UPD78F9136BMC-5A4 [NEC]

Microcontroller, 8-Bit, FLASH, 5MHz, CMOS, PDSO30, 0.300 INCH, PLASTIC, SSOP-30;
UPD78F9136BMC-5A4
型号: UPD78F9136BMC-5A4
厂家: NEC    NEC
描述:

Microcontroller, 8-Bit, FLASH, 5MHz, CMOS, PDSO30, 0.300 INCH, PLASTIC, SSOP-30

微控制器 光电二极管
文件: 总413页 (文件大小:4136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
User’s Manual  
µPD789104A, 789114A, 789124A,  
789134A Subseries  
8-Bit Single-Chip Microcontrollers  
µPD789101A  
µPD789102A  
µPD789104A  
µPD789111A  
µPD789112A  
µPD789114A  
µPD78F9116A  
µPD78F9116B  
µPD789101A(A1) µPD789121A  
µPD789102A(A1) µPD789122A  
µPD789104A(A1) µPD789124A  
µPD789111A(A1) µPD789131A  
µPD789112A(A1) µPD789132A  
µPD789114A(A1) µPD789134A  
µPD78F9116B(A1) µPD78F9136A  
µPD789101A(A2) µPD78F9136B  
µPD789121A(A1)  
µPD789122A(A1)  
µPD789124A(A1)  
µPD789131A(A1)  
µPD789132A(A1)  
µPD789134A(A1)  
µPD78F9136B(A1)  
µPD789121A(A2)  
µPD789101A(A) µPD789102A(A2) µPD789121A(A) µPD789122A(A2)  
µPD789102A(A) µPD789104A(A2) µPD789122A(A) µPD789124A(A2)  
µPD789104A(A) µPD789111A(A2) µPD789124A(A) µPD789131A(A2)  
µPD789111A(A) µPD789112A(A2) µPD789131A(A) µPD789132A(A2)  
µPD789112A(A) µPD789114A(A2) µPD789132A(A) µPD789134A(A2)  
µPD789114A(A)  
µPD78F9116B(A)  
µPD789134A(A)  
µPD78F9136B(A)  
Document No. U14643EJ2V0UD00 (2nd edition)  
Date Published December 2003 N CP(K)  
2000, 2003  
Printed in Japan  
[MEMO]  
2
User’s Manual U14643EJ2V0UD  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
EEPROM and FIP are trademarks of NEC Electronics Corporation.  
Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the  
United States and/or other countries.  
PC/AT is a trademark of International Business Machines Corporation.  
HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.  
SPARCstation is a trademark of SPARC International, Inc.  
Solaris and SunOS are trademarks of Sun Microsystems, Inc.  
3
User’s Manual U14643EJ2V0UD  
These commodities, technology or software, must be exported in accordance  
with the export administration regulations of the exporting country.  
Diversion contrary to the law of that country is prohibited.  
The information in this document is current as of March, 2003. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  
4
User’s Manual U14643EJ2V0UD  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
Electronics product in your application, pIease contact the NEC Electronics office in your country to  
obtain a list of authorized representatives and distributors. They will verify:  
Device availability  
Ordering information  
Product release schedule  
Availability of related technical literature  
Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
[GLOBAL SUPPORT]  
http://www.necel.com/en/support/support.html  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics America, Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
NEC Electronics (Europe) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 01  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
• Sucursal en España  
Madrid, Spain  
Tel: 091-504 27 87  
Seoul, Korea  
Tel: 02-558-3737  
• Succursale Française  
Vélizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics Shanghai, Ltd.  
Shanghai, P.R. China  
Tel: 021-6841-1138  
• Filiale Italiana  
Milano, Italy  
Tel: 02-66 75 41  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
• Branch The Netherlands  
Eindhoven, TheNetherlands  
Tel: 040-2445845  
NEC Electronics Singapore Pte. Ltd.  
Novena Square, Singapore  
Tel: 6253-8311  
• Tyskland Filial  
Taeby, Sweden  
Tel: 08-63 80 820  
• United Kingdom Branch  
Milton Keynes, UK  
Tel: 01908-691-133  
J03.4  
5
User’s Manual U14643EJ2V0UD  
Major Revisions in This Edition  
Pages  
Throughout  
Description  
Addition of µPD789101A(A1), 789102A(A1), 789104A(A1), 789111A(A1), 789112A(A1), 789114A(A1),  
789121A(A1), 789122A(A1), 789124A(A1), 789131A(A1), 789132A(A1), 789134A(A1), 789101A(A2),  
789102A(A2), 789104A(A2), 789111A(A2), 789112A(A2), 789114A(A2), 789121A(A2), 789122A(A2),  
789124A(A2), 789131A(A2), 789132A(A2), 789134A(A2), 78F9116B, 78F9136B, 78F9116B(A),  
78F9136B(A), 78F9116B(A1), 78F9136B(A1)  
Addition of description related to expanded-specification products  
pp.24, 36  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
Addition of 1.1 Expanded-Specification Products and Conventional-Specification Products  
Addition of 1.10 Differences Between Standard Quality Grade Products and (A), (A1), (A2)  
Products  
p.48  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
Addition of 2.9 Differences Between Standard Quality Grade Products and (A), (A1), (A2)  
Products  
pp.116 to 118, 121  
CHAPTER 8 16-BIT TIMER 20  
Modification of description in 8.4.1 Operation as timer interrupt  
Modification of Figure 8-5 Timing of Timer Interrupt Operation  
Modification of description in 8.4.2 Operation as timer output  
Modification of description in Figure 8-7 Timer Output Timing  
Addition of 8.5 Notes on Using 16-Bit Timer 20  
p.134  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
Addition of description to 9.5 Notes on Using 8-Bit Timer/Event Counter 80  
p.152  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
Addition of 11.5 (8) Input impedance of ANI0 to ANI3 pins  
pp.155, 164  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
Modification of description in 12.2 (2) A/D conversion result register 0 (ADCR0)  
Addition of 12.5 (8) Input impedance of ANI0 to ANI3 pins  
pp.167, 177, 190  
CHAPTER 13 SERIAL INTERFACE 20  
Modification of Figure 13-1 Block Diagram of Serial Interface 20  
Addition of 13.3 (4) (c) Generation of serial clock from system clock in 3-wire serial I/O mode  
Addition of 13.4.2 (2) (f) Reading receive data  
p.210  
CHAPTER 15 INTERRUPT FUNCTIONS  
Addition of Caution 3 in Figure 15-2 Format of Interrupt Request Flag Register  
Revision of CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
p.233  
p.258  
p.387  
p.393  
Addition of CHAPTER 21 to CHAPTER 31 ELECTRICAL SPECIFICATIONS  
Addition of CHAPTER 32 and CHAPTER 33 CHARACTERISTICS CURVES (REFERENCE VALUES)  
Addition of CHAPTER 34 and CHAPTER 35 EXAMPLE OF RC OSCILLATOR FREQUENCY  
CHARACTERISTICS (REFERENCE VALUES)  
p.397  
Addition of CHAPTER 36 PACKAGE DRAWING  
p.398  
Addition of CHAPTER 37 RECOMMENDED SOLDERING CONDITIONS  
Revision of APPENDIX A DEVELOPMENT TOOLS  
Addition of APPENDIX B NOTES ON TARGET SYSTEM DESIGN  
Addition of APPENDIX D REVISION HISTORY  
p.400  
p.406  
p.412  
p.257 in 1st edition  
Deletion of APPENDIX B EMBEDDED SOFTWARE  
The mark shows major revised points.  
6
User’s Manual U14643EJ2V0UD  
INTRODUCTION  
Target Readers  
This manual is intended for users who wish to understand the functions of the  
µPD789104A, 789114A, 789124A, 789134A Subseries and to design and develop  
application systems and programs using these microcontrollers.  
The target devices are shown as follows:  
µPD789104A Subseries: µPD789101A, 789102A, 789104A, 789101A(A),  
789102A(A), 789104A(A), 789101A(A1), 789102A(A1),  
789104A(A1), 789101A(A2), 789102A(A2), 789104A(A2)  
µPD789114A Subseries: µPD789111A, 789112A, 789114A, 78F9116A, 78F9116B,  
789111A(A), 789112A(A), 789114A(A), 78F9116B(A),  
789111A(A1), 789112A(A1), 789114A(A1), 78F9116B(A1),  
789111A(A2), 789112A(A2), 789114A(A2)  
µPD789124A Subseries: µPD789121A, 789122A, 789124A, 789121A(A),  
789122A(A), 789124A(A), 789121A(A1), 789122A(A1),  
789124A(A1), 789121A(A2), 789122A(A2), 789124A(A2)  
µPD789134A Subseries: µPD789131A, 789132A, 789134A, 78F9136A, 78F9136B,  
789131A(A), 789132A(A), 789134A(A), 78F9136B(A),  
789131A(A1), 789132A(A1), 789134A(A1), 78F9136B(A1),  
789131A(A2), 789132A(A2), 789134A(A2)  
The µPD789104A/114A/124A/134A Subseries is a generic term for all the target devices  
in this manual.  
Generic names in this document indicate the following products.  
[Standard quality grade products] µPD789101A, 789102A, 789104A, 789111A,  
789112A, 789114A, 78F9116A, 78F9116B,  
789121A, 789122A, 789124A, 789131A, 789132A,  
789134A, 78F9136A, 78F9136B  
[(A) products]  
µPD789101A(A), 789102A(A), 789104A(A), 789111A(A), 789112A(A),  
789114A(A), 78F9116B(A), 789121A(A), 789122A(A), 789124A(A),  
789131A(A), 789132A(A), 789134A(A), 78F9136B(A)  
[(A1) products] µPD789101A(A1), 789102A(A1), 789104A(A1), 789111A(A1),  
789112A(A1), 789114A(A1), 78F9116B(A1), 789121A(A1),  
789122A(A1), 789124A(A1), 789131A(A1), 789132A(A1),  
789134A(A1), 78F9136B(A1)  
[(A2) products] µPD789101A(A2), 789102A(A2), 789104A(A2), 789111A(A2),  
789112A(A2), 789114A(A2), 789121A(A2), 789122A(A2), 789124A(A2),  
789131A(A2), 789132A(A2), 789134A(A2)  
7
User’s Manual U14643EJ2V0UD  
[Mask ROM products]  
µPD789101A, 789102A, 789104A, 789111A, 789112A,  
789114A, 789121A, 789122A, 789124A, 789131A, 789132A,  
789134A, 789101A(A), 789102A(A), 789104A(A), 789111A(A),  
789112A(A), 789114A(A), 789121A(A), 789122A(A),  
789124A(A), 789131A(A), 789132A(A), 789134A(A),  
789101A(A1), 789102A(A1), 789104A(A1), 789111A(A1),  
789112A(A1), 789114A(A1), 789121A(A1), 789122A(A1),  
789124A(A1), 789131A(A1), 789132A(A1), 789134A(A1),  
789101A(A2), 789102A(A2), 789104A(A2), 789111A(A2),  
789112A(A2), 789114A(A2), 789121A(A2), 789122A(A2),  
789124A(A2), 789131A(A2), 789132A(A2), 789134A(A2)  
[Flash memory products] µPD78F9116A, 78F9116B, 78F9116B(A), 78F9116B(A1),  
78F9136A, 78F9136B, 78F9136B(A), 78F9136B(A1)  
The oscillation frequency of the system clock is regarded as fX for ceramic/crystal  
oscillation (µPD789104A and 789114A Subseries), and regarded as fCC for an RC  
oscillation (µPD789124A and 789134A Subseries).  
Purpose  
This manual is intended to give users an understanding of the functions described in the  
Organization below.  
Organization  
The µPD789104A, 789114A, 789124A, 789134A Subseries User’s Manual is divided into  
two parts: this manual and instructions (common to the 78K/0S Series).  
µPD789104A, 789114A, 789124A,  
789134A Subseries  
78K/0S Series  
Instructions  
User’s Manual (This manual)  
User’s Manual  
Pin functions  
CPU function  
Internal block functions  
Interrupts  
Instruction set  
Instruction description  
Other internal peripheral functions  
Electrical specifications  
8
User’s Manual U14643EJ2V0UD  
How to Read This Manual It is assumed that the readers of this manual have general knowledge in the fields of  
electrical engineering, logic circuits, and microcontrollers.  
When using this manual as a manual for the µPD789101A(A), 789102A(A),  
789104A(A), 789111A(A), 789112A(A), 789114A(A), 78F9116B(A), 789121A(A),  
789122A(A), 789124A(A), 789131A(A), 789132A(A), 789134A(A), 78F9136B(A),  
789101A(A1), 789102A(A1), 789104A(A1), 789111A(A1), 789112A(A1),  
789114A(A1), 78F9116B(A1), 789121A(A1), 789122A(A1), 789124A(A1),  
789131A(A1), 789132A(A1), 789134A(A1), 78F9136B(A1), 789101A(A2),  
789102A(A2), 789104A(A2), 789111A(A2), 789112A(A2), 789114A(A2),  
789121A(A2), 789122A(A2), 789124A(A2), 789131A(A2), 789132A(A2), and  
789134A(A2)  
Only the quality grade, supply voltage, operating ambient temperature, minimum  
instruction execution time, and electrical specifications differ from the  
µPD789101A, 789102A, 789104A, 789111A, 789112A, 789114A, 78F9116B,  
789121A, 789122A, 789124A, 789131A, 789132A, 789134A, and 78F9136B (refer  
to 1.10 Differences Between Standard Quality Grade Products and (A), (A1),  
(A2) Products, 2.9 Differences Between Standard Quality Grade Products  
and (A), (A1), (A2) Products). For the (A), (A1), and (A2) products, read the part  
numbers in CHAPTER 3 to CHAPTER 20 as follows.  
µPD789101A µPD789101A(A), 789101A(A1), 789101A(A2)  
µPD789102A µPD789102A(A), 789102A(A1), 789102A(A2)  
µPD789104A µPD789104A(A), 789104A(A1), 789104A(A2)  
µPD789111A µPD789111A(A), 789111A(A1), 789111A(A2)  
µPD789112A µPD789112A(A), 789112A(A1), 789112A(A2)  
µPD789114A µPD789114A(A), 789114A(A1), 789114A(A2)  
µPD78F9116B µPD78F9116B(A), 78F9116B(A1)  
µPD789121A µPD789121A(A), 789121A(A1), 789121A(A2)  
µPD789122A µPD789122A(A), 789122A(A1), 789122A(A2)  
µPD789124A µPD789124A(A), 789124A(A1), 789124A(A2)  
µPD789131A µPD789131A(A), 789131A(A1), 789131A(A2)  
µPD789132A µPD789132A(A), 789132A(A1), 789132A(A2)  
µPD789134A µPD789134A(A), 789134A(A1), 789134A(A2)  
µPD78F9136B µPD78F9136B(A), 78F9136B(A1)  
To understand the overall functions in general  
Read this manual in the order of the CONTENTS.  
How to interpret register formats  
The name of a bit whose number is in angle brackets (<>) is reserved in the  
assembler and is defined in the C compiler by the header file sfrbit.h.  
To learn the detailed functions of a register whose register name is known  
Refer to APPENDIX C REGISTER INDEX.  
To learn the details of the instruction functions of the 78K/0S Series  
Refer to 78K/0S Series Instructions Users Manual (U11047E).  
To know the electrical specifications of the µPD789104A/114A/124A/134A Subseries  
Refer to CHAPTER 21 to CHAPTER 31 ELECTRICAL SPECIFICATIONS.  
Caution The application examples in this manual are created for “Standard”  
quality grade products for general electric equipment. When using the  
application examples in this manual for purposes which require  
“Special” quality grades, thoroughly examine the quality grade of each  
part and circuit actually used.  
9
User’s Manual U14643EJ2V0UD  
Conventions  
Data significance:  
Higher digits on the left and lower digits on the right  
Active low representation: ××× (overscore over pin or signal name)  
Note:  
Footnote for item marked with Note in the text  
Information requiring particular attention  
Supplementary information  
Caution:  
Remark:  
Numerical representation: Binary ... ×××× or ××××B  
Decimal ... ××××  
Hexadecimal ... ××××H  
Related Documents  
The related documents indicated in this publication may include preliminary versions.  
However, preliminary versions are not marked as such.  
Documents Related to Devices  
Document Name  
Document No.  
This manual  
U11047E  
µPD789104A, 789114A, 789124A, 789134A Subseries User’s Manual  
78K/0S Series Instructions User’s Manual  
Documents Related to Development Software Tools (User’s Manuals)  
Document Name  
Document No.  
U14876E  
U14877E  
U11623E  
U14871E  
U14872E  
U15373E  
U15802E  
U15185E  
U14610E  
RA78K0S Assembler Package  
Operation  
Language  
Structured Assembly Language  
Operation  
CC78K0S C Compiler  
Language  
SM78K Series System Simulator Ver. 2.30 or Later  
Operation (WindowsTM Based)  
External Part User Open Interface Specification  
Operation (Windows Based)  
ID78K Series Integrated Debugger Ver. 2.30 or Later  
Project Manager Ver. 3.12 or Later (Windows Based)  
Documents Related to Development Hardware Tools (User’s Manuals)  
Document Name  
IE-78K0S-NS In-Circuit Emulator  
Document No.  
U13549E  
IE-78K0S-NS-A In-Circuit Emulator  
U15207E  
IE-789136-NS-EM1 Emulation Board  
U14363E  
Caution The related documents listed above are subject to change without notice. Be sure to use the  
latest version of each document for designing.  
10  
User’s Manual U14643EJ2V0UD  
Documents Related to Flash Memory Writing  
Document Name  
Document No.  
U13502E  
PG-FP3 Flash Memory Programmer User's Manual  
PG-FP4 Flash Memory Programmer User's Manual  
U15260E  
Other Related Documents  
Document Name  
Document No.  
X13769X  
Note  
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -  
Semiconductor Device Mount Manual  
Quality Grades on NEC Semiconductor Devices  
C11531E  
C10983E  
C11892E  
NEC Semiconductor Device Reliability/Quality Control System  
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)  
Note See the “Semiconductor Device Mount Manual” website (http://www.necel.com/pkg/en/mount/index.html).  
Caution The related documents listed above are subject to change without notice. Be sure to use the  
latest version of each document for designing.  
11  
User’s Manual U14643EJ2V0UD  
CONTENTS  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)........................................................ 24  
1.1 Expanded-Specification Products and Conventional-Specification Products...................... 24  
1.2 Features......................................................................................................................................... 25  
1.3 Applications .................................................................................................................................. 25  
1.4 Ordering Information.................................................................................................................... 26  
1.5 Quality Grade ................................................................................................................................ 27  
1.6 Pin Configuration (Top View) ...................................................................................................... 28  
1.7 78K/0S Series Lineup................................................................................................................... 30  
1.8 Block Diagram............................................................................................................................... 33  
1.9 Outline of Functions..................................................................................................................... 34  
1.10 Differences Between Standard Quality Grade Products and (A), (A1), (A2) Products ......... 36  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)........................................................ 37  
2.1 Features......................................................................................................................................... 37  
2.2 Applications .................................................................................................................................. 37  
2.3 Ordering Information.................................................................................................................... 38  
2.4 Quality Grade ................................................................................................................................ 39  
2.5 Pin Configuration (Top View) ...................................................................................................... 40  
2.6 78K/0S Series Lineup................................................................................................................... 42  
2.7 Block Diagram............................................................................................................................... 45  
2.8 Outline of Functions..................................................................................................................... 46  
2.9 Differences Between Standard Quality Grade Products and (A), (A1), (A2) Products ......... 48  
CHAPTER 3 PIN FUNCTIONS ............................................................................................................... 49  
3.1 Pin Function List........................................................................................................................... 49  
3.2 Description of Pin Functions....................................................................................................... 51  
3.2.1 P00 to P03 (Port 0) .............................................................................................................................51  
3.2.2 P10, P11 (Port 1) ................................................................................................................................51  
3.2.3 P20 to P25 (Port 2) .............................................................................................................................51  
3.2.4 P50 to P53 (Port 5) .............................................................................................................................52  
3.2.5 P60 to P63 (Port 6) .............................................................................................................................52  
3.2.6 RESET................................................................................................................................................52  
3.2.7 X1, X2 (µPD789104A, 789114A Subseries) .......................................................................................52  
3.2.8 CL1, CL2 (µPD789124A, 789134A Subseries)...................................................................................52  
3.2.9 AVDD ...................................................................................................................................................52  
3.2.10 AVSS ...................................................................................................................................................52  
3.2.11 VDD .....................................................................................................................................................52  
3.2.12 VSS .....................................................................................................................................................52  
3.2.13 VPP (µPD78F9116A, 78F9116B, 78F9136A, 78F9136B only).............................................................53  
3.2.14 IC0 (pin No.20) (mask ROM versions only).........................................................................................53  
3.2.15 IC0 (pins No.10 and No.21) ................................................................................................................53  
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins........................................... 54  
CHAPTER 4 CPU ARCHITECTURE...................................................................................................... 56  
4.1 Memory Space .............................................................................................................................. 56  
12  
User’s Manual U14643EJ2V0UD  
4.1.1 Internal program memory space.........................................................................................................60  
4.1.2 Internal data memory (internal high-speed RAM) space.....................................................................61  
4.1.3 Special-function register (SFR) area...................................................................................................61  
4.1.4 Data memory addressing....................................................................................................................61  
4.2 Processor Registers .....................................................................................................................65  
4.2.1 Control registers .................................................................................................................................65  
4.2.2 General-purpose registers ..................................................................................................................67  
4.2.3 Special-function registers (SFRs) .......................................................................................................68  
4.3 Instruction Address Addressing .................................................................................................71  
4.3.1 Relative addressing ............................................................................................................................71  
4.3.2 Immediate addressing.........................................................................................................................72  
4.3.3 Table indirect addressing....................................................................................................................73  
4.3.4 Register addressing............................................................................................................................73  
4.4 Operand Address Addressing .....................................................................................................74  
4.4.1 Direct addressing................................................................................................................................74  
4.4.2 Short direct addressing.......................................................................................................................75  
4.4.3 Special-function register (SFR) addressing ........................................................................................76  
4.4.4 Register addressing............................................................................................................................77  
4.4.5 Register indirect addressing ...............................................................................................................78  
4.4.6 Based addressing...............................................................................................................................79  
4.4.7 Stack addressing ................................................................................................................................79  
CHAPTER 5 PORT FUNCTIONS............................................................................................................80  
5.1 Functions of Ports.........................................................................................................................80  
5.2 Port Configuration.........................................................................................................................82  
5.2.1 Port 0..................................................................................................................................................82  
5.2.2 Port 1..................................................................................................................................................83  
5.2.3 Port 2..................................................................................................................................................84  
5.2.4 Port 5..................................................................................................................................................88  
5.2.5 Port 6..................................................................................................................................................89  
5.3 Port Function Control Registers..................................................................................................90  
5.4 Operation of Port Functions ........................................................................................................93  
5.4.1 Writing to I/O port................................................................................................................................93  
5.4.2 Reading from I/O port .........................................................................................................................93  
5.4.3 Arithmetic operation of I/O port...........................................................................................................94  
CHAPTER 6 CLOCK GENERATOR (µPD789104A, 789114A SUBSERIES)....................................95  
6.1 Function of Clock Generator........................................................................................................95  
6.2 Configuration of Clock Generator ...............................................................................................95  
6.3 Register Controlling Clock Generator ........................................................................................96  
6.4 System Clock Oscillator...............................................................................................................97  
6.4.1 System clock oscillator .......................................................................................................................97  
6.4.2 Divider ................................................................................................................................................99  
6.5 Operation of Clock Generator....................................................................................................100  
6.6 Changing Setting of CPU Clock.................................................................................................101  
6.6.1 Time required for switching CPU clock .............................................................................................101  
6.6.2 Switching CPU clock.........................................................................................................................101  
13  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES) ................................. 102  
7.1 Function of Clock Generator..................................................................................................... 102  
7.2 Configuration of Clock Generator ............................................................................................ 102  
7.3 Register Controlling Clock Generator...................................................................................... 103  
7.4 System Clock Oscillator ............................................................................................................ 104  
7.4.1 System clock oscillator......................................................................................................................104  
7.4.2 Examples of incorrect resonator connection .....................................................................................105  
7.4.3 Divider...............................................................................................................................................106  
7.5 Operation of Clock Generator................................................................................................... 107  
7.6 Changing Setting of CPU Clock................................................................................................ 108  
7.6.1 Time required for switching CPU clock .............................................................................................108  
7.6.2 Switching CPU clock.........................................................................................................................109  
CHAPTER 8 16-BIT TIMER 20............................................................................................................ 110  
8.1 16-Bit Timer 20 Functions.......................................................................................................... 110  
8.2 16-Bit Timer 20 Configuration................................................................................................... 111  
8.3 Registers Controlling 16-Bit Timer 20...................................................................................... 113  
8.4 16-Bit Timer 20 Operation.......................................................................................................... 116  
8.4.1 Operation as timer interrupt ..............................................................................................................116  
8.4.2 Operation as timer output..................................................................................................................118  
8.4.3 Capture operation .............................................................................................................................119  
8.4.4 16-bit timer counter 20 readout.........................................................................................................120  
8.5 Notes on Using 16-Bit Timer 20 ................................................................................................ 121  
8.5.1 Restrictions on rewriting 16-bit compare register 20 .........................................................................121  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80............................................................................. 123  
9.1 Functions of 8-Bit Timer/Event Counter 80 ............................................................................. 123  
9.2 8-Bit Timer/Event Counter 80 Configuration ........................................................................... 124  
9.3 Registers Controlling 8-Bit Timer/Event Counter 80 .............................................................. 126  
9.4 Operation of 8-Bit Timer/Event Counter 80.............................................................................. 128  
9.4.1 Operation as interval timer................................................................................................................128  
9.4.2 Operation as external event counter .................................................................................................130  
9.4.3 Operation as square-wave output .....................................................................................................131  
9.4.4 Operation as PWM output.................................................................................................................133  
9.5 Notes on Using 8-Bit Timer/Event Counter 80 ........................................................................ 134  
CHAPTER 10 WATCHDOG TIMER ..................................................................................................... 136  
10.1 Functions of Watchdog Timer................................................................................................... 136  
10.2 Configuration of Watchdog Timer ............................................................................................ 137  
10.3 Watchdog Timer Control Registers.......................................................................................... 138  
10.4 Operation of Watchdog Timer................................................................................................... 140  
10.4.1 Operation as watchdog timer ............................................................................................................140  
10.4.2 Operation as interval timer................................................................................................................141  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES) ........................... 142  
11.1 8-Bit A/D Converter Functions.................................................................................................. 142  
11.2 8-Bit A/D Converter Configuration............................................................................................ 142  
11.3 Registers Controlling 8-Bit A/D Converter .............................................................................. 144  
14  
User’s Manual U14643EJ2V0UD  
11.4 8-Bit A/D Converter Operation...................................................................................................146  
11.4.1 Basic operation of 8-bit A/D converter ..............................................................................................146  
11.4.2 Input voltage and conversion result ..................................................................................................147  
11.4.3 Operation mode of 8-bit A/D converter .............................................................................................149  
11.5 Notes on Using 8-Bit A/D Converter .........................................................................................150  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)..........................154  
12.1 10-Bit A/D Converter Functions.................................................................................................154  
12.2 10-Bit A/D Converter Configuration ..........................................................................................154  
12.3 Registers Controlling 10-Bit A/D Converter .............................................................................156  
12.4 10-Bit A/D Converter Operation.................................................................................................158  
12.4.1 Basic operation of 10-bit A/D converter ............................................................................................158  
12.4.2 Input voltage and conversion result ..................................................................................................159  
12.4.3 Operation mode of 10-bit A/D converter ...........................................................................................161  
12.5 Notes on Using 10-Bit A/D Converter .......................................................................................162  
CHAPTER 13 SERIAL INTERFACE 20...............................................................................................166  
13.1 Functions of Serial Interface 20.................................................................................................166  
13.2 Serial Interface 20 Configuration...............................................................................................166  
13.3 Serial Interface 20 Control Registers........................................................................................170  
13.4 Operation of Serial Interface 20.................................................................................................178  
13.4.1 Operation stop mode ........................................................................................................................178  
13.4.2 Asynchronous serial interface (UART) mode....................................................................................179  
13.4.3 3-wire serial I/O mode.......................................................................................................................192  
CHAPTER 14 MULTIPLIER ...................................................................................................................202  
14.1 Multiplier Function ......................................................................................................................202  
14.2 Multiplier Configuration..............................................................................................................202  
14.3 Multiplier Control Register.........................................................................................................204  
14.4 Multiplier Operation ....................................................................................................................205  
CHAPTER 15 INTERRUPT FUNCTIONS.............................................................................................206  
15.1 Interrupt Function Types............................................................................................................206  
15.2 Interrupt Sources and Configuration ........................................................................................207  
15.3 Interrupt Function Control Registers........................................................................................209  
15.4 Interrupt Servicing Operation ....................................................................................................214  
15.4.1 Non-maskable interrupt request acknowledgment operation............................................................214  
15.4.2 Maskable interrupt request acknowledgment operation....................................................................216  
15.4.3 Multiple interrupt servicing ................................................................................................................218  
15.4.4 Interrupt request hold........................................................................................................................220  
CHAPTER 16 STANDBY FUNCTION...................................................................................................221  
16.1 Standby Function and Configuration........................................................................................221  
16.1.1 Standby function...............................................................................................................................221  
16.1.2 Standby function control register (µPD789104A, 789114A Subseries).............................................222  
16.2 Operation of Standby Function .................................................................................................223  
16.2.1 HALT mode.......................................................................................................................................223  
16.2.2 STOP mode......................................................................................................................................226  
15  
User’s Manual U14643EJ2V0UD  
CHAPTER 17 RESET FUNCTION ....................................................................................................... 229  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B .................................................... 233  
18.1 Flash Memory Characteristics .................................................................................................. 234  
18.1.1 Programming environment................................................................................................................234  
18.1.2 Communication mode .......................................................................................................................235  
18.1.3 On-board pin processing...................................................................................................................240  
18.1.4 Connection when using flash memory writing adapter......................................................................243  
CHAPTER 19 MASK OPTION (MASK ROM VERSION).................................................................. 247  
CHAPTER 20 INSTRUCTION SET ...................................................................................................... 248  
20.1 Operation..................................................................................................................................... 248  
20.1.1 Operand identifiers and description methods....................................................................................248  
20.1.2 Description of “operation” column .....................................................................................................249  
20.1.3 Description of “flag operation” column...............................................................................................249  
20.2 Operation List ............................................................................................................................. 250  
20.3 Instructions Listed by Addressing Type.................................................................................. 255  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A))  
(EXPANDED-SPECIFICATION PRODUCTS)............................................................... 258  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A))  
(CONVENTIONAL-SPECIFICATION PRODUCTS)...................................................... 271  
CHAPTER 23 ELECTRICAL SPECIFICATIONS  
(µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2)).................................. 283  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A)) ............................ 294  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1)) ............................................. 307  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A) .................................................... 318  
CHAPTER 27 ELECTRICAL SPECIFICATIONS  
(µPD78912xA, 78913xA, 78912xA(A), 78913xA(A)) .................................................... 330  
CHAPTER 28 ELECTRICAL SPECIFICATIONS  
(µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2)).................................. 341  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A)) ............................ 352  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1)) ............................................. 364  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A) .................................................... 375  
CHAPTER 32 CHARACTERISTICS CURVES (REFERENCE VALUES)  
(µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) .................................................... 387  
16  
User’s Manual U14643EJ2V0UD  
CHAPTER 33 CHARACTERISTICS CURVES (REFERENCE VALUES)  
(µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))...................................390  
CHAPTER 34 EXAMPLE OF RC OSCILLATOR FREQUENCY CHARACTERISTICS  
(REFERENCE VALUES) (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A),  
78F9136A) .......................................................................................................................393  
CHAPTER 35 EXAMPLE OF RC OSCILLATOR FREQUENCY CHARACTERISTICS  
(REFERENCE VALUES) (µPD78912xA(A1), 78913xA(A1), 78912xA(A2),  
78913xA(A2))...................................................................................................................395  
CHAPTER 36 PACKAGE DRAWING ...................................................................................................397  
CHAPTER 37 RECOMMENDED SOLDERING CONDITIONS ...........................................................398  
APPENDIX A DEVELOPMENT TOOLS ...............................................................................................400  
A.1 Software Package........................................................................................................................402  
A.2 Language Processing Software.................................................................................................402  
A.3 Control Software .........................................................................................................................403  
A.4 Flash Memory Writing Tools......................................................................................................403  
A.5 Debugging Tools (Hardware).....................................................................................................404  
A.6 Debugging Tools (Software) ......................................................................................................405  
APPENDIX B NOTES ON TARGET SYSTEM DESIGN....................................................................406  
APPENDIX C REGISTER INDEX..........................................................................................................408  
C.1 Register Name Index (Alphabetical Order)...............................................................................408  
C.2 Register Symbol Index (Alphabetical Order)............................................................................410  
APPENDIX D REVISION HISTORY......................................................................................................412  
17  
User’s Manual U14643EJ2V0UD  
LIST OF FIGURES (1/4)  
Figure No.  
3-1  
Title  
Page  
Pin I/O Circuits..............................................................................................................................................55  
4-1  
Memory Map (µPD789101A, 789111A, 789121A, 789131A) .......................................................................56  
Memory Map (µPD789102A, 789112A, 789122A, 789132A) .......................................................................57  
Memory Map (µPD789104A, 789114A, 789124A, 789134A) .......................................................................58  
Memory Map (µPD78F9116A, 78F9116B, 78F9136A, 78F9136B) ..............................................................59  
Data Memory Addressing (µPD789101A, 789111A, 789121A, 789131A)....................................................61  
Data Memory Addressing (µPD789102A, 789112A, 789122A, 789132A)....................................................62  
Data Memory Addressing (µPD789104A, 789114A, 789124A, 789134A)....................................................63  
Data Memory Addressing (µPD78F9116A, 78F9116B, 78F9136A, 78F9136B)...........................................64  
Program Counter Configuration....................................................................................................................65  
Program Status Word Configuration.............................................................................................................65  
Stack Pointer Configuration..........................................................................................................................66  
Data to Be Saved to Stack Memory..............................................................................................................66  
Data to Be Restored from Stack Memory.....................................................................................................66  
General-Purpose Register Configuration......................................................................................................67  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
5-7  
5-8  
5-9  
5-10  
5-11  
5-12  
Port Types....................................................................................................................................................80  
Block Diagram of P00 to P03........................................................................................................................82  
Block Diagram of P10 and P11.....................................................................................................................83  
Block Diagram of P20...................................................................................................................................84  
Block Diagram of P21...................................................................................................................................85  
Block Diagram of P22, P23, and P25 ...........................................................................................................86  
Block Diagram of P24...................................................................................................................................87  
Block Diagram of P50 to P53........................................................................................................................88  
Block Diagram of P60 to P63........................................................................................................................89  
Port Mode Register Format ..........................................................................................................................91  
Format of Pull-up Resistor Option Register 0 ...............................................................................................91  
Format of Pull-up Resistor Option Register B2.............................................................................................92  
6-1  
6-2  
6-3  
6-4  
6-5  
Block Diagram of Clock Generator ...............................................................................................................95  
Format of Processor Clock Control Register ................................................................................................96  
External Circuit of System Clock Oscillator...................................................................................................97  
Examples of Incorrect Resonator Connection .............................................................................................98  
Switching CPU Clock..................................................................................................................................101  
7-1  
7-2  
7-3  
7-4  
7-5  
Block Diagram of Clock Generator .............................................................................................................102  
Format of Processor Clock Control Register ..............................................................................................103  
External Circuit of System Clock Oscillator.................................................................................................104  
Examples of Incorrect Resonator Connection ...........................................................................................105  
Switching CPU Clock..................................................................................................................................109  
8-1  
Block Diagram of 16-Bit Timer 20...............................................................................................................111  
18  
User’s Manual U14643EJ2V0UD  
LIST OF FIGURES (2/4)  
Figure No.  
Title  
Page  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
8-8  
8-9  
8-10  
Format of 16-Bit Timer Mode Control Register 20......................................................................................114  
Format of Port Mode Register 2.................................................................................................................115  
Settings of 16-Bit Timer Mode Control Register 20 at Timer Interrupt Operation .......................................116  
Timing of Timer Interrupt Operation ...........................................................................................................117  
Settings of 16-Bit Timer Mode Control Register 20 for Timer Output Operation.........................................118  
Timer Output Timing...................................................................................................................................118  
Settings of 16-Bit Timer Mode Control Register 20 for Capture Operation.................................................119  
Capture Operation Timing (Both Edges of CPT20 Pin Are Specified)........................................................119  
16-Bit Timer Counter 20 Readout Timing...................................................................................................120  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
9-10  
Block Diagram of 8-Bit Timer/Event Counter 80.........................................................................................125  
Format of 8-Bit Timer Mode Control Register 80........................................................................................126  
Format of Port Mode Register 2.................................................................................................................127  
Interval Timer Operation Timing.................................................................................................................129  
External Event Counter Operation Timing (with Rising Edge Specified) ....................................................130  
Square-Wave Output Timing......................................................................................................................132  
PWM Output Timing...................................................................................................................................133  
Start Timing of 8-Bit Timer Counter............................................................................................................134  
External Event Counter Operation Timing..................................................................................................134  
Timing After Writing Compare Register During PWM Output.....................................................................135  
10-1  
10-2  
10-3  
Block Diagram of Watchdog Timer.............................................................................................................137  
Format of Timer Clock Select Register 2....................................................................................................138  
Format of Watchdog Timer Mode Register ................................................................................................139  
11-1  
11-2  
11-3  
11-4  
11-5  
11-6  
11-7  
11-8  
11-9  
11-10  
11-11  
11-12  
Block Diagram of 8-Bit A/D Converter........................................................................................................142  
Format of A/D Converter Mode Register 0.................................................................................................144  
Format of Analog Input Channel Specification Register 0 ..........................................................................145  
Basic Operation of 8-Bit A/D Converter......................................................................................................147  
Relationship Between Analog Input Voltage and A/D Conversion Result...................................................148  
Software-Started A/D Conversion ..............................................................................................................149  
How to Reduce Current Consumption in Standby Mode ............................................................................150  
Conversion Result Readout Timing (When Conversion Result Is Undefined Value)..................................151  
Conversion Result Readout Timing (When Conversion Result Is Normal Value).......................................151  
Analog Input Pin Treatment........................................................................................................................151  
A/D Conversion End Interrupt Request Generation Timing........................................................................152  
AVDD Pin Treatment ...................................................................................................................................153  
12-1  
12-2  
12-3  
12-4  
12-5  
Block Diagram of 10-Bit A/D Converter......................................................................................................154  
Format of A/D Converter Mode Register 0.................................................................................................156  
Format of Analog Input Channel Specification Register 0 ..........................................................................157  
Basic Operation of 10-Bit A/D Converter....................................................................................................159  
Relationship Between Analog Input Voltage and A/D Conversion Result...................................................160  
19  
User’s Manual U14643EJ2V0UD  
LIST OF FIGURES (3/4)  
Figure No.  
Title  
Page  
12-6  
Software-Started A/D Conversion...............................................................................................................161  
How to Reduce Current Consumption in Standby Mode ............................................................................162  
Conversion Result Readout Timing (When Conversion Result Is Undefined Value) ..................................163  
Conversion Result Readout Timing (When Conversion Result Is Normal Value).......................................163  
Analog Input Pin Treatment........................................................................................................................163  
A/D Conversion End Interrupt Request Generation Timing ........................................................................164  
AVDD Pin Treatment....................................................................................................................................165  
12-7  
12-8  
12-9  
12-10  
12-11  
12-12  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
13-8  
13-9  
13-10  
13-11  
Block Diagram of Serial Interface 20 ..........................................................................................................167  
Baud Rate Generator Block Diagram .........................................................................................................168  
Format of Serial Operating Mode Register 20 ............................................................................................171  
Format of Asynchronous Serial Interface Mode Register 20 ......................................................................172  
Format of Asynchronous Serial Interface Status Register 20 .....................................................................174  
Format of Baud Rate Generator Control Register 20 .................................................................................175  
Asynchronous Serial Interface Transmit/Receive Data Format ..................................................................185  
Asynchronous Serial Interface Transmission Completion Interrupt Timing.................................................187  
Asynchronous Serial Interface Reception Completion Interrupt Timing......................................................188  
Receive Error Timing..................................................................................................................................189  
3-Wire Serial I/O Mode Timing ...................................................................................................................195  
14-1  
14-2  
14-3  
Block Diagram of Multiplier.........................................................................................................................203  
Format of Multiplier Control Register 0.......................................................................................................204  
Multiplier Operation Timing.........................................................................................................................205  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
15-7  
15-8  
15-9  
15-10  
15-11  
Basic Configuration of Interrupt Function....................................................................................................208  
Format of Interrupt Request Flag Register .................................................................................................210  
Format of Interrupt Mask Flag Register......................................................................................................211  
Format of External Interrupt Mode Register 0.............................................................................................212  
Program Status Word Configuration...........................................................................................................213  
Flowchart from Non-Maskable Interrupt Request Generation to Acknowledgment.....................................215  
Timing of Non-Maskable Interrupt Request Acknowledgment....................................................................215  
Acknowledging Non-Maskable Interrupt Request.......................................................................................215  
Interrupt Acknowledgment Program Algorithm ...........................................................................................217  
Interrupt Request Acknowledgment Timing (Example of MOV A,r)............................................................218  
Interrupt Request Acknowledgment Timing  
(When Interrupt Request Flag Is Generated at Last Clock During Instruction Execution) ..........................218  
Example of Multiple Interrupt Servicing ......................................................................................................219  
15-12  
16-1  
16-2  
16-3  
16-4  
16-5  
Format of Oscillation Stabilization Time Select Register ............................................................................222  
Releasing HALT Mode by Interrupt ............................................................................................................224  
Releasing HALT Mode by RESET Input.....................................................................................................225  
Releasing STOP Mode by Interrupt............................................................................................................227  
Releasing STOP Mode by RESET Input ....................................................................................................228  
20  
User’s Manual U14643EJ2V0UD  
LIST OF FIGURES (4/4)  
Figure No.  
Title  
Page  
17-1  
17-2  
17-3  
17-4  
Block Diagram of Reset Function...............................................................................................................229  
Reset Timing by RESET Input ...................................................................................................................230  
Reset Timing by Overflow in Watchdog Timer ...........................................................................................230  
Reset Timing by RESET Input in STOP Mode...........................................................................................230  
18-1  
18-2  
18-3  
18-4  
18-5  
18-6  
18-7  
18-8  
18-9  
18-10  
18-11  
Environment for Writing Program to Flash Memory....................................................................................234  
Communication Mode Selection Format ....................................................................................................236  
Example of Connection with Dedicated Flash Programmer ......................................................................237  
VPP Pin Connection Example......................................................................................................................240  
Signal Conflict (Input Pin of Serial Interface)..............................................................................................241  
Abnormal Operation of Other Device .........................................................................................................241  
Signal Conflict (RESET Pin).......................................................................................................................242  
Example of Flash Memory Writing Adapter Connection When Using 3-Wire Serial I/O Mode (SIO-ch0)...243  
Example of Flash Memory Writing Adapter Connection When Using 3-Wire Serial I/O Mode (SIO-ch1)...244  
Example of Flash Memory Writing Adapter Connection When Using UART Mode....................................245  
