P0  
11  
11  
11  
11  
11  
11  
32  
59  
EA – rp3 – 1  
EA – rp3  
DGT  
DLT  
DNE  
DEQ  
EA, rp3  
EA, rp3  
EA, rp3  
1 0 1 1  
1 1 1 0  
1 1 1 1  
Borrow  
No Zero  
Zero  
EA – rp3  
EA – rp3  
EA, rp3  
EA, rp3  
r2  
1 1 0 0  
1 1 0 1  
EA rp3  
DON  
DOFF  
MUL  
DIV  
No Zero  
Zero  
EA rp3  
0 1 0 0 1 0 0 0  
EA A × r2  
0 0 1 0 1 1 R1 R0  
0 0 1 1  
EA EA ÷ r2, r2 Remainder  
r2  
r2 r2 + 1  
INR  
r2  
4
16  
7
Carry  
Carry  
0 1 0 0 0 0 R1 R0  
0 0 1 0 0 0 0 0  
0 0 P1 P0 0 0 1 0  
1 0 1 0 1 0 0 0  
0 1 0 1 0 0 R1 R0  
0 0 1 1 0 0 0 0  
*
(V. wa) (V. wa) + 1  
rp rp + 1  
wa  
rp  
Offset  
INRW  
INX  
EA  
r2  
EA EA + 1  
7
r2 r2 – 1  
4
Borrow  
Borrow  
DCR  
*
wa  
rp  
(V. wa) (V. wa) – 1  
DCRW  
Offset  
16  
7
µ
0 0 P1 P0 0 0 1 1  
1 0 1 0 1 0 0 1  
0 1 1 0 0 0 0 1  
0 1 0 0 1 0 0 0  
rp rp – 1  
DCX  
DAA  
EA  
7
EA EA – 1  
Decimal Adjust Accumulator  
4
STC  
CLC  
0 0 1 0 1 0 1 1  
0 0 1 0 1 0 1 0  
8
8
CY 1  
CY 0  
A A + 1  
0 0 1 1 1 0 1 0  
NEGA  
8
Note 1. Instruction Group  
2. Multiplication/division instructions  
3. Other operation instructions  
Operation Code  
B2  
0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0  
Skip  
Condition  
Mnemonic  
Operand  
State  
Operation  
B1  
B3  
B4  
17  
17  
8
Rotate Left Digit  
Rotate Right Digit  
r2m + 1 r2 , r2 CY, CY r2  
, r2 CY, CY r2  
, r2 0, CY r2  
, r2 0, CY r2  
, r2 0, CY r2  
, r2 0, CY r2  
, EA CY, CY EA15  
, EA15 CY, CY EA  
, EA 0, CY EA15  
, EA15 0, CY EA  
RLD  
RRD  
RLL  
RLR  
1 0 0 1  
r2  
r2  
0 1 R  
1
1
R
R
R
R
R
R
0
m
0
7
0 0 R  
0
8
r2m – 1 r2  
m
7
0
0 0 1 0 0 1 R  
1
1
1
1
0
0
0
0
r2  
r2  
r2  
r2  
8
8
8
8
r2m + 1 r2  
r2m – 1 r2  
r2m + 1 r2  
r2m – 1 r2  
m
0
7
SLL  
SLR  
0 0 R  
m
7
0
SLLC  
SLRC  
m
0
7
0 0 0 0 0 1 R  
0 0 R  
Carry  
Carry  
m
7
0
8
8
EAn + 1 EA  
n
0
DRLL  
DRLR  
DSLL  
DSLR  
EA  
EA  
EA  
EA  
1 0 1 1 0 1 0 0  
0 0 0 0  
EAn – 1 EA  
n
0
1 0 1 0 0 1 0 0  
0 0 0 0  
8
EAn + 1 EA  
n
0
EAn – 1 EA  
n
0
8
*
PC word  
word  
0 1 0 1 0 1 0 0  
0 0 1 0 0 0 0 1  
Low Adrs  
High Adrs  
10  
4
JMP  
JB  
PCH  
B, PC C  
L
µ
jdisp 1  
word  
word  
1 1  
10  
10  
8
JR  
PC PC + 1 + jdisp 1  
*
jdisp  
0 1 0 0 1 1 1  
PC PC + 2 + jdisp  
PC EA  
JRE  
JEA  
0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0  
(SP – 1) (PC + 3)  
PC word, SP SP – 2  
(SP – 1) (PC + 2) , (SP – 2) (PC + 2)  
PC B, PC C, SP SP – 2  
(SP – 1) (PC + 2) , (SP – 2) (PC + 2)  
H
, (SP – 2) (PC + 3)  
L
L
L
*
*
Low Adrs  
CALL  
CALB  
word  
word  
High Adrs  
16  
17  
0 1 0 0 0 0 0 0  
H
0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1  
H
L
H
CALF  
0 1 1 1 1  
fa  
13  
PC15 – 11 00001, PC10 – 0 fa, SP SP – 2  
Note Instruction Group  
Operation Code  
B2  
Skip  
Condition  
Mnemonic  
Operand  
word  
State  
Operation  
B1  
B3  
B4  
(SP – 1) (PC + 1)H, (SP – 2) (PC + 1)L  
PCL(128+2ta),PCH(129+2ta),SPSP–2  
ta  
1 0 0  
16  
16  
10  
10  
13  
10  
8
CALT  
SOFTI  
RET  
(SP – 1) PSW, (SP – 2)(PC + 1)H, (SP – 3)  
(PC + 1)L, PC 0060H, SP SP – 3  
0 1 1 1 0 0 1 0  
1 0 1 1 1 0 0 0  
1 0 0 1  
PCL (SP), PCH (SP + 1)  
SP SP + 2  
Uncondi-  
tional skip  
PCL (SP), PCH (SP + 1), SP SP +2  
PC PC + n  
PCL (SP), PCH (SP + 1)  
PSW (SP + 2), SP SP + 3  
RETS  
0 1 1 0 0 0 1 0  
0 1 0 1 1 B2 B1 B0  
0 1 0 0 1 0 0 0  
RETI  
*
(V. wa)bit  
= 1  
Offset  
0 0 0 0 1 F2 F1 F0  
0 0 0 1  
BIT  
SK  
bit, wa  
Skip if (V. wa) bit = 1  
Skip if f = 1  
f
f
f = 1  
Skip if f = 0  
SKN  
8
f = 0  
Skip if irf = 1, then reset irf  
SKIT  
SKNIT  
NOP  
EI  
irf  
irf  
0 1 0 I4 I3 I2 I1 I0  
0 1 1 I4 I3 I2 I1 I0  
8
8
irf = 1  
irf = 0  
Skip if irf = 0  
Reset irf, if irf = 1  
0 0 0 0 0 0 0 0  
1 0 1 0 1 0 1 0  
1 0 1 1 1 0 1 0  
4
No Operation  
Enable Interrupt  
Disable Interrupt  
Set Halt Mode  
4
4
DI  
HLT  
0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1  
0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1  
12  
12  
µ
STOP  
Set Stop Mode  
* 1. Data is B2 if rpa2 = D + byte, H + byte.  
2. Data is B3 if rpa3 = D + byte, H + byte.  
3. In the State item, a figure is in the right side of slash if rpa2 and rpa3 are D + byte, H + A, H + B, H + EA, H + byte.  
Remarks The idle state when each instruction is skipped is different from the execution state as shown below.  
1-byte instruction  
2-byte instruction (with *)  
2-byte instruction  
Instruction Group  
Call instructions  
:
:
:
4 states  
7 states  
8 states  
3-byte instruction (with *)  
3-byte instruction  
:
:
:
10 states  
11 states  
14 states  
4-byte instruction  
Note 1.  
2.  
µPD78C10A,78C11A,78C12A  
5. LIST OF MODE REGISTERS  
Read/  
Write  
Name of Mode Registers  
Function  
MA  
MB  
MODE A register  