Example of Flash Memory Writing Adapter Connection When Using Pseudo 3-Wire Mode ......................246  
A-1  
Development Tools ....................................................................................................................................401  
B-1  
B-2  
Distance Between In-Circuit Emulator and Conversion Adapter ................................................................406  
Connection Condition of Target System (NP-H44GB-TQ) .........................................................................407  
21  
User’s Manual U14643EJ2V0UD  
LIST OF TABLES (1/2)  
Table No.  
Title  
Page  
1-1  
1-2  
Differences Between Expanded-Specification Products and Conventional-Specification Products..............24  
Differences Between Standard Quality Grade Products and (A), (A1), (A2) Products..................................36  
2-1  
3-1  
Differences Between Standard Quality Grade Products and (A), (A1), (A2) Products..................................48  
Types of Pin I/O Circuits and Recommended Connection of Unused Pins...................................................54  
4-1  
4-2  
4-3  
Internal ROM Capacity .................................................................................................................................60  
Vector Table .................................................................................................................................................60  
Special-Function Register List .....................................................................................................................69  
5-1  
5-2  
5-3  
Port Functions ..............................................................................................................................................81  
Configuration of Port.....................................................................................................................................82  
Port Mode Register and Output Latch Settings When Using Alternate Functions ........................................90  
6-1  
6-2  
Configuration of Clock Generator .................................................................................................................95  
Maximum Time Required for Switching CPU Clock....................................................................................101  
7-1  
7-2  
Configuration of Clock Generator ...............................................................................................................102  
Maximum Time Required for Switching CPU Clock....................................................................................108  
8-1  
8-2  
8-3  
Configuration of 16-Bit Timer 20.................................................................................................................111  
Interval Time of 16-Bit Timer 20 .................................................................................................................116  
Settings of Capture Edge............................................................................................................................119  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
Interval Time of 8-Bit Timer/Event Counter 80............................................................................................123  
Square-Wave Output Range of 8-Bit Timer/Event Counter 80 ...................................................................124  
8-Bit Timer/Event Counter 80 Configuration...............................................................................................124  
Interval Time of 8-Bit Timer/Event Counter 80 (at fX = 5.0 MHz, 10.0 MHz Operation) ..............................128  
Interval Time of 8-Bit Timer/Event Counter 80 (at fCC = 4.0 MHz Operation)..............................................128  
Square-Wave Output Range of 8-Bit Timer/Event Counter 80 (at fX = 5.0 MHz, 10.0 MHz Operation)......131  
Square-Wave Output Range of 8-Bit Timer/Event Counter 80 (at fCC = 4.0 MHz Operation) .....................131  
10-1  
10-2  
10-3  
10-4  
10-5  
Program Loop Detection Time of Watchdog Timer.....................................................................................136  
Interval Time...............................................................................................................................................136  
Configuration of Watchdog Timer...............................................................................................................137  
Program Loop Detection Time of Watchdog Timer.....................................................................................140  
Interval Time of Interval Timer....................................................................................................................141  
11-1  
12-1  
Configuration of 8-Bit A/D Converter ..........................................................................................................142  
Configuration of 10-Bit A/D Converter ........................................................................................................154  
22  
User’s Manual U14643EJ2V0UD  
LIST OF TABLES (2/2)  
Table No.  
Title  
Page  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
Configuration of Serial Interface 20............................................................................................................166  
Serial Interface 20 Operating Mode Settings..............................................................................................173  
Example of Relationship Between System Clock and Baud Rate ..............................................................176  
Relationship Between ASCK20 Pin Input Frequency and Baud Rate (When BRGC20 Is Set to 80H).......177  
Example of Relationship Between System Clock and Baud Rate ..............................................................184  
Relationship Between ASCK20 Pin Input Frequency and Baud Rate (When BRGC20 Is Set to 80H).......184  
Receive Error Causes ................................................................................................................................189  
15-1  
15-2  
15-3  
Interrupt Source List...................................................................................................................................207  
Flags Corresponding to Interrupt Request Signals.....................................................................................209  
Time from Generation of Maskable Interrupt Request to Servicing............................................................216  
16-1  
16-2  
16-3  
16-4  
HALT Mode Operating Status ....................................................................................................................223  
Operation After Release of HALT Mode.....................................................................................................225  
STOP Mode Operating Status....................................................................................................................226  
Operation After Release of STOP Mode ....................................................................................................228  
17-1  
Hardware Status After Reset .....................................................................................................................231  
18-1  
18-2  
18-3  
18-4  
Differences Between Flash Memory and Mask ROM Versions..................................................................233  
Communication Mode List (µPD78F9116A, 78F9136A).............................................................................235  
Communication Mode List (µPD78F9116B, 78F9136B).............................................................................235  
Pin Connection List ....................................................................................................................................239  
19-1  
20-1  
37-1  
Selection of Mask Option for Pins ..............................................................................................................247  
Operand Identifiers and Description Methods ............................................................................................248  
Surface Mounting Type Soldering Conditions ...........................................................................................398  
23  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.1 Expanded-Specification Products and Conventional-Specification Products  
The expanded-specification products and the conventional-specification products indicate the following products.  
Expanded-specification products......... Products other than rankNote 1  
Mask ROM products ordered on or later than December 1, 2001  
(excluding (A1) and (A2) productsNote 2  
K
)
Flash memory products shipped on or later than January 1, 2002  
(excluding (A1), (A2) productsNote 2 and the µPD78F9116A)  
Conventional-specification products.....RankNote 1 K products  
Products other than above  
Notes 1. The rank is indicated by the letter at the 5th digit from the left in the lot number in the package marking.  
Lot number  
○ ○ ○ ○ △  
Year code Week code  
Rank  
2. For (A1) and (A2) products, refer to 1.10 Differences Between Standard Quality Grade Products  
and (A), (A1), (A2) Products.  
The operating frequency specification differs between the expanded-specification products and the conventional-  
specification products as shown in Table 1-1.  
Table 1-1. Differences Between Expanded-Specification Products and Conventional-Specification Products  
Supply Voltage (VDD)  
Guaranteed Operating Speed (Operating Frequency)  
Conventional-Specification  
Products  
Expanded-Specification  
Products  
4.5 to 5.5 V  
3.0 to 5.5 V  
2.7 to 5.5 V  
1.8 to 5.5 V  
5 MHz (0.4 µs)  
5 MHz (0.4 µs)  
5 MHz (0.4 µs)  
1.25 MHz (1.6 µs)  
10 MHz (0.2 µs)  
6 MHz (0.33 µs)  
5 MHz (0.4 µs)  
1.25 MHz (1.6 µs)  
Remark The figures in parentheses indicate the minimum instruction execution time.  
24  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.2 Features  
ROM and RAM capacities  
Item  
Program Memory  
Data Memory  
(Internal High-Speed RAM)  
Part Number  
µPD789101A, 789111A, 789101A(A), 789111A(A),  
Mask ROM  
2 KB  
4 KB  
8 KB  
16 KB  
256 bytes  
789101A(A1), 789111A(A1), 789101A(A2), 789111A(A2)  
µPD789102A, 789112A, 789102A(A), 789112A(A),  
789102A(A1), 789112A(A1), 789102A(A2), 789112A(A2)  
µPD789104A, 789114A, 789104A(A), 789114A(A),  
789104A(A1), 789114A(A1), 789104A(A2), 789114A(A2)  
µPD78F9116A, 78F9116B, 78F9116B(A), 78F9116B(A1)  
System clock: Crystal/ceramic oscillation  
Flash memory  
Minimum instruction execution times switchable between high speed (0.2 µs) and low speed (0.8 µs) (system  
clock: 10.0 MHzNote  
)
20 I/O ports  
Serial interface: 1 channel  
3-wire serial I/O mode/UART mode selectable  
8-bit resolution A/D converter: 4 channels (µPD789104A Subseries)  
10-bit resolution A/D converter: 4 channels (µPD789114A Subseries)  
3 timers  
16-bit timer:  
8-bit timer/event counter: 1 channel  
Watchdog timer: 1 channel  
1 channel  
Multiplier: 8 bits × 8 bits = 16 bits  
Vectored interrupt sources: 10  
Supply voltage  
VDD = 1.8 to 5.5 V (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A), 78F9116A, 78F9116B, 78F9116B(A))  
VDD = 4.5 to 5.5 V (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2), 78F9116B(A1))  
Operating ambient temperature  
TA = 40 to + 85°C (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A), 78F9116A, 78F9116B, 78F9116B(A))  
TA = 40 to +105°C (µPD78F9116B(A1))  
TA = 40 to +110°C (µPD78910xA(A1), 78911xA(A1))  
TA = 40 to +125°C (µPD78910xA(A2), 78911xA(A2))  
Note When VDD = 4.5 to 5.5 V and for expanded-specification products only  
1.3 Applications  
Vacuum cleaners, washing machines, refrigerators, battery chargers, etc.  
25  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.4 Ordering Information  
Part Number  
Package  
Internal ROM  
µPD789101AMC-×××-5A4  
µPD789102AMC-×××-5A4  
µPD789104AMC-×××-5A4  
µPD789111AMC-×××-5A4  
µPD789112AMC-×××-5A4  
µPD789114AMC-×××-5A4  
µPD78F9116AMC-5A4  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Flash memory  
Flash memory  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Flash memory  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Flash memory  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
µPD78F9116BMC-5A4  
µPD789101AMC(A)-×××-5A4  
µPD789102AMC(A)-×××-5A4  
µPD789104AMC(A)-×××-5A4  
µPD789111AMC(A)-×××-5A4  
µPD789112AMC(A)-×××-5A4  
µPD789114AMC(A)-×××-5A4  
µPD78F9116BMC(A)-5A4  
µPD789101AMC(A1)-×××-5A4  
µPD789102AMC(A1)-×××-5A4  
µPD789104AMC(A1)-×××-5A4  
µPD789111AMC(A1)-×××-5A4  
µPD789112AMC(A1)-×××-5A4  
µPD789114AMC(A1)-×××-5A4  
µPD78F9116BMC(A1)-5A4  
µPD789101AMC(A2)-×××-5A4  
µPD789102AMC(A2)-×××-5A4  
µPD789104AMC(A2)-×××-5A4  
µPD789111AMC(A2)-×××-5A4  
µPD789112AMC(A2)-×××-5A4  
µPD789114AMC(A2)-×××-5A4  
Remark ××× indicates ROM code suffix.  
26  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.5 Quality Grade  
Part Number  
Package  
Quality Grade  
µPD789101AMC-×××-5A4  
µPD789102AMC-×××-5A4  
µPD789104AMC-×××-5A4  
µPD789111AMC-×××-5A4  
µPD789112AMC-×××-5A4  
µPD789114AMC-×××-5A4  
µPD78F9116AMC-5A4  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
µPD78F9116BMC-5A4  
µPD789101AMC(A)-×××-5A4  
µPD789102AMC(A)-×××-5A4  
µPD789104AMC(A)-×××-5A4  
µPD789111AMC(A)-×××-5A4  
µPD789112AMC(A)-×××-5A4  
µPD789114AMC(A)-×××-5A4  
µPD78F9116BMC(A)-5A4  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
µPD789101AMC(A1)-×××-5A4  
µPD789102AMC(A1)-×××-5A4  
µPD789104AMC(A1)-×××-5A4  
µPD789111AMC(A1)-×××-5A4  
µPD789112AMC(A1)-×××-5A4  
µPD789114AMC(A1)-×××-5A4  
µPD78F9116BMC(A1)-5A4  
µPD789101AMC(A2)-×××-5A4  
µPD789102AMC(A2)-×××-5A4  
µPD789104AMC(A2)-×××-5A4  
µPD789111AMC(A2)-×××-5A4  
µPD789112AMC(A2)-×××-5A4  
µPD789114AMC(A2)-×××-5A4  
Remark ××× indicates ROM code suffix.  
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by  
NEC Electronics Corporation to know the specification of the quality grade on the device and its  
recommended applications.  
27  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.6 Pin Configuration (Top View)  
30-pin plastic SSOP (7.62 mm (300))  
µPD789101AMC-×××-5A4  
µPD789102AMC-×××-5A4  
µPD789112AMC-×××-5A4  
µPD78F9116BMC-5A4  
µPD789104AMC-×××-5A4  
µPD789114AMC-×××-5A4  
µPD789111AMC-×××-5A4  
µPD78F9116AMC-5A4  
µPD789101AMC(A)-×××-5A4  
µPD789111AMC(A)-×××-5A4  
µPD78F9116BMC(A)-5A4  
µPD789102AMC(A)-×××-5A4  
µPD789112AMC(A)-×××-5A4  
µPD789104AMC(A)-×××-5A4  
µPD789114AMC(A)-×××-5A4  
µPD789101AMC(A1)-×××-5A4  
µPD789111AMC(A1)-×××-5A4  
µPD78F9116BMC(A1)-5A4  
µPD789101AMC(A2)-×××-5A4  
µPD789111AMC(A2)-×××-5A4  
µPD789102AMC(A1)-×××-5A4  
µPD789112AMC(A1)-×××-5A4  
µPD789104AMC(A1)-×××-5A4  
µPD789114AMC(A1)-×××-5A4  
µPD789102AMC(A2)-×××-5A4  
µPD789112AMC(A2)-×××-5A4  
µPD789104AMC(A2)-×××-5A4  
µPD789114AMC(A2)-×××-5A4  
P23/INTP0/CPT20/SS20  
1
P22/SI20/RXD20  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
P24/INTP1/TO80/TO20  
2
P21/SO20/TXD20  
P25/INTP2/TI80  
AVDD  
3
P20/SCK20/ASCK20  
4
P11  
P10  
VDD  
P60/ANI0  
P61/ANI1  
P62/ANI2  
P63/ANI3  
AVSS  
5
6
7
VSS  
8
X1  
9
X2  
IC0  
10  
11  
12  
13  
14  
15  
IC0  
P50  
IC0 (VPP)  
RESET  
P03  
P02  
P01  
P51  
P52  
P53  
P00  
Cautions 1. Connect the IC0 (internally connected) pin directly to the VSS pin.  
2. Connect the AVDD pin to the VDD pin.  
3. Connect the AVSS pin to the VSS pin.  
Remark The pin connection in parentheses is intended for the µPD78F9116A, 78F9116B, 78F9116B(A), and  
78F9116B(A1).  
28  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
ANI0 to ANI3:  
ASCK20:  
AVDD:  
Analog input  
RxD20:  
SCK20:  
SI20:  
Receive data  
Asynchronous serial input  
Analog power supply  
Analog ground  
Capture trigger input  
Internally connected  
External interrupt input  
Port 0  
Serial clock  
Serial input  
AVSS:  
SO20:  
SS20:  
TI80:  
Serial output  
Chip select input  
Timer input  
CPT20:  
IC0:  
INTP0 to INTP2:  
P00 to P03:  
P10, P11:  
P20 to P25:  
P50 to P53:  
P60 to P63:  
RESET:  
TO20, TO80:  
TxD20:  
VDD:  
Timer output  
Transmit data  
Power supply  
Programming power supply  
Ground  
Port 1  
Port 2  
VPP:  
Port 5  
VSS:  
Port 6  
X1, X2:  
Crystal 1, 2  
Reset  
29  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.7 78K/0S Series Lineup  
The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.  
Products in mass production  
Products under development  
Y Subseries products support SMB.  
Small-scale package, general-purpose applications  
44-pin  
42-/44-pin  
µ
PD789074 with added subsystem clock  
PD789046  
µ
µ
µ
µ
PD789014 with enhanced timer and increased ROM, RAM capacity  
PD789074 with enhanced timer and increased ROM, RAM capacity  
PD789026 with enhanced timer  
µ
µ
µ
µ
µ
µ
PD789026  
PD789088  
PD789074  
PD789014  
PD789062  
PD789052  
30-pin  
30-pin  
28-pin  
20-pin  
20-pin  
On-chip UART and capable of low voltage (1.8 V) operation  
RC oscillation version of the PD789052  
µ
µ
PD789860 without EEPROMTM, POC, and LVI  
Small-scale package, general-purpose applications and A/D converter  
PD789177Y  
PD789167Y  
µ
µ
µ
µ
µ
µ
µ
µ
µ
PD789167 with enhanced A/D converter (10 bits)  
PD789104A with enhanced timer  
PD789146 with enhanced A/D converter (10 bits)  
PD789104A with added EEPROM  
44-pin  
44-pin  
30-pin  
30-pin  
30-pin  
30-pin  
30-pin  
30-pin  
PD789177  
PD789167  
PD789156  
PD789146  
PD789134A  
PD789124A  
PD789114A  
PD789104A  
µ
µ
µ
µ
µ
PD789124A with enhanced A/D converter (10 bits)  
RC oscillation version of the  
µ
PD789104A  
µ
µ
PD789104A with enhanced A/D converter (10 bits)  
PD789026 with added 8-bit A/D converter and multiplier  
µ
LCD drive  
144-pin  
88-pin  
80-pin  
µ
µ
µ
PD789835  
UART, 8-bit A/D, and dot LCD (Total display output pins: 96)  
UART and dot LCD (40 16)  
SIO, 10-bit A/D converter, and on-chip voltage booster type LCD (28  
PD789830  
PD789488  
×
×
4)  
SIO, 8-bit A/D converter, and resistance division type LCD (28  
PD789407A with enhanced A/D converter (10 bits)  
SIO, 8-bit A/D converter, and resistance division type LCD (28  
×
4)  
µ
µ
µ
µ
µ
µ
µ
µ
PD789478  
PD789417A  
PD789407A  
PD789456  
PD789446  
PD789436  
PD789426  
PD789316  
PD789306  
PD789467  
80-pin  
80-pin  
µ
78K/0S  
Series  
×
4)  
80-pin  
64-pin  
64-pin  
64-pin  
64-pin  
µ
PD789446 with enhanced A/D converter (10 bits)  
SIO, 8-bit A/D, and on-chip voltage booster type LCD (15  
×
4)  
µ
PD789426 with enhanced A/D converter (10 bits)  
SIO, 8-bit A/D, and on-chip voltage booster type LCD (5  
×
4)  
RC oscillation version of the PD789306  
64-pin  
64-pin  
52-pin  
52-pin  
µ
µ
µ
µ
SIO and on-chip voltage booster type LCD (24  
× 4)  
8-bit A/D and on-chip voltage booster type LCD (23  
SIO and resistance division type LCD (24 4)  
× 4)  
×
PD789327  
USB  
44-pin  
44-pin  
µ
PD789800  
For PC keyboard and on-chip USB function  
On-chip inverter controller and UART  
Inverter control  
PD789842  
µ
On-chip bus controller  
PD789852  
44-pin  
30-pin  
µ
PD789850A with enhanced functions such as timer and A/D converter  
µ
PD789850A  
µ
On-chip CAN controller  
Keyless entry  
30-pin  
20-pin  
20-pin  
µ
µ
µ
PD789862  
µPD789860 with enhanced timer, added SIO, and increased ROM, RAM capacity  
µ
RC oscillation version of the PD789860  
PD789861  
PD789860  
On-chip POC and key return circuit  
VFD drive  
µ
52-pin  
64-pin  
PD789871  
Meter control  
PD789881  
On-chip VFD controller (Total display output pins: 25)  
µ
UART and resistance division type LCD (26  
× 4)  
Remark VFD (Vacuum Fluorescent Display) is referred to as FIPTM (Fluorescent Indicator Panel) in some  
documents, but the functions of the two are the same.  
30  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
The major functional differences between the subseries are listed below.  
Series for general-purpose applications and LCD drive  
Function  
ROM  
Timer  
8-Bit 10-Bit  
A/D A/D  
Serial  
I/O  
VDD  
Remarks  
Capacity  
Interface  
8-Bit 16-Bit Watch WDT  
MIN.  
Subseries Name  
Value  
Small-scale µPD789046 16 KB  
1 ch 1 ch 1 ch 1 ch  
1 ch  
34  
24  
1.8 V  
package,  
(UART: 1 ch)  
µPD789026 4 KB to 16 KB  
general-  
µPD789088 16 KB to  
3 ch  
purpose  
32 KB  
applications  
µPD789074 2 KB to 8 KB 1 ch  
µPD789014 2 KB to 4 KB 2 ch  
µPD789062 4 KB  
22  
14  
RC oscillation  
version  
µPD789052  
Small-scale µPD789177 16 KB to  
3 ch 1 ch 1 ch 1 ch  
8 ch  
8 ch 1 ch  
31  
20  
1.8 V  
package,  
general-  
24 KB  
(UART: 1 ch)  
µPD789167  
4 ch  
µPD789156 8 KB to 16 KB 1 ch  
µPD789146  
On-chip  
purpose  
EEPROM  
applications  
and A/D  
4 ch  
µPD789134A 2 KB to 8 KB  
µPD789124A  
4 ch  
RC oscillation  
version  
converter  
4 ch  
µPD789114A  
4 ch  
µPD789104A  
4 ch  
LCD drive  
µPD789835 24 KB to  
6 ch  
1 ch 1 ch 3 ch  
1 ch  
37 1.8 VNote Dot LCD  
supported  
60 KB  
(UART: 1 ch)  
µPD789830 24 KB  
1 ch 1 ch  
3 ch  
30  
45  
2.7 V  
1.8 V  
µPD789488 32 KB to  
8 ch 2 ch  
(UART: 1 ch)  
48 KB  
µPD789478 24 KB to  
8 ch  
48 KB  
µPD789417A 12 KB to  
7 ch  
7 ch 1 ch  
43  
30  
40  
23  
24 KB  
(UART: 1 ch)  
µPD789407A  
6 ch  
µPD789456 12 KB to  
2 ch  
16 KB  
µPD789446  
6 ch  
µPD789436  
6 ch  
µPD789426  
6 ch  
µPD789316 8 KB to 16 KB  
2 ch  
RC oscillation  
version  
(UART: 1 ch)  
µPD789306  
µPD789467 4 KB to 24 KB  
µPD789327  
1 ch  
18  
21  
1 ch  
Note Flash memory version: 3.0 V  
31  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
Series for ASSP  
Function  
ROM  
Timer  
8-Bit 10-Bit  
A/D A/D  
Serial  
I/O  
VDD  
Remarks  
Capacity  
Interface  
8-Bit 16-Bit Watch WDT  
MIN.  
Value  
Subseries Name  
USB  
µPD789800  
8 KB  
2 ch  
1 ch  
2 ch  
31  
30  
31  
18  
14  
4.0 V  
4.0 V  
4.0 V  
(USB: 1 ch)  
Inverter  
control  
µPD789842  
8 KB to 16 KB 3 ch  
1 ch 1 ch 8 ch  
1 ch  
Note 1  
(UART: 1 ch)  
On-chip bus µPD789852  
24 KB to  
32 KB  
3 ch 1 ch  
1 ch  
1 ch  
4 ch  
8 ch 3 ch  
(UART: 2 ch)  
controller  
µPD789850A 16 KB  
2 ch  
(UART: 1 ch)  
Keyless  
entry  
µPD789861  
4 KB  
2 ch  
1 ch  
1.8 V RC oscillation  
version, on-  
chip EEPROM  
µPD789860  
µPD789862  
On-chip  
EEPROM  
16 KB  
1 ch 2 ch  
1 ch  
22  
33  
(UART: 1 ch)  
VFD drive  
µPD789871  
µPD789881  
4 KB to 8 KB 3 ch  
1 ch 1 ch  
1 ch  
1 ch  
2.7 V  
Meter  
16 KB 2 ch 1 ch  
1 ch  
28 2.7 VNote 2  
control  
(UART: 1 ch)  
Notes 1. 10-bit timer: 1 channel  
2. Flash memory version: 3.0 V  
32  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.8 Block Diagram  
TI80/INTP2/P25  
8-bit timer/  
event counter 80  
P00 to P03  
P10, P11  
Port 0  
Port 1  
Port 2  
Port 5  
Port 6  
TO80/TO20  
/INTP1/P24  
TO20/TO80  
/INTP1/P24  
16-bit timer 20  
CPT20/INTP0  
/SS20/P23  
P20 to P25  
P50 to P53  
P60 to P63  
Watchdog timer  
ROM  
(flash  
memory)  
78K/0S  
CPU core  
SCK20/ASCK20  
/P20  
Serial  
interface 20  
SO20/TxD20/P21  
SI20/RxD20/P22  
SS20/INTP0  
/CPT20/P23  
RAM  
ANI0/P60 to  
ANI3/P63  
RESET  
X1  
A/D converter  
AVDD  
AVSS  
System control  
Interrupt control  
X2  
INTP0/CPT20  
/P23/SS20  
INTP1/TO80  
/TO20/P24  
IC0  
(VPP  
VDD  
VSS  
INTP2/TI80/P25  
)
Remarks 1. The size of the internal ROM varies depending on the product.  
2. Items in parentheses apply to the µPD78F9116A, 78F9116B, 78F9116B(A), and 78F9116B(A1).  
33  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.9 Outline of Functions  
Item  
µ
PD789101A, 789111A,  
µ
PD789102A, 789112A,  
µ
PD789104A, 789114A,  
µ
PD78F9116A, 78F9116B,  
78F9116B(A),  
789101A(A), 789111A(A),  
789102A(A), 789112A(A),  
789104A(A), 789114A(A),  
789101A(A1), 789111A(A1), 789102A(A1), 789112A(A1), 789104A(A1), 789114A(A1),  
789101A(A2), 789111A(A2) 789102A(A2), 789112A(A2) 789104A(A2), 789114A(A2)  
78F9116B(A1)  
Internal memory  
System clock  
ROM  
Mask ROM  
Flash memory  
16 KB  
2 KB  
4 KB  
8 KB  
High-speed RAM  
256 bytes  
Crystal/ceramic oscillation  
Minimum instruction execution time  
Expanded-specification products of the µPD78910xA, 78910xA(A), 78911xA,  
78911xA(A), 78F9116B, 78F9116B(A)  
0.2 µs/0.8 µs (@ system clock: 10.0 MHz operation, VDD = 4.5 to 5.5 V)  
Other  
0.4 µs/1.6 µs (@ system clock: 5.0 MHz operation)  
General-purpose registers  
Instruction set  
8 bits × 8 registers  
16-bit operations  
Bit manipulations (such as set, reset, and test)  
Multiplier  
I/O ports  
8 bits × 8 bits = 16 bits  
Total:  
20  
4
CMOS input:  
CMOS I/O:  
N-ch open-drain:  
12  
4
A/D converter  
8-bit resolution × 4 channels (µPD789104A Subseries)  
10-bit resolution × 4 channels (µPD789114A Subseries)  
Serial interface  
Timer  
3-wire serial I/O mode/UART mode selectable: 1 channel  
16-bit timer:  
1 channel  
1 channel  
1 channel  
8-bit timer/event counter:  
Watchdog timer:  
Timer outputs  
One output  
Vectored  
interrupts  
Maskable  
Internal: 6, External: 3  
Internal: 1  
Non-maskable  
Supply voltage  
VDD = 1.8 to 5.5 V (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A), 78F9116A,  
78F9116B, 78F9116B(A))  
VDD = 4.5 to 5.5 V (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2),  
78F9116B(A1))  
Operating ambient temperature  
TA = 40 to +85°C (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A), 78F9116A,  
78F9116B, 78F9116B(A))  
TA = 40 to +105°C (µPD78F9116B(A1))  
TA = 40 to +110°C (µPD78910xA(A1), 78911xA(A1))  
TA = 40 to +125°C (µPD78910xA(A2), 78911xA(A2))  
Package  
30-pin plastic SSOP (7.62 mm (300))  
34  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
An outline of the timers is shown below.  
16-Bit Timer 20  
8-Bit Timer/Event Counter 80  
Watchdog Timer  
Operating  
Mode  
Interval timer  
1 channel  
1 channel  
1 output  
1 output  
1 output  
1 channelNote  
External event timer  
Timer output  
1
Function  
1 output  
PWM output  
Square-wave output  
Capture  
1 input  
1
Interrupt sources  
1
Note The watchdog timer provides a watchdog timer function and an interval timer function, but only one of the  
two functions can be used at a time.  
35  
User’s Manual U14643EJ2V0UD  
CHAPTER 1 GENERAL (µPD789104A, 789114A SUBSERIES)  
1.10 Differences Between Standard Quality Grade Products and (A), (A1), (A2) Products  
The standard quality grade products and the (A), (A1), and (A2) products refer to the following products.  
[Standard quality grade products]... µPD789101A, 789102A, 789104A, 789111A, 789112A, 789114A, 78F9116A,  
78F9116B  
[(A) products]....µPD789101A(A), 789102A(A), 789104A(A), 789111A(A), 789112A(A), 789114A(A), 78F9116B(A)  
[(A1) products]....µPD789101A(A1), 789102A(A1), 789104A(A1), 789111A(A1), 789112A(A1), 789114A(A1),  
78F9116B(A1)  
[(A2) products]....µPD789101A(A2), 789102A(A2), 789104A(A2), 789111A(A2), 789112A(A2), 789114A(A2)  
The differences between the standard quality grade products and the (A), (A1), and (A2) products are shown in  
Table 1-2.  
Table 1-2. Differences Between Standard Quality Grade Products and (A), (A1), (A2) Products  
Products  
Standard Quality Grade  
Products  
(A) Products  
(A1) Products  
(A2) Products  
Item  
Quality grade  
Standard  
Special  
Supply voltage  
VDD = 1.8 to 5.5 V  
TA = 40 to +85°C  
VDD = 4.5 to 5.5 V  
Operating  
ambient  
µPD78F9116B(A1)  
TA = 40 to +105°C  
Other than  
TA = 40 to +125°C  
temperature  
µPD78F9116B(A1)  
TA = 40 to +110°C  
Minimum  
Expanded-specification productsNote  
0.2 µs (@ 10.0 MHz operation)  
:
0.4 µs (@ 5.0 MHz operation)  
instruction  
execution time  
Conventional-specification productsNote  
:
0.4 µs (@ 5.0 MHz operation)  
Electrical  
Refer to the relevant electrical specifications chapter.  
specifications  
Note Refer to 1.1 Expanded-Specification Products and Conventional-Specification Products.  
36  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
Caution All µPD789124A, 789134A Subseries products are conventional-specification products. No  
expanded-specification products are available in the µPD789124A, 789134A Subseries.  
2.1 Features  
ROM and RAM capacities  
Item  
Program Memory  
Data Memory  
(Internal High-Speed RAM)  
Part Number  
µPD789121A, 789131A, 789121A(A), 789131A(A),  
Mask ROM  
2 KB  
4 KB  
8 KB  
16 KB  
256 bytes  
789121A(A1), 789131A(A1), 789121A(A2), 789131A(A2)  
µPD789122A, 789132A, 789122A(A), 789132A(A),  
789122A(A1), 789132A(A1), 789122A(A2), 789132A(A2)  
µPD789124A, 789134A, 789124A(A), 789134A(A),  
789124A(A1), 789134A(A1), 789124A(A2), 789134A(A2)  
µPD78F9136A, 78F9136B, 78F9136B(A), 78F9136B(A1)  
Flash memory  
System clock: RC oscillation  
Minimum instruction execution times switchable between high speed (0.5 µs) and low speed (2.0 µs) (system  
clock: 4.0 MHz)  
20 I/O ports  
Serial interface: 1 channel  
3-wire serial I/O mode/UART mode selectable  
8-bit resolution A/D converter: 4 channels (µPD789124A Subseries)  
10-bit resolution A/D converter: 4 channels (µPD789134A Subseries)  
3 timers  
16-bit timer:  
8-bit timer/event counter: 1 channel  
Watchdog timer: 1 channel  
1 channel  
Multiplier: 8 bits × 8 bits = 16 bits  
Vectored interrupt sources: 10  
Supply voltage  
VDD = 1.8 to 5.5 V (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A), 78F9136A, 78F9136B, 78F9136B(A))  
VDD = 4.5 to 5.5 V (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2), 78F9136B(A1))  
Operating ambient temperature  
TA = 40 to + 85°C (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A), 78F9136A, 78F9136B, 78F9136B(A))  
TA = 40 to +105°C (µPD78F9136B(A1))  
TA = 40 to +110°C (µPD78912xA(A1), 78913xA(A1))  
TA = 40 to +125°C (µPD78912xA(A2), 78913xA(A2))  
2.2 Applications  
Vacuum cleaners, washing machines, refrigerators, battery chargers, etc.  
37  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
2.3 Ordering Information  
Part Number  
Package  
Internal ROM  
µPD789121AMC-×××-5A4  
µPD789122AMC-×××-5A4  
µPD789124AMC-×××-5A4  
µPD789131AMC-×××-5A4  
µPD789132AMC-×××-5A4  
µPD789134AMC-×××-5A4  
µPD78F9136AMC-5A4  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Flash memory  
Flash memory  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Flash memory  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Flash memory  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
Mask ROM  
µPD78F9136BMC-5A4  
µPD789121AMC(A)-×××-5A4  
µPD789122AMC(A)-×××-5A4  
µPD789124AMC(A)-×××-5A4  
µPD789131AMC(A)-×××-5A4  
µPD789132AMC(A)-×××-5A4  
µPD789134AMC(A)-×××-5A4  
µPD78F9136BMC(A)-5A4  
µPD789121AMC(A1)-×××-5A4  
µPD789122AMC(A1)-×××-5A4  
µPD789124AMC(A1)-×××-5A4  
µPD789131AMC(A1)-×××-5A4  
µPD789132AMC(A1)-×××-5A4  
µPD789134AMC(A1)-×××-5A4  
µPD78F9136BMC(A1)-5A4  
µPD789121AMC(A2)-×××-5A4  
µPD789122AMC(A2)-×××-5A4  
µPD789124AMC(A2)-×××-5A4  
µPD789131AMC(A2)-×××-5A4  
µPD789132AMC(A2)-×××-5A4  
µPD789134AMC(A2)-×××-5A4  
Remark ××× indicates ROM code suffix.  
38  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
2.4 Quality Grade  
Part Number  
Package  
Quality Grade  
µPD789121AMC-×××-5A4  
µPD789122AMC-×××-5A4  
µPD789124AMC-×××-5A4  
µPD789131AMC-×××-5A4  
µPD789132AMC-×××-5A4  
µPD789134AMC-×××-5A4  
µPD78F9136AMC-5A4  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
µPD78F9136BMC-5A4  
µPD789121AMC(A)-×××-5A4  
µPD789122AMC(A)-×××-5A4  
µPD789124AMC(A)-×××-5A4  
µPD789131AMC(A)-×××-5A4  
µPD789132AMC(A)-×××-5A4  
µPD789134AMC(A)-×××-5A4  
µPD78F9136BMC(A)-5A4  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
30-pin plastic SSOP (7.62 mm (300))  
µPD789121AMC(A1)-×××-5A4  
µPD789122AMC(A1)-×××-5A4  
µPD789124AMC(A1)-×××-5A4  
µPD789131AMC(A1)-×××-5A4  
µPD789132AMC(A1)-×××-5A4  
µPD789134AMC(A1)-×××-5A4  
µPD78F9136BMC(A1)-5A4  
µPD789121AMC(A2)-×××-5A4  
µPD789122AMC(A2)-×××-5A4  
µPD789124AMC(A2)-×××-5A4  
µPD789131AMC(A2)-×××-5A4  
µPD789132AMC(A2)-×××-5A4  
µPD789134AMC(A2)-×××-5A4  
Remark ××× indicates ROM code suffix.  
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by  
NEC Electronics Corporation to know the specification of the quality grade on the device and its  
recommended applications.  
39  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
2.5 Pin Configuration (Top View)  
30-pin plastic SSOP (7.62 mm (300))  
µPD789121AMC-×××-5A4  
µPD789122AMC-×××-5A4  
µPD789132AMC-×××-5A4  
µPD78F9136BMC-5A4  
µPD789124AMC-×××-5A4  
µPD789134AMC-×××-5A4  
µPD789131AMC-×××-5A4  
µPD78F9136AMC-5A4  
µPD789121AMC(A)-×××-5A4  
µPD789131AMC(A)-×××-5A4  
µPD78F9136BMC(A)-5A4  
µPD789122AMC(A)-×××-5A4  
µPD789132AMC(A)-×××-5A4  
µPD789124AMC(A)-×××-5A4  
µPD789134AMC(A)-×××-5A4  
µPD789121AMC(A1)-×××-5A4  
µPD789131AMC(A1)-×××-5A4  
µPD78F9136BMC(A1)-5A4  
µPD789121AMC(A2)-×××-5A4  
µPD789131AMC(A2)-×××-5A4  
µPD789122AMC(A1)-×××-5A4  
µPD789132AMC(A1)-×××-5A4  
µPD789124AMC(A1)-×××-5A4  
µPD789134AMC(A1)-×××-5A4  
µPD789122AMC(A2)-×××-5A4  
µPD789132AMC(A2)-×××-5A4  
µPD789124AMC(A2)-×××-5A4  
µPD789134AMC(A2)-×××-5A4  
P23/INTP0/CPT20/SS20  
1
P22/SI20/RXD20  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
P24/INTP1/TO80/TO20  
2
P21/SO20/TXD20  
P25/INTP2/TI80  
AVDD  
3
P20/SCK20/ASCK20  
4
P11  
P60/ANI0  
P61/ANI1  
P62/ANI2  
P63/ANI3  
AVSS  
5
P10  
6
VDD  
7
VSS  
8
CL1  
9
CL2  
IC0  
10  
11  
12  
13  
14  
15  
IC0  
P50  
IC0 (VPP)  
RESET  
P03  
P51  
P52  
P53  
P02  
P00  
P01  
Cautions 1. Connect the IC0 (internally connected) pin directly to the VSS pin.  
2. Connect the AVDD pin to the VDD pin.  
3. Connect the AVSS pin to the VSS pin.  
Remark The pin connection in parentheses is intended for the µPD78F9136A, 78F9136B, 78F9136B(A), and  
78F9136B(A1).  
40  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
ANI0 to ANI3:  
ASCK20:  
AVDD:  
Analog input  
RESET:  
RxD20:  
SCK20:  
SI20:  
Reset  
Asynchronous serial input  
Analog power supply  
Analog ground  
RC oscillator  
Capture trigger input  
Internally connected  
External interrupt input  
Port 0  
Receive data  
Serial clock  
AVSS:  
Serial input  
CL1, CL2:  
CPT20:  
SO20:  
SS20:  
TI80:  
Serial output  
Chip select input  
Timer input  
IC0:  
INTP0 to INTP2:  
P00 to P03:  
P10, P11:  
P20 to P25:  
P50 to P53:  
P60 to P63:  
TO20, TO80:  
TxD20:  
VDD:  
Timer output  
Transmit data  
Power supply  
Programming power supply  
Ground  
Port 1  
Port 2  
VPP:  
Port 5  
VSS:  
Port 6  
41  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
2.6 78K/0S Series Lineup  
The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.  
Products in mass production  
Products under development  
Y Subseries products support SMB.  
Small-scale package, general-purpose applications  
44-pin  
µ
PD789074 with added subsystem clock  
PD789046  
µ
µ
42-/44-pin  
PD789014 with enhanced timer and increased ROM, RAM capacity  
µ
µ
µ
µ
µ
µ
PD789026  
PD789088  
PD789074  
PD789014  
PD789062  
PD789052  
30-pin  
30-pin  
28-pin  
20-pin  
20-pin  
PD789074 with enhanced timer and increased ROM, RAM capacity  
PD789026 with enhanced timer  
µ
µ
On-chip UART and capable of low voltage (1.8 V) operation  
RC oscillation version of the PD789052  
µ
µ
PD789860 without EEPROM, POC, and LVI  
Small-scale package, general-purpose applications and A/D converter  
PD789177Y  
PD789167Y  
µ
µ
µ
µ
PD789167 with enhanced A/D converter (10 bits)  
PD789104A with enhanced timer  
44-pin  
44-pin  
30-pin  
30-pin  
30-pin  
30-pin  
30-pin  
30-pin  
PD789177  
PD789167  
PD789156  
PD789146  
PD789134A  
PD789124A  
PD789114A  
PD789104A  
µ
µ
µ
µ
µ
PD789146 with enhanced A/D converter (10 bits)  
PD789104A with added EEPROM  
PD789124A with enhanced A/D converter (10 bits)  
µ
µ
µ
µ
µ
RC oscillation version of the  
µ
PD789104A  
µ
µ
PD789104A with enhanced A/D converter (10 bits)  
PD789026 with added 8-bit A/D converter and multiplier  
µ
LCD drive  
144-pin  
88-pin  
80-pin  
µ
µ
µ
PD789835  
UART, 8-bit A/D, and dot LCD (Total display output pins: 96)  
UART and dot LCD (40 16)  
SIO, 10-bit A/D converter, and on-chip voltage booster type LCD (28  
PD789830  
PD789488  
×
×
4)  
SIO, 8-bit A/D converter, and resistance division type LCD (28  
PD789407A with enhanced A/D converter (10 bits)  
SIO, 8-bit A/D converter, and resistance division type LCD (28  
×
4)  
µ
µ
µ
µ
PD789478  
PD789417A  
PD789407A  
PD789456  
PD789446  
PD789436  
PD789426  
PD789316  
PD789306  
PD789467  
80-pin  
80-pin  
µ
78K/0S  
Series  
×
4)  
80-pin  
64-pin  
64-pin  
64-pin  
64-pin  
µ
PD789446 with enhanced A/D converter (10 bits)  
µ
µ
µ
µ
SIO, 8-bit A/D, and on-chip voltage booster type LCD (15  
×
4)  
µ
PD789426 with enhanced A/D converter (10 bits)  
SIO, 8-bit A/D, and on-chip voltage booster type LCD (5  
×
4)  
RC oscillation version of the PD789306  
64-pin  
64-pin  
52-pin  
52-pin  
µ
µ
µ
µ
SIO and on-chip voltage booster type LCD (24  
× 4)  
8-bit A/D and on-chip voltage booster type LCD (23  
SIO and resistance division type LCD (24 4)  
× 4)  
×
PD789327  
USB  
44-pin  
44-pin  
µ
PD789800  
For PC keyboard and on-chip USB function  
On-chip inverter controller and UART  
Inverter control  
PD789842  
µ
On-chip bus controller  
PD789852  
44-pin  
30-pin  
µ
PD789850A with enhanced functions such as timer and A/D converter  
µ
PD789850A  
µ
On-chip CAN controller  
Keyless entry  
30-pin  
20-pin  
20-pin  
µ
µ
µ
PD789862  
µPD789860 with enhanced timer, added SIO, and increased ROM, RAM capacity  
µ
RC oscillation version of the PD789860  
PD789861  
PD789860  
On-chip POC and key return circuit  
VFD drive  
µ
52-pin  
64-pin  
PD789871  
Meter control  
PD789881  
On-chip VFD controller (Total display output pins: 25)  
µ
UART and resistance division type LCD (26  
× 4)  
Remark VFD (Vacuum Fluorescent Display) is referred to as FIP (Fluorescent Indicator Panel) in some  
documents, but the functions of the two are the same.  
42  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
The major functional differences between the subseries are listed below.  
Series for general-purpose applications and LCD drive  
Function  
ROM  
Timer  
8-Bit 10-Bit  
A/D A/D  
Serial  
I/O  
VDD  
Remarks  
Capacity  
Interface  
8-Bit 16-Bit Watch WDT  
MIN.  
Subseries Name  
Value  
Small-scale µPD789046 16 KB  
1 ch 1 ch 1 ch 1 ch  
1 ch  
34  
24  
1.8 V  
package,  
(UART: 1 ch)  
µPD789026 4 KB to 16 KB  
general-  
µPD789088 16 KB to  
3 ch  
purpose  
32 KB  
applications  
µPD789074 2 KB to 8 KB 1 ch  
µPD789014 2 KB to 4 KB 2 ch  
µPD789062 4 KB  
22  
14  
RC oscillation  
version  
µPD789052  
Small-scale µPD789177 16 KB to  
3 ch 1 ch 1 ch 1 ch  
8 ch  
8 ch 1 ch  
31  
20  
1.8 V  
package,  
general-  
24 KB  
(UART: 1 ch)  
µPD789167  
4 ch  
µPD789156 8 KB to 16 KB 1 ch  
µPD789146  
On-chip  
purpose  
EEPROM  
applications  
and A/D  
4 ch  
µPD789134A 2 KB to 8 KB  
µPD789124A  
4 ch  
RC oscillation  
version  
converter  
4 ch  
µPD789114A  
4 ch  
µPD789104A  
4 ch  
LCD drive  
µPD789835 24 KB to  
6 ch  
1 ch 1 ch 3 ch  
1 ch  
37 1.8 VNote Dot LCD  
supported  
60 KB  
(UART: 1 ch)  
µPD789830 24 KB  
1 ch 1 ch  
3 ch  
30  
45  
2.7 V  
1.8 V  
µPD789488 32 KB to  
8 ch 2 ch  
(UART: 1 ch)  
48 KB  
µPD789478 24 KB to  
8 ch  
48 KB  
µPD789417A 12 KB to  
7 ch  
7 ch 1 ch  
43  
30  
40  
23  
24 KB  
(UART: 1 ch)  
µPD789407A  
6 ch  
µPD789456 12 KB to  
2 ch  
16 KB  
µPD789446  
6 ch  
µPD789436  
6 ch  
µPD789426  
6 ch  
µPD789316 8 KB to 16 KB  
2 ch  
RC oscillation  
version  
(UART: 1 ch)  
µPD789306  
µPD789467 4 KB to 24 KB  
µPD789327  
1 ch  
18  
21  
1 ch  
Note Flash memory version: 3.0 V  
43  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
Series for ASSP  
Function  
ROM  
Timer  
8-Bit 10-Bit  
A/D A/D  
Serial  
I/O  
VDD  
Remarks  
Capacity  
Interface  
8-Bit 16-Bit Watch WDT  
MIN.  
Value  
Subseries Name  
USB  
µPD789800  
8 KB  
2 ch  
1 ch  
2 ch  
31  
30  
31  
18  
14  
4.0 V  
4.0 V  
4.0 V  
(USB: 1 ch)  
Inverter  
control  
µPD789842  
8 KB to 16 KB 3 ch  
1 ch 1 ch 8 ch  
1 ch  
Note 1  
(UART: 1 ch)  
On-chip bus µPD789852  
24 KB to  
32 KB  
3 ch 1 ch  
1 ch  
1 ch  
4 ch  
8 ch 3 ch  
(UART: 2 ch)  
controller  
µPD789850A 16 KB  
2 ch  
(UART: 1 ch)  
Keyless  
entry  
µPD789861  
4 KB  
2 ch  
1 ch  
1.8 V RC oscillation  
version, on-  
chip EEPROM  
µPD789860  
µPD789862  
On-chip  
EEPROM  
16 KB  
1 ch 2 ch  
1 ch  
22  
33  
(UART: 1 ch)  
VFD drive  
µPD789871  
µPD789881  
4 KB to 8 KB 3 ch  
1 ch 1 ch  
1 ch  
1 ch  
2.7 V  
Meter  
16 KB 2 ch 1 ch  
1 ch  
28 2.7 VNote 2  
control  
(UART: 1 ch)  
Notes 1. 10-bit timer: 1 channel  
2. Flash memory version: 3.0 V  
44  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
2.7 Block Diagram  
TI80/INTP2/P25  
8-bit timer/  
event counter 80  
P00 to P03  
P10, P11  
Port 0  
Port 1  
Port 2  
Port 5  
Port 6  
TO80/TO20  
/INTP1/P24  
TO20/TO80  
/INTP1/P24  
16-bit timer 20  
CPT20/INTP0  
/SS20/P23  
P20 to P25  
P50 to P53  
P60 to P63  
Watchdog timer  
ROM  
(flash  
memory)  
78K/0S  
CPU core  
SCK20/ASCK20  
/P20  
Serial  
interface 20  
SO20/TxD20/P21  
SI20/RxD20/P22  
SS20/INTP0  
/CPT20/P23  
RAM  
ANI0/P60 to  
ANI3/P63  
RESET  
CL1  
A/D converter  
AVDD  
AVSS  
System control  
Interrupt control  
CL2  
INTP0/CPT20  
/P23/SS20  
INTP1/TO80  
/TO20/P24  
V
DD  
V
SS  
IC0  
(VPP  
INTP2/TI80/P25  
)
Remarks 1. The size of the internal ROM varies depending on the product.  
2. Items in parentheses apply to the µPD78F9136A, 78F9136B, 78F9136B(A), 78F9136B(A1).  
45  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
2.8 Outline of Functions  
Item  
µ
PD789121A, 789131A,  
µ
PD789122A, 789132A,  
µ
PD789124A, 789134A,  
µ
PD78F9136A, 78F9136B,  
78F9136B(A),  
789121A(A), 789131A(A),  
789122A(A), 789132A(A),  
789124A(A), 789134A(A),  
789121A(A1), 789131A(A1), 789122A(A1), 789132A(A1), 789124A(A1), 789134A(A1),  
789121A(A2), 789131A(A2) 789122A(A2), 789132A(A2) 789124A(A2), 789134A(A2)  
78F9136B(A1)  
Internal memory  
System clock  
ROM  
Mask ROM  
Flash memory  
16 KB  
2 KB  
4 KB  
8 KB  
High-speed RAM  
256 bytes  
RC oscillation  
Minimum instruction execution time  
General-purpose registers  
Instruction set  
0.5/2.0 µs (@ system clock: 4.0 MHz operation)  
8 bits × 8 registers  
16-bit operations  
Bit manipulations (such as set, reset, and test)  
Multiplier  
I/O ports  
8 bits × 8 bits = 16 bits  
Total:  
20  
4
CMOS input:  
CMOS I/O:  
N-ch open-drain:  
12  
4
A/D converter  
8-bit resolution × 4 channels (µPD789124A Subseries)  
10-bit resolution × 4 channels (µPD789134A Subseries)  
Serial interface  
Timer  
3-wire serial I/O mode/UART mode selectable: 1 channel  
16-bit timer:  
1 channel  
1 channel  
1 channel  
8-bit timer/event counter:  
Watchdog timer:  
Timer outputs  
One output  
Vectored  
interrupts  
Maskable  
Internal: 6, External: 3  
Internal: 1  
Non-maskable  
Supply voltage  
VDD = 1.8 to 5.5 V (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A), 78F9136A,  
78F9136B, 78F9136B(A))  
VDD = 4.5 to 5.5 V (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2),  
78F9136B(A1))  
Operating ambient temperature  
TA = 40 to +85°C (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A), 78F9136A,  
78F9136B, 78F9136B(A))  
TA = 40 to +105°C (µPD78F9136B(A1))  
TA = 40 to +110°C (µPD78912xA(A1), 78913xA(A1))  
TA = 40 to +125°C (µPD78912xA(A2), 78913xA(A2))  
Package  
30-pin plastic SSOP (7.62 mm (300))  
46  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
An outline of the timers is shown below.  
16-Bit Timer 20  
8-Bit Timer/Event Counter 80  
Watchdog Timer  
Operating  
Mode  
Interval timer  
1 channel  
1 channel  
1 output  
1 output  
1 output  
1 channelNote  
External event timer  
Timer output  
1
Function  
1 output  
PWM output  
Square-wave output  
Capture  
1 input  
1
Interrupt sources  
1
Note The watchdog timer provides a watchdog timer function and an interval timer function, but only one of the  
two functions can be used at a time.  
47  
User’s Manual U14643EJ2V0UD  
CHAPTER 2 GENERAL (µPD789124A, 789134A SUBSERIES)  
2.9 Differences Between Standard Quality Grade Products and (A), (A1), (A2) Products  
The standard quality grade products and the (A), (A1), and (A2) products refer to the following products.  
[Standard quality grade products]... µPD789121A, 789122A, 789124A, 789131A, 789132A, 789134A, 78F9136A,  
78F9136B  
[(A) products]....µPD789121A(A), 789122A(A), 789124A(A), 789131A(A), 789132A(A), 789134A(A) , 78F9136B(A)  
[(A1) products]....µPD789121A(A1), 789122A(A1), 789124A(A1), 789131A(A1), 789132A(A1), 789134A(A1),  
78F9136B(A1)  
[(A2) products]....µPD789121A(A2), 789122A(A2), 789124A(A2), 789131A(A2), 789132A(A2), 789134A(A2)  
The differences between the standard quality grade products and the (A), (A1), and (A2) products are shown in  
Table 2-1.  
Table 2-1. Differences Between Standard Quality Grade Products and (A), (A1), (A2) Products  
Products  
Standard Quality Grade  
Products  
(A) Products  
(A1) Products  
(A2) Products  
Item  
Quality grade  
Standard  
Special  
Supply voltage  
VDD = 1.8 to 5.5 V  
TA = 40 to +85°C  
VDD = 4.5 to 5.5 V  
Operating  
ambient  
µPD78F9136B(A1)  
TA = 40 to +105°C  
Other than  
TA = 40 to +125°C  
temperature  
µPD78F9136B(A1)  
TA = 40 to +110°C  
Electrical  
Refer to the relevant electrical specifications chapter.  
specifications  
48  
User’s Manual U14643EJ2V0UD  
CHAPTER 3 PIN FUNCTIONS  
3.1 Pin Function List  
(1) Port pins  
Pin Name  
I/O  
I/O  
Function  
After Reset  
Input  
Alternate Function  
P00 to P03  
Port 0  
4-bit I/O port  
Input/output can be specified in 1-bit units.  
When used as an input port, use of an on-chip pull-up resistor  
can be specified by pull-up resistor option register 0 (PU0).  
P10, P11  
I/O  
I/O  
Port 1  
Input  
Input  
2-bit I/O port  
Input/output can be specified in 1-bit units.  
When used as an input port, use of an on-chip pull-up resistor  
can be specified by pull-up resistor option register 0 (PU0).  
P20  
Port 2  
SCK20/ASCK20  
SO20/TxD20  
SI20/RxD20  
INTP0/CPT20/SS20  
INTP1/TO80/TO20  
INTP2/TI80  
6-bit I/O port  
P21  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by pull-up  
resistor option register B2 (PUB2).  
P22  
P23  
P24  
P25  
P50 to P53  
I/O  
Port 5  
Input  
Input  
4-bit N-channel open-drain I/O port  
Input/output can be specified in 1-bit units.  
For a mask ROM version, use of an on-chip pull-up resistor  
can be specified by a mask option.  
P60 to P63  
Input  
Port 6  
ANI0 to ANI3  
4-bit input-only port  
49  
User’s Manual U14643EJ2V0UD  
CHAPTER 3 PIN FUNCTIONS  
(2) Non-port pins  
Pin Name  
INTP0  
I/O  
Function  
After Reset  
Input  
Alternate Function  
Input  
External interrupt input for which the valid edge (rising edge,  
falling edge, or both rising and falling edges) can be specified.  
P23/CPT20/SS20  
INTP1  
INTP2  
SI20  
P24/TO80/TO20  
P25/TI80  
Input  
Serial data input to serial interface  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
P22/RxD20  
SO20  
SCK20  
ASCK20  
SS20  
RxD20  
TxD20  
TI80  
Output Serial data output from serial interface  
P21/TxD20  
I/O  
Serial clock I/O for serial interface  
P20/ASCK20  
Input  
Input  
Input  
Serial clock input to asynchronous serial interface  
Chip select input to serial interface  
P20/SCK20  
P23/CPT20/INTP0  
Serial data input to asynchronous serial interface  
P22/SI20  
Output Serial data output from asynchronous serial interface  
Input External count clock input to 8-bit timer/event counter 80  
P21/SO20  
P25/INTP2  
TO80  
TO20  
CPT20  
ANI0 to ANI3  
AVSS  
Output 8-bit timer/event counter 80 output  
Output 16-bit timer 20 output  
P24/INTP1/TO20  
P24/INTP1/TO80  
Input  
Capture edge input  
P23/INTP0/SS20  
Input  
A/D converter analog input  
A/D converter ground potential  
A/D converter analog power supply  
P60 to P63  
AVDD  
X1  
Input  
Connecting ceramic resonator/crystal resonator for system  
clock oscillation (µPD789104A, 789114A Subseries)  
X2  
CL1  
Input  
Connecting resistor (R) and capacitor (C) for system clock  
oscillation (µPD789124A and 789134A Subseries)  
CL2  
RESET  
VDD  
Input  
System reset input  
Input  
Positive power supply  
VSS  
Ground potential  
IC0  
Internally connected. Directly connect to the VSS pin.  
VPP  
Sets flash memory programming mode. Applies a high voltage  
when a program is written or verified.  
50  
User’s Manual U14643EJ2V0UD  
CHAPTER 3 PIN FUNCTIONS  
3.2 Description of Pin Functions  
3.2.1 P00 to P03 (Port 0)  
These pins constitute a 4-bit I/O port and can be set in input or output port mode in 1-bit units by using port mode  
register 0 (PM0). When these pins are used as an input port, use of an on-chip pull-up resistor can be specified by  
means of pull-up resistor option register 0 (PU0).  
3.2.2 P10, P11 (Port 1)  
These pins constitute a 2-bit I/O port and can be set in input or output port mode in 1-bit units by using port mode  
register 1 (PM1). When these pins are used as an input port, use of an on-chip pull-up resistor can be specified by  
means of pull-up resistor option register 0 (PU0).  
3.2.3 P20 to P25 (Port 2)  
These pins constitute a 6-bit I/O port. In addition, they function as timer I/O, external interrupt inputs, and serial  
interface data and clock I/O.  
Port 2 can be specified in the following operation modes in 1-bit units.  
(1) Port mode  
In this mode, P20 to P25 function as a 6-bit I/O port. Port 2 can be specified as input or output mode in 1-bit  
units by using port mode register 2 (PM2). Use of an on-chip pull-up resistor can be specified in 1-bit units by  
using pull-up resistor option register B2 (PUB2), regardless of the setting of port mode register 2 (PM2).  
(2) Control mode  
In this mode, P20 to P25 function as timer I/O, external interrupt input, clock I/O of the serial interface and the  
data I/O.  
(a) TI80  
This is the external clock input pin for 8-bit timer/event counter 80.  
(b) TO20,TO80  
TO20 is the output pin of 16-bit timer 20. TO80 is the output pin of 8-bit timer/event counter 80.  
(c) CPT20  
This is the input pin of the capture edge.  
(d) INTP0 to INTP2  
These are external interrupt input pins for which the valid edge (rising edge, falling edge, and both rising  
and falling edges) can be specified.  
(e) SI20, SO20  
These are the serial data I/O pins of the serial interface.  
(f) SCK20  
These are the serial clock I/O pins of the serial interface.  
(g) SS20  
This is the chip select input pin of the serial interface.  
51  
User’s Manual U14643EJ2V0UD  
CHAPTER 3 PIN FUNCTIONS  
(h) RxD20,TxD20  
These are the serial data I/O pins of the asynchronous serial interface.  
(i) ASCK20  
This is the serial clock input pin of the asynchronous serial interface.  
Caution When using these pins as serial interface pins, the I/O mode and output latch must be set  
according to the function to be used. For details of the setting, refer to Table 13-2 Serial  
Interface 20 Operating Mode Settings.  
3.2.4 P50 to P53 (Port 5)  
These pins constitute a 4-bit N-ch open-drain I/O port and can be specified in input or output mode in 1-bit units by  
using port mode register 5 (TM5). For a mask ROM version, use of an on-chip pull-up resistor can be specified by a  
mask option.  
3.2.5 P60 to P63 (Port 6)  
These pins constitute a 4-bit input-only port. In addition to general-purpose input ports, these pins function as the  
A/D converter input pins.  
(1) Port mode  
In the port mode, these pins function as a 4-bit input-only port.  
(2) Control mode  
In the control mode, the pins of port 6 can be used as A/D converter analog inputs (ANI0 to ANI3).  
3.2.6 RESET  
This pin inputs an active-low system reset signal.  
3.2.7 X1, X2 (µPD789104A, 789114A Subseries)  
These pins are used to connect a ceramic resonator/crystal resonator for system clock oscillation.  
To supply an external clock, input the clock to X1 and input the inverted signal to X2.  
3.2.8 CL1, CL2 (µPD789124A, 789134A Subseries)  
These are resistor (R) and capacitor (C) connection pins for system clock oscillation.  
3.2.9 AVDD  
This is the analog power supply pin of the A/D converter. Always use the same potential as that of the VDD pin even  
when the A/D converter is not used.  
3.2.10 AVSS  
This is the ground potential pin of the A/D converter. Always use the same potential as that of the VSS pin even  
when the A/D converter is not used.  
3.2.11 VDD  
This is the positive power supply pin.  
3.2.12 VSS  
This is the ground pin.  
52  
User’s Manual U14643EJ2V0UD  
CHAPTER 3 PIN FUNCTIONS  
3.2.13 VPP (µPD78F9116A, 78F9116B, 78F9136A, 78F9136B only)  
A high voltage should be applied to this pin when the flash memory programming mode is set and when the  
program is written or verified.  
Connect this pin in either of the following ways.  
Independently connect to a 10 kpull-down resistor.  
By using a jumper on the board, connect directly to the dedicated flash programmer in the programming mode or  
to VSS in the normal operation mode.  
If the wiring between the VPP and VSS pins is long or external noise is superimposed on the VPP pin, the user  
program may malfunction.  
3.2.14 IC0 (pin No.20) (mask ROM versions only)  
The IC0 (internally connected) pin (No. 20) (refer to 1.6 Pin Configuration (Top View), 2.5 Pin Configuration  
(Top View)) is used to set the µPD789104A/114A/124A/134A Subseries in the test mode before shipment. In the  
normal operation mode, connect this pin directly to the VSS pin with as short a wiring length as possible.  
If a potential difference is generated between the IC0 pin and VSS pin due to a long wiring length between the IC0  
pin and VSS pin or external noise superimposed on the IC0 pin, the user program may malfunction.  
Connect the IC0 pin directly to the VSS pin.  
(pin No.20)  
Keep short  
V
SS IC0  
3.2.15 IC0 (pins No.10 and No.21)  
The IC0 pins (No.10 and No.21) (refer to 1.6 Pin Configuration (Top View), 2.5 Pin Configuration (Top View)  
are internally connected.  
Connect the IC0 pins directly to VSS.  
53  
User’s Manual U14643EJ2V0UD  
CHAPTER 3 PIN FUNCTIONS  
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins  
The I/O circuit type for each pin and the recommended connection of pins are shown in Table 3-1.  
For the I/O circuit configuration of each type, refer to Figure 3-1.  
Table 3-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins  
Pin Name  
P00 to P03  
I/O Circuit Type  
5-A  
I/O  
I/O  
Recommended Connection of Unused Pins  
Input: Independently connect these pins to VDD or VSS via a  
resistor.  
P10, P11  
Output: Leave open  
P20/SCK20/ASCK20  
P21/SO20/TxD20  
P22/SI20/RxD20  
P23/INTP0/CPT20/SS20  
P24/INTP1/TO80/TO20  
P25/INTP2/TI80  
8-A  
Input: Independently connect these pins to VSS via a resistor.  
Output: Leave open  
P50 to P53  
13-W  
13-V  
Input: Directly connect these pins to VSS.  
Output: Leave these pins open at low-level output after setting  
the port output latch to 0.  
(Mask ROM version)  
P50 to P53  
(µPD78F9116A, 78F9116B,  
78F9136A, 78F9136B)  
P60/ANI0 to P63/ANI3  
9-C  
Input  
Directly connect to VDD or VSS.  
Directly connect to VDD.  
Directly connect to VSS.  
AVDD  
AVSS  
RESET  
IC0  
2
Input  
Directly connect to VSS.  
Independently connect 10 kpull-down resistor to this pin or  
VPP  
connect this pin directly to VSS.  
54  
User’s Manual U14643EJ2V0UD  
CHAPTER 3 PIN FUNCTIONS  
Figure 3-1. Pin I/O Circuits  
Type 2  
Type 9-C  
Comparator  
P-ch  
N-ch  
+
IN  
IN  
AVSS  
V
REF  
(Threshold voltage)  
Schmitt-triggered input with hysteresis characteristics  
Input  
enable  
Type 13-V  
Type 5-A  
V
DD  
Pull-up  
enable  
P-ch  
IN/OUT  
Output data  
Output disable  
N-ch  
VDD  
Data  
P-ch  
V
SS  
IN/OUT  
Input enable  
Output  
disable  
N-ch  
Middle-voltage input buffer  
V
SS  
Input  
enable  
Type 8-A  
Type 13-W  
V
DD  
VDD  
Pull-up resistor  
(mask option)  
Pull-up  
enable  
P-ch  
IN/OUT  
V
DD  
Output data  
Output disable  
N-ch  
Data  
P-ch  
IN/OUT  
V
SS  
Output  
disable  
N-ch  
Input enable  
V
SS  
Middle-voltage input buffer  
55  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.1 Memory Space  
The µPD789104A/114A/124A/134A Subseries can access 64 KB of memory space. Figures 4-1 to 4-4 show the  
memory maps.  
Figure 4-1. Memory Map (µPD789101A, 789111A, 789121A, 789131A)  
FFFFH  
Special-function registers  
256 × 8 bits  
FF00H  
FEFFH  
Internal high-speed RAM  
256 × 8 bits  
FE00H  
FDFFH  
Reserved  
Data  
memory space  
07FFH  
0800H  
07FFH  
Program area  
0080H  
007FH  
Program  
memory space  
Internal ROM  
2,048 × 8 bits  
CALLT table area  
Program area  
0040H  
003FH  
0016H  
0015H  
Vector table area  
0000H  
0000H  
56  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
Figure 4-2. Memory Map (µPD789102A, 789112A, 789122A, 789132A)  
FFFFH  
Special-function registers  
256 × 8 bits  
FF00H  
FEFFH  
Internal high-speed RAM  
256 × 8 bits  
FE00H  
FDFFH  
Reserved  
Data  
memory space  
0FFFH  
1000H  
0FFFH  
Program area  
0080H  
007FH  
Program  
memory space  
Internal ROM  
4,096 × 8 bits  
CALLT table area  
Program area  
0040H  
003FH  
0016H  
0015H  
Vector table area  
0000H  
0000H  
57  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
Figure 4-3. Memory Map (µPD789104A, 789114A, 789124A, 789134A)  
FFFFH  
Special-function registers  
256 × 8 bits  
FF00H  
FEFFH  
Internal high-speed RAM  
256 × 8 bits  
FE00H  
FDFFH  
Reserved  
Data  
memory space  
1FFFH  
2000H  
1FFFH  
Program area  
0080H  
007FH  
Program  
memory space  
Internal ROM  
8,192 × 8 bits  
CALLT table area  
Program area  
0040H  
003FH  
0016H  
0015H  
Vector table area  
0000H  
0000H  
58  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
Figure 4-4. Memory Map (µPD78F9116A, 78F9116B, 78F9136A, 78F9136B)  
FFFFH  
Special-function registers  
256 × 8 bits  
FF00H  
FEFFH  
Internal high-speed RAM  
256 × 8 bits  
FE00H  
FDFFH  
Reserved  
Data  
memory space  
3FFFH  
4000H  
3FFFH  
Program area  
0080H  
007FH  
Program  
memory space  
Flash memory  
16,384 × 8 bits  
CALLT table area  
Program area  
0040H  
003FH  
0016H  
0015H  
Vector table area  
0000H  
0000H  
59  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.1.1 Internal program memory space  
The internal program memory space stores programs and table data. This space is usually addressed by the  
program counter (PC).  
The µPD789104A/114A/124A/134A Subseries provides the following internal ROMs (or flash memory) containing  
the following capacities.  
Table 4-1. Internal ROM Capacity  
Part Number  
Internal ROM  
Structure  
Mask ROM  
Capacity  
µPD789101A, 789111A, 789121A, 789131A  
µPD789102A, 789112A, 789122A, 789132A  
µPD789104A, 789114A, 789124A, 789134A  
µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
2,048 × 8 bits  
4,096 × 8 bits  
8,192 × 8 bits  
16,384 × 8 bits  
Flash memory  
The following areas are allocated to the internal program memory space.  
(1) Vector table area  
The 22-byte area of addresses 0000H to 0015H is reserved as a vector table area. This area stores program  
start addresses to be used when branching by RESET input or interrupt request generation. Of a 16-bit  
program address, the lower 8 bits are stored in an even address, and the higher 8 bits are stored in an odd  
address.  
Table 4-2. Vector Table  
Vector Table Address  
0000H  
Interrupt Request  
RESET input  
Vector Table Address  
000CH  
Interrupt Request  
INTSR20/INTCSI20  
INTST20  
0004H  
0006H  
0008H  
000AH  
INTWDT  
INTP0  
INTP1  
INTP2  
000EH  
0010H  
0012H  
0014H  
INTTM80  
INTTM20  
INTAD0  
(2) CALLT instruction table area  
The subroutine entry address of a 1-byte call instruction (CALLT) can be stored in the 64-byte area of  
addresses 0040H to 007FH.  
60  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.1.2 Internal data memory (internal high-speed RAM) space  
The µPD789104A/114A/124A/134A Subseries provides a 256-byte internal high-speed RAM.  
The internal high-speed RAM can also be used as a stack memory.  
4.1.3 Special-function register (SFR) area  
Special-function registers (SFRs) of on-chip peripheral hardware are allocated to the area of FF00H to FFFFH  
(refer to Table 4-3).  
4.1.4 Data memory addressing  
The µPD789104A/114A/124A/134A Subseries provides a variety of addressing modes which take account of  
memory manipulability, etc. Especially at addresses corresponding to data memory area (FE00H to FEFFH),  
particular addressing modes can be used to meet the functions of the special-function registers (SFRs) and general-  
purpose registers. Figures 4-5 to 4-8 show the data memory addressing modes.  
Figure 4-5. Data Memory Addressing (µPD789101A, 789111A, 789121A, 789131A)  
FFFFH  
Special-function registers (SFRs)  
SFR addressing  
256 × 8 bits  
FF20H  
FF1FH  
FF00H  
FEFFH  
Short direct  
addressing  
Internal high-speed RAM  
256 × 8 bits  
FE20H  
FE1FH  
FE00H  
FDFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Reserved  
0800H  
07FFH  
Internal ROM  
2,048 × 8 bits  
0000H  
61  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
Figure 4-6. Data Memory Addressing (µPD789102A, 789112A, 789122A, 789132A)  
FFFFH  
Special-function registers (SFRs)  
SFR addressing  
256 × 8 bits  
FF20H  
FF1FH  
FF00H  
FEFFH  
Short direct  
addressing  
Internal high-speed RAM  
256 × 8 bits  
FE20H  
FE1FH  
FE00H  
FDFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Reserved  
1000H  
0FFFH  
Internal ROM  
4,096 × 8 bits  
0000H  
62  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
Figure 4-7. Data Memory Addressing (µPD789104A, 789114A, 789124A, 789134A)  
FFFFH  
Special-function registers (SFRs)  
SFR addressing  
256 × 8 bits  
FF20H  
FF1FH  
FF00H  
FEFFH  
Short direct  
addressing  
Internal high-speed RAM  
256 × 8 bits  
FE20H  
FE1FH  
FE00H  
FDFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Reserved  
2000H  
1FFFH  
Internal ROM  
8,192 × 8 bits  
0000H  
63  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
Figure 4-8. Data Memory Addressing (µPD78F9116A, 78F9116B, 78F9136A, 78F9136B)  
FFFFH  
Special-function registers (SFRs)  
SFR addressing  
256 × 8 bits  
FF20H  
FF1FH  
FF00H  
FEFFH  
Short direct  
addressing  
Internal high-speed RAM  
256 × 8 bits  
FE20H  
FE1FH  
FE00H  
FDFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Reserved  
4000H  
3FFFH  
Flash memory  
16,384 × 8 bits  
0000H  
64  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.2 Processor Registers  
The µPD789104A/114A/124A/134A Subseries provides the following on-chip processor registers.  
4.2.1 Control registers  
The control registers contain special functions to control the program sequence statuses and stack memory. The  
program counter, program status word, and stack pointer are control registers.  
(1) Program counter (PC)  
The program counter is a 16-bit register that holds the address information of the next program to be executed.  
In normal operation, the PC is automatically incremented according to the number of bytes of the instruction to  
be fetched. When a branch instruction is executed, immediate data or register contents are set.  
RESET input sets the reset vector table values at addresses 0000H and 0001H to the program counter.  
Figure 4-9. Program Counter Configuration  
15  
0
PC PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
(2) Program status word (PSW)  
The program status word is an 8-bit register consisting of various flags to be set/reset by instruction execution.  
Program status word contents are automatically stacked upon interrupt request generation or PUSH PSW  
instruction execution and are automatically restored upon execution of the RETI and POP PSW instructions.  
RESET input sets the PSW to 02H.  
Figure 4-10. Program Status Word Configuration  
7
0
IE  
Z
0
AC  
0
0
1
CY  
PSW  
(a) Interrupt enable flag (IE)  
This flag controls interrupt request acknowledgment operations of CPU.  
When IE = 0, the IE flag is set to the interrupt disabled (DI) status. All interrupt requests except non-  
maskable interrupts are disabled.  
When IE = 1, the IE flag is set to the interrupt enabled (EI) status and interrupt request acknowledgment is  
controlled by the interrupt mask flag for each interrupt source.  
This flag is reset (0) upon DI instruction execution or interrupt acknowledgment and is set (1) upon EI  
instruction execution.  
(b) Zero flag (Z)  
When the operation result is zero, this flag is set (1). It is reset (0) in all other cases.  
(c) Auxiliary carry flag (AC)  
If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other  
cases.  
(d) Carry flag (CY)  
This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out  
value upon rotate instruction execution and functions as a bit accumulator during bit manipulation  
instruction execution.  
65  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
(3) Stack pointer (SP)  
This is a 16-bit register used to hold the start address of the memory stack area. Only the internal high-speed  
RAM area can be set as the stack area.  
Figure 4-11. Stack Pointer Configuration  
15  
0
SP SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
The SP is decremented ahead of a write (save) to the stack memory and is incremented after a read (restore)  
from the stack memory.  
Each stack operation saves/restores data as shown in Figures 4-12 and 4-13.  
Caution Since RESET input makes the SP contents undefined, be sure to initialize the SP before  
instruction execution.  
Figure 4-12. Data to Be Saved to Stack Memory  
Interrupt  
PUSH rp  
instruction  
CALL, CALLT  
instructions  
_
_
_
_
SP SP  
SP  
3
3
2
1
_
_
_
_
_
_
SP SP  
SP  
2
2
1
SP SP  
SP  
2
2
1
PC7 to PC0  
PC15 to PC8  
PSW  
Register pair  
lower  
SP  
PC7 to PC0  
Register pair  
higher  
SP  
SP  
PC15 to PC8  
SP  
SP  
SP  
SP  
Figure 4-13. Data to Be Restored from Stack Memory  
POP rp  
RET instruction  
RETI instruction  
instruction  
Register pair  
lower  
SP  
SP  
SP + 1  
PC7 to PC0  
SP  
PC7 to PC0  
PC15 to PC8  
PSW  
Register pair  
higher  
PC15 to PC8  
SP + 1  
SP + 1  
SP + 2  
SP SP + 2  