MODE B register  
W
W
Specifies bit-wise the input/output of the port A.  
Specifies bit-wise the input/output of the port B.  
MODE CONTROL  
C register  
MCC  
MC  
W
W
W
Specifies bit-wise the port/control mode of the port C.  
MODE C register  
Specifies bit-wise the input/output of the port C which is in port mode.  
Specifies the port/extension mode of port D and port F.  
MEMORY MAPPING  
register  
MM  
MF  
MODE F register  
W
Specifies bit-wise the input/output of the port F which is in port mode.  
Specifies operating mode of timer.  
TMM  
Timer mode register  
R/W  
Timer/event counter  
mode register  
ETMM  
EOM  
W
Specifies the operating mode of timer/event counter.  
Control the output level of CO0 and CO1.  
Timer/event counter  
output mode register  
R/W  
SML  
SMH  
MKL  
MKH  
W
Serial mode register  
Specifies the operating mode of serial interface.  
Specifies the enable/disable of the interrupt request.  
R/W  
Interrupt mask register  
R/W  
A/D channel mode  
register  
ANM  
ZCM  
R/W  
W
Specifies the operating mode of A/D converter.  
Zero-cross mode  
register  
Specifies the operation of zero-cross detector circuit.  
34  
µPD78C10A,78C11A,78C12A  
6. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
PARAMETER  
SYMBOL  
VDD  
TEST CONDITIONS  
RATING  
–0.5 to +7.0  
AVSS to VDD +0.5  
–0.5 to +0.5  
–0.5 to VDD +0.5  
–0.5 to VDD +0.5  
4.0  
UNIT  
V
Power supply voltage  
AVDD  
AVSS  
VI  
V
V
Input voltage  
V
Output voltage  
VO  
V
All output pins  
mA  
mA  
mA  
mA  
Output current low  
Output current high  
IOL  
IOH  
Total of all output pins  
All output pins  
100  
–2.0  
Total of all output pins  
–50  
A/D converter reference  
input voltage  
–0.5 to AVDD +0.3  
–40 to +85  
VAREF  
V
Operating ambient  
temperature  
TA  
°C  
Storage temperature  
Tstg  
–65 to +150  
°C  
Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of  
the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit  
of the value at which the product can be used without physical damages. Be sure not to exceed or fall  
below this value when using the product.  
35  
µPD78C10A,78C11A,78C12A  
OSCILLATOR CHARACTERISTICS (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ±10 %, VSS = AVSS = 0 V,  
VDD –0.8 V AVDD VDD, 3.4 V VAREF AVDD)  
RESONATOR  
RECOMMENDED CIRCUIT  
PARAMETER  
TEST CONDITIONS  
MIN.  
4
MAX.  
15  
UNIT  
MHz  
A/D converter not  
used  
X1  
X2  
Ceramic*1  
or  
crystal  
Oscillator frequency (fXX)  
resonator*2  
C1  
C2  
A/D converter used  
5.8  
4
15  
15  
MHz  
MHz  
A/D converter not  
used  
X1  
X2  
X1 input frequency (fX)  
A/D converter used  
5.8  
0
15  
20  
MHz  
ns  
External  
clock  
X1 rise time,  
fall time (tr, tf)  
HCMOS  
Inverter  
X1 input high, low  
level width (t H, t L)  
20  
250  
ns  
Cautions 1. Place oscillator circuit as close as possible to X1, X2 pins.  
2. Ensure that no other signal lines pass through the shadow area.  
*
1. The ceramic oscillators and external capacitance given in the following  
table are recommended.  
RECOMMENDED CONSTANTS  
MAKER  
PRODUCT NAME  
CSA7.37MT  
C2[pF]  
30  
C1[pF]  
30  
On-chip  
30  
CST7.37MTW  
CSA12.0MT  
CST12.0MTW  
CSA15.00MX001  
FCR8.0MC  
On-chip  
30  
Murata Mfg. Co., Ltd  
On-chip  
15  
On-chip  
15  
FCR10.0MC  
On-chip  
TDK Corp.  
On-chip  
FCR12.0OMC  
FCR15.0MC  
*
2. When a crystal oscillator is used, the following external capacitance is  
recommended.  
C1 = C2 = 10 pF  
36  
µPD78C10A,78C11A,78C12A  
CAPACITANCE (TA = 25 °C, VDD = VSS = 0 V)  
PARAMETER  
Input capacitance  
SYMBOL  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
10  
UNIT  
pF  
CI  
CO  
CIO  
fC = 1 MHz  
Unmeasured pins returned to 0 V  
Output capacitance  
Input-output capacitance  
20  
pF  
20  
pF  
37  
µPD78C10A,78C11A,78C12A  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ±10 %, VSS = AVSS = 0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
0
TYP.  
MAX.  
0.8  
UNIT  
V
All except RESET, STOP, NMI,  
SCK, INT1, TI, AN4 to AN7  
VIL1  
Input voltage low  
RESET, STOP, NMI, SCK, INT1,  
TI, AN4 to AN7  
VIL2  
V1IH  
0
0.2 VDD  
VDD  
V
V
All except RESET, STOP, NMI,  
SCK, INT1, TI, AN4 to AN7, X1, X2  
2.2  
Input voltage  
high  
RESET, STOP, NMI, SCK, INT1,  
TI, AN4 to AN7, X1, X2  
0.8 VDD  
VDD  
V
V
VIH2  
VOL  
Output voltage low  
IOL = 2.0 mA  
0.45  
VDD  
–1.0  
V
IOH = –1.0 mA  
Output voltage  
high  
VOH  
VDD  
–0.5  
V
IOH = –100 µA  
Input current  
II  
INT1*1, TI(PC3)*2 ; 0 V VI VDD  
±200  
±10  
µA  
All except INT1, TI (PC3),  
0 V VI VDD  
Input leakage  
current  
ILI  
µA  
µA  
Output leakage  
current  
ILO  
0 V VO VDD  
±10  
AIDD1  
AIDD2  
IDD1  