SP SP + 2  
SP SP + 3  
66  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.2.2 General-purpose registers  
The general-purpose registers consist of eight 8-bit registers (X, A, C, B, E, D, L, and H).  
Each register can be used as an 8-bit register, and in addition, two 8-bit registers in pairs can be used as a 16-bit  
register (AX, BC, DE, and HL).  
They can be described in terms of functional names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL) and absolute  
names (R0 to R7 and RP0 to RP3).  
Figure 4-14. General-Purpose Register Configuration  
(a) Absolute names  
16-bit processing  
RP3  
8-bit processing  
R7  
R6  
R5  
R4  
RP2  
RP1  
RP0  
R3  
R2  
R1  
R0  
15  
0
7
0
(b) Functional names  
16-bit processing  
HL  
8-bit processing  
H
L
D
E
DE  
BC  
AX  
B
C
A
X
15  
0
7
0
67  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.2.3 Special-function registers (SFRs)  
Unlike general-purpose registers, special-function registers have their own functions and are allocated to the 256-  
byte area FF00H to FFFFH.  
Special-function registers can be manipulated, like general-purpose registers, with operation, transfer, and bit  
manipulation instructions. The bit units in which one register can be manipulated (1, 8, and 16) differ depending on  
the special-function register type.  
Each bit unit for manipulation can be specified as follows.  
1-bit manipulation  
A symbol reserved by the assembler is described as the operand (sfr.bit) of a 1-bit manipulation instruction. This  
manipulation can also be specified with an address.  
8-bit manipulation  
A symbol reserved by the assembler is described as the operand (sfr) of an 8-bit manipulation instruction. This  
manipulation can also be specified with an address.  
16-bit manipulation  
A symbol reserved by the assembler is described as the operand of a 16-bit manipulation instruction. When  
specifying an address, describe an even address.  
Table 4-3 lists the special-function registers. The meanings of the symbols in this table are as follows.  
Symbol  
Indicates the addresses of the implemented special-function register. The symbols shown in this column are the  
reserved words of the assembler, and have already been defined in the header file “sfrbit.h” in the C compiler.  
Therefore, these symbols can be used as instruction operands if an assembler or integrated debugger is used.  
R/W  
Indicates whether the special-function register in question can be read or written.  
R/W: Read/write  
R:  
Read only  
Write only  
W:  
Bit units for manipulation  
Indicates the bit units (1, 8, and 16) in which the special-function register in question can be manipulated.  
After reset  
Indicates the status of the special-function register when the RESET signal is input.  
68  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
Table 4-3. Special-Function Register List (1/2)  
Address  
Special-Function Register (SFR) Name  
Symbol  
R/W Bit Units for Manipulation After Reset  
1 Bit  
8 Bits 16 Bits  
FF00H  
FF01H  
FF02H  
FF05H  
FF06H  
FF10H  
FF11H  
FF14H  
FF15H  
FF16H  
FF17H  
FF18H  
FF19H  
FF1AH  
FF1BH  
FF20H  
FF21H  
FF22H  
FF25H  
FF32H  
FF42H  
FF48H  
FF50H  
FF51H  
FF53H  
Port 0  
P0  
P1  
P2  
P5  
P6  
R/W  
00H  
Port 1  
Port 2  
Port 5  
Port 6  
R
Note 1  
Note 2  
16-bit multiplication result storage register 0  
Undefined  
MUL0L MUL0  
MUL0H  
A/D conversion result registerNote 3  
16-bit compare register 20  
16-bit timer counter 20  
ADCR0  
Note 2  
Note 2  
Note 2  
Note 2  
Note 1  
W
R
FFFFH  
0000H  
Undefined  
FFH  
CR20L  
CR20H  
TM20L  
TM20H  
CR20  
TM20  
Note 1  
Note 1  
16-bit capture register 20  
TCP20L TCP20  
TCP20H  
PM0  
Port mode register 0  
R/W  
Port mode register 1  
PM1  
Port mode register 2  
PM2  
Port mode register 5  
PM5  
Pull-up resistor option register B2  
Time clock select register 2  
16-bit timer mode control register 20  
8-bit compare register 80  
8-bit timer counter 80  
PUB2  
00H  
TCL2  
TMC20  
CR80  
W
R
TM80  
Undefined  
00H  
8-bit timer mode control register 80  
TMC80  
R/W  
Notes 1. Although these registers are usually accessed in 16-bit units, they can also be accessed in 8-bit units.  
Access these registers in 8-bit units by means of direct addressing.  
2. These registers can be accessed in 16-bit units only by means of short direct addressing.  
3. When this register is used for an 8-bit A/D converter (µPD789104A and 789124A Subseries), it can be  
accessed only in 8-bit units. At this time, the register address is FF15H. When this register is used for a  
10-bit A/D converter (µPD789114A and 789134A Subseries), it can be accessed only in 16-bit units.  
When using the µPD78F9116A and 78F9116B as the flash memory versions of the µPD789101A,  
789102A, or 789104A, or when using the µPD78F9136A and 78F9136B as the flash memory versions  
of the µPD789121A, 789122A, or 789124A, this register can be accessed in 8-bit units. However, only  
the object file assembled with the µPD789101A, 789102A, or 789104A, or object file assembled with the  
µPD789121A, 789122A, or 789124A can be used.  
69  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
Table 4-3. Special-Function Register List (2/2)  
Address  
Special-Function Register (SFR) Name  
Symbol  
R/W Bit Units for Manipulation After Reset  
1 Bit  
8 Bits 16 Bits  
FF70H  
FF71H  
FF72H  
FF73H  
FF74H  
Asynchronous serial interface mode register 20  
Asynchronous serial interface status register 20  
Serial operating mode register 20  
Baud rate generator control register 20  
Transmit shift register 20  
ASIM20  
R/W  
R
00H  
ASIS20  
CSIM20  
BRGC20  
TXS20 SIO20  
RXB20  
ADM0  
ADS0  
R/W  
W
R
FFH  
Receive buffer register 20  
Undefined  
00H  
FF80H  
FF84H  
A/D converter mode register 0  
R/W  
Analog input channel specification register 0  
FFD0H Multiplication data register A0  
FFD1H Multiplication data register B0  
FFD2H Multiplier control register 0  
MRA0  
MRB0  
MULC0  
IF0  
W
Undefined  
00H  
R/W  
FFE0H  
FFE1H  
FFE4H  
FFE5H  
Interrupt request flag register 0  
Interrupt request flag register 1  
Interrupt mask flag register 0  
Interrupt mask flag register 1  
IF1  
MK0  
FFH  
00H  
MK1  
FFECH External interrupt mode register 0  
INTM0  
PU0  
FFF7H  
FFF9H  
FFFAH  
Pull-up resistor option register 0  
Watchdog timer mode register  
WDTM  
OSTS  
PCC  
Oscillation stabilization time select registerNote  
04H  
02H  
FFFBH Processor clock control register  
Note µPD789104A, 789114A Subseries only  
70  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.3 Instruction Address Addressing  
An instruction address is determined by the program counter (PC) contents. The PC contents are normally  
incremented (+1 for each byte) automatically according to the number of bytes of the instruction to be fetched each  
time another instruction is executed. When a branch instruction is executed, the branch destination information is set  
to the PC and branched by the following addressing (for details of each instruction, refer to the 78K/0S Series  
Instructions User’s Manual (U11047E)).  
4.3.1 Relative addressing  
[Function]  
The value obtained by adding 8-bit immediate data (displacement value: jdisp8) of an instruction code to the start  
address of the following instruction is transferred to the program counter (PC) and branched. The displacement  
value is treated as signed two’s complement data (128 to +127) and bit 7 becomes a sign bit. In other words, the  
range of branch in relative addressing is between 128 and +127 of the start address of the following instruction.  
This function is carried out when the BR $addr16 instruction or a conditional branch instruction is executed.  
[Illustration]  
15  
15  
0
0
...  
PC is the start address of  
the next instruction of  
a BR instruction.  
PC  
+
8
7
6
α
S
jdisp8  
15  
0
PC  
When S = 0, α indicates all bits “0”.  
When S = 1, α indicates all bits “1”.  
71  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.3.2 Immediate addressing  
[Function]  
Immediate data in the instruction word is transferred to the program counter (PC) and branched.  
This function is carried out when the CALL !addr16 and BR !addr16 instructions are executed.  
The CALL !addr16 and BR !addr16 instructions can branch to all the memory spaces.  
[Illustration]  
In case of CALL !addr16, BR !addr16 instruction  
7
0
CALL or BR  
Low Addr.  
High Addr.  
15  
8 7  
0
PC  
72  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.3.3 Table indirect addressing  
[Function]  
The table contents (branch destination address) of the particular location to be addressed by the lower 5-bit  
immediate data of an instruction code from bit 1 to bit 5 are transferred to the program counter (PC) and  
branched.  
Table indirect addressing is carried out when the CALLT [addr5] instruction is executed. This instruction can refer  
to the address stored in the memory table 40H to 7FH and branch to all the memory spaces.  
[Illustration]  
7
6
1
5
1
0
1
Instruction code  
Effective address  
1
ta4–0  
15  
8
0
7
0
6
1
5
1
0
0
0
0
0
0
0
0
0
7
Memory (Table)  
Low Addr.  
0
High Addr.  
Effective address + 1  
15  
8
7
0
PC  
4.3.4 Register addressing  
[Function]  
The register pair (AX) contents to be specified with an instruction word are transferred to the program counter  
(PC) and branched.  
This function is carried out when the BR AX instruction is executed.  
[Illustration]  
7
0
8
7
7
0
0
rp  
A
X
15  
PC  
73  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.4 Operand Address Addressing  
The following methods are available to specify the register and memory (addressing) to undergo manipulation  
during instruction execution.  
4.4.1 Direct addressing  
[Function]  
The memory indicated by immediate data in an instruction word is directly addressed.  
[Operand format]  
Identifier  
addr16  
Description  
Label or 16-bit immediate data  
[Description example]  
MOV A, !FE00H; When setting !addr16 to FE00H  
Instruction code  
0
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
0
OP code  
00H  
FEH  
[Illustration]  
7
0
OP code  
addr16 (low)  
addr16 (high)  
Memory  
74  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.4.2 Short direct addressing  
[Function]  
The memory to be manipulated in the fixed space is directly addressed with 8-bit data in an instruction word.  
The fixed space where this addressing is applied to is the 256-byte space FE20H to FF1FH. An internal high-  
speed RAM and special-function registers (SFRs) are mapped at FE20H to FEFFH and FF00H to FF1FH,  
respectively.  
The SFR area (FF00H to FF1FH) where short direct addressing is applied is a part of the total SFR area. In this  
area, ports which are frequently accessed in a program and a compare register of the timer/event counter are  
mapped, and these SFRs can be manipulated with a small number of bytes and clocks.  
When 8-bit immediate data is at 20H to FFH, bit 8 of an effective address is set to 0. When it is at 00H to 1FH, bit  
8 is set to 1. Refer to [Illustration].  
[Operand format]  
Identifier  
saddr  
Description  
Label or FE20H to FF1FH immediate data  
saddrp  
Label or FE20H to FF1FH immediate data (even address only)  
[Description example]  
MOV FE90H, #50H; When setting saddr to FE90H and the immediate data to 50H  
Instruction code  
1
1
0
1
0
1
1
0
0
1
1
1
0
0
0
1
0
0
0
0
0
1
0
0
OP code  
90H (saddr-offset)  
50H (immediate data)  
[Illustration]  
7
0
OP code  
saddr-offset  
Short direct memory  
15  
1
8
0
Effective  
address  
1
1
1
1
1
1
α
α
When 8-bit immediate data is 20H to FFH, = 0.  
α
When 8-bit immediate data is 00H to 1FH, = 1.  
75  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.4.3 Special-function register (SFR) addressing  
[Function]  
Memory-mapped special-function registers (SFRs) are addressed with 8-bit immediate data in an instruction  
word.  
This addressing is applied to the 240-byte spaces FF00H to FFCFH and FFE0H to FFFFH. However, SFRs  
mapped at FF00H to FF1FH can be accessed with short direct addressing.  
[Operand format]  
Identifier  
sfr  
Description  
Special-function register name  
[Description example]  
MOV PM0, A; When selecting PM0 for sfr  
Instruction code  
1
0
1
0
1
1
0
0
0
0
1
0
1
0
1
0
[Illustration]  
7
0
OP code  
sfr-offset  
SFR  
15  
1
8 7  
0
Effective  
address  
1
1
1
1
1
1
1
76  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.4.4 Register addressing  
[Function]  
General-purpose registers are accessed as operands. The general-purpose register to be accessed is specified  
with the register specify code and functional name in the instruction code.  
Register addressing is carried out when an instruction with the following operand format is executed. When an 8-  
bit register is specified, one of the eight registers is specified with 3 bits in the instruction code.  
[Operand format]  
Identifier  
Description  
r
X, A, C, B, E, D, L, H  
AX, BC, DE, HL  
rp  
‘r’ and ‘rp’ can be described with absolute names (R0 to R7 and RP0 to RP3) as well as function names (X, A, C,  
B, E, D, L, H, AX, BC, DE, and HL).  
[Description example]  
MOV A, C; When selecting the C register for r  
Instruction code  
0
0
0
0
0
1
0
0
1
0
0
1
1
0
0
1
Register specify code  
INCW DE; When selecting the DE register pair for rp  
Instruction code  
1
0
0
0
1
0
0
0
Register specify code  
77  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.4.5 Register indirect addressing  
[Function]  
The memory is addressed with the contents of the register pair specified as an operand. The register pair to be  
accessed is specified with the register pair specify code in the instruction code. This addressing can be carried  
out for all the memory spaces.  
[Operand format]  
Identifier  
Description  
[DE], [HL]  
[Description example]  
MOV A, [DE]; When selecting register pair [DE]  
Instruction code  
0
0
1
0
1
0
1
1
[Illustration]  
15  
8
7
0
0
DE  
D
E
Memory address specified  
by register pair DE  
7
The contents of addressed  
memory are transferred  
7
0
A
78  
User’s Manual U14643EJ2V0UD  
CHAPTER 4 CPU ARCHITECTURE  
4.4.6 Based addressing  
[Function]  
8-bit immediate data is added to the contents of the base register, that is, the HL register pair, and the sum is  
used to address the memory. Addition is performed by expanding the offset data as a positive number to 16 bits.  
A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.  
[Operand format]  
Identifier  
Description  
[HL+byte]  
[Description example]  
MOV A, [HL+10H]; When setting byte to 10H  
Instruction code  
0
0
0
0
1
0
0
1
1
0
1
0
0
0
1
0
4.4.7 Stack addressing  
[Function]  
The stack area is indirectly addressed with the stack pointer (SP) contents.  
This addressing method is automatically employed when the PUSH, POP, subroutine call, and RETURN  
instructions are executed or the register is saved/reset upon generation of an interrupt request.  
Stack addressing can be used to address the internal high-speed RAM area only.  
[Description example]  
In the case of PUSH DE  
Instruction code  
1
0
1
0
1
0
1
0
79  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.1 Functions of Ports  
The µPD789104A/114A/124A/134A Subseries provides the ports shown in Figure 5-1, enabling various methods of  
control.  
Numerous other functions are provided that can be used in addition to the digital I/O port function. For more  
information on these additional functions, refer to CHAPTER 3 PIN FUNCTIONS.  
Figure 5-1. Port Types  
P50  
P53  
P00  
P03  
Port 0  
Port 1  
Port 5  
Port 6  
P10  
P11  
P60  
P63  
P20  
P25  
Port 2  
80  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
Table 5-1. Port Functions  
Pin Name  
I/O  
I/O  
Function  
After Reset  
Input  
Alternate Function  
P00 to P03  
Port 0  
4-bit I/O port  
Input/output can be specified in 1-bit units.  
When used as input port, use of an on-chip pull-up resistor  
can be specified by means of pull-up resistor option register 0  
(PU0).  
P10, P11  
I/O  
I/O  
Port 1  
Input  
Input  
2-bit I/O port  
Input/output can be specified in 1-bit units.  
When used as input port, use of an on-chip pull-up resistor  
can be specified by means of pull-up resistor option register 0  
(PU0).  
P20  
Port 2  
ASCK20/SCK20  
TxD20/SO20  
RxD20/SI20  
INTP0/CPT20/SS20  
INTP1/TO80/TO20  
INTP2/TI80  
6-bit I/O port  
P21  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by means  
of pull-up resistor option register B2 (PUB2).  
P22  
P23  
P24  
P25  
P50 to P53  
I/O  
Port 5  
Input  
Input  
4-bit N-ch open-drain I/O port  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified for mask  
ROM versions by a mask option.  
P60 to 63  
Input  
Port 6  
ANI0 to ANI3  
4-bit input-only port  
81  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.2 Port Configuration  
A port consists of the following hardware.  
Table 5-2. Configuration of Port  
Item  
Configuration  
Control register  
Port mode register (PM0 to PM2, PM5)  
Pull-up resistor option register 0 (PU0)  
Pull-up option register B2 (PUB2)  
Port  
Total: 20 (input: 4, I/O: 16)  
Pull-up resistor  
Mask ROM versions  
Total: 16 (software control: 12, mask option specification: 4)  
Flash memory versions  
Total: 12 (software control only)  
5.2.1 Port 0  
This is a 4-bit I/O port with output latches. Port 0 can be set to input or output mode in 1-bit units by using port  
mode register 0 (PM0). When pins P00 to P03 are used as input port pins, on-chip pull-up resistors can be connected  
in 4-bit units by using pull-up resistor option register 0 (PU0).  
RESET input sets port 0 to input mode.  
Figure 5-2 shows the block diagram of port 0.  
Figure 5-2. Block Diagram of P00 to P03  
V
DD  
WRPU0  
PU00  
P-ch  
RD  
WRPORT  
Output latch  
(P00 to P03)  
P00 to P03  
WRPM  
PM00 to PM03  
PU0: Pull-up resistor option register 0  
PM: Port mode register  
RD: Port 0 read signal  
WR: Port 0 write signal  
82  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.2.2 Port 1  
This is a 2-bit I/O port with output latches. Port 1 can be set to input or output mode in 1-bit units by using port  
mode register 1 (PM1). When pins P10 and P11 are used as input port pins, on-chip pull-up resistors can be  
connected in 2-bit units by using pull-up resistor option register 0 (PU0).  
RESET input sets port 1 to input mode.  
Figure 5-3 shows the block diagram of port 1.  
Figure 5-3. Block Diagram of P10 and P11  
VDD  
WRPU0  
PU01  
P-ch  
RD  
WRPORT  
Output latch  
(P10, P11)  
P10, P11  
WRPM  
PM10, PM11  
PU0: Pull-up resistor option register 0  
PM: Port mode register  
RD: Port 1 read signal  
WR: Port 1 write signal  
83  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.2.3 Port 2  
This is a 6-bit I/O port with output latches. Port 2 can be set to input or output mode in 1-bit units by using port  
mode register 2 (PM2). Use of on-chip pull-up resistors can be specified for pins P20 to P25 in 1-bit units by using  
pull-up resistor option register B2 (PUB2).  
The port is also used as the serial interface data I/O, clock I/O, timer I/O, and external interrupt input.  
RESET input sets port 2 to input mode.  
Figures 5-4 to 5-7 show block diagrams of port 2.  
Caution When using the pins of port 2 as the serial interface, the I/O or output latch must be set  
according to the function to be used. For how to set the latches, see Table 13-2 Serial Interface  
20 Operating Mode Settings.  
Figure 5-4. Block Diagram of P20  
V
DD  
WRPUB2  
PUB20  
P-ch  
Alternate  
function  
RD  
WRPORT  
Output latch  
(P20)  
P20/ASCK20/  
SCK20  
WRPM  
PM20  
Alternate  
function  
PUB2: Pull-up resistor option register B2  
PM: Port mode register  
RD: Port 2 read signal  
WR: Port 2 write signal  
84  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
Figure 5-5. Block Diagram of P21  
VDD  
WRPUB2  
PUB21  
P-ch  
RD  
WRPORT  
Output latch  
(P21)  
P21/TxD20/  
SO20  
WRPM  
PM21  
Alternate  
function  
Serial output  
enable signal  
PUB2: Pull-up resistor option register B2  
PM: Port mode register  
RD: Port 2 read signal  
WR: Port 2 write signal  
85  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
Figure 5-6. Block Diagram of P22, P23, and P25  
VDD  
WRPUB2  
PUB22, PUB23,  
P-ch  
PUB25  
Alternate  
function  
RD  
WRPORT  
Output latch  
(P22, P23, P25)  
P22/RxD20/SI20  
P23/INTP0/CPT20/  
SS20  
WRPM  
P25/INTP2/TI80  
PM22, PM23,  
PM25  
PUB2: Pull-up resistor option register B2  
PM: Port mode register  
RD: Port 2 read signal  
WR: Port 2 write signal  
86  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
Figure 5-7. Block Diagram of P24  
V
DD  
WRPUB2  
PUB24  
P-ch  
Alternate  
function  
RD  
P24/INTP1/  
TO80/TO20  
WRPORT  
Output latch  
(P24)  
WRPM  
PM24  
Alternate  
function  
Alternate  
function  
PUB2: Pull-up resistor option register B2  
PM: Port mode register  
RD: Port 2 read signal  
WR: Port 2 write signal  
87  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.2.4 Port 5  
This is a 4-bit N-ch open-drain I/O port with output latches. Port 5 can be set to input or output mode in 1-bit units  
by using port mode register 5 (PM5). For a mask ROM version, whether a pull-up resistor is to be incorporated can be  
specified by a mask option.  
RESET input sets port 5 to input mode.  
Figure 5-8 shows a block diagram of port 5.  
Figure 5-8. Block Diagram of P50 to P53  
VDD  
RD  
Mask option resistor  
Mask ROM versions only.  
For flash memory versions,  
a pull-up resistor is not  
incorporated.  
P50 to P53  
WRPORT  
Output latch  
(P50 to P53)  
N-ch  
WRPM  
PM50 to PM53  
PM: Port mode register  
RD: Port 5 read signal  
WR: Port 5 write signal  
Caution When using port 5 of the µPD78F9116A and 78F9136A as an input port, be sure to observe the  
restrictions listed below.  
<1> When VDD = 1.8 to 5.5 V  
Use within the range of TA = 25 to 85°C  
<2> When TA = 40 to +85°C  
Use within the range of VDD = 2.7 to 5.5 V  
<3> When TA = 40 to +85°C and VDD = 1.8 to 5.5 V  
Issue three consecutive read instructions when reading port 5.  
If the above restrictions are not observed, the input value may be read incorrectly.  
Note, however, that these restrictions do not apply when port 5 pins are used as output pins, or  
when the product is other than µPD78F9116A or 78F9136A.  
88  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.2.5 Port 6  
This is a 4-bit input port.  
The port is also used for analog input to the A/D converter.  
RESET input sets port 6 to input mode.  
Figure 5-9 shows a block diagram of port 6.  
Figure 5-9. Block Diagram of P60 to P63  
RD  
+
P60/ANI0 to P63/ANI3  
A/D converter  
V
REF  
89  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.3 Port Function Control Registers  
The following three types of registers control the ports.  
Port mode registers (PM0 to PM2, PM5)  
Pull-up resistor option register 0 (PU0)  
Pull-up resistor option register B2 (PUB2)  
(1) Port mode registers (PM0 to PM2, PM5)  
These registers are used to set port I/O in 1-bit units.  
Port mode registers are independently set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets these registers to FFH.  
When port pins are used as alternate-function pins, set the port mode register and output latch according to  
Table 5-3.  
Caution As port 2 has an alternate function as external interrupt input, when the port function output  
mode is specified and the output level is changed, the interrupt request flag is set. When the  
output mode is used, therefore, the interrupt mask flag should be set to 1 beforehand.  
Table 5-3. Port Mode Register and Output Latch Settings When Using Alternate Functions  
Pin Name  
Alternate Function  
Name  
PM××  
P××  
I/O  
P23  
INTP0  
CPT20  
INTP1  
TO80  
TO20  
INTP2  
TI80  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
1
1
1
0
0
1
1
×
×
×
0
0
×
×
P24  
P25  
Caution When Port 2 is used for serial interface pins, the I/O latch or output latch must be set according  
to its function. For the setting method, refer to Table 13-2 Serial Interface 20 Operating Mode  
Settings.  
Remark ×:  
don’t care  
PM××: Port mode register  
P××: Port output latch  
90  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
Figure 5-10. Port Mode Register Format  
After reset  
FFH  
Symbol  
PM0  
7
1
6
1
5
1
4
1
3
2
1
0
Address  
FF20H  
R/W  
R/W  
PM03 PM02 PM01 PM00  
PM1  
PM2  
PM5  
1
1
1
1
1
1
1
1
1
1
PM11 PM10  
FF21H  
FF22H  
FF25H  
FFH  
FFH  
FFH  
R/W  
R/W  
R/W  
PM25 PM24 PM23 PM22 PM21 PM20  
1
1
PM53 PM52 PM51 PM50  
Pmn pin input/output mode selection (m = 0 to 2, 5, n = 0 to 7)  
PMmn  
0
1
Output mode (output buffer on)  
Input mode (output buffer off)  
(2) Pull-up resistor option register 0 (PU0)  
Pull-up resistor option register 0 (PU0) sets whether to use on-chip pull-up resistors at each port or not.  
At a port where use of on-chip pull-up resistors has been specified by PU0, the pull-up resistors can be  
internally used only for the bits set in input mode. No on-chip pull-up resistors can be used for the bits set in  
output mode, in spite of the setting of PU0. On-chip pull-up resistors can also not be used when the pins are  
used as the alternate-function output pins.  
PU0 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears PU0 to 00H.  
Figure 5-11. Format of Pull-up Resistor Option Register 0  
7
0
6
0
5
0
4
0
3
0
2
0
<1> <0>  
Symbol  
PU0  
R/W  
R/W  
Address  
FFF7H  
After reset  
00H  
PU01 PU00  
PU0m  
Pm on-chip pull-up resistor selection (m = 0, 1)  
0
1
On-chip pull-up resistor not used  
On-chip pull-up resistor used  
91  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
(3) Pull-up resistor option register B2 (PUB2)  
This register specifies whether an on-chip pull-up resistor is connected to each pin of port 2. A pin so specified  
by PUB2 is connected to an on-chip pull-up resistor regardless of the setting of the port mode register.  
PUB2 is set with a 1-bit or 8-bit manipulation instruction.  
RESET input sets this register to 00H.  
Figure 5-12. Format of Pull-up Resistor Option Register B2  
7
0
6
0
<5> <4> <3> <2> <1> <0>  
PUB25 PUB24 PUB23 PUB22 PUB21 PUB20  
Symbol  
PUB2  
R/W  
R/W  
Address  
FF32H  
After reset  
00H  
PUB2n  
P2n on-chip pull-up resistor selection (n = 0 to 5)  
0
1
On-chip pull-up resistor not used  
On-chip pull-up resistor used  
92  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.4 Operation of Port Functions  
The operation of a port differs depending on whether the port is set in input or output mode, as described below.  
5.4.1 Writing to I/O port  
(1) In output mode  
A value can be written to the output latch of a port by using a transfer instruction. The contents of the output  
latch can be output from the pins of the port.  
Once data is written to the output latch, it is retained until new data is written to the output latch.  
(2) In input mode  
A value can be written to the output latch by using a transfer instruction. However, the status of the port pin is  
not changed because the output buffer is off.  
Once data is written to the output latch, it is retained until new data is written to the output latch.  
Caution A 1-bit memory manipulation instruction is executed to manipulate 1 bit of a port. However,  
this instruction accesses the port in 8-bit units. When this instruction is executed to  
manipulate a bit of an I/O port, therefore, the contents of the output latch of the pin that is set  
in the input mode and not subject to manipulation become undefined.  
5.4.2 Reading from I/O port  
(1) In output mode  
The contents of the output latch can be read by using a transfer instruction. The contents of the output latch  
are not changed.  
(2) In input mode  
The status of a pin can be read by using a transfer instruction. The contents of the output latch are not  
changed.  
Caution When using port 5 of µPD78F9116A and 78F9136A as an input port, be sure to observe the  
restrictions listed below.  
<1> When VDD = 1.8 to 5.5 V  
Use within the range of TA = 25 to 85°C  
<2> When TA = 40 to +85°C  
Use within the range of VDD = 2.7 to 5.5 V  
<3> When TA = 40 to +85°C and VDD = 1.8 to 5.5 V  
Issue three consecutive read instructions when reading port 5.  
If the above restrictions are not observed, the input value may be read incorrectly.  
Note, however, that these restrictions do not apply when port 5 pins are used as output pins,  
or when the product is other than µPD78F9116A or 78F9136A.  
93  
User’s Manual U14643EJ2V0UD  
CHAPTER 5 PORT FUNCTIONS  
5.4.3 Arithmetic operation of I/O port  
(1) In output mode  
An arithmetic operation can be performed on the contents of the output latch. The result of the operation is  
written to the output latch. The contents of the output latch are output from the port pins.  
Once data is written to the output latch, it is retained until new data is written to the output latch.  
(2) In input mode  
The contents of the output latch become undefined. However, the status of the pin is not changed because the  
output buffer is off.  
Caution A 1-bit memory manipulation instruction is executed to manipulate 1 bit of a port. However,  
this instruction accesses the port in 8-bit units. When this instruction is executed to  
manipulate a bit of an I/O port, therefore, the contents of the output latch of the pin that is set  
in the input mode and not subject to manipulation become undefined.  
94  
User’s Manual U14643EJ2V0UD  
CHAPTER 6 CLOCK GENERATOR (µPD789104A, 789114A SUBSERIES)  
6.1 Function of Clock Generator  
The clock generator generates the clock to be supplied to the CPU and peripheral hardware. Oscillation is stopped  
by executing the STOP instruction.  
The system clock oscillator is as follows.  
System clock (crystal/ceramic) oscillator  
<Expanded-specification products>  
This circuit oscillates a clock at a frequency of 1.0 to 10.0 MHz.  
<Conventional-specification products>  
This circuit oscillates a clock at a frequency of 1.0 to 5.0 MHz.  
6.2 Configuration of Clock Generator  
The clock generator consists of the following hardware.  
Table 6-1. Configuration of Clock Generator  
Item  
Control register  
Oscillator  
Configuration  
Processor clock control register (PCC)  
Crystal/ceramic oscillator  
Figure 6-1. Block Diagram of Clock Generator  
Prescaler  
Clock to peripheral  
hardware  
X1  
X2  
System clock  
oscillator  
Prescaler  
f
X
f
X
22  
Standby  
controller  
STOP  
Wait  
controller  
CPU clock (fCPU  
)
PCC1  
Processor clock control register (PCC)  
Internal bus  
95  
User’s Manual U14643EJ2V0UD  
CHAPTER 6 CLOCK GENERATOR (µPD789104A, 789114A SUBSERIES)  
6.3 Register Controlling Clock Generator  
The clock generator is controlled by the following register.  
Processor clock control register (PCC)  
(1) Processor clock control register (PCC)  
PCC sets the CPU clock selection and the division ratio.  
PCC is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets PCC to 02H.  
Figure 6-2. Format of Processor Clock Control Register  
7
0
6
0
5
4
3
2
1
0
R/W  
R/W  
Symbol  
PCC  
Address  
FFFBH  
After reset  
02H  
0
0
0
0
PCC1  
0
PCC1  
CPU clock (fCPU) selection  
Minimum instruction execution time: 2/fCPU  
= 10.0 MHzNote operation  
@ f = 5.0 MHz operation  
@ f  
X
X
0.4  
1.6  
s
s
0
1
µ
µ
f
X
X
0.2  
s
µ
µ
f
/22  
0.8  
s
Note Expanded-specification products only  
Caution Bit 0 and bits 2 to 7 must be set to 0.  
Remark fX: System clock oscillation frequency  
96  
User’s Manual U14643EJ2V0UD  
CHAPTER 6 CLOCK GENERATOR (µPD789104A, 789114A SUBSERIES)  
6.4 System Clock Oscillator  
6.4.1 System clock oscillator  
The system clock oscillator is oscillated by the crystal or ceramic resonator connected across the X1 and X2 pins.  
An external clock can also be input to the system clock oscillator. In this case, input the clock signal to the X1 pin,  
and leave the X2 pin open.  
Figure 6-3 shows the external circuit of the system clock oscillator.  
Figure 6-3. External Circuit of System Clock Oscillator  
(a) Crystal or ceramic oscillation  
(b) External clock  
V
X1  
SS  
External  
clock  
X1  
X2  
X2  
Crystal  
or  
ceramic resonator  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines. Do not route the wiring near a signal  
line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS. Do not  
ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
Figure 6-4 shows examples of incorrect resonator connection.  
97  
User’s Manual U14643EJ2V0UD  
CHAPTER 6 CLOCK GENERATOR (µPD789104A, 789114A SUBSERIES)  
Figure 6-4. Examples of Incorrect Resonator Connection (1/2)  
(a) Too long wiring  
(b) Crossed signal line  
PORTn  
(n = 0 to 2, 5, 6)  
VSS  
X1  
X2  
VSS  
X1  
X2  
98  
User’s Manual U14643EJ2V0UD  
CHAPTER 6 CLOCK GENERATOR (µPD789104A, 789114A SUBSERIES)  
Figure 6-4. Examples of Incorrect Resonator Connection (2/2)  
(c) Wiring near high fluctuating current  
(d) Current flowing through ground line of oscillator  
(potential at points A, B, and C fluctuates)  
VDD  
Pmn  
V
SS  
X1  
X2  
V
SS  
X1  
X2  
High current  
A
B
C
High current  
(e) Signal is fetched  
VSS  
X1  
X2  
6.4.2 Divider  
The divider divides the output of the system clock oscillator (fX) to generate various clocks.  
99  
User’s Manual U14643EJ2V0UD  
CHAPTER 6 CLOCK GENERATOR (µPD789104A, 789114A SUBSERIES)  
6.5 Operation of Clock Generator  
The clock generator generates the following clocks and controls the operating modes of the CPU, such as the  
standby mode.  
System clock fX  
CPU clock  
fCPU  
Clock to peripheral hardware  
The operation of the clock generator is determined by the processor clock control register (PCC), as follows.  
(a) The slow mode (0.8 µs: at 10.0 MHz operation, 1.6 µs: at 5.0 MHz operation) of the system clock is  
selected when the RESET signal is generated (PCC = 02H). While a low level is being input to the RESET  
pin, oscillation of the system clock is stopped.  
(b) Two types of minimum instruction execution time (0.2 µs and 0.8 µs: at 10.0 MHz operation, 0.4 µs and 1.6  
µs: at 5.0 MHz operation) can be selected by setting the PCC register.  
(c) Two standby modes, STOP and HALT, can be used.  
(d) The clock to the peripheral hardware is supplied by dividing the system clock. The other peripheral  
hardware is stopped when the system clock is stopped (except the external clock input operation).  
100  
User’s Manual U14643EJ2V0UD  
CHAPTER 6 CLOCK GENERATOR (µPD789104A, 789114A SUBSERIES)  
6.6 Changing Setting of CPU Clock  
6.6.1 Time required for switching CPU clock  
The CPU clock can be switched by using bit 1 (PCC1) of the processor clock control register (PCC).  
Actually, the specified clock is not switched immediately after the setting of PCC has been changed; the old clock is  
used for the duration of several instructions after that (refer to Table 6-2).  
Table 6-2. Maximum Time Required for Switching CPU Clock  
Set Value Before Switching  
PCC1  
Set Value After Switching  
PCC1  
0
PCC1  
1
0
1
4 clocks  
2 clocks  
Remark Two clocks are the minimum instruction execution  
time of the CPU clock before switching.  
6.6.2 Switching CPU clock  
The following figure illustrates how the CPU clock is switched.  
Figure 6-5. Switching CPU Clock  
VDD  
RESET  
CPU clock  
Slow  
Fastest  
operation  
operation  
Wait (3.28 ms: at 10.0 MHz operation,  
6.55 ms: at 5.0 MHz operation)  
Internal reset operation  
<1> The CPU is reset when the RESET pin is made low on power application. The effect of resetting is released  
when the RESET pin is later made high, and the system clock starts oscillating. At this time, the time during  
which oscillation stabilizes (215/fX) is automatically secured.  
After that, the CPU starts instruction execution at the low speed of the system clock (8.0 µs: at 10.0 MHz  
operation, 1.6 µs: at 5.0 MHz operation).  
<2> After the time during which the VDD voltage rises to the level at which the CPU can operate at the highest  
speed has elapsed, the processor clock control register (PCC) is rewritten so that the highest speed can be  
selected.  
101  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES)  
7.1 Function of Clock Generator  
The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The system clock  
oscillator is as follows.  
System clock (RC) oscillator  
This circuit oscillates a clock at a frequency of 2.0 to 4.0 MHz. Oscillation can be stopped by executing the  
STOP instruction.  
7.2 Configuration of Clock Generator  
The clock generator consists of the following hardware.  
Table 7-1. Configuration of Clock Generator  
Item  
Control register  
Oscillator  
Configuration  
Processor clock control register (PCC)  
RC oscillator  
Figure 7-1. Block Diagram of Clock Generator  
Prescaler  
Clock to peripheral  
hardware  
CL1  
CL2  
System clock  
oscillator  
Prescaler  
f
CC  
f
CC  
22  
Wait  
controller  
Standby  
controller  
STOP  
CPU clock (fCPU  
)
PCC1  
Processor clock control register (PCC)  
Internal bus  
102  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES)  
7.3 Register Controlling Clock Generator  
The clock generator is controlled by the following register.  
Processor clock control register (PCC)  
(1) Processor clock control register (PCC)  
PCC sets the CPU clock selection and the division ratio.  
PCC is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets the PCC to 02H.  
Figure 7-2. Format of Processor Clock Control Register  
7
0
6
0
5
4
3
2
1
0
R/W  
R/W  
Symbol  
PCC  
Address  
FFFBH  
After reset  
02H  
0
0
0
0
PCC1  
0
PCC1  
CPU clock (fCPU) selection  
Minimum instruction execution time: 2/fCPU  
@ fCC = 4.0 MHz operation  
0.5  
2.0  
s
s
0
1
µ
µ
f
CC  
f
CC/22  
Caution Bit 0 and bits 2 to 7 must be set to 0.  
Remark fCC: System clock oscillation frequency  
103  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES)  
7.4 System Clock Oscillator  
7.4.1 System clock oscillator  
The system clock oscillator is oscillated by the resistor (R) and capacitor (C) (4.0 MHz TYP.) connected across the  
CL1 and CL2 pins.  
An external clock can also be input to the system clock oscillator. In this case, input the clock signal to the CL1 pin,  
and leave the CL2 pin open.  
Figure 7-3 shows the external circuit of the system clock oscillator.  
Figure 7-3. External Circuit of System Clock Oscillator  
(a) RC oscillation  
(b) External clock  
External  
clock  
CL1  
CL1  
C
R
CL2  
CL2  
V
SS  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines. Do not route the wiring near a signal  
line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS. Do not  
ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
104  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES)  
7.4.2 Examples of incorrect resonator connection  
Figure 7-4 shows examples of incorrect resonator connection.  
Figure 7-4. Examples of Incorrect Resonator Connection (1/2)  
(a) Too long wiring  
(b) Crossed signal line  
PORTn  
(n = 0 to 2, 5, 6)  
CL1  
CL2  
V
SS  
CL1  
CL2  
V
SS  
105  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES)  
Figure 7-4. Examples of Incorrect Resonator Connection (2/2)  
(c) Wiring near high fluctuating current  
(d) Current flowing through ground line of oscillator  
(potential at points A and B fluctuates)  
VDD  
PORTn  
(n = 0 to 2, 5, 6)  
CL1  
CL2  
V
SS  
CL1  
CL2  
VSS  
A
B
High current  
(e) Signal is fetched  
CL1  
CL2  
V
SS  
7.4.3 Divider  
The divider divides the output of the system clock oscillator (fCC) to generate various clocks.  
106  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES)  
7.5 Operation of Clock Generator  
The clock generator generates the following clocks and controls the operating modes of the CPU, such as the  
standby mode.  
System clock fCC  
CPU clock  
fCPU  
Clock to peripheral hardware  
The operation of the clock generator is determined by the processor clock control register (PCC), as follows.  
(a) The slow mode (2.0 µs: at 4.0 MHz operation) of the system clock is selected when the RESET signal is  
generated (PCC = 02H). While a low level is being input to the RESET pin, oscillation of the system clock  
is stopped.  
(b) Two types of minimum instruction execution time (0.5 µs and 2.0 µs: at 4.0 MHz operation) can be selected  
by setting the PCC register.  
(c) Two standby modes, STOP and HALT, can be used.  
(d) The clock to the peripheral hardware is supplied by dividing the system clock. The other peripheral  
hardware is stopped when the system clock is stopped (except the external clock input operation).  
107  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES)  
7.6 Changing Setting of CPU Clock  
7.6.1 Time required for switching CPU clock  
The CPU clock can be switched by using bit 1 (PCC1) of the processor clock control register (PCC).  
Actually, the specified clock is not switched immediately after the setting of PCC has been changed; the old clock is  
used for the duration of several instructions after that (refer to Table 7-2).  
Table 7-2. Maximum Time Required for Switching CPU Clock  
Set Value Before Switching  
PCC1  
Set Value After Switching  
PCC1  
0
PCC1  
1
0
1
4 clocks  
2 clocks  
Remark Two clocks are the minimum instruction execution  
time of the CPU clock before switching.  
108  
User’s Manual U14643EJ2V0UD  
CHAPTER 7 CLOCK GENERATOR (µPD789124A, 789134A SUBSERIES)  
7.6.2 Switching CPU clock  
The following figure illustrates how the CPU clock is switched.  
Figure 7-5. Switching CPU Clock  
VDD  
RESET  
CPU clock  
Slow  
Fastest  
operation  
operation  
Wait (32  
µ
s: at 4.0 MHz operation)  
Internal reset operation  
<1> The CPU is reset when the RESET pin is made low on power application. The effect of resetting is released  
when the RESET pin is later made high, and the system clock starts oscillating. At this time, the time during  
which oscillation stabilizes (27/fCC) is automatically secured.  
After that, the CPU starts instruction execution at the low speed of the system clock (2.0 µs: at 4.0 MHz  
operation).  
<2> After the time during which the VDD voltage rises to the level at which the CPU can operate at the highest  
speed has elapsed, the processor clock control register (PCC) is rewritten so that the highest speed can be  
selected.  
109  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
The 16-bit timer counter references the free-running counter and provides functions such as timer interrupt and  
timer output. In addition, the count value can be captured by a capture trigger pin.  
8.1 16-Bit Timer 20 Functions  
16-bit timer 20 has the following functions.  
Timer interrupt  
Timer output  
Count value capture  
(1) Timer interrupt  
An interrupt is generated when the count value and compare value match.  
(2) Timer output  
Timer output control is possible when the count value and compare value match.  
(3) Count value capture  
The TM20 count value is latched in synchronization with the capture trigger and held.  
110  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
8.2 16-Bit Timer 20 Configuration  
16-bit timer 20 consists of the following hardware.  
Table 8-1. Configuration of 16-Bit Timer 20  
Item  
Timer counter  
Registers  
Configuration  
16 bits × 1 (TM20)  
Compare register: 16 bits × 1 (CR20)  
Capture register: 16 bits × 1 (TCP20)  
Timer output  
1 (TO20)  
Control registers  
16-bit timer mode control register 20 (TMC20)  
Port mode register 2 (PM2)  
Port 2 (P2)  
Figure 8-1. Block Diagram of 16-Bit Timer 20  
Internal bus  
16-bit timer mode  
control register 20  
(TMC20)  
P24  
output latch  
PM24  
TOF20 CPT201CPT200TOC20 TCL201TCL200 TOE20  
TO20/P24/  
INTP1/TO80  
F/F  
TOD20  
16-bit compare register 20 (CR20)  
16-bit timer mode  
control register 20  
Match  
INTTM20  
f
f
CLK/22  
CLK/26  
OVF  
16-bit timer counter 20 (TM20)  
16-bit capture  
register 20 (TCP20)  
CPT20/P23/  
INTP0/SS20  
Edge  
detector  
16-bit counter  
read buffer  
Internal bus  
Remark fCLK: fX or fCC  
111  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
(1) 16-bit compare register 20 (CR20)  
This register compares the value set to CR20 with the count value of 16-bit timer counter 20 (TM20), and when  
they match, generates an interrupt request (INTTM20).  
CR20 is set with a 16-bit memory manipulation instruction. The values 0000H to FFFFH can be set.  
RESET input sets this register to FFFFH.  
Cautions 1. Although this register is manipulated with a 16-bit memory manipulation instruction, an 8-  
bit memory manipulation instruction can also be used. When manipulating with an 8-bit  
memory manipulation instruction, the accessing method should be direct addressing.  
2. When rewriting CR20 during a count operation, set CR20 to the interrupt-disabled state  
using interrupt mask flag register 0 (MK10) beforehand. Also, set the timer output data to  
inversion disabled using 16-bit timer mode control register 20 (TMC20).  
When CR20 is rewritten in the interrupt-enabled state, an interrupt request may occur at  
the moment of rewrite.  
(2) 16-bit timer counter 20 (TM20)  
This is a 16-bit register that counts count pulses.  
TM20 is read with a 16-bit memory manipulation instruction.  
This register is free running during count clock input.  
RESET input clears this register to 0000H and after which it resumes free running.  
Cautions 1. The count value after releasing stop becomes undefined because the count operation is  
executed during the oscillation stabilization time.  
2. Although this register is manipulated with a 16-bit memory manipulation instruction, an 8-  
bit memory manipulation instruction can also be used. When manipulating with an 8-bit  
memory manipulation instruction, the accessing method should be direct addressing.  
3. When manipulating with an 8-bit memory manipulation instruction, readout should be  
performed in the order of lower byte to higher byte and must be performed in pairs.  
(3) 16-bit capture register 20 (TCP20)  
This is a 16-bit register that captures the contents of 16-bit timer counter 20 (TM20).  
TCP20 is set with a 16-bit memory manipulation instruction.  
RESET input makes this register undefined.  
Caution Although this register is manipulated with a 16-bit memory manipulation instruction, an 8-bit  
memory manipulation instruction can also be used. When manipulating with an 8-bit  
memory manipulation instruction, the accessing method should be direct addressing.  
(4) 16-bit counter read buffer  
This buffer latches the counter value and holds the count value of 16-bit timer counter 20 (TM20).  
112  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
8.3 Registers Controlling 16-Bit Timer 20  
The following three registers control 16-bit timer 20.  
16-bit timer mode control register 20 (TMC20)  
Port mode register 2 (PM2)  
Port 2 (P2)  
(1) 16-bit timer mode control register 20 (TMC20)  
16-bit timer mode control register 20 (TMC20) controls the setting of the counter clock, capture edge, etc.  
TMC20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears TMC20 to 00H.  
113  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
Figure 8-2. Format of 16-Bit Timer Mode Control Register 20  
7
<6>  
5
4
3
2
1
<0>  
Symbol  
Address  
FF48H  
After reset  
00H  
R/W  
TMC20 TOD20 TOF20 CPT201CPT200 TOC20 TCL201 TCL200 TOE20  
R/WNote 1  
TOD20  
0
Timer output data  
Timer output of 0  
Timer output of 1  
1
1
TOF20  
Overflow flag set  
0
1
Clear by reset and software  
Set by overflow of 16-bit timer  
CPT201 CPT200  
Capture edge selection  
0
0
1
1
0
1
0
1
Capture operation disabled  
Rising edge of CPT20  
Falling edge of CPT20  
Both edges of CPT20  
TOC20  
Timer output data inversion control  
0
1
Inversion disabled  
Inversion enabled  
TCL201 TCL200  
16-bit timer counter 20 count clock selection  
@ fX  
= 10.0 MHzNote 2 operation @ f  
= 5.0 MHz operation  
@ fCC = 4.0 MHz operation  
X
/22 or fCC/22  
/26 or fCC/26  
2.5 MHz  
1.25 MHz  
78.1 kHz  
1.0 MHz  
62.5 kHz  
0
0
0
1
f
X
156.2 kHz  
f
X
Other than above Setting prohibited  
TOE20  
16-bit timer 20 output control  
0
1
Output disabled (port mode)  
Output enabled  
Notes 1. Bit 7 is read-only.  
2. Expanded-specification products only.  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
114  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
(2) Port mode register 2 (PM2)  
This register sets the input/output of port 2 in 1-bit units.  
To use the P24/TO20/INTP1/TO80 pin for timer output, set the output latch of PM24 and P24 to 0.  
PM2 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets PM2 to FFH.  
Figure 8-3. Format of Port Mode Register 2  
7
1
6
1
5
4
3
2
1
0
Symbol  
PM2  
Address  
FF22H  
After reset  
FFH  
R/W  
R/W  
PM25 PM24 PM23 PM22 PM21 PM20  
PM24  
P24 pin I/O mode selection  
0
1
Output mode (output buffer on)  
Input mode (output buffer off)  
115  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
8.4 16-Bit Timer 20 Operation  
8.4.1 Operation as timer interrupt  
An interrupt is generated repeatedly each time the free-running counter value reaches the value set to CR20. After  
interrupt occurs, the counter is not cleared and continues counting. Therefore, the interval time is equivalent to one  
count clock cycle set by TCL201 and TCL200.  
To operate the 16-bit timer 20 as a timer interrupt, the following settings are required.  
Set count values to CR20.  
Set 16-bit timer mode control register 20 (TMC20) as shown in Figure 8-4.  
Figure 8-4. Settings of 16-Bit Timer Mode Control Register 20 at Timer Interrupt Operation  
TOD20 TOF20 CPT201 CPT200 TOC20 TCL201 TCL200 TOE20  
TMC20  
0/1  
0/1  
0/1  
0/1  
0
0/1  
0/1  
Setting of count clock (see Table 8-2)  
Caution If both the CPT201 and CPT200 flags are set to 0, the capture edge becomes setting prohibited.  
When the count value of 16-bit timer counter 20 (TM20) coincides with the value set to CR20, counting of TM20  
continues and an interrupt request signal (INTTM20) is generated.  
Table 8-2 shows the interval time, and Figure 8-5 shows the timing of the timer interrupt operation.  
Caution When rewriting CR20 during count operation, be sure to follow the procedure below.  
<1> Set CR20 to interrupt disable (by setting bit 7 of interrupt mask flag register 0 (MK0) to 1).  
<2> Set inversion control of timer output data to disable (TOC20 = 0)  
When CR20 is rewritten in the interrupt-enabled state, an interrupt request may occur at the  
moment of rewrite.  
Table 8-2. Interval Time of 16-Bit Timer 20  
TCL201 TCL200  
Count Clock  
Interval Time  
@ fX = 10.0  
MHzNote  
@ fX = 5.0  
MHz  
@ fCC = 4.0  
MHz  
@ fX = 10.0  
MHzNote  
@ fX = 5.0  
MHz  
@ fCC = 4.0  
MHz  
Operation  
Operation  
Operation  
Operation  
Operation  
Operation  
0
0
0
1
22/fX or  
22/fCC  
0.4 µs  
0.8 µs  
1.0 µs  
218/fX or  
218/fCC  
26.2 ms  
52.4 ms  
65.5 ms  
26/fX or  
26/fCC  
6.4 µs  
12.8 µs  
16 µs  
222/fX or  
222/fCC  
419.4 ms  
838.9 ms  
1048 ms  
Other than above Setting prohibited  
Note Expanded-specification products only.  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
116  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
Figure 8-5. Timing of Timer Interrupt Operation  
t
Count clock  
TM20 count value  
CR20  
0000H  
0001H  
N
0000H 0001H  
N
N
FFFFH  
N
N
N
N
INTTM20  
Interrupt acknowledged  
Interrupt  
acknowledged  
TO20  
TOF20  
Overflow flag set  
Remark N = 0000H to FFFFH  
117  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
8.4.2 Operation as timer output  
The timer output is inverted repeatedly each time the free-running counter value reaches the value set to CR20.  
After the timer output is inverted, the counter is not cleared and continues counting. Therefore, the interval time is  
equivalent to one count clock cycle set by TCL201 and TCL200.  
To operate the 16-bit timer 20 as a timer output, the following settings are required.  
Set P24 to output mode (PM24 = 0).  
Set the P24 output latch to 0.  
Set the count value to CR20.  
Set 16-bit timer mode control register 20 (TMC20) as shown in Figure 8-6.  
Figure 8-6. Settings of 16-Bit Timer Mode Control Register 20 for Timer Output Operation  
TOD20 TOF20 CPT201 CPT200 TOC20 TCL201 TCL200 TOE20  
TMC20  
0/1  
0/1  
0/1  
1
0
0/1  
1
TO20 output enable  
Setting of count clock (see Table 8-2)  
Inversion enable for timer output data  
Caution If both the CPT201 flag and CPT200 flag are set to 0, the capture edge becomes operation  
prohibited.  
When the count value of 16-bit timer counter 20 (TM20) matches the value set in CR20, the output status of the  
TO20/P24/INTP1/TO80 pin is inverted. This enables timer output. At that time, TM20 continues counting and an  
interrupt request signal (INTTM20) is generated.  
Figure 8-7 shows the timing of timer output (refer to Table 8-2 for the interval time of 16-bit timer 20).  
Figure 8-7. Timer Output Timing  
t
Count clock  
0000H  
0001H  
N
0000H 0001H  
N
N
FFFFH  
TM20 count value  
CR20  
N
N
N
N
INTTM20  
Interrupt acknowledged  
Interrupt  
acknowledged  
TO20Note  
TOF20  
Overflow flag set  
Note The TO20 initial value becomes low level while output is enabled (TOE20 = 1).  
Remark N = 0000H to FFFFH  
118  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
8.4.3 Capture operation  
The capture operation functions to capture and latch the count value of 16-bit timer counter 20 (TM20) in  
synchronization with a capture trigger.  
Set as shown in Figure 8-8 to allow 16-bit timer 20 to start the capture operation.  
Figure 8-8. Settings of 16-Bit Timer Mode Control Register 20 for Capture Operation  
TOD20 TOF20 CPT201 CPT200 TOC20 TCL201 TCL200 TOE20  
TMC20  
0/1  
0/1  
0/1  
0/1  
0
0/1  
0/1  
Count clock selection  
Capture edge selection (see Table 8-3)  
16-bit capture register 20 (TCP20) starts the capture operation after the CPT20 capture trigger edge has been  
detected, and latches and holds the count value of 16-bit timer counter 20. TCP20 fetches the count value within 2  
clocks and holds the count value until the next capture edge detection.  
Table 8-3 and Figure 8-9 show the setting contents of the capture edge and the capture operation timing,  
respectively.  
Table 8-3. Settings of Capture Edge  
CPT201  
CPT200  
Capture Edge Selection  
0
0
1
1
0
1
0
1
Capture operation prohibited  
CPT20 pin rising edge  
CPT20 pin falling edge  
CPT20 pin both edges  
Caution Because TCP20 is rewritten when a capture trigger edge is detected during TCP20 read, disable  
capture trigger detection during TCP20 read.  
Figure 8-9. Capture Operation Timing (Both Edges of CPT20 Pin Are Specified)  
Count clock  
TM20  
Count read buffer  
TCP20  
0000H 0001H  
0000H 0001H  
N
N
M – 1  
M
M
Undefined  
N
M
Capture start  
Capture start  
CPT20  
Capture edge detection  
Capture edge detection  
Remark N, M = 0000H to FFFFH  
119  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
8.4.4 16-bit timer counter 20 readout  
The count value of 16-bit timer counter 20 (TM20) is read out by a 16-bit manipulation instruction.  
TM20 readout is performed via a counter read buffer. The counter read buffer latches the TM20 count value. The  
buffer operation is then held pending at the CPU clock falling edge after the read signal of the TM20 lower byte rises  
and the count value is held. The counter read buffer value in the hold state can be read out as the count value.  
Cancellation of the pending state is performed at the CPU clock falling edge after the read signal of the TM20  
higher byte falls.  
RESET input clears TM20 to 0000H and restarts free running.  
Figure 8-10 shows the timing of 16-bit timer counter 20 readout.  
Cautions 1. The count value after releasing stop becomes undefined because the count operation is  
executed during oscillation stabilization time.  
2. Although TM20 is a dedicated 16-bit transfer instruction register, an 8-bit transfer instruction  
can also be used.  
Execute an 8-bit transfer instruction by direct addressing.  
3. When using an 8-bit transfer instruction, execute in the order of lower byte to higher byte in  
pairs. If the only lower byte is read, the pending state of the counter read buffer is not  
canceled, and if the only higher byte is read, an undefined count value is read.  
Figure 8-10. 16-Bit Timer Counter 20 Readout Timing  
CPU clock  
Count clock  
TM20  
Count read buffer  
TM20 read signal  
0000H  
0000H  
0001H  
0001H  
N
N + 1  
N
Read signal latch  
prohibited period  
Remark N = 0000H to FFFFH  
120  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
8.5 Notes on Using 16-Bit Timer 20  
8.5.1 Restrictions on rewriting 16-bit compare register 20  
(1) When rewriting the compare register (CR20), be sure to disable interrupts (TMMK20 = 1), and disable  
inversion control of timer output (TOC20 = 0) first.  
If CR20 is rewritten with interrupts enabled, an interrupt request may be generated at the point of rewrite.  
(2) The interval time may be double the intended time depending on the timing at which the compare register  
(CR20) is rewritten. Likewise, the timer output waveform may be shorter or double the intended output.  
To avoid this, rewrite using one of the following procedures.  
<Prevention method A> Rewriting by 8-bit access  
<1> Disable interrupts (TMMK20 = 1), and disable inversion control of timer output (TOC20 = 0).  
<2> Rewrite the higher byte of CR20 (16 bits) first.  
<3> Next, rewrite the lower byte of CR20 (16 bits).  
<4> Clear the interrupt request flag (TMIF20).  
<5> After more than half the cycle of the count clock has passed from the start of the interrupt, enable timer  
interrupts and timer output inversion.  
<Program example A> (When count clock = 64/fX, CPU clock = fX)  
TM20_VCT: SET1  
TMMK20  
TMC20.3  
A,#xxH  
;Timer interrupt disable (6 clocks)  
CLR1  
MOV  
;Timer output inversion disable (6 clocks)  
;Higher byte rewrite value setting (6 clocks)  
MOV  
!0FF17H,A ;CR20 higher byte rewriting (8 clocks)  
A,#yyH ;Lower byte rewrite value setting (6 clocks)  
!0FF16H,A ;CR20 lower byte rewriting (8 clocks)  
More than 32 clocks  
in totalNote  
MOV  
MOV  
CLR1  
CLR1  
SET1  
TMIF20  
TMMK20  
TMC20.3  
;Interrupt request flag clearing (6 clocks)  
;Timer interrupt enable (6 clocks)  
;Timer output inversion enable  
Note This is because the INTTM20 signal is set to the high level for a period of half the cycle of the count  
clock after an interrupt is generated, so the output will be inverted if TOC20 is set to 1 during this  
period.  
121  
User’s Manual U14643EJ2V0UD  
CHAPTER 8 16-BIT TIMER 20  
<Prevention method B> Rewriting by 16-bit access  
<1> Disable interrupts (TMMK20 = 1), and disable inversion control of timer output (TOC20 = 0).  
<2> Rewrite CR20 (16 bits).  
<3> Wait for more than one cycle of the count clock.  
<4> Clear the interrupt request flag (TMIF20).  
<5> Enable timer interrupts and timer output inversion  
<Program example B> (When count clock = 64/fX, CPU clock = fX)  
TM20_VCT: SET1  
TMMK20  
;Timer interrupt disable  
CLR1  
MOVW  
MOVW  
NOP  
TMC20.3  
;Timer output inversion disable  
AX,#xxyyH ;CR20 rewrite value setting  
CR20,AX  
;CR20 rewriting  
NOP  
;32 NOP (Wait for 64/fX)Note  
:
NOP  
NOP  
CLR1  
CLR1  
SET1  
TMIF20  
TMMK20  
TMC20.3  
;Interrupt request flag clearing  
;Timer interrupt enable  
;Timer output inversion enable  
Note Wait for more than one cycle of the count clock after the instruction rewriting CR20 (MOVW CR20, AX)  
before clearing the interrupt request flag (TMIF20).  
122  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
The 8-bit timer/event counter can be used as an interval timer, external event counter, and for square-wave output  
and PWM output of arbitrary frequency.  
9.1 Functions of 8-Bit Timer/Event Counter 80  
8-bit timer/event counter 80 has the following functions.  
Interval timer  
External event counter  
Square-wave output  
PWM output  
(1) 8-bit interval timer  
When the 8-bit timer/event counter is used as an interval timer, it generates an interrupt at an arbitrary time  
interval set in advance.  
Table 9-1. Interval Time of 8-Bit Timer/Event Counter 80  
Minimum Interval Time  
1/fX (100 ns)  
Maximum Interval Time  
28/fX (25.6 µs)  
Resolution  
1/fX (100 ns)  
At fX = 10.0 MHzNote  
At fX = 5.0 MHz  
23/fX (0.8 µs)  
211/fX (204.8 µs)  
28/fX (51.2 µs)  
23/fX (0.8 µs)  
1/fX (200 ns)  
23/fX (1.6 µs)  
1/fCC (250 ns)  
23/fCC (2.0 µs)  
1/fX (200 ns)  
23/fX (1.6 µs)  
211/fX (409.6 µs)  
28/fCC (64 µs)  
At fCC = 4.0 MHz  
1/fCC (250 ns)  
23/fCC (2.0 µs)  
211/fCC (512 µs)  
Note Expanded-specification products only  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
(2) External event counter  
The number of pulses of an externally input signal can be measured.  
123  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
(3) Square-wave output  
A square wave of arbitrary frequency can be output.  
Table 9-2. Square-Wave Output Range of 8-Bit Timer/Event Counter 80  
Minimum Pulse Width  
1/fX (100 ns)  
Maximum Pulse Width  
28/fX (25.6 µs)  
Resolution  
1/fX (100 ns)  
At fX = 10.0 MHzNote  
At fX = 5.0 MHz  
23/fX (0.8 µs)  
211/fX (204.8 µs)  
28/fX (51.2 µs)  
23/fX (0.8 µs)  
1/fX (200 ns)  
23/fX (1.6 µs)  
1/fCC (250 ns)  
23/fCC (2.0 µs)  
1/fX (200 ns)  
23/fX (1.6 µs)  
211/fX (409.6 µs)  
28/fCC (64 µs)  
At fCC = 4.0 MHz  
1/fCC (250 ns)  
23/fCC (2.0 µs)  
211/fCC (512 µs)  
Note Expanded-specification products only  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
(4) PWM output  
8-bit resolution PWM output can be produced.  
9.2 8-Bit Timer/Event Counter 80 Configuration  
8-bit timer/event counter 80 consists of the following hardware.  
Table 9-3. 8-Bit Timer/Event Counter 80 Configuration  
Item  
Timer counter  
Register  
Configuration  
8 bits × 1 (TM80)  
Compare register: 8 bits × 1 (CR80)  
Timer output  
Control registers  
1 (TO80)  
8-bit timer mode control register 80 (TMC80)  
Port mode register 2 (PM2)  
Port 2 (P2)  
124  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
Figure 9-1. Block Diagram of 8-Bit Timer/Event Counter 80  
Internal bus  
8-bit compare register 80  
(CR80)  
Match  
INTTM80  
TO20  
output Note  
f
CLK  
Clear  
8-bit timer counter 80  
f
CLK/23  
(TM80)  
R
INV  
Q
Q
TI80/P25/  
INTP2  
S
OVF  
TO80/P24/  
INTP1/TO20  
P24 output  
latch  
PM24  
TCE80 PWME80 TCL801 TCL800 TOE80  
8-bit timer mode control  
register 80 (TMC80)  
Internal bus  
Note Refer to block diagram of 16-bit timer 20  
Remark fCLK: fX or fCC  
(1) 8-bit compare register 80 (CR80)  
This is an 8-bit register that compares the value set to CR80 with the 8-bit timer counter 80 (TM80) count  
value, and if they match, generates an interrupt request (INTTM80).  
CR80 is set with an 8-bit memory manipulation instruction. The values 00H to FFH can be set.  
RESET input makes CR80 undefined.  
Cautions 1. When rewriting CR80 in timer counter operation mode (i.e., PWME80 (bit 6 of 8-bit timer  
mode control register 80 (TMC80)) is set to 0), be sure to stop the timer operation before  
hand. If CR80 is rewritten in the timer operation-enabled state, a match interrupt request  
signal may occur at the moment of rewrite.  
2. Do not set CR80 to 00H in the PWM output mode (when PWME80 = 1); otherwise, PWM  
may not be output normally.  
(2) 8-bit timer counter 80 (TM80)  
This is an 8-bit register used to count count pulses.  
TM80 is read with an 8-bit memory manipulation instruction.  
RESET input clears TM80 to 00H.  
125  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
9.3 Registers Controlling 8-Bit Timer/Event Counter 80  
The following three registers are used to control 8-bit timer/event counter 80.  
8-bit timer mode control register 80 (TMC80)  
Port mode register 2 (PM2)  
Port 2 (P2)  
(1) 8-bit timer mode control register 80 (TMC80)  
This register enables/stops operation of 8-bit timer counter 80 (TM80), sets the counter clock of TM80, and  
controls the operation of the output controller of 8-bit timer/event counter 80.  
TMC80 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears TMC80 to 00H.  
Figure 9-2. Format of 8-Bit Timer Mode Control Register 80  
<7> <6>  
5
0
4
0
3
0
2
1
<0>  
Symbol  
Address  
FF53H  
After reset  
00H  
R/W  
R/W  
TMC80 TCE80 PWME80  
TCL801TCL800 TOE80  
TCE80  
8-bit timer counter 80 operation control  
0
1
Operation stop (TM80 cleared to 0)  
Operation enable  
PWME80  
Operation mode selection  
0
1
Timer counter operating mode  
PWM output operating mode  
TCL801 TCL800  
8-bit timer counter 80 count clock selection  
@ f  
X
= 10.0 MHzNote operation @ f  
= 5.0 MHz operation  
@ fCC = 4.0 MHz operation  
X
0
0
1
1
0
1
0
1
10.0 MHz  
1.25 MHz  
5.0 MHz  
625 kHz  
4.0 MHz  
500 kHz  
f
f
X
X
or fCC  
/23 or fCC/23  
Rising edge of TI80  
Falling edge of TI80  
TOE80  
8-bit timer/event counter 80 output control  
0
1
Output disable (port mode)  
Output enable  
Note Expanded-specification products only  
Caution Be sure to set TMC80 after stopping timer operation.  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
126  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
(2) Port mode register 2 (PM2)  
This register sets port 2 to input/output in 1-bit units.  
When using the P24/TO80/INTP1/TO20 pin for timer output, set the output latch of PM24 and P24 to 0. When  
using it for timer input, set PM24 to 1.  
PM2 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets PM2 to FFH.  
Figure 9-3. Format of Port Mode Register 2  
7
1
6
1
5
4
3
2
1
0
Symbol  
PM2  
Address  
FF22H  
After reset  
FFH  
R/W  
R/W  
PM25 PM24 PM23 PM22 PM21 PM20  
PM2n  
P2n pin I/O mode selection (n = 0 to 5)  
0
1
Output mode (output buffer on)  
Input mode (output buffer off)  
127  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
9.4 Operation of 8-Bit Timer/Event Counter 80  
9.4.1 Operation as interval timer  
The interval timer repeatedly generates an interrupt at time intervals specified by the count value set to 8-bit  
compare register 80 (CR80) in advance.  
To operate the 8-bit timer/event counter as an interval timer, the following settings are required.  
<1> Set 8-bit timer counter 80 (TM80) to operation disabled (by setting TCE80 (bit 7 of 8-bit timer mode control  
register 80 (TMC80)) to 0).  
<2> Set the count clock of 8-bit timer/event counter 80 (refer to Figure 9-2)  
<3> Set the count value to CR80  
<4> Set TM80 to operation enable (TCE80 = 1)  
When the count value of 8-bit timer counter 80 (TM80) matches the value set to CR80, the value of TM80 is  
cleared to 0 and TM80 continues counting. At the same time, an interrupt request signal (INTTM80) is generated.  
Tables 9-4 and 9-5 show the interval time, and Figure 9-4 shows the timing of interval timer operation.  
Cautions 1. Before rewriting CR80, stop the timer operation once. If CR80 is rewritten in the timer  
operation-enabled state, a match interrupt request signal may occur at the moment of rewrite.  
2. If the count clock setting and TM80 operation-enabled are set in TMC80 simultaneously using  
an 8-bit memory manipulation instruction, an error of more than one clock in one cycle may  
occur after the timer starts.  
Therefore, always follow the above procedure when operating the 8-bit timer/event counter as  
an interval timer.  
Table 9-4. Interval Time of 8-Bit Timer/Event Counter 80 (at fX = 5.0 MHz, 10.0 MHz Operation)  
TCL801  
TCL800  
Minimum Interval Time  
1/fX (100 ns) [200 ns]  
23/fX (0.8 µs) [1.6 µs]  
TI80 input cycle  
Maximum Interval Time  
28/fX (25.6 µs) [51.2 µs]  
211/fX (204.8 µs) [409.6 µs]  
28 × TI80 input cycle  
Resolution  
0
0
1
1
0
1
0
1
1/fX (100 ns) [200 ns]  
23/fX (0.8 µs) [1.6 µs]  
TI80 input edge cycle  
TI80 input edge cycle  
TI80 input cycle  
28 × TI80 input cycle  
Remarks 1. fX: System clock oscillation frequency (ceramic/crystal oscillation)  
2. The values in parentheses ( ) are for operation at fX = 10.0 MHz (expanded-specification products  
only).  
3. The values in square brackets [ ] are for operation at fX = 5.0 MHz.  
Table 9-5. Interval Time of 8-Bit Timer/Event Counter 80 (at fCC = 4.0 MHz Operation)  
TCL801  
TCL800  
Minimum Interval Time  
1/fCC (250 ns)  
Maximum Interval Time  
28/fCC (64 µs)  
Resolution  
1/fCC (250 ns)  
0
0
1
1
0
1
0
1
23/fCC (2.0 µs)  
211/fCC (512 µs)  
23/fCC (2.0 µs)  
TI80 input cycle  
TI80 input cycle  
28 × TI80 input cycle  
28 × TI80 input cycle  
TI80 input edge cycle  
TI80 input edge cycle  
Remark fCC: System clock oscillation frequency (RC oscillation)  
128  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
Figure 9-4. Interval Timer Operation Timing  
t
Count clock  
TM80 count value  
00H  
01H  
N
00H 01H  
Clear  
N
00H 01H  
Clear  
N
CR80  
N
N
N
N
TCE80  
Count start  
INTTM80  
Interrupt acknowledged  
Interval time  
Interrupt acknowledged  
Interval time  
TO80  
Interval time  
Remark Interval time = (N + 1) × t : N = 00H to FFH  
129  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
9.4.2 Operation as external event counter  
The external event counter counts the number of external clock pulses input to the TI80/P25/INTP2 pin by using 8-  
bit timer counter 80 (TM80).  
To operate 8-bit timer/event counter 80 as an external event counter, the following settings are required.  
<1> Set P25 to input mode (PM25 = 1).  
<2> Set 8-bit timer counter 80 (TM80) to operation disabled (by setting TCE80 (bit 7 of 8-bit timer mode control  
register 80 (TMC80)) to 0).  
<3> Specify the rising/falling edges of TI80 (refer to Figure 9-2), and set TO80 to output disabled (i.e., set TOE80  
(bit 0 of TMC80) to 0) and PWM output to disabled (i.e., set PWME80 (bit 6 of TMC80) to 0).  
<4> Set the count value to CR80.  
<5> Set TM80 to operation enabled (TCE80 = 1).  
Each time the valid edge specified by bit 1 (TCL800) of TMC80 is input, the value of 8-bit timer counter 80 (TM80)  
is incremented.  
When the count value of TM80 matches the value set to CR80, the value of TM80 is cleared to 0 and TM80  
continues counting. At the same time, an interrupt request signal (INTTM80) is generated.  
Figure 9-5 shows the timing of the external event counter operation (with the rising edge specified).  
Cautions 1. Before rewriting CR80, stop the timer operation once. If CR80 is rewritten in the timer  
operation-enabled state, a match interrupt request signal may occur at the moment of rewrite.  
2. If the count clock setting and TM80 operation-enabled are set in TMC80 simultaneously using  
an 8-bit memory manipulation instruction, an error of more than one clock in one cycle may  
occur after the timer starts.  
Therefore, always follow the above procedure when operating the 8-bit timer/event counter as  
an external event counter.  
Figure 9-5. External Event Counter Operation Timing (with Rising Edge Specified)  
TI80 pin input  
TM80 count value  
CR80  
00H  
02H  
04H 05H  
N
00H  
02H 03H  
01H  
03H  
N 1  
01H  
N
TCE80  
INTTM80  
Remark N = 00H to FFH  
130  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
9.4.3 Operation as square-wave output  
The 8-bit timer/event counter can output square waves of a given frequency at intervals specified by the count  
value set to 8-bit compare register 80 (CR80) in advance.  
To operate 8-bit timer/event counter 80 as square-wave output, the following settings are required.  
<1> Set P24 to output mode (PM24 = 0) and the P24 output latch to 0.  
<2> Set 8-bit timer counter 80 (TM80) to operation disabled (TCE80 = 0).  
<3> Set the count clock of 8-bit timer/event counter 80 (refer to Figure 9-2), TO80 to output enabled (TOE80 = 1),  
and PWM output to disabled (PWME80 = 0).  
<4> Set the count value to CR80.  
<5> Set TM80 to operation enabled (TCE80 = 1).  
When the count value of 8-bit timer counter 80 (TM80) matches the value set in CR80, the TO80/P24/INTP1/TO20  
pin output will be inverted. Through application of this mechanism, square waves of any frequency can be output. As  
soon as a match occurs, the TM80 value is cleared to 0 and TM80 continues counting. At the same time, an interrupt  
request signal (INTTM80) is generated.  
Square-wave output is cleared (0) when bit 7 (TCE80) of TMC80 is set to 0.  
Tables 9-6 and 9-7 show the square-wave output range, and Figure 9-6 shows the timing of square-wave output.  
Cautions 1. Before rewriting CR80, stop the timer operation once. If CR80 is rewritten in the timer  
operation-enabled state, a match interrupt request signal may occur at the moment of rewrite.  
2. If the count clock setting and TM80 operation-enabled are set in TMC80 simultaneously using  
an 8-bit memory manipulation instruction, an error of more than one clock in one cycle may  
occur after the timer starts.  
Therefore, always follow the above procedure when operating the 8-bit timer/event counter as  
square-wave output.  
Table 9-6. Square-Wave Output Range of 8-Bit Timer/Event Counter 80 (at fX = 5.0 MHz, 10.0 MHz Operation)  
TCL801  
TCL800  
Minimum Pulse Width  
1/fX (100 ns) [200 ns]  
23/fX (0.8 µs) [1.6 µs]  
Maximum Pulse Width  
28/fX (25.6 µs) [51.2 µs]  
211/fX (204.8 µs) [409.6 µs]  
Resolution  
1/fX (100 ns) [200 ns]  
23/fX (0.8 µs) [1.6 µs]  
0
0
0
1
Remarks 1. fX: System clock oscillation frequency (ceramic/crystal oscillation)  
2. The values in parentheses ( ) are for operation at fX = 10.0 MHz (expanded-specification products  
only).  
3. The values in square brackets [ ] are for operation at fX = 5.0 MHz.  
Table 9-7. Square-Wave Output Range of 8-Bit Timer/Event Counter 80 (at fCC = 4.0 MHz Operation)  
TCL801  
TCL800  
Minimum Interval Time  
1/fCC (250 ns)  
Maximum Interval Time  
28/fCC (64 µs)  
Resolution  
0
0
0
1
1/fCC (250 ns)  
23/fCC (2.0 µs)  
23/fCC (2.0 µs)  
211/fCC (512 µs)  
Remark fCC: System clock oscillation frequency (RC oscillation)  
131  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
Figure 9-6. Square-Wave Output Timing  
Count clock  
TM80 count value  
00H  
01H  
N
00H 01H  
Clear  
N
00H 01H  
Clear  
N
CR80  
N
N
N
N
TCE80  
Count start  
INTTM80  
Interrupt acknowledged  
Interrupt acknowledged  
TO80Note  
Note The TO80 initial value becomes low level while output is enabled (TOE80 = 1).  
132  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
9.4.4 Operation as PWM output  
PWM output enables interrupt generation repeatedly at intervals specified by the count value set to 8-bit compare  
register 80 (CR80) in advance.  
To use 8-bit timer/counter 80 for PWM output, the following settings are required.  
<1> Set P24 to output mode (PM24 = 0) and the P24 output latch to 0.  
<2> Set 8-bit timer counter 80 (TM80) to operation disabled (TCE80 = 0).  
<3> Set the count clock of 8-bit timer/event counter 80 (refer to Figure 9-2), TO80 to output enabled (TOE80 = 1),  
and PWM output to enabled (PWME80 = 1).  
<4> Set the count value to CR80.  
<5> Set TM80 to operation enabled (TCE80 = 1).  
When the count value of 8-bit timer counter 80 (TM80) matches the value set to CR80, TM80 continues counting,  
and an interrupt request signal (INTTM80) is generated.  
Cautions 1. When CR80 is rewritten during timer operation, a high level may be output for the next cycle  
(refer to 9.5 (2) Setting of 8-bit compare register 80).  
2. If the count clock setting and TM80 operation-enabled are set in TMC80 simultaneously using  
an 8-bit memory manipulation instruction, an error of more than one clock in one cycle may  
occur after the timer starts. Therefore, always follow the above procedure when operating 8-  
bit compare register 80 as a PWM output.  
Figure 9-7. PWM Output Timing  
Count clock  
TM80 00H 01H • • •  
M
• • • FFH 00H 01H 02H • • •  
M
M + 1 M + 2 • • • FFH 00H 01H • • •  
M
• • • • • •  
CR80  
M
TCE80  
OVF  
INTTM80  
TO80Note  
M = 01H to FFH  
Note The TO80 initial value becomes low level while output is enabled (TOE80 = 1).  
Caution Do not set CR80 to 00H in the PWM output mode; otherwise PWM may not be output normally.  
133  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
9.5 Notes on Using 8-Bit Timer/Event Counter 80  
(1) Error on starting timer  
An error of up to 1 clock occurs after the timer is started until a match signal is generated. This is because 8-  
bit timer counter 80 (TM80) is started asynchronous to the count pulse.  
Figure 9-8. Start Timing of 8-Bit Timer Counter  
Count pulse  
TM80  
00H  
01H  
02H  
03H  
04H  
count value  
Timer start  
(2) Setting of 8-bit compare register 80  
8-bit compare register 80 (CR80) can be set to 00H.  
Therefore, one pulse can be counted when the 8-bit timer/event counter operates as an event counter.  
Figure 9-9. External Event Counter Operation Timing  
Tl80 input  
CR80  
00H  
TM80  
count value  
00H  
00H  
00H  
00H  
Interrupt request flag  
Cautions 1. When rewriting CR80 in timer counter operation mode (i.e., PWME80 (bit 6 of 8-bit timer mode  
control register 80 (TMC80)) is set to 0), be sure to stop the timer operation before hand. If  
CR80 is rewritten in the timer operation-enabled state, a match interrupt request signal may  
occur at the moment of rewrite.  
2. If CR80 is rewritten while the timer is operating in PWM output operation mode (PWME80 = 1),  
a pulse may not be generated just in the cycle immediately after the rewrite.  
3. Do not set CR80 to 00H in the PWM output mode; otherwise PWM may not be output normally.  
134  
User’s Manual U14643EJ2V0UD  
CHAPTER 9 8-BIT TIMER/EVENT COUNTER 80  
(3) Operation after rewriting compare register during PWM output  
When 8-bit compare register 80 (CR80) is rewritten during PWM output, a high level may be output for a cycle  
after rewriting CR80 (count pulse × 256) if the 8-bit compare register 80 value is smaller than the 8-bit timer  
counter 80 (TM80) value. The timing in this case is shown in Figure 9-10.  
Figure 9-10. Timing After Rewriting Compare Register During PWM Output  
Count clock  
...  
...  
...  
...  
...  
...  
...  
TM80 00H 01H  
M
FFH 00H 01H 02H  
FFH 00H 01H  
CR80  
M
01H  
H
TCE80  
OVF  
INTTM80  
TO80  
Rewriting CR80  
M = 02H to FFH  
(4) Notes on STOP mode setting  
Before executing the STOP instruction, be sure to set the timer to operation stopped (TCE80 = 0).  
(5) External event counter start timing  
When the rising edge of TI80 is selected as the count clock, start the timer (TCE80 = 0 1) at the timing when  
TI80 changes to low level. Similarly, when the falling edge of TI80 is selected as the count clock, start the timer  
(TCE80 = 0 1) at the timing when TI80 changes to high level.  
135  
User’s Manual U14643EJ2V0UD  
CHAPTER 10 WATCHDOG TIMER  
The watchdog timer can generate non-maskable interrupts, maskable interrupts and RESET at arbitrary preset  
intervals.  
10.1 Functions of Watchdog Timer  
The watchdog timer has the following functions.  
Watchdog timer  
Interval timer  
Caution Select the watchdog timer mode or interval timer mode by using the watchdog timer mode  
register (WDTM).  
(1) Watchdog timer  
The watchdog timer is used to detect a program loop. When a program loop is detected, a non-maskable  
interrupt or the RESET signal can be generated.  
Table 10-1. Program Loop Detection Time of Watchdog Timer  
Program Loop Detection  
Time  
At fX = 10.0 MHzNote  
Operation  
At fX = 5.0 MHz  
Operation  
At fCC = 4.0 MHz  
Operation  
211 × 1/fW  
213 × 1/fW  
215 × 1/fW  
217 × 1/fW  
205 µs  
410 µs  
512 µs  
819 µs  
1.64 ms  
6.55 ms  
26.2 ms  
2.05 ms  
8.19 ms  
32.8 ms  
3.28 ms  
13.1 ms  
Note Expanded-specification products only  
Remark fW: fX or fCC  
fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
(2) Interval timer  
The interval timer generates an interrupt at a given interval set in advance.  
Table 10-2. Interval Time  
Interval Time  
211 × 1/fW  
At fX = 10.0 MHzNote  
Operation  
At fX = 5.0 MHz  
Operation  
At fCC = 4.0 MHz  
Operation  
205 µs  
410 µs  
512 µs  
213 × 1/fW  
215 × 1/fW  
217 × 1/fW  
819 µs  
1.64 ms  
6.55 ms  
26.2 ms  
2.05 ms  
8.19 ms  
32.8 ms  
3.28 ms  
13.1 ms  
Note Expanded-specification products only  
Remark fW: fX or fCC  
fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
136  
User’s Manual U14643EJ2V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.2 Configuration of Watchdog Timer  
The watchdog timer consists of the following hardware.  
Table 10-3. Configuration of Watchdog Timer  
Item  
Configuration  
Control registers  
Timer clock select register 2 (TCL2)  
Watchdog timer mode register (WDTM)  
Figure 10-1. Block Diagram of Watchdog Timer  
Internal bus  
f
W
24  
TMMK4  
Prescaler  
f
W
26  
f
W
28  
f
W
210  
INTWDT  
maskable  
TMIF4  
interrupt request  
7-bit counter  
Clear  
RESET  
INTWDT  
non-maskable  
interrupt request  
3
WDTM3  
RUN WDTM4  
TCL22 TCL21 TCL20  
Timer clock select register 2  
(TCL2)  
Watchdog timer mode register (WDTM)  
Internal bus  
Remark fW: fX or fCC  
137  
User’s Manual U14643EJ2V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.3 Watchdog Timer Control Registers  
The following two registers are used to control the watchdog timer.  
Timer clock select register 2 (TCL2)  
Watchdog timer mode register (WDTM)  
(1) Timer clock select register 2 (TCL2)  
This register sets the watchdog timer count clock.  
TCL2 is set with an 8-bit memory manipulation instruction.  
RESET input clears TCL2 to 00H.  
Figure 10-2. Format of Timer Clock Select Register 2  
Symbol  
TCL2  
7
0
6
0
5
0
4
0
3
0
2
1
0
Address  
FF42H  
After reset  
00H  
R/W  
R/W  
TCL22 TCL21TCL20  
TCL22 TCL21 TCL20  
Interval time  
Watchdog timer count clock selection  
@ f  
X
= 10.0 MHzNote  
operation  
@ f  
X
= 5.0  
@ fCC = 4.0  
@ f  
X
= 10.0 MHzNote  
operation  
@ f  
X
= 5.0  
@ fCC = 4.0  
MHz operation MHz operation  
MHz operation MHz operation  
f
f
f
X
X
X
/24 or fCC/24 625 kHz  
312.5 kHz 250 kHz  
211/f  
X
X
X
X
or 211/fCC 205  
or 213/fCC 819  
µ
µ
s
s
410  
µ
s
512 s  
µ
0
0
1
1
0
1
0
1
0
0
0
0
/26 or fCC/26 156.2 kHz 78.1 kHz 62.5 kHz 213/f  
/28 or fCC/28 39.0 kHz 19.5 kHz 15.6 kHz 215/f  
/210 or fCC/210 9.76 kHz 4.88 kHz 3.91 kHz 217/f  
1.64 ms  
6.55 ms  
26.2 ms  
2.05 ms  
8.19 ms  
32.8 ms  
or 215/fCC 3.28 ms  
or 217/fCC 13.1 ms  
f
X
Other than above Setting prohibited  
Note Expanded-specification products only  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
138  
User’s Manual U14643EJ2V0UD  
CHAPTER 10 WATCHDOG TIMER  
(2) Watchdog timer mode register (WDTM)  
This register sets the operation mode of the watchdog timer, and enables/disables counting of the watchdog  
timer.  
WDTM is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears WDTM to 00H.  
Figure 10-3. Format of Watchdog Timer Mode Register  
<7>  
6
0
5
0
4
3
2
0
1
0
0
0
Address  
FFF9H  
After reset  
00H  
R/W  
R/W  
Symbol  
WDTM RUN  
WDTM4 WDTM3  
Selection of operation of watchdog timerNote 1  
RUN  
0
1
Stop counting  
Clear counter and start counting  
Selection of operation mode of watchdog timerNote 2  
WDTM4 WDTM3  
0
0
1
1
0
1
0
1
Operation stop  
Interval timer mode (overflow and maskable interrupt occur)Note 3  
Watchdog timer mode 1 (overflow and non-maskable interrupt occur)  
Watchdog timer mode 2 (overflow occurs and reset operation started)  
Notes 1. Once RUN has been set (1), it cannot be cleared (0) by software. Therefore, when counting is started, it  
cannot be stopped by any means other than RESET input.  
2. Once WDTM3 and WDTM4 have been set (1), they cannot be cleared (0) by software.  
3. The watchdog timer starts operations as an interval timer when RUN is set to 1.  
Cautions 1. When the watchdog timer is cleared by setting RUN to 1, the actual overflow time is up to  
0.8% shorter than the time set by timer clock select register 2 (TCL2).  
2. In watchdog timer mode 1 or 2, set WDTM4 to 1 after confirming TMIF4 (bit 0 of interrupt  
request flag 0) has been set to 0. When watchdog timer mode 1 or 2 is selected under the  
condition that TMIF4 is 1, a non-maskable interrupt occurs at the completion of rewriting.  
139  
User’s Manual U14643EJ2V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.4 Operation of Watchdog Timer  
10.4.1 Operation as watchdog timer  
The watchdog timer operates to detect a program loop when bit 4 (WDTM4) of the watchdog timer mode register  
(WDTM) is set to 1.  
The count clock (program loop detection time interval) of the watchdog timer can be selected by bits 0 to 2 (TCL20  
to TCL22) of timer clock select register 2 (TCL2). The watchdog timer is started by setting bit 7 (RUN) of WDTM to 1.  
Set RUN to 1 within the set program loop detection time interval after the watchdog timer has been started. By setting  
RUN to 1, the watchdog timer can be cleared and start counting. If RUN is not set to 1, and the program loop  
detection time is exceeded, the system is reset or a non-maskable interrupt is generated according to the value of bit  
3 (WDTM3) of WDTM.  
The watchdog timer continues operation in the HALT mode, but stops in the STOP mode. Therefore, set RUN to 1  
before entering the STOP mode to clear the watchdog timer, and then execute the STOP instruction.  
Caution The actual program loop detection time may be up to 0.8% shorter than the set time.  
Table 10-4. Program Loop Detection Time of Watchdog Timer  
TCL22 TCL21 TCL20  
Program Loop  
Detection Time  
At fX = 10.0 MHzNote  
Operation  
At fX = 5.0 MHz  
Operation  
At fCC = 4.0 MHz  
Operation  
0
0
1
1
0
1
0
1
0
0
0
0
2
2
2
2
11 × 1/fW  
13 × 1/fW  
15 × 1/fW  
17 × 1/fW  
205 µs  
819 µs  
3.28 ms  
13.1 ms  
410 µs  
512 µs  
1.64 ms  
6.55 ms  
26.2 ms  
2.05 ms  
8.19 ms  
32.8 ms  
Note Expanded-specification products only  
Remark fW: fX or fCC  
fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
140  
User’s Manual U14643EJ2V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.4.2 Operation as interval timer  
When bits 4 and 3 (WDTM4, WDTM3) of the watchdog timer mode register (WDTM) are set to 1, the watchdog  
timer also operates as an interval timer that repeatedly generates an interrupt at time intervals specified by the count  
value set in advance.  
Select the count clock (or interval time) by setting bits 0 to 2 (TCL20 to TCL22) of timer clock select register 2  
(TCL2). The watchdog timer starts operation as an interval timer when the RUN bit (bit 7 of WDTM) is set to 1.  
In the interval timer mode, the interrupt mask flag (TMMK4) is valid, and a maskable interrupt (INTWDT) can be  
generated. The priority of INTWDT is set as the highest of all the maskable interrupts.  
The interval timer continues operation in the HALT mode, but stops in the STOP mode. Therefore, set RUN to 1  
before entering the STOP mode to clear the interval timer, and then execute the STOP instruction.  
Cautions 1. Once bit 4 (WDTM4) of WDTM is set to 1 (when the watchdog timer mode is selected), the  
interval timer mode is not set, unless the RESET signal is input.  
2. The interval time immediately after the setting by WDTM may be up to 0.8% shorter than the  
set time.  
Table 10-5. Interval Time of Interval Timer  
TCL22 TCL21 TCL20  
Interval Time  
At fX = 10.0 MHzNote  
Operation  
At fX = 5.0 MHz  
Operation  
At fCC = 4.0 MHz  
Operation  
0
0
1
1
0
1
0
1
0
0
0
0
2
2
2
2
11 × 1/fW  
13 × 1/fW  
15 × 1/fW  
17 × 1/fW  
205 µs  
819 µs  
3.28 ms  
13.1 ms  
410 µs  
512 µs  
1.64 ms  
6.55 ms  
26.2 ms  
2.05 ms  
8.19 ms  
32.8 ms  
Note Expanded-specification products only  
Remark fW: fX or fCC  
fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
141  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
11.1 8-Bit A/D Converter Functions  
The 8-bit A/D converter is an 8-bit resolution converter that converts analog inputs into digital signals. This  
converter can control up to four channels of analog inputs (ANI0 to ANI3).  
A/D conversion can only be started by software.  
One of analog inputs ANI0 to ANI3 is selected for A/D conversion. A/D conversion is performed repeatedly, with an  
interrupt request (INTAD0) being issued each time an A/D session is completed.  
11.2 8-Bit A/D Converter Configuration  
The 8-bit A/D converter consists of the following hardware.  
Table 11-1. Configuration of 8-Bit A/D Converter  
Item  
Analog input  
Registers  
Configuration  
4 channels (ANI0 to ANI3)  
Successive approximation register (SAR)  
A/D conversion result register 0 (ADCR0)  
Control registers  
A/D converter mode register 0 (ADM0)  
Analog input channel specification register 0 (ADS0)  
Figure 11-1. Block Diagram of 8-Bit A/D Converter  
AVDD  
P-ch  
Sample & hold circuit  
ANI0/P60  
ANI1/P61  
ANI2/P62  
ANI3/P63  
Voltage comparator  
AVSS  
AVSS  
Successive  
approximation  
register (SAR)  
INTAD0  
Controller  
A/D conversion result  
register 0 (ADCR0)  
2
ADS01 ADS00  
Analog input channel  
specification register 0  
(ADS0)  
ADCS0 FR02 FR01 FR00  
A/D converter mode register 0  
(ADM0)  
Internal bus  
142  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
(1) Successive approximation register (SAR)  
The SAR receives the result of comparing an analog input voltage and a voltage at the voltage tap  
(comparison voltage), received from the series resistor string, starting from the most significant bit (MSB).  
Upon receiving all the bits, down to the least significant bit (LSB), that is, upon the completion of A/D  
conversion, the SAR sends its contents to A/D conversion result register 0 (ADCR0).  
(2) A/D conversion result register 0 (ADCR0)  
Each time A/D conversion ends, the conversion result received from the successive approximation register is  
loaded into ADCR0, which is an 8-bit register that holds the result of A/D conversion.  
ADCR0 can be read with an 8-bit memory manipulation instruction.  
RESET input makes this register undefined.  
(3) Sample & hold circuit  
The sample & hold circuit samples consecutive analog inputs from the input circuit, one by one, and sends  
them to the voltage comparator. The sampled analog input voltage is held during A/D conversion.  
(4) Voltage comparator  
The voltage comparator compares an analog input with the voltage output by the series resistor string.  
(5) Series resistor string  
The series resistor string is configured between AVDD and AVSS. It generates the reference voltages against  
which analog inputs are compared.  
(6) ANI0 to ANI3 pins  
Pins ANI0 to ANI3 are the 4-channel analog input pins for the A/D converter. They are used to receive the  
analog signals for A/D conversion.  
Caution Do not supply pins ANI0 to ANI3 with voltages that fall outside the rated range. If a voltage  
of AVDD or greater or AVSS or lower (even if within the absolute maximum ratings) is supplied  
to any of these pins, the conversion value for the corresponding channel will be undefined.  
Furthermore, the conversion values for the other channels may also be affected.  
(7) AVSS pin  
The AVSS pin is the ground potential pin for the A/D converter. This pin must be held at the same potential as  
the VSS pin, even while the A/D converter is not being used.  
(8) AVDD pin  
The AVDD pin is the analog power supply pin for the A/D converter. This pin must be held at the same potential  
as the VDD pin, even while the A/D converter is not being used.  
143  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
11.3 Registers Controlling 8-Bit A/D Converter  
The following two registers are used to control the 8-bit A/D converter.  
A/D converter mode register 0 (ADM0)  
Analog input channel specification register 0 (ADS0)  
(1) A/D converter mode register 0 (ADM0)  
ADM0 specifies the conversion time for analog inputs. It also specifies whether to enable conversion.  
ADM0 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears ADM0 to 00H.  
Figure 11-2. Format of A/D Converter Mode Register 0  
Symbol <7>  
6
0
5
4
3
2
0
1
0
0
0
Address  
FF80H  
After reset  
00H  
R/W  
R/W  
ADM0 ADCS0  
FR02 FR01 FR00  
ADCS0  
A/D conversion control  
0
1
Conversion disabled  
Conversion enabled  
A/D conversion time selectionNote 1  
FR02 FR01 FR00  
@ f  
X
= 10.0 MHzNote 2 operation @ f  
= 5.0 MHz operation @ fCC = 4.0 MHz operation  
X
0
0
0
1
1
1
0
0
1
0
0
1
0
1
0
0
1
0
144/f  
120/f  
X
X
or 144/fCC  
or 120/fCC  
14.4  
µ
s
28.8  
µ
s
36 µs  
30 µs  
24 µs  
18 µs  
15 µs  
µ
µ
12  
s
24  
s
Setting prohibitedNote 3 19.2 µs  
Setting prohibitedNote 3 14.4 µs  
Setting prohibitedNote 3 12 µsNote 4  
96/f  
72/f  
60/f  
48/f  
X
X
X
X
or 96/fCC  
or 72/fCC  
or 60/fCC  
or 48/fCC  
Setting prohibitedNote 3 Setting prohibitedNote 3 Setting prohibitedNote 3  
Other than above  
Setting prohibited  
Notes 1. Set the A/D conversion time to satisfy the following specifications.  
<Expanded-specification products>  
When 4.5 V VDD 5.5 V: 12 µs min.  
When 2.7 V VDD < 4.5 V: 14 µs min.  
When 1.8 V VDD < 2.7 V: 28 µs min.  
<Conventional-specification products>  
When 2.7 V VDD 5.5 V: 14 µs min.  
When 1.8 V VDD < 2.7 V: 28 µs min.  
2. Expanded-specification products only  
3. Setting prohibited because the A/D conversion time does not satisfy the rating shown in Note 1.  
4. Can be set only for expanded-specification products when 4.5 V VDD 5.5 V. Otherwise, setting  
prohibited.  
144  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
Cautions 1. The result of conversion performed immediately after bit 7 (ADCS0) is set is undefined.  
2. The result of conversion after ADCS0 is cleared may be undefined (for details, refer to  
11.5 (5) Timing when A/D conversion result become undefined).  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
(2) Analog input channel specification register 0 (ADS0)  
The ADS0 register specifies the port used to input the analog voltages to be converted to a digital signal.  
ADS0 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears ADS0 to 00H.  
Figure 11-3. Format of Analog Input Channel Specification Register 0  
Symbol  
ADS0  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
Address  
FF84H  
After reset  
00H  
R/W  
R/W  
ADS01 ADS00  
Analog input channel specification  
ADS01 ADS00  
ANI0  
ANI1  
ANI2  
ANI3  
0
0
1
1
0
1
0
1
145  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
11.4 8-Bit A/D Converter Operation  
11.4.1 Basic operation of 8-bit A/D converter  
<1> Select the channel for A/D conversion using analog input channel specification register 0 (ADS0).  
<2> The voltage supplied to the selected analog input channel is sampled using the sample & hold circuit.  
<3> After sampling continues for a certain period of time, the sample & hold circuit is put on hold to keep the input  
analog voltage until A/D conversion is completed.  
<4> Bit 7 of the successive approximation register (SAR) is set. The tap selector sets the series resistor string  
voltage tap to half AVDD.  
<5> The series resistor string voltage tap is compared with the analog input voltage using the voltage comparator.  
If the analog input voltage is higher than half AVDD, the MSB of the SAR is left set. If it is lower than half  
AVDD, the MSB is reset.  
<6> Bit 6 of the SAR is set automatically, and comparison shifts to the next stage. The next voltage tap of the  
series resistor string is selected according to bit 7, which reflects the previous comparison result, as follows.  
Bit 7 = 1: Three quarters of AVDD  
Bit 7 = 0: One quarter of AVDD  
The voltage tap is compared with the analog input voltage. Bit 6 is set or reset according to the result of  
comparison.  
Analog input voltage voltage tap: Bit 6 = 1  
Analog input voltage < voltage tap: Bit 6 = 0  
<7> Comparison is repeated until bit 0 of the SAR is reached.  
<8> When comparison is completed for all of the 8 bits, a significant digital result is left in the SAR. This value is  
sent to and latched in A/D conversion result register 0 (ADCR0). At the same time, it is possible to generate  
an A/D conversion end interrupt request (INTAD0).  
Cautions 1. The first A/D conversion value immediately after starting the A/D conversion operation  
may be undefined.  
2. When in standby mode, the A/D converter stops operation.  
146  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
Figure 11-4. Basic Operation of 8-Bit A/D Converter  
Conversion  
time  
Sampling  
time  
A/D converter  
operation  
Sampling  
A/D conversion  
C0H  
or 40H  
Conversion  
result  
Undefined  
SAR  
ADCR0  
INTAD0  
80H  
Conversion  
result  
A/D conversion continues until bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) is reset (0) by software.  
If an attempt is made to write to ADM0 or analog input channel specification register 0 (ADS0) during A/D  
conversion, the A/D conversion in progress is canceled. In this case, if ADCS0 is set (1), A/D conversion is restarted  
from the beginning.  
RESET input makes A/D conversion result register 0 (ADCR0) undefined.  
11.4.2 Input voltage and conversion result  
The relationship between the analog input voltage at the analog input pins (ANI0 to ANI3) and the A/D conversion  
result (A/D conversion result register 0 (ADCR0)) is represented by:  
VIN  
ADCR0 = INT (  
× 256 + 0.5)  
AVDD  
or  
AVDD  
AVDD  
(ADCR0 0.5) ×  
VIN < (ADCR0 + 0.5) ×  
256  
256  
INT( ): Function that returns the integer part of the parenthesized value  
VIN:  
Analog input voltage  
AVDD:  
A/D converter supply voltage  
ADCR0: Value in A/D conversion result register 0 (ADCR0)  
Figure 11-5 shows the relationship between the analog input voltage and the A/D conversion result.  
147  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
Figure 11-5. Relationship Between Analog Input Voltage and A/D Conversion Result  
255  
254  
253  
A/D conversion  
result (ADCR0)  
3
2
1
0
1
1
3
2
5
3
507 254 509 255 511  
512 256 512 256 512  
1
512 256 512 256 512 256  
Input voltage/AVDD  
148  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
11.4.3 Operation mode of 8-bit A/D converter  
The 8-bit A/D converter is initially in the select mode. In this mode, analog input channel specification register 0  
(ADS0) is used to select the analog input channel from ANI0 to ANI3 for A/D conversion.  
A/D conversion can only be started by software; that is, by setting A/D converter mode register 0 (ADM0).  
The A/D conversion result is saved to A/D conversion result register 0 (ADCR0). At the same time, an interrupt  
request signal (INTAD0) is generated.  
Software-started A/D conversion  
Setting bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) triggers A/D conversion for the voltage applied to  
the analog input pin specified by analog input channel specification register 0 (ADS0). Upon completion of A/D  
conversion, the conversion result is saved to A/D conversion result register 0 (ADCR0). At the same time, an  
interrupt request signal (INTAD0) is generated. Once A/D conversion is activated, and completed, another  
session of A/D conversion is started. A/D conversion is repeated until new data is written to ADM0. If data  
where ADCS0 is 1 is written to ADM0 again during A/D conversion, the session of A/D conversion in progress is  
discontinued, and a new session of A/D conversion begins for the new data. If data where ADCS0 is 0 is written  
to ADM0 again during A/D conversion, A/D conversion is completely stopped.  
Figure 11-6. Software-Started A/D Conversion  
Rewriting ADM0  
ADCS0 = 1  
Rewriting ADM0  
ADCS0 = 1  
ADCS0 = 0  
A/D conversion  
ANIn  
ANIn  
ANIn  
ANIm  
ANIm  
Conversion is  
discontinued;  
no conversion  
Stop  
result is preserved.  
ADCR0  
INTAD0  
ANIn  
ANIn  
ANIm  
Remarks 1. n = 0, 1, 2, 3  
2. m = 0, 1, 2, 3  
149  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
11.5 Notes on Using 8-Bit A/D Converter  
(1) Current consumption in the standby mode  
When the A/D converter enters the standby mode, it stops operating. Clearing bit 7 (ADCS0) of A/D converter  
mode register 0 (ADM0) to 0 can reduce the current consumption.  
Figure 11-7 shows how to reduce the current consumption in the standby mode.  
Figure 11-7. How to Reduce Current Consumption in Standby Mode  
AVDD  
ADCS0  
P-ch  
Series resistor string  
AVSS  
(2) Input range for the ANI0 to ANI3 pins  
Be sure to keep the input voltage at ANI0 to ANI3 within the rated values. If a voltage of AVDD or grater or AVSS  
or lower (even if within the absolute maximum ratings) is input to a conversion channel, the conversion output  
of the channel becomes undefined, and the conversion output of the other channels may also be affected.  
(3) Conflict  
<1> Conflict between writing to A/D conversion result register 0 (ADCR0) at the end of conversion and  
reading from ADCR0  
Reading from ADCR0 takes precedence. After reading, the new conversion result is written to ADCR0.  
<2> Conflict between writing to ADCR0 at the end of conversion and writing to A/D converter mode register 0  
(ADM0) or analog input channel specification register 0 (ADS0)  
Writing to ADM0 or ADS0 takes precedence. A request to write to ADCR0 is ignored. No conversion end  
interrupt request signal (INTAD0) is generated.  
(4) Conversion results immediately following start of A/D conversion  
The first A/D conversion value immediately following the start of A/D converter operation may be undefined.  
Be sure to perform processing such as polling the A/D conversion end interrupt request (INTAD0) and  
discarding the first conversion result.  
(5) Timing that makes the A/D conversion result undefined  
If the timing of the end of A/D conversion and the timing of the stop of operation of the A/C converter conflict,  
the A/D conversion value may be undefined. Because of this, be sure to read out the A/D conversion result  
while the A/D converter is operating. Furthermore, when reading out an A/D conversion result after A/D  
converter operation has stopped, be sure to have done so by the time the next conversion result is complete.  
The conversion result readout timing is shown in Figures 11-8 and 11-9.  
150  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
Figure 11-8. Conversion Result Readout Timing (When Conversion Result Is Undefined Value)  
A/D conversion end  
A/D conversion end  
ADCR0  
INTAD0  
ADCS0  
Normal conversion result  
Undefined value  
Normal conversion result read out  
A/D operation stopped  
Undefined value read out  
Figure 11-9. Conversion Result Readout Timing (When Conversion Result Is Normal Value)  
A/D conversion end  
ADCR0  
Normal conversion result  
INTAD0  
ADCS0  
A/D operation stopped Normal conversion result read out  
(6) Noise prevention  
To maintain a resolution of 8 bits, watch for noise at the AVDD and ANI0 to ANI3 pins. The higher the output  
impedance of the analog input source is, the larger the effect by noise. To reduce noise, attach an external  
capacitor to the relevant pins as shown in Figure 11-10.  
Figure 11-10. Analog Input Pin Treatment  
If noise of AVDD or greater or AVSS or lower is  
likely to come to the AVDD pin, clamp the voltage  
at the pin by attaching a diode with a small V  
F
(0.3 V or lower).  
VDD  
AVDD  
ANI0 to ANI3  
AVSS  
C = 100 to 1000 pF  
VSS  
151  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
(7) ANI0 to ANI3  
The analog input pins (ANI0 to ANI3) are alternate-function pins. They are also used as port pins (P60 to  
P63).  
If any of ANI0 to ANI3 has been selected for A/D conversion, do not execute input instructions for the ports;  
otherwise the conversion resolution may become lower.  
If a digital pulse is applied to a pin adjacent to the analog input pin being A/D converted, coupling noise may  
occur which prevents an A/D conversion result from being attained as expected. Avoid applying a digital pulse  
to pins adjacent to the analog input pin being A/D converted.  
(8) Input impedance of ANI0 to ANI3 pins  
This A/D converter charges the internal sampling capacitor for about 1/10 of the conversion time, and performs  
sampling.  
Therefore at times other than sampling, only the leakage current flows. During sampling, the current for  
charging the capacitor also flows, so the input impedance fluctuates and has no meaning.  
However, to ensure adequate sampling, it is recommend that the output impedance of the analog input source  
be set to 10 kor lower, or a capacitor of about 100 pF be connected to the ANI0 to ANI3 pins (refer to Figure  
11-10).  
(9) Interrupt request flag (ADIF0)  
Changing the contents of A/D converter mode register 0 (ADM0) does not clear the interrupt request flag  
(ADIF0).  
If the analog input pins are changed during A/D conversion, therefore, the conversion result and the conversion  
end interrupt request flag may reflect the previous analog input immediately before writing to ADM0 occurs. In  
this case, ADIF0 may appear to be set if it is read-accessed immediately after ADM0 is write-accessed, even  
when A/D conversion has not been completed for the new analog input.  
In addition, when A/D conversion is restarted, ADIF0 must be cleared beforehand.  
Figure 11-11. A/D Conversion End Interrupt Request Generation Timing  
Rewriting to ADM0  
(to begin conversion  
for ANIn)  
Rewriting to ADM0  
(to begin conversion  
for ANIm)  
ADIF0 has been set, but conversion  
for ANIm has not been completed.  
A/D conversion  
ANIn  
ANIn  
ANIm  
ANIm  
ANIn  
ANIn  
ANIm  
ANIm  
ADCR0  
INTAD0  
Remarks 1. n = 0, 1, 2, 3  
2. m = 0, 1, 2, 3  
152  
User’s Manual U14643EJ2V0UD  
CHAPTER 11 8-BIT A/D CONVERTER (µPD789104A, 789124A SUBSERIES)  
(10)AVDD pin  
The AVDD pin is used to supply power to the analog circuit. It is also used to supply power to the ANI0 to ANI3  
input circuit.  
Therefore, if the application is designed to be switched to backup power, the AVDD pin must be supplied with  
the same voltage level as for the VDD pin, as shown in Figure 11-12.  
Figure 11-12. AVDD Pin Treatment  
VDD  
AVDD  
Main power  
source  
Backup  
capacitor  
V
SS  
AVSS  
(11)Input impedance of the AVDD pin  
A series resistor string of several 10 kis connected across the AVDD and AVSS pins.  
Therefore, if the output impedance of the reference voltage source is high, this high impedance is eventually  
connected in parallel with the series resistor string across the AVDD and AVSS pins, leading to a higher  
reference voltage error.  
153  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
12.1 10-Bit A/D Converter Functions  
The 10-bit A/D converter is a 10-bit resolution converter that converts analog inputs into digital signals. This  
converter can control up to four channels of analog inputs (ANI0 to ANI3).  
A/D conversion can only be started by software.  
One of analog inputs ANI0 to ANI3 is selected for A/D conversion. A/D conversion is performed repeatedly, with an  
interrupt request (INTAD0) being issued each time an A/D session is completed.  
12.2 10-Bit A/D Converter Configuration  
The A/D converter consists of the following hardware.  
Table 12-1. Configuration of 10-Bit A/D Converter  
Item  
Analog input  
Registers  
Configuration  
4 channels (ANI0 to ANI3)  
Successive approximation register (SAR)  
A/D conversion result register 0 (ADCR0)  
Control registers  
A/D converter mode register 0 (ADM0)  
Analog input channel specification register 0 (ADS0)  
Figure 12-1. Block Diagram of 10-Bit A/D Converter  
AVDD  
P-ch  
Sample & hold circuit  
ANI0/P60  
ANI1/P61  
ANI2/P62  
ANI3/P63  
Voltage comparator  
AVSS  
AVSS  
Successive  
approximation  
register (SAR)  
INTAD0  
Controller  
A/D conversion result  
register 0 (ADCR0)  
2
ADS01 ADS00  
Analog input channel  
specification register 0  
(ADS0)  
ADCS0 FR02 FR01 FR00  
A/D converter mode register 0  
(ADM0)  
Internal bus  
154  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
(1) Successive approximation register (SAR)  
The SAR receives the result of comparing an analog input voltage and a voltage at the voltage tap  
(comparison voltage), received from the series resistor string, starting from the most significant bit (MSB).  
Upon receiving all the bits, down to the least significant bit (LSB), that is, upon the completion of A/D  
conversion, the SAR sends its contents to A/D conversion result register 0 (ADCR0).  
(2) A/D conversion result register 0 (ADCR0)  
ADCR0 is a 16-bit register that holds the result of A/D conversion. The lower 6 bits are fixed to 0. Each time  
A/D conversion ends, the conversion result in the successive approximation register is loaded into ADCR0.  
The results are stored in ADCR0 from the most significant bit.  
The higher 8 bits of the conversion result are stored in FF15H and the lower 2 bits of the conversion result are  
stored in FF14H.  
ADCR0 can be read with a 16-bit memory manipulation instruction.  
RESET input makes ADCR0 undefined.  
FF14H  
FF15H  
Address  
After reset R/W  
Symbol  
ADCR0  
FF14H,  
FF15H  
0
0
0
0
0
0
Undefined  
R
Caution When using the µPD78F9116A and 78F9116B as flash memory versions of the µPD789101A,  
789102A, and 789104A, or the µPD78F9136A and 78F9136B as flash memory versions of the  
µPD789121A, 789122A, and 789124A, an 8-bit access can be made by ADCR0. However, it is  
performed only with the object file assembled by the µPD789101A, 789102A, or 789104A, or  
by the µPD789121A, 789122A, or 789124A, respectively.  
(3) Sample & hold circuit  
The sample & hold circuit samples consecutive analog inputs from the input circuit, one by one, and sends  
them to the voltage comparator. The sampled analog input voltage is held during A/D conversion.  
(4) Voltage comparator  
The voltage comparator compares an analog input with the voltage output by the series resistor string.  
(5) Series resistor string  
The series resistor string is configured between AVDD and AVSS. It generates the reference voltages against  
which analog inputs are compared.  
(6) ANI0 to ANI3 pins  
Pins ANI0 to ANI3 are the 4-channel analog input pins for the A/D converter. They are used to receive the  
analog signals for A/D conversion.  
Caution Do not supply pins ANI0 to ANI3 with voltages that fall outside the rated range. If a voltage  
of AVDD or greater or AVSS or lower (even if within the absolute maximum ratings) is supplied  
to any of these pins, the conversion value for the corresponding channel will be undefined.  
Furthermore, the conversion values for the other channels may also be affected.  
(7) AVSS pin  
The AVSS pin is the ground potential pin for the A/D converter. This pin must be held at the same potential as  
the VSS pin, even while the A/D converter is not being used.  
155  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
(8) AVDD pin  
The AVDD pin is the analog power supply pin for the A/D converter. This pin must be held at the same potential  
as the VDD pin, even while the A/D converter is not being used.  
12.3 Registers Controlling 10-Bit A/D Converter  
The following two registers are used to control the 10-bit A/D converter.  
A/D converter mode register 0 (ADM0)  
Analog input channel specification register 0 (ADS0)  
(1) A/D converter mode register 0 (ADM0)  
ADM0 specifies the conversion time for analog inputs. It also specifies whether to enable conversion.  
ADM0 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears the ADM0 to 00H.  
Figure 12-2. Format of A/D Converter Mode Register 0  
Symbol <7>  
6
0
5
4
3
2
0
1
0
0
0
Address  
FF80H  
After reset  
00H  
R/W  
R/W  
ADM0 ADCS0  
FR02 FR01 FR00  
ADCS0  
A/D conversion control  
0
1
Conversion disabled  
Conversion enabled  
A/D conversion time selectionNote 1  
FR02 FR01 FR00  
@ f  
X
= 10.0 MHzNote 2 operation @ f  
= 5.0 MHz operation @ fCC = 4.0 MHz operation  
X
0
0
0
1
1
1
0
0
1
0
0
1
0
1
0
0
1
0
144/f  
120/f  
X
X
or 144/fCC  
or 120/fCC  
14.4  
µ
s
28.8  
µ
s
36 µs  
30 µs  
24 µs  
18 µs  
15 µs  
µ
µ
12  
s
24  
s
Setting prohibitedNote 3 19.2 µs  
Setting prohibitedNote 3 14.4 µs  
Setting prohibitedNote 3 12 µsNote 4  
96/f  
72/f  
60/f  
48/f  
X
X
X
X
or 96/fCC  
or 72/fCC  
or 60/fCC  
or 48/fCC  
Setting prohibitedNote 3 Setting prohibitedNote 3 Setting prohibitedNote 3  
Other than above  
Setting prohibited  
Notes 1. Set the A/D conversion time to satisfy the following specifications.  
<Expanded-specification products>  
When 4.5 V VDD 5.5 V: 12 µs min.  
When 2.7 V VDD < 4.5 V: 14 µs min.  
When 1.8 V VDD < 2.7 V: 28 µs min.  
<Conventional-specification products>  
When 2.7 V VDD 5.5 V: 14 µs min.  
When 1.8 V VDD < 2.7 V: 28 µs min.  
2. Expanded-specification products only  
3. Setting prohibited because the A/D conversion time does not satisfy the rating shown in Note 1.  
4. Can be set only for expanded-specification products when 4.5 V VDD 5.5 V. Otherwise, setting  
prohibited.  
156  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
Cautions 1. The result of conversion performed immediately after bit 7 (ADCS0) is set is undefined.  
2. The result of conversion after ADCS0 is cleared may be undefined (for details, refer to  
12.5 (5) Timing when A/D conversion result becomes undefined).  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
(2) Analog input channel specification register 0 (ADS0)  
The ADS0 register specifies the port used to input the analog voltages to be converted to a digital signal.  
ADS0 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears ADS0 to 00H.  
Figure 12-3. Format of Analog Input Channel Specification Register 0  
Symbol  
ADS0  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
Address  
FF84H  
After reset  
00H  
R/W  
R/W  
ADS01 ADS00  
Analog input channel specification  
ADS01 ADS00  
ANI0  
ANI1  
ANI2  
ANI3  
0
0
1
1
0
1
0
1
157  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
12.4 10-Bit A/D Converter Operation  
12.4.1 Basic operation of 10-bit A/D converter  
<1> Select the channel for A/D conversion, using analog input channel specification register 0 (ADS0).  
<2> The voltage supplied to the selected analog input channel is sampled using the sample & hold circuit.  
<3> After sampling continues for a certain period of time, the sample & hold circuit is put on hold to keep the input  
analog voltage until A/D conversion is completed.  
<4> Bit 9 of the successive approximation A/D conversion register (SAR) is set. The tap selector sets the series  
resistor string voltage tap to half AVDD.  
<5> The series resistor string voltage tap is compared with the analog input voltage using the voltage comparator.  
If the analog input voltage is higher than half AVDD, the MSB of the SAR is left set. If it is lower than half  
AVDD, the MSB is reset.  
<6> Bit 8 of the SAR is set automatically, and comparison shifts to the next stage. The next voltage tap of the  
series resistor string is selected according to bit 9, which reflects the previous comparison result, as follows.  
Bit 9 = 1: Three quarters of AVDD  
Bit 9 = 0: One quarter of AVDD  
The voltage tap is compared with the analog input voltage. Bit 8 is set or reset according to the result of  
comparison.  
Analog input voltage voltage tap: Bit 8 = 1  
Analog input voltage < voltage tap: Bit 8 = 0  
<7> Comparison is repeated until bit 0 of the SAR is reached.  
<8> When comparison is completed for all of the 10 bits, a significant digital result is left in the SAR. This value is  
sent to and latched in A/D conversion result register 0 (ADCR0). At the same time, it is possible to generate  
an A/D conversion end interrupt request (INTAD0).  
Cautions 1. The A/D conversion value immediately after starting the A/D conversion operation may  
be undefined.  
2. When in standby mode, the A/D converter stops operation.  
158  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
Figure 12-4. Basic Operation of 10-Bit A/D Converter  
Conversion  
time  
Sampling  
time  
A/D converter  
operation  
A/D conversion  
Sampling  
Conversion  
result  
SAR  
ADCR0  
INTAD0  
Undefined  
Conversion  
result  
A/D conversion continues until bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) is reset (0) by software.  
If an attempt is made to write to ADM0 or analog input channel specification register 0 (ADS0) during A/D  
conversion, the A/D conversion in progress is canceled. In this case, A/D conversion is restarted from the beginning, if  
ADCS0 is set (1).  
RESET input makes A/D conversion result register 0 (ADCR0) undefined.  
12.4.2 Input voltage and conversion result  
The relationship between the analog input voltage at the analog input pins (ANI0 to ANI3) and the A/D conversion  
result (A/D conversion result register 0 (ADCR0)) is represented by:  
VIN  
ADCR0 = INT (  
× 1,024 + 0.5)  
AVDD  
or  
AVDD  
AVDD  
(ADCR0 0.5) ×  
VIN < (ADCR0 + 0.5) ×  
1,024  
1,024  
INT( ): Function that returns the integer part of the parenthesized value  
VIN:  
Analog input voltage  
AVDD:  
A/D converter supply voltage  
ADCR0: Value in A/D conversion result register 0 (ADCR0)  
Figure 12-5 shows the relationship between the analog input voltage and the A/D conversion result.  
159  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
Figure 12-5. Relationship Between Analog Input Voltage and A/D Conversion Result  
1,023  
1,022  
1,021  
A/D conversion  
result (ADCR0)  
3
2
1
0
1
1
3
2
5
3
2,043 1,022 2,045 1,023 2,047  
2,048 1,024 2,048 1,024 2,048  
1
2,048 1,024 2,048 1,024 2,048 1,024  
Input voltage/AVDD  
160  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
12.4.3 Operation mode of 10-bit A/D converter  
The 10-bit A/D converter is initially in the select mode. In this mode, analog input channel specification register 0  
(ADS0) is used to select the analog input channel from ANI0 to ANI3 for A/D conversion.  
A/D conversion can be started only by software; that is, by setting A/D converter mode register 0 (ADM0).  
The A/D conversion result is saved to A/D conversion result register 0 (ADCR0). At the same time, an interrupt  
request signal (INTAD0) is generated.  
Software-started A/D conversion  
Setting bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) triggers A/D conversion for the voltage applied to  
the analog input pin specified by analog input channel specification register 0 (ADS0).  
Upon completion of A/D conversion, the conversion result is saved to A/D conversion result register 0 (ADCR0).  
At the same time, an interrupt request signal (INTAD0) is generated. Once A/D conversion is activated, and  
completed, another session of A/D conversion is started. A/D conversion is repeated until new data is written to  
ADM0. If data where ADCS0 is 1 is written to ADM0 again during A/D conversion, the session of A/D conversion  
in progress is discontinued, and a new session of A/D conversion begins for the new data. If data where ADCS0  
is 0 is written to ADM0 again during A/D conversion, A/D conversion is completely stopped.  
Figure 12-6. Software-Started A/D Conversion  
Rewriting ADM0  
ADCS0 = 1  
Rewriting ADM0  
ADCS0 = 1  
ADCS0 = 0  
A/D conversion  
ANIn  
ANIn  
ANIn  
ANIm  
ANIm  
Conversion is  
discontinued;  
no conversion  
Stop  
result is preserved.  
ADCR0  
INTAD0  
ANIn  
ANIn  
ANIm  
Remarks 1. n = 0, 1, 2, 3  
2. m = 0, 1, 2, 3  
161  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
12.5 Notes on Using 10-Bit A/D Converter  
(1) Current consumption in the standby mode  
When the A/D converter enters the standby mode, it stops operating. Clearing bit 7 (ADCS0) of A/D converter  
mode register 0 (ADM0) to 0 can reduce the current consumption.  
Figure 12-7 shows how to reduce the current consumption in the standby mode.  
Figure 12-7. How to Reduce Current Consumption in Standby Mode  
AVDD  
ADCS0  
P-ch  
Series resistor string  
AVSS  
(2) Input range for the ANI0 to ANI3 pins  
Be sure to keep the input voltage at ANI0 to ANI3 within the rated values. If a voltage of AVDD or greater or  
AVSS or lower (even if within the absolute maximum ratings) is input a conversion channel, the conversion  
output of the channel becomes undefined, and the conversion output of the other channels may also be  
affected.  
(3) Conflict  
<1> Conflict between writing to A/D conversion result register 0 (ADCR0) at the end of conversion and  
reading from ADCR0  
Reading from ADCR0 takes precedence. After reading, the new conversion result is written to ADCR0.  
<2> Conflict between writing to ADCR0 at the end of conversion and writing to A/D converter mode register 0  
(ADM0) or analog input channel specification register 0 (ADS0)  
Writing to ADM0 or ADS0 takes precedence. A request to write to ADCR0 is ignored. No conversion end  
interrupt request signal (INTAD0) is generated.  
(4) Conversion results immediately following start of A/D conversion  
The first A/D conversion value immediately following the start of A/D converter operation may be undefined.  
Be sure to perform processing such as polling the A/D conversion end interrupt request (INTAD0) and  
discarding the first conversion result.  
(5) Timing that makes the A/D conversion result undefined  
If the timing of the end of A/D conversion and the timing of the stop of operation of the A/C converter conflict,  
the A/D conversion value may be undefined. Because of this, be sure to read out the A/D conversion result  
while the A/D converter is operating. Furthermore, when reading out an A/D conversion result after A/D  
converter operation has stopped, be sure to have done so by the time the next conversion result is complete.  
The conversion result readout timing is shown in Figures 12-8 and 12-9.  
162  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
Figure 12-8. Conversion Result Readout Timing (When Conversion Result Is Undefined Value)  
A/D conversion end  
A/D conversion end  
ADCR0  
INTAD0  
ADCS0  
Normal conversion result  
Undefined value  
Normal conversion result read out  
A/D operation stopped  
Undefined value read out  
Figure 12-9. Conversion Result Readout Timing (When Conversion Result Is Normal Value)  
A/D conversion end  
ADCR0  
Normal conversion result  
INTAD0  
ADCS0  
A/D operation stopped Normal conversion result read out  
(6) Noise prevention  
To maintain a resolution of 10 bits, watch for noise at the AVDD and ANI0 to ANI3 pins. The higher the output  
impedance of the analog input source is, the larger the effect by noise is. To reduce noise, attach an external  
capacitor to the relevant pins as shown in Figure 12-10.  
Figure 12-10. Analog Input Pin Treatment  
If noise of AVDD or greater or AVSS or lower is  
likely to come to the AVDD pin, clamp the voltage  
at the pin by attaching a diode with a small V  
F
(0.3 V or lower).  
VDD  
AVDD  
ANI0 to ANI3  
AVSS  
C = 100 to 1000 pF  
VSS  
163  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
(7) ANI0 to ANI3  
The analog input pins (ANI0 to ANI3) are alternate-function pins. They are also used as port pins (P60 to  
P63).  
If any of ANI0 to ANI3 has been selected for A/D conversion, do not execute input instructions for the ports;  
otherwise, the conversion resolution may become lower.  
If a digital pulse is applied to a pin adjacent to the analog input pin being A/D converted, coupling noise may  
occur which prevents an A/D conversion result from being attained as expected. Avoid applying a digital pulse  
to pins adjacent to the analog input pin being A/D converted.  
(8) Input impedance of ANI0 to ANI3 pins  
This A/D converter charges the internal sampling capacitor for about 1/10 of the conversion time, and performs  
sampling.  
Therefore at times other than sampling, only the leakage current flows. During sampling, the current for  
charging the capacitor also flows, so the input impedance fluctuates and has no meaning.  
However, to ensure adequate sampling, it is recommend that the output impedance of the analog input source  
be set to 10 kor lower, or a capacitor of about 100 pF be connected to the ANI0 to ANI3 pins (refer to Figure  
12-10).  
(9) Interrupt request flag (ADIF0)  
Changing the contents of A/D converter mode register 0 (ADM0) does not clear the interrupt request flag  
(ADIF0).  
If the analog input pins are changed during A/D conversion, therefore, the conversion result and the conversion  
end interrupt request flag may reflect the previous analog input immediately before writing to ADM0 occurs. In  
this case, ADIF0 may appear to be set if it is read-accessed immediately after ADM0 is write-accessed, even  
when A/D conversion has not been completed for the new analog input.  
In addition, when A/D conversion is restarted, ADIF0 must be cleared beforehand.  
Figure 12-11. A/D Conversion End Interrupt Request Generation Timing  
Rewriting to ADM0  
(to begin conversion  
for ANIn)  
Rewriting to ADM0  
(to begin conversion  
for ANIm)  
ADIF0 has been set, but conversion  
for ANIm has not been completed.  
A/D conversion  
ANIn  
ANIn  
ANIm  
ANIm  
ANIn  
ANIn  
ANIm  
ANIm  
ADCR0  
INTAD0  
Remarks 1. n = 0, 1, 2, 3  
2. m = 0, 1, 2, 3  
164  
User’s Manual U14643EJ2V0UD  
CHAPTER 12 10-BIT A/D CONVERTER (µPD789114A, 789134A SUBSERIES)  
(10)AVDD pin  
The AVDD pin is used to supply power to the analog circuit. It is also used to supply power to the ANI0 to ANI3  
input circuit.  
Therefore, if the application is designed to be changed to backup power, the AVDD pin must be supplied with  
the same voltage level as for the VDD pin, as shown in Figure 12-12.  
Figure 12-12. AVDD Pin Treatment  
VDD  
AVDD  
Backup  
Main power  
source  
capacitor  
V
SS  
AVSS  
(11)Input impedance of the AVDD pin  
A series resistor string of several 10 kis connected across the AVDD and AVSS pins.  
Therefore, if the output impedance of the reference voltage source is high, this high impedance is eventually  
connected in parallel with the series resistor string across the AVDD and AVSS pins, leading to a higher  
reference voltage error.  
165  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
13.1 Functions of Serial Interface 20  
Serial interface 20 has the following three modes.  
Operation stop mode  
Asynchronous serial interface (UART) mode  
3-wire serial I/O mode  
(1) Operation stop mode  
This mode is used when serial transfer is not performed. Power consumption is minimized in this mode.  
(2) Asynchronous serial interface (UART) mode  
This mode is used to transmit and receive the one byte of data that follows a start bit. It supports full-duplex  
communication.  
Serial interface channel 0 contains a dedicated UART baud rate generator, enabling communication over a  
wide range of baud rates. It is also possible to define baud rates by dividing the frequency of the input clock  
pulse at the ASCK20 pin.  
It is recommended that ceramic/crystal oscillation be used for the system clock in the UART mode. Because  
the frequency deviation is large in RC oscillation, if an internal clock is selected as the source clock for the  
baud rate generator, there may be problems in transmit/receive operations.  
(3) 3-wire serial I/O mode (switchable between MSB-first and LSB-first transmission)  
This mode is used to transmit 8-bit data, using three lines: a serial clock (SCK20) line and two serial data lines  
(SI20 and SO20).  
As it supports simultaneous transmission and reception, 3-wire serial I/O mode requires less processing time  
for data transmission than asynchronous serial interface mode.  
Because, in 3-wire serial I/O mode, it is possible to select whether 8-bit data transmission begins with the MSB  
or LSB, channel 0 can be connected to any device regardless of whether that device is designed for MSB-first  
or LSB-first transmission.  
3-wire serial I/O mode is useful for connecting peripheral I/O circuits and display controllers having  
conventional clocked serial interfaces, such as those of the 75XL, 78K, and 17K Series devices.  
13.2 Serial Interface 20 Configuration  
Serial interface 20 consists of the following hardware.  
Table 13-1. Configuration of Serial Interface 20  
Item  
Registers  
Configuration  
Transmit shift register 20 (TXS20)  
Receive shift register 20 (RXS20)  
Receive buffer register 20 (RXB20)  
Control registers  
Serial operating mode register 20 (CSIM20)  
Asynchronous serial interface mode register 20 (ASIM20)  
Asynchronous serial interface status register 20 (ASIS20)  
Baud rate generator control register 20 (BRGC20)  
Port mode register 2 (PM2)  
Port 2 (P2)  
166  
User’s Manual U14643EJ2V0UD  
Figure 13-1. Block Diagram of Serial Interface 20  
Internal bus  
Serial operation mode  
register 20 (CSIM20)  
Asynchronous serial  
interface status register 20  
Asynchronous serial  
interface mode register 20  
(ASIS20)  
(ASIM20)  
Receive buffer  
register 20 (RXB20)  
TXE20 RXE20 PS201 PS200 CL20 SL20  
CSIE20 SSE20 DAP20 DIR20 CSCK20 CKP20  
PE20 FE20 OVE20  
Switching of first bit  
Transmit shift  
Transmit  
register 20 (TXS20)  
shift clock  
SI20/P22/  
RxD20  
Receive shift  
register 20 (RXS20)  
Selector  
CSIE20  
DAP20  
Reception  
shift clock  
Output latch  
Port mode  
(P21)  
Data phase  
control  
register (PM21)  
SO20/P21/  
TxD20  
Parity operation  
Stop bit addition  
INTST20  
4
Transmission data counter  
Parity detection  
SL20, CL20, PS200, PS201  
INTSR20/INTCSI20  
Stop bit detection  
Reception data counter  
Reception enabled  
Reception clock  
Transmission  
and reception  
clock control  
CSIE20  
CSCK20  
/2 to f  
/28  
Baud rate  
generatorNote  
Start bit  
detection  
Detection clock  
f
X
X
Reception detected  
TPS203  
4
SS20/P23/  
CPT20/INTP0  
CSIE20  
TPS202 TPS201 TPS200  
Internal clock output  
CSCK20  
Baud rate generator  
control register 20 (BRGC20)  
Clock phase  
control  
SCK20/P20/  
ASCK20  
External clock input  
Internal bus  
Note Refer to Figure 13-2 for the configuration of the baud rate generator.  
Figure 13-2. Baud Rate Generator Block Diagram  
Reception detection clock  
Transmission shift clock  
Transmission  
clock counter  
1/2  
f
X
/2  
f
f
f
f
f
f
f
X
X
X
X
X
X
X
/22  
/23  
/24  
/25  
/26  
/27  
/28  
1/2  
Reception shift clock  
Reception  
clock counter  
TXE20  
SCK20/ASCK20/P20  
RXE20  
CSIE20  
Reception detection  
4
TPS203 TPS202 TPS201 TPS200  
Baud rate generator  
control register 20  
(BRGC20)  
Internal bus  
CHAPTER 13 SERIAL INTERFACE 20  
(1) Transmit shift register 20 (TXS20)  
TXS20 is a register in which transmit data is prepared. The transmit data is output from TXS20 bit-serially.  
When the data length is seven bits, bits 0 to 6 of the data in TXS20 will be transmit data. Writing data to TXS20  
triggers transmission.  
TXS20 can be written with an 8-bit memory manipulation instruction, but cannot be read.  
RESET input sets TXS20 to FFH.  
Caution Do not write to TXS20 during transmission.  
TXS20 and receive buffer register 20 (RXB20) are mapped at the same address, so that any  
attempt to read from TXS20 results in a value being read from RXB20.  
(2) Receive shift register 20 (RXS20)  
RXS20 is a register in which serial data, received at the RxD20 pin, is converted to parallel data. Once one  
entire byte has been received, RXS20 transfers the receive data to receive buffer register 20 (RXB20).  
RXS20 cannot be manipulated directly by a program.  
(3) Receive buffer register 20 (RXB20)  
RXB20 holds receive data. New receive data is transferred from receive shift register 0 (RXS20) per 1 byte of  
data received.  
When the data length is specified as seven bits, the receive data is sent to bits 0 to 6 of RXB20, in which the  
MSB is always fixed to 0.  
RXB20 can be read with an 8-bit memory manipulation instruction, but cannot be written to.  
RESET input makes RXB20 undefined.  
Caution RXB20 and transmit shift register 20 (TXS20) are mapped at the same address, so that any  
attempt to write to RXB20 results in a value being written to TXS20.  
(4) Transmission controller  
The transmission controller controls transmission. For example, it adds start, parity, and stop bits to the data in  
transmit shift register 20 (TXS20), according to the setting of asynchronous serial interface mode register 20  
(ASIM20).  
(5) Reception controller  
The reception controller controls reception according to the setting of asynchronous serial interface mode  
register 20 (ASIM20). It also checks for errors, such as parity errors, during reception. If an error is detected,  