Operating mode fXX = 15 MHz  
STOP mode  
0.5  
10  
13  
7
1.3  
20  
25  
13  
mA  
µA  
AVDD power  
supply current  
Operating mode fXX = 15 MHz  
HALT mode fXX = 15 MHz  
mA  
mA  
VDD power  
supply current  
IDD2  
Data retention  
voltage  
Hardware/software STOP mode  
2.5  
17  
V
VDDDR  
IDDDR  
RL  
Hardware/software*3  
VDDDR = 2.5 V  
1
15  
50  
µA  
µA  
Data retention  
current  
STOP mode  
VDDDR = 5 V ±10%  
10  
3.5 V VDD 5.5 V,  
VI = 0 V  
Pull-up resistor*4  
Ports A, B and C  
27  
75  
kΩ  
Caution For a detailed description of the hardware STOP mode, refer to the 87AD Series mPD78C18 User's  
Manual.  
*
1. If self-bias should be generated by ZCM register.  
2. If the control mode is set by MCC register, and self-bias should be generated by ZCM register.  
3. If self-bias is not generated.  
4. µPD78C11A and 78C12A only.  
38  
µPD78C10A,78C11A,78C12A  
AC CHARACTERISTICS (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ±10 %, VSS = AVSS = 0 V)  
Read/write Operation:  
PARAMETER  
SYMBOL  
tCYC  
tAL  
TEST CONDITIONS  
MIN.  
66  
MAX.  
250  
UNIT  
ns  
X1 input cycle time  
Address setup time (to ALE )  
Address hold time (from ALE )  
RD delay time from address  
Address float time from RD ↓  
Data input time from address  
Data input time from ALE ↓  
Data input time from RD ↓  
RD delay time from ALE ↓  
Data hold time (from RD )  
ALE delay time from RD ↑  
30  
ns  
tLA  
fXX = 15 MHz, CL = 100 pF  
35  
ns  
tAR  
100  
ns  
tAFR  
tAD  
CL = 100 pF  
20  
ns  
250  
135  
120  
ns  
tLDR  
tRD  
ns  
fXX = 15 MHz, CL = 100 pF  
ns  
tLR  
15  
0
ns  
tRDH  
tRL  
CL = 100 pF  
ns  
fXX = 15 MHz, CL = 100 pF  
80  
ns  
In Data Read  
fXX = 15 MHz, CL = 100 pF  
215  
415  
ns  
ns  
RD low level width  
tRR  
In OP Code Fetch  
fXX = 15 MHz, CL = 100 pF  
ALE high level width  
tLL  
tML  
tLM  
tIL  
fXX = 15 MHz, CL = 100 pF  
90  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
M1 setup time (to ALE )  
M1 hold time (from ALE )  
IO/M setup time (to ALE )  
IO/M hold time (from ALE )  
WR delay time from address  
Data output time from ALE ↓  
Data output time from WR ↓  
WR delay time from ALE ↓  
Data setup time (to WR )  
Data hold time (from WR )  
ALE delay time from WR ↑  
WR low level width  
35  
fXX = 15 MHz  
30  
tLI  
35  
tAW  
tLDW  
tWD  
tLW  
tDW  
tWDH  
tWL  
tWW  
100  
fXX = 15 MHz, CL = 100 pF  
CL = 100 pF  
180  
100  
15  
165  
60  
fXX = 15 MHz, CL = 100 pF  
80  
215  
39  
µPD78C10A,78C11A,78C12A  
Serial Operation :  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
800  
400  
1.6  
MAX.  
UNIT  
ns  
ns  
µs  
*1  
*2  
SCK input  
SCK cycle time  
tCYK  
SCK output  
SCK input  
*1  
*2  
335  
160  
700  
335  
160  
700  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK low level width  
SCK high level width  
tKKL  
SCK output  
SCK input  
*1  
*2  
tKKH  
SCK output  
RXD setup time (to SCK )  
RXD hold time (from SCK )  
TXD delay time from SCK ↓  
tRXK  
tKRX  
tKTX  
*1  
*1  
*1  
80  
210  
*
1. If clock rate is × 1 in asynchronous mode, synchronous mode, or I/O interface mode.  
2. If clock rate is × 16 or × 64 in asynchronous mode.  
Remarks The numeric values in the table are those when fXX = 15 MHz, CL = 100 pF.  
Zero-Cross Characteristics :  
PARAMETER  
Zero-cross detection input  
Zero-cross accuracy  
SYMBOL  
VZX  
TEST CONDITIONS  
MIN.  
1
MAX.  
1.8  
UNIT  
VACP-P  
mV  
AC combination  
60 Hz sine wave  
AZX  
±135  
Zero-cross detection input  
frequency  
fZX  
0.05  
1
kHz  
Other Operation :  
PARAMETER  
SYMBOL  
tTIH, tTIL  
tCI1H, tCI1L  
tCI2H,tCI2L  
tNIH, tNIL  
tI1H, tI1L  
TEST CONDITIONS  
MIN.  
6
MAX.  
UNIT  
tCYC  
tCYC  
tCYC  
µs  
TI high, low level width  
Event count mode  
6
CI high, low level width  
Pulse width test mode  
48  
10  
36  
36  
36  
10  
NMI high, low level width  
INT1 high, low level width  
INT2 high, low level width  
AN4 to AN7, low level width  
RESET high, low level width  
tCYC  
tCYC  
tCYC  
µs  
tI2H, tI2L  
tANH, tANL  
tRSH, tRSL  
40  
µPD78C10A,78C11A,78C12A  
A/D CONVERTER CHARACTERISTICS (TA = –40 to +85 °C, VDD = +5.0 V ±10 %, VSS = AVSS = 0 V,  
VDD –0.5 V AVDD VDD, 3.4 V VAREF AVDD)  
PARAMETER  
Resolution  
SYMBOL  
TEST CONDITIONS  
MIN.  
8
TYP.  
MAX.  
UNIT  
Bits  
3.4 V VAREF AVDD, 66 ns tCYC 170 ns  
4.0 V VAREF AVDD, 66 ns tCYC 170 ns  
±0.8%  
±0.6%  
FSR  
FSR  
Absolute accuracy*  
TA = –10 to +70 °C,  
4.0 V VAREF AVDD, 66 ns tCYC 170 ns  
±0.4%  
FSR  
66 ns tCYC 110 ns  
576  
432  
96  
tCYC  
tCYC  
tCYC  
tCYC  
V
Conversion time  
tCONV  
tSAMP  
110 ns tCYC 170 ns  
66 ns tCYC 110 ns  
Sampling time  
110 ns tCYC 170 ns  
72  
Analog input voltage  