asynchronous serial interface status register 20 (ASIS20) is set according to the status of the error.  
169  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
13.3 Serial Interface 20 Control Registers  
Serial interface 20 is controlled by the following six registers.  
Serial operating mode register 20 (CSIM20)  
Asynchronous serial interface mode register 20 (ASIM20)  
Asynchronous serial interface status register 20 (ASIS20)  
Baud rate generator control register 20 (BRGC20)  
Port mode register 2 (PM2)  
Port 2 (P2)  
(1) Serial operating mode register 20 (CSIM20)  
CSIM20 is used to make the settings related to 3-wire serial I/O mode.  
CSIM20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears CSIM20 to 00H.  
170  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Figure 13-3. Format of Serial Operating Mode Register 20  
Symbol <7>  
6
5
0
4
0
3
2
1
0
Address  
FF72H  
After reset  
00H  
R/W  
R/W  
CSIM20 CSIE20 SSE20  
DAP20 DIR20 CSCK20 CKP20  
CSIE20  
3-wire serial I/O mode operation control  
0
1
Operation disabled  
Operation enabled  
SSE20  
Communication status  
Function of SS20/P23 pin  
Port function  
SS20-pin selection  
0
1
Not used  
Used  
Communication enabled  
0
1
Communication enabled  
Communication disabled  
DAP20  
3-wire serial I/O mode data phase selection  
0
1
Output at falling edge of SCK20  
Output at rising edge of SCK20  
DIR20  
First-bit specification  
0
1
MSB  
LSB  
3-wire serial I/O mode clock selection  
CSCK20  
External clock pulse input to SCK20 pin  
Output of dedicated baud rate generator  
0
1
CKP20  
3-wire serial I/O mode clock phase selection  
0
1
Clock is active low, and SCK20 is at high level in the idle state  
Clock is active high, and SCK20 is at low level in the idle state  
Cautions 1. Bits 4 and 5 must be fixed to 0.  
2. CSIM20 must be cleared to 00H if UART mode is selected.  
171  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(2) Asynchronous serial interface mode register 20 (ASIM20)  
ASIM20 is used to make the settings related to asynchronous serial interface mode.  
ASIM20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears ASIM20 to 00H.  
Figure 13-4. Format of Asynchronous Serial Interface Mode Register 20  
Symbol <7> <6>  
5
4
3
2
1
0
0
0
Address  
FF70H  
After reset  
00H  
R/W  
R/W  
ASIM20 TXE20 RXE20 PS201 PS200 CL20 SL20  
TXE20  
Transmit operation control  
0
1
Transmit operation stop  
Transmit operation enable  
RXE20  
Receive operation control  
0
1
Receive operation stop  
Receive operation enable  
PS201 PS200  
Parity bit specification  
0
0
0
1
No parity  
Always add 0 parity at transmission.  
Parity check is not performed at reception (no parity error is generated).  
1
1
0
1
Odd parity  
Even parity  
CL20  
Transmit data character length specification  
0
1
7 bits  
8 bits  
SL20  
Transmit data stop bit length  
0
1
1 bit  
2 bits  
Cautions 1. Bits 0 and 1 must be fixed to 0.  
2. If 3-wire serial I/O mode is selected, ASIM20 must be cleared to 00H.  
3. Switch operating modes after halting the serial transmit/receive operation.  
172  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Table 13-2. Serial Interface 20 Operating Mode Settings  
(1) Operation stopped mode  
ASIM20  
CSIM20  
PM22  
P21  
PM21  
P21  
PM20  
P20  
First Bit Shift P22/SI20/RxD20 P21/SO20/TxD20  
P20/SCK20/  
ASCK20 Pin  
Function  
Clock  
Pin Function  
Pin Function  
TXE20 RXE20 CSIE20 DIR20 CSCK20  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
×
×
×
×
×
×
0
0
0
×
×
P22  
P21  
P20  
Other than above  
Setting prohibited  
(2) 3-wire serial I/O mode  
ASIM20  
CSIM20  
PM22  
P21  
PM21  
P21  
1
PM20  
P20  
First Bit Shift P22/SI20/RxD20 P21/SO20/TxD20  
P20/SCK20/  
ASCK20 Pin  
Function  
Clock  
Pin Function  
Pin Function  
TXE20 RXE20 CSIE20 DIR20 CSCK20  
Note 1  
Note 2  
×
×
SI20Note 2  
0
0
1
1
0
1
0
0
1
×
MSB  
LSB  
External  
clock  
SCK20(CMOS  
output)  
SCK20 input  
Internal  
clock  
1
0
1
0
1
0
1
×
1
SCK20 output  
SCK20 input  
SCK20 output  
External  
clock  
Internal  
clock  
Other than above  
Setting prohibited  
(3) Asynchronous serial interface mode  
ASIM20  
CSIM20  
PM22  
P21  
PM21  
P21  
1
PM20  
P20  
First Bit Shift P22/SI20/RxD20 P21/SO20/TxD20  
Clock Pin Function Pin Function  
P20/SCK20/  
ASCK20 Pin  
Function  
TXE20 RXE20 CSIE20 DIR20 CSCK20  
Note 1  
Note 1  
LSB  
×
×
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
1
×
External P22  
clock  
TxD20  
(CMOS output)  
ASCK20 input  
Note 1  
Note 1  
P20  
×
×
Internal  
clock  
Note 1  
Note 1  
×
×
1
1
×
×
1
×
External RD20  
clock  
P21  
ASCK20 input  
P20  
Note 1  
Note 1  
×
×
×
Internal  
clock  
0
1
1
×
External  
clock  
TxD20  
ASCK20 input  
P20  
(CMOS output)  
Note 1  
Note 1  
Internal  
clock  
×
Other than above  
Setting prohibited  
Notes 1. These pins can be used for port functions.  
2. When only transmission is used, these pins can be used as P22 (CMOS I/O).  
Remark ×: don’t care.  
173  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(3) Asynchronous serial interface status register 20 (ASIS20)  
ASIS20 is used to display the type of a reception error, if it occurs while asynchronous serial interface mode is  
set.  
ASIS20 is read with a 1-bit or 8-bit memory manipulation instruction.  
The contents of ASIS20 are undefined in 3-wire serial I/O mode.  
RESET input clears ASIS20 to 00H.  
Figure 13-5. Format of Asynchronous Serial Interface Status Register 20  
Symbol  
ASIS20  
7
0
6
0
5
0
4
0
3
0
2
1
0
Address  
FF71H  
After reset  
00H  
R/W  
R
PE20 FE20 OVE20  
PE20  
Parity error flag  
0
1
No parity error has occurred.  
A parity error has occurred (when the transmission parity and reception parity do not match).  
FE20  
Framing error flag  
No framing error has occurred.  
0
1
A framing error has occurred (when no stop bit is detected).Note 1  
OVE20  
Overrun error flag  
0
1
No overrun error has occurred.  
An overrun error has occurred.Note 2  
(Before data was read from the reception buffer register, the subsequent reception sequence was  
completed.)  
Notes 1. Even when the stop bit length is set to 2 bits by setting bit 2 (SL20) of asynchronous serial interface  
mode register 20 (ASIM20), the stop bit detection in the case of reception is performed with 1 bit.  
2. Be sure to read receive buffer register 20 (RXB20) when an overrun error occurs. If not, every time  
the data is received an overrun error will occur.  
174  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(4) Baud rate generator control register 20 (BRGC20)  
BRGC20 is used to specify the serial clock for the serial interface.  
BRGC20 is set with an 8-bit memory manipulation instruction.  
RESET input clears BRGC20 to 00H.  
Figure 13-6. Format of Baud Rate Generator Control Register 20  
Symbol  
7
6
5
4
3
0
2
0
1
0
0
0
Address  
FF73H  
After reset  
00H  
R/W  
R/W  
BRGC20 TPS203 TPS202 TPS201 TPS200  
TPS203 TPS202 TPS201 TPS200  
Selection of source clock for baud rate generator  
= 10.0 MHzNote 1 operation @ f  
= 5.0 MHz operation  
n
@ f  
X
X
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
8
f
f
f
f
f
f
f
f
X
X
X
X
X
X
X
X
/2  
2.5 MHz  
1.25 MHz  
625 kHz  
313 kHz  
156 kHz  
78.1 kHz  
39.1 kHz  
19.5 kHz  
5.0 MHz  
2.5 MHz  
1.25 MHz  
625 kHz  
313 kHz  
156 kHz  
78.1 kHz  
39.1 kHz  
/22  
/23  
/24  
/25  
/26  
/27  
/28  
External clock pulse input at the ASCK20 pinNote 2  
Setting prohibited  
Other than above  
Notes 1. Expanded-specification products only  
2. An external clock can only be used in UART mode.  
Cautions 1. When writing to BRGC20 is performed during a communication operation, the output of  
baud rate generator is disrupted and communications cannot be performed normally. Be  
sure not to write to BRGC20 during communication operations.  
2. Be sure not to select n = 1 when fX > 2.5 MHz in UART mode because n = 1 exceeds the  
rating of the baud rate.  
3. Be sure not to select n = 2 when fX > 5.0 MHz in UART mode because n = 2 exceeds the  
rating of the baud rate.  
4. Be sure not to select n = 1 when fX > 5.0 MHz in 3-wire serial I/O mode because n = 1  
exceeds the rating of the serial clock.  
5. When the external input clock is selected, set port mode register 2 (PM2) in input mode.  
Remarks 1. fX: System clock oscillation frequency (ceramic/crystal oscillation)  
2. n: Value specified in TPS200 to TPS203 (1 n 8)  
175  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
The baud rate transmit/receive clock to be generated is either a signal divided from the system clock, or a  
signal divided from the clock input from the ASCK20 pin.  
(a) Generation of baud rate UART transmit/receive clock by means of system clock  
The transmit/receive clock is generated by dividing the system clock. The baud rate generated from the  
system clock is estimated by using the following expression.  
fX  
n + 1 × 8  
[Baud rate] =  
[bps]  
2
fX: System clock oscillation frequency (ceramic/crystal oscillation)  
n: Values in Figure 13-6 specified by the setting in TPS200 to TPS203 (2 n 8)  
Table 13-3. Example of Relationship Between System Clock and Baud Rate  
Baud Rate  
(bps)  
fX = 10.0 MHzNote  
fX = 5.0 MHz  
fX = 4.9152 MHz  
n
BRGC20  
Setting  
Error  
(%)  
n
BRGC20  
Setting  
Error  
(%)  
n
BRGC20  
Setting  
Error  
(%)  
1,200  
8
7
6
5
4
3
1.73  
8
7
6
5
4
3
2
70H  
60H  
50H  
40H  
30H  
20H  
10H  
1.73  
8
7
6
5
4
3
2
70H  
60H  
50H  
40H  
30H  
20H  
10H  
0
2,400  
70H  
60H  
50H  
40H  
30H  
20H  
4,800  
9,600  
19,200  
38,400  
76,800  
Note Expanded-specification products only.  
Cautions 1. Be sure not to select n = 1 when fX > 2.5 MHz because n = 1 exceeds the rating of the baud rate.  
2. Be sure not to select n = 2 when fX > 5.0 MHz because n = 2 exceeds the rating of the baud rate.  
176  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(b) Generation of baud rate UART transmit/receive clock by means of external clock from ASCK20 pin  
The transmit/receive clock is generated by dividing the clock input from the ASCK20 pin. The baud rate  
generated from the clock input from the ASCK20 pin is estimated by using the following expression.  
fASCK  
[Baud rate] =  
[bps]  
16  
fASCK: Frequency of clock pulse received at the ASCK20 pin  
Table 13-4. Relationship Between ASCK20 Pin Input Frequency  
and Baud Rate (When BRGC20 Is Set to 80H)  
Baud Rate (bps)  
75  
ASCK20 Pin Input Frequency (kHz)  
1.2  
2.4  
150  
300  
4.8  
600  
9.6  
1,200  
2,400  
4,800  
9,600  
19,200  
31,250  
38,400  
19.2  
38.4  
76.8  
153.6  
307.2  
500.0  
614.4  
(c) Generation of serial clock from system clock in 3-wire serial I/O mode  
The serial clock is generated by dividing the system clock. The serial clock frequency is estimated by  
using the following expression. BRGC20 does not need to be set when an external serial clock is input to  
the SCK20 pin.  
fX  
2n + 1  
Serial clock frequency =  
[Hz]  
fX: System clock oscillation frequency  
n: Value determined by the settings of TPS200 to TPS203 as shown in Figure 13-6 (1 n 8)  
177  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
13.4 Operation of Serial Interface 20  
Serial interface 20 provides the following three modes.  
Operation stop mode  
Asynchronous serial interface (UART) mode  
3-wire serial I/O mode  
13.4.1 Operation stop mode  
In the operation stop mode, serial transfer is not executed; therefore, the power consumption can be reduced. The  
P20/SCK20/ASCK20, P21/SO20/TxD20, and P22/SI20/RxD20 pins can be used as normal I/O port pins.  
(1) Register setting  
Operation stop mode is set by serial operating mode register 20 (CSIM20) and asynchronous serial interface  
mode register 20 (ASIM20).  
(a) Serial operating mode register 20 (CSIM20)  
CSIM20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears CSIM20 to 00H.  
<7>  
6
5
0
4
0
3
2
1
0
Address  
FF72H  
After reset  
00H  
R/W  
R/W  
Symbol  
CSIM20 CSIE20SSE20  
DAP20 DIR20 CSCK20 CKP20  
CSIE20  
Operation control in 3-wire serial I/O mode  
0
1
Operation disabled  
Operation enabled  
Caution Be sure to clear bits 4 and 5 to 0.  
(b) Asynchronous serial interface mode register 20 (ASIM20)  
ASIM20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears ASIM20 to 00H.  
Symbol <7> <6>  
5
4
3
2
1
0
0
0
Address  
FF70H  
After reset  
00H  
R/W  
R/W  
ASIM20 TXE20 RXE20 PS201 PS200 CL20 SL20  
TXE20  
Transmit operation control  
0
1
Transmit operation stopped  
Transmit operation enabled  
RXE20  
Receive operation control  
0
1
Receive operation stopped  
Receive operation enabled  
Caution Be sure to clear bits 0 and 1 to 0.  
178  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
13.4.2 Asynchronous serial interface (UART) mode  
In this mode, the one-byte data following the start bit is transmitted/received and thus full-duplex communication is  
possible.  
This device incorporates a UART-dedicated baud rate generator that enables communication at the desired transfer  
rate from many options. In addition, the baud rate can also be defined by dividing the clock input to the ASCK pin.  
The UART-dedicated baud rate generator also can output the 31.25 kbps baud rate that complies with the MIDI  
standard.  
It is recommended that ceramic/crystal oscillation be used for the system clock in the UART mode. Because the  
frequency deviation is large in RC oscillation, if an internal clock is selected as the source clock for the baud rate  
generator, there may be problems in transmit/receive operations.  
(1) Register setting  
The UART mode is set by serial operating mode register 20 (CSIM20), asynchronous serial interface mode  
register 20 (ASIM20), asynchronous serial interface status register 20 (ASIS20), baud rate generator control  
register 20 (BRGC20), port mode register 2 (PM2), and port 2 (P2).  
179  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(a) Serial operating mode register 20 (CSIM20)  
CSIM20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears CSIM20 to 00H.  
Symbol <7>  
6
5
0
4
0
3
2
1
0
Address  
FF72H  
After reset  
00H  
R/W  
R/W  
CSIM20 CSIE20 SSE20  
DAP20 DIR20 CSCK20 CKP20  
CSIE20  
3-wire serial I/O mode operation control  
0
1
Operation disabled  
Operation enabled  
SSE20  
Communication status  
Function of SS20/P23 pin  
Port function  
SS20-pin selection  
0
1
Not used  
Used  
Communication enabled  
0
1
Communication enabled  
Communication disabled  
DAP20  
3-wire serial I/O mode data phase selection  
0
1
Output at falling edge of SCK20  
Output at rising edge of SCK20  
DIR20  
First-bit specification  
0
1
MSB  
LSB  
3-wire serial I/O mode clock selection  
CSCK20  
External clock pulse input to SCK20 pin  
Output of dedicated baud rate generator  
0
1
CKP20  
3-wire serial I/O mode clock phase selection  
0
1
Clock is active low, and SCK20 is high level in the idle state  
Clock is active high, and SCK20 is low level in the idle state  
Cautions 1. Bits 4 and 5 must be fixed to 0.  
2. When UART mode is selected, clear CSIM20 to 00H.  
180  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(b) Asynchronous serial interface mode register 20 (ASIM20)  
ASIM20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears ASIM20 to 00H.  
Symbol <7> <6>  
5
4
3
2
1
0
0
0
Address  
FF70H  
After reset  
00H  
R/W  
R/W  
ASIM20 TXE20 RXE20 PS201 PS200 CL20 SL20  
TXE20  
Transmit operation control  
0
1
Transmit operation stopped  
Transmit operation enabled  
RXE20  
Receive operation control  
0
1
Receive operation stopped  
Receive operation enabled  
PS201 PS200  
Parity bit specification  
0
0
0
1
No parity  
Always add 0 parity at transmission.  
Parity check is not performed at reception (no parity error is generated).  
Odd parity  
Even parity  
1
1
0
1
CL20  
Character length specification  
0
1
7 bits  
8 bits  
SL20  
Transmit data stop bit length specification  
0
1
1 bit  
2 bits  
Cautions 1. Be sure to clear bits 0 and 1 to 0.  
2. Switch operating modes after halting the serial transmit/receive operation.  
181  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(c) Asynchronous serial interface status register 20 (ASIS20)  
ASIS20 is read with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears ASIS20 to 00H.  
Symbol  
ASIS20  
7
0
6
0
5
0
4
0
3
0
2
1
0
Address  
FF71H  
After reset  
00H  
R/W  
R
PE20 FE20 OVE20  
PE20  
Parity error flag  
0
1
No parity error has occurred.  
A parity error has occurred (when the transmission parity and reception parity do not match).  
FE20  
Framing error flag  
No framing error has occurred.  
0
1
A framing error has occurred (when no stop bit is detected).Note 1  
OVE20  
Overrun error flag  
0
1
No overrun error has occurred.  
An overrun error has occurred.Note 2  
(Before data was read from the reception buffer register, the subsequent reception sequence was  
completed.)  
Notes 1. Even when the stop bit length is set to 2 bits by setting bit 2 (SL20) of asynchronous serial  
interface mode register 20 (ASIM20), the stop bit detection in the case of reception is performed  
with 1 bit.  
2. Be sure to read receive buffer register 20 (RXB20) when an overrun error occurs. If not, every  
time the data is received an overrun error will occur.  
182  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(d) Baud rate generator control register 20 (BRGC20)  
BRGC20 is set with an 8-bit memory manipulation instruction.  
RESET input clears BRGC20 to 00H.  
7
6
5
4
3
0
2
0
1
0
0
0
After reset  
00H  
Address  
FF73H  
R/W  
R/W  
Symbol  
BRGC20 TPS203 TPS202 TPS201 TPS200  
n
TPS203 TPS202 TPS201 TPS200  
Selection of source clock for baud rate generator  
@ f = 5.0 MHz operation  
= 10.0 MHzNote operation @ f  
X
X
2.5 MHz  
1.25 MHz  
625 kHz  
313 kHz  
156 kHz  
78.1 kHz  
39.1 kHz  
19.5 kHz  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
f
f
f
f
f
f
f
f
X
X
X
X
X
X
X
X
/2  
5.0 MHz  
2.5 MHz  
1.25 MHz  
625 kHz  
313 kHz  
156 kHz  
78.1 kHz  
39.1 kHz  
1
2
3
4
5
6
7
8
/22  
/23  
/24  
/25  
/26  
/27  
/28  
External clock input to ASCK20 pin  
Setting prohibited  
Other than above  
Note Expanded-specification products only  
Cautions 1. When writing to BRGC20 is performed during a communication operation, the output  
of baud rate generator is disrupted and communications cannot be performed  
normally. Be sure not to write to BRGC20 during communication operations.  
2. Be sure not to select n = 1 when fX > 2.5 MHz because n = 1 exceeds the rating of the  
baud rate.  
3. Be sure not to select n = 2 when fX > 5.0 MHz because n = 2 exceeds the rating of the  
baud rate.  
4. When the external input clock is selected, set port mode register 2 (PM2) to input  
mode.  
Remarks 1. fX: System clock oscillation frequency (ceramic/crystal oscillation)  
2. n: Values specified by the setting in TPS200 to TPS203 (1 n 8)  
The baud rate transmit/receive clock to be generated is either a signal divided from the system clock, or a  
signal divided from the clock input from the ASCK20 pin.  
(i) Generation of baud rate transmit/receive clock by means of system clock  
The transmit/receive clock is generated by dividing the system clock. The baud rate generated from  
the system clock is estimated by using the following expression.  
fX  
n + 1 × 8  
[Baud rate] =  
[bps]  
2
fX: System clock oscillation frequency (ceramic/crystal oscillation)  
n: Values in the above table specified by the setting in TPS200 to TPS203 (2 n 8)  
183  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Table 13-5. Example of Relationship Between System Clock and Baud Rate  
Baud Rate  
(bps)  
fX = 10.0 MHzNote  
fX = 5.0 MHz  
fX = 4.9152 MHz  
n
BRGC20  
Setting  
Error  
(%)  
n
BRGC20  
Setting  
Error  
(%)  
n
BRGC20  
Setting  
Error  
(%)  
1,200  
8
7
6
5
4
3
1.73  
8
7
6
5
4
3
2
70H  
60H  
50H  
40H  
30H  
20H  
10H  
1.73  
8
7
6
5
4
3
2
70H  
60H  
50H  
40H  
30H  
20H  
10H  
0
2,400  
70H  
60H  
50H  
40H  
30H  
20H  
4,800  
9,600  
19,200  
38,400  
76,800  
Note Expanded-specification products only.  
Cautions 1. Be sure not to select n = 1 when fX > 2.5 MHz because n = 1 exceeds the rating of the baud rate.  
2. Be sure not to select n = 2 when fX > 5.0 MHz because n = 2 exceeds the rating of the baud rate.  
(ii) Generation of baud rate transmit/receive clock by means of external clock from ASCK20 pin  
The transmit/receive clock is generated by dividing the clock input from the ASCK20 pin. The baud  
rate generated from the clock input from the ASCK20 pin is estimated by using the following  
expression.  
fASCK  
[Baud rate] =  
[bps]  
16  
fASCK: Frequency of clock input to ASCK20 pin  
Table 13-6. Relationship Between ASCK20 Pin Input Frequency  
and Baud Rate (When BRGC20 Is Set to 80H)  
Baud Rate (bps)  
75  
ASCK20 Pin Input Frequency (kHz)  
1.2  
2.4  
150  
300  
4.8  
600  
9.6  
1,200  
2,400  
4,800  
9,600  
19,200  
31,250  
38,400  
19.2  
38.4  
76.8  
153.6  
307.2  
500.0  
614.4  
184  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(2) Communication operation  
(a) Data format  
The transmit/receive data format is as shown in Figure 13-7. One data frame consists of a start bit,  
character bits, parity bit and stop bit(s).  
The specification of character bit length, parity selection, and specification of stop bit length for each data  
frame is carried out using asynchronous serial interface mode register 20 (ASIM20).  
Figure 13-7. Asynchronous Serial Interface Transmit/Receive Data Format  
One data frame  
Start  
bit  
Parity  
bit  
D0 D1 D2 D3 D4 D5 D6 D7  
Stop bit  
Start bits .....................  
Character bits..............  
Parity bits.....................  
Stop bits ......................  
1 bit  
7 bits/8 bits  
Even parity/odd parity/0 parity/no parity  
1 bit/2 bits  
When 7 bits is selected as the number of character bits, only the lower 7 bits (bits 0 to 6) are valid; in  
transmission the most significant bit (bit 7) is ignored, and in reception the most significant bit (bit 7) is  
always “0”.  
The serial transfer rate is selected by baud rate generator control register 20 (BRGC20).  
If a serial data receive error occurs, the receive error contents can be determined by reading the status of  
asynchronous serial interface status register 20 (ASIS20).  
185  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(b) Parity types and operation  
The parity bit is used to detect a bit error in the communication data. Normally, the same kind of parity bit  
is used on the transmitting side and the receiving side. With even parity and odd parity, a 1” bit (odd  
number) error can be detected. With 0 parity and no parity, an error cannot be detected.  
(i) Even parity  
At transmission  
The transmission operation is controlled so that the number of bits with a value of “1” in the transmit  
data including parity bit is even. The parity bit value should be as follows.  
The number of bits with a value of “1” is an odd number in transmit data:  
1
The number of bits with a value of “1” is an even number in transmit data: 0  
At reception  
The number of bits with a value of “1” in the receive data including parity bit is counted, and if the  
number is odd, a parity error is generated.  
(ii) Odd parity  
At transmission  
Opposite to even parity, the transmission operation is controlled so that the number of bits with a  
value of “1” in the transmit data including parity bit is odd. The parity bit value should be as follows.  
The number of bits with a value of “1” is an odd number in transmit data:  
0
The number of bits with a value of “1” is an even number in transmit data: 1  
At reception  
The number of bits with a value of “1” in the receive data including parity bit is counted, and if the  
number is even, a parity error is generated.  
(iii) 0 Parity  
When transmitting, the parity bit is set to “0” irrespective of the transmit data.  
At reception, a parity bit check is not performed. Therefore, a parity error does not occur, irrespective  
of whether the parity bit is set to “0” or “1”.  
(iv) No parity  
A parity bit is not added to the transmit data. At reception, data is received assuming that there is no  
parity bit. Since there is no parity bit, a parity error does not occur.  
186  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(c) Transmission  
A transmit operation is started by writing transmit data to transmit shift register 20 (TXS20). The start bit,  
parity bit and stop bit(s) are added automatically.  
When the transmit operation starts, the data in TXS20 is shifted out, and when TXS20 is empty, a  
transmission completion interrupt (INTST20) is generated.  
Figure 13-8. Asynchronous Serial Interface Transmission Completion Interrupt Timing  
(a) Stop bit length: 1  
STOP  
TxD20 (Output)  
INTST20  
D0  
D1  
D2  
D6  
D7  
Parity  
START  
(b) Stop bit length: 2  
D0  
D1  
D2  
D6  
D7  
Parity  
TxD20 (Output)  
STOP  
START  
INTST20  
Caution Do not rewrite asynchronous serial interface mode register 20 (ASIM20) during a transmit  
operation. If the ASIM20 register is rewritten during transmission, subsequent  
transmission may not be performed (the normal state is restored by RESET input).  
It is possible to determine whether transmission is in progress by software by using a  
transmission completion interrupt (INTST20) or the interrupt request flag (STIF20) set by  
INTST20.  
187  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(d) Reception  
When bit 6 (RXE20) of asynchronous serial interface mode register 20 (ASIM20) is set (1), a receive  
operation is enabled and sampling of the RxD20 pin input is performed.  
RxD20 pin input sampling is performed using the serial clock specified by BRGC20.  
When the RxD20 pin input becomes low, the 3-bit counter starts counting, and when half the time  
determined by the specified baud rate has passed, the data sampling start timing signal is output. If the  
RxD20 pin input sampled again as a result of this start timing signal is low, it is identified as a start bit, the  
3-bit counter is initialized and starts counting, and data sampling is performed. When character data, a  
parity bit and one stop bit are detected after the start bit, reception of one frame of data ends.  
When one frame of data has been received, the receive data in the shift register is transferred to receive  
buffer register 20 (RXB20), and a reception completion interrupt (INTSR20) is generated.  
If an error occurs, the receive data in which the error occurred is still transferred to RXB20, and INTSR20  
is generated.  
If the RXE20 bit is reset (0) during the receive operation, the receive operation is stopped immediately. In  
this case, the contents of RXB20 and asynchronous serial interface status register 20 (ASIS20) are not  
changed, and INTSR20 is not generated.  
Figure 13-9. Asynchronous Serial Interface Reception Completion Interrupt Timing  
STOP  
D0  
D1  
D2  
D6  
D7  
Parity  
RxD20 (Input)  
INTSR20  
START  
Caution Be sure to read receive buffer register 20 (RXB20) even if a receive error occurs. If  
RXB20 is not read, an overrun error will occur when the next data is received, and the  
receive error state will continue indefinitely.  
188  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(e) Receive errors  
The following three errors may occur during a receive operation: a parity error, framing error, or overrun  
error. The data reception result error flag is set in asynchronous serial interface status register 20  
(ASIS20). Receive error causes are shown in Table 13-7.  
It is possible to determine what kind of error occurred during reception by reading the contents of ASIS20  
in the reception error interrupt servicing (refer to Table 13-7 and Figure 13-10).  
The contents of ASIS20 are reset (0) by reading receive buffer register 20 (RXB20) or receiving the next  
data (if there is an error in the next data, the corresponding error flag is set).  
Table 13-7. Receive Error Causes  
Receive Errors  
Cause  
Transmission-time parity specification and receive data parity do not match  
Stop bit not detected  
Parity error  
Framing error  
Overrun error  
Reception of next data is completed before data is read from receive register buffer  
Figure 13-10. Receive Error Timing  
(a) Parity error occurred  
STOP  
D0  
D1  
D2  
D6  
D7  
Parity  
RxD20 (Input)  
START  
INTSR20  
(b) Framing error or overrun error occurred  
STOP  
D0  
D1  
D2  
D6  
D7  
Parity  
RxD20 (Input)  
INTSR20  
START  
Cautions 1. The contents of the ASIS20 register are reset (0) by reading receive buffer register 20  
(RXB20) or receiving the next data. To ascertain the error contents, read ASIS20  
before reading RXB20.  
2. Be sure to read receive buffer register 20 (RXB20) even if a receive error occurs. If  
RXB20 is not read, an overrun error will occur when the next data is received, and the  
receive error state will continue indefinitely.  
189  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(f) Reading receive data  
When the reception completion interrupt (INTSR20) occurs, receive data can be read by reading the value  
of receive buffer register 20 (RXB20).  
To read the receive data stored in receive buffer register 20 (RXB20), read while reception is enabled  
(RXE20 = 1).  
Remark However, if it is necessary to read receive data after reception has stopped (RXE20 = 0), read  
using either of the following methods.  
(a) Read after setting RXE20 = 0 after waiting for one cycle or more of the source clock  
selected by BRGC20.  
(b) Read after bit 2 (DIR20) of serial operating mode register 20 (CSIM20) is set (1).  
Program example of (a) (BRGC20 = 00H (source clock = fX/2))  
INTRXE:  
;<Reception completion interrupt routine>  
;2 clocks  
NOP  
CLR1 RXE20  
MOV A, RXB20  
;Reception stopped  
;Read receive data  
Program example of (b)  
INTRXE:  
;<Reception completion interrupt routine>  
;DIR20 flag is set to LSB first  
;Reception stopped  
SET1 CSIM20.2  
CLR1 RXE20  
MOV A, RXB20  
;Read receive data  
190  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(3) UART mode cautions  
(a) When bit 7 (TXE20) of asynchronous serial interface mode register 20 (ASIM20) is cleared during  
transmission, be sure to set transmit shift register 20 (TXS20) to FFH, then set TXE20 to 1 before  
executing the next transmission.  
(b) When bit 6 (RXE20) of asynchronous serial interface mode register 20 (ASIM20) is cleared during  
reception, receive buffer register 20 (RXB20) and receive completion interrupt 20 (INTSR20) are as  
follows.  
RxD20 Pin  
Parity  
RXB20  
INTSR20  
<1>  
<3>  
<2>  
When RXE20 is set to 0 at the time indicated by <1>, RXB20 holds the previous data and does not generate  
INTSR20.  
When RXE20 is set to 0 at the time indicated by <2>, RXB20 renews the data and does not generate  
INTSR20.  
When RXE20 is set to 0 at the time indicated by <3>, RXB20 renews the data and generates INTSR20.  
191  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
13.4.3 3-wire serial I/O mode  
The 3-wire serial I/O mode is useful for connection of peripheral I/Os and display controllers, etc. that incorporate a  
conventional clocked serial interface, such as the 75XL Series, 78K Series, and 17K Series.  
Communication is performed using three lines: the serial clock (SCK20), serial output (SO20), and serial input  
(SI20).  
(1) Register setting  
3-wire serial I/O mode settings are performed using serial operating mode register 20 (CSIM20), asynchronous  
serial interface mode register 20 (ASIM20), baud rate generator control register 20 (BRGC20), port mode  
register 2 (PM2), and port 2 (P2).  
(a) Serial operating mode register 20 (CSIM20)  
CSIM20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears CSIM20 to 00H.  
Symbol <7>  
6
5
0
4
0
3
2
1
0
Address  
FF72H  
After reset  
00H  
R/W  
R/W  
CSIM20 CSIE20 SSE20  
DAP20 DIR20 CSCK20 CKP20  
CSIE20  
3-wire serial I/O mode operation control  
0
1
Operation disabled  
Operation enabled  
SSE20  
Communication status  
Function of SS20/P23 pin  
Port function  
SS20-pin selection  
0
1
Not used  
Used  
Communication enabled  
0
1
Communication enabled  
Communication disabled  
DAP20  
3-wire serial I/O mode data phase selection  
0
1
Output at falling edge of SCK20  
Output at rising edge of SCK20  
DIR20  
First-bit specification  
0
1
MSB  
LSB  
3-wire serial I/O mode clock selection  
CSCK20  
External clock pulse input to SCK20 pin  
Output of dedicated baud rate generator  
0
1
CKP20  
3-wire serial I/O mode clock phase selection  
0
1
Clock is active low, and SCK20 is at high level in the idle state  
Clock is active high, and SCK20 is at low level in the idle state  
Caution Bits 4 and 5 must be fixed to 0.  
192  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(b) Asynchronous serial interface mode register 20 (ASIM20)  
ASIM20 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears ASIM20 to 00H.  
Symbol <7> <6>  
5
4
3
2
1
0
0
0
Address  
FF70H  
After reset  
00H  
R/W  
R/W  
ASIM20 TXE20 RXE20 PS201 PS200 CL20 SL20  
TXE20  
Transmit operation control  
0
1
Transmit operation stopped  
Transmit operation enabled  
RXE20  
Receive operation control  
0
1
Receive operation stopped  
Receive operation enabled  
PS201 PS200  
Parity bit specification  
0
0
0
1
No parity  
Always add 0 parity at transmission.  
Parity check is not performed at reception (no parity error is generated).  
Odd parity  
Even parity  
1
1
0
1
CL20  
Character length specification  
0
1
7 bits  
8 bits  
SL20  
Transmit data stop bit length specification  
0
1
1 bit  
2 bits  
Cautions 1. Be sure to clear bits 0 and 1 to 0.  
2. When the 3-wire serial I/O mode is selected, ASIM20 must be cleared to 00H.  
3. Switching operation modes must be performed after the serial transmit/receive  
operation is halted.  
193  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(c) Baud rate generator control register 20 (BRGC20)  
BRGC20 is set with an 8-bit memory manipulation instruction.  
RESET input clears BRGC20 to 00H.  
7
6
5
4
3
0
2
0
1
0
0
0
After reset  
00H  
Address  
FF73H  
R/W  
R/W  
Symbol  
BRGC20 TPS203 TPS202 TPS201 TPS200  
n
Selection of source clock for baud rate generator  
@ f = 5.0 MHz operation  
= 10.0 MHzNote operation @ f  
TPS203 TPS202 TPS201 TPS200  
X
X
2.5 MHz  
1.25 MHz  
625 kHz  
313 kHz  
156 kHz  
78.1 kHz  
39.1 kHz  
19.5 kHz  
5.0 MHz  
2.5 MHz  
1.25 MHz  
625 kHz  
313 kHz  
156 kHz  
78.1 kHz  
39.1 kHz  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
f
f
f
f
f
f
f
f
X
X
X
X
X
X
X
X
/2  
1
2
3
4
5
6
7
8
/22  
/23  
/24  
/25  
/26  
/27  
/28  
Other than above  
Setting prohibited  
Note Expanded-specification products only  
Cautions 1. When writing to BRGC20 is performed during a communication operation, the baud  
rate generator output is disrupted and communication cannot be performed normally.  
Be sure not to write to BRGC20 during communication operations.  
2. Be sure not to select n = 1 when fX > 5.0 MHz in 3-wire serial I/O mode because n = 1  
exceeds the rating of the serial clock.  
Remarks 1. fX: System clock oscillation frequency (ceramic/crystal oscillation)  
2. n: Values specified by TPS200 to TPS203 (1 n 8)  
If the internal clock is used as the serial clock for the 3-wire serial I/O mode, set the TPS200 to TPS203  
bits to set the frequency of the serial clock. To obtain the frequency to be set, use the following formula.  
When the serial clock is input from off-chip, setting BRGC20 is not necessary.  
fX  
2n + 1  
Serial clock frequency =  
[Hz]  
fX: System clock oscillation frequency (ceramic/crystal oscillation)  
n: Values in the above table specified by the setting in TPS200 to TPS203 (1 n 8)  
194  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
(2) Communication operation  
In the 3-wire serial I/O mode, data transmission/reception is performed in 8-bit units.  
transmitted/received bit by bit in synchronization with the serial clock.  
Data is  
The transmit shift register (TXS20/SIO20) and receive shift register (RXS20) shift operations are performed in  
synchronization with the fall of the serial clock (SCK20). Then transmit data is held in the SO20 latch and  
output from the SO20 pin. Also, receive data input to the SI0 pin is latched in the receive buffer register  
(RXB20/SIO20) on the rise of SCK20.  
At the end of an 8-bit transfer, the operation of TXS20/SIO20 or RXS20 stops automatically, and an interrupt  
request signal (INTCSI20) is generated.  
Figure 13-11. 3-Wire Serial I/O Mode Timing (1/7)  
(i) Master operation timing (when DAP20 = 0, CKP20 = 0, SSE20 = 0)  
SIO20  
Write  
SCK20  
SO20  
1
2
3
4
5
6
7
8
Note  
DO7  
DI7  
DO6  
DI6  
DO5  
DI5  
DO4  
DI4  
DO3  
DI3  
DO2  
DI2  
DO1  
DI1  
DO0  
DI0  
SI20  
INTCSI20  
Note The value of the last bit previously output is output.  
195  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Figure 13-11. 3-Wire Serial I/O Mode Timing (2/7)  
(ii) Slave operation timing (when DAP20 = 0, CKP20 = 0, SSE20 = 0)  
SIO20  
Write  
SCK20  
SI20  
1
2
3
4
5
6
7
8
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
Note  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
SO20  
INTCSI20  
Note The value of the last bit previously output is output.  
(iii) Slave operation (when DAP20 = 0, CKP20 = 0, SSE20 = 1)  
SS20  
SIO20  
Write  
SCK20  
SI20  
1
2
3
4
5
6
7
8
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
Hi-Z  
Hi-Z  
Note 1  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0Note 2  
SO20  
INTCSI20  
Notes 1. The value of the last bit previously output is output.  
2. DO0 is output until SS20 rises.  
When SS20 is high, SO20 is in a high-impedance state.  
196  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Figure 13-11. 3-Wire Serial I/O Mode Timing (3/7)  
(iv) Master operation (when DAP20 = 0, CKP20 = 1, SSE20 = 0)  
SIO20  
Write  
1
2
3
4
5
6
7
8
SCK20  
SO20  
DO7  
DO6  
DI6  
DO5  
DI5  
DO4  
DI4  
DO3  
DI3  
DO2  
DI2  
DO1  
DI1  
DO0  
DI0  
DI7  
SI20  
INTCSI20  
(v) Slave operation (when DAP20 = 1, CKP20 = 1, SSE20 = 0)  
SIO20  
Write  
1
2
3
4
5
6
7
8
SCK20  
SIO20 Write (master)Note  
SI20  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
SO20  
INTCSI20  
Note The data of SI20 is loaded at the first rising edge of SCK20. Make sure that the master outputs the first  
bit before the first rising of SCK20.  
197  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Figure 13-11. 3-Wire Serial I/O Mode Timing (4/7)  
(vi) Slave operation (when DAP20 = 0, CKP20 = 1, SSE20 = 1)  
SS20  
SIO20  
Write  
SCK20  
1
DI7  
2
3
4
5
6
7
8
SIO20 Write (master)Note 1  
SI20  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
Hi-Z  
Hi-Z  
Note 2  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
SO20  
INTCSI20  
Notes 1. The data of SI20 is loaded at the first rising edge of SCK20. Make sure that the master outputs the  
first bit before the first rising of SCK20.  
2. SO20 is high until SS20 rises after completion of DO0 output. When SS20 is high, SO20 is in a  
high-impedance state.  
(vii) Master operation (when DAP20 = 1, CKP20 = 0, SSE20 = 0)  
SIO20  
Write  
1
2
DO6  
DI6  
3
DO5  
DI5  
4
DO4  
DI4  
5
DO3  
DI3  
6
DO2  
DI2  
7
DO1  
DI1  
8
DO0  
DI0  
SCK20  
SO20  
DO7  
DI7  
SI20  
INTCSI20  
198  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Figure 13-11. 3-Wire Serial I/O Mode Timing (5/7)  
(viii) Slave operation (when DAP20 = 1, CKP20 = 0, SSE20 = 0)  
SIO20  
Write  
1
2
3
4
5
6
7
8
SCK20  
SIO20 Write (master)Note  
SI20  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
SO20  
INTCSI20  
Note The data of SI20 is loaded at the first falling edge of SCK20. Make sure that the master outputs the first  
bit before the first falling of SCK20.  
(ix) Slave operation (when DAP20 = 1, CKP20 = 0, SSE20 = 1)  
SS20  
SIO20  
Write  
SCK20  
1
2
3
4
5
6
7
8
SIO20 Write (master)Note 1  
SI20  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
Hi-Z  
Hi-Z  
Note 2  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
SO20  
INTCSI20  
Notes 1. The data of SI20 is loaded at the first falling edge of SCK20. Make sure that the master outputs the  
first bit before the first falling of SCK20.  
2. SO20 is high until SS20 rises after completion of DO0 output. When SS20 is high, SO20 is in a  
high-impedance state.  
199  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Figure 13-11. 3-Wire Serial I/O Mode Timing (6/7)  
(x) Master operation (when DAP20 = 1, CKP20 = 1, SSE20 = 0)  
SIO20  
Write  
SCK20  
SO20  
1
2
3
4
5
6
7
8
Note  
DO7  
DO6  
DO5  
DOI4  
DI4  
DO3  
DO2  
DO1  
DO0  
DI7  
DI6  
DI5  
DI3  
DI2  
DI1  
DI0  
SI20  
INTCSI20  
Note The value of the last bit previously output is output.  
(xi) Slave operation (when DAP20 = 1, CKP20 = 1, SSE20 = 0)  
SIO20  
Write  
SCK20  
SI20  
1
2
3
4
5
6
7
8
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
Note  
DO7  
DO6  
DO5  
DOI4  
DO3  
DO2  
DO1  
DO0  
SO20  
INTCSI20  
Note The value of the last bit previously output is output.  
200  
User’s Manual U14643EJ2V0UD  
CHAPTER 13 SERIAL INTERFACE 20  
Figure 13-11. 3-Wire Serial I/O Mode Timing (7/7)  
(xii) Slave operation (when DAP20 = 1, CKP20 = 1, SSE20 = 1)  
SS20  
SIO20  
Write  
SCK20  
SI20  
1
2
3
4
5
6
7
8
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
Hi-Z  
Hi-Z  
DO0Note 2  
Note 1  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
SO20  
INTCSI20  
Notes 1. The value of the last bit previously output is output.  
2. DO0 is output until SS20 rises.  
When SS20 is high, SO20 is in a high-impedance state.  
(3) Transfer start  
Serial transfer is started by setting transfer data to the transmit shift register (TXS20/SIO20) when the following  
two conditions are satisfied.  
Serial operating mode register 20 (CSIM20) bit 7 (CSIE20) = 1  
Internal serial clock is stopped or SCK20 is a high level after 8-bit serial transfer.  
Caution If CSIE20 is set to “1” after data is written to TXS20/SIO20, transfer does not start.  
Termination of 8-bit transfer stops the serial transfer automatically and generates an interrupt request signal  
(INTCSI20).  
201  
User’s Manual U14643EJ2V0UD  
CHAPTER 14 MULTIPLIER  
14.1 Multiplier Function  
The multiplier has the following function.  
Calculation of 8 bits × 8 bits = 16 bits  
14.2 Multiplier Configuration  
(1) 16-bit multiplication result storage register 0 (MUL0)  
This register stores the 16-bit result of multiplication.  
This register holds the result of multiplication after 16 CPU clocks have elapsed.  
MUL0 is set with a 16-bit memory manipulation instruction.  
RESET input makes this register undefined.  
Caution Although this register is manipulated with a 16-bit memory manipulation instruction, it can  
also be manipulated with an 8-bit memory manipulation instruction. When using an 8-bit  
memory manipulation instruction, however, access the register by means of direct  
addressing.  
(2) Multiplication data registers A and B (MRA0 and MRB0)  
These are 8-bit multiplication data storage registers. The multiplier multiplies the values of MRA0 and MRB0.  
MRA0 and MRB0 are set with a 1-bit or 8-bit memory manipulation instructions.  
RESET input makes these registers undefined.  
Figure 14-1 shows the block diagram of the multiplier.  
202  
User’s Manual U14643EJ2V0UD  
CHAPTER 14 MULTIPLIER  
Figure 14-1. Block Diagram of Multiplier  
Internal bus  
Multiplication data  
register A (MRA0)  
Multiplication data  
register B (MRB0)  
Counter value  
CPU clock  
Selector  
3-bit counter  
Start Clear  
3
16-bit  
adder  
16-bit multiplication result  
storage register 0 (Master) (MUL0)  
16-bit multiplication result  
storage register 0 (Slave)  
Reset  
MULST0  
Multiplier control  
register 0 (MULC0)  
Internal bus  
203  
User’s Manual U14643EJ2V0UD  
CHAPTER 14 MULTIPLIER  
14.3 Multiplier Control Register  
The multiplier is controlled by the following register.  
Multiplier control register 0 (MULC0)  
MULC0 indicates the operating status of the multiplier after operation, as well as controls the multiplier.  
MULC0 is set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 14-2. Format of Multiplier Control Register 0  
Symbol  
MULC0  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Address  
FFD2H  
After reset  
00H  
R/W  
R/W  
MULST0  
MULST0  
Multiplier operation start control bit  
Operating status of multiplier  
Operation stopped  
Operation in progress  
0
1
Stop operation after resetting counter to 0.  
Enable operation  
Caution Be sure to clear bits 1 to 7 to 0.  
204  
User’s Manual U14643EJ2V0UD  
CHAPTER 14 MULTIPLIER  
14.4 Multiplier Operation  
The multiplier of the µPD789104A/114A/124A/134A Subseries can execute the calculation of 8 bits × 8 bits = 16  
bits. Figure 14-3 shows the operation timing of the multiplier where MRA0 is set to AAH and MRB0 is set to D3H.  
<1> Counting is started by setting MULST0.  
<2> The data generated by the selector is added to the data of MUL0 at each CPU clock, and the counter value is  
incremented by one.  
<3> If MULST0 is cleared when the counter value is 111B, the operation is stopped. At this time, MUL0 holds the  
data.  
<4> While MULST0 is low, the counter and slave are cleared.  
Figure 14-3. Multiplier Operation Timing  
CPU clock  
MRA0  
MRB0  
AA  
D3  
MULST0  
Counter  
000B  
001B 010B 011B 100B 101B 110B 111B  
0154 0000 0000 0AA0 0000 2A80 5500  
00AA 01FE 01FE 01FE 0C9E 0C9E 371E  
00AA 01FE 01FE 01FE 0C9E 0C9E 371E  
000B  
00AA  
00AA  
Selector output  
MUL0  
(Master)  
8C1E  
0000  
0000  
(Slave)  
205  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.1 Interrupt Function Types  
The following two types of interrupt functions are used.  
(1) Non-maskable interrupt  
This interrupt is acknowledged unconditionally. It does not undergo interrupt priority control and is given top  
priority over all other interrupt requests.  
A standby release signal is generated.  
There is one non-maskable interrupt source, which is from the watchdog timer.  
(2) Maskable interrupt  
These interrupts undergo mask control. If two or more interrupts with the same priority are simultaneously  
generated, each interrupt has a predetermined priority as shown in Table 15-1.  
A standby release signal is generated.  
There are nine maskable interrupt sources: three external interrupts and six internal interrupts.  
206  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.2 Interrupt Sources and Configuration  
There are total of 10 non-maskable and maskable interrupt sources (refer to Table 15-1).  
Table 15-1. Interrupt Source List  
Interrupt Type PriorityNote 1  
Interrupt Source  
Trigger  
Internal/  
External  
Vector  
Table  
Basic  
Configuration  
TypeNote 2  
Name  
Address  
Non-  
INTWDT  
Watchdog timer overflow (watchdog timer mode 1  
selected)  
Internal  
0004H  
(A)  
(B)  
(C)  
maskable  
Maskable  
0
INTWDT  
Watchdog timer overflow (interval timer mode  
selected)  
1
2
3
4
INTP0  
Pin input edge detection  
External  
Internal  
0006H  
0008H  
000AH  
000CH  
INTP1  
INTP2  
INTSR20  
INTCSI20  
INTST20  
INTTM80  
End of serial interface 20 UART reception  
End of serial interface 20 3-wire transfer  
End of serial interface 20 UART transmission  
(B)  
5
6
000EH  
0010H  
Generation of 8-bit timer/event counter 80 match  
signal  
7
8
INTTM20  
INTAD0  
Generation of 16-bit timer 20 match signal  
A/D conversion completion signal  
0012H  
0014H  
Notes 1. Priority is the priority applicable when two or more maskable interrupts are simultaneously generated. 0  
is the highest priority and 8 is the lowest priority.  
2. Basic configuration types A to C correspond to A to C in Figure 15-1.  
Remark As the interrupt source of the watchdog timer (INTWDT), either a non-maskable interrupt or a maskable  
interrupt (internal) can be selected.  
207  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-1. Basic Configuration of Interrupt Function  
(A) Internal non-maskable interrupt  
Internal bus  
Vector table  
address generator  
Interrupt request  
Standby release signal  
(B) Internal maskable interrupt  
Internal bus  
IE  
MK  
Vector table  
address generator  
Interrupt request  
IF  
Standby release signal  
(C) External maskable interrupt  
Internal bus  
External interrupt mode  
register (INTM0)  
MK  
IE  
Vector table  
address generator  
Interrupt  
request  
Edge  
detector  
IF  
Standby  
release signal  
IF:  
Interrupt request flag  
IE: Interrupt enable flag  
MK: Interrupt mask flag  
208  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.3 Interrupt Function Control Registers  
The following four registers are used to control the interrupt functions.  
Interrupt request flag registers (IF0, IF1)  
Interrupt mask flag registers (MK0, MK1)  
External interrupt mode register (INTM0)  
Program status word (PSW)  
Table 15-2 gives a listing of interrupt request flag and interrupt mask flag names corresponding to interrupt  
requests.  
Table 15-2. Flags Corresponding to Interrupt Request Signals  
Interrupt Request Signal Name  
Interrupt Request Flag  
Interrupt Mask Flag  
INTWDT  
INTP0  
TMIF4  
PIF0  
TMMK4  
PMK0  
INTP1  
PIF1  
PMK1  
INTP2  
PIF2  
PMK2  
INTSR20/INTCSI20  
INTST20  
INTTM80  
INTTM20  
INTAD0  
SRIF20  
STIF20  
TMIF80  
TMIF20  
ADIF0  
SRMK20  
STMK20  
TMMK80  
TMMK20  
ADMK0  
209  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(1) Interrupt request flag registers (IF0, IF1)  
The interrupt request flag is set to 1 when the corresponding interrupt request is generated or an instruction is  
executed. It is cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or  
upon RESET input.  
IF0 and IF1 are set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears these registers to 00H.  
Figure 15-2. Format of Interrupt Request Flag Register  
<7> <6> <5> <4> <3> <2> <1> <0>  
Address  
FFE0H  
After reset  
00H  
R/W  
R/W  
Symbol  
IF0 TMIF20TMIF80 STIF20 SRIF20 PIF2 PIF1 PIF0 TMIF4  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
<0>  
Address  
FFE1H  
After reset  
00H  
R/W  
R/W  
Symbol  
IF1  
ADIF0  
Interrupt request flag  
××IF×  
0
1
No interrupt request signal is generated  
Interrupt request signal is generated; interrupt request state  
Cautions 1. TMIF4 flag is R/W enabled only when the watchdog timer is used as an interval timer. If  
watchdog timer mode 1 and 2 are used, set the TMIF4 flag to 0.  
2. Because port 2 has an alternate function as the external interrupt input, when the output  
level is changed by specifying the output mode of the port function, an interrupt request  
flag is set. Therefore, the interrupt mask flag should be set to 1 before using the output  
mode.  
3. When an interrupt is acknowledged, the interrupt request flag is automatically cleared and  
the interrupt routine is entered.  
210  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(2) Interrupt mask flag registers (MK0, MK1)  
The interrupt mask flag is used to enable/disable the corresponding maskable interrupt servicing.  
MK0 and MK1 are set with a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets these registers to FFH.  
Figure 15-3. Format of Interrupt Mask Flag Register  
<7> <6> <5> <4> <3> <2> <1> <0>  
R/W  
R/W  
Address  
FFE4H  
After reset  
FFH  
Symbol  
MK0  
TMMK20 TMMK80 STMK20 SRMK20 PMK2 PMK1 PMK0 TMMK4  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
<0>  
R/W  
R/W  
Address  
FFE5H  
After reset  
FFH  
Symbol  
MK1  
ADMK0  
××MK×  
Interrupt servicing control  
0
1
Interrupt servicing enabled  
Interrupt servicing disabled  
Cautions 1. If the TMMK4 flag is read when the watchdog timer is used in watchdog timer mode 1 and  
2, its value becomes undefined.  
2. Because port 2 has an alternate function as the external interrupt input, when the output  
level is changed by specifying the output mode of the port function, an interrupt request  
flag is set. Therefore, the interrupt mask flag should be set to 1 before using the output  
mode.  
211  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(3) External interrupt mode register 0 (INTM0)  
This register is used to set the valid edge of INTP0 to INTP2.  
INTM0 is set with an 8-bit memory manipulation instruction.  
RESET input clears INTM0 to 00H.  
Figure 15-4. Format of External Interrupt Mode Register 0  
Address  
FFECH  
7
6
5
4
3
2
1
0
0
0
After reset  
00H  
R/W  
R/W  
Symbol  
INTM0  
ES21 ES20 ES11 ES10 ES01 ES00  
ES21 ES20  
INTP2 valid edge selection  
INTP1 valid edge selection  
INTP0 valid edge selection  
Falling edge  
0
0
1
1
0
1
0
1
Rising edge  
Setting prohibited  
Both rising and falling edges  
ES11 ES10  
0
0
1
1
0
1
0
1
Falling edge  
Rising edge  
Setting prohibited  
Both rising and falling edges  
ES00  
ES01  
0
0
1
1
0
1
0
1
Falling edge  
Rising edge  
Setting prohibited  
Both rising and falling edges  
Cautions 1. Be sure to clear bits 0 and 1 to 0.  
2. Before setting the INTM0 register, be sure to set the corresponding interrupt mask flag  
(××MK× = 1) to disable interrupts. After setting the INTM0 register, clear the interrupt  
request flag (××IF× = 0), then clear the interrupt mask flag (××MK× = 0), which will enable  
interrupts.  
212  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(4) Program status word (PSW)  
The program status word is a register used to hold the instruction execution result and the current status for  
interrupt requests. The IE flag used to set maskable interrupt enable/disable is mapped to the PSW.  
This register can be read/written in 8-bit units and can carry out operations using bit manipulation and  
dedicated instructions (EI, DI). When a vectored interrupt request is acknowledged, the PSW is automatically  
saved into a stack, and the IE flag is reset to 0. It is restored from the stack by the RETI and POP PSW  
instructions.  
RESET input sets the PSW to 02H.  
Figure 15-5. Program Status Word Configuration  
After reset  
02H  
7
6
Z
5
0
4
3
0
2
0
1
1
0
Symbol  
PSW  
IE  
AC  
CY  
Used when normal instruction is executed  
IE  
0
Interrupt acknowledgment enable/disable  
Disabled  
Enabled  
1
213  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.4 Interrupt Servicing Operation  
15.4.1 Non-maskable interrupt request acknowledgment operation  
A non-maskable interrupt request is unconditionally acknowledged even when interrupts are disabled. It is not  
subject to interrupt priority control and takes precedence over all other interrupts.  
When a non-maskable interrupt request is acknowledged, the PSW and PC are saved to the stack in that order, the  
IE flag is reset to 0, the contents of the vector table are loaded to the PC, and then program execution branches.  
Figure 15-6 shows the flowchart from non-maskable interrupt request generation to acknowledgment. Figure 15-7  
shows the timing of non-maskable interrupt request acknowledgment. Figure 15-8 shows the acknowledgment  
operation if multiple non-maskable interrupts are generated.  
Caution During non-maskable interrupt servicing program execution, do not input another non-maskable  
interrupt request; if it is input, the servicing program will be interrupted and the new interrupt  
request will be acknowledged.  
214  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-6. Flowchart from Non-Maskable Interrupt Request Generation to Acknowledgment  
Start  
WDTM4 = 1  
No  
(watchdog timer mode  
is selected)  
Interval timer  
Yes  
No  
No  
WDT  
overflows  
Yes  
WDTM3 = 0  
(non-maskable interrupt  
is selected)  
Reset processing  
Yes  
Interrupt request is generated  
Interrupt servicing is started  
WDTM: Watchdog timer mode register  
WDT:  
Watchdog timer  
Figure 15-7. Timing of Non-Maskable Interrupt Request Acknowledgment  
Interrupt servicing  
program  
Save PSW and PC, and  
jump to interrupt servicing  
CPU processing  
TMIF4  
Instruction  
Instruction  
Figure 15-8. Acknowledging Non-Maskable Interrupt Request  
Main routine  
First interrupt servicing  
NMI request  
(second)  
NMI request  
(first)  
Second interrupt servicing  
215  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.4.2 Maskable interrupt request acknowledgment operation  
A maskable interrupt request can be acknowledged when the interrupt request flag is set to 1 and the  
corresponding interrupt mask flag is cleared to 0. A vectored interrupt request is acknowledged in the interrupt  
enabled status (when the IE flag is set to 1).  
The time required to start the interrupt servicing after a maskable interrupt request has been generated is shown in  
Table 15-3.  
Refer to Figures 15-10 and 15-11 for the interrupt request acknowledgment timing.  
Table 15-3. Time from Generation of Maskable Interrupt Request to Servicing  
Minimum Time  
9 clocks  
Maximum TimeNote  
19 clocks  
Note The wait time is maximum when an  
interrupt request is generated  
immediately before the BT or BF  
instruction.  
1
fCPU  
Remark 1 clock:  
(fCPU: CPU clock)  
When two or more maskable interrupt requests are generated at the same time, they are acknowledged starting  
from the interrupt request assigned the highest priority.  
A pending interrupt is acknowledged when the status in which it can be acknowledged is set.  
Figure 15-9 shows the algorithm of acknowledging interrupt requests.  
When a maskable interrupt request is acknowledged, the contents of the PSW and PC are saved to the stack in  
that order, the IE flag is reset to 0, and the data in the vector table determined for each interrupt request is loaded to  
the PC, and execution branches.  
To return from interrupt servicing, use the RETI instruction.  
216  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-9. Interrupt Acknowledgment Program Algorithm  
Start  
No  
××IF = 1 ?  
Yes (Interrupt request generated)  
No  
××MK = 0 ?  
Yes  
Interrupt request pending  
Interrupt request pending  
No  
IE = 1 ?  
Yes  
Vectored interrupt  
servicing  
××IF: Interrupt request flag  
××MK: Interrupt mask flag  
IE:  
Flag to control maskable interrupt request acknowledgment (1 = Enable, 0 = Disable)  
217  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-10. Interrupt Request Acknowledgment Timing (Example of MOV A,r)  
8 clocks  
Clock  
Save PSW and PC, jump  
to interrupt servicing  
Interrupt servicing program  
CPU  
MOV A,r  
Interrupt  
If an interrupt request flag (××IF) is set before instruction clock n (n = 4 to 10) under execution becomes n 1, the  
interrupt is acknowledged after the instruction under execution is complete. Figure 15-10 shows an example of the  
interrupt request acknowledgment timing for an 8-bit data transfer instruction MOV A,r. Since this instruction is  
executed for 4 clocks, if an interrupt occurs for 3 clocks after the execution starts, the interrupt acknowledgment  
processing is performed after the MOV A,r instruction is completed.  
Figure 15-11. Interrupt Request Acknowledgment Timing  
(When Interrupt Request Flag Is Generated at  
Last Clock During Instruction Execution)  
8 clocks  
Clock  
Interrupt  
servicing  
program  
Save PSW and PC, jump  
to interrupt servicing  
CPU  
NOP  
MOV A,r  
Interrupt  
If an interrupt request flag (××IF) is set at the last clock of the instruction, the interrupt acknowledgment processing  
starts after the next instruction is executed.  
Figure 15-11 shows an example of the interrupt acknowledgment timing for an interrupt request flag that is set at  
the second clock of NOP (2-clock instruction). In this case, the MOV A,r instruction after the NOP instruction is  
executed, and then the interrupt acknowledgment processing is performed.  
Caution Interrupt requests are held pending while the interrupt request flag register (IF0, IF1) or the  
interrupt mask flag register (MK0, MK1) is being accessed.  
15.4.3 Multiple interrupt servicing  
Multiple interrupt servicing, in which an interrupt is acknowledged while another interrupt is being serviced, can be  
executed by priority. When the priority is controlled by the default priority and two or more interrupts are generated at  
the same time, interrupt servicing is performed according to the priority assigned to each interrupt request in advance  
(refer to Table 15-1).  
218  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-12. Example of Multiple Interrupt Servicing  
Example 1. Multiple interrupts are acknowledged  
INTxx servicing  
INTyy servicing  
Main processing  
IE = 0  
IE = 0  
EI  
EI  
INTxx  
INTyy  
RETI  
RETI  
During interrupt INTxx servicing, interrupt request INTyy is acknowledged, and multiple interrupt servicing occurs.  
The EI instruction is issued before each interrupt request acknowledgment, and the interrupt request acknowledgment  
enabled state is set.  
Example 2. Multiple interrupt servicing does not occur because interrupts are not enabled  
INTxx servicing  
INTyy servicing  
Main processing  
EI  
IE = 0  
INTyy is held pending  
INTyy  
RETI  
INTxx  
IE = 0  
RETI  
Because interrupts are not enabled in interrupt INTxx servicing (the EI instruction is not issued), interrupt request  
INTyy is not acknowledged, and a multiple interrupt servicing does not occur. The INTyy request is held pending and  
acknowledged after the INTxx servicing is performed.  
IE = 0: Interrupt request acknowledgment disabled  
219  
User’s Manual U14643EJ2V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.4.4 Interrupt request hold  
Some instructions may hold the acknowledgment of an instruction request pending until completion of the  
execution of the next instruction even if the interrupt request (maskable interrupt, non-maskable interrupt, and external  
interrupt) is generated during the execution. The following shows such instructions (interrupt request hold  
instructions).  
Manipulation instruction for the interrupt request flag registers (IF0, IF1)  
Manipulation instruction for the interrupt mask flag registers (MK0, MK1)  
220  
User’s Manual U14643EJ2V0UD  
CHAPTER 16 STANDBY FUNCTION  
16.1 Standby Function and Configuration  
16.1.1 Standby function  
The standby function is used to reduce the power consumption of the system and can be effected in the following  
two modes.  
(1) HALT mode  
This mode is set when the HALT instruction is executed. The HALT mode stops the operation clock of the  
CPU. The system clock oscillator continues oscillating. This mode does not reduce the power consumption as  
much as the STOP mode, but is useful for resuming processing immediately when an interrupt request is  
generated, or for intermittent operations.  
(2) STOP mode  
This mode is set when the STOP instruction is executed. The STOP mode stops the main system clock  
oscillator and stops the entire system. The power consumption of the CPU can be substantially reduced in this  
mode.  
The low voltage of the data memory (VDD = 1.8 V) can be held. Therefore, this mode is useful for holding the  
contents of the data memory at an extremely low current consumption.  
The STOP mode can be released by an interrupt request, so that this mode can be used for intermittent  
operations. However, some time is required until the system clock oscillator stabilizes after the STOP mode  
has been released. If processing must be resumed immediately by using an interrupt request, therefore, use  
the HALT mode.  
In both modes, the previous contents of the registers, flags, and data memory before setting the standby mode  
are all held. In addition, the statuses of the output latches of the I/O ports and output buffers are also retained.  
Caution To set the STOP mode, be sure to stop the operations of the peripheral hardware, and then  
execute the STOP instruction.  
221  
User’s Manual U14643EJ2V0UD  
CHAPTER 16 STANDBY FUNCTION  
16.1.2 Standby function control register (µPD789104A, 789114A Subseries)  
The wait time after the STOP mode is released upon interrupt request until the oscillation stabilizes is controlled by  
the oscillation stabilization time select register (OSTS)Note  
.
OSTS is set with an 8-bit memory manipulation instruction.  
RESET input sets OSTS to 04H. However, the oscillation stabilization time after RESET input is 215/fX, instead of  
217/fX.  
Note µPD789104A and 789114A Subseries only.  
The µPD789124A and 789134A Subseries do not provide an oscillation stabilization time select register.  
The oscillation stabilization time of the µPD789124A and 789134A Subseries is fixed to 27/fCC.  
Figure 16-1. Format of Oscillation Stabilization Time Select Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
Symbol  
OSTS  
Address  
FFFAH  
R/W  
R/W  
After reset  
04H  
OSTS2 OSTS1 OSTS0  
OSTS2 OSTS1 OSTS0  
Oscillation stabilization time selection  
= 10.0 MHzNote operation  
@ f  
409  
X
@ f  
X
= 5.0 MHz operation  
212/f  
215/f  
217/f  
X
X
X
0
0
1
0
1
0
0
0
0
µ
s
819  
µ
s
3.28 ms  
13.1 ms  
6.55 ms  
26.2 ms  
Other than above Setting prohibited  
Note Expanded-specification products only  
Caution The wait time after the STOP mode is released when using a ceramic/crystal oscillator does not  
include the time from STOP mode release to clock oscillation start (ain the figure below),  
regardless of whether STOP mode was released by RESET input or by interrupt generation.  
STOP mode release  
X1 pin voltage  
waveform  
a
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
222  
User’s Manual U14643EJ2V0UD  
CHAPTER 16 STANDBY FUNCTION  
16.2 Operation of Standby Function  
16.2.1 HALT mode  
(1) HALT mode  
The HALT mode is set by executing the HALT instruction.  
The operation status in the HALT mode is shown in the following table.  
Table 16-1. HALT Mode Operating Status  
Item  
HALT Mode Operating Status  
Clock generator  
CPU  
System clock can be oscillated.  
Clock supply to CPU stops.  
Operation stopped  
Holds status before setting the HALT mode.  
Operable  
Port (output latch)  
16-bit timer 20  
8-bit timer/event counter 80  
Watchdog timer  
Serial interface 20  
A/D converter  
Operable  
Operable  
Operable  
Operation stopped  
Operation stopped  
OperableNote  
Multiplier  