VIAN  
AN0 to AN7 (including unused pins)  
–0.3  
VAREF +0.3  
Analog input  
impedance  
RAN  
50  
MΩ  
Reference voltage  
VAREF current  
VAREF  
IAREF1  
IAREF2  
AIDD1  
AIDD2  
3.4  
AVDD  
3.0  
1.5  
1.3  
20  
V
Operating mode  
STOP mode  
1.5  
0.7  
0.5  
10  
mA  
mA  
mA  
µA  
Operating mode fXX = 15 MHz  
STOP mode  
AVDD power supply  
current  
*
Quantization error (±1/2 LSB) is not included.  
AC Timing Test Point  
VDD – 1.0 V  
2.2 V  
0.8 V  
2.2 V  
0.8 V  
Test Points  
0.45 V  
41  
µPD78C10A,78C11A,78C12A  
tCYC-Dependent AC Characteristics Expression  
PARAMETER  
EXPRESSION  
MIN./MAX.  
MIN.  
UNIT  
ns  
tAL  
tLA  
tAR  
tAD  
tLDR  
tRD  
tLR  
tRL  
2T – 100  
T – 30  
MIN.  
ns  
3T – 100  
7T – 220  
5T – 200  
4T – 150  
T – 50  
MIN.  
ns  
MAX.  
MAX.  
MAX.  
MIN.  
ns  
ns  
ns  
ns  
2T – 50  
MIN.  
ns  
4T – 50 (In data read)  
tRR  
MIN.  
ns  
7T – 50 (In OP code fetch)  
tLL  
2T – 40  
MIN.  
MIN.  
MIN.  
MIN.  
MIN.  
MIN.  
MAX.  
MIN.  
MIN.  
MIN.  
MIN.  
MIN.  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tML  
tLM  
tIL  
2T – 100  
T – 30  
2T – 100  
tLI  
T – 30  
tAW  
tLDW  
tLW  
tDW  
tWDH  
tWL  
tWW  
3T – 100  
T + 110  
T – 50  
4T – 100  
2T – 70  
2T – 50  
4T – 50  
12T (SCK input)*1/6T (SCK input)*2  
24T (SCK output)  
tCYK  
tKKL  
tKKH  
MIN.  
MIN.  
MIN.  
ns  
ns  
ns  
5T + 5 (SCK input)*1/2.5T + 5 (SCK input)*2  
12T – 100 (SCK output)  
5T + 5 (SCK input)*1/2.5T + 5 (SCK input)*2  
12T – 100 (SCK output)  
*
1. If clock rate is ×1, in asynchronous mode, synchronous mode, or I/O interface mode.  
2. If clock rate is 16 × 64, in asynchronous mode.  
Cautions 1. T = tCYC = 1/fXX  
2. Other items which are not listed in this table are not dependent on oscillator frequency (fXX).  
42  
µPD78C10A,78C11A,78C12A  
Timing Waveform  
Read operation  
tCYC  
X1  
PF7 - 0  
PD7 - 0  
ALE  
Address (Upper)  
tAD  
Address (Lower)  
Read Data  
tLDR  
tRDH  
tRL  
tLL  
tLA  
tAFR  
tAL  
tRD  
tRR  
RD  
tLR  
tAR  
tML  
tIL  
tLM  
tLI  
MODE1  
(M1)*1  
MODE0  
(IO/M)*2  
*
1. When MODE1 pin is pulled up, M1 signal is output to MODE1 pin in the 1st OP code fetch cycle.  
2. When MODE0 pin is pulled up, IO/M signal is output to MODE0 pin in sr to sr2 register read cycle.  
Write operation  
X1  
PF7 - 0  
PD7 - 0  
ALE  
Address (Upper)  
tLDW  
Write Data  
Address (Lower)  
tDW  
tWDH  
tWL  
tLL  
tLA  
tWD  
tWW  
tAL  
WR  
tLW  
tLI  
tAW  
tIL  
MODE0  
(IO/M)*3  
*
3. When MODE0 pin is pulled up, IO/M signal is output to MODE0 pin in sr to sr2 register write cycle.  
43  
µPD78C10A,78C11A,78C12A  
Serial Operation  
tCYK  
tKKL  
tKKH  
SCK  
tKTX  
TXD  
RXD  
tRXK  
tKRX  
Timer Input Timing  
tTIH  
tTIL  
TI  
Timer/Event Counter Input Timing  
Event Counter Mode  
tCI1H  
tCI1L  
CI  
Pulse Width Test Mode  
tCI2H  
tCI2L  
CI  
44  
µPD78C10A,78C11A,78C12A  
Interrupt Input Timing  
tNIH  
tI1L  
tI2H  
tNIL  
tI1H  
tI2L  
NMI  
INT1  
INT2  
Reset Input Timing  
tRSH  
tRSL  
RESET  
0.8 VDD  
0.2 VDD  
External Clock Timing  
t
Φ H  
0.8 VDD  
X1  
0.8 V  
tr  
tf  
tΦ H  
tCYC  
45  
µPD78C10A,78C11A,78C12A  
DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS  
(TA = –40 to +85 °C)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
2.5  
TYP.  
MAX.  
5.5  
UNIT  
V
Data retention power  
supply voltage  
VDDDR  
VDDDR = 2.5 V  
1
15  
50  
µA  
µA  
µs  
Data retention power  
supply current  
IDDDR  
VDDDR = 5 V ±10%  
10  
VDD rise/fall time  
tRVD, tFVD  
tSSTVD  
200  
STOP setup time  
(to VDD)  
12T +0.5  
µs  
µs  
STOP hold time  
(from VDD)  
tHVDST  
12T +0.5  
Data Retention Timing  
90 %  
10 %  
VDD  
VDDDR  
tFVD  
tRVD  
tHVDST  
tSSTVD  
VIH2  
VIL2  
STOP  
46  
µPD78C10A,78C11A,78C12A  
7. CHARACTERISTIC CURVES (REFERENCE VALUES)  
IDD1, IDD2 vs VDD  
(T  
A
= 25 ˚C, fXX = 15 MHz)  
20  
IDD1 (TYP.)  
15  
10  
IDD2 (TYP.)  
5
0
4.5  
5.0  
5.5  
6
Power Supply Voltage VDD [V]  
IDD1, IDD2 vs fXX  
(TA  
= 25 ˚C, VDD = 5 V)  
30  
20  
10  
I
I
DD1 (TYP.)  
DD2 (TYP.)  
0
5
10  
15  
Oscillator Frequency fXX [MHz]  
47  
µPD78C10A,78C11A,78C12A  
IOL vs VOL  
(TA  
= 25 ˚C, VDD = 5 V)  
2.5  
2.0  
1.5  
TYP.  
1.0  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Output Voltage Low VOL [V]  
IOH vs VOH  
(TA = 25 ˚C, VDD = 5 V)  
–1.5  
–1.0  
–0.5  
TYP.  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Power Supply Voltage – Output Voltage High VDD – VOH [V]  
48  
µPD78C10A,78C11A,78C12A  
IDDDR vs VDDDR  
(TA = 25 ˚C)  
10  
8
µ
6
TYP.  
4
2
0
2
3
4
5
6
Data Retention Power Supply Voltage VDDDR [V]  
49  
µPD78C10A,78C11A,78C12A  
8. DIFFERENCES IN 87AD SERIES PRODUCTS (1/2)  
Product Name  
µPD7810H, 7811H  
µPD78C10, 78C11*1  
µPD7810, 7811*1  
Item  
159 kinds (STOP instruction  
added)  
Number of instructions  
158 kinds  
ROM less (µPD7810)  
ROM less (µPD7810H)  
4K × 8 bits (µPD7811H)  
ROM less (µPD78C10)  
4K × 8 bits (µPD78C11)  
On-chip ROM  
4K × 8 bits (µPD7811)  
On-chip RAM  
256 × 8 bits  
Nnmber of special registers  
Operating frequency  
Power supply voltage  
Operating temperature range  
27  
28 (ZCM register added)  
4 to 10 MHz  
4 to 15 MHz*2  
5 V ±10 %  
10 to 12 MHz  
5 V ±5 %  
4 to 15 MHz  
5 V ±10 %  
5 V ±10 %  
–40 to +85 °C  
–40 to +85 °C  
–10 to +70 °C  
–10 to +70 °C  
Three kinds: HALT mode,  
software STOP mode, and  
hardware STOP mode. All  
data of on-chip RAM are  
held by low power supply  
voltage (2.5V) in software/  
hardware STOP mode.  
Thirty-two bytes of the on-chip RAM 256 bytes of data  
are held by low power supply voltage (3.2 V)  
Standby function  
Number of HALT instruction state  
11  
12  
CPU operation  
HALT  
M3 T2 cycle repeated  
High level  
Stop  
mode  
ALE  
Low level  
Zero crossing detector self-bias  
control  
Self-bias control possible (by  
ZCM register specification)  
Self-bias control impossible  
By clock sampling  
NMI, RESET noise elimination  
method  
By analog delay  
Operation stop possible  
(VAREF pin operation)  
Operation stop impossible  
A/D converter operation control  
0.4% (TA = –10 to +70 °C,  
VAREF = 4.0V to AVDD)  
A/D converter absolute accuracy  
(Unit: FSR)  
0.4% (TA = –10 to +50 °C)  
0.6% (TA = –40 to +85 °C,  
0.4% (TA = –10 to +70 °C)*3  
0.6% (TA = –40 to +85 °C)  
VAREF = 4.0V to AVDD)  
0.8% (TA = –40 to +85 °C  
VAREF = 3.4V to AVDD)  
3.4 V to AVDD  
VAREF voltage range  
Analog input voltage range  
AICC/AIDD1  
AVCC to 0.5V to AVCC  
0V to VAREF  
6 mA Typ.  
0.5 mA Typ.  
10 µA Typ.  
1.5 mA Typ.  
0.7 mA Typ.  
AIDD2  
IAREF/IAREF1  
IAREF2  
0.5 mA Typ.  
2.0 mA Typ.  
* 1. µPD7810, 7811, 78C10 and 78C11 are maintenance products.  
2. K, E, P masks apply from 4 MHz to 12 MHz.  
3. The µPD7810HG and 7811HG G masks, µPD7810HCW and 7811HCW K masks apply TA = 0 to +70 °C.  
50  
µPD78C10A,78C11A,78C12A  
µPD78C10A, 78C11A,  
µPD78CP14  
µPD78CP18  
78C12A  
159 kinds (STOP instruction added)  
ROM less (µPD78C10A)  
4K × 8 bits (µPD78C11A)  
8K × 8 bits (µPD78C12A)  
32K × 8 bits (PROM)  
1024 × 8 bits  
16K × 8 bits (PROM)  
256 × 8 bits  
28 (ZCM register added)  
6 to 15 MHz  
4 to 15 MHz  
4 to 15 MHz  
5 V ±10 %  
5 V ±10 %  
5 V ±5 %  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
Three kinds: Halt mode, software STOP mode, and hardware STOP mode. All data of  
on-chip RAM are held by low power supply voltage (2.5 V) in software/hardware STOP  
mode.  
12  
STOP  
Low level  
Self-bias control possible  
(by ZCM register specification)  
By analog delay  
Operation stop impossible (VAREF pin operation)  
0.4% (TA = –10 to +70 °C, VAREF = 4.0 V to AVDD)  
0.6% (TA = –40 to +85 °C, VAREF = 4.0 V to AVDD)  
0.8% (TA = –40 to +85 °C, VAREF = 3.4 V to AVDD)  
3.4V to AVDD  
–0.3 V to VAREF + 0.3 V  
0V to VAREF  
0.5mA Typ.  
10 µA Typ.  
1.5 mA Typ.  
0.7 mA Typ.  
–0.3 V to VAREF + 0.3 V  
51  
µPD78C10A,78C11A,78C12A  
DIFFERENCES IN 87AD SERIES PRODUCTS (2/2)  
Product Name  
µPD7810H, 7811H  
µPD78C10, 78C11*1  
µPD7810, 7811*1  
Item  
RD/WR  
ALE  
High level  
Output  
Operation  
High-impedance  
during RESET  
Zero is output at the pin specified by the address bus.  
Other pins are high impedance.  
PD/PF*4  
On-chip pull-up register  
(Mask option)  
Impossible  
NMOS  
Device configuration  
CMOS  
3.2 mA (–10 to +70°C) MAX.  
3.2 mA MAX.  
3.5 mA (–40 to +85°C) MAX.  
50 µA MAX.  
Standby current  
(VDD = 5 V ±10 %)  
203.2 mA (–10 to +70°C) MAX.  
203.2 mA MAX.  
223.5 mA (–40 to +85°C) MAX.  
Current consumption  
25 mA MAX.  
Cycle time input  
20T  
SCK  
Low level width  
10T + 80  
10T – 80  
T + 110  
*5  
(Unit: ns)  
High level width  
TLDW  
TWD  
TDW  
Bus  
timing  
(Unit: ns)  
100  
4T – 100  
Hardware STOP mode restrictions  
Yes  
Yes  
Asyncronous mode restrictions  
during external SCK input.  
No  
64-pin plastic shrink DIP  
64-pin plastic QUIP  
straight*8  
64-pin plastic QUIP  
64-pin plastic QFP  
(14 × 20 mm, 2.05 mm  
thickness)  
64-pin plastic shrink DIP  
64-pin plastic QUIP straight*7  
Package  
64-pin plastic QUIP  
64-pin plastic QFP  
(14 × 20 mm, 2.70 mm  
thickness)  
68-pin plastic QFJ  
Pin connection*10  
VCC (64-pin), VDD (63-pin)  
VDD (64-pin), STOP (63-pin)  
* 1. µPD7810, 7811, 78C10 and 78C11 are maintenance products.  
4. For µPD7810, 7810H, 78C10 and 78C10A.  
5.  
(Unit : ns)  
For the asyncronous mode with clock For the asyncronous mode with clock  