External interrupt  
Note Maskable interrupt that is not masked  
223  
User’s Manual U14643EJ2V0UD  
CHAPTER 16 STANDBY FUNCTION  
(2) Releasing HALT mode  
The HALT mode can be released by the following three sources.  
(a) Releasing by unmasked interrupt request  
The HALT mode is released by an unmasked interrupt request. In this case, if the interrupt request is able  
to be acknowledged, vectored interrupt servicing is performed. If interrupts are disabled, the instruction at  
the next address is executed.  
Figure 16-2. Releasing HALT Mode by Interrupt  
HALT  
instruction  
Wait  
Wait  
Standby  
release signal  
Operating  
mode  
HALT mode  
Operating mode  
Oscillation  
Clock  
Remarks 1. The broken lines indicate the case where the interrupt request that has released the standby  
mode is acknowledged.  
2. The wait time is as follows:  
When vectored interrupt servicing is performed:  
9 to 10 clocks  
When vectored interrupt servicing is not performed: 1 to 2 clocks  
(b) Releasing by non-maskable interrupt request  
The HALT mode is released regardless of whether interrupts are enabled or disabled, and vectored  
interrupt servicing is performed.  
224  
User’s Manual U14643EJ2V0UD  
CHAPTER 16 STANDBY FUNCTION  
(c) Releasing by RESET input  
When the HALT mode is released by the RESET signal, execution branches to the reset vector address in  
the same manner as an ordinary reset operation, and program execution is started.  
Figure 16-3. Releasing HALT Mode by RESET Input  
HALT  
instruction  
WaitNote  
RESET  
signal  
Oscillation  
Reset  
period  
stabilization  
wait status  
Operating  
mode  
Operating  
mode  
HALT mode  
Oscillation  
Oscillation  
stop  
Oscillation  
Clock  
Note In the µPD789104A and 789114A Subseries,  
215/fX: 6.55 ms (at fX = 5.0 MHz operation), 3.28 ms (at fX = 10.0 MHz operation)  
In the µPD789124A and 789134A Subseries,  
27/fCC: 32 µs (at fCC = 4.0 MHz operation)  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
Table 16-2. Operation After Release of HALT Mode  
Releasing Source  
MK××  
IE  
0
Operation  
Next address instruction is executed  
Maskable interrupt request  
0
0
1
1
Interrupt servicing is executed  
HALT mode is held  
×
Non-maskable interrupt request  
RESET input  
×
Interrupt servicing is executed  
Reset processing  
×: don’t care  
225  
User’s Manual U14643EJ2V0UD  
CHAPTER 16 STANDBY FUNCTION  
16.2.2 STOP mode  
(1) Setting and operation status of STOP mode  
The STOP mode is set by executing the STOP instruction.  
Caution Because the standby mode can be released by an interrupt request signal, the standby mode  
is released as soon as it is set if there is an interrupt source whose interrupt request flag is  
set and interrupt mask flag is reset. When the STOP mode is set, therefore, the HALT mode is  
set immediately after the STOP instruction has been executed, the wait time set by the  
oscillation stabilization time select register (OSTS) elapses, and then an operation mode is  
set.  
The operation status in the STOP mode is shown in the following table.  
Table 16-3. STOP Mode Operating Status  
Item  
STOP Mode Operating Status  
System clock oscillation stopped  
Clock generator  
CPU  
Operation stopped  
Holds the status before setting the STOP mode  
Operation stopped  
OperableNote 1  
Port (output latch)  
16-bit timer 20  
8-bit timer/event counter 80  
Watchdog timer  
Serial interface 20  
A/D converter  
Operation stopped  
OperableNote 2  
Operation stopped  
Operation stopped  
OperableNote 3  
Multiplier  
External interrupt  
Notes 1. Operation is possible only when TI80 is selected as the count clock.  
2. Operation is possible in both 3-wire serial I/O and UART modes while an external clock is being  
used.  
3. Maskable interrupt that is not masked  
226  
User’s Manual U14643EJ2V0UD  
CHAPTER 16 STANDBY FUNCTION  
(2) Releasing STOP mode  
The STOP mode can be released by the following two sources.  
(a) Releasing by unmasked interrupt request  
The STOP mode can be released by an unmasked interrupt request. In this case, if the interrupt is able to  
be acknowledged, vectored interrupt servicing is performed, after the oscillation stabilization time has  
elapsed. If interrupts are disabled, the instruction at the next address is executed.  
Figure 16-4. Releasing STOP Mode by Interrupt  
WaitNote  
(set time by OSTS)  
STOP  
instruction  
Standby  
release signal  
Oscillation stabilization  
wait status  
Operating  
mode  
Operating  
mode  
STOP mode  
Oscillation  
stop  
Oscillation  
Oscillation  
Clock  
Note OSTS is not provided in the µPD789124A and 789134A Subseries, and the wait time is fixed to  
27/fCC.  
Remark The broken lines indicate the case where the interrupt request that has released the standby  
mode is acknowledged.  
227  
User’s Manual U14643EJ2V0UD  
CHAPTER 16 STANDBY FUNCTION  
(b) Releasing by RESET input  
When the STOP mode is released by the RESET signal, the reset operation is performed after the  
oscillation stabilization time has elapsed.  
Figure 16-5. Releasing STOP Mode by RESET Input  
STOP  
instruction  
WaitNote  
RESET  
signal  
Oscillation  
stabilization  
wait status  
Operating  
mode  
Reset  
period  
Operating  
mode  
STOP mode  
Oscillation  
Oscillation  
stop  
Oscillation  
Clock  
Note In the µPD789104A and 789114A Subseries,  
215/fX: 6.55 ms (at fX = 5.0 MHz operation), 3.28 ms (at fX = 10.0 MHz operation)  
In the µPD789124A and 789134A Subseries,  
27/fCC: 32 µs (at fCC = 4.0 MHz operation)  
Remark fX: System clock oscillation frequency (ceramic/crystal oscillation)  
fCC: System clock oscillation frequency (RC oscillation)  
Table 16-4. Operation After Release of STOP Mode  
Releasing Source  
MK××  
IE  
0
Operation  
Next address instruction is executed  
Maskable interrupt request  
0
0
1
1
Interrupt servicing is executed  
STOP mode is held  
×
RESET input  
Reset processing  
×: don’t care  
228  
User’s Manual U14643EJ2V0UD  
CHAPTER 17 RESET FUNCTION  
The following two operations are available to generate reset signals.  
(1) External reset input via RESET pin  
(2) Internal reset by program loop time detection with watchdog timer  
External and internal resets have no functional differences. In both cases, program execution starts at addresses  
0000H and 0001H by reset signal input.  
When a low level is input to the RESET pin or the watchdog timer overflows, a reset is applied and each hardware  
item is set to the status shown in Table 17-1. Each pin is high impedance during reset input or during the oscillation  
stabilization time just after reset clear.  
When a high level is input to the RESET pin, the reset is cleared and program execution is started after the  
oscillation stabilization time has elapsed. The reset applied by the watchdog timer overflow is automatically cleared  
after reset, and program execution is started after the oscillation stabilization time has elapsed (refer to Figures 17-2  
to 17-4).  
Cautions 1. For an external reset, input a low level for 10 µs or more to the RESET pin.  
2. When the STOP mode is cleared by reset, the STOP mode contents are held during reset  
input. However, the port pins become high impedance.  
Figure 17-1. Block Diagram of Reset Function  
RESET  
Reset signal  
Reset controller  
Over-  
flow  
Interrupt function  
Count clock  
Watchdog timer  
Stop  
229  
User’s Manual U14643EJ2V0UD  
CHAPTER 17 RESET FUNCTION  
Figure 17-2. Reset Timing by RESET Input  
X1, CL1  
RESET  
Reset period  
(oscillation  
stops)  
Oscillation  
stabilization  
time wait  
During normal  
operation  
Normal operation  
(reset processing)  
Internal  
reset signal  
Delay  
Delay  
Hi-Z  
Port pin  
Figure 17-3. Reset Timing by Overflow in Watchdog Timer  
X1, CL1  
Reset period  
(oscillation  
continues)  
Oscillation  
stabilization  
time wait  
Normal operation  
(reset processing)  
During normal operation  
Overflow in  
watchdog timer  
Internal  
reset signal  
Hi-Z  
Port pin  
Figure 17-4. Reset Timing by RESET Input in STOP Mode  
X1, CL1  
STOP instruction execution  
Stop status  
(oscillation  
stops)  
Reset period  
(oscillation  
stops)  
Oscillation  
stabilization  
time wait  
Normal operation  
(reset processing)  
During normal operation  
RESET  
Internal  
reset signal  
Delay  
Delay  
Hi-Z  
Port pin  
230  
User’s Manual U14643EJ2V0UD  
CHAPTER 17 RESET FUNCTION  
Table 17-1. Hardware Status After Reset (1/2)  
Hardware  
Status After Reset  
Program counter (PC)Note 1  
The contents of reset vector  
tables (0000H and 0001H)  
are set.  
Stack pointer (SP)  
Program status word (PSW)  
RAM  
Undefined  
02H  
Data memory  
General-purpose registers  
UndefinedNote 2  
UndefinedNote 2  
00H  
Ports (P0 to P2, P5) (output latch)  
Port mode registers (PM0 to PM2, PM5)  
Pull-up resistor option register 0 (PU0)  
Pull-up resistor option register B2 (PUB2)  
Processor clock control register (PCC)  
Oscillation stabilization time select register (OSTS)Note 3  
FFH  
00H  
00H  
02H  
04H  
16-bit timer 20  
Timer counter (TM20)  
0000H  
FFFFH  
00H  
Compare register (CR20)  
Mode control register (TMC20)  
Capture register (TPC20)  
Undefined  
00H  
8-bit timer/event counter 80  
Timer counter (TM80)  
Compare register (CR80)  
Undefined  
00H  
Mode control register (TMC80)  
Timer clock select register (TCL2)  
Mode register (WDTM)  
Watchdog timer  
A/D converter  
00H  
00H  
Mode register (ADM0)  
00H  
Input channel specification register (ADS0)  
Conversion result register (ADCR0)  
Mode register (CSIM20)  
00H  
Undefined  
00H  
Serial interface 20  
Asynchronous serial interface mode register (ASIM20)  
Asynchronous serial interface status register (ASIS20)  
Baud rate generator control register (BRGC20)  
Transmit shift register (TXS20)  
Receive buffer register (RXB20)  
00H  
00H  
00H  
FFH  
Undefined  
Notes 1. During reset input and oscillation stabilization time wait, only the PC contents among the hardware  
statuses become undefined.  
All other hardware remains unchanged after reset.  
2. If the reset signal is input in the standby mode, the status before reset is retained even after reset.  
3. µPD789104A, 789114A Subseries only  
231  
User’s Manual U14643EJ2V0UD  
CHAPTER 17 RESET FUNCTION  
Table 17-1. Hardware Status After Reset (2/2)  
Hardware  
Status After Reset  
Undefined  
Multiplier  
Interrupts  
16-bit multiplication result storage register (MUL0)  
Data register A (MRA0)  
Undefined  
Undefined  
00H  
Data register B (MRB0)  
Control register (MULC0)  
Request flag register (IF0, IF1)  
Mask flag register (MK0, MK1)  
External interrupt mode register (INTM0)  
00H  
FFH  
00H  
232  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
The µPD78F9116A and 78F9116B are versions with flash memory instead of the internal ROM of the mask ROM  
versions in the µPD789104A and 789114A Subseries. The µPD78F9136A and 78F9136B are versions with flash  
memory instead of the internal ROM of the mask ROM versions in the µPD789124A and 789134A Subseries. The  
differences between the flash memory and the mask ROM versions are shown in Table 18-1.  
Table 18-1. Differences Between Flash Memory and Mask ROM Versions  
Item  
Flash Memory  
Mask ROM  
µPD78F9116A  
µPD78F9116B  
µPD789101A  
µPD789111A  
µPD789102A  
µPD789112A  
µPD789104A  
µPD789114A  
µPD78F9136A  
µPD78F9136B  
µPD789121A  
µPD789131A  
µPD789122A  
µPD789132A  
µPD789124A  
µPD789134A  
Internal  
memory  
ROM  
16 KB  
2 KB  
4 KB  
8 KB  
(flash memory)  
High-speed RAM  
256 bytes  
Pull-up resistors  
12  
16 (software control: 12, mask option specification: 4)  
Not provided  
(software control only)  
VPP pin  
Provided  
Electrical specifications  
Refer to the relevant electrical specifications chapter.  
Cautions 1. There are differences in noise immunity and noise radiation between the flash memory  
versions and mask ROM versions. When pre-producing an application set with the flash  
memory version and then mass-producing it with the mask ROM version, be sure to conduct  
sufficient evaluations for the commercial samples (not engineering samples) of the mask  
ROM versions.  
2. A/D conversion result register 0 (ADCR0) is manipulated by an 8-bit memory manipulation  
instruction or a 16-bit memory manipulation instruction, when used as an 8-bit A/D converter  
(µPD789104A, 789124A Subseries) or 10-bit A/D converter (µPD789114A, 789134A Subseries),  
respectively.  
However, if the µPD78F9116A and 78F9116B are used as the flash memory versions of the  
µPD789101A, 789102A, and 789104A, ADCR0 can be manipulated by an 8-bit memory  
manipulation instruction, providing an object file has been assembled in the µPD789101A,  
789102A, 789104A. If the µPD78F9136A and 78F9136B are used as the flash memory versions  
of the µPD789121A, 789122A, and 789124A, ADCR0 can be manipulated by an 8-bit memory  
manipulation instruction, providing an object file has been assembled in the µPD789121A,  
789122A, or 789124A.  
233  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
18.1 Flash Memory Characteristics  
Flash memory programming is performed by connecting a dedicated flash programmer (Flashpro III (part no. FL-  
PR3, PG-FP3)/Flashpro IV (part no. FL-PR4, PG-FP4)) to the target system with the flash memory mounted on the  
target system (on-board programming). A flash memory writing adapter (program adapter), which is a target board  
used exclusively for programming, is also provided.  
Remark FL-PR3, FL-PR4, and the program adapter are products of Naito Densei Machida Mfg. Co., Ltd. (TEL  
+81-45-475-4191).  
Programming using flash memory has the following advantages.  
Software can be modified after the microcontroller is solder-mounted on the target system.  
Distinguishing software facilities low-quantity, varied model production  
Easy data adjustment when starting mass production  
18.1.1 Programming environment  
The following shows the environment required for µPD78F9116A, 78F9116B, 78F9136A, and 78F9136B flash  
memory programming.  
When Flashpro III (part no. FL-PR3, PG-FP3) or Flashpro IV (Part no. FL-PR4, PG-FP4) is used as a dedicated  
flash programmer, a host machine is required to control the dedicated flash programmer. Communication between the  
host machine and flash programmer is performed via RS-232C/USB (Rev. 1.1).  
For details, refer to the manuals for Flashpro III/Flashpro IV.  
Remark USB is supported by Flashpro IV only.  
Figure 18-1. Environment for Writing Program to Flash Memory  
V
PP  
V
DD  
SS  
RS-232C  
USB  
V
RESET  
Dedicated flash programmer  
PD78F9116A, 78F9116B,  
µ
78F9136A, 78F9136B  
3-wire serial I/O  
or UART  
Host machine  
or pseudo 3-wire  
234  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
18.1.2 Communication mode  
Use the communication mode shown in Table 18-2 or 18-3 to perform communication between the dedicated flash  
programmer and the µPD78F9116A, 78F9116B, 78F9136A, or 78F9136B.  
Table 18-2. Communication Mode List (µPD78F9116A, 78F9136A)  
Communication  
Mode  
TYPE SettingNote 1  
CPU Clock  
Pins UsedNote 2  
Number of  
VPP Pulses  
COMM PORT  
SIO ch-0  
SIO Clock  
100 Hz to  
Flash Clock  
Multiple Rate  
3-wire serial  
I/O (SIO3)  
Optional  
1 to 5 MHzNote 3 1.0  
SCK20/ASCK20/P20  
SO20/TxD20/P21  
SI20/RxD20/P22  
0
8
(3-wire, sync.) 1.25 MHzNote 3  
UART  
UART ch-0  
4800 to 76800 OptionalNote 5 4.91 or 5  
1.0  
TxD20/SO20/P21  
RxD20/SI20/P22  
(UART0)  
bpsNote 3, 4  
MHzNote 3  
Pseudo 3-wire Port A  
(pseudo 3-  
100 Hz to 1  
MHzNote 3  
Optional  
1 to 5 MHzNote 3 1.0  
P00  
P01  
P02  
12  
wire)  
Table 18-3. Communication Mode List (µPD78F9116B, 78F9136B)  
Communication  
Mode  
TYPE SettingNote 1  
CPU Clock  
Pins UsedNote 2  
Number of  
VPP Pulses  
COMM PORT  
SIO ch-0  
SIO Clock  
100 Hz to  
Flash Clock  
Multiple Rate  
3-wire serial  
I/O  
Optional  
1 to 10 MHzNote 3 1.0  
SCK20/ASCK20/P20  
SO20/TxD20/P21  
SI20/RxD20/P22  
0
1
8
(3-wire, sync.) 1.25 MHzNote 3  
SIO ch-1  
P00  
P01  
P02  
(3-wire, sync.)  
UART  
UART ch-0  
4800 to 76800 OptionalNote 5 4.91, 5, or 10  
bpsNote 3, 4 MHzNote 3  
1.0  
TxD20/SO20/P21  
RxD20/SI20/P22  
Notes 1. Selection items for TYPE settings on the dedicated flash programmer (Flashpro III/Flashpro IV).  
2. When the system shifts to the flash memory programming mode, all the pins that are not used for flash  
memory programming are in the same status as that immediately after reset. If the external device  
connected to each port does not recognize the status of the port immediately after reset, pins require  
appropriate processing, such as connecting to VDD or VSS via a resistor.  
3. The possible setting range differs depending on the voltage. For details, refer to the relevant electrical  
specifications chapter.  
4. Because signal wave slew also affects UART communication, in addition to the baud rate error,  
thoroughly evaluate the slew.  
5. Only for Flashpro IV. However, when using Flashpro III, be sure to select the clock of the resonator on  
the board. UART cannot be used with the clock supplied by Flashpro III.  
Caution Be sure to select the communication mode according to the number of VPP pulses shown in Table  
18-2 or 18-3.  
235  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
Figure 18-2. Communication Mode Selection Format  
10 V  
V
PP  
V
DD  
1
2
n
V
SS  
V
PP pulses  
V
DD  
RESET  
V
SS  
236  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
Figure 18-3. Example of Connection with Dedicated Flash Programmer (1/2)  
(a) 3-wire serial I/O mode (SIO ch-0)  
µ
PD78F9116A, 78F9116B,  
78F9136A, 78F9136B  
Dedicated flash programmer  
VPP1  
VDD  
V
V
PP  
DD, AVDD  
RESET  
CLKNote 1  
SCK  
RESET  
X1 (P03Note 2  
SCK20  
SI20  
)
SO  
SI  
SO20  
GND  
VSS, AVSS  
(b) 3-wire serial I/O mode (SIO ch-1) (µPD78F9116B, 78F9136B only)  
Dedicated flash programmer  
µ
PD78F9116B, 78F9136B  
VPP1  
VDD  
V
PP  
VDD, AVDD  
RESET  
CLKNote 1  
SCK  
RESET  
X1 (P03Note 2  
)
P00 (Serial clock)  
P02 (Serial input)  
P01 (Serial output)  
SO  
SI  
GND  
VSS, AVSS  
Notes 1. Connect this pin when the system clock is supplied by the dedicated flash programmer. When a  
resonator has already been connected to the X1 pin, the CLK pin does not need to be connected.  
2. µPD78F9136A, 78F9136B only  
Cautions 1. The VDD pin, if already connected to the power supply, must be connected to the VDD pin of  
the dedicated flash programmer. Before using the power supply connected to the VDD pin,  
supply voltage before starting programming.  
2. In the µPD78F9136A and 78F9136B, use the P03 pin as the pin for system clock input from the  
dedicated flash programmer.  
237  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
Figure 18-3. Example of Connection with Dedicated Flash Programmer (2/2)  
(c) UART mode  
µ
PD78F9116A, 78F9116B,  
78F9136A, 78F9136B  
Dedicated flash programmer  
VPP1  
VDD  
V
PP  
VDD, AVDD  
RESET  
CLKNote 1  
SO  
RESET  
X1 (P03Note 2  
)
RxD20  
SI  
TxD20  
GND  
VSS, AVSS  
(d) Pseudo 3-wire mode (µPD78F9116A, 78F9136A only)  
Dedicated flash programmer  
µ
PD78F9116A, 78F9136A  
VPP1  
VDD  
V
PP  
VDD, AVDD  
RESET  
CLKNote 1  
SCK  
RESET  
X1 (P03Note 2  
)
P00 (Serial clock)  
P02 (Serial input)  
P01 (Serial output)  
SO  
SI  
GND  
VSS, AVSS  
Notes 1. Connect this pin when the system clock is supplied by the dedicated flash programmer. When a  
resonator has already been connected to the X1 pin, the CLK pin does not need to be connected.  
2. µPD78F9136A, 78F9136B only  
Cautions 1. The VDD pin, if already connected to the power supply, must be connected to the VDD pin of  
the dedicated flash programmer. Before using the power supply connected to the VDD pin,  
supply voltage before starting programming.  
2. In the µPD78F9136A and 78F9136B, use the P03 pin as the pin for system clock input from the  
dedicated flash programmer.  
238  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
If Flashpro III/Flashpro IV is used as the dedicated flash programmer, the following signals are generated for the  
µPD78F9116A, 78F9116B, 78F9136A, and 78F9136B. For details, refer to the manual of Flashpro III/Flashpro IV.  
Table 18-4. Pin Connection List  
Signal Name  
VPP1  
I/O  
Pin Function  
Write voltage  
Pin Name  
3-Wire Serial I/O  
UART  
Pseudo 3-Wire  
Output  
VPP  
VPP2  
VDD  
×
×
×
Note 1  
Note 1  
Note 1  
I/O  
VDD voltage generation/  
voltage monitoring  
VDD/AVDD  
GND  
CLK  
RESET  
SI  
Ground  
VSS/AVSS  
X1 (P03Note 2  
RESET  
Output  
Output  
Input  
Output  
Output  
Clock output  
Reset signal  
Reception signal  
Transmit signal  
Transfer clock  
)
SO20/P01/TxD20  
SI20/P02/RxD20  
SCK20/P00  
SO  
SCK  
HS  
×
×
×
×
Notes 1. VDD voltage must be supplied before programming is started.  
2. µPD78F9136A, 78F9136B only  
Remark : Pin must be connected.  
: If the signal is supplied on the target board, pin does not need to be connected.  
×: Pin does not need to be connected.  
239  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
18.1.3 On-board pin processing  
When performing programming on the target system, provide a connector on the target system to connect the  
dedicated flash programmer.  
An on-board function that allows switching between normal operation mode and flash memory programming mode  
may be required in some cases.  
<VPP pin>  
In normal operation mode, input 0 V to the VPP pin. In flash memory programming mode, a write voltage of 10.0  
V (TYP.) is supplied to the VPP pin, so perform the following.  
(1) Connect a pull-down resistor (RVPP = 10 k) to the VPP pin.  
(2) Use the jumper on the board to switch the VPP pin input to either the programmer or directly to GND.  
A VPP pin connection example is shown below.  
Figure 18-4. VPP Pin Connection Example  
µ
PD78F9116A, 78F9116B,  
78F9136A, 78F9136B  
Connection pin of dedicated flash programmer  
V
PP  
Pull-down resistor (RVPP  
)
<Serial interface pins>  
The following shows the pins used by the serial interface.  
<µPD78F9116A, 78F9136A>  
Serial Interface  
3-wire serial I/O  
UART  
Pins Used  
SCK20, SO20, SI20  
TxD20, RxD20  
Pseudo 3-wire  
P00, P01, P02  
<µPD78F9116B, 78F9136B>  
Serial Interface  
3-wire serial I/O  
Pins Used  
SCK20, SO20, SI20  
P00, P01, P02  
UART  
TxD20, RxD20  
When connecting the dedicated flash programmer to a serial interface pin that is connected to another device on-  
board, signal conflict or abnormal operation of the other device may occur. Care must therefore be taken with  
such connections.  
240  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
(1) Signal conflict  
If the dedicated flash programmer (output) is connected to a serial interface pin (input) that is connected to  
another device (output), a signal conflict occurs. To prevent this, isolate the connection with the other device or  
set the other device to the output high impedance status.  
Figure 18-5. Signal Conflict (Input Pin of Serial Interface)  
PD78F9116A, 78F9116B,  
78F9136A, 78F9136B  
µ
Connection pin of  
dedicated flash  
programmer  
Signal conflict  
Input pin  
Other device  
Output pin  
In the flash memory programming mode, the signal output by another  
device and the signal sent by the dedicated flash programmer conflict;  
therefore, isolate the signal of the other device.  
(2) Abnormal operation of other device  
If the dedicated flash programmer (output or input) is connected to a serial interface pin (input or output) that is  
connected to another device (input), a signal is output to the device, and this may cause an abnormal  
operation. To prevent this abnormal operation, isolate the connection with the other device or set so that the  
input signals to the other device are ignored.  
Figure 18-6. Abnormal Operation of Other Device  
µ
PD78F9116A, 78F9116B,  
78F9136A, 78F9136B  
Connection pin of  
dedicated flash  
programmer  
Pin  
Other device  
Input pin  
µ
If the signal output by the PD78F9116A, 78F9116B, 78F9136A, or  
78F9136B affects another device in the flash memory programming mode,  
isolate the signals of the other device.  
µ
PD78F9116A, 78F9116B,  
78F9136A, 78F9136B  
Connection pin of  
dedicated flash  
programmer  
Pin  
Other device  
Input pin  
If the signal output by the dedicated flash programmer affects another  
device in the flash memory programming mode, isolate the signals of the  
other device.  
241  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
<RESET pin>  
If the reset signal of the dedicated flash programmer is connected to the RESET pin connected to the reset  
signal generator on-board, a signal conflict occurs. To prevent this, isolate the connection with the reset signal  
generator.  
If the reset signal is input from the user system in the flash memory programming mode, a normal programming  
operation cannot be performed. Therefore, do not input reset signals from other than the dedicated flash  
programmer.  
Figure 18-7. Signal Conflict (RESET Pin)  
µ
PD78F9116A, 78F9116B,  
78F9136A, 78F9136B  
Connection pin of  
dedicated flash  
programmer  
Signal Conflict  
RESET  
Reset signal generator  
Output pin  
The signal output by the reset signal generator and the signal output from  
the dedicated flash programmer conflict in the flash memory programming  
mode, so isolate the signal of the reset signal generator.  
<Port pins>  
When the flash memory programming mode is set, all the pins other than those that communicate with the flash  
programmer are in the same status as immediately after reset.  
If the external device does not recognize initial statuses such as the output high impedance status, therefore,  
connect the external device to VDD or VSS.  
<Oscillation pins>  
When using the on-board clock, connect X1 and X2 as required in the normal operation mode.  
When using the clock output of the flash programmer, connect it directly to X1, disconnecting the main resonator  
on-board, and leave the X2 pin open.  
<Power supply>  
When using the power supply output of the flash programmer, connect the VDD and VSS pins to VDD and GND of  
the flash programmer, respectively.  
When using the on-board power supply, connect it as required in the normal operation mode. Because the flash  
programmer monitors the voltage, however, VDD of the flash programmer must be connected.  
For the other power pins (AVDD and ASS), supply the same power supply as in the normal operation mode.  
242  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
18.1.4 Connection when using flash memory writing adapter  
The following shows an example of the recommended connection when using the flash memory writing adapter.  
Figure 18-8. Example of Flash Memory Writing Adapter Connection  
When Using 3-Wire Serial I/O Mode (SIO-ch0)  
(a) µPD78F9116A, 78F9116B  
VDD (2.7 to 5.5 V)  
GND  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
µ
µ
GND  
VDD  
VDD2 (LVDD)  
Flash programmer SI SO SCK CLKOUT RESET VPP RESERVE/HS  
interface  
(b) µPD78F9136A, 78F9136B  
V
DD (2.7 to 5.5 V)  
GND  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
µ
µ
GND  
VDD  
VDD2 (LVDD)  
Flash programmer SI SO SCK CLKOUT RESET VPP RESERVE/HS  
interface  
243  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
Figure 18-9. Example of Flash Memory Writing Adapter Connection  
When Using 3-Wire Serial I/O Mode (SIO-ch1)  
(a) µPD78F9116B  
VDD (2.7 to 5.5 V)  
GND  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
µ
GND  
VDD  
VDD2 (LVDD)  
SI SO SCK CLKOUT RESET VPP RESERVE/HS  
Flash programmer  
interface  
(b) µPD78F9136B  
VDD (2.7 to 5.5 V)  
GND  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
µ
GND  
VDD  
VDD2 (LVDD)  
SI SO SCK CLKOUT RESET VPP RESERVE/HS  
Flash programmer  
interface  
244  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
Figure 18-10. Example of Flash Memory Writing Adapter Connection When Using UART Mode  
(a) µPD78F9116A, 78F9116B  
V
DD (2.7 to 5.5 V)  
GND  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
µ
µ
GND  
VDD  
VDD2 (LVDD)  
Flash programmer  
interface  
SI SO SCK CLKOUT RESET VPP RESERVE/HS  
(b) µPD78F9136A, 78F9136B  
V
DD (2.7 to 5.5 V)  
GND  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
µ
µ
GND  
VDD  
VDD2 (LVDD)  
Flash programmer  
interface  
SI SO SCK CLKOUT RESET VPP RESERVE/HS  
245  
User’s Manual U14643EJ2V0UD  
CHAPTER 18 µPD78F9116A, 78F9116B, 78F9136A, 78F9136B  
Figure 18-11. Example of Flash Memory Writing Adapter Connection When Using Pseudo 3-Wire Mode  
(a) µPD78F9116A  
VDD (2.7 to 5.5 V)  
GND  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
µ
GND  
VDD  
VDD2 (LVDD)  
SI SO SCK CLKOUT RESET VPP RESERVE/HS  
Flash programmer  
interface  
(b) µPD78F9136A  
VDD (2.7 to 5.5 V)  
GND  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
µ
GND  
VDD  
VDD2 (LVDD)  
SI SO SCK CLKOUT RESET VPP RESERVE/HS  
Flash programmer  
interface  
246  
User’s Manual U14643EJ2V0UD  
CHAPTER 19 MASK OPTION (MASK ROM VERSION)  
Table 19-1. Selection of Mask Option for Pins  
Pin  
Mask Option  
P50 to P53  
On-chip pull-up resistor can be specified in 1-bit units.  
For P50 to P53 (port 5), an on-chip pull-up resistor can be specified by the mask option. The mask option is  
specified in 1-bit units.  
Caution The flash memory versions do not provide the on-chip pull-up resistor function.  
247  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
This chapter lists the instruction set of the µPD789104A/114A/124A/134A Subseries. For details of the operation  
and machine language (instruction code) of each instruction, refer to the 78K/0S Series Instructions User’s Manual  
(U11047E).  
20.1 Operation  
20.1.1 Operand identifiers and description methods  
Operands are described in the “Operand” column of each instruction in accordance with the description method of  
the instruction operand identifier (refer to the assembler specifications for details). When there are two or more  
description methods, select one of them. Uppercase letters and the symbols #, !, $, and [ ] are keywords and are  
described as they are. Each symbol has the following meaning.  
#: Immediate data specification  
!: Absolute address specification  
$: Relative address specification  
[ ]: Indirect address specification  
In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to  
describe the #, !, $ and [ ] symbols.  
For the operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in  
parentheses in the table below, R0, R1, R2, etc.) can be used for description.  
Table 20-1. Operand Identifiers and Description Methods  
Identifier  
Description Method  
X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)  
r
rp  
AX (RP0), BC (RP1), DE (RP2), HL (RP3)  
Special-function register symbol  
sfr  
saddr  
FE20H to FF1FH Immediate data or labels  
saddrp  
FE20H to FF1FH Immediate data or labels (even addresses only)  
addr16  
addr5  
0000H to FFFFH Immediate data or labels (only even addresses for 16-bit data transfer instructions)  
0040H to 007FH Immediate data or labels (even addresses only)  
word  
byte  
bit  
16-bit immediate data or label  
8-bit immediate data or label  
3-bit immediate data or label  
Remark Refer to Table 4-3 Special-Function Register List for the symbols of the special-function registers.  
248  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
20.1.2 Description of “operation” column  
A:  
A register; 8-bit accumulator  
X register  
X:  
B:  
B register  
C:  
C register  
D:  
D register  
E:  
E register  
H:  
H register  
L:  
L register  
AX:  
BC:  
DE:  
HL:  
PC:  
SP:  
PSW:  
CY:  
AC:  
Z:  
AX register pair; 16-bit accumulator  
BC register pair  
DE register pair  
HL register pair  
Program counter  
Stack pointer  
Program status word  
Carry flag  
Auxiliary carry flag  
Zero flag  
IE:  
Interrupt request enable flag  
NMIS: Flag indicating non-maskable interrupt servicing in progress  
( ): Memory contents indicated by address or register contents in parentheses  
×H, ×L: Higher 8 bits and lower 8 bits of 16-bit register  
:  
:  
Logical product (AND)  
Logical sum (OR)  
:  
Exclusive logical sum (exclusive OR)  
Inverted data  
:
addr16: 16-bit immediate data or label  
jdisp8: Signed 8-bit data (displacement value)  
20.1.3 Description of “flag operation” column  
(Blank): Unchanged  
0:  
1:  
×:  
R:  
Cleared to 0  
Set to 1  
Set/cleared according to the result  
Previously saved value is restored  
249  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
20.2 Operation List  
Mnemonic  
MOV  
Operands  
Bytes Clocks  
Operation  
Flag  
Z
AC CY  
r, #byte  
3
3
3
2
2
2
2
2
2
3
3
3
2
2
1
1
1
1
2
2
1
2
2
2
1
1
2
6
6
6
4
4
4
4
4
4
8
8
6
4
4
6
6
6
6
6
6
4
6
6
6
8
8
8
r byte  
saddr, #byte  
sfr, #byte  
A, rNote 1  
(saddr) byte  
sfr byte  
A r  
r, ANote 1  
r A  
A, saddr  
saddr, A  
A, sfr  
A (saddr)  
(saddr) A  
A sfr  
sfr, A  
sfr A  
A, !addr16  
!addr16, A  
PSW, #byte  
A, PSW  
PSW, A  
A, [DE]  
A (addr16)  
(addr16) A  
PSW byte  
A PSW  
PSW A  
A (DE)  
(DE) A  
A (HL)  
×
×
×
×
×
×
[DE], A  
A, [HL]  
[HL], A  
(HL) A  
A, [HL+byte]  
[HL+byte], A  
A, X  
A (HL+byte)  
(HL+byte) A  
A X  
XCH  
A, rNote 2  
A r  
A, saddr  
A, sfr  
A (saddr)  
A sfr  
A, [DE]  
A (DE)  
A (HL)  
A (HL+byte)  
A, [HL]  
A, [HL+byte]  
Notes 1. Except r = A.  
2. Except r = A, X.  
Remark One instruction clock cycle is one CPU clock cycle (fCPU) selected by the processor clock control register  
(PCC).  
250  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
Mnemonic  
MOVW  
Operands  
Bytes Clocks  
Operation  
Flag  
Z
AC CY  
rp, #word  
3
2
2
1
1
1
2
3
2
2
3
1
2
2
3
2
2
3
1
2
2
3
2
2
3
1
2
6
6
8
4
4
8
4
6
4
4
8
6
6
4
6
4
4
8
6
6
4
6
4
4
8
6
6
rp word  
AX, saddrp  
saddrp, AX  
AX, rpNote  
rp, AXNote  
AX, rpNote  
A, #byte  
saddr, #byte  
A, r  
AX (saddrp)  
(saddrp) AX  
AX rp  
rp AX  
XCHW  
ADD  
AX rp  
A, CY A + byte  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
(saddr), CY (saddr) + byte  
A, CY A + r  
A, saddr  
A, !addr16  
A, [HL]  
A, CY A + (saddr)  
A, CY A + (addr16)  
A, CY A + (HL)  
A, [HL+byte]  
A, #byte  
saddr, #byte  
A, r  
A, CY A + (HL+byte)  
A, CY A + byte + CY  
(saddr), CY (saddr) + byte + CY  
A, CY A + r + CY  
A, CY A + (saddr) + CY  
A, CY A + (addr16) + CY  
A, CY A + (HL) + CY  
A, CY A + (HL+byte) + CY  
A, CY A byte  
ADDC  
A, saddr  
A, !addr16  
A, [HL]  
A, [HL+byte]  
A, #byte  
saddr, #byte  
A, r  
SUB  
(saddr), CY (saddr) byte  
A, CY A r  
A, saddr  
A, !addr16  
A, [HL]  
A, CY A (saddr)  
A, CY A (addr16)  
A, CY A (HL)  
A, [HL+byte]  
A, CY A (HL+byte)  
Note Only when rp = BC, DE, or HL.  
Remark One instruction clock cycle is one CPU clock cycle (fCPU) selected by the processor clock control register  
(PCC).  
251  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
Mnemonic  
SUBC  
Operands  
Bytes Clocks  
Operation  
Flag  
Z
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
AC CY  
A, #byte  
2
3
2
2
3
1
2
2
3
2
2
3
1
2
2
3
2
2
3
1
2
2
3
2
2
3
1
2
4
6
4
4
8
6
6
4
6
4
4
8
6
6
4
6
4
4
8
6
6
4
6
4
4
8
6
6
A, CY A byte CY  
(saddr), CY (saddr) byte CY  
A, CY A r CY  
A, CY A (saddr) CY  
A, CY A (addr16) CY  
A, CY A (HL) CY  
A, CY A (HL+byte) CY  
A A byte  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
saddr, #byte  
A, r  
A, saddr  
A, !addr16  
A, [HL]  
A, [HL+byte]  
A, #byte  
saddr, #byte  
A, r  
AND  
(saddr) (saddr) byte  
A A r  
A, saddr  
A, !addr16  
A, [HL]  
A A (saddr)  
A A (addr16)  
A A (HL)  
A, [HL+byte]  
A, #byte  
saddr, #byte  
A, r  
A A (HL+byte)  
A A byte  
OR  
(saddr) (saddr) byte  
A A r  
A, saddr  
A, !addr16  
A, [HL]  
A A (saddr)  
A A (addr16)  
A A (HL)  
A, [HL+byte]  
A, #byte  
saddr, #byte  
A, r  
A A (HL+byte)  
A A byte  
XOR  
(saddr) (saddr) byte  
A A r  
A, saddr  
A, !addr16  
A, [HL]  
A A (saddr)  
A A (addr16)  
A A (HL)  
A, [HL+byte]  
A A (HL+byte)  
Remark One instruction clock cycle is one CPU clock cycle (fCPU) selected by the processor clock control register  
(PCC).  
252  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
Mnemonic  
CMP  
Operands  
Bytes Clocks  
Operation  
Flag  
Z
×
×
×
×
×
×
×
×
×
×
×
×
×
×
AC CY  
A, #byte  
2
3
2
2
3
1
2
3
3
3
2
2
2
2
1
1
1
1
1
1
3
3
2
3
2
3
3
2
3
2
1
1
1
4
6
4
4
8
6
6
6
6
6
4
4
4
4
4
4
2
2
2
2
6
6
4
6
10  
6
6
4
6
10  
2
2
2
A byte  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
saddr, #byte  
A, r  
(saddr) byte  
A r  
A, saddr  
A, !addr16  
A, [HL]  
A, [HL+byte]  
AX, #word  
AX, #word  
AX, #word  
r
A (saddr)  
A (addr16)  
A (HL)  
A (HL+byte)  
AX, CY AX + word  
AX, CY AX word  
AX word  
ADDW  
SUBW  
CMPW  
INC  
r r + 1  
saddr  
r
(saddr) (saddr) + 1  
r r 1  
DEC  
saddr  
rp  
(saddr) (saddr) 1  
rp rp + 1  
INCW  
DECW  
ROR  
rp  
rp rp 1  
A, 1  
(CY, A7 A0, Am1 Am) × 1  
(CY, A0 A7, Am+1 Am) × 1  
(CY A0, A7 CY, Am1 Am) × 1  
(CY A7, A0 CY, Am+1 Am) × 1  
(saddr.bit) 1  
sfr.bit 1  
×
×
×
×
ROL  
A, 1  
RORC  
ROLC  
SET1  
A, 1  
A, 1  
saddr.bit  
sfr.bit  
A.bit  
A.bit 1  
PSW.bit  
[HL].bit  
saddr.bit  
sfr.bit  
PSW.bit 1  
×
×
×
×
×
(HL).bit 1  
CLR1  
(saddr.bit) 0  
sfr.bit 0  
A.bit  
A.bit 0  
PSW.bit  
[HL].bit  
CY  
PSW.bit 0  
×
(HL).bit 0  
SET1  
CLR1  
NOT1  
CY 1  
1
0
×
CY  
CY 0  
CY  
CY CY  
Remark One instruction clock cycle is one CPU clock cycle (fCPU) selected by the processor clock control register  
(PCC).  
253  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
Mnemonic  
Operands  
Bytes Clocks  
Operation  
Flag  
Z
AC CY  
CALL  
!addr16  
[addr5]  
3
1
6
8
(SP 1) (PC + 3)H, (SP 2) (PC + 3)L,  
PC addr16, SP SP 2  
CALLT  
(SP 1) (PC + 1)H, (SP 2) (PC + 1)L,  
PCH (00000000, addr5 + 1),  
PCL (00000000, addr5), SP SP 2  
RET  
1
1
6
8
PCH (SP + 1), PCL (SP), SP SP + 2  
RETI  
PCH (SP + 1), PCL (SP),  
R
R
R
R
R
R
PSW (SP + 2), SP SP + 3, NMIS 0  
PUSH  
POP  
PSW  
1
1
1
1
2
2
3
2
1
2
2
2
2
4
4
3
4
4
4
3
4
2
2
3
2
4
(SP 1) PSW, SP SP 1  
(SP 1) rpH, (SP 2) rpL, SP SP 2  
PSW (SP), SP SP + 1  
rp  
PSW  
4
rp  
6
rpH (SP + 1), rpL (SP), SP SP + 2  
SP AX  
MOVW  
BR  
SP, AX  
AX, SP  
!addr16  
$addr16  
AX  
8
6
AX SP  
6
PC addr16  
6
PC PC + 2 + jdisp8  
6
PCH A, PCL X  
BC  
$addr16  
$addr16  
$saddr16  
$saddr16  
6
PC PC + 2 + jdisp8 if CY = 1  
PC PC + 2 + jdisp8 if CY = 0  
PC PC + 2 + jdisp8 if Z = 1  
PC PC + 2 + jdisp8 if Z = 0  
PC PC + 4 + jdisp8 if (saddr.bit) = 1  
PC PC + 4 + jdisp8 if sfr.bit = 1  
PC PC + 3 + jdisp8 if A.bit = 1  
PC PC + 4 + jdisp8 if PSW.bit = 1  
PC PC + 4 + jdisp8 if (saddr.bit) = 0  
PC PC + 4 + jdisp8 if sfr.bit = 0  
PC PC + 3 + jdisp8 if A.bit = 0  
PC PC + 4 + jdisp8 if PSW.bit = 0  
B B 1, then PC PC + 2 + jdisp8 if B 0  
C C 1, then PC PC + 2 + jdisp8 if C 0  
BNC  
BZ  
6
6
BNZ  
BT  
6
saddr.bit, $addr16  
sfr.bit, $addr16  
A.bit, $addr16  
PSW.bit, $addr16  
saddr.bit, $addr16  
sfr.bit, $addr16  
A.bit, $addr16  
PSW.bit, $addr16  
B, $addr16  
10  
10  
8
10  
10  
10  
8
BF  
10  
6
DBNZ  
C, $addr16  
6
saddr, $addr16  
8
(saddr) (saddr) 1, then  
PC PC + 3 + jdisp8 if (saddr) 0  
NOP  
EI  
1
3
3
1
1
2
6
6
2
2
No Operation  
IE 1 (Enable Interrupt)  
IE 0 (Disable Interrupt)  
Set HALT Mode  
DI  
HALT  
STOP  
Set STOP Mode  
Remark One instruction clock cycle is one CPU clock cycle (fCPU) selected by the processor clock control register  
(PCC).  
254  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
20.3 Instructions Listed by Addressing Type  
(1) 8-bit instructions  
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, INC, DEC, ROR, ROL, RORC, ROLC, PUSH,  
POP, DBNZ  
2nd Operand  
#byte  
A
r
sfr  
saddr  
!addr16  
MOV  
PSW  
[DE]  
[HL] [HL+byte] $addr16  
1
None  
1st Operand  
A
ADD  
MOVNote MOV  
XCHNote XCH  
ADD  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
MOV  
XCH  
MOV  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
ROR  
ADDC  
SUB  
SUBC  
AND  
OR  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
ROL  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
RORC  
ROLC  
ADDC  
SUB  
SUBC  
XOR  
CMP  
AND  
OR  
XOR  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
CMP  
r
MOV  
MOV  
INC  
DEC  
B, C  
sfr  
DBNZ  
DBNZ  
MOV  
MOV  
MOV  
saddr  
MOV  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
INC  
DEC  
XOR  
CMP  
!addr16  
PSW  
MOV  
MOV  
MOV  
PUSH  
POP  
[DE]  
MOV  
MOV  
MOV  
[HL]  
[HL+byte]  
Note Except r = A.  
255  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
(2) 16-bit instructions  
MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW  
2nd Operand  
1st Operand  
#word  
AX  
rpNote  
saddrp  
MOVW  
SP  
None  
AX  
ADDW  
SUBW  
CMPW  
MOVW  
XCHW  
MOVW  
rp  
MOVW  
MOVWNote  
INCW  
DECW  
PUSH  
POP  
saddrp  
SP  
MOVW  
MOVW  
Note Only when rp = BC, DE, or HL.  
(3) Bit manipulation instructions  
SET1, CLR1, NOT1, BT, BF  
2nd Operand  
1st Operand  
$addr16  
None  
A.bit  
BT  
BF  
SET1  
CLR1  
sfr.bit  
BT  
BF  
SET1  
CLR1  
saddr.bit  
PSW.bit  
[HL].bit  
CY  
BT  
BF  
SET1  
CLR1  
BT  
BF  
SET1  
CLR1  
SET1  
CLR1  
SET1  
CLR1  
NOT1  
256  
User’s Manual U14643EJ2V0UD  
CHAPTER 20 INSTRUCTION SET  
(4) Call instructions/branch instructions  
CALL, CALLT, BR, BC, BNC, BZ, BNZ, DBNZ  
2nd Operand  
1st Operand  
AX  
!addr16  
[addr5]  
CALLT  
$addr16  
Basic instructions  
BR  
CALL  
BR  
BR  
BC  
BNC  
BZ  
BNZ  
Compound instructions  
DBNZ  
(5) Other instructions  
RET, RETI, NOP, EI, DI, HALT, STOP  
257  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A))  
(EXPANDED-SPECIFICATION PRODUCTS)  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VI1  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–10  
Unit  
V
VDD = AVDD  
Input voltage  
Pins other than P50 to P53  
V
VI2  
P50 to P53  
With N-ch open drain  
V
With an on-chip pull-up resistor  
V
Output voltage  
VO  
IOH  
V
Output current, high  
Per pin  
µPD78910xA, 78911xA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
Total for all pins  
Per pin  
–30  
µPD78910xA(A),  
–7  
78911xA(A)  
Total for all pins  
Per pin  
–22  
Output current, low  
IOL  
µPD78910xA, 78911xA  
30  
Total for all pins  
Per pin  
160  
µPD78910xA(A),  
10  
78911xA(A)  
Total for all pins  
120  
Operating ambient temperature  
Storage temperature  
TA  
–40 to +85  
–65 to +150  
Tstg  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
258  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
Ceramic  
Oscillation frequency (fX)Note 1  
VDD = oscillation voltage  
range  
1.0  
10  
MHz  
IC0 X1  
X2  
resonator  
Oscillation stabilization  
timeNote 2  
After VDD reaches  
oscillation voltage range  
MIN.  
4
ms  
C1  
C2  
IC0 X1  
X2  
Crystal  
Oscillation frequency (fX)Note 1  
1.0  
10  
10  
30  
MHz  
ms  
resonator  
Oscillation stabilization  
timeNote 2  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
C1  
X1  
C2  
ms  
External  
clock  
X1 input frequency (fX)Note 1  
1.0  
45  
10  
MHz  
ns  
X2  
X1 input high-/low-level  
width (tXH, tXL)  
VDD = 4.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
500  
500  
500  
5.0  
75  
ns  
85  
ns  
X1 input frequency (fX)Note 1  
1.0  
MHz  
X1  
X2  
X1 input high-/low-level  
width (tXH, tXL)  
85  
500  
ns  
OPEN  
Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after a reset or STOP mode release. Use a resonator that  
stabilizes oscillation during the oscillation wait time.  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
259  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
Recommended Oscillator Constant  
Ceramic resonator (TA = 40 to +85°C)  
(µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (Expanded-specification products)  
Manufacturer  
Part Number  
Frequency  
(MHz)  
Recommended  
Oscillation Voltage  
Range (VDD)  
Remark  
Circuit Constant (pF)  
C1  
C2  
MIN.  
2.1  
MAX.  
5.5  
Murata Mfg.  
Co., Ltd.  
CSBLA1M00J58-B0Note  
CSBFB1M00J58-R1Note  
CSTCC2M00G56-R0  
CSTLS2M00G56-B0  
CSTCR4M00G53-R0  
CSTLS4M00GG53-B0  
CSTCR4M19G53-R0  
CSTLS4M19GG53-B0  
CSTCR4M91G53-R0  
CSTLS4M91GG53-B0  
CSTCR5M00G53-R0  
CSTLS5M00GG53-B0  
CSTCR6M00G53-R0  
CSTLS6M00GG53-B0  
CSTCE8M00G52-R0  
CSTLS8M00G53-B0  
CSTCE8M38G52-R0  
CSTLS8M38G53-B0  
CSTCE10M0G52-R0  
CSTLS10M00G53-B0  
1.0  
2.0  
100  
100  
Rd = 2.2 kΩ  
1.8  
On-chip capacitor  
version  
4.0  
4.194  
4.915  
5.0  
6.0  
8.0  
8.388  
10.0  
Note A limiting resistor (Rd = 2.2 k) is required when the CSBLA1M00J58-B0 and CSBFB1M00J58-R1 (1.0  
MHz) of Murata Mfg. Co., Ltd. are used as ceramic resonators (see the figure below). A limiting resistor is  
not necessary when other recommended resonators are used.  
X1  
X2  
CSBLA1M00J58-B0  
CSBFB1M00J58-R1  
Rd  
C2  
C1  
Caution This oscillator constant is a reference value based on evaluation under a specific environment  
by the resonator manufacturer. If optimization of oscillator characteristics is necessary in the  
actual application, apply to the resonator manufacturer for evaluation on the implementation  
circuit.  
The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the  
µPD78910xA, 78911xA, 78910xA(A), and 78911xA(A) so that the internal operating conditions are  
within the specifications of the DC and AC characteristics.  
260  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
Output current, high  
IOH  
Per pin  
µPD78910xA, 78911xA  
Total for all pins  
Per pin  
–15  
–1  
µPD78910xA(A), 78911xA(A)  
µPD78910xA, 78911xA  
Total for all pins  
Per pin  
–11  
10  
Output current, low  
Input voltage, high  
IOL  
Total for all pins  
Per pin  
80  
µPD78910xA(A), 78911xA(A)  
3
Total for all pins  
60  
VIH1  
VIH2  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
0.8VDD  
0.9VDD  
VDD  
VDD  
V
P50 to P53 With N-ch open VDD = 2.7 to 5.5 V  
12  
V
drain  
VDD = 1.8 to 5.5 V  
12  
V
With on-chip  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD  
V
pull-up resistor  
VDD  
V
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
VIL4  
RESET, P20 to P25  
VDD  
V
VDD  
V
X1, X2  
VDD = 4.5 to 5.5 V VDD – 0.5  
VDD = 1.8 to 5.5 V VDD – 0.1  
VDD  
V
VDD  
V
Input voltage, low  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
0.3VDD  
0.1VDD  
0.3VDD  
0.1VDD  
0.2VDD  
0.1VDD  
0.4  
V
0
V
P50 to P53  
0
V
0
V
RESET, P20 to P25  
X1, X2  
0
V
0
V
0
V
0
0.1  
V
Output voltage, high  
Output voltage, low  
VOH1  
VOH2  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
VDD – 1.0  
VDD – 0.5  
V
VDD = 1.8 to 5.5 V, IOH = –100 µA  
V
Pins other  
than P50 to  
P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
1.0  
1.0  
V
(µPD78910xA, 78911xA)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
V
(µPD78910xA(A), 78911xA(A))  
VDD = 1.8 to 5.5 V, IOL = 400 µA  
0.5  
1.0  
V
V
VOL2  
P50 to P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
(µPD78910xA, 78911xA)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
1.0  
0.4  
V
V
(µPD78910xA(A), 78911xA(A))  
VDD = 1.8 to 5.5 V, IOL = 1.6 mA  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
261  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage current,  
high  
ILIH1  
Pins other than X1, X2,  
VI = VDD  
µA  
or P50 to P53  
ILIH2  
X1, X2  
20  
20  
µA  
µA  
ILIH3  
P50 to P53 (N-ch open  
drain)  
VI = 12 V  
VI = 0 V  
Input leakage current,  
low  
ILIL1  
Pins other than X1, X2,  
or P50 to P53  
–3  
µA  
ILIL2  
X1, X2  
–20  
µA  
µA  
ILIL3  
P50 to P53 (N-ch open  
drain)  
–3Note 1  
µA  
µA  
k  
kΩ  
mA  
mA  
Output leakage  
current, high  
ILOH  
ILOL  
R1  
VO = VDD  
3
Output leakage  
current, low  
VO = 0 V  
–3  
Software pull-up  
resistance  
VI = 0 V, for pins other than P50 to P53 or P60 to  
P63  
50  
10  
100  
30  
200  
60  
Mask option pull-up  
resistance  
R2  
VI = 0 V, P50 to P53  
Note 2  
IDD1  
Power supply  
current  
10.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
VDD = 5.0 V ±10%Note 4  
3.2  
2.0  
8.0  
4.7  
oscillation operating mode  
6.0 MHz crystal oscillation  
operating mode  
5.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%Note 4  
1.8  
0.45  
0.25  
1.5  
3.2  
0.9  
mA  
mA  
mA  
mA  
oscillation operating  
mode (C1 = C2 = 22 pF)  
0.45  
3.0  
Note 2  
IDD2  
10.0 MHz crystal  
oscillation HALT mode  
6.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
0.9  
1.8  
mA  
oscillation HALT mode  
5.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%  
0.8  
0.3  
1.6  
0.6  
0.3  
10  
mA  
mA  
mA  
µA  
oscillation HALT mode  
(C1 = C2 = 22 pF)  
0.15  
0.1  
Note 2  
IDD3  
STOP mode  
µA  
VDD = 3.0 V ±10%  
0.05  
0.05  
4.4  
5.0  
5.0  
10.3  
µA  
VDD = 2.0 V ±10%  
Note 3  
IDD4  
10.0 MHz crystal oscillation  
A/D operating mode  
VDD = 5.0 V ±10%Note 4  
mA  
6.0 MHz crystal oscillation  
A/D operating mode  
VDD = 5.0 V ±10%Note 4  
3.2  
7.0  
mA  
5.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
3.0  
5.5  
3.2  
2.7  
mA  
mA  
mA  
oscillation A/D operating  
mode (C1 = C2 = 22 pF)  
1.65  
1.25  
262  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
Notes 1. When pull-up resistors are not connected to P50 to P53 (specified by the mask option) and when port 5  
is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle time after a  
read instruction has been executed to port 5.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
3. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
4. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
5. Low-speed mode operation (when PCC is set to 02H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
263  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
AC Characteristics  
(1) Basic operation (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.2  
0.33  
0.4  
1.6  
0.1  
1.8  
0
TYP.  
MAX.  
Unit  
TCY  
VDD = 4.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
INTP0 to INTP2  
8
8
8
8
µs  
µs  
(minimum instruction  
execution time)  
µs  
µs  
TI80 input high-/low-  
level width  
tTIH,  
µs  
tTIL  
µs  
MHz  
kHz  
TI80 input frequency  
fTI  
4
0
275  
Interrupt input high-  
/low-level width  
tINTH,  
10  
µs  
µs  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
264  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
(2) Serial interface (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY1  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
tKCY1/2 – 50  
tKCY1/2 – 150  
150  
SCK20 high-/low-  
level width  
tKH1,  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
(to SCK20)  
500  
SI20 hold time  
400  
(from SCK20)  
600  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
250  
time from SCK20↓  
0
1000  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY2  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SCK20 high-/low-  
level width  
tKH2,  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
300  
time from SCK20↓  
0
1000  
120  
ns  
ns  
SO20 setup time  
(to SS20when  
SS20 is used)  
tKAS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
400  
240  
800  
ns  
ns  
ns  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SS20 setup time  
tSSK2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
100  
150  
400  
ns  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
VDD = 1.8 to 5.5 V  
600  
ns  
Note R and C are the load resistance and load capacitance of the SO output line.  
265  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
78125  
19531  
Unit  
bps  
bps  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
400  
ns  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
1600  
ns  
Transfer rate  
39063  
9766  
1
bps  
bps  
µs  
ASCK20 rise/fall time  
tR,  
tF  
266  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
AC Timing Measurement Points (Excluding X1 Input)  
0.8VDD  
0.8VDD  
0.2VDD  
Measurement points  
0.2VDD  
Clock Timing  
1/f  
X
t
XL  
t
XH  
V
IH4 (MIN.)  
X1 input  
V
IL4 (MAX.)  
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
267  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
268  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
8-Bit A/D Converter Characteristics (µPD78910xA, 78910xA(A))  
(TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
8
TYP.  
8
MAX.  
8
Unit  
Bits  
%FSR  
%FSR  
µs  
Overall errorNotes 1, 2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
±0.4  
±0.8  
±0.6  
±1.2  
100  
100  
100  
AVDD  
Conversion time  
tCONV  
12  
14  
28  
0
µs  
µs  
Analog input  
voltage  
VIAN  
V
Notes 1. Excludes quantization error (±0.2%).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
10-Bit A/D Converter Characteristics (µPD78911xA, 78911xA(A))  
(TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1, 2  
Conversion time  
4.5 V VDD 5.5 V  
±0.2  
±0.4  
±0.8  
±0.4  
±0.6  
±1.2  
100  
%FSR  
%FSR  
%FSR  
µs  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
tCONV  
12  
14  
28  
100  
µs  
100  
µs  
Zero-scale errorNotes 1, 2  
±0.4  
±0.6  
±1.2  
±0.4  
±0.6  
±1.2  
±2.5  
±4.5  
±8.5  
±1.5  
±2.0  
±3.5  
AVDD  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
Full-scale errorNotes 1, 2  
Integral linearity  
errorNote 1  
ILE  
LSB  
LSB  
Differential linearity  
errorNote 1  
DLE  
VIAN  
LSB  
LSB  
LSB  
Analog input voltage  
0
V
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
269  
User’s Manual U14643EJ2V0UD  
CHAPTER 21 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (EXPANDED-SPECIFICATION PRODUCTS)  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
tWAIT  
Release by RESET  
Release by interrupt request  
215/fX  
s
s
stabilization wait  
timeNote 1  
Note 2  
Notes 1. The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
2. Selection of 212/fX, 215/fX, or 217/fX is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation  
stabilization time select register (OSTS).  
Remark fX: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
VDD  
VDDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
VDDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
270  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A))  
(CONVENTIONAL-SPECIFICATION PRODUCTS)  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VI1  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–10  
Unit  
V
VDD = AVDD  
Input voltage  
Pins other than P50 to P53  
V
VI2  
P50 to P53  
With N-ch open drain  
V
With an on-chip pull-up resistor  
V
Output voltage  
VO  
IOH  
V
Output current, high  
Per pin  
µPD78910xA, 78911xA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
Total for all pins  
Per pin  
–30  
µPD78910xA(A),  
–7  
78911xA(A)  
Total for all pins  
Per pin  
–22  
Output current, low  
IOL  
µPD78910xA, 78911xA  
30  
Total for all pins  
Per pin  
160  
µPD78910xA(A),  
10  
78911xA(A)  
Total for all pins  
120  
Operating ambient temperature  
Storage temperature  
TA  
–40 to +85  
–65 to +150  
Tstg  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
271  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
Ceramic  
Oscillation frequency (fX)Note 1  
VDD = oscillation voltage  
range  
1.0  
5.0  
MHz  
IC0 X1  
X2  
resonator  
Oscillation stabilization  
timeNote 2  
After VDD reaches  
oscillation voltage range  
MIN.  
4
ms  
C1  
C2  
IC0 X1  
X2  
Crystal  
Oscillation frequency (fX)Note 1  
1.0  
5.0  
10  
30  
MHz  
ms  
resonator  
Oscillation stabilization  
timeNote 2  
VDD = 4.5 to 5.5 V  
C1  
X1  
C2  
V
DD = 1.8 to 5.5 V  
Note 1  
)
External  
clock  
X1 input frequency (f  
X
1.0  
85  
5.0  
MHz  
ns  
X2  
X1 input high-/low-level  
width (tXH, tXL)  
500  
X1 input frequency (fX)Note 1  
VDD = 2.7 to 5.5 V  
1.0  
85  
5.0  
MHz  
ns  
X1  
X2  
X1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after a reset or STOP mode release. Use a resonator that  
stabilizes oscillation during the oscillation wait time.  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS  
.
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
272  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
Recommended Oscillator Constant  
Ceramic resonator (TA = 40 to +85°C)  
(µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (Conventional-specification products)  
Manufacturer  
Part Number  
Frequency  
(MHz)  
Recommended  
Oscillation Voltage  
Range (VDD)  
Remark  
Circuit Constant (pF)  
C1  
C2  
MIN.  
2.1  
MAX.  
5.5  
Murata Mfg.  
Co., Ltd.  
CSBLA1M00J58-B0Note  
CSBFB1M00J58-R1Note  
CSTCC2M00G56-R0  
CSTLS2M00G56-B0  
CSTCR4M00G53-R0  
CSTLS4M00GG53-B0  
CSTCR4M19G53-R0  
CSTLS4M19GG53-B0  
CSTCR4M91G53-R0  
CSTLS4M91GG53-B0  
CSTCR5M00G53-R0  
CSTLS5M00GG53-B0  
1.0  
2.0  
100  
100  
Rd = 2.2 k  
1.8  
On-chip capacitor  
version  
4.0  
4.194  
4.915  
5.0  
Note A limiting resistor (Rd = 2.2 k) is required when the CSBLA1M00J58-B0 and CSBFB1M00J58-R1 (1.0  
MHz) of Murata Mfg. Co., Ltd. are used as ceramic resonators (see the figure below). A limiting resistor is  
not necessary when other recommended resonators are used.  
X1  
X2  
CSBLA1M00J58-B0  
CSBFB1M00J58-R1  
Rd  
C2  
C1  
Caution This oscillator constant is a reference value based on evaluation under a specific environment  
by the resonator manufacturer. If optimization of oscillator characteristics is necessary in the  
actual application, apply to the resonator manufacturer for evaluation on the implementation  
circuit.  
The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the  
µPD78910xA, 78911xA, 78910xA(A), and 78911xA(A) so that the internal operating conditions are  
within the specifications of the DC and AC characteristics.  
273  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
Output current, high  
IOH  
Per pin  
µPD78910xA, 78911xA  
Total for all pins  
Per pin  
–15  
–1  
µPD78910xA(A), 78911xA(A)  
µPD78910xA, 78911xA  
Total for all pins  
Per pin  
–11  
10  
Output current, low  
Input voltage, high  
IOL  
Total for all pins  
Per pin  
80  
µPD78910xA(A), 78911xA(A)  
3
Total for all pins  
60  
VIH1  
VIH2  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
0.8VDD  
0.9VDD  
VDD  
VDD  
V
P50 to P53 With N-ch open VDD = 2.7 to 5.5 V  
12  
V
drain  
VDD = 1.8 to 5.5 V  
12  
V
With on-chip  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD  
V
pull-up resistor  
VDD  
V
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
VIL4  
RESET, P20 to P25  
VDD  
V
VDD  
V
X1, X2  
VDD = 4.5 to 5.5 V VDD – 0.5  
VDD = 1.8 to 5.5 V VDD – 0.1  
VDD  
V
VDD  
V
Input voltage, low  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
0.3VDD  
0.1VDD  
0.3VDD  
0.1VDD  
0.2VDD  
0.1VDD  
0.4  
V
0
V
P50 to P53  
0
V
0
V
RESET, P20 to P25  
X1, X2  
0
V
0
V
0
V
0
0.1  
V
Output voltage, high  
Output voltage, low  
VOH1  
VOH2  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
VDD – 1.0  
VDD – 0.5  
V
VDD = 1.8 to 5.5 V, IOH = –100 µA  
V
Pins other  
than P50 to  
P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
1.0  
1.0  
V
(µPD78910xA, 78911xA)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
V
(µPD78910xA(A), 78911xA(A))  
VDD = 1.8 to 5.5 V, IOL = 400 µA  
0.5  
1.0  
V
V
VOL2  
P50 to P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
(µPD78910xA, 78911xA)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
1.0  
0.4  
V
V
(µPD78910xA(A), 78911xA(A))  
VDD = 1.8 to 5.5 V, IOL = 1.6 mA  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
274  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage current,  
high  
ILIH1  
Pins other than X1, X2,  
VI = VDD  
µA  
or P50 to P53  
ILIH2  
X1, X2  
20  
20  
µA  
µA  
ILIH3  
P50 to P53 (N-ch open  
drain)  
VI = 12 V  
VI = 0 V  
Input leakage current,  
low  
ILIL1  
Pins other than X1, X2,  
or P50 to P53  
–3  
µA  
ILIL2  
X1, X2  
–20  
µA  
µA  
ILIL3  
P50 to P53 (N-ch open  
drain)  
–3Note 1  
µA  
µA  
k  
kΩ  
Output leakage  
current, high  
ILOH  
ILOL  
R1  
VO = VDD  
3
Output leakage  
current, low  
VO = 0 V  
–3  
Software pull-up  
resistance  
VI = 0 V, for pins other than P50 to P53 or P60 to  
P63  
50  
10  
100  
30  
200  
60  
Mask option pull-up  
resistance  
R2  
VI = 0 V, P50 to P53  
Note 2  
Power supply  
current  
IDD1  
5.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%  
1.8  
0.45  
0.25  
0.8  
3.2  
0.9  
0.45  
1.6  
0.6  
0.3  
10  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
oscillation operating  
mode (C1 = C2 = 22 pF)  
Note 2  
IDD2  
5.0 MHz crystal  
oscillation HALT mode  
(C1 = C2 = 22 pF)  
0.3  
0.15  
0.1  
Note 2  
IDD3  
STOP mode  
µA  
VDD = 3.0 V ±10%  
0.05  
0.05  
3.0  
5.0  
5.0  
5.5  
3.2  
2.7  
µA  
VDD = 2.0 V ±10%  
Note 3  
IDD4  
5.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
mA  
mA  
oscillation A/D operating  
mode (C1 = C2 = 22 pF)  
1.65  
1.25  
mA  
Notes 1. When pull-up resistors are not connected to P50 to P53 (specified by the mask option) and when port 5  
is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle time after a  
read instruction has been executed to port 5.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
3. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
4. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
5. Low-speed mode operation (when PCC is set to 02H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
275  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
AC Characteristics  
(1) Basic operation (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
8
Unit  
TCY  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
µs  
(minimum instruction  
execution time)  
1.6  
8
µs  
TI80 input high-/low-  
level width  
tTIH,  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
INTP0 to INTP2  
0.1  
1.8  
0
µs  
µs  
tTIL  
MHz  
kHz  
TI80 input frequency  
fTI  
4
0
275  
Interrupt input high-  
/low-level width  
tINTH,  
10  
µs  
µs  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
276  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
(2) Serial interface (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY1  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
tKCY1/2 – 50  
tKCY1/2 – 150  
150  
SCK20 high-/low-  
level width  
tKH1,  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
(to SCK20)  
500  
SI20 hold time  
400  
(from SCK20)  
600  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
250  
time from SCK20↓  
0
1000  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY2  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SCK20 high-/low-  
level width  
tKH2,  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
300  
time from SCK20↓  
0
1000  
120  
ns  
ns  
SO20 setup time  
(for SS20when  
SS20 is used)  
tKAS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
400  
240  
800  
ns  
ns  
ns  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SS20 setup time  
tSSK2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
100  
150  
400  
ns  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
VDD = 1.8 to 5.5 V  
600  
ns  
Note R and C are the load resistance and load capacitance of the SO output line.  
277  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
78125  
19531  
Unit  
bps  
bps  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
400  
ns  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
1600  
ns  
Transfer rate  
39063  
9766  
1
bps  
bps  
µs  
ASCK20 rise/fall time  
tR,  
tF  
278  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
AC Timing Measurement Points (Excluding X1 Input)  
0.8VDD  
0.8VDD  
0.2VDD  
Measurement points  
0.2VDD  
Clock Timing  
1/f  
X
t
XL  
t
XH  
V
IH4 (MIN.)  
X1 input  
V
IL4 (MAX.)  
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
279  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
280  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
8-Bit A/D Converter Characteristics (µPD78910xA, 78910xA(A))  
(TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
8
TYP.  
8
MAX.  
8
Unit  
Bits  
%FSR  
%FSR  
µs  
Overall errorNotes 1, 2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
±0.4  
±0.8  
±0.6  
±1.2  
100  
100  
AVDD  
Conversion time  
tCONV  
VIAN  
14  
28  
0
µs  
Analog input  
voltage  
V
Notes 1. Excludes quantization error (±0.2%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
10-Bit A/D Converter Characteristics (µPD78911xA, 78911xA(A))  
(TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1, 2  
4.5 V VDD 5.5 V  
±0.2  
±0.4  
±0.8  
±0.4  
±0.6  
±1.2  
100  
%FSR  
%FSR  
%FSR  
µs  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
Conversion time  
tCONV  
14  
28  
100  
µs  
Zero-scale errorNotes 1, 2  
±0.4  
±0.6  
±1.2  
±0.4  
±0.6  
±1.2  
±2.5  
±4.5  
±8.5  
±1.5  
±2.0  
±3.5  
AVDD  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
Full-scale errorNotes 1, 2  
Integral linearity  
errorNote 1  
ILE  
LSB  
LSB  
Differential linearity  
errorNote 1  
DLE  
VIAN  
LSB  
LSB  
LSB  
Analog input voltage  
0
V
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
281  
User’s Manual U14643EJ2V0UD  
CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A)) (CONVENTIONAL-SPECIFICATION PRODUCTS)  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
tWAIT  
Release by RESET  
Release by interrupt request  
215/fX  
s
s
stabilization wait  
timeNote 1  
Note 2  
Notes 1. The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
2. Selection of 212/fX, 215/fX, or 217/fX is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation  
stabilization time select register (OSTS).  
Remark fX: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
VDD  
VDDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
VDDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
282  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS  
(µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VI1  
Conditions  
Ratings  
Unit  
V
VDD = AVDD  
–0.3 to +6.5  
Input voltage  
Pins other than P50 to P53  
–0.3 to VDD + 0.3  
V
VI2  
P50 to P53  
With N-ch open drain  
–0.3 to +13  
V
With an on-chip pull-up resistor  
–0.3 to VDD + 0.3  
V
Output voltage  
VO  
IOH  
–0.3 to VDD + 0.3  
V
Output current, high  
Per pin  
µPD78910xA(A1),  
–4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
78911xA(A1)  
Total for all pins  
Per pin  
–14  
µPD78910xA(A2),  
–2  
78911xA(A2)  
Total for all pins  
Per pin  
–6  
Output current, low  
IOL  
µPD78910xA(A1),  
5
78911xA(A1)  
Total for all pins  
Per pin  
80  
2
µPD78910xA(A2),  
78911xA(A2)  
Total for all pins  
40  
Operating ambient temperature  
Storage temperature  
TA  
µPD78910xA(A1), 78911xA(A1)  
µPD78910xA(A2), 78911xA(A2)  
–40 to +110  
–40 to +125  
–65 to +150  
Tstg  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
283  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
System Clock Oscillator Characteristics  
(VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78910xA(A1), 78911xA(A1)),  
–40 to +125°C (µPD78910xA(A2), 78911xA(A2)) )  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
Ceramic  
Oscillation frequency (fX)Note 1  
VDD = oscillation voltage  
range  
1.0  
5.0  
MHz  
IC0 X1  
X2  
resonator  
Oscillation stabilization  
timeNote 2  
After VDD reaches  
oscillation voltage range  
MIN.  
4
ms  
C1  
X1  
C2  
External  
clock  
X1 input frequency (fX)Note 1  
1.0  
85  
5.0  
MHz  
ns  
X2  
X1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after a reset or STOP mode release. Use a resonator that  
stabilizes oscillation during the oscillation wait time.  
Cautions 1. When using the system clock oscillator, wire as follows in the area enclosed by the broken  
lines in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
2. Use a ceramic resonator that is guaranteed by the resonator manufacturer to operate under  
the following conditions.  
µPD78910xA(A1), 78911xA(A1): TA = 110°C  
µPD78910xA(A2), 78911xA(A2): TA = 125°C  
Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the  
oscillation themselves or apply to the resonator manufacturer for evaluation.  
284  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
DC Characteristics (VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78910xA(A1), 78911xA(A1)),  
–40 to +125°C (µPD78910xA(A2), 78911xA(A2)) ) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
Output current, high  
IOH  
Per pin  
µPD78910xA(A1),  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
78911xA(A1)  
Total for all pins  
Per pin  
–7  
µPD78910xA(A2),  
–1  
78911xA(A2)  
Total for all pins  
Per pin  
–3  
Output current, low  
Input voltage, high  
IOL  
µPD78910xA(A1),  
1.6  
78911xA(A1)  
Total for all pins  
Per pin  
40  
µPD78910xA(A2),  
1.6  
78911xA(A2)  
Total for all pins  
20  
VIH1  
VIH2  
Pins other than described below  
0.7VDD  
0.7VDD  
0.7VDD  
0.8VDD  
VDD – 0.1  
0
VDD  
10  
P50 to P53  
With N-ch open drain  
With on-chip pull-up resistor  
V
VDD  
VDD  
VDD  
0.3VDD  
0.3VDD  
0.2VDD  
0.1  
V
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
VIL4  
VOH1  
VOH2  
VOL1  
RESET, P20 to P25  
X1, X2  
V
V
Input voltage, low  
Pins other than described below  
P50 to P53  
V
0
V
RESET, P20 to P25  
X1, X2  
0
V
0
V
Output voltage, high  
Output voltage, low  
IOH = –1 mA  
VDD – 2.0  
VDD – 1.0  
V
IOH = –100 µA  
V
Pins other than  
P50 to P53  
IOL = 1.6 mA  
IOL = 400 µA  
IOL = 1.6 mA  
2.0  
1.0  
1.0  
10  
V
V
VOL2  
P50 to P53  
V
Input leakage current,  
high  
ILIH1  
Pins other than X1, X2, or P50  
to P53  
VI = VDD  
µA  
ILIH2  
ILIH3  
ILIL1  
X1, X2  
20  
80  
µA  
µA  
µA  
P50 to P53 (N-ch open drain)  
VI = 10 V  
VI = 0 V  
Input leakage current,  
low  
Pins other than X1, X2, or P50  
to P53  
–10  
ILIL2  
ILIL3  
ILOH  
X1, X2  
–20  
–10Note  
10  
µA  
µA  
µA  
P50 to P53 (N-ch open drain)  
VO = VDD  
Output leakage  
current, high  
µA  
Output leakage  
current, low  
ILOL  
VO = 0 V  
–10  
Note When pull-up resistors are not connected to P50 to P53 (specified by the mask option) and when port 5 is in  
input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle time after a read  
instruction has been executed to port 5.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
285  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
DC Characteristics (VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78910xA(A1), 78911xA(A1)),  
–40 to +125°C (µPD78910xA(A2), 78911xA(A2)) ) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
50  
TYP.  
100  
MAX.  
300  
Unit  
Software pull-up  
resistance  
R1  
VI = 0 V, for pins other than P50 to P53 or P60 to  
P63  
k  
Mask option pull-up  
resistance  
R2  
VI = 0 V, P50 to P53  
10  
30  
1.8  
0.8  
100  
8.0  
5.0  
kΩ  
mA  
mA  
Note 1  
Power supply  
current  
IDD1  
5.0 MHz crystal oscillation operating mode  
(C1 = C2 = 22 pF)Note 3  
Note 1  
IDD2  
5.0 MHz crystal oscillation HALT mode  
(C1 = C2 = 22 pF)Note 3  
Note 1  
µA  
IDD3  
STOP mode  
0.1  
3.0  
1000  
10  
Note 2  
IDD4  
5.0 MHz crystal oscillation A/D operating mode  
(C1 = C2 = 22 pF)Note 3  
mA  
Notes 1. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
3. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
286  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
AC Characteristics  
(1) Basic operation (VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78910xA(A1), 78911xA(A1)),  
–40 to +125°C (µPD78910xA(A2), 78911xA(A2)) )  
Parameter  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
8
Unit  
Cycle time  
TCY  
µs  
(minimum instruction  
execution time)  
TI80 input high-/low-  
level width  
tTIH,  
0.1  
µs  
tTIL  
MHz  
TI80 input frequency  
fTI  
0
4
Interrupt input high-  
/low-level width  
tINTH,  
INTP0 to INTP2  
10  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
µs  
µs  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
287  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
(2) Serial interface (VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78910xA(A1), 78911xA(A1)),  
–40 to +125°C (µPD78910xA(A2), 78911xA(A2)) )  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
SCK20 cycle time  
tKCY1  
SCK20 high-/low-  
level width  
tKH1,  
tKCY1/2 – 50  
ns  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
150  
400  
0
ns  
ns  
ns  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k, C = 100 pFNote  
250  
time from SCK20↓  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
400  
TYP.  
MAX.  
Unit  
ns  
SCK20 cycle time  
tKCY2  
SCK20 high-/low-  
level width  
tKH2,  
ns  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
tKAS2  
100  
400  
0
ns  
ns  
ns  
ns  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k, C = 100 pFNote  
300  
120  
time from SCK20↓  
SO20 setup time  
(to SS20when  
SS20 is used)  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
240  
ns  
SS20 setup time  
tSSK2  
100  
400  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
Note R and C are the load resistance and load capacitance of the SO output line.  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
bps  
78125  
288  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
400  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
Transfer rate  
39063  
1
bps  
ASCK20 rise/fall time  
tR,  
tF  
µs  
289  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
AC Timing Measurement Points (Excluding X1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/f  
X
t
XL  
t
XH  
V
IH4 (MIN.)  
X1 input  
V
IL4 (MAX.)  
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
290  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
291  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
8-Bit A/D Converter Characteristics (µPD78910xA(A1), 78910xA(A2) only)  
(AVDD = VDD = 4.5 to 5.5 V, AVSS = VSS = 0 V, TA = –40 to +110°C (µPD78910xA(A1)),  
–40 to +125°C (µPD78910xA(A2)) )  
Parameter  
Symbol  
Conditions  
MIN.  
8
TYP.  
8
MAX.  
8
Unit  
Bits  
%FSR  
µs  
Resolution  
Overall errorNotes 1, 2  
Conversion time  
±0.4  
±1.0  
28  
tCONV  
VIAN  
14  
0
Analog input  
voltage  
AVDD  
V
Notes 1. Excludes quantization error (±0.2%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
10-Bit A/D Converter Characteristics (µPD78911xA(A1), 78911xA(A2) only)  
(AVDD = VDD = 4.5 to 5.5 V, AVSS = VSS = 0 V, TA = –40 to +110°C (µPD78911xA(A1)),  
–40 to +125°C (µPD78911xA(A2)) )  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1, 2  
±0.4  
±0.6  
28  
%FSR  
µs  
Conversion time  
tCONV  
14  
Zero-scale errorNotes 1, 2  
Full-scale errorNotes 1, 2  
±0.6  
±0.6  
±4.5  
%FSR  
%FSR  
LSB  
Integral linearity  
errorNote 1  
ILE  
Differential linearity  
errorNote 1  
DLE  
VIAN  
±2.0  
LSB  
V
Analog input voltage  
0
AVDD  
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
292  
User’s Manual U14643EJ2V0UD  
CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics  
(TA = –40 to +110°C (µPD78910xA(A1), 78911xA(A1)), –40 to +125°C (µPD78910xA(A2), 78911xA(A2)) )  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
tWAIT  
Release by RESET  
Release by interrupt request  
215/fX  
s
s
stabilization wait  
timeNote 1  
Note 2  
Notes 1. The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
2. Selection of 212/fX, 215/fX, or 217/fX is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation  
stabilization time select register (OSTS).  
Remark fX: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
V
DDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
V
DDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
293  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Symbol  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to +10.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–10  
Unit  
V
Supply voltage  
VDD, AVDD  
VDD = AVDD  
VPP  
VI1  
VI2  
VO  
IOH  
Note  
V
Input voltage  
Pins other than P50 to P53  
V
P50 to P53  
With N-ch open drain  
V
Output voltage  
V
Output current, high  
Per pin  
µPD78F9116B  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
Total for all pins  
Per pin  
–30  
µPD78F9116B(A)  
µPD78F9116B  
–7  
Total for all pins  
Per pin  
–22  
Output current, low  
IOL  
30  
Total for all pins  
Per pin  
160  
µPD78F9116B(A)  
10  
Total for all pins  
120  
Operating ambient temperature  
Storage temperature  
TA  
In normal operation mode  
–40 to +85  
10 to 40  
–40 to +125  
During flash memory programming  
Tstg  
Note Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash  
memory is written.  
When supply voltage rises  
VPP must exceed VDD 10 µs or more after VDD has reached the lower-limit value (1.8 V) of the operating  
voltage range (see a in the figure below).  
When supply voltage drops  
VDD must be lowered 10 µs or more after VPP falls below the lower-limit value (1.8 V) of the operating  
voltage range of VDD (see b in the figure below).  
1.8 V  
V
DD  
0 V  
a
b
VPP  
1.8 V  
0 V  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
294  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
Ceramic  
Oscillation frequency (fX)Note 1  
VDD = 4.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 1.8 to 5.5 V  
1.0  
1.0  
1.0  
10.0  
6.0  
5.0  
4
MHz  
MHz  
MHz  
ms  
V
PP X1  
X2  
resonator  
C1  
C2  
Oscillation stabilization  
timeNote 2  
After VDD reaches  
oscillation voltage range  
MIN.  
Crystal  
Oscillation frequency (fX)Note 1  
VDD = 4.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
1.0  
1.0  
1.0  
10.0  
6.0  
5.0  
10  
MHz  
MHz  
MHz  
ms  
V
PP X1  
C1  
X2  
resonator  
C2  
Oscillation stabilization  
timeNote 2  
30  
External  
clock  
X1 input frequency (fX)Note 1  
1.0  
1.0  
1.0  
45  
10.0  
6.0  
5.0  
500  
500  
500  
5.0  
MHz  
MHz  
MHz  
ns  
X2  
X1  
X1 input high-/low-level  
width (tXH, tXL)  
75  
ns  
85  
ns  
X1 input frequency (fX)Note 1  
1.0  
MHz  
X1  
X2  
X1 input high-/low-level  
width (tXH, tXL)  
85  
500  
ns  
OPEN  
Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after a reset or STOP mode release. Use a resonator that  
stabilizes oscillation during the oscillation wait time.  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
295  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
Recommended Oscillator Constant  
Ceramic resonator (TA = 40 to +85°C) (µPD78F9116B, 78F9116B(A))  
Manufacturer  
Part Number  
Frequency  
(MHz)  
Recommended  
Oscillation Voltage  
Range (VDD)  
Remark  
Circuit Constant (pF)  
C1  
100  
C2  
100  
MIN.  
2.0  
MAX.  
5.5  
Murata Mfg.  
Co., Ltd.  
CSBLA1M00J58-B0Note  
CSTCC2M00G56-R0  
CSTCR4M00G53-R0  
CSTLS4M00G53-B0  
CSTCR5M00G53-R0  
CSTLS5M00G53-B0  
CSTCR6M00G53-R0  
CSTLS6M00G53-B0  
CSTCE8M38G52-R0  
CSTLS8M38G53-B0  
CSTCE10M0G52-R0  
CSTLS10M0G53-B0  
CSTCR4M00G53U-R0  
CSTLS4M00G53093-B0  
CSTCR5M00G53U-R0  
CSTLS5M00G53U-B0  
CSTCR6M00G53093-R0  
CSTLS6M00G53U-B0  
CSTLS8M38G53193-B0  
CSTLS10M0G53U-B0  
1.0  
2.0  
4.0  
Rd = 2.2 k  
On-chip capacitor  
version  
(Standard  
products)  
5.0  
6.0  
2.1  
2.2  
2.0  
2.2  
2.1  
2.4  
1.8  
8.388  
10.0  
4.0  
Murata Mfg.  
Co., Ltd.  
5.5  
On-chip capacitor  
version  
(Low-voltage  
drive type)  
5.0  
6.0  
1.9  
2.0  
8.0  
10.0  
Note A limiting resistor (Rd = 2.2 k) is required when the CSBLA1M00J58-B0 (1.0 MHz) of Murata Mfg. Co.,  
Ltd. is used as the ceramic resonator (see the figure below). A limiting resistor is not necessary when other  
recommended resonators are used.  
X1  
X2  
Rd  
C2  
CSBLA1M00J58-B0  
C1  
Caution This oscillator constant is a reference value based on evaluation under a specific environment  
by the resonator manufacturer. If optimization of oscillator characteristics is necessary in the  
actual application, apply to the resonator manufacturer for evaluation on the implementation  
circuit.  
The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the  
µPD78F9116B and 78F9116B(A) so that the internal operating conditions are within the  
specifications of the DC and AC characteristics.  
296  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
Output current, high  
IOH  
Per pin  
µPD78F9116B  
Total for all pins  
Per pin  
–15  
–1  
µPD78F9116B(A)  
µPD78F9116B  
Total for all pins  
Per pin  
–11  
10  
Output current, low  
Input voltage, high  
IOL  
Total for all pins  
Per pin  
80  
µPD78F9116B(A)  
3
Total for all pins  
60  
VIH1  
VIH2  
VIH3  
VIH4  
VIL1  
VIL2  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
0.8VDD  
0.9VDD  
VDD – 0.5  
VDD – 0.1  
0
VDD  
VDD  
12  
V
P50 to P53 N-ch open drain VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
V
12  
V
RESET, P20 to P25  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD  
VDD  
VDD  
VDD  
0.3VDD  
0.1VDD  
0.3VDD  
0.1VDD  
V
V
X1, X2  
V
V
Input voltage, low  
Pins other than described  
below  
V
0
V
P50 to P53 N-ch open drain VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
V
0
V
VIL3  
RESET, P20 to P25  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
0.2VDD  
0.1VDD  
0.4  
V
V
V
V
V
V
V
0
VIL4  
X1, X2  
0
0
0.1  
Output voltage, high  
Output voltage, low  
VOH1  
VOH2  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
VDD – 1.0  
VDD – 0.5  
VDD = 1.8 to 5.5 V, IOH = –100 µA  
Pins other  
than P50 to  
P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
1.0  
1.0  
(µPD78F9116B)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
V
(µPD78F9116B(A))  
VDD = 1.8 to 5.5 V, IOL = 400 µA  
0.5  
1.0  
V
V
VOL2  
P50 to P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
(µPD78F9116B)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
1.0  
0.4  
V
V
(µPD78F9116B(A))  
VDD = 1.8 to 5.5 V, IOL = 1.6 mA  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
297  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
Pins other than X1, X2, or VI = VDD  
P50 to P53  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage current,  
high  
ILIH1  
µA  
ILIH2  
ILIH3  
ILIL1  
X1, X2  
20  
20  
–3  
µA  
µA  
µA  
P50 to P53 (N-ch open drain) VI = 12 V  
Input leakage current,  
low  
Pins other than X1, X2, or  
P50 to P53  
VI = 0 V  
ILIL2  
X1, X2  
–20  
–3Note 1  
3
µA  
µA  
µA  
ILIL3  
P50 to P53 (N-ch open drain)  
VO = VDD  
Output leakage current, ILOH  
high  
Output leakage current, ILOL  
low  
VO = 0 V  
–3  
µA  
Software pull-up resistance R1  
VI = 0 V, for pins other than P50 to P53 or P60 to P63  
10.0 MHz crystal oscillation  
operating mode  
50  
100  
200  
k  
Note 2  
V
V
DD = 5.0 V  
DD = 5.0 V  
±
±
10%Note 4  
10%Note 4  
Power supply current  
10.0  
20.0  
mA  
IDD1  
6.0 MHz crystal oscillation  
operating mode  
6.0  
12.0  
mA  
V
V
V
V
DD = 5.0 V  
DD = 3.0 V  
DD = 2.0 V  
DD = 5.0 V  
±
±
±
±
10%Note 4  
10%Note 5  
10%Note 5  
10%Note 4  
5.0 MHz crystal oscillation  
operating mode  
(C1 = C2 = 22 pF)  
4.0  
1.0  
0.8  
1.2  
10.0  
2.5  
2.0  
6.0  
mA  
mA  
mA  
mA  
Note 2  
IDD2  
10.0 MHz crystal oscillation  
HALT mode  
10%Note 4  
6.0 MHz crystal oscillation  
HALT mode  
0.9  
2.8  
mA  
V
DD = 5.0 V  
±
10%Note 4  
10%Note 5  
10%Note 5  
5.0 MHz crystal oscillation  
HALT mode  
(C1 = C2 = 22 pF)  
0.6  
0.3  
2.5  
2.0  
1.5  
30  
mA  
mA  
mA  
V
V
V
DD = 5.0 V  
DD = 3.0 V  
DD = 2.0 V  
±
±
±
0.2  
Note 2  
IDD3  
STOP mode  
0.1  
VDD = 5.0 V ±10%  
VDD = 3.0 V ±10%  
VDD = 2.0 V ±10%  
µA  
µA  
µA  
mA  
0.05  
0.05  
11.0  
10  
10  
Note 3  
IDD4  
10%Note 4  
10.0 MHz crystal oscillation  
A/D operating mode  
22.5  
V
DD = 5.0 V  
±
6.0 MHz crystal oscillation  
A/D operating mode  
7.0  
14.5  
mA  
V
DD = 5.0 V  
±
10%Note 4  
5.0 MHz crystal oscillation  
A/D operating mode  
(C1 = C2 = 22 pF)  
5.0  
2.0  
1.8  
12.5  
5.0  
mA  
mA  
mA  
V
V
V
DD = 5.0 V  
DD = 3.0 V  
DD = 2.0 V  
±
±
±
10%Note 4  
10%Note 5  
10%Note 5  
4.5  
Notes 1. When port 5 is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle  
time after a read instruction has been executed to port 5.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
3. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
4. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
5. Low-speed mode operation (when PCC is set to 02H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
298  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
Flash Memory Write/Erase Characteristics (TA = 10 to 40°C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
fX  
Conditions  
MIN.  
1.0  
TYP.  
MAX.  
10.0  
6.0  
Unit  
MHz  
MHz  
MHz  
MHz  
mA  
Operating frequency  
VDD = 4.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
1.0  
1.0  
5.0  
1.0  
1.25  
21  
Write current  
(VDD pin)Note  
IDDW  
IPPW  
IDDE  
IPPE  
When VPP supply voltage = VPP1  
(@ 5.0 MHz operation)  
Write current  
(VPP pin)Note  
When VPP supply voltage = VPP1  
22.5  
21  
mA  
mA  
mA  
Erase current  
(VDD pin)Note  
When VPP supply voltage = VPP1  
(@ 5.0 MHz operation)  
Erase current  
(VPP pin)Note  
When VPP supply voltage = VPP1  
115  
Unit erase time  
Total erase time  
Rewrite count  
ter  
0.2  
0.2  
20  
0.2  
20  
s
tera  
s
Times  
V
Erase/write are regarded as 1 cycle  
In normal operation  
20  
0
20  
VPP supply voltage  
VPP0  
0.2VDD  
10.3  
VPP1  
During flash memory programming  
9.7  
10.0  
V
Note The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and AVDD  
current are not included.  
299  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
AC Characteristics  
(1) Basic operation (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.2  
TYP.  
MAX.  
8
Unit  
TCY  
VDD = 4.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
µs  
(minimum instruction  
execution time)  
0.33  
0.4  
8
8
8
µs  
µs  
µs  
1.6  
TI80 input high-/low-  
level width  
tTIH,  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
INTP0 to INTP2  
0.1  
1.8  
0
µs  
µs  
tTIL  
MHz  
kHz  
TI80 input frequency  
fTI  
4
0
275  
Interrupt input high-  
/low-level width  
tINTH,  
10  
µs  
µs  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
300  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
(2) Serial interface (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY1  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
tKCY1/2 – 50  
tKCY1/2 – 150  
150  
SCK20 high-/low-  
level width  
tKH1,  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
(to SCK20)  
500  
SI20 hold time  
400  
(from SCK20)  
600  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
250  
time from SCK20↓  
0
1000  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY2  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SCK20 high-/low-  
level width  
tKH2,  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
300  
time from SCK20↓  
0
1000  
120  
ns  
ns  
SO20 setup time  
(for SS20when  
SS20 is used)  
tKAS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
400  
240  
800  
ns  
ns  
ns  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SS20 setup time  
tSSK2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
100  
150  
400  
ns  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
VDD = 1.8 to 5.5 V  
600  
ns  
Note R and C are the load resistance and load capacitance of the SO output line.  
301  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
78125  
19531  
Unit  
bps  
bps  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
400  
ns  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
1600  
ns  
Transfer rate  
39063  
9766  
1
bps  
bps  
µs  
ASCK20 rise/fall time  
tR,  
tF  
302  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
AC Timing Measurement Points (Excluding X1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/f  
X
t
XL  
t
XH  
V
IH4 (MIN.)  
X1 input  
V
IL4 (MAX.)  
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
303  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
304  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
10-Bit A/D Converter Characteristics (TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1, 2  
Conversion time  
4.5 V VDD 5.5 V  
±0.2  
±0.4  
±0.8  
±0.4  
±0.6  
±1.2  
100  
%FSR  
%FSR  
%FSR  
µs  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
tCONV  
12  
14  
28  
100  
µs  
100  
µs  
Zero-scale errorNotes 1, 2  
±0.4  
±0.6  
±1.2  
±0.4  
±0.6  
±1.2  
±2.5  
±4.5  
±8.5  
±1.5  
±2.0  
±3.5  
AVDD  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
Full-scale errorNotes 1, 2  
Integral linearity  
errorNote 1  
ILE  
LSB  
LSB  
Differential linearity  
errorNote 1  
DLE  
VIAN  
LSB  
LSB  
LSB  
Analog input voltage  
0
V
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
305  
User’s Manual U14643EJ2V0UD  
CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD78F9116B, 78F9116B(A))  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
tWAIT  
Release by RESET  
Release by interrupt request  
215/fX  
s
s
stabilization wait  
timeNote 1  
Note 2  
Notes 1. The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
2. Selection of 212/fX, 215/fX, or 217/fX is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation  
stabilization time select register (OSTS).  
Remark fX: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
VDD  
VDDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
VDDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
306  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VPP  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to +10.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–4  
Unit  
V
VDD = AVDD  
Note  
V
Input voltage  
VI1  
Pins other than P50 to P53  
V
VI2  
P50 to P53  
With N-ch open drain  
V
Output voltage  
VO  
V
Output current, high  
IOH  
Per pin  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
Total for all pins  
–14  
Output current, low  
IOL  
TA  
Per pin  
5
Total for all pins  
80  
Operating ambient temperature  
Storage temperature  
In normal operation mode  
During flash memory programming  
–40 to +105  
10 to 40  
Tstg  
–40 to +125  
Note Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash  
memory is written.  
When supply voltage rises  
VPP must exceed VDD 10 µs or more after VDD has reached the lower-limit value (4.5 V) of the operating  
voltage range (see a in the figure below).  
When supply voltage drops  
VDD must be lowered 10 µs or more after VPP falls below the lower-limit value (4.5 V) of the operating  
voltage range of VDD (see b in the figure below).  
4.5 V  
V
DD  
0 V  
a
b
VPP  
4.5 V  
0 V  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
307  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
System Clock Oscillator Characteristics (TA = –40 to +105°C, VDD = 4.5 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
Ceramic  
Oscillation frequency (fX)Note 1  
VDD = oscillation voltage  
range  
1.0  
5.0  
MHz  
V
PP X1  
X2  
resonator  
Oscillation stabilization  
timeNote 2  
After VDD reaches  
oscillation voltage range  
MIN.  
4
ms  
C1  
C2  
External  
clock  
X1 input frequency (fX)Note 1  
1.0  
85  
5.0  
MHz  
ns  
X1  
X2  
X1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after a reset or STOP mode release. Use a resonator that  
stabilizes oscillation during the oscillation wait time.  
Cautions 1. When using the system clock oscillator, wire as follows in the area enclosed by the broken  
lines in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
2. Use a ceramic resonator that is guaranteed by the resonator manufacturer to operate at TA =  
105°C.  
Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the  
oscillation themselves or apply to the resonator manufacturer for evaluation.  
308  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
DC Characteristics (TA = –40 to +105°C, VDD = 4.5 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
Output current, high  
IOH  
Per pin  
mA  
mA  
mA  
mA  
V
Total for all pins  
Per pin  
–7  
Output current, low  
Input voltage, high  
IOL  
1.6  
Total for all pins  
40  
VIH1  
VIH2  
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
VIL4  
VOH1  
VOH2  
VOL1  
Pins other than described below  
0.7VDD  
0.7VDD  
0.8VDD  
VDD – 0.1  
0
VDD  
P50 to P53  
With N-ch open drain  
10  
V
RESET, P20 to P25  
X1, X2  
VDD  
V
VDD  
V
Input voltage, low  
Pins other than described below  
P50 to P53  
0.3VDD  
0.3VDD  
0.2VDD  
0.1  
V
0
V
RESET, P20 to P25  
X1, X2  
0
V
0
V
Output voltage, high  
Output voltage, low  
IOH = –1 mA  
VDD – 2.0  
VDD – 1.0  
V
IOH = –100 µA  
V
Pins other than  
P50 to P53  
IOL = 1.6 mA  
IOL = 400 µA  
IOL = 1.6 mA  
2.0  
1.0  
1.0  
10  
V
V
VOL2  
P50 to P53  
V
Input leakage current,  
high  
ILIH1  
Pins other than X1, X2, or P50  
to P53  
VI = VDD  
µA  
ILIH2  
ILIH3  
ILIL1  
X1, X2  
20  
80  
µA  
µA  
µA  
P50 to P53 (N-ch open drain)  
VI = 10 V  
VI = 0 V  
Input leakage current,  
low  
Pins other than X1, X2, or P50  
to P53  
–10  
ILIL2  
ILIL3  
ILOH  
X1, X2  
–20  
–10Note  
10  
µA  
µA  
µA  
P50 to P53 (N-ch open drain)  
VO = VDD  
Output leakage  
current, high  
µA  
Output leakage  
current, low  
ILOL  
VO = 0 V  
–10  
Note When port 5 is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle time  
after a read instruction has been executed to port 5.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
309  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
DC Characteristics (TA = –40 to +105°C, VDD = 4.5 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
50  
TYP.  
100  
MAX.  
300  
Unit  
Software pull-up  
resistance  
R1  
VI = 0 V, for pins other than P50 to P53 or P60 to  
P63  
k  
Note 1  
Power supply  
current  
IDD1  
5.0 MHz crystal oscillation operating mode  
(C1 = C2 = 22 pF)Note 3  
7.5  
3.0  
20.0  
5.5  
mA  
mA  
Note 1  
IDD2  
5.0 MHz crystal oscillation HALT mode  
(C1 = C2 = 22 pF)Note 3  
Note 1  
µA  
IDD3  
STOP mode  
1
1000  
22.3  
Note 2  
IDD4  
5.0 MHz crystal oscillation A/D operating mode  
(C1 = C2 = 22 pF)Note 3  
8.7  
mA  
Notes 1. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
3. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
Flash Memory Write/Erase Characteristics (TA = 10 to 40°C, VDD = 4.5 to 5.5 V)  
Parameter  
Symbol  
IDDW  
Conditions  
MIN.  
TYP.  
MAX.  
21  
Unit  
mA  
Write current  
(VDD pin)Note  
When VPP supply voltage = VPP1  
(@ 5.0 MHz operation)  
Write current  
(VPP pin)Note  
IPPW  
IDDE  
IPPE  
When VPP supply voltage = VPP1  
22.5  
21  
mA  
mA  
mA  
Erase current  
(VDD pin)Note  
When VPP supply voltage = VPP1  
(@ 5.0 MHz operation)  
Erase current  
(VPP pin)Note  
When VPP supply voltage = VPP1  
115  
Unit erase time  
Total erase time  
Rewrite count  
ter  
0.2  
0.2  
20  
0.2  
20  
s
tera  
s
Times  
V
Erase/write are regarded as 1 cycle  
In normal operation  
20  
0
20  
VPP supply voltage VPP0  
VPP1  
0.2VDD  
10.3  
During flash memory programming  
9.7  
10.0  
V
Note The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and AVDD  
current are not included.  
310  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
AC Characteristics  
(1) Basic operation (TA = –40 to +105°C, VDD = 4.5 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
8
Unit  
TCY  
µs  
(minimum instruction  
execution time)  
TI80 input high-/low-  
level width  
tTIH,  
0.1  
µs  
tTIL  
MHz  
TI80 input frequency  
fTI  
0
4
Interrupt input high-  
/low-level width  
tINTH,  
INTP0 to INTP2  
10  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
µs  
µs  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
311  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
(2) Serial interface (TA = –40 to +105°C, VDD = 4.5 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
SCK20 cycle time  
tKCY1  
SCK20 high-/low-  
level width  
tKH1,  
tKCY1/2 – 50  
ns  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
150  
400  
0
ns  
ns  
ns  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k, C = 100 pFNote  
250  
time from SCK20↓  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
400  
TYP.  
MAX.  
Unit  
ns  
SCK20 cycle time  
tKCY2  
SCK20 high-/low-  
level width  
tKH2,  
ns  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
tKAS2  
100  
400  
0
ns  
ns  
ns  
ns  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k, C = 100 pFNote  
300  
120  
time from SCK20↓  
SO20 setup time  
(to SS20when  
SS20 is used)  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
240  
ns  
SS20 setup time  
tSSK2  
100  
400  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
Note R and C are the load resistance and load capacitance of the SO output line.  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
bps  
78125  
312  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
400  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
Transfer rate  
39063  
1
bps  
ASCK20 rise/fall time  
tR,  
tF  
µs  
313  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
AC Timing Measurement Points (Excluding X1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/f  
X
t
XL  
t
XH  
V
IH4 (MIN.)  
X1 input  
V
IL4 (MAX.)  
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
314  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
315  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
10-Bit A/D Converter Characteristics (TA = –40 to +105°C, AVDD = VDD = 4.5 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1,2  
±0.4  
±0.6  
28  
%FSR  
µs  
Conversion time  
tCONV  
14  
Zero-scale errorNotes 1,2  
Full-scale errorNotes 1,2  
±0.6  
±0.6  
±4.5  
%FSR  
%FSR  
LSB  
Integral linearity  
errorNote 1  
ILE  
Differential linearity  
errorNote 1  
DLE  
VIAN  
±2.0  
LSB  
V
Analog input voltage  
0
AVDD  
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
316  
User’s Manual U14643EJ2V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD78F9116B(A1))  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +105°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
tWAIT  
Release by RESET  
Release by interrupt request  
215/fX  
s
s
stabilization wait  
timeNote 1  
Note 2  
Notes 1. The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
2. Selection of 212/fX, 215/fX, or 217/fX is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation  
stabilization time select register (OSTS).  
Remark fX: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
V
DDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
V
DDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
317  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VPP  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to +10.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–10  
Unit  
V
VDD = AVDD  
Note  
V
Input voltage  
VI1  
Pins other than P50 to P53  
V
VI2  
P50 to P53  
With N-ch open drain  
V
Output voltage  
VO  
V
Output current, high  
IOH  
Per pin  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
Total for all pins  
–30  
Output current, low  
IOL  
TA  
Per pin  
30  
Total for all pins  
160  
Operating ambient temperature  
Storage temperature  
In normal operation mode  
During flash memory programming  
–40 to +85  
10 to 40  
Tstg  
–40 to +125  
Note Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash  
memory is written.  
When supply voltage rises  
VPP must exceed VDD 10 µs or more after VDD has reached the lower-limit value (1.8 V) of the operating  
voltage range (see a in the figure below).  
When supply voltage drops  
VDD must be lowered 10 µs or more after VPP falls below the lower-limit value (1.8 V) of the operating  
voltage range of VDD (see b in the figure below).  
1.8 V  
V
DD  
0 V  
a
b
VPP  
1.8 V  
0 V  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
318  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
Ceramic  
Oscillation frequency (fX)Note 1  
VDD = oscillation voltage  
range  
1.0  
5.0  
MHz  
V
PP X1  
X2  
resonator  
Oscillation stabilization  
timeNote 2  
After VDD reaches  
oscillation voltage range  
MIN.  
4
ms  
C1  
C2  
V
PP X1  
C1  
X2  
Crystal  
Oscillation frequency (fX)Note 1  
1.0  
5.0  
10  
30  
MHz  
ms  
resonator  
Oscillation stabilization  
timeNote 2  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
C2  
External  
clock  
X1 input frequency (fX)Note 1  
1.0  
85  
5.0  
MHz  
ns  
X2  
X1  
X1 input high-/low-level  
width (tXH, tXL)  
500  
X1 input frequency (fX)Note 1  
VDD = 2.7 to 5.5 V  
1.0  
85  
5.0  
MHz  
ns  
X1  
X2  
X1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after a reset or STOP mode release. Use a resonator that  
stabilizes oscillation during the oscillation wait time.  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the  
oscillation themselves or apply to the resonator manufacturer for evaluation.  
319  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
mA  
mA  
mA  
mA  
V
Output current, high  
IOH  
Per pin  
Total for all pins  
Per pin  
–15  
10  
Output current, low  
Input voltage, high  
IOL  
Total for all pins  
80  
VIH1  
VIH2  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.7VDD  
0.9VDD  
0.7VDD  
VDD  
VDD  
12  
V
P50 to P53 N-ch open drain VDD = 2.7 to 5.5 V  
V
VDD = 1.8 to 5.5 V, 0.9VDD  
12  
V
TA = 25 to 85°C  
VIH3  
VIH4  
VIL1  
VIL2  
RESET, P20 to P25  
X1, X2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.8VDD  
0.9VDD  
VDD  
VDD  
V
V
V
V
V
V
V
V
VDD = 4.5 to 5.5 V VDD – 0.5  
VDD = 1.8 to 5.5 V VDD – 0.1  
VDD  
VDD  
Input voltage, low  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
0
0
0
0.3VDD  
0.1VDD  
0.3VDD  
0.1VDD  
P50 to P53 N-ch open drain VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V,  
TA = 25 to 85°C  
VIL3  
RESET, P20 to P25  
X1, X2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
0.2VDD  
0.1VDD  
0.4  
V
V
V
V
V
V
V
0
VIL4  
0
0
0.1  
Output voltage, high  
Output voltage, low  
VOH1  
VOH2  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
VDD – 1.0  
VDD – 0.5  
VDD = 1.8 to 5.5 V, IOH = –100 µA  
Pins other  
than P50 to  
P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
1.0  
VDD = 1.8 to 5.5 V, IOL = 400 µA  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
VDD = 1.8 to 5.5 V, IOL = 1.6 mA  
0.5  
1.0  
0.4  
V
V
V
VOL2  
P50 to P53  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
320  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage current,  
high  
ILIH1  
Pins other than X1, X2,  
VI = VDD  
µA  
or P50 to P53  
ILIH2  
X1, X2  
20  
20  
µA  
µA  
ILIH3  
P50 to P53 (N-ch open  
drain)  
VI = 12 V  
VI = 0 V  
Input leakage current,  
low  
ILIL1  
Pins other than X1, X2,  
or P50 to P53  
–3  
µA  
ILIL2  
X1, X2  
–20  
µA  
µA  
ILIL3  
P50 to P53 (N-ch open  
drain)  
–3Note 1  
µA  
µA  
k  
Output leakage  
current, high  
ILOH  
ILOL  
R1  
VO = VDD  
3
Output leakage  
current, low  
VO = 0 V  
–3  
Software pull-up  
resistance  
VI = 0 V, for pins other than P50 to P53 or P60 to  
P63  
50  
100  
200  
Note 2  
Power supply  
current  
IDD1  
5.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%  
5.0  
1.9  
15.0  
4.9  
3.0  
5.0  
2.0  
1.5  
30  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
oscillation operating  
mode (C1 = C2 = 22 pF)  
1.5  
Note 2  
IDD2  
5.0 MHz crystal  
2.5  
oscillation HALT mode  
(C1 = C2 = 22 pF)  
1.0  
0.75  
0.1  
Note 2  
IDD3  
STOP mode  
µA  
VDD = 3.0 V ±10%  
0.05  
0.05  
6.2  
10  
µA  
VDD = 2.0 V ±10%  
10  
Note 3  
IDD4  
5.0 MHz crystal  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
17.3  
7.2  
5.0  
mA  
mA  
mA  
oscillation A/D operating  
mode (C1 = C2 = 22 pF)  
3.1  
2.5  
Notes 1. When port 5 is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle  
time after a read instruction has been executed to port 5.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
3. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
4. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
5. Low-speed mode operation (when PCC is set to 02H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
321  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
Flash Memory Write/Erase Characteristics (TA = 10 to 40°C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
IDDW  
Conditions  
MIN.  
TYP.  
MAX.  
18  
Unit  
mA  
Write current  
(VDD pin)Note  
When VPP supply voltage = VPP1  
(@ 5.0 MHz operation)  
Write current  
(VPP pin)Note  
IPPW  
IDDE  
IPPE  
When VPP supply voltage = VPP1  
22.5  
18  
mA  
mA  
mA  
Erase current  
(VDD pin)Note  
When VPP supply voltage = VPP1  
(@ 5.0 MHz operation)  
Erase current  
(VPP pin)Note  
When VPP supply voltage = VPP1  
115  
Unit erase time  
Total erase time  
Rewrite count  
ter  
0.5  
1
1
20  
s
tera  
s
Times  
V
Erase/write are regarded as 1 cycle  
In normal operation  
20  
0
20  
20  
VPP supply voltage VPP0  
VPP1  
0.2VDD  
10.3  
During flash memory programming  
9.7  
10.0  
V
Note The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and AVDD  
current are not included.  
322  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
AC Characteristics  
(1) Basic operation (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
8
Unit  
TCY  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
µs  
(minimum instruction  
execution time)  
1.6  
8
µs  
TI80 input high-/low-  
level width  
tTIH,  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
INTP0 to INTP2  
0.1  
1.8  
0
µs  
µs  
tTIL  
MHz  
kHz  
TI80 input frequency  
fTI  
4
0
275  
Interrupt input high-  
/low-level width  
tINTH,  
10  
µs  
µs  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
323  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
(2) Serial interface (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY1  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
tKCY1/2 – 50  
tKCY1/2 – 150  
150  
SCK20 high-/low-  
level width  
tKH1,  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
(to SCK20)  
500  
SI20 hold time  
400  
(from SCK20)  
600  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
250  
time from SCK20↓  
0
1000  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY2  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SCK20 high-/low-  
level width  
tKH2,  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
300  
time from SCK20↓  
0
1000  
120  
ns  
ns  
SO20 setup time  
(to SS20when  
SS20 is used)  
tKAS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
400  
240  
800  
ns  
ns  
ns  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SS20 setup time  
tSSK2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
100  
150  
400  
ns  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
VDD = 1.8 to 5.5 V  
600  
ns  
Note R and C are the load resistance and load capacitance of the SO output line.  
324  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
78125  
19531  
Unit  
bps  
bps  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
400  
ns  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
1600  
ns  
Transfer rate  
39063  
9766  
1
bps  
bps  
µs  
ASCK20 rise/fall time  
tR,  
tF  
325  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
AC Timing Measurement Points (Excluding X1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/f  
X
t
XL  
t
XH  
V
IH4 (MIN.)  
X1 input  
V
IL4 (MAX.)  
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
326  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
327  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
10-Bit A/D Converter Characteristics (TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1, 2  
4.5 V VDD 5.5 V  
±0.2  
±0.4  
±0.8  
±0.4  
±0.6  
±1.2  
100  
%FSR  
%FSR  
%FSR  
µs  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
Conversion time  
tCONV  
14  
28  
100  
µs  
Zero-scale errorNotes 1, 2  
±0.4  
±0.6  
±1.2  
±0.4  
±0.6  
±1.2  
±2.5  
±4.5  
±8.5  
±1.5  
±2.0  
±3.5  
AVDD  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
Full-scale errorNotes 1, 2  
Integral linearity  
errorNote 1  
ILE  
LSB  
LSB  
Differential linearity  
errorNote 1  
DLE  
VIAN  
LSB  
LSB  
LSB  
Analog input voltage  
0
V
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
328  
User’s Manual U14643EJ2V0UD  
CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F9116A)  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
tWAIT  
Release by RESET  
Release by interrupt request  
215/fX  
s
s
stabilization wait  
timeNote 1  
Note 2  
Notes 1. The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
2. Selection of 212/fX, 215/fX, or 217/fX is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation  
stabilization time select register.  
Remark fX: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
V
DDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
V
DDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
329  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VI1  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–10  
Unit  
V
VDD = AVDD  
Input voltage  
Pins other than P50 to P53  
V
VI2  
P50 to P53  
With N-ch open drain  
V
With an on-chip pull-up resistor  
V
Output voltage  
VO  
IOH  
V
Output current, high  
Per pin  
µPD78912xA, 78913xA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
Total for all pins  
Per pin  
–30  
µPD78912xA(A),  
–7  
78913xA(A)  
Total for all pins  
Per pin  
–22  
Output current, low  
IOL  
µPD78912xA, 78913xA  
30  
Total for all pins  
Per pin  
160  
µPD78912xA(A),  
10  
78913xA(A)  
Total for all pins  
120  
Operating ambient temperature  
Storage temperature  
TA  
–40 to +85  
–65 to +150  
Tstg  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
330  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
CL1  
RC  
Oscillation frequency (fCC)Note  
2.0  
4.0  
MHz  
CL2  
oscillator  
External  
clock  
CL1 input frequency (fCC)Note  
1.0  
85  
5.0  
MHz  
ns  
CL2  
CL1  
CL1 input high-/low-level  
width (tXH, tXL)  
500  
CL1 input frequency (fCC)Note  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
1.0  
85  
5.0  
MHz  
ns  
CL2  
CL1  
CL1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
RC Oscillator Frequency Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
fCC1  
Conditions  
MIN.  
1.5  
TYP.  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
MAX.  
2.5  
2.5  
2.5  
3.5  
3.5  
3.5  
4.7  
4.7  
4.7  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Oscillator frequency  
R = 11.0 k, C = 22 pF VDD = 2.7 to 5.5 V  
Target: 2 MHz  
fCC2  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
0.5  
fCC3  
0.5  
fCC4  
R = 6.8 k, C = 22 pF  
2.5  
Target: 3 MHz  
fCC5  
0.75  
0.75  
3.5  
fCC6  
fCC7  
R = 4.7 k, C = 22 pF  
Target: 4 MHz  
fCC8  
1.0  
fCC9  
1.0  
Remark So that the TYP. spec. is satisfied between 2.0 to 4.0 MHz, set one of the above nine patterns for R and  
C.  
331  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
Output current, high  
IOH  
Per pin  
µPD78912xA, 78913xA  
Total for all pins  
Per pin  
–15  
–1  
µPD78912xA(A), 78913xA(A)  
µPD78912xA, 78913xA  
Total for all pins  
Per pin  
–11  
10  
Output current, low  
Input voltage, high  
IOL  
Total for all pins  
Per pin  
80  
µPD78912xA(A), 78913xA(A)  
3
Total for all pins  
60  
VIH1  
VIH2  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
0.8VDD  
0.9VDD  
VDD  
VDD  
V
P50 to P53 With N-ch open VDD = 2.7 to 5.5 V  
12  
V
drain  
VDD = 1.8 to 5.5 V  
12  
V
With on-chip  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD  
V
pull-up resistor  
VDD  
V
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
VIL4  
RESET, P20 to P25  
VDD  
V
VDD  
V
CL1, CL2  
VDD = 4.5 to 5.5 V VDD – 0.5  
VDD = 1.8 to 5.5 V VDD – 0.1  
VDD  
V
VDD  
V
Input voltage, low  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
0.3VDD  
0.1VDD  
0.3VDD  
0.1VDD  
0.2VDD  
0.1VDD  
0.4  
V
0
V
P50 to P53  
0
V
0
V
RESET, P20 to P25  
CL1, CL2  
0
V
0
V
0
V
0
0.1  
V
Output voltage, high  
Output voltage, low  
VOH1  
VOH2  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
VDD – 1.0  
VDD – 0.5  
V
VDD = 1.8 to 5.5 V, IOH = –100 µA  
V
Pins other  
than P50 to  
P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
1.0  
1.0  
V
(µPD78912xA, 78913xA)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
V
(µPD78912xA(A), 78913xA(A))  
VDD = 1.8 to 5.5 V, IOL = 400 µA  
0.5  
1.0  
V
V
VOL2  
P50 to P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
(µPD78912xA, 78913xA)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
1.0  
0.4  
V
V
(µPD78912xA(A), 78913xA(A))  
VDD = 1.8 to 5.5 V, IOL = 1.6 mA  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
332  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage current,  
high  
ILIH1  
Pins other than CL1,  
VI = VDD  
µA  
CL2, or P50 to P53  
ILIH2  
CL1, CL2  
20  
20  
µA  
µA  
ILIH3  
P50 to P53 (N-ch open  
drain)  
VI = 12 V  
VI = 0 V  
Input leakage current,  
low  
ILIL1  
Pins other than CL1,  
CL2, or P50 to P53  
–3  
µA  
ILIL2  
CL1, CL2  
–20  
µA  
µA  
ILIL3  
P50 to P53 (N-ch open  
drain)  
–3Note 1  
µA  
µA  
kΩ  
kΩ  
Output leakage  
current, high  
ILOH  
ILOL  
R1  
VO = VDD  
3
Output leakage  
current, low  
VO = 0 V  
–3  
Software pull-up  
resistor  
VI = 0 V, for pins other than P50 to P53  
VI = 0 V, P50 to P53  
50  
10  
100  
30  
200  
60  
Mask option pull-up  
resistor  
R2  
Note 2  
Power supply  
current  
IDD1  
4.0 MHz RC oscillation  
operating mode  
VDD = 5.0 V ±10%Note 4  
1.8  
0.45  
0.25  
0.8  
3.2  
0.9  
0.45  
1.6  
0.6  
0.3  
10  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%  
(R = 4.7 k, C = 22 pF)  
Note 2  
IDD2  
4.0 MHz RC oscillation  
HALT mode  
0.3  
(R = 4.7 k, C = 22 pF)  
0.15  
0.1  
Note 2  
IDD3  
STOP mode  
µA  
VDD = 3.0 V ±10%  
0.05  
0.05  
3.0  
5.0  
5.0  
5.5  
3.2  
2.7  
µA  
VDD = 2.0 V ±10%  
Note 3  
IDD4  
4.0 MHz RC oscillation  
A/D operating mode  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
mA  
mA  
1.65  
1.25  
(R = 4.7 k, C = 22 pF)  
mA  
Notes 1. When pull-up resistors are not connected to P50 to P53 (specified by the mask option) and when port 5  
is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle time after a  
read instruction has been executed to port 5.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
3. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
4. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
5. Low-speed mode operation (when PCC is set to 02H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
333  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
AC Characteristics  
(1) Basic operation (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
16  
Unit  
TCY  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
µs  
(minimum instruction  
execution time)  
1.6  
16  
µs  
TI80 input high-/low-  
level width  
tTIH,  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
INTP0 to INTP2  
0.1  
1.8  
0
µs  
µs  
tTIL  
MHz  
kHz  
TI80 input frequency  
fTI  
4
0
275  
Interrupt input high-  
/low-level width  
tINTH,  
10  
µs  
µs  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
334  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
(2) Serial interface (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY1  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
tKCY1/2 – 50  
tKCY1/2 – 150  
150  
SCK20 high-/low-  
level width  
tKH1,  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
(to SCK20)  
500  
SI20 hold time  
400  
(from SCK20)  
600  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
250  
time from SCK20↓  
0
1000  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY2  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SCK20 high-/low-  
level width  
tKH2,  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
300  
time from SCK20↓  
0
1000  
120  
ns  
ns  
SO20 setup time  
(to SS20when  
SS20 is used)  
tKAS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
400  
240  
800  
ns  
ns  
ns  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SS20 setup time  
tSSK2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
100  
150  
400  
ns  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
VDD = 1.8 to 5.5 V  
600  
ns  
Note R and C are the load resistance and load capacitance of the SO output line.  
335  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
78125  
19531  
Unit  
bps  
bps  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
400  
ns  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
1600  
ns  
Transfer rate  
39063  
9766  
1
bps  
bps  
µs  
ASCK20 rise/fall time  
tR,  
tF  
336  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
AC Timing Measurement Points (Excluding CL1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/fCC  
t
XL  
t
XH  
V
IH4 (MIN.)  
IL4 (MAX.)  
CL1 input  
V
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
337  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
338  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
8-Bit A/D Converter Characteristics (µPD78912xA, 78912xA(A))  
(TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
8
TYP.  
8
MAX.  
8
Unit  
Bits  
%FSR  
%FSR  
µs  
Overall errorNotes 1, 2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
±0.4  
±0.8  
±0.6  
±1.2  
100  
100  
AVDD  
Conversion time  
tCONV  
VIAN  
14  
28  
0
µs  
Analog input  
voltage  
V
Notes 1. Excludes quantization error (±0.2%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
10-Bit A/D Converter Characteristics (µPD78913xA, 78913xA(A))  
(TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1, 2  
Conversion time  
4.5 V VDD 5.5 V  
±0.2  
±0.4  
±0.8  
±0.4  
±0.6  
±1.2  
100  
%FSR  
%FSR  
%FSR  
µs  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
tCONV  
14  
14  
28  
100  
µs  
100  
µs  
Zero-scale errorNotes 1, 2  
±0.4  
±0.6  
±1.2  
±0.4  
±0.6  
±1.2  
±2.5  
±4.5  
±8.5  
±1.5  
±2.0  
±3.5  
AVDD  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
Full-scale errorNotes 1, 2  
Integral linearity  
errorNote 1  
ILE  
LSB  
LSB  
Differential linearity  
errorNote 1  
DLE  
VIAN  
LSB  
LSB  
LSB  
Analog input voltage  
0
V
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
339  
User’s Manual U14643EJ2V0UD  
CHAPTER 27 ELECTRICAL SPECIFICATIONS (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A))  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
stabilization wait  
timeNote  
tWAIT  
Release by RESET  
Release by interrupt request  
27/fCC  
27/fCC  
s
s
Note The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
Remark fCC: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
V
DDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
VDD  
V
DDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
340  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS  
(µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VI1  
Conditions  
Ratings  
Unit  
V
VDD = AVDD  
–0.3 to +6.5  
Input voltage  
Pins other than P50 to P53  
–0.3 to VDD + 0.3  
V
VI2  
P50 to P53  
With N-ch open drain  
–0.3 to +13  
V
With an on-chip pull-up resistor  
–0.3 to VDD + 0.3  
V
Output voltage  
VO  
IOH  
–0.3 to VDD + 0.3  
V
Output current, high  
Per pin  
µPD78912xA(A1),  
–4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
78913xA(A1)  
Total for all pins  
Per pin  
–14  
µPD78912xA(A2),  
–2  
78913xA(A2)  
Total for all pins  
Per pin  
–6  
Output current, low  
IOL  
µPD78912xA(A1),  
5
78913xA(A1)  
Total for all pins  
Per pin  
80  
2
µPD78912xA(A2),  
78913xA(A2)  
Total for all pins  
40  
Operating ambient temperature  
Storage temperature  
TA  
µPD78912xA(A1), 78913xA(A1)  
µPD78912xA(A2), 78913xA(A2)  
–40 to +110  
–40 to +125  
–65 to +150  
Tstg  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
341  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
System Clock Oscillator Characteristics  
(VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78912xA(A1), 78913xA(A1)),  
–40 to +125°C (µPD78912xA(A2), 78913xA(A2)) )  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
CL1  
CL2  
RC  
Oscillation frequency (fCC)Note  
2.0  
4.0  
MHz  
oscillator  
External  
clock  
CL1 input frequency (fCC)Note  
1.0  
85  
5.0  
MHz  
ns  
CL1  
CL2  
CL1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
Cautions 1. When using the system clock oscillator, wire as follows in the area enclosed by the broken  
lines in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
2. Construct the oscillator with R and C devices that are guaranteed to operate under the  
following temperature conditions.  
µPD78912xA(A1), 78913xA(A1): TA = 110°C  
µPD78912xA(A2), 78913xA(A2): TA = 125°C  
342  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
DC Characteristics (VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78912xA(A1), 78913xA(A1)),  
–40 to +125°C (µPD78912xA(A2), 78913xA(A2)) ) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
Output current, high  
IOH  
Per pin  
µPD78912xA(A1),  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
78913xA(A1)  
Total for all pins  
Per pin  
–7  
µPD78912xA(A2),  
–1  
78913xA(A2)  
Total for all pins  
Per pin  
–3  
Output current, low  
Input voltage, high  
IOL  
µPD78912xA(A1),  
1.6  
78913xA(A1)  
Total for all pins  
Per pin  
40  
µPD78912xA(A2),  
1.6  
78913xA(A2)  
Total for all pins  
20  
VIH1  
VIH2  
Pins other than described below  
0.7VDD  
0.7VDD  
0.7VDD  
0.8VDD  
VDD – 0.1  
0
VDD  
10  
P50 to P53  
With N-ch open drain  
With on-chip pull-up resistor  
V
VDD  
VDD  
VDD  
0.3VDD  
0.3VDD  
0.2VDD  
0.1  
V
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
VIL4  
VOH1  
VOH2  
VOL1  
RESET, P20 to P25  
CL1, CL2  
V
V
Input voltage, low  
Pins other than described below  
P50 to P53  
V
0
V
RESET, P20 to P25  
CL1, CL2  
0
V
0
V
Output voltage, high  
Output voltage, low  
IOH = –1 mA  
VDD – 2.0  
VDD – 1.0  
V
IOH = –100 µA  
V
Pins other than  
P50 to P53  
IOL = 1.6 mA  
IOL = 400 µA  
IOL = 1.6 mA  
2.0  
1.0  
1.0  
10  
V
V
VOL2  
P50 to P53  
V
Input leakage current,  
high  
ILIH1  
Pins other than CL1, CL2, or  
P50 to P53  
VI = VDD  
µA  
ILIH2  
ILIH3  
ILIL1  
CL1, CL2  
20  
80  
µA  
µA  
µA  
P50 to P53 (N-ch open drain)  
VI = 10 V  
VI = 0 V  
Input leakage current,  
low  
Pins other than CL1, CL2, or  
P50 to P53  
–10  
ILIL2  
ILIL3  
ILOH  
CL1, CL2  
–20  
–10Note  
10  
µA  
µA  
µA  
P50 to P53 (N-ch open drain)  
VO = VDD  
Output leakage  
current, high  
µA  
Output leakage  
current, low  
ILOL  
VO = 0 V  
–10  
Note When pull-up resistors are not connected to P50 to P53 (specified by the mask option) and when port 5 is in  
input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle time after a read  
instruction has been executed to port 5.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
343  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
DC Characteristics (VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78912xA(A1), 78913xA(A1)),  
–40 to +125°C (µPD78912xA(A2), 78913xA(A2)) ) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
50  
TYP.  
100  
MAX.  
300  
Unit  
Software pull-up  
resistance  
R1  
VI = 0 V, for pins other than P50 to P53 or P60 to  
P63  
k  
Mask option pull-up  
resistance  
R2  
VI = 0 V, P50 to P53  
10  
30  
1.8  
0.8  
100  
8.0  
5.0  
kΩ  
mA  
mA  
Note 1  
Power supply  
current  
IDD1  
4.0 MHz crystal oscillation operating mode  
(R = 4.7 k, C = 22 pF)Note 3  
Note 1  
IDD2  
4.0 MHz crystal oscillation HALT mode  
(R = 4.7 k, C = 22 pF)Note 3  
Note 1  
µA  
IDD3  
STOP mode  
0.1  
3.0  
1000  
10  
Note 2  
IDD4  
4.0 MHz crystal oscillation A/D operating mode  
(R = 4.7 k, C = 22 pF)Note 3  
mA  
Notes 1. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
3. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
344  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
AC Characteristics  
(1) Basic operation (VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78912xA(A1), 78913xA(A1)),  
–40 to +125°C (µPD78912xA(A2), 78913xA(A2)) )  
Parameter  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
8
Unit  
Cycle time  
TCY  
µs  
(minimum instruction  
execution time)  
TI80 input high-/low-  
level width  
tTIH,  
0.1  
µs  
tTIL  
MHz  
TI80 input frequency  
fTI  
0
4
Interrupt input high-  
/low-level width  
tINTH,  
INTP0 to INTP2  
10  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
µs  
µs  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
345  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
(2) Serial interface (VDD = 4.5 to 5.5 V, TA = –40 to +110°C (µPD78912xA(A1), 78913xA(A1)),  
–40 to +125°C (µPD78912xA(A2), 78913xA(A2)) )  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
SCK20 cycle time  
tKCY1  
SCK20 high-/low-  
level width  
tKH1,  
tKCY1/2 – 50  
ns  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
150  
400  
0
ns  
ns  
ns  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k, C = 100 pFNote  
250  
time from SCK20↓  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
400  
TYP.  
MAX.  
Unit  
ns  
SCK20 cycle time  
tKCY2  
SCK20 high-/low-  
level width  
tKH2,  
ns  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
tKAS2  
100  
400  
0
ns  
ns  
ns  
ns  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k, C = 100 pFNote  
300  
120  
time from SCK20↓  
SO20 setup time  
(to SS20when  
SS20 is used)  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
240  
ns  
SS20 setup time  
tSSK2  
100  
400  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
Note R and C are the load resistance and load capacitance of the SO output line.  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
bps  
78125  
346  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
400  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
Transfer rate  
39063  
1
bps  
ASCK20 rise/fall time  
tR,  
tF  
µs  
347  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
AC Timing Measurement Points (Excluding CL1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/fCC  
t
XL  
t
XH  
V
IH4 (MIN.)  
CL1 input  
V
IL4 (MAX.)  
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
348  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
349  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
8-Bit A/D Converter Characteristics (µPD78912xA(A1), 78912xA(A2) only)  
(AVDD = VDD = 4.5 to 5.5 V, AVSS = VSS = 0 V, TA = –40 to +110°C (µPD78912xA(A1)),  
–40 to +125°C (µPD78912xA(A2)) )  
Parameter  
Symbol  
Conditions  
MIN.  
8
TYP.  
8
MAX.  
8
Unit  
Bits  
%FSR  
µs  
Resolution  
Overall errorNotes 1, 2  
Conversion time  
±0.4  
±1.0  
28  
tCONV  
VIAN  
14  
0
Analog input  
voltage  
AVDD  
V
Notes 1. Excludes quantization error (±0.2%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
10-Bit A/D Converter Characteristics (µPD78913xA(A1), 78913xA(A2) only)  
(AVDD = VDD = 4.5 to 5.5 V, AVSS = VSS = 0 V, TA = –40 to +110°C (µPD78913xA(A1)),  
–40 to +125°C (µPD78913xA(A2)) )  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1, 2  
±0.4  
±0.6  
28  
%FSR  
µs  
Conversion time  
tCONV  
14  
Zero-scale errorNotes 1, 2  
Full-scale errorNotes 1, 2  
±0.6  
±0.6  
±4.5  
%FSR  
%FSR  
LSB  
Integral linearity  
errorNote 1  
ILE  
Differential linearity  
errorNote 1  
DLE  
VIAN  
±2.0  
LSB  
V
Analog input voltage  
0
AVDD  
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
350  
User’s Manual U14643EJ2V0UD  
CHAPTER 28 ELECTRICAL SPECIFICATIONS (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics  
(TA = –40 to +110°C (µPD78912xA(A1), 78913xA(A1)), –40 to +125°C (µPD78912xA(A2), 78913xA(A2)) )  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
stabilization wait  
timeNote  
tWAIT  
Release by RESET  
Release by interrupt request  
27/fCC  
27/fCC  
s
s
Note The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
Remark fcc: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
VDDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
VDDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
351  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Symbol  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to +10.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–10  
Unit  
V
Supply voltage  
VDD, AVDD  
VDD = AVDD  
VPP  
VI1  
VI2  
VO  
IOH  
Note  
V
Input voltage  
Pins other than P50 to P53  
V
P50 to P53  
With N-ch open drain  
V
Output voltage  
V
Output current, high  
Per pin  
µPD78F9136B  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
Total for all pins  
Per pin  
–30  
µPD78F9136B(A)  
µPD78F9136B  
–7  
Total for all pins  
Per pin  
–22  
Output current, low  
IOL  
30  
Total for all pins  
Per pin  
160  
µPD78F9136B(A)  
10  
Total for all pins  
120  
Operating ambient temperature  
Storage temperature  
TA  
In normal operation mode  
–40 to +85  
10 to 40  
–40 to +125  
During flash memory programming  
Tstg  
Note Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash  
memory is written.  
When supply voltage rises  
VPP must exceed VDD 10 µs or more after VDD has reached the lower-limit value (1.8 V) of the operating  
voltage range (see a in the figure below).  
When supply voltage drops  
VDD must be lowered 10 µs or more after VPP falls below the lower-limit value (1.8 V) of the operating  
voltage range of VDD (see b in the figure below).  
1.8 V  
V
DD  
0 V  
a
b
VPP  
1.8 V  
0 V  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
352  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
CL1  
RC  
Oscillation frequency (fCC)Note  
2.0  
4.0  
MHz  
CL2  
oscillator  
External  
clock  
CL1 input frequency (fCC)Note  
1.0  
85  
5.0  
MHz  
ns  
CL2  
CL1  
CL1 input high-/low-level  
width (tXH, tXL)  
500  
CL1 input frequency (fCC)Note  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
1.0  
85  
5.0  
MHz  
ns  
CL2  
CL1  
CL1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
RC Oscillator Frequency Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
fCC1  
Conditions  
MIN.  
1.5  
TYP.  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
MAX.  
2.5  
2.5  
2.5  
3.5  
3.5  
3.5  
4.7  
4.7  
4.7  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Oscillator frequency  
R = 11.0 k, C = 22 pF VDD = 2.7 to 5.5 V  
Target: 2 MHz  
fCC2  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
0.5  
fCC3  
0.5  
fCC4  
R = 6.8 k, C = 22 pF  
2.5  
Target: 3 MHz  
fCC5  
0.75  
0.75  
3.5  
fCC6  
fCC7  
R = 4.7 k, C = 22 pF  
Target: 4 MHz  
fCC8  
1.0  
fCC9  
1.0  
Remark So that the TYP. spec. is satisfied between 2.0 to 4.0 MHz, set one of the above nine patterns for R and  
C.  
353  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
Output current, high  
IOH  
Per pin  
µPD78F9136B  
Total for all pins  
Per pin  
–15  
–1  
µPD78F9136B(A)  
µPD78F9136B  
Total for all pins  
Per pin  
–11  
10  
Output current, low  
Input voltage, high  
IOL  
Total for all pins  
Per pin  
80  
µPD78F9136B(A)  
3
Total for all pins  
60  
VIH1  
VIH2  
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
VIL4  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
0.8VDD  
0.9VDD  
VDD  
VDD  
V
P50 to P53 With N-ch open VDD = 2.7 to 5.5 V  
12  
V
drain  
VDD = 1.8 to 5.5 V  
12  
V
RESET, P20 to P25  
CL1, CL2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD  
V
VDD  
V
VDD = 4.5 to 5.5 V VDD – 0.5  
VDD = 1.8 to 5.5 V VDD – 0.1  
VDD  
V
VDD  
V
Input voltage, low  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
0.3VDD  
0.1VDD  
0.3VDD  
0.1VDD  
0.2VDD  
0.1VDD  
0.4  
V
0
V
P50 to P53  
0
V
0
V
RESET, P20 to P25  
CL1, CL2  
0
V
0
V
0
V
0
0.1  
V
Output voltage, high  
Output voltage, low  
VOH1  
VOH2  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
VDD – 1.0  
VDD – 0.5  
V
VDD = 1.8 to 5.5 V, IOH = –100 µA  
V
Pins other  
than P50 to  
P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
1.0  
1.0  
V
(µPD78F9136B)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
V
(µPD78F9136B(A))  
VDD = 1.8 to 5.5 V, IOL = 400 µA  
0.5  
1.0  
V
V
VOL2  
P50 to P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
(µPD78F9136B)  
VDD = 4.5 to 5.5 V, IOL = 3 mA  
1.0  
0.4  
V
V
(µPD78F9136B(A))  
VDD = 1.8 to 5.5 V, IOL = 1.6 mA  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
354  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage current,  
high  
ILIH1  
Pins other than CL1,  
VI = VDD  
µA  
CL2, or P50 to P53  
ILIH2  
CL1, CL2  
20  
20  
µA  
µA  
ILIH3  
P50 to P53 (N-ch open  
drain)  
VI = 12 V  
VI = 0 V  
Input leakage current,  
low  
ILIL1  
Pins other than CL1,  
CL2, or P50 to P53  
–3  
µA  
ILIL2  
CL1, CL2  
–20  
µA  
µA  
ILIL3  
P50 to P53 (N-ch open  
drain)  
–3Note 1  
µA  
µA  
k  
Output leakage  
current, high  
ILOH  
ILOL  
R1  
VO = VDD  
3
Output leakage  
current, low  
VO = 0 V  
–3  