rate x1, syncronous mode, and I/O  
interface mode  
rate ×16 and ×64  
Cycle time input  
SCK Low level width  
High level width  
12T  
6T  
5T + 5  
5T + 5  
2.5T + 5  
2.5T + 5  
Remarks T = tCYC = 1/fxx  
52  
µPD78C10A,78C11A,78C12A  
µPD78C10A, 78C11A,  
µPD78CP14  
µPD78CP18  
78C12A  
High-impedance  
Only µPD78C11A, 78C12A  
Impossible  
possible (ports A, B, C)  
CMOS  
50 µA MAX.  
1 mA MAX.  
50 µA MAX.  
(VDD = 5 V ±10 %)  
(VDD = 5 V ±5 %)  
(VDD = 5 V ±10 %)  
25 mA MAX.  
35 mA MAX.  
32 mA MAX.  
*5  
T + 130  
140  
T + 110  
110  
4T – 140  
4T – 100  
Yes*6  
No  
No  
64-pin plastic shrink DIP  
64-pin plastic QUIP  
64-pin plastic QFP (14 × 20  
mm, 2.70 mm thickness)  
68-pin plastic QFJ  
64-pin plastic shrink DIP  
64-pin plastic QUIP  
64-pin plastic shrink DIP  
64-pinplasticQUIPstraight*9  
64-pin plastic QUIP  
64-pin plastic QFP (14 × 20  
mm, 2.70 mm thickness)  
64-pin ceramic shrink DIP  
with window  
64-pin ceramic shrink DIP  
with window  
64-pin plastic QFP (14 × 20  
mm, 2.70 mm thickness)  
68-pin plastic QFJ  
64-pin ceramic QUIP with  
window  
64-pin ceramic WQFN  
64-pin ceramic WQFN  
VDD (64-pin), STOP (63-pin)  
*
6. K mask products only  
7. µPD7811, 7811H only  
8. µPD78C11, only  
9. µPD78C11A, 78C12A only  
10. Items in the parentheses are the pin numbers for the 64-pin plastic shrink DIP, 64-pin plastic QUIP straight  
and 64-pin plastic QUIP.  
Caution Since the oscillator characteristics, I/O level, and some internal operation timing are different, be careful  
when studying direct replacement of the mPD78C10A, 78C11A, 78C12A and µPD7810, 7811, 7810H,  
7811H, 78C10, 78C11.  
53  
µPD78C10A,78C11A,78C12A  
9. PACKAGE INFORMATION  
64 PIN PLASTIC SHRINK DIP (750 mil)  
64  
33  
1
32  
A
K
L
F
D
M
R
B
C
M
N
NOTE  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
58.68 MAX.  
1.78 MAX.  
1.778 (T.P.)  
2.311 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.750 (T.P.)  
0.669  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
19.05 (T.P.)  
17.0  
J
K
L
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0~15°  
0~15°  
P64C-70-750A,C-1  
54  
µPD78C10A,78C11A,78C12A  
55  
µPD78C10A,78C11A,78C12A  
56  
µPD78C10A,78C11A,78C12A  
64PIN PLASTIC QFP (14 × 20) (UNIT: mm)  
A
B
51  
52  
33  
32  
detail of lead end  
64  
1
20  
19  
G
M
N
H
I
J
K
L
P64GF-100-3B8,3BE,3BR-1  
NOTE  
ITEM  
A
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.20  
mm (0.008 inch) of its true position (T.P.) at  
maximum material condition.  
23.6 0.4  
20.0 0.2  
14.0 0.2  
17.6 0.4  
1.0  
0.929 0.016  
+0.009  
B
0.795  
–0.008  
+0.009  
C
0.551  
–0.008  
D
F
0.693 0.016  
0.039  
G
H
I
1.0  
0.039  
+0.004  
0.40 0.10  
0.20  
0.016  
–0.005  
0.008  
J
1.0 (T.P.)  
1.8 0.2  
0.039 (T.P.)  
+0.008  
K
0.071  
–0.009  
+0.009  
0.031  
L
0.8 0.2  
–0.008  
+0.10  
+0.004  
0.15  
M
N
P
0.006  
–0.05  
–0.003  
0.12  
0.005  
2.7  
0.106  
Q
S
0.1 0.1  
3.0 MAX.  
0.004 0.004  
0.119 MAX.  
57  
µPD78C10A,78C11A,78C12A  
ES 64PIN CERAMIC QFP (REFERENCE DRAWING) (UNIT: mm)  
Cautions 1. The metal cap is connected to  
pin 26 and is VSS (GND) level.  
2. The bottom leads are tilted.  
3. Since cutting of the end of the  
leads is no process-controlled,  
the lead length is unspecified.  
58  
µPD78C10A,78C11A,78C12A  
68PIN PLASTIC QFJ ( 950 mil) (UNIT: mm)  
A
B
68  
1
F
E
T
Q
K
M
M
N
P
P68L-50A1-2  
NOTE  
ITEM  
A
MILLIMETERS  
25.2 0.2  
24.20  
INCHES  
Each lead centerline is located within 0.12  
mm (0.005 inch) of its true position (T.P.) at  
maximum material condition.  
0.992 0.008  
0.953  
B
C
24.20  
0.953  
D
E
25.2 0.2  
1.94 0.15  
0.6  
0.992 0.008  
+0.007  
0.076  
–0.006  
F
0.024  
+0.009  
G
H
I
4.4 0.2  
2.8 0.2  
0.9 MIN.  
3.4  
0.173  
–0.008  
+0.009  
0.110  
–0.008  
0.035 MIN.  
0.134  
J
K
1.27 (T.P.)  
0.40 1.0  
0.12  
0.050 (T.P.)  
+0.004  
M
N
P
0.016  
–0.005  
0.005  
+0.009  
23.12 0.20  
0.15  
0.910  
–0.008  
Q
T
0.006  
R 0.8  
R 0.031  
+0.10  
+0.004  
U
0.20  
0.008  
–0.05  
–0.002  
59  
µPD78C10A, 78C11A, 78C12A  
10. RECOMMENDED SOLDERING CONDITIONS  
The µPD78C10A, 78C11A, and 78C12A should be soldered and mounted under the conditions recommended in  
the table below.  
For detail of recommended soldering conditions, refer to the information document "Semiconductor Device  
Mounting Technology Manual" (IEI-1207).  
For soldering methods and conditions other than those recommended below, contact our sales personnel.  
Table 10-1 Surface Mounting Type Soldering Conditions  
(1)µPD78C10AGF-3BE  
: 64-pin plastic QFP (14 × 20 mm)  
µPD78C11AGF-×××-3BE : 64-pin plastic QFP (14 × 20 mm)  