Software pull-up  
resistance  
VI = 0 V, for pins other than P50 to P53  
50  
100  
200  
Note 2  
Power supply  
current  
IDD1  
4.0 MHz RC oscillation  
operating mode  
VDD = 5.0 V ±10%Note 4  
6.5  
3.9  
18.0  
7.9  
5.0  
5.0  
2.0  
1.5  
30  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%  
(R = 4.7 k, C = 22 pF)  
3.0  
Note 2  
IDD2  
4.0 MHz RC oscillation  
HALT mode  
2.5  
1.0  
(R = 4.7 k, C = 22 pF)  
0.75  
0.1  
Note 2  
IDD3  
STOP mode  
µA  
VDD = 3.0 V ±10%  
0.05  
0.05  
7.7  
10  
µA  
VDD = 2.0 V ±10%  
10  
Note 3  
IDD4  
4.0 MHz RC oscillation  
A/D operating mode  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
20.3  
10.2  
7.0  
mA  
mA  
mA  
5.1  
(R = 4.7 k, C = 22 pF)  
4.0  
Notes 1. When port 5 is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle  
time after a read instruction has been executed to port 5.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
3. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
4. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
5. Low-speed mode operation (when PCC is set to 02H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
355  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
Flash Memory Write/Erase Characteristics (TA = 10 to 40°C, VDD = 1.8 to 5.5 V, RC Oscillation Mode)  
Parameter  
Symbol  
IDDW  
Conditions  
MIN.  
TYP.  
MAX.  
21  
Unit  
mA  
Write current  
(VDD pin)Note  
When VPP supply voltage = VPP1  
Write current  
(VPP pin)Note  
IPPW  
IDDE  
IPPE  
When VPP supply voltage = VPP1  
When VPP supply voltage = VPP1  
When VPP supply voltage = VPP1  
22.5  
21  
mA  
mA  
mA  
Erase current  
(VDD pin)Note  
Erase current  
(VPP pin)Note  
115  
Unit erase time  
Total erase time  
Rewrite count  
ter  
0.2  
0.2  
20  
0.2  
20  
s
tera  
s
Times  
V
Erase/write are regarded as 1 cycle  
In normal operation  
20  
0
20  
VPP supply voltage VPP0  
VPP1  
0.2VDD  
10.3  
During flash memory programming  
9.7  
10.0  
V
Note The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and AVDD  
current are not included.  
356  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
AC Characteristics  
(1) Basic operation (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
16  
Unit  
TCY  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
µs  
(minimum instruction  
execution time)  
1.6  
16  
µs  
TI80 input high-/low-  
level width  
tTIH,  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
INTP0 to INTP2  
0.1  
1.8  
0
µs  
µs  
tTIL  
MHz  
kHz  
TI80 input frequency  
fTI  
4
0
275  
Interrupt input high-  
/low-level width  
tINTH,  
10  
µs  
µs  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
357  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
(2) Serial interface (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY1  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
tKCY1/2 – 50  
tKCY1/2 – 150  
150  
SCK20 high-/low-  
level width  
tKH1,  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
(to SCK20)  
500  
SI20 hold time  
400  
(from SCK20)  
600  
SO20 output delay  
R = 1 k ,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
250  
time from SCK20↓  
0
1000  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY2  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SCK20 high-/low-  
level width  
tKH2,  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
300  
time from SCK20↓  
0
1000  
120  
ns  
ns  
SO20 setup time  
(to SS20when  
SS20 is used)  
tKAS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
400  
240  
800  
ns  
ns  
ns  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SS20 setup time  
tSSK2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
100  
150  
400  
ns  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
VDD = 1.8 to 5.5 V  
600  
ns  
Note R and C are the load resistance and load capacitance of the SO output line.  
358  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
78125  
19531  
Unit  
bps  
bps  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
400  
ns  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
1600  
ns  
Transfer rate  
39063  
9766  
1
bps  
bps  
µs  
ASCK20 rise/fall time  
tR,  
tF  
359  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
AC Timing Measurement Points (Excluding CL1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/fCC  
t
XL  
t
XH  
V
IH4 (MIN.)  
CL1 input  
V
IL4 (MAX.)  
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
360  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
361  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
10-Bit A/D Converter Characteristics (TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1, 2  
Conversion time  
4.5 V VDD 5.5 V  
±0.2  
±0.4  
±0.8  
±0.4  
±0.6  
±1.2  
100  
%FSR  
%FSR  
%FSR  
µs  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
tCONV  
14  
14  
28  
100  
µs  
100  
µs  
Zero-scale errorNotes 1, 2  
±0.4  
±0.6  
±1.2  
±0.4  
±0.6  
±1.2  
±2.5  
±4.5  
±8.5  
±1.5  
±2.0  
±3.5  
AVDD  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
Full-scale errorNotes 1, 2  
Integral linearity  
errorNote 1  
ILE  
LSB  
LSB  
Differential linearity  
errorNote 1  
DLE  
VIAN  
LSB  
LSB  
LSB  
Analog input voltage  
0
V
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
362  
User’s Manual U14643EJ2V0UD  
CHAPTER 29 ELECTRICAL SPECIFICATIONS (µPD78F9136B, 78F9136B(A))  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
stabilization wait  
timeNote  
tWAIT  
Release by RESET  
Release by interrupt request  
27/fCC  
27/fCC  
s
s
Note The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
Remark fCC: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
VDDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
VDDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
363  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VPP  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to +10.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–4  
Unit  
V
VDD = AVDD  
Note  
V
Input voltage  
VI1  
Pins other than P50 to P53  
V
VI2  
P50 to P53  
With N-ch open drain  
V
Output voltage  
VO  
V
Output current, high  
IOH  
Per pin  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
Total for all pins  
–14  
Output current, low  
IOL  
TA  
Per pin  
5
Total for all pins  
80  
Operating ambient temperature  
Storage temperature  
In normal operation mode  
During flash memory programming  
–40 to +105  
10 to 40  
Tstg  
–40 to +125  
Note Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash  
memory is written.  
When supply voltage rises  
VPP must exceed VDD 10 µs or more after VDD has reached the lower-limit value (4.5 V) of the operating  
voltage range (see a in the figure below).  
When supply voltage drops  
VDD must be lowered 10 µs or more after VPP falls below the lower-limit value (4.5 V) of the operating  
voltage range of VDD (see b in the figure below).  
4.5 V  
V
DD  
0 V  
a
b
VPP  
4.5 V  
0 V  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
364  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
System Clock Oscillator Characteristics (TA = –40 to +105°C, VDD = 4.5 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
CL1  
RC  
Oscillation frequency (fCC)Note  
2.0  
4.0  
MHz  
CL2  
oscillator  
External  
clock  
CL1 input frequency (fCC)Note  
1.0  
85  
5.0  
MHz  
ns  
CL1  
CL2  
CL1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
Cautions 1. When using the system clock oscillator, wire as follows in the area enclosed by the broken  
lines in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
2. Construct the oscillator with R and C devices that are guaranteed to operate at TA = 105°C.  
365  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
DC Characteristics (TA = –40 to +105°C, VDD = 4.5 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
Output current, high  
IOH  
Per pin  
mA  
mA  
mA  
mA  
V
Total for all pins  
Per pin  
–7  
Output current, low  
Input voltage, high  
IOL  
1.6  
Total for all pins  
40  
VIH1  
VIH2  
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
VIL4  
VOH1  
VOH2  
VOL1  
Pins other than described below  
0.7VDD  
0.7VDD  
0.8VDD  
VDD – 0.1  
0
VDD  
P50 to P53  
With N-ch open drain  
10  
V
RESET, P20 to P25  
CL1, CL2  
VDD  
V
VDD  
V
Input voltage, low  
Pins other than described below  
P50 to P53  
0.3VDD  
0.3VDD  
0.2VDD  
0.1  
V
0
V
RESET, P20 to P25  
CL1, CL2  
0
V
0
V
Output voltage, high  
Output voltage, low  
IOH = –1 mA  
VDD – 2.0  
VDD – 1.0  
V
IOH = –100 µA  
V
Pins other than  
P50 to P53  
IOL = 1.6 mA  
IOL = 400 µA  
IOL = 1.6 mA  
2.0  
1.0  
1.0  
10  
V
V
VOL2  
P50 to P53  
V
Input leakage current,  
high  
ILIH1  
Pins other than CL1, CL2, or  
P50 to P53  
VI = VDD  
µA  
ILIH2  
ILIH3  
ILIL1  
CL1, CL2  
20  
80  
µA  
µA  
µA  
P50 to P53 (N-ch open drain)  
VI = 10 V  
VI = 0 V  
Input leakage current,  
low  
Pins other than CL1, CL2, or  
P50 to P53  
–10  
ILIL2  
ILIL3  
ILOH  
CL1, CL2  
–20  
–10Note  
10  
µA  
µA  
µA  
P50 to P53 (N-ch open drain)  
VO = VDD  
Output leakage  
current, high  
µA  
Output leakage  
current, low  
ILOL  
VO = 0 V  
–10  
Note When port 5 is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle time  
after a read instruction has been executed to port 5.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
366  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
DC Characteristics (TA = –40 to +105°C, VDD = 4.5 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
50  
TYP.  
100  
MAX.  
300  
Unit  
Software pull-up  
resistance  
R1  
VI = 0 V, for pins other than P50 to P53 or P60 to  
P63  
k  
Note 1  
Power supply  
current  
IDD1  
4.0 MHz RC oscillation operating mode  
7.5  
3.0  
20.0  
5.5  
mA  
mA  
(R = 4.7 k, C = 22 pF)Note 3  
Note 1  
IDD2  
4.0 MHz RC oscillation HALT mode  
(R = 4.7 k, C = 22 pF)Note 3  
Note 1  
µA  
IDD3  
STOP mode  
1
1000  
22.3  
Note 2  
IDD4  
4.0 MHz RC oscillation A/D operating mode  
(R = 4.7 k, C = 22 pF)Note 3  
8.7  
mA  
Notes 1. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
3. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
Flash Memory Write/Erase Characteristics  
(TA = 10 to 40°C, VDD = 4.5 to 5.5 V, RC Oscillation Operating Mode)  
Parameter  
Symbol  
IDDW  
Conditions  
MIN.  
TYP.  
MAX.  
21  
Unit  
mA  
Write current  
(VDD pin)Note  
When VPP supply voltage = VPP1  
Write current  
(VPP pin)Note  
IPPW  
When VPP supply voltage = VPP1  
22.5  
mA  
Erase current  
(VDD pin)Note  
IDDE  
When VPP supply voltage = VPP1  
When VPP supply voltage = VPP1  
21  
mA  
mA  
Erase current  
(VPP pin)Note  
IPPE  
115  
Unit erase time  
Total erase time  
Rewrite count  
ter  
0.2  
0.2  
20  
0.2  
20  
s
tera  
s
Times  
V
Erase/write are regarded as 1 cycle  
In normal operation  
20  
0
20  
VPP supply voltage VPP0  
VPP1  
0.2VDD  
10.3  
During flash memory programming  
9.7  
10.0  
V
Note The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and AVDD  
current are not included.  
367  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
AC Characteristics  
(1) Basic operation (TA = –40 to +105°C, VDD = 4.5 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
8
Unit  
TCY  
µs  
(minimum instruction  
execution time)  
TI80 input high-/low-  
level width  
tTIH,  
0.1  
µs  
tTIL  
MHz  
TI80 input frequency  
fTI  
0
4
Interrupt input high-  
/low-level width  
tINTH,  
INTP0 to INTP2  
10  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
µs  
µs  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
368  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
(2) Serial interface (TA = –40 to +105°C, VDD = 4.5 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
SCK20 cycle time  
tKCY1  
SCK20 high-/low-  
level width  
tKH1,  
tKCY1/2 – 50  
ns  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
150  
400  
0
ns  
ns  
ns  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k, C = 100 pFNote  
250  
time from SCK20↓  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
400  
TYP.  
MAX.  
Unit  
ns  
SCK20 cycle time  
tKCY2  
SCK20 high-/low-  
level width  
tKH2,  
ns  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
tKAS2  
100  
400  
0
ns  
ns  
ns  
ns  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k, C = 100 pFNote  
300  
120  
time from SCK20↓  
SO20 setup time  
(to SS20when  
SS20 is used)  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
240  
ns  
SS20 setup time  
tSSK2  
100  
400  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
Note R and C are the load resistance and load capacitance of the SO output line.  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
bps  
78125  
369  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
MIN.  
800  
400  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
Transfer rate  
39063  
1
bps  
ASCK20 rise/fall time  
tR,  
tF  
µs  
370  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
AC Timing Measurement Points (Excluding CL1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/fCC  
t
XL  
t
XH  
V
IH4 (MIN.)  
IL4 (MAX.)  
CL1 input  
V
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
371  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
372  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
10-Bit A/D Converter Characteristics (TA = –40 to +105°C, AVDD = VDD = 4.5 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1,2  
±0.4  
±0.6  
28  
%FSR  
µs  
Conversion time  
tCONV  
14  
Zero-scale errorNotes 1,2  
Full-scale errorNotes 1,2  
±0.6  
±0.6  
±4.5  
%FSR  
%FSR  
LSB  
Integral linearity  
errorNote 1  
ILE  
Differential linearity  
errorNote 1  
DLE  
VIAN  
±2.0  
LSB  
V
Analog input voltage  
0
AVDD  
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
373  
User’s Manual U14643EJ2V0UD  
CHAPTER 30 ELECTRICAL SPECIFICATIONS (µPD78F9136B(A1))  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +105°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
stabilization wait  
timeNote  
tWAIT  
Release by RESET  
Release by interrupt request  
27/fCC  
27/fCC  
s
s
Note The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
Remark fcc: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
VDD  
VDDDR  
tSREL  
STOP instruction execution  
RESET  
tWAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
VDD  
V
DDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
374  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD, AVDD  
VPP  
Conditions  
Ratings  
–0.3 to +6.5  
–0.3 to +10.5  
–0.3 to VDD + 0.3  
–0.3 to +13  
–0.3 to VDD + 0.3  
–10  
Unit  
V
VDD = AVDD  
Note  
V
Input voltage  
VI1  
Pins other than P50 to P53  
V
VI2  
P50 to P53  
With N-ch open drain  
V
Output voltage  
VO  
V
Output current, high  
IOH  
Per pin  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
Total for all pins  
–30  
Output current, low  
IOL  
TA  
Per pin  
30  
Total for all pins  
160  
Operating ambient temperature  
Storage temperature  
In normal operation mode  
During flash memory programming  
–40 to +85  
10 to 40  
Tstg  
–40 to +125  
Note Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash  
memory is written.  
When supply voltage rises  
VPP must exceed VDD 10 µs or more after VDD has reached the lower-limit value (1.8 V) of the operating  
voltage range (see a in the figure below).  
When supply voltage drops  
VDD must be lowered 10 µs or more after VPP falls below the lower-limit value (1.8 V) of the operating  
voltage range of VDD (see b in the figure below).  
1.8 V  
V
DD  
0 V  
a
b
VPP  
1.8 V  
0 V  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
375  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Recommended  
Resonator  
Parameter  
Conditions  
MIN. TYP. MAX. Unit  
Circuit  
Oscillation frequency (fCC)Note 1  
VDD = oscillation voltage  
range  
2.0  
4.0  
MHz  
CL1  
CL2  
RC  
oscillator  
External  
clock  
CL1 input frequency (fCC)Note 1  
1.0  
85  
5.0  
MHz  
ns  
CL2  
CL1  
CL1 input high-/low-level  
width (tXH, tXL)  
500  
CL1 input frequency (fCC)Note 1 VDD = 2.7 to 5.5 V  
1.0  
85  
5.0  
MHz  
ns  
CL1  
CL2  
CL1 input high-/low-level  
width (tXH, tXL)  
500  
OPEN  
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
RC Oscillator Frequency Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
fCC1  
Conditions  
R = 11.0 k, C = 22 pF  
MIN.  
1.5  
TYP. MAX.  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Oscillator frequency  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 3.6 V  
VDD = 1.8 to 5.5 V  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
2.5  
2.5  
2.5  
3.5  
3.5  
3.5  
4.7  
4.7  
4.7  
Target: 2 MHz  
fCC2  
0.5  
fCC3  
0.5  
fCC4  
R = 6.8 k, C = 22 pF  
2.5  
Target: 3 MHz  
fCC5  
0.75  
0.75  
3.5  
fCC6  
fCC7  
R = 4.7 k, C = 22 pF  
Target: 4 MHz  
fCC8  
1.0  
fCC9  
1.0  
Remark So that the TYP. Spec is satisfied between 2.0 to 4.0 MHz, set one of the above nine patterns for R and  
C.  
376  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (1/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
–1  
Unit  
mA  
mA  
mA  
mA  
V
Output current, high  
IOH  
Per pin  
Total for all pins  
Per pin  
–15  
10  
Output current, low  
Input voltage, high  
IOL  
Total for all pins  
80  
VIH1  
VIH2  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.7VDD  
0.9VDD  
0.7VDD  
0.9VDD  
VDD  
VDD  
12  
V
P50 to P53 With N-ch open VDD = 2.7 to 5.5 V  
V
drain  
VDD = 1.8 to 5.5 V  
12  
V
TA = 25 to 85°C  
VIH3  
VIH4  
VIL1  
RESET, P20 to P25  
CL1, CL2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0.8VDD  
0.9VDD  
VDD  
VDD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD = 4.5 to 5.5 V VDD – 0.5  
VDD = 1.8 to 5.5 V VDD – 0.1  
VDD  
VDD  
Input voltage, low  
Pins other than described  
below  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
0.3VDD  
0.1VDD  
0.3VDD  
0.2VDD  
0.1VDD  
0.4  
0
VIL2  
VIL3  
P50 to P53  
0
RESET, P20 to P25  
0
0
VIL4  
CL1, CL2  
0
0
0.1  
Output voltage, high  
Output voltage, low  
VOH1  
VOH2  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
VDD – 1.0  
VDD – 0.5  
VDD = 1.8 to 5.5 V, IOH = –100 µA  
Pins other  
than P50 to  
P53  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
1.0  
VDD = 1.8 to 5.5 V, IOL = 400 µA  
VDD = 4.5 to 5.5 V, IOL = 10 mA  
VDD = 1.8 to 5.5 V, IOL = 1.6 mA  
0.5  
1.0  
0.4  
V
V
V
VOL2  
P50 to P53  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
377  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V) (2/2)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage current,  
high  
ILIH1  
Pins other than CL1,  
VI = VDD  
µA  
CL2, or P50 to P53  
ILIH2  
CL1, CL2  
20  
20  
µA  
µA  
ILIH3  
P50 to P53 (N-ch open  
drain)  
VI = 12 V  
VI = 0 V  
Input leakage current,  
low  
ILIL1  
Pins other than CL1,  
CL2, or P50 to P53  
–3  
µA  
ILIL2  
CL1, CL2  
–20  
µA  
µA  
ILIL3  
P50 to P53 (N-ch open  
drain)  
–3Note 1  
µA  
µA  
k  
Output leakage  
current, high  
ILOH  
ILOL  
R1  
VO = VDD  
3
Output leakage  
current, low  
VO = 0 V  
–3  
Software pull-up  
resistance  
VI = 0 V, for pins other than P50 to P53  
50  
100  
200  
Note 2  
Power supply  
current  
IDD1  
4.0 MHz RC oscillation  
operating mode  
VDD = 5.0 V ±10%Note 4  
5.0  
1.9  
15.0  
4.9  
3.0  
5.0  
2.0  
1.5  
30  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
VDD = 5.0 V ±10%  
(R = 4.7 k, C = 22 pF)  
1.5  
Note 2  
IDD2  
4.0 MHz RC oscillation  
HALT mode (R = 4.7  
k, C = 22 pF)  
2.5  
1.0  
0.75  
0.1  
Note 2  
IDD3  
STOP mode  
µA  
VDD = 3.0 V ±10%  
0.05  
0.05  
6.2  
10  
µA  
VDD = 2.0 V ±10%  
10  
Note 3  
IDD4  
4.0 MHz RC oscillation  
A/D operating mode  
VDD = 5.0 V ±10%Note 4  
VDD = 3.0 V ±10%Note 5  
VDD = 2.0 V ±10%Note 5  
17.3  
7.2  
5.0  
mA  
mA  
mA  
3.1  
(R = 4.7 k, C = 22 pF)  
2.5  
Notes 1. When port 5 is in input mode, a low-level input leakage current of –60 µA (MAX.) flows only for 1 cycle  
time after a read instruction has been executed to port 5.  
2. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and  
AVDD current are not included.  
3. The current flowing to the ports (including the current flowing through on-chip pull-up resistors) is not  
included.  
4. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).  
5. Low-speed mode operation (when PCC is set to 02H).  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port  
pins.  
378  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
Flash Memory Write/Erase Characteristics (TA = 10 to 40°C, VDD = 1.8 to 5.5 V, RC Oscillation Operating Mode)  
Parameter  
Symbol  
IDDW  
Conditions  
MIN.  
TYP.  
MAX.  
18  
Unit  
mA  
Write current  
(VDD pin)Note  
When VPP supply voltage = VPP1  
Write current  
(VPP pin)Note  
IPPW  
IDDE  
IPPE  
When VPP supply voltage = VPP1  
When VPP supply voltage = VPP1  
When VPP supply voltage = VPP1  
22.5  
18  
mA  
mA  
mA  
Erase current  
(VDD pin)Note  
Erase current  
(VPP pin)Note  
115  
Unit erase time  
Total erase time  
Rewrite count  
ter  
0.5  
1
1
20  
s
tera  
s
Times  
V
Erase/write are regarded as 1 cycle  
In normal operation  
20  
0
20  
20  
VPP supply voltage VPP0  
VPP1  
0.2VDD  
10.3  
During flash memory programming  
9.7  
10.0  
V
Note The current flowing to the ports (including the current flowing through on-chip pull-up resistors) and AVDD  
current are not included.  
379  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
AC Characteristics  
(1) Basic operation (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Conditions  
MIN.  
0.4  
TYP.  
MAX.  
16  
Unit  
TCY  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
µs  
(minimum instruction  
execution time)  
1.6  
16  
µs  
TI80 input high-/low-  
level width  
tTIH,  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
INTP0 to INTP2  
0.1  
1.8  
0
µs  
µs  
tTIL  
MHz  
kHz  
TI80 input frequency  
fTI  
4
0
275  
Interrupt input high-  
/low-level width  
tINTH,  
10  
µs  
µs  
µs  
tINTL  
RESET low-level  
width  
tRSL  
10  
10  
CPT20 input high-  
/low-level width  
tCPH,  
tCPL  
TCY vs VDD  
60  
10  
µ
Guaranteed  
operation range  
1.0  
0.4  
0.1  
1
2
3
4
5
6
Supply voltage VDD [V]  
380  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
(2) Serial interface (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
(i) 3-wire serial I/O mode (SCK20...internal clock output)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY1  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
tKCY1/2 – 50  
tKCY1/2 – 150  
150  
SCK20 high-/low-  
level width  
tKH1,  
tKL1  
SI20 setup time  
tSIK1  
tKSI1  
tKSO1  
(to SCK20)  
500  
SI20 hold time  
400  
(from SCK20)  
600  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
0
250  
time from SCK20↓  
0
1000  
Note R and C are the load resistance and load capacitance of the SO output line.  
(ii) 3-wire serial I/O mode (SCK20...external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK20 cycle time  
tKCY2  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SCK20 high-/low-  
level width  
tKH2,  
tKL2  
SI20 setup time  
tSIK2  
tKSI2  
tKSO2  
(to SCK20)  
SI20 hold time  
(from SCK20)  
SO20 output delay  
R = 1 k,  
C = 100 pFNote  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
300  
time from SCK20↓  
0
1000  
120  
ns  
ns  
SO20 setup time  
(to SS20when  
SS20 is used)  
tKAS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
400  
240  
800  
ns  
ns  
ns  
SO20 disable time  
(for SS20when  
SS20 is used)  
tKDS2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
SS20 setup time  
tSSK2  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
100  
150  
400  
ns  
ns  
ns  
(to SCK20 first edge)  
SS20 hold time  
(from SCK20 last  
edge)  
tKSS2  
VDD = 1.8 to 5.5 V  
600  
ns  
Note R and C are the load resistance and load capacitance of the SO output line.  
381  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
(iii) UART mode (dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
78125  
19531  
Unit  
bps  
bps  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
(iv) UART mode (external clock input)  
Parameter  
Symbol  
Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ASCK20 cycle time  
tKCY3  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
3200  
400  
ns  
ASCK20 high-/low-  
level width  
tKH3,  
ns  
tKL3  
1600  
ns  
Transfer rate  
39063  
9766  
1
bps  
bps  
µs  
ASCK20 rise/fall time  
tR,  
tF  
382  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
AC Timing Measurement Points (Excluding CL1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Measurement points  
Clock Timing  
1/fCC  
t
XL  
t
XH  
V
IH4 (MIN.)  
IL4 (MAX.)  
CL1 input  
V
TI Timing  
1/fTI  
t
TIL  
t
TIH  
TI80  
Capture Input Timing  
t
CPH  
t
CPL  
CPT20  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
RESET Input Timing  
t
RSL  
RESET  
383  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK20  
t
SIKm  
t
KSIm  
Input data  
SI20  
t
KSOm  
Output data  
SO20  
m = 1, 2  
3-wire serial I/O mode (when SS20 is used):  
SS20  
t
KAS2  
t
KDS2  
SO20  
SS20  
Output data  
t
SSK2  
t
KSS2  
SCK20  
(CKP20 = 0)  
SCK20  
(CKP20 = 1)  
UART mode (external clock input):  
t
KCY3  
t
KL3  
t
KH3  
t
R
t
F
ASCK20  
384  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
10-Bit A/D Converter Characteristics  
(TA = 40 to +85°C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
Bits  
Overall errorNotes 1,2  
4.5 V VDD 5.5 V  
±0.2  
±0.4  
±0.8  
±0.4  
±0.6  
±1.2  
100  
%FSR  
%FSR  
%FSR  
µs  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
Conversion time  
tCONV  
14  
28  
100  
µs  
Zero-scale errorNotes 1,2  
±0.4  
±0.6  
±1.2  
±0.4  
±0.6  
±1.2  
±2.5  
±4.5  
±8.5  
±1.5  
±2.0  
±3.5  
AVDD  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
Full-scale errorNotes 1,2  
Integral linearity  
errorNote 1  
ILE  
LSB  
LSB  
Differential linearity  
errorNote 1  
DLE  
VIAN  
LSB  
LSB  
LSB  
Analog input voltage  
0
V
Notes 1. Excludes quantization error (±0.05%FSR).  
2. This value is indicated as a ratio to the full-scale value (%FSR).  
385  
User’s Manual U14643EJ2V0UD  
CHAPTER 31 ELECTRICAL SPECIFICATIONS (µPD78F9136A)  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention  
supply voltage  
VDDDR  
Release signal  
set time  
tSREL  
0
µs  
Oscillation  
stabilization wait  
timeNote  
tWAIT  
Release by RESET  
Release by interrupt request  
27/fCC  
27/fCC  
s
s
Note The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid  
unstable operation at the beginning of oscillation.  
Remark fCC: System clock oscillation frequency  
Data Retention Timing (STOP Mode Release by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
V
DD  
V
DDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT mode  
STOP mode  
Operating mode  
Data retention mode  
VDD  
V
DDDR  
t
SREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
t
WAIT  
386  
User’s Manual U14643EJ2V0UD  
CHAPTER 32 CHARACTERISTICS CURVES (REFERENCE VALUES)  
(µPD78910xA, 78911xA, 78910xA(A), 78911xA(A))  
IDD vs VDD (System clock: 5.0 MHz crystal resonator)  
(TA = 25˚C)  
10  
5.0  
PCC = 00H  
PCC = 02H  
1.0  
0.5  
PCC = 00H (HALT mode)  
PCC = 02H (HALT mode)  
0.1  
0.05  
0.01  
X2  
X1  
0.005  
Crystal resonator  
5.0 MHz  
22 pF  
22 pF  
0.001  
7
5
6
8
3
4
0
1
2
Power supply voltage VDD (V)  
387  
User’s Manual U14643EJ2V0UD  
CHAPTER 32 CHARACTERISTICS CURVES (REFERENCE VALUES) (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A))  
IDD vs VDD (System clock: 4.0 MHz crystal resonator)  
(TA = 25˚C)  
10  
5.0  
PCC = 00H  
PCC = 02H  
PCC = 00H (HALT mode)  
PCC = 02H (HALT mode)  
1.0  
0.5  
0.1  
0.05  
0.01  
X2  
X1  
0.005  
Crystal resonator  
4.0 MHz  
22 pF  
22 pF  
0.001  
7
5
6
8
3
4
0
1
2
Power supply voltage VDD (V)  
388  
User’s Manual U14643EJ2V0UD  
CHAPTER 32 CHARACTERISTICS CURVES (REFERENCE VALUES) (µPD78910xA, 78911xA, 78910xA(A), 78911xA(A))  
IDD vs VDD (System clock: 2.0 MHz crystal resonator)  
(TA = 25˚C)  
10  
5.0  
1.0  
0.5  
PCC = 00H  
PCC = 02H  
PCC = 00H (HALT mode)  
PCC = 02H (HALT mode)  
0.1  
0.05  
0.01  
X2  
X1  
0.005  
Crystal resonator  
2.0 MHz  
47 pF  
47 pF  
0.001  
7
5
6
8
3
4
0
1
2
Power supply voltage VDD (V)  
389  
User’s Manual U14643EJ2V0UD  
CHAPTER 33 CHARACTERISTICS CURVES (REFERENCE VALUES)  
(µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
IDD vs VDD (System clock: 5.0 MHz ceramic resonator)  
(TA = 25˚C)  
10  
5.0  
PCC = 00H  
PCC = 02H  
1.0  
0.5  
PCC = 00H (HALT mode)  
PCC = 02H (HALT mode)  
0.1  
0.05  
0.01  
X2  
X1  
0.005  
Ceramic resonator  
5.0 MHz  
22 pF  
22 pF  
0.001  
7
5
6
8
3
4
0
1
2
Power supply voltage VDD (V)  
390  
User’s Manual U14643EJ2V0UD  
CHAPTER 33 CHARACTERISTICS CURVES (REFERENCE VALUES) (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
IDD vs VDD (System clock: 4.0 MHz ceramic resonator)  
(TA = 25˚C)  
10  
5.0  
PCC = 00H  
1.0  
0.5  
PCC = 02H  
PCC = 00H (HALT mode)  
PCC = 02H (HALT mode)  
0.1  
0.05  
0.01  
X2  
X1  
0.005  
Ceramic resonator  
4.0 MHz  
22 pF  
22 pF  
0.001  
7
5
6
8
3
4
0
1
2
Power supply voltage VDD (V)  
391  
User’s Manual U14643EJ2V0UD  
CHAPTER 33 CHARACTERISTICS CURVES (REFERENCE VALUES) (µPD78910xA(A1), 78911xA(A1), 78910xA(A2), 78911xA(A2))  
IDD vs VDD (System clock: 2.0 MHz ceramic resonator)  
(TA = 25˚C)  
10  
5.0  
1.0  
0.5  
PCC = 00H  
PCC = 02H  
PCC = 00H (HALT mode)  
PCC = 02H (HALT mode)  
0.1  
0.05  
0.01  
X2  
X1  
0.005  
Ceramic resonator  
2.0 MHz  
47 pF  
47 pF  
0.001  
7
5
6
8
3
4
0
1
2
Power supply voltage VDD (V)  
392  
User’s Manual U14643EJ2V0UD  
CHAPTER 34 EXAMPLE OF RC OSCILLATOR FREQUENCY CHARACTERISTICS  
(REFERENCE VALUES) (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A), 78F9136A)  
fCC vs VDD (RC oscillation, R = 11 k, C= 22 pF)  
(T  
A
= –40˚C  
)
2.6  
2.4  
CL1  
CL2  
11 k  
22 pF  
2.2  
2.0  
1.8  
Sample A  
Sample B  
Sample C  
1.6  
1.4  
2
3
4
5
6
Supply voltage VDD [V]  
(T  
A
= 25˚C  
)
2.6  
2.4  
CL1  
CL2  
11 kΩ  
22 pF  
2.2  
2.0  
1.8  
Sample A  
Sample B  
Sample C  
1.6  
1.4  
2
3
4
5
6
)
Supply voltage VDD [V]  
(TA = 85˚C  
2.6  
2.4  
CL1  
CL2  
11 k  
22 pF  
2.2  
2.0  
1.8  
Sample A  
Sample B  
Sample C  
1.6  
1.4  
2
3
4
5
6
Supply voltage VDD [V]  
393  
User’s Manual U14643EJ2V0UD  
CHAPTER 34 EXAMPLE OF RC OSCILLATOR FREQUENCY CHARACTERISTICS (REFERENCE VALUES) (µPD78912xA, 78913xA, 78912xA(A), 78913xA(A), 78F9136(A)  
fCC vs VDD (RC oscillation, R = 4.7 k, C= 22 pF)  
(TA = –40˚C)  
4.6  
4.4  
CL1  
CL2  
4.7 k  
22 pF  
4.2  
4.0  
3.8  
Sample A  
Sample B  
Sample C  
3.6  
3.4  
2
3
4
5
6
Supply voltage VDD [V]  
(TA = 25˚C)  
4.6  
4.4  
CL1  
CL2  
4.7 k  
22 pF  
4.2  
4.0  
3.8  
Sample A  
Sample B  
Sample C  
3.6  
3.4  
2
3
4
5
6
Supply voltage VDD [V]  
(TA = 85˚C  
)
4.6  
4.4  
CL1  
CL2  
4.7 kΩ  
22 pF  
4.2  
4.0  
3.8  
Sample A  
Sample B  
Sample C  
3.6  
3.4  
2
3
4
5
6
Supply voltage VDD [V]  
394  
User’s Manual U14643EJ2V0UD  
CHAPTER 35 EXAMPLE OF RC OSCILLATOR FREQUENCY CHARACTERISTICS  
(REFERENCE VALUES) (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
fCC vs VDD (RC oscillation, R = 11 k, C= 22 pF)  
(T  
A
= –40˚C  
)
2.6  
2.4  
CL1  
CL2  
11 kΩ  
22 pF  
2.2  
2.0  
1.8  
Sample A  
Sample B  
Sample C  
1.6  
1.4  
2
3
4
5
6
Supply voltage VDD [V]  
(TA = 25˚C)  
2.6  
CL1  
CL2  
11 kΩ  
2.4  
22 pF  
2.2  
2.0  
1.8  
Sample A  
Sample B  
Sample C  
1.6  
1.4  
2
3
4
5
6
)
Supply voltage VDD [V]  
(TA = 85˚C  
2.6  
2.4  
CL1  
CL2  
11 kΩ  
22 pF  
2.2  
2.0  
1.8  
Sample A  
Sample B  
Sample C  
1.6  
1.4  
2
3
4
5
6
Supply voltage VDD [V]  
395  
User’s Manual U14643EJ2V0UD  
CHAPTER 35 EXAMPLE OF RC OSCILLATOR FREQUENCY CHARACTERISTICS (REFERENCE VALUES) (µPD78912xA(A1), 78913xA(A1), 78912xA(A2), 78913xA(A2))  
fCC vs VDD (RC oscillation, R = 4.7 k, C= 22 pF)  
(TA = –40˚C)  
4.6  
4.4  
CL1  
CL2  
4.7 kΩ  
22 pF  
4.2  
4.0  
3.8  
Sample A  
Sample B  
Sample C  
3.6  
3.4  
2
3
4
5
6
Supply voltage VDD [V]  
(TA = 25˚C)  
4.6  
CL1  
CL2  
4.7 k  
4.4  
22 pF  
4.2  
4.0  
3.8  
Sample A  
Sample B  
Sample C  
3.6  
3.4  
2
3
4
5
6
Supply voltage VDD [V]  
(TA = 85˚C)  
4.6  
CL1  
CL2  
4.7 kΩ  
4.4  
22 pF  
4.2  
4.0  
3.8  
Sample A  
Sample B  
Sample C  
3.6  
3.4  
2
3
4
5
6
Supply voltage VDD [V]  
396  
User’s Manual U14643EJ2V0UD  
CHAPTER 36 PACKAGE DRAWING  
30-PIN PLASTIC SSOP (7.62 mm (300))  
30  
16  
detail of lead end  
F
G
T
P
L
1
15  
U
E
A
H
I
J
S
B
C
N
S
M
D
M
K
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.13 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
9.85±0.15  
0.45 MAX.  
0.65 (T.P.)  
+0.08  
0.24  
D
0.07  
E
F
G
H
I
0.1±0.05  
1.3±0.1  
1.2  
8.1±0.2  
6.1±0.2  
1.0±0.2  
0.17±0.03  
0.5  
J
K
L
M
N
0.13  
0.10  
+5°  
3°  
P
3°  
T
0.25  
U
0.6±0.15  
S30MC-65-5A4-2  
397  
User’s Manual U14643EJ2V0UD  
CHAPTER 37 RECOMMENDED SOLDERING CONDITIONS  
The µPD789104A, 789114A, 789124A, and 789134A Subseries should be soldered and mounted under the  
following recommended conditions.  
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales  
representative.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Table 37-1. Surface Mounting Type Soldering Conditions (1/2)  
(1) µPD789101AMC-×××-5A4, µPD789102AMC-×××-5A4, µPD789104AMC-×××-5A4  
µPD789111AMC-×××-5A4, µPD789112AMC-×××-5A4, µPD789114AMC-×××-5A4  
µPD789121AMC-×××-5A4, µPD789122AMC-×××-5A4, µPD789124AMC-×××-5A4  
µPD789131AMC-×××-5A4, µPD789132AMC-×××-5A4, µPD789134AMC-×××-5A4  
µPD789101AMC(A)-×××-5A4, µPD789102AMC(A)-×××-5A4, µPD789104AMC(A)-×××-5A4  
µPD789111AMC(A)-×××-5A4, µPD789112AMC(A)-×××-5A4, µPD789114AMC(A)-×××-5A4  
µPD789121AMC(A)-×××-5A4, µPD789122AMC(A)-×××-5A4, µPD789124AMC(A)-×××-5A4  
µPD789131AMC(A)-×××-5A4, µPD789132AMC(A)-×××-5A4, µPD789134AMC(A)-×××-5A4  
µPD789101AMC(A1)-×××-5A4, µPD789102AMC(A1)-×××-5A4, µPD789104AMC(A1)-×××-5A4  
µPD789111AMC(A1)-×××-5A4, µPD789112AMC(A1)-×××-5A4, µPD789114AMC(A1)-×××-5A4  
µPD789121AMC(A1)-×××-5A4, µPD789122AMC(A1)-×××-5A4, µPD789124AMC(A1)-×××-5A4  
µPD789131AMC(A1)-×××-5A4, µPD789132AMC(A1)-×××-5A4, µPD789134AMC(A1)-×××-5A4  
µPD789101AMC(A2)-×××-5A4, µPD789102AMC(A2)-×××-5A4, µPD789104AMC(A2)-×××-5A4  
µPD789111AMC(A2)-×××-5A4, µPD789112AMC(A2)-×××-5A4, µPD789114AMC(A2)-×××-5A4  
µPD789121AMC(A2)-×××-5A4, µPD789122AMC(A2)-×××-5A4, µPD789124AMC(A2)-×××-5A4  
µPD789131AMC(A2)-×××-5A4, µPD789132AMC(A2)-×××-5A4, µPD789134AMC(A2)-×××-5A4  
Soldering Method  
Infrared reflow  
VPS  
Soldering Conditions  
Recommended  
Condition Symbol  
Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),  
Count: Three times or less  
IR35-00-3  
VP15-00-3  
WS60-00-1  
Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher),  
Count: Three times or less  
Wave soldering  
Partial heating  
Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once,  
Preheating temperature: 120°C max. (package surface temperature)  
Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)  
Caution Do not use different soldering methods together (except for partial heating).  
398  
User’s Manual U14643EJ2V0UD  
CHAPTER 37 RECOMMENDED SOLDERING CONDITIONS  
Table 37-1. Surface Mounting Type Soldering Conditions (2/2)  
(2) µPD78F9116BMC-5A4, µPD78F9136BMC-5A4,  
µPD78F9116BMC(A)-5A4, µPD78F9136BMC(A)-5A4,  
µPD78F9116BMC(A1)-5A4, µPD78F9136BMC(A1)-5A4  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Recommended  
Condition Symbol  
Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),  
Count: Twice or less, Exposure limit: 7 daysNote  
IR35-107-2  
VP15-107-2  
WS60-107-1  
(after that, prebake at 125°C for 10 hours)  
VPS  
Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher),  
Count: Twice or less, Exposure limit: 7 daysNote  
(after that, prebake at 125°C for 10 hours)  
Wave soldering  
Solder bath temperature: 260°C max., Time: 10 seconds max.,  
Count: Once  
Preheating temperature: 120°C max. (package surface temperature), Exposure  
limit: 7 daysNote (after that, prebake at 125°C for 10 hours)  
Partial heating  
Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)  
Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.  
Caution Do not use different soldering methods together (except for partial heating).  
(3) µPD78F9116AMC-5A4, µPD78F9136AMC-5A4  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Recommended  
Condition Symbol  
Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),  
Count: Three times or less, Exposure limit: 7 daysNote  
IR35-107-3  
VP15-107-3  
WS60-107-1  
(after that, prebake at 125°C for 10 hours)  
VPS  
Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher),  
Count: Three times or less, Exposure limit: 7 daysNote  
(after that, prebake at 125°C for 10 hours)  
Wave soldering  
Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once  
Preheating temperature: 120°C max.(package surface temperature), Exposure  
limit: 7 daysNote (after that, prebake at 125°C for 10 hours)  
Partial heating  
Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)  
Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.  
Caution Do not use different soldering methods together (except for partial heating).  
399  
User’s Manual U14643EJ2V0UD  
APPENDIX A DEVELOPMENT TOOLS  
The following development tools are available for the development of systems that employ the  
µPD789104A/114A/124A/134A Subseries.  
Figure A-1 shows the development tool configuration.  
Support of the PC98-NX Series  
Unless otherwise specified, the µPD789104A/114A/124A/134A Subseries supported by IBM PC/ATTM and  
compatibles can be used for the PC98-NX Series. When using the PC98-NX Series, refer to the descriptions of  
IBM PC/AT and compatibles.  
Windows  
Unless otherwise specified, “Windows” indicates the following OSs.  
Windows 3.1  
Windows 95  
Windows 98  
Windows 2000  
Windows NTTM Ver. 4.0  
400  
User’s Manual U14643EJ2V0UD  
APPENDIX A DEVELOPMENT TOOLS  
Figure A-1. Development Tools  
Software package  
·
Software package  
Language processing software  
Debugging software  
·
·
·
·
Assembler package  
C compiler package  
Device file  
·
·
Integrated debugger  
System simulator  
C library source fileNote 1  
Control software  
·
Project manager  
(Windows version only)Note 2  
Host machine  
(PC or EWS)  
Interface adapter  
Power supply unit  
Flash memory writing tools  
Flash programmer  
In-circuit emulator  
Emulation board  
Flash memory  
writing adapter  
Flash memory  
Emulation probe  
Conversion socket or  
conversion adapter  
Target system  
Notes 1. The C library source file is not included in the software package.  
2. The project manager is included in the assembler package and is available only for Windows.  
401  
User’s Manual U14643EJ2V0UD  
APPENDIX A DEVELOPMENT TOOLS  
A.1 Software Package  
SP78K0S  
Various software tools for 78K/0S development are integrated in one package.  
The following tools are included.  
Software package  
RA78K0S, CC78K0S, ID78K0S-NS, SM78K0S, various device files  
Part number: µS××××SP78K0S  
Remark ×××× in the part number differs depending on the operating system to be used.  
µS×××× SP78K0S  
××××  
Host Machine  
OS  
Supply Medium  
CD-ROM  
AB17  
BB17  
PC-9800 series,  
IBM PC/AT and compatibles  
Japanese Windows  
English Windows  
A.2 Language Processing Software  
RA78K0S  
Program that converts program written in mnemonic into object codes that can be executed by a  
microcontroller.  
Assembler package  
In addition, automatic functions to generate a symbol table and optimize branch instructions are also  
provided.  
Used in combination with a device file (DF789136) (sold separately).  
<Caution when used in PC environment>  
The assembler package is a DOS-based application but may be used in the Windows environment  
by using the Project Manager of Windows (included in the package).  
Part number: µS××××RA78K0S  
CC78K0S  
Program that converts program written in C language into object codes that can be executed by a  
microcontroller.  
C compiler package  
Used in combination with an assembler package (RA78K0S) and device file (DF789136) (both sold  
separately).  
<Caution when used in PC environment>  
The C compiler package is a DOS-based application but may be used in the Windows environment  
by using the Project Manager of Windows (included in the assembler package).  
Part number: µS××××CC78K0S  
DF789136Note 1  
Device file  
File containing the information inherent to the device.  
Used in combination with other tools (RA78K0S, CC78K0S, ID78K0S-NS, SM78K0S) (all sold  
separately).  
Part number: µS××××DF789136  
CC78K0S-LNote 2  
Source file of functions constituting the object library included in the C compiler package.  
Necessary for changing the object library included in the C compiler package according to the  
customer’s specifications.  
C library source file  
Since this is the source file, its working environment does not depend on any particular operating  
system.  
Part number: µS××××CC78K0S-L  
Notes 1. DF789136 is a common file that can be used with the RA78K0S, CC78K0S, ID78K0S-NS, and  
SM78K0S.  
2. CC78K0S-L is not included in the software package (SP78K0S).  
402  
User’s Manual U14643EJ2V0UD  
APPENDIX A DEVELOPMENT TOOLS  
Remark ×××× in the part number differs depending on the host machine and operating system to be used.  
µS××××RA78K0S  
µS××××CC78K0S  
××××  
AB13  
Host Machine  
PC-9800 series,  
OS  
Supply Medium  
3.5” 2HD FD  
Japanese Windows  
English Windows  
Japanese Windows  
English Windows  
HP-UXTM (Rel.10.10)  
IBM PC/AT and compatibles  
BB13  
AB17  
BB17  
3P17  
3K17  
CD-ROM  
HP9000 series 700TM  
SPARCstationTM  
SunOSTM (Rel.4.1.1),  
SolarisTM (Rel.2.5.1)  
µS××××DF789136  
µS××××CC78K0S-L  
××××  
AB13  
BB13  
3P16  
3K13  
3K15  
Host Machine  
OS  
Supply Medium  
PC-9800 series,  
Japanese Windows  
English Windows  
HP-UX (Rel.10.10)  
3.5” 2HD FD  
IBM PC/AT and compatibles  
HP9000 series 700  
SPARCstation  
DAT  
SunOS (Rel.4.1.1),  
Solaris (Rel.2.5.1)  
3.5” 2HD FD  
1/4” CGMT  
A.3 Control Software  
Project Manager  
Control software provided for efficient user program development in the Windows  
environment. The Project Manager allows a series of tasks required for user program  
development to be performed, including starting the editor, building, and starting the  
debugger.  
<Caution>  
The Project Manager is included in the assembler package (RA78K0S).  
It cannot be used in an environment other than Windows.  
A.4 Flash Memory Writing Tools  
Flashpro III  
Flash programmer dedicated to microcontrollers incorporating flash memory.  
(part number: FL-PR3, PG-FP3)  
Flashpro IV  
(part number: FL-PR4, PG-FP4)  
Flash programmer  
FA-30MC  
Flash memory writing adapter. Used connected to Flashpro III.  
30-pin plastic SSOP (MC-5A4 type)  
Flash memory writing adapter  
Remark FL-PR3, FL-PR4, and FA-30MC are products of Naito Densei Machida Mfg. Co., Ltd.  
For further information, contact: Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191)  
403  
User’s Manual U14643EJ2V0UD  
APPENDIX A DEVELOPMENT TOOLS  
A.5 Debugging Tools (Hardware)  
IE-78K0S-NS  
In-circuit emulator for debugging the hardware and software of an application system using the  
78K/0S Series. Used with an integrated debugger (ID78K0S-NS). Used in combination with  
an AC adapter, emulation probe, and interface adapter for connecting the host machine.  
In-circuit emulator  
IE-78K0S-NS-A  
In-circuit emulator with enhanced functions of the IE-78K0S-NS. The debug function is further  
enhanced by adding a coverage function and enhancing the tracer and timer functions.  
In-circuit emulator  
IE-70000-MC-PS-B  
AC adapter  
Adapter for supplying power from a 100 to 240 VAC outlet.  
IE-70000-98-IF-C  
Interface adapter  
Adapter required when using a PC-9800 series (except notebook type) as the host machine (C  
bus supported).  
IE-70000-CD-IF-A  
PC card interface  
PC card and interface cable required when using a notebook type PC as the host machine  
(PCMICA socket supported).  
IE-70000-PC-IF-C  
Interface adapter  
Adapter required when using an IBM PC/AT or compatible as the host machine (ISA bus  
supported).  
IE-70000-PCI-IF-A  
Interface adapter  
Adapter required when using a personal computer incorporating a PCI bus as the host  
machine.  
IE-789136-NS-EM1  
Emulation board  
Emulation board for emulating the peripheral hardware inherent to the device.  
Used in combination with an in-circuit emulator.  
NP-30MC  
Probe for connecting the in-circuit emulator and target system.  
Used in combination with the NSPACK30BK and YSPACK30BK.  
Emulation probe  
NSPACK30BK  
Conversion adapter used to connect a target system board designed to allow mounting a 30-  
pin plastic SSOP (MC-5A4 type) and the NP-30MC.  
YSPACK30BK  
Conversion adapter  
Remarks 1. The NP-30MC is a product of Naito Densei Machida Mfg. Co., Ltd.  
For further information, contact: Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191)  
2. The NSPACK30BK and YSPACK30BK are products of TOKYO ELETECH CORPORATION.  
For further information, contact: Daimaru Kogyo, Ltd.  
Tokyo Electronics Department (TEL +81-3-3820-7112)  
Osaka Electronics Department (TEL +81-6-6244-6672)  
404  
User’s Manual U14643EJ2V0UD  
APPENDIX A DEVELOPMENT TOOLS  
A.6 Debugging Tools (Software)  
ID78K0S-NS  
This debugger supports the in-circuit emulators IE-78K0S-NS and IE-78K0S-NS-A for the  
78K/0S Series. The ID78K0S-NS is Windows-based software.  
Integrated debugger  
It has improved C-compatible debugging functions and can display the results of tracing with the  
source program using an integrating window function that associates the source program,  
disassemble display, and memory display with the trace result.  
Used in combination with a device file (DF789136) (sold separately).  
Part number: µS××××ID78K0S-NS  
SM78K0S  
This is a system simulator for the 78K/0S Series. The SM78K0S is Windows-based software.  
It can be used to debug the target system at C source level or assembler level while simulating  
the operation of the target system on the host machine.  
System simulator  
Using SM78K0S, the logic and performance of the application can be verified independently of  
hardware development. Therefore, the development efficiency can be enhanced and the  
software quality can be improved.  
Used in combination with a device file (DF789136) (sold separately).  
Part number: µS××××SM78K0S  
DF789136Note  
Device file  
File containing the information inherent to the device.  
Used in combination with other tools (RA78K0S, CC78K0S, ID78K0S-NS, SM78K0S) (all sold  
separately).  
Part number: µS××××DF789136  
Note DF789136 is a common file that can be used with the RA78K0S, CC78K0S, ID78K0S-NS, and SM78K0S.  
Remark ×××× in the part number differs depending on the operating system to be used and the supply medium.  
µS××××ID78K0S-NS  
µS××××SM78K0S  
××××  
AB13  
Host Machine  
OS  
Supply Medium  
3.5” 2HD FD  
PC-9800 series,  
IBM PC/AT and compatibles  
Japanese Windows  
English Windows  
Japanese Windows  
English Windows  
BB13  
AB17  
BB17  
CD-ROM  
405  
User’s Manual U14643EJ2V0UD  
APPENDIX B NOTES ON TARGET SYSTEM DESIGN  
The following show the conditions when connecting the emulation probe to the conversion adapter. Follow the  
configuration below and consider the shape of parts to be mounted on the target system when designing a system.  
Figure B-1. Distance Between In-Circuit Emulator and Conversion Adapter  
In-circuit emulator  
IE-78K0S-NS or IE-78K0S-NS-A  
Target system  
Emulation board  
IE-789136-NS-EM1  
Board on end of NP-30MC  
150 mm  
CN2  
Emulation probe  
NP-30MC  
Conversion adapter:  
YSPACK30BK,  
NSPACK30BK  
Remarks 1. The NP-30MC is a product of Naito Densei Machida Mfg. Co., Ltd.  
2. The YSPACK30BK and NSPACK30BK are products of TOKYO ELETECH CORPORATION.  
406  
User’s Manual U14643EJ2V0UD  
APPENDIX B NOTES ON TARGET SYSTEM DESIGN  
Figure B-2. Connection Condition of Target System  
Emulation board  
IE-789136-NS-EM1  
Emulation probe  
NP-30MC  
Board on end of NP-30MC  
Guide pin  
YQGUIDE  
13 mm  
Conversion adapter  
YSPACK30BK,  
NSPACK30BK  
5 mm  
15 mm  
31 mm  
20 mm  
37 mm  
Target system  
Remarks 1. The NP-30MC is a product of Naito Densei Machida Mfg. Co., Ltd.  
2. The YSPACK30BK, NSPACK30BK, and YQGUIDE are products of TOKYO ELETECH  
CORPORATION.  
407  
User’s Manual U14643EJ2V0UD  
APPENDIX C REGISTER INDEX  
C.1 Register Name Index (Alphabetical Order)  
[A]  
A/D conversion result register 0 (ADCR0)...........................................................................................................143, 155  
A/D converter mode register 0 (ADM0) ...............................................................................................................144, 156  
Analog input channel specification register 0 (ADS0) .........................................................................................145, 157  
Asynchronous serial interface mode register 20 (ASIM20) .................................................................172, 178, 181, 193  
Asynchronous serial interface status register 20 (ASIS20) .................................................................................174, 182  
[B]  
Baud rate generator control register 20 (BRGC20).....................................................................................175, 183, 194  
[E]  
8-bit compare register 80 (CR80)............................................................................................................................... 125  
8-bit timer counter 80 (TM80)..................................................................................................................................... 125  
8-bit timer mode control register 80 (TMC80)............................................................................................................. 126  
External interrupt mode register 0 (INTM0)................................................................................................................ 212  
[I]  
Interrupt mask flag register 0 (MK0)............................................................................................................................211  
Interrupt mask flag register 1 (MK1)............................................................................................................................211  
Interrupt request flag register 0 (IF0).......................................................................................................................... 210  
Interrupt request flag register 1 (IF1).......................................................................................................................... 210  
[M]  
Multiplication data register A0 (MRA0)....................................................................................................................... 202  
Multiplication data register B0 (MRB0)....................................................................................................................... 202  
Multiplier control register 0 (MULC0).......................................................................................................................... 204  
[O]  
Oscillation stabilization time select register (OSTS)................................................................................................... 222  
[P]  
Port 0 (P0).................................................................................................................................................................... 82  
Port 1 (P1).................................................................................................................................................................... 83  
Port 2 (P2).................................................................................................................................................................... 84  
Port 5 (P5).................................................................................................................................................................... 88  
Port 6 (P6).................................................................................................................................................................... 89  
Port mode register 0 (PM0).......................................................................................................................................... 90  
Port mode register 1 (PM1).......................................................................................................................................... 90  
Port mode register 2 (PM2)...........................................................................................................................90, 115, 127  
Port mode register 5 (PM5).......................................................................................................................................... 90  
Processor clock control register (PCC) .................................................................................................................96, 103  
Pull-up resistor option register 0 (PU0) ........................................................................................................................ 91  
Pull-up resistor option register B2 (PUB2).................................................................................................................... 92  
408  
User’s Manual U14643EJ2V0UD  
APPENDIX C REGISTER INDEX  
[R]  
Receive buffer register 20 (RXB20) ............................................................................................................................169  
Receive shift register 20 (RXS20)...............................................................................................................................169  
[S]  
Serial operating mode register 20 (CSIM20).......................................................................................170, 178, 180, 192  
16-bit capture register 20 (TCP20)..............................................................................................................................112  
16-bit compare register 20 (CR20)..............................................................................................................................112  
16-bit multiplication result storage register 0 (MUL0)..................................................................................................202  
16-bit timer counter 20 (TM20)....................................................................................................................................112  
16-bit timer mode control register 20 (TMC20) ...........................................................................................................113  
[T]  
Timer clock select register 2 (TCL2) ...........................................................................................................................138  
Transmit shift register 20 (TXS20)...............................................................................................................................169  
[W]  
Watchdog timer mode register (WDTM)......................................................................................................................139  
409  
User’s Manual U14643EJ2V0UD  
APPENDIX C REGISTER INDEX  
C.2 Register Symbol Index (Alphabetical Order)  
[A]  
ADCR0: A/D conversion result register 0 .........................................................................................................143, 155  
ADM0:  
ADS0:  
A/D converter mode register 0............................................................................................................144, 156  
Analog input channel specification register 0 .....................................................................................145, 157  
ASIM20: Asynchronous serial interface mode register 20.................................................................172, 178, 181, 193  
ASIS20: Asynchronous serial interface status register 20................................................................................174, 182  
[B]  
BRGC20: Baud rate generator control register 20......................................................................................175, 183, 194  
[C]  
CR20:  
CR80:  
16-bit compare register 20 .........................................................................................................................112  
8-bit compare register 80 .......................................................................................................................... 125  
CSIM20: Serial operating mode register 20 ......................................................................................170, 178, 180, 192  
[I]  
IF0:  
IF1:  
Interrupt request flag register 0 ................................................................................................................. 210  
Interrupt request flag register 1 ................................................................................................................. 210  
INTM0: External interrupt mode register 0............................................................................................................. 212  
[M]  
MK0:  
Interrupt mask flag register 0......................................................................................................................211  
Interrupt mask flag register 1......................................................................................................................211  
Multiplication data register A0 ................................................................................................................... 202  
Multiplication data register B0 ................................................................................................................... 202  
16-bit multiplication result storage register 0 ............................................................................................. 202  
MK1:  
MRA0:  
MRB0:  
MUL0:  
MULC0: Multiplier control register 0 ........................................................................................................................ 204  
[O]  
OSTS:  
Oscillation stabilization time select register............................................................................................... 222  
[P]  
P0:  
Port 0........................................................................................................................................................... 82  
Port 1........................................................................................................................................................... 83  
Port 2........................................................................................................................................................... 84  
Port 5........................................................................................................................................................... 88  
Port 6........................................................................................................................................................... 89  
Processor clock control register ...........................................................................................................96, 103  
Port mode register 0.................................................................................................................................... 90  
Port mode register 1.................................................................................................................................... 90  
Port mode register 2.....................................................................................................................90, 115, 127  
Port mode register 5.................................................................................................................................... 90  
Pull-up resistor option register 0.................................................................................................................. 91  
Pull-up resistor option register B2 ............................................................................................................... 92  
P1:  
P2:  
P5:  
P6:  
PCC:  
PM0:  
PM1:  
PM2:  
PM5:  
PU0:  
PUB2:  
410  
User’s Manual U14643EJ2V0UD  
APPENDIX C REGISTER INDEX  
[R]  
RXB20: Receive buffer register 20 ..........................................................................................................................169  
RXS20: Receive shift register 20.............................................................................................................................169  
[T]  
TCL2:  
Timer clock select register 2 ......................................................................................................................138  
TCP20: 16-bit capture register 20 ...........................................................................................................................112  
TM20:  
TM80:  
16-bit timer counter 20 ...............................................................................................................................112  
8-bit timer counter 80 .................................................................................................................................125  
TMC20: 16-bit timer mode control register 20..........................................................................................................113  
TMC80: 8-bit timer mode control register 80 ...........................................................................................................126  
TXS20: Transmit shift register 20............................................................................................................................169  
[W]  
WDTM: Watchdog timer mode register ...................................................................................................................139  
411  
User’s Manual U14643EJ2V0UD  
APPENDIX D REVISION HISTORY  
The following table shows the revision history up to this edition. The “Applied to:” column indicates the chapters of  
each edition in which the revision was applied.  
(1/2)  
Edition  
2nd  
Major Revision from Previous Edition  
Applied to:  
Addition of µPD789101A(A1), 789102A(A1), 789104A(A1), 789111A(A1), 789112A(A1), Throughout  
789114A(A1), 789121A(A1), 789122A(A1), 789124A(A1), 789131A(A1), 789132A(A1),  
789134A(A1), 789101A(A2), 789102A(A2), 789104A(A2), 789111A(A2), 789112A(A2),  
789114A(A2), 789121A(A2), 789122A(A2), 789124A(A2), 789131A(A2), 789132A(A2),  
789134A(A2), 78F9116B, 78F9136B, 78F9116B(A), 78F9136B(A), 78F9116B(A1),  
78F9136B(A1)  
Addition of description related to expanded-specification products  
Addition of 1.1 Expanded-Specification Products and Conventional-Specification  
CHAPTER 1 GENERAL  
Products  
(µPD789104A, 789114A  
Addition of 1.10 Differences Between Standard Quality Grade Products and (A),  
SUBSERIES)  
(A1), (A2) Products  
Addition of 2.9 Differences Between Standard Quality Grade Products and (A), (A1), CHAPTER 2 GENERAL  
(A2) Products  
(µPD789124A, 789134A  
SUBSERIES)  
Modification of description in 8.4.1 Operation as timer interrupt  
Modification of Figure 8-5 Timing of Timer Interrupt Operation  
Modification of description in 8.4.2 Operation as timer output  
Modification of description in Figure 8-7 Timer Output Timing  
Addition of 8.5 Notes on Using 16-Bit Timer 20  
CHAPTER 8 16-BIT TIMER  
20  
Addition of description to 9.5 Notes on Using 8-Bit Timer/Event Counter 80  
CHAPTER 9 8-BIT  
TIMER/EVENT COUNTER  
80  
Addition of 11.5 (8) Input impedance of ANI0 to ANI3 pins  
CHAPTER 11 8-BIT A/D  
CONVERTER  
(µPD789104A, 789124A  
SUBSERIES)  
Modification of description in 12.2 (2) A/D conversion result register 0 (ADCR0)  
Addition of 12.5 (8) Input impedance of ANI0 to ANI3 pins  
CHAPTER 12 10-BIT A/D  
CONVERTER  
(µPD789114A, 789134A  
SUBSERIES)  
Modification of Figure 13-1 Block Diagram of Serial Interface 20  
CHAPTER 13 SERIAL  
Addition of 13.3 (4) (c) Generation of serial clock from system clock in 3-wire serial INTERFACE 20  
I/O mode  
Addition of 13.4.2 (2) (f) Reading receive data  
Addition of Caution 3 in Figure 15-2 Format of Interrupt Request Flag Register  
CHAPTER 15 INTERRUPT  
FUNCTIONS  
Revision of chapter  
CHAPTER 18  
µPD78F9116A, 78F9116B,  
78F9136A, 78F9136B  
412  
User’s Manual U14643EJ2V0UD  
APPENDIX D REVISION HISTORY  
(2/2)  
Edition  
2nd  
Major Revision from Previous Edition  
Applied to:  
Addition of chapters  
CHAPTER 21 to CHAPTER  
31 ELECTRICAL  
SPECIFICATIONS  
CHAPTER 32, CHAPTER 33  
CHARACTERISTICS  
CURVES (REFERENCE  
VALUES)  
CHAPTER 34, CHAPTER 35  
EXAMPLE OF RC  
OSCILLATOR FREQUENCY  
CHARACTERISTICS  
(REFERENCE VALUES)  
CHAPTER 36 PACKAGE  
DRAWING  
CHAPTER 37  
RECOMMENDED  
SOLDERING CONDITIONS  
Revision of appendix  
Addition of appendices  
APPENDIX A  
DEVELOPMENT TOOLS  
APPENDIX B NOTES ON  
TARGET SYSTEM DESIGN  
APPENDIX D REVISION  
HISTORY  
Deletion of APPENDIX B EMBEDDED SOFTWARE  
413  
User’s Manual U14643EJ2V0UD  

相关型号:

UPD78F9136CT

8-Bit Microcontroller
ETC

UPD78F9136GS

8-Bit Microcontroller
ETC

UPD78F9177

8-BIT SINGLE-CHIP MICROCONTROLLER
NEC
RENESAS
RENESAS

UPD78F9177AY

78K/0S Series Instructions | User's Manual[11/2000]
ETC

UPD78F9177AYGA-9EU

Microcontroller, 8-Bit, FLASH, 10MHz, CMOS, PQFP48, 7 X 7 MM, FINE PITCH, PLASTIC, TQFP-48
NEC

UPD78F9177AYGB(A)-8ES

Microcontroller, 8-Bit, FLASH, 10MHz, CMOS, PQFP44, 10 X 10 MM, PLASTIC, LQFP-44
NEC

UPD78F9177GB-8ES

8-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD78F9177GB-8ES-A

Microcontroller, 8-Bit, FLASH, 5MHz, CMOS, PQFP44, 10 X 10 MM, PLASTIC, LQFP-44
NEC

UPD78F9177Y

8-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD78F9177YCU

8-BIT, FLASH, MICROCONTROLLER, PDIP42, 0.600 INCH, SHRINK, PLASTIC, DIP-42
NEC