µPD78C12AGF-×××-3BE : 64-pin plastic QFP (14 × 20 mm)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Condition Symbol  
IR35-00-2  
Package peak temperature : 235 °C, Duration : 30 sec. max. (210  
°C min.), Number of times : 2 max.  
<Points to note>  
(1) Start the second reflow after the device temperature by the first  
reflow returns to normal.  
(2) Fluxwashingbythewaterafterthefirstreflowshouldbeavoided.  
Package peak temperature : 215 °C, Duration : 40 sec. max. (200  
°C min.), Number of times : 2 max.  
VPS  
VP15-00-2  
WS60-00-1  
<Points to note>  
(1) Start the second reflow after the device temperature by the first  
reflow returns to normal.  
(2) Fluxwashingbythewaterafterthefirstreflowshouldbeavoided.  
Solder bath temperature : 260 °C max., Duration : 10 sec. max.,  
Number of times : 1  
Pre-heating temperature : 120 °C max. (package surface tempera-  
ture)  
Wave soldering  
Pin part heating  
Pin temperature : 300 °C max.,  
Duration: 3 sec. max. (per device side)  
Caution  
Do not use two or more soldering methods in combination (except the pin part heating method).  
(2)µPD78C10AL  
µPD78C11AL-×××  
µPD78C12AL-×××  
:
:
:
68-pin plastic QFJ ( 950 mil)  
68-pin plastic QFJ ( 950 mil)  
68-pin plastic QFJ ( 950 mil)  
Recommended  
Soldering Conditions  
Soldering Method  
Infrared reflow  
Condition Symbol  
Package peak temperature : 230 °C, Duration : 30 sec. max.  
(210 °C min.), Number of times : 1  
IR30-00-1  
VP15-00-1  
Package peak temperature : 215 °C, Duration : 40 sec. max.  
(200 °C min.), Number of times : 1  
VPS  
Pin part heating  
Pin temperature : 300 °C max., Duration : 3 sec. max. (per device  
side)  
Caution  
Do not use two or more soldering methods in combination (except the pin part heating method).  
60  
µPD78C10A, 78C11A, 78C12A  
Table 10-2 Inserted Type Soldering Conditions  
(1) µPD78C10ACW  
µPD78C11ACW-×××  
µPD78C12ACW-×××  
µPD78C10AGQ-36  
: 64-pin plastic shrink DIP (750 mil)  
: 64-pin plastic shrink DIP (750 mil)  
: 64-pin plastic shrink DIP (750 mil)  
: 64-pin plastic QUIP  
µPD78C11AGQ-×××-36 : 64-pin plastic QUIP  
µPD78C12AGQ-×××-36 : 64-pin plastic QUIP  
Soldering Method  
Wave soldering  
Soldering Conditions  
Solder bath temperature: 260 °C max.  
(pin only)  
Duration: 10 sec. max.  
Pin temperature: 300 °C max.  
Pin part heating  
Duration: 3 sec. max. (per pin)  
Caution  
Ensure that the application of wave soldering is limited to  
the pins and no solder touches the main unit directly.  
(2)µPD78C11AGQ-×××-37 : 64-pin plastic QUIP straight  
µPD78C12AGQ-×××-37 : 64-pin plastic QUIP straight  
Soldering Method  
Pin part heating  
Soldering Conditions  
Pin temperature: 300 °C max.  
Duration: 3 sec. max. (per pin)  
61  
µPD78C10A,78C11A,78C12A  
APPENDIX DEVELOPMENT TOOLS  
The following development tools are available to develop a system which uses 87AD series products.  
Language Processor  
This is a program which converts a program written in mnemonic to an object code that micro-  
computer execution is possible.  
Besides, it contains a function to automatically create a symbol/table, and optimize a branch  
instruction.  
Host Machine  
PC-9800 series  
IBM PC/ATTM  
Ordering Code (Product Name)  
µS5A13RA87  
OS  
Supply Medium  
3.5-inch 2HD  
87AD series  
relocatable assembler  
(RA87)  
MS-DOSTM  
Ver. 2.11  
to  
5-inch 2HD  
µS5A10RA87  
Ver. 5.00A*  
PC DOSTM  
(Ver. 3.1)  
3.5-inch 2HC  
5-inch 2HC  
µS7B13RA87  
µS7B10RA87  
PROM Write Tools  
With an provided board and an optional programmer adapter connected, this PROM programmer  
can manipulate from a stand-alone or host machine to perform programming on single-chip  
microcomputer which incorporates PROM.  
PG-1500  
It is also capable of programming a typical PROM ranging from 256K to 4M bits.  
PA-78CP14CW/  
GF/GQ/KB/L  
PROM programmer adapter for µPD78CP14/78CP18. Used by connecting to PG-1500.  
PA-78CP14CW  
PA-78CP14GF  
PA-78CP14GQ  
PA-78CP14KB  
PA-78CP14L  
For µPD78CP14CW, 78CP14DW, 78CP18CW, 78CP18DW  
For µPD78CP14GF-3BE, 78CP18GF-3BE  
For µPD78CP14G-36, 78CP14R, 78CP18GQ-36  
For µPD78CP14KB, 78CP18KB  
For µPD78CP14L  
Connected PG-1500 to a host machine by using serial and parallel interface, to control the PG-  
1500 on a host machine.  
Host Machine  
PC-9800 series  
Ordering Code (Product Name)  
OS  
Supply Medium  
3.5-inch 2HD  
5-inch 2HD  
PG-1500  
MS-DOS  
Ver. 2.11  
to  
µS5A13PG1500  
µS5A10PG1500  
controller  
Ver. 5.00A*  
PC DOS  
IBM PC/AT  
5-inch 2HC  
µS7B10PG1500  
(Ver. 3.1)  
* Ver. 5.00/5.00A has a task swap function, but this function cannot be used with this software.  
Remarks Operation of assemblers and the PG-1500 controller are guaranteed only on the host machines and  
operating systems quoted above.  
62  
µPD78C10A,78C11A,78C12A  
Debugging tools  
An in-circuit emulator (IE-78C11-M) is available as a program debugging tool for 87AD series. The following table  
shows its system configuration.  
The IE-78C11-M is an in-circuit emulator which works with 87AD series.  
Only the IE-78C11-M should be used for a plastic QUIP package, while it should be used with a  
IE-78C11-M  
conversion socket for a plastic shrink DIP package.  
It can be connected to a host machine to perform efficient debugging.  
Conversion sockets for plastic shrink DIP.  
EV-9001-64  
Used in combination with the IE-78C11-M.  
64-pin LCC socket. Can be used as a substitute for 64-pin plastic QFP products with window in  
EV-9200G-64  
combination with the µPD78CP14KB/78CP18KB.  
Connects the IE-78C11-M to host machine by using the RS-232-C, then controls the IE-78C11-M  
on host machine.  
Ordering Code (Product Name)  
µS5A13IE78C11  
Host Machine  
PC-9800 series  
IBM PC/AT  
OS  
Supply Medium  
3.5-inch 2HD  
IE-78C11-M  
control program  
(IE controller)  
MS-DOS  
Ver. 2.11  
to  
5-inch 2HD  
5-inch 2HC  
µS5A10IE78C11  
Ver. 3.30D  
PC DOS  
µS7B10IE78C11  
(Ver. 3.1)  
Remarks Operation of the IE controller is guaranteed only on the host machine and operating systems quoted  
above.  
63  
µPD78C10A,78C11A,78C12A  
[MEMO]  
64  
µPD78C10A,78C11A,78C12A  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction of  
the gate oxide and ultimately degrade the device operation. Steps must be  
taken to stop generation of static electricity as much as possible, and quickly  
dissipate it once, when it has occurred. Environmental control must be  
adequate. When it is dry, humidifier should be used. It is recommended to  
avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded  
using wrist strap. Semiconductor devices must not be touched with bare  
hands. Similar precautions need to be taken for PW boards with semiconductor  
devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of CMOS  
devices must be fixed high or low by using a pull-up or pull-down circuitry. Each  
unused pin should be connected to VDD or GND with a resistor, if it is considered  
to have a possibility of being an output pin. All handling related to the unused  
pins must be judged device by device and related specifications governing the  
devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Production  
process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed immedi-  
ately after power-on for devices having reset function.  
65  
µPD78C10A,78C11A,78C12A  
The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products  
may be prohibited without governmental license. To export or re-export some or all of these products from a country other  
than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.  
The customer must judge : µPD78C11ACW-×××, 78C11AGF-×××-3BE, 78C11AGQ-×××-36, 78C11AGQ-×××-37,  
the need for license  
µPD78C11AL-×××, 78C12ACW-×××, 78C12AGF-×××-3BE, 78C12AGQ-×××-36,  
µPD78C12AGQ-×××-37, 78C12AL-×××  
License not needed :  
µPD78C10ACW, 78C10AGF-3BE, 78C10AGQ-36, 78C10AL  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on  
a customer designated “quality assurance program“ for a specific application. The recommended applications  
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each  
device before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact NEC Sales Representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 94.11  
MS-DOS is a trademark of Microsoft Corporation.  
PC/AT and PC DOS are trademarks of IBM Corporation.  

相关型号:

UPD78C11AL(A)-XXX

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78C11AL-XXX

Microcontroller, 8-Bit, MROM, 15MHz, CMOS, PQCC68, PLASTIC, QFJ-68

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78C11CW

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78C11CW-XXX

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78C11G

Microcontroller, 8-Bit, MROM, 15MHz, CMOS, PQIP64, PLASTIC, QUIP-64

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78C11G-1B

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78C11G-36

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78C11G-XXX-1B

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78C11G-XXX-36

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78C11GF

Microcontroller, 8-Bit, MROM, 15MHz, CMOS, PQFP64, 2.77 MM HEIGHT, PLASTIC, QFP-64

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78C11GF-XXX-3BE

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78C11L

Microcontroller, 8-Bit, MROM, 15MHz, CMOS, PQCC68, PLASTIC, LCC-68

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC