UPD78P014 [NEC]

8-BIT SINGLE-CHIP MICROCOMPUTER; 8位单片机
UPD78P014
型号: UPD78P014
厂家: NEC    NEC
描述:

8-BIT SINGLE-CHIP MICROCOMPUTER
8位单片机

计算机
文件: 总62页 (文件大小:495K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD78P014  
8-BIT SINGLE-CHIP MICROCOMPUTER  
DESCRIPTION  
The µPD78P014 is a member of the µPD78014 subseries of 78K/0 series products. It uses a one-time-programmable  
(OTP) ROM or EPROM instead of the mask ROM of the µPD78014.  
Because the µPD78P014 can be programmed by users, it is ideally suited for applications involving the evaluation  
ofsystemsindevelopmentstages,small-scaleproductionofmanydifferentproducts,andrapiddevelopmentandtime-  
to-market of a new product.  
Detailed information about product features and specifications can be found in the following document. Please  
make sure to read this document before starting design.  
µPD78014, 78014Y Series User’s Manual : IEU-1343  
FEATURES  
Pin compatible with mask ROM versions (except VPP pin)  
Internal PROM: 32K bytesNote  
µPD78P014DW  
: Reprogrammable (ideal for system evaluation)  
µPD78P014CW, 78P014GC-AB8 : Programmable once only (ideal for small-scale production)  
Internal high-speed RAM: 1024 bytesNote  
Buffer RAM: 32 bytes  
Operable over same supply voltage range as mask ROM version (2.7 to 6.0 V)  
Available for the QTOPTM microcomputer  
Note The internal PROM and internal high-speed RAM size can be set by means of the memory size switching  
register.  
Remark The QTOP microcomputer is the general term for a single-chip microcomputer with on-chip one-time  
PROM. NEC supports its program writing, marking, screening, and verification.  
Differences from mask ROM versions are as follows:  
The same memory mapping as on a mask ROM version is possible by setting the memory size  
switching register.  
There is no function for incorporating pull-up resistors by means of a mask option in P60 to P63  
pins.  
ORDERING INFORMATION  
Part No.  
Package  
Internal ROM  
One-time PROM  
EPROM  
µPD78P014CW  
µPD78P014DW  
µPD78P014GC-AB8  
64-pin plastic shrink DIP (750 mil)  
64-pin ceramic shrink DIP (with window) (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
One-time PROM  
In this document, the common parts of the one-time PROM version and EPROM version are represented by PROM.  
The information in this document is subject to change without notice.  
Document No. IC-3098C  
The mark shows revised points.  
(O. D. No. IC-8111C)  
Date Published January 1995 P  
Printed in Japan  
1992  
©
µPD78P014  
78K/0 SERIES DEVELOPMENT  
µ PD78078Y Subseries  
µ PD78078 Subseries  
µ PD78064Y Subseries  
µ PD78064 Subseries  
100-pin package  
8-bit timer/event counter  
added  
100-pin package  
LCD controller/driver,  
UART added  
16-bit timer/event counter  
function enhanced  
External expansion function  
enhanced  
Products in Volume Production  
Products under Development  
µ PD78098 Subseries  
Y subseries are products compatible with I2C bus.  
µ PD78054Y Subseries  
µ PD78054 Subseries  
80-pin package  
IEBuscontroller added  
80-pin package  
UART, D/A converter,  
real-time output port added  
16-bit timer/event counter  
function enhanced  
µ PD78083 Subseries  
42/44-pin package  
UART, A/D converter,  
8-bit timer/event counter  
function  
µ PD78014Y Subseries  
µ PD78014 Subseries  
µ
PD78018FY Subseries  
64-pin package  
A/D converter,  
µ PD78018F Subseries  
16-bit timer/event counter,  
SIO with automatic transmission/  
reception function added  
Multiply/divide instructions  
added  
64-pin package  
Capable of low voltage and  
high-speed operation  
µ
PD780208 Subseries  
100-pin package  
FIP controller/driver function  
enhanced  
µ
PD78044A Subseries  
µ PD78044 Subseries  
µ PD78024 Subseries  
80-pin package  
Automatic transmission/reception  
function added  
6-bit up/down counter added  
FIP controller/driver function  
enhanced  
64-pin package  
A/D converter,  
µ PD78002Y Subseries  
16-bit timer/event counter,  
µ PD78002 Subseries  
FIPTM controller/driver,  
multiply/divide instructions  
64-pin package  
added  
2
µPD78P014  
OUTLINE OF FUNCTION  
Item  
Function  
• PROM  
• RAM  
: 32K bytesNote  
Internal memory  
Internal high-speed RAM : 1024 bytesNote  
Buffer RAM  
: 32 bytes  
Memory space  
General registers  
Instruction cycle  
64K bytes  
8 bits × 32 registers (8 bits × 8 registers × 4 banks)  
On-chip instruction execution time cycle modification function  
0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at 10.0 MHz operation)  
Main system clock  
selected  
Subsystem clock  
selected  
122 µs (at 32.768 kHz operation)  
Instruction set  
• 16-bit operation  
• Multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bits)  
• Bit manipulate (set, reset, test, Boolean operation)  
• BCD correction, etc.  
I/O ports  
Total  
:
:
:
53  
2
• CMOS input  
• CMOS I/O  
47  
4
• N-channel open-drain I/O (15 V withstand voltage) :  
A/D converter  
Serial interface  
Timer  
• 8-bit resolution × 8 channels  
• Operable over a wide power supply voltage range: VDD = 2.7 to 6.0 V  
• 3-wire/SBI/2-wire mode selectable  
: 1 channel  
• 3-wire mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel  
• 16-bit timer/event counter : 1 channel  
• 8-bit timer/event counter : 2 channels  
• Clock timer  
: 1 channel  
: 1 channel  
• Watchdog timer  
Timer output  
Clock output  
3 (14-bit PWM output : 1)  
39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock 10.0 MHz operation)  
32.768 kHz (at subsystem clock 32.768 kHz operation)  
Buzzer output  
2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock 10.0 MHz operation)  
Internal : 8, External : 4  
Vectored  
interrupts  
Maskable  
interrupts  
Internal : 1  
Internal : 1  
Non-maskable  
interrupt  
Software  
interrupt  
Test input  
Internal : 1  
External : 1  
Operating voltage range  
VDD = 2.7 to 6.0 V  
Operating temperature  
range  
–40 to +85 °C  
Package  
• 64-pin plastic shrink DIP (750 mil)  
• 64-pin plastic QFP (14 × 14 mm)  
• 64-pin ceramic shrink DIP (with window) (750 mil)  
Note The capacity of the internal PROM and internal high-speed RAM can be set by means of the memory size  
switching register.  
3
µPD78P014  
PIN CONFIGURATION (Top View)  
(1) Normal operating mode  
64-pin plastic shrink DIP (750 mil)  
64-pin ceramic shrink DIP (with window) (750 mil)  
P20/SI1  
P21/SO1  
P22/SCK1  
P23/STB  
P24/BUSY  
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30/TO0  
P31/TO1  
P32/TO2  
P33/TI1  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AVREF  
2
AVDD  
3
P17/ANI7  
P16/ANI6  
P15/ANI5  
P14/ANI4  
P13/ANI3  
P12/ANI2  
P11/ANI1  
P10/ANI0  
AVSS  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P04/XT1  
XT2  
P34/TI2  
µ
µ
P35/PCL  
P36/BUZ  
P37  
V
PP  
X1  
X2  
V
SS  
V
DD  
P40/AD0  
P41/AD1  
P42/AD2  
P43/AD3  
P44/AD4  
P45/AD5  
P46/AD6  
P47/AD7  
P50/A8  
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00/INTP0/TI0  
RESET  
P67/ASTB  
P66/WAIT  
P65/WR  
P64/RD  
P63  
P51/A9  
P52/A10  
P53/A11  
P54/A12  
P55/A13  
P62  
P61  
P60  
P57/A15  
P56/A14  
V
SS  
Cautions 1. VPP pin should be connected to VSS directly.  
2. AVDD pin should be connected to VDD.  
3. AVSS pin should be connected to VSS.  
4
µPD78P014  
64-pin plastic QFP (14 × 14 mm)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
P30/TO0  
P31/TO1  
P32/TO2  
P33/TI1  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
1
P11/ANI1  
P10/ANI0  
AVSS  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3
4
P04/XT1  
XT2  
5
µ
6
V
PP  
7
X1  
X2  
8
V
SS  
9
V
DD  
P40/AD0  
P41/AD1  
P42/AD2  
P43/AD3  
P44/AD4  
P45/AD5  
P46/AD6  
10  
11  
12  
13  
14  
15  
16  
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00/INTP0/TI0  
RESET  
P67/ASTB  
P66/WAIT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Cautions 1. VPP pin should be connected to VSS directly.  
2. AVDD pin should be connected to VDD.  
3. AVSS pin should be connected to VSS.  
5
µPD78P014  
P00 to P04  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
P50 to P57  
P60 to P67  
: Port 0  
: Port 1  
: Port 2  
: Port 3  
: Port 4  
: Port 5  
: Port 6  
AD0 to AD7  
A8 to A15  
RD  
: Address/Data Bus  
: Address Bus  
: Read Strobe  
: Write Strobe  
: Wait  
WR  
WAIT  
ASTB  
: Address Strobe  
X1, X2  
XT1, XT2  
RESET  
ANI0 to ANI7  
AVDD  
: Crystal (Main System Clock)  
: Crystal (Subsystem Clock)  
: Reset  
INTP0 to INTP3 : Interrupt From Peripherals  
TI0 to TI2  
TO0 to TO2  
SB0, SB1  
SI0, SI1  
SO0, SO1  
SCK0, SCK1  
PCL  
: Timer Input  
: Timer Output  
: Serial Bus  
: Analog Input  
: Analog Power Supply  
: Analog Ground  
: Serial Input  
: Serial Output  
: Serial Clock  
: Programmable Clock  
: Buzzer Clock  
: Strobe  
AVSS  
AVREF  
: Analog Reference Voltage  
: Power Supply  
VDD  
VPP  
: Programming Power Supply  
: Ground  
BUZ  
VSS  
STB  
BUSY  
: Busy  
6
µPD78P014  
(2) PROM programming mode  
64-pin plastic shrink DIP (750 mil)  
64-pin ceramic shrink DIP (with window) (750 mil)  
1
2
3
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
V
SS  
DD  
4
(L)  
5
6
7
8
(L)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
V
SS  
(L)  
Open  
µ
µ
V
PP  
(L)  
Open  
V
SS  
V
DD  
A0  
A1  
(L)  
A2  
A3  
A9  
A4  
RESET  
A5  
(L)  
A6  
A7  
CE  
OE  
A8  
(L)  
A10  
A11  
A12  
A13  
(L)  
V
SS  
A14  
Cautions 1. (L)  
2. VSS  
: Connect to VSS individually via a pull-down resistor.  
: Connect to ground.  
3. RESET : Set to low level.  
4. Open : Do not make any connection.  
7
µPD78P014  
64-pin plastic QFP (14 × 14 mm)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
1
(L)  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3
V
SS  
(L)  
4
5
Open  
6
V
PP  
µ
(L)  
7
Open  
8
V
SS  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
9
V
DD  
10  
11  
12  
13  
14  
15  
16  
(L)  
A9  
RESET  
(L)  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Cautions 1. (L)  
2. VSS  
: Connect to VSS individually with a pull-down resistor.  
: Connect to ground.  
3. RESET : Set to low level.  
4. Open : Do not make any connection.  
A0 to A14  
: Address Bus  
: Data Bus  
RESET  
VDD  
: Reset  
: Power Supply  
D0 to D7  
CE  
: Chip Enable  
: Output Enable  
VPP  
: Programming Power Supply  
: Ground  
OE  
VSS  
8
µPD78P014  
BLOCK DIAGRAM  
9
µPD78P014  
CONTENTS  
1. DIFFERENCES BETWEEN µPD78P014 AND MASK ROM VERSION ...................................................11  
2. PIN FUNCTIONS ....................................................................................................................................... 12  
2.1 Normal Operating Mode Pins ......................................................................................................................... 12  
2.2 PROM Programming Mode Pins ..................................................................................................................... 15  
2.3 Pin Input/Output Circuits and Connection of Unused Pins........................................................................ 16  
3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS) ...................................................................18  
4. PROM PROGRAMMING ........................................................................................................................... 19  
4.1 Operating Modes ..............................................................................................................................................19  
4.2 PROM Write Procedure .................................................................................................................................... 20  
4.3 PROM Read Procedure ..................................................................................................................................... 22  
5. ERASURE PROCEDURE (µPD78P014DW ONLY) ................................................................................... 23  
6. OPAQUE FILM FOR ERASURE WINDOW (µPD78P014DW ONLY) ......................................................23  
7. ONE-TIME PROM VERSION SCREENING .............................................................................................. 23  
8. ELECTRICAL SPECIFICATIONS ............................................................................................................... 24  
9. CHARACTERISTIC CURVES (FOR REFERENCE ONLY) ........................................................................ 49  
10. PACKAGE DRAWINGS ............................................................................................................................. 53  
11. RECOMMENDED SOLDERING CONDITIONS ........................................................................................ 56  
APPENDIX A. DEVELOPMENT TOOLS.........................................................................................................57  
APPENDIX B. RELATED DOCUMENTS ........................................................................................................59  
10  
µPD78P014  
1. DIFFERENCES BETWEEN µPD78P014 AND MASK ROM VERSION  
The µPD78P014 incorporates one-time PROM which can be written to once only, or EPROM to which programs  
can be written, erased and rewritten.  
By setting the internal memory size switching register, it is possible to make the functions of this device, except  
for the PROM specification and mask option for pins P60 to P63, identical to those of a mask ROM version.  
The differences between µPD78P014 and mask ROM versions are shown in Table 1-1.  
Table 1-1. Differences Between µPD78P014 and Mask ROM Version  
Item  
µPD78P014  
Mask ROM Version  
IC pin  
VPP pin  
Yes  
No  
No  
Yes  
Mask option for pins P60 to P63  
Pull-up resistor incorporation possible by  
means of mask option  
No mask option for incorporation of pull-  
up resistor  
Caution In the µPD78P014, the capacity of the internal PROM and internal high-speed RAM can be changed by using  
the internal memory size switching register.  
RESET input sets internal PROM to 32K bytes and internal high-speed RAM to 1K bytes.  
11  
µPD78P014  
2. PIN FUNCTIONS  
2.1 Normal Operating Mode Pins  
(1) Port pins (1/2)  
Alternate  
After Reset  
Pin Name  
I/O  
Function  
Input only  
Function  
INTP0/TI0  
INTP1  
Input  
Port 0  
Input  
Input  
P00  
P01  
5-bit I/O port  
Input/output can be specified in 1-bit unit.  
When used as an input port, pull-up resistor can  
be used by software.  
Input/  
output  
P02  
INTP2  
P03  
INTP3  
P04Note 1  
P10 to P17  
XT1  
Input only  
Input  
Input  
Input  
Port 1  
Input/  
ANI0 to  
ANI7  
8-bit input/output port.  
output  
Input/output can be specified in 1-bit unit.  
When used as an input port, pull-up resistor can be used by  
software.Note 2  
P20  
P21  
SI1  
SO1  
Input/  
Port 2  
Input  
output  
8-bit input/output port.  
Input/output can be specified in 1-bit unit.  
When used as an input port, pull-up resistor can be used by software.  
P22  
SCK1  
STB  
P23  
P24  
BUSY  
SI0/SB0  
SO0/SB1  
SCK0  
TO0  
P25  
P26  
P27  
Input  
P30  
Port 3  
Input/  
output  
8-bit input/output port.  
P31  
TO1  
Input/output can be specified in 1-bit unit.  
When used as an input port, pull-up resistor can be used by software.  
P32  
TO2  
P33  
TI1  
P34  
TI2  
P35  
PCL  
P36  
BUZ  
P37  
P40 to P47  
Port 4  
AD0 to AD7  
Input/  
Input  
output  
8-bit input/output port.  
Input/output can be specified in 8-bit unit.  
When used as an input port, pull-up resistor can be used by software.  
(Test input flag (KRIF) is set to 1 by falling edge detection.)  
Notes 1. When P04/XT1 pins are used as the input ports, set processor clock control register bit 6 (FRC) to 1. (Do  
not use the on-chip feedback resistor of the subsystem clock oscillation circuit.)  
2. When P10/ANI0 to P17/ANI7 pins are used as the analog inputs for A/D converter, the pull-up resistor is  
automatically disabled.  
12  
µPD78P014  
(1) Port pins (2/2)  
Alternate  
After Reset  
Pin Name  
I/O  
Function  
Function  
Input/  
P50 to P57  
Port 5  
A8 to A15  
Input  
output  
8-bit input/output port.  
LED can be driven directly.  
Input/output can be specified in 1-bit unit.  
When used as an input port, pull-up resistor can be used by software.  
Port 6  
Input  
P60  
P61  
Input/  
N-ch open-drain input/  
output port.  
8-bit input/output port. Input/output can  
be specified in 1-bit unit.  
output  
LED can be driven  
directly.  
P62  
P63  
P64  
P65  
P66  
P67  
When used as an input  
port, pull-up resistor can  
be used by software.  
RD  
WR  
WAIT  
ASTB  
13  
µPD78P014  
(2) Non port pins (1/2)  
Altrnate  
After Reset  
Pin Name  
I/O  
Function  
Function  
P00/TI0  
P01  
INTP0  
INTP1  
INTP2  
INTP3  
SI0  
Input  
Input  
External interrupt input with specifiable valid edge (rising edge, falling  
edge, or both rising and falling edges).  
P02  
P03  
Falling edge detection external interrupt input.  
Serial interface serial data input.  
P25/SB0  
P20  
Input  
Input  
Input  
Input  
SI1  
Output  
Serial interface serial data output.  
P26/SB1  
P21  
SO0  
SO1  
SB0  
P25/SI0  
P26/SO0  
P27  
Input/  
Serial interface serial data input/output.  
output  
SB1  
SCK0  
SCK1  
STB  
BUSY  
TI0  
Input/  
Serial interface serial clock input/output.  
Input  
Input  
output  
P22  
P23  
Output  
Input  
Serial interface automatic transmission/reception strobe output.  
P24  
Serial interface automatic transmission/reception busy input.  
Input of external count clock to 16-bit timer (TM0).  
Input  
Input  
Input  
P00/INTP0  
P33  
Input of external count clock to 8-bit timer (TM1).  
Input of external count clock to 8-bit timer (TM2).  
16-bit timer (TM0) output (alternate function with 14-bit PWM output).  
8-bit timer (TM1) output.  
TI1  
P34  
TI2  
P30  
TO0  
TO1  
TO2  
PCL  
Input  
Output  
P31  
P32  
8-bit timer (TM2) output.  
Input  
Input  
Input  
Clock output (for trimming main system clock or subsystem clock).  
Buzzer output.  
P35  
Output  
Output  
P36  
BUZ  
Low address/data bus when memory is expanded externally.  
P40 to P47  
AD0 to AD7 Input/  
output  
High address bus when memory is expanded externally.  
External memory read operation strobe signal output.  
External memory write operation strobe signal output.  
Wait insertion at external memory access.  
P50 to P57  
P64  
A8 to A15  
RD  
Input  
Input  
Output  
Output  
WR  
P65  
Input  
Input  
WAIT  
ASTB  
Input  
P66  
Output  
Output of strobe which externally latches address information to be  
output to ports 4 and 5 when accessing external memory.  
P67  
14  
µPD78P014  
(2) Non port pins (2/2)  
Alternate  
After Reset  
Pin Name  
I/O  
Function  
Function  
Input  
ANI0 to ANI7  
AVREF  
AVDD  
AVSS  
RESET  
X1  
Input  
Input  
P10 to P17  
A/D converter analog input.  
A/D converter reference voltage input.  
A/D converter analog power supply. Connect to VDD.  
A/D converter ground potential. Connect to VSS.  
System reset input.  
Input  
Input  
Main system clock oscillation crystal connection.  
X2  
Input  
Input  
P04  
XT1  
Subsystem clock oscillation crystal connection.  
Positive power supply.  
XT2  
VDD  
(High voltage application for program write/verify. Directly connected  
to VSS in normal operating mode.)  
VPP  
VSS  
Ground potential  
2.2 PROM Programming Mode Pins  
I/O  
Pin Name  
RESET  
Function  
Input  
PROM programming mode setting.  
When +5 V or +12.5 V is applied to the VPP pin and a low-level signal to the RESET pin, the PROM  
programming mode is set.  
Input  
Input  
Input/  
output  
Input  
Input  
VPP  
PROM programming mode setting and high voltage application for program write/verify.  
A0 to A14  
D0 to D7  
Address bus.  
Data bus.  
CE  
OE  
PROM enable input/program pulse input.  
PROM read strobe input.  
Positive power supply.  
VDD  
VSS  
Ground potential.  
15  
µPD78P014  
2.3 Pin Input/Output Circuits and Connection of Unused Pins  
The input/output circuit type of each pin and the recommended connection of unused pins are shown in Table  
2-1.  
The configuration of each type of input/output circuit is shown in Figure 2-1.  
Table 2-1. Type of Pin Input/Output Circuits  
Input/Output  
Pin Name  
I/O  
Input  
Recommended Connection for Used Pins  
Connect to VSS .  
Circuit Type  
P00/INTP0/TI0  
P01/INTP1  
2
Input/output  
8-A  
Input  
: Connect to VSS .  
: Leave open.  
P02/INTP2  
Output  
P03/INTP3  
Input  
16  
11  
Connected to VSS .  
P04/XT1  
P10/ANI0 to P17/ANI7  
Input  
: Connect to VDD or VSS .  
Input/output  
Output  
: Leave open.  
P20/SI1  
8-A  
5-A  
8-A  
5-A  
8-A  
10-A  
Input  
: Connect to VDD or VSS .  
: Leave open.  
Input/output  
Output  
P21/SO1  
P22/SCK1  
P23/STB  
P24/BUSY  
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30/TO0  
5-A  
Input/output  
Input  
: Connect to VDD or VSS .  
: Leave open.  
Output  
P31/TO1  
P32/TO2  
8-A  
5-A  
P33/TI1  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
P40/AD0 to P47/AD7  
5-E  
Input/output  
Input/output  
Input  
: Connect to VDD or VSS .  
: Leave open.  
Output  
P50/A8 to P57/A15  
P60 to P63  
P64/RD  
P65/WR  
P66/WAIT  
P67/ASTB  
RESET  
5-A  
13  
Input  
: Connect to VDD or VSS .  
: Leave open.  
Output  
5-A  
2
Input  
16  
XT2  
Leave open.  
AVREF  
Connect to VSS .  
AVDD  
Connect to VDD.  
Connect to VSS .  
AVSS  
Directly connect to VSS.  
VPP  
16  
µPD78P014  
Figure 2-1. Pin Input/Output Circuits  
VDD  
Type 2  
Type 10-A  
pullup  
enable  
P-ch  
IN  
VDD  
data  
P-ch  
IN/OUT  
open-drain  
output disable  
N-ch  
Schmitt-Triggered Input with Hysteresis Characteristic  
VDD  
VDD  
Type 11  
pullup  
Type 5-A  
P-ch  
pullup  
enable  
enable  
P-ch  
VDD  
data  
P-ch  
VDD  
IN/OUT  
data  
P-ch  
N-ch  
output  
disable  
P-ch  
N-ch  
IN/OUT  
Comparator  
output  
disable  
+
N-ch  
REF (Threshold Voltage)  
V
input  
enable  
input  
enable  
VDD  
Type 5-E  
Type 13  
pullup  
enable  
P-ch  
IN/OUT  
data  
output disable  
VDD  
P-ch  
N-ch  
data  
IN/OUT  
output  
disable  
N-ch  
Middle-High Voltage Input Buffer  
Type 16  
Type 8-A  
VDD  
pullup  
enable  
feedback  
cut-off  
P-ch  
VDD  
P-ch  
P-ch  
data  
IN/OUT  
output  
disable  
N-ch  
XT2  
XT1  
17  
µPD78P014  
3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)  
This register is used to prevent part of the internal memory from being used by software. Setting the internal  
memory size switching register (IMS) enables memory mapping identical to that of a mask ROM version with  
different internal memory (ROM and RAM) to be used.  
The IMS register is set by an 8-bit memory manipulation instruction.  
RESET input sets this register to C8H.  
Figure 3-1. Internal Memory Size Switching Register Format  
7
6
5
4
0
3
2
1
0
Address  
FFF0H  
At Reset R/W  
C8H  
IMS  
RAM2 RAM1 RAM0  
ROM3 ROM2 ROM1 ROM0  
W
ROM3 ROM2 ROM1 ROM0 Internal ROM Capacity Selection  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
1
0
0
0
0
4 K bytes  
8 K bytes  
16 K bytes  
24 K bytes  
32K bytes  
Setting prohibited  
Other than above  
RAM2 RAM1 RAM0 Internal High-Speed RAM Capacity Selec-  
tion  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
768 bytes  
640 bytes  
512 bytes  
384 bytes  
256 bytes  
Setting prohibited  
1024 bytes  
896 bytes  
The IMS set values to make the memory map identical to various mask ROM versions are shown in Table 3-1.  
Table 3-1. Examples of Internal Memory Size Switching Register Settings  
Target Mask ROM Version  
IMS Set Value  
IMS Set Value  
Target Mask ROM Version  
µPD78001B  
µPD78002B  
µPD78011B  
44H  
C6H  
C8H  
82H  
64H  
42H  
µPD78012B  
µPD78013  
µPD78014  
18  
µPD78P014  
4. PROM PROGRAMMING  
The µPD78P014 incorporates a 32K-byte PROM as program memory. When programming the µPD78P014, the  
PROM programming mode is set by means of the VPP and RESET pins. For the connection of unused pins, see “PIN  
CONFIGURATION (2) PROM programming mode”.  
4.1 Operating Modes  
When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the RESET pin, the µPD78P014  
enters the programming mode. This is one of the operating modes shown in Table 4-1 below according to the setting  
of the CE and OE pins.  
Also, the PROM contents can be read by setting the read mode.  
Table 4-1. PROM Programming Operating Modes  
Pins  
VDD  
CE  
OE  
D0 to D7  
RESET  
VPP  
Operating Mode  
Program write  
Program verify  
Program inhibit  
Read  
Data input  
L
H
H
L
H
L
+12.5 V  
Data output  
+6 V  
High-impedance  
Data output  
H
L
L
Output disable  
Standby  
High-impedance  
High-impedance  
L
H
+5 V  
+5 V  
H
L/H  
19  
µPD78P014  
4.2 PROM Write Procedure  
The PROM write procedure is as shown below, allowing high-speed writing.  
(1) Fix the RESET pin low. Supply +5 V to the VPP pin. Unused pins are handled as shown in “PIN CONFIGURATION  
(2) PROM programming mode”.  
(2) Supply +6 V to the VDD pin and +12.5 V to the VPP pin.  
(3) Supply the initial address.  
(4) Supply the write data.  
(5) Supply a 1 ms program pulse (active low) to the CE pin.  
(6) Verify mode. If written, go to (8); if not written, repeat (4) through (6). When the write operation has been  
repeated 25 times, go to (7).  
(7) Halt write operation due to defective device.  
(8) Supply write data and supply (times repeated in (4) through (6)) × 3 ms program pulse (additional write).  
(9) Increment the address.  
(10) Repeat (4) through (9) until the final address.  
Timing for steps (2) through (8) above is shown in Figure 4-1.  
Figure 4-1. PROM Write/Verify Timing  
Repeated X Times  
Additional  
Write  
Verify  
Write  
A0-A14  
D0-D7  
Address Input  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Data  
Data Input  
Data Input  
Output  
+12.5 V  
VPP  
VDD  
+6 V  
VDD  
3Xms  
VDD  
CE(Input)  
OE(Input)  
20  
µPD78P014  
Figure 4-2. Write Procedure Flowchart  
(1)  
Start write  
Supply power supply voltage  
Supply initial address  
(2)  
(3)  
Supply write data  
(4)  
(5)  
Supply program pulse  
(6)  
Write Not Possible  
(Less than 25 Times)  
Write Not Possible  
(25th Times)  
Verify mode  
Write OK  
X: Number of Write  
Repetitions  
Additional write (3X ms pulse)  
(8)  
(9)  
Address increment  
(10)  
Final Address  
Final address  
(7)  
>Final Address  
Write completed  
Defective device  
21  
µPD78P014  
4.3 PROM Read Procedure  
PROM contents can be read onto the external data bus (D0 to D7) using the following procedure.  
(1) Fix the RESET pin low. Supply +5 V to the VPP pin. Unused pins are handled as shown in “PIN CONFIGURATION  
(2) PROM programming mode”.  
(2) Supply +5 V to the VDD and VPP pins.  
(3) Input address of data to be read to pins A0 through A14.  
(4) Read mode .  
(5) Output data to pins D0 through D7.  
Timing for steps (2) through (5) above is shown in Figure 4-3.  
Figure 4-3. PROM Read Timing  
A0-A14  
CE (Input)  
OE (Input)  
D0-D7  
Address Input  
Hi-Z  
Hi-Z  
Data Output  
22  
µPD78P014  
5. ERASURE PROCEDURE (µPD78P014DW ONLY)  
With the µPD78P014DW, it is possible to erase (set to FFH) data written to the program memory, and rewrite the  
memory.  
The data can be erased by exposing the window to light with a wavelength of approximately 400 nm or less.  
Usually, exposure is performed with ultraviolet light with a wavelength of 254 nm. The amount of exposing required  
for complete erasure is shown below.  
UV intensity x erasure time: 15 Ws/cm2 or more  
Erasure time: 15 to 20 minutes (using a 12,000 µW/cm2 ultraviolet lamp. A longer erasure time may be  
required in case of deterioration of the ultraviolet lamp or dirt on the erasure window).  
Erasure should be carried out with the ultraviolet lamp placed at a distance of 2.5 cm or less from the window.  
If the ultraviolet lamp is fitted with a filter, this should be removed before performing exposure.  
6. OPAQUE FILM FOR ERASURE WINDOW (µPD78P014DW ONLY)  
An opaque film should be applied to the erasure window except when erasing the EPROM contents, in order to  
prevent the EPROM contents from being unintentionally erased by light other than from the erasure lamp, and the  
internal circuits other than EPROM from misoperation due to light.  
7. ONE-TIME PROM VERSION SCREENING  
One-time PROM versions (µPD78P014CW and µPD78P014GC-AB8) cannot be fully tested and shipped by NEC for  
reasons related to their structure. It is recommended that after writing the necessary data and storing at high  
temperature under the following conditions, screening should be conducted to verify the PROM.  
Storage Temperature  
Storage Time  
24 hours  
125 °C  
NEC provides charged services for one-time PROM writing, marking, screening, and verification, under the name  
“QTOP Microcomputer”. Contact NEC for details.  
23  
µPD78P014  
8. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Supply voltage  
Symbol  
Ratings  
Unit  
V
Test Conditions  
VDD  
–0.3 to +7.0  
–0.3 to +13.5  
V
VPP  
AVDD  
AVREF  
AVSS  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to + 0.3  
V
V
V
Input voltage  
P00 to P04, P10 to P17, P20 to P27,  
P30 to P37, P40 to P47, P50 to P57,  
P64 to P67, X1, X2, XT2  
–0.3 to VDD + 0.3  
V
VI1  
–0.3 to +16  
–0.3 to +13.5  
V
V
P60 to P63  
A9  
Open-drain  
VI2  
VI3  
PROM programming mode  
Output voltage  
–0.3 to VDD + 0.3  
AVSS – 0.3 to AVREF + 0.3  
–10  
V
Analog input voltage  
Output current high  
VO  
V
P10 to P17  
1 pin  
Analog input pins  
VAN  
mA  
–15  
–15  
mA  
mA  
Total for P10 to P17, P20 to P27, P30 to P37  
IOH  
Total for P01 to P03, P40 to P47, P50 to P57,  
P60 to P67  
Output current low  
30  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
Peak value  
1 pin  
15  
R.m.s. value  
100  
Total for P40 to P47,  
P50 to P55  
Peak value  
R.m.s. value  
Peak value  
R.m.s. value  
Peak value  
R.m.s. value  
Peak value  
R.m.s. value  
70  
100  
Total for P01 to P03,  
P56, P57, P60 to P67  
Total for P01 to P03,  
P64 to P67  
Note  
IOL  
70  
50  
20  
50  
Total for P10 to P17,  
P20 to P27, P30 to P37  
20  
Operating temperature  
Storage temperature  
Topt  
Tstg  
–40 to +85  
–65 to +150  
°C  
Note The r.m.s. value should be calculated as follows: [R.m.s. value] = [Peak value] x Duty  
Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, even  
momentarily. In other words, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under conditions which  
ensure that the absolute maximum ratings are not exceeded.  
Remark Unless otherwise specified, alternate function pin characteristics are the same as port pin characteristics.  
24  
µPD78P014  
Main System Clock Oscillator Characteristics (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Recommended  
Parameter  
Test Conditions  
Resonator  
Ceramic  
MIN.  
1
TYP.  
MAX.  
10  
Unit  
MHz  
Circuit  
VDD = Oscillation voltage  
range  
Oscillation frequency  
(fX)Note 1  
resonator  
Vss X1  
X2  
R1  
After VDD has reached  
MIN. of oscillation  
voltage range  
Oscillation stabiliza-  
tion timeNote 2  
C2  
C1  
4
ms  
Crystal  
Oscillation frequency  
(fX)Note 1  
X2  
C2  
V
ss X1  
1
8.38  
10  
MHz  
ms  
resonator  
C1  
VDD = 4.5 to 6.0 V  
10  
30  
Oscillation stabiliza-  
tion timeNote 2  
X1 input frequency  
(fX)Note 1  
External clock  
1.0  
10.0  
500  
MHz  
ns  
X2  
X1  
X1 input high-/low-  
level width (tXH/tXL)  
µPD74HCU04  
42.5  
Notes 1. Only the oscillator characteristics are shown. Refer to AC characteristics for instruction execution times.  
2. This is the time required for oscillation to stabilize after a reset or STOP mode release.  
Cautions 1. When the main system clock oscillator is used, the following should be noted concerning wiring in  
the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.  
The wiring should be kept as short as possible.  
No other signal lines should be crossed.  
Keep away from lines carrying a high fluctuating current.  
The oscillator capacitor grounding point should always be at the same potential as VSS.  
Do not connect to a ground pattern carrying a high current.  
A signal should not be taken from the oscillator.  
2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until  
the oscillation stabilization time has been secured by the program before switching back to the main  
system clock.  
25  
µPD78P014  
Subsystem Clock Oscillator Characteristics (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Recommended  
Parameter  
Test Conditions  
MIN.  
32  
TYP.  
MAX.  
35  
Unit  
kHz  
Resonator  
Crystal  
Circuit  
Oscillation frequency  
(fXT)Note 1  
Vss  
XT1 XT2  
32.768  
1.2  
resonator  
R2  
C4  
C3  
2
VDD = 4.5 to 6.0 V  
Oscillation stabiliza-  
tion timeNote 2  
s
10  
External clock  
XT1 input frequency  
(fXT)Note 1  
32  
5
100  
15  
kHz  
XT2  
XT1  
XT1 input high-/low-  
level width (tXTH/tXTL)  
µs  
Notes 1. Only the oscillator characteristics are shown. Refer to AC characteristics for instruction execution times.  
2. Time required to stabilize oscillation after VDD reaches MIN. of oscillation voltage range.  
Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the  
area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.  
The wiring should be kept as short as possible.  
No other signal lines should be crossed.  
Keep away from lines carrying a high fluctuating current.  
The oscillator capacitor grounding point should always be at the same potential as VSS.  
Do not connect to a ground pattern carrying a high current.  
A signal should not be taken from the oscillator.  
2. The subsystem clock oscillator is a circuit with a low amplification level, more prone to misoperation  
due to noise than the main system clock. When using the subsystem clock, special care is needed  
regarding the wiring method.  
26  
µPD78P014  
Recommended Oscillation Constants  
Main System Clock: Ceramic Resonator (Ta = –40 to +85 °C)  
Recommended Oscillator  
Oscillation Voltage  
Frequency  
Constant  
Range  
C2 (pF)  
100  
Manufacturer  
Murata Mfg.  
Product Name  
(MHz)  
C1 (pF)  
100  
R1 (k)  
MIN. (V)  
2.8  
MAX. (V)  
6.0  
CSB1000J  
6.8  
4.7  
0
1.00  
1.01 to 1.25  
1.26 to 1.79  
CSB××××J  
100  
100  
2.8  
6.0  
CSA×. ×××MK  
CSA×. ××MG093  
CST×. ××MG093  
100  
100  
2.8  
6.0  
100  
100  
0
2.7  
6.0  
1.80 to 2.44  
Incorporated Incorporated  
0
2.7  
6.0  
30  
30  
0
2.7  
6.0  
CSA×. ××MG  
CST×. ××MGW  
CSA×. ××MGU  
2.45 to 4.18  
4.19 to 6.00  
6.01 to 10.0  
Incorporated Incorporated  
0
2.7  
6.0  
30  
30  
0
2.7  
6.0  
Incorporated Incorporated  
0
2.7  
6.0  
CST×. ××MGWU  
CSA×. ××MT  
30  
30  
0
3.0  
6.0  
Incorporated Incorporated  
0
3.0  
6.0  
CST×. ××MTW  
Remark ×. ××, ×. ××× and ×××× indicate frequency.  
Subsystem Clock: Crystal Resonator (Ta = –40 to +60 °C)  
Recommended Oscillator  
Oscillation Voltage  
Frequency  
Manufacturer  
Product Name  
Constant  
Range  
(kHz)  
C3 (pF)  
C4 (pF)  
R2 (k)  
MIN. (V)  
2.7  
MAX. (V)  
6.0  
Daishinku Corp.  
DT-38 (1TA632E00,  
10  
10  
100  
32.768  
load capacitance 6.3 pF)  
Capacitance (Ta = 25 °C, VDD = VSS = 0 V)  
MIN.  
TYP.  
MAX.  
Unit  
pF  
Symbol  
Test Conditions  
Parameter  
Input capacitance  
CIN  
f = 1 MHz Unmeasured pins returned to 0 V  
P01 to P03, P10 to P17,  
15  
Input/output capacitance  
P20 to P27, P30 to P37,  
f = 1 MHz Unmeasured  
15  
pF  
pF  
CIO  
P40 to P47, P50 to P57,  
pins returned to 0 V  
P64 to P67  
P60 to P63  
20  
Remark Unless otherwise specified, alternate function pin characteristics are the same as port pin characteristics.  
27  
µPD78P014  
DC Characteristics (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Test Conditions  
Parameter  
Symbol  
MIN.  
TYP.  
MAX.  
Unit  
V
P10 to P17, P21, P23, P30 to P32, P35 to P37,  
P40 to P47, P50 to P57, P64 to P67  
Input voltage high  
VIH1  
0.7 VDD  
VDD  
P00 to P03, P20, P22, P24 to P27, P33, P34, RESET 0.8 VDD  
VDD  
V
V
VIH2  
VIH3  
P60 to P63  
X1, X2  
Open-drain  
0.7 VDD  
15  
VDD – 0.5  
VDD – 0.5  
VDD  
VDD  
V
V
VIH4  
VIH5  
VDD = 4.5 to 6.0 V  
XT1/P04, XT2  
VDD – 0.3  
0
VDD  
V
V
P10 to P17, P21, P23, P30 to P32, P35 to P37,  
P40 to P47, P50 to P57, P64 to P67  
Input voltage low  
0.3 VDD  
VIL1  
VIL2  
P00 to P03, P20, P22, P24 to P27, P33, P34, RESET  
0
0
0.2 VDD  
0.3 VDD  
V
V
VDD = 4.5 to 6.0 V  
P60 to P63  
VIL3  
VIL4  
VIL5  
0
0
0.2 VDD  
0.4  
V
V
X1, X2  
VDD = 4.5 to 6.0 V  
XT1/P04, XT2  
0
0
0.4  
0.3  
V
V
V
VDD = 4.5 to 6.0 V, IOH = –1 mA  
Output voltage high  
Output voltage low  
VDD – 1.0  
VOH1  
VOL1  
IOH = –100 µA  
VDD – 0.5  
V
V
VDD = 4.5 to 6.0 V,  
P50 to P57, P60 to P63  
0.4  
2.0  
0.4  
IOL = 15 mA  
P01 to P03, P10 to P17,  
VDD = 4.5 to 6.0 V,  
P20 to P27, P30 to P37,  
IOL = 1.6 mA  
V
P40 to P47, P64 to P67  
VDD = 4.5 to 6.0 V,  
VOL2  
VOL3  
0.2 VDD  
0.5  
V
V
SB0, SB1, SCK0  
open-drain, pulled  
high (R = 1 k)  
IOL = 400 µA  
P00 to P03, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67, RESET  
Input leakage current  
high  
ILIH1  
3
µA  
VIN = VDD  
VIN = 15 V  
VIN = 0 V  
X1, X2, XT1/P04, XT2  
ILIH2  
ILIH3  
20  
80  
µA  
µA  
P60 to P63  
Input leakage current low  
P00 to P03, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67, RESET  
–3  
µA  
µA  
ILIL1  
–20  
X1, X2, XT1/P04, XT2  
ILIL2  
Remark Unless otherwise specified, alternate function pin characteristics are the same as port pin characteristics.  
28  
µPD78P014  
DC Characteristics (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Parameter  
Symbol  
Test Conditions  
MIN.  
TYP.  
MAX.  
3
Unit  
Output leakage current  
high  
VOUT = VDD  
VOUT = 0 V  
µA  
ILOH1  
Output leakage current  
low  
–3  
µA  
ILOL  
Software pull-up resistor  
Supply currentNote 3  
VIN = 0 V, P01 to P03,  
P10 to P17, P20 to P27,  
P30 to P37, P40 to P47,  
P50 to P57, P64 to P67  
4.5 V VDD 6.0 V  
2.7 V VDD < 4.5 V  
15  
20  
40  
90  
kΩ  
kΩ  
R2  
500  
8.38 MHz crystal oscilla- VDD = 5.0 V ± 10%Note 1  
9
1
27  
3
mA  
mA  
mA  
µA  
IDD1  
tion operating mode  
8.38 MHz crystal oscilla-  
tion HALT mode  
VDD = 3.0 V ± 10%Note 2  
VDD = 5.0 V ± 10%  
VDD = 3.0 V ± 10%  
1.4  
550  
90  
50  
25  
5
4.2  
1650  
180  
100  
50  
IDD2  
IDD3  
IDD4  
32.768 kHz crystal oscilla- VDD = 5.0 V ± 10%  
tion operating mode VDD = 3.0 V ± 10%  
32.768 kHz crystal oscilla- VDD = 5.0 V ± 10%  
µA  
µA  
µA  
tion HALT mode  
XT1 = 0 V  
VDD = 3.0 V ± 10%  
10  
µA  
1
30  
µA  
VDD = 5.0 V ± 10%  
STOP mode  
Feedback resistor used  
IDD5  
IDD6  
VDD = 3.0 V ± 10%  
0.5  
10  
µA  
XT1 = 0 V  
VDD = 5.0 V ± 10%  
VDD = 3.0 V ± 10%  
0.1  
30  
10  
µA  
µA  
STOP mode  
Feedback resistor  
not used  
0.05  
Notes 1. High-speed mode operation (when processor clock control register is set to 00H).  
2. Low-speed mode operation (when processor clock control register is set to 04H).  
3. Not including AVREF currents or port currents  
Remark Unless otherwise specified, alternate function pin characteristics are the same as port pin characteristics.  
29  
µPD78P014  
AC Characteristics  
(1) Basic operation (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
TYP.  
MAX.  
Unit  
Parameter  
Cycle time  
(Min. instruction  
execution time)  
Symbol  
0.48  
1.91  
64  
64  
µs  
µs  
Operating with main  
system clock  
Ta = –40 to +40 °C  
VDD = 4.75 to 6.0 V  
Ta = –40 to +40 °C  
TCY  
0.4  
64  
µs  
0.96  
40  
0
64  
125  
4
µs  
µs  
Operating with subsystem clock  
VDD = 4.5 to 6.0 V  
122  
MHz  
kHz  
ns  
TI input frequency  
fTI  
0
275  
VDD = 4.5 to 6.0 V  
100  
1.8  
TI input high-/low-level  
width  
tTIH  
tTIL  
µs  
Note  
Interrupt input high-/low-  
level width  
INTP0  
8/fsam  
µs  
tINTH  
tINTL  
INTP1 to INTP3  
KR0 to KR7  
10  
10  
µs  
µs  
RESET low-level width  
10  
µs  
tRSL  
Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register, selection of fsam is possible  
between fX/2N+1, fX/64, and fX/128 (N = 0 to 4).  
TCY VS VDD (At main system clock operation)  
60  
10  
µ
Operation Guaranteed  
Range  
(Ta = –40 to +85 °C)  
2.0  
1.0  
0.5  
0.4  
0
1
2
3
4
5
6
Supply Voltage VDD [V]  
Caution When Ta = –40 to +40 °C, the operation guaranteed range is extended to the dotted line.  
30  
µPD78P014  
(2) Read/write operation (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Parameter  
ASTB high-level width  
Address setup time  
Address hold time  
Symbol  
tASTH  
tADS  
Test Conditions  
MIN.  
0.5tCY  
MAX.  
Unit  
ns  
0.5tCY – 30  
10  
ns  
tADH  
Load resistance 5 kΩ  
ns  
tADD1  
tADD2  
tRDD1  
tRDD2  
tRDH  
(2 + 2n)tCY – 50  
(3 + 2n)tCY – 100  
(1 + 2n)tCY – 25  
(2.5 + 2n)tCY – 100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data input time from address  
5
Data input time from RD↓  
Read data hold time  
RD low-level width  
0
tRDL1  
(1.5 + 2n)tCY – 20  
(2.5 + 2n)tCY – 20  
tRDL2  
tRDWT1  
tRDWT2  
tWRWT  
tWTL  
0.5tCY  
1.5tCY  
WAITinput time from RD↓  
WAITinput time from WR↓  
WAIT low-level width  
0.5tCY  
(0.5 + 2n)tCY + 10  
100  
(2 + 2n)tCY  
Write data setup time  
tWDS  
Write data hold time  
tWDH  
5
WR low-level width  
tWRL1  
tASTRD  
tASTWR  
(2.5 + 2n)tCY – 20  
0.5tCY – 30  
1.5tCY – 30  
RDdelay time from ASTB↓  
WRdelay time from ASTB↓  
ASTBdelay time from  
RDin external fetch  
tRDAST  
tCY – 10  
tCY  
tCY + 40  
tCY + 50  
ns  
ns  
Address hold time from  
tRDADH  
tRDWD  
RDin external fetch  
Write data output time from RD↑  
10  
0.5tCY – 120  
0.5tCY – 170  
tCY  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VDD = 4.5 to 6.0 V  
VDD =4.5 to 6.0 V  
0.5tCY  
0.5tCY  
WRdelay time from write data  
tWDWR  
tCY + 60  
Address hold time from WR↑  
tWRADH  
tCY  
tCY + 100  
2.5tCY + 80  
2.5tCY + 80  
RDdelay time from WAIT↑  
WRdelay time from WAIT↑  
tWTRD  
tWTWR  
0.5tCY  
0.5tCY  
Remarks 1.  
tCY = TCY/4  
2. n indicates number of waits.  
3. CL = 100 pF (CL indicates the load capacitance of pins P40/AD0 to P47/AD7, P50/A8 to P57/A15, P64/  
RD, P65/WR, P66/WAIT, P67/ASTB.)  
31  
µPD78P014  
(3) Serial interface (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
(a) 3-wire serial I/O mode (SCK... Internal clock output)  
Parameter  
Test Conditions  
VDD = 4.5 to 6.0 V  
Symbol  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
tKCY1  
SCK cycle time  
3200  
ns  
tKH1  
tKL1  
VDD = 4.5 to 6.0 V  
tKCY1/2 – 50  
tKCY1/2 – 150  
100  
ns  
SCK high-/low-level  
width  
ns  
tSIK1  
tKSI1  
ns  
SI setup time (to SCK)  
SI hold time (from SCK)  
400  
ns  
VDD = 4.5 to 6.0 V  
300  
ns  
SO output delay time  
C = 100 pFNote  
tKSO1  
from SCK↓  
1000  
ns  
Note C is the load capacitance of SO output line.  
(b) 3-wire serial I/O mode (SCK...External clock input)  
Parameter  
Symbol  
tKCY2  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
SCK cycle time  
3200  
400  
ns  
tKH2  
tKL2  
VDD = 4.5 to 6.0 V  
ns  
SCK high-/low-level  
width  
1600  
100  
ns  
tSIK2  
tKSI2  
ns  
SI setup time (to SCK)  
SI hold time (from SCK)  
400  
ns  
300  
ns  
VDD = 4.5 to 6.0 V  
SO output delay time  
C = 100 pFNote  
tKSO2  
from SCK↓  
1000  
ns  
ns  
When using the external device  
expansion function  
160  
700  
When using the  
SCK rise and fall times  
(For serial interface  
channel 0)  
tR2  
tF2  
When not  
using the  
16-bit timer  
ns  
ns  
output function  
external device  
expansion  
function  
When not using  
the 16-bit timer  
output function  
1000  
When using the external device  
expansion function  
160  
ns  
ns  
SCK rise and fall times  
(For serial interface  
channel 1)  
tR2  
tF2  
When not using the external  
device expansion function  
1000  
Note C is the load capacitance of SO output line.  
32  
µPD78P014  
(c) SBI mode (SCK...Internal clock output)  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
Parameter  
Symbol  
Test Conditions  
VDD = 4.5 to 6.0 V  
SCK cycle time  
tKCY3  
3200  
ns  
tKCY3/2 - 50  
tKCY3/2 - 150  
100  
ns  
tKH3  
tKL3  
VDD = 4.5 to 6.0 V  
VDD = 4.5 to 6.0 V  
SCK high-/low-level  
width  
ns  
ns  
SB0, SB1 setup time  
tSIK3  
(to SCK)  
300  
ns  
SB0, SB1 hold time  
tKSI3  
tKCY3/2  
ns  
ns  
(from SCK)  
0
250  
VDD = 4.5 to 6.0 V  
SB0, SB1 output  
R = 1 k,  
C = 100 pFNote  
tKSO3  
delay time from SCK↓  
0
1000  
ns  
ns  
ns  
SB0, SB1from SCK↑  
SCKfrom SB0, SB1↓  
tKCY3  
tKCY3  
tKSB  
tSBK  
SB0, SB1 high-level  
width  
tKCY3  
tKCY3  
ns  
ns  
tSBH  
tSBL  
SB0, SB1 low-level  
width  
Note R and C are the load resistance and load capacitance of the SB0 and SB1 output line.  
33  
µPD78P014  
(d) SBI mode (SCK...External clock input)  
Symbol  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
Parameter  
Test Conditions  
VDD = 4.5 to 6.0 V  
SCK cycle time  
tKCY4  
3200  
400  
ns  
tKH4  
tKL4  
ns  
VDD = 4.5 to 6.0 V  
VDD = 4.5 to 6.0 V  
SCK high-/low-level  
width  
1600  
100  
ns  
ns  
SB0, SB1 setup time  
tSIK4  
(to SCK)  
300  
ns  
SB0, SB1 hold time  
tKSI4  
tKCY4/2  
ns  
ns  
(from SCK)  
0
300  
VDD = 4.5 to 6.0 V  
SB0, SB1 output  
R = 1 k,  
C = 100 pFNote  
tKSO4  
delay time from SCK↓  
0
1000  
ns  
ns  
ns  
SB0, SB1from SCK↑  
SCKfrom SB0, SB1↓  
tKCY4  
tKCY4  
tKSB  
tSBK  
SB0, SB1 high-level  
width  
tSBH  
tSBL  
tKCY4  
tKCY4  
ns  
ns  
SB0, SB1 low-level  
width  
When using the external device  
expansion function  
160  
700  
ns  
ns  
When using the  
tR4  
tF4  
SCK rise and fall  
times  
When not  
using the  
16-bit timer  
output function  
external device  
expansion  
function  
When not using  
the 16-bit timer  
output function  
1000  
ns  
Note R and C are the load resistance and load capacitance of the SB0 and SB1 output line.  
34  
µPD78P014  
(e) 2-wire serial I/O mode (SCK... Internal clock output)  
Parameter  
MIN.  
1600  
TYP.  
MAX.  
Unit  
ns  
Test Conditions  
VDD = 4.5 to 6.0 V  
Symbol  
SCK cycle time  
tKCY5  
3800  
ns  
R = 1 k, C = 100 pFNote  
tKCY5/2 – 50  
tKCY5/2 – 50  
300  
ns  
SCK high-level width  
tKH5  
tKL5  
ns  
SCK low-level width  
tSIK5  
tKSI5  
ns  
SB0, SB1 setup time (to SCK)  
SB0, SB1 hold time (from SCK)  
600  
ns  
0
250  
ns  
VDD = 4.5 to 6.0 V  
SB0, SB1 output delay time  
R = 1 k,  
C = 100 pFNote  
tKSO5  
from SCK↓  
0
1000  
ns  
Note R and C are the load resistance and load capacitance of the SCK0, SB0 and SB1 output line.  
(f) 2-wire serial I/O mode (SCK... External clock input)  
Parameter  
Test Conditions  
MIN.  
1600  
3800  
650  
TYP.  
MAX.  
Unit  
ns  
Symbol  
VDD = 4.5 to 6.0 V  
SCK cycle time  
tKCY6  
ns  
ns  
SCK high-level width  
tKH6  
tKL6  
800  
ns  
SCK low-level width  
tSIK6  
tKSI6  
100  
ns  
SB0, SB1 setup time (to SCK)  
SB0, SB1 hold time (from SCK)  
tKCY6/2  
0
ns  
VDD = 4.5 to 6.0 V  
300  
ns  
SB0, SB1 output delay time  
R = 1 k,  
C = 100 pFNote  
tKSO6  
from SCK↓  
0
1000  
ns  
ns  
When using the external device  
expansion function  
160  
700  
When using the  
ns  
ns  
When not  
tR6  
tF6  
16-bit timer  
SCK rise and fall times  
using the  
output function  
external device  
When not using  
the 16-bit timer  
output function  
expansion  
function  
1000  
Note R and C are the load resistance and load capacitance of the SCK0, SB0 and SB1 output line.  
35  
µPD78P014  
(g) 3-wire serial I/O mode with automatic transmit/receive function (SCK...Internal clock output)  
Parameter  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
Symbol  
Test Conditions  
VDD = 4.5 to 6.0 V  
tKCY7  
SCK cycle time  
3200  
ns  
VDD = 4.5 to 6.0 V  
tKCY7/2 – 50  
tKCY7/2 – 150  
100  
ns  
tKH7  
tKL7  
SCK high/low-level  
width  
ns  
ns  
SI setup time (to SCK)  
SI hold time (from SCK)  
tSIK7  
tKSI7  
400  
ns  
300  
ns  
VDD = 4.5 to 6.0 V  
SO output delay time  
C = 100 pFNote  
tKSO7  
from SCK↓  
1000  
tKCY7  
ns  
ns  
400  
tSBD  
STBfrom SCK↑  
Strobe signal high-  
level width  
tKCY7 – 30  
tKCY7 + 30  
ns  
ns  
tSBW  
Busy signal setup time  
(to busy signal  
100  
100  
tBYS  
detection timing)  
Busy signal hold time  
(from busy signal  
detection timing)  
tBYH  
tSPS  
ns  
ns  
SCKfrom busy  
2tKCY7  
inactive  
Note C is the load capacitance of the SO output line.  
(h) 3-wire serial I/O mode with automatic transmit/receive function (SCK...External clock input)  
Parameter  
Symbol  
tKCY8  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
SCK cycle time  
3200  
400  
ns  
tKH8  
tKL8  
VDD = 4.5 to 6.0 V  
ns  
SCK high/low-level  
width  
1600  
100  
ns  
tSIK8  
tKSI8  
ns  
SI setup time (to SCK)  
SI hold time (from SCK)  
400  
ns  
300  
ns  
VDD = 4.5 to 6.0 V  
SO output delay time  
C = 100 pFNote  
tKSO8  
from SCK↓  
1000  
ns  
ns  
When using the external device  
expansion function  
160  
tR8  
tF8  
SCK rise and fall times  
When not using the external  
device expansion function  
1000  
ns  
Note C is the load capacitance of the SO output line.  
36  
µPD78P014  
A/D Converter Characteristics (Ta = –40 to +85 °C, AVDD = VDD = 2.7 to 6.0 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Test Conditions  
Symbol  
MIN.  
8
TYP.  
8
MAX.  
Unit  
8
bit  
%
Overall errorNote  
Conversion time  
Sampling time  
0.6  
tCONV  
19.1  
24/fx  
AVSS  
2.7  
200  
µs  
µs  
V
tSAMP  
VIAN  
Analog input voltage  
Reference voltage  
AVREF current  
AVREF  
AVDD  
1.5  
AVREF  
IREF  
V
0.5  
mA  
Note Excluding quantization error (±1/2LSB). Shown as a percentage of the full scale value.  
37  
µPD78P014  
AC Timing Test Point (Excluding X1 and XT1 Input)  
0.8 VDD  
0.2 VDD  
0.8 VDD  
0.2 VDD  
Point of  
measurement  
Clock Timing  
1/f  
X
t
XL  
t
XH  
V
DD - 0.5 V  
X1 Input  
0.4V  
1/fXT  
t
XTL  
t
XTH  
V
DD - 0.5 V  
XT1 Input  
0.4V  
TI Timing  
1/fTI  
tTIL  
tTIH  
TI0-TI2  
38  
µPD78P014  
Read/Write Operation  
External fetch (no wait):  
A8-A15  
Upper 8-Bit Address  
Lower 8-Bit  
Address  
t
ADD1  
Hi-z  
Operation  
Code  
AD0-AD7  
t
RDADH  
t
ADS  
t
RDD1  
t
ADH  
t
ASTH  
t
RDAST  
ASTB  
RD  
t
ASTRD  
t
RDL1  
t
RDH  
External fetch (wait insertion):  
A8-A15  
Upper 8-Bit Address  
Lower 8-Bit  
Address  
t
ADD1  
Hi-z  
Operation  
Code  
AD0-AD7  
t
RDD1  
t
RDADH  
t
ADS  
t
ADH  
t
ASTH  
t
RDAST  
ASTB  
RD  
t
ASTRD  
t
RDL1  
t
RDH  
WAIT  
t
WTRD  
t
WTL  
t
RDWT1  
39  
µPD78P014  
External data access (no wait):  
A8-A15  
Upper 8-Bit Address  
Lower  
8-Bit  
Address  
t
ADD2  
Hi-z  
Hi-z  
AD0-AD7  
Read Data  
Write Data  
t
ADS  
t
RDD2  
t
ADH  
t
RDH  
t
ASTH  
ASTB  
RD  
t
RDWD  
t
WDS  
t
WDH  
t
ASTRD  
t
RDL2  
t
WDWR  
t
WRADH  
WR  
t
ASTWR  
t
WRL1  
External data access (wait insertion):  
A8-A15  
Upper 8-Bit Address  
Lower  
8-Bit  
Address  
t
ADD2  
Hi-z  
Hi-z  
AD0-AD7  
Read Data  
Write Data  
t
RDD2  
t
ADS  
t
ADH  
t
RDH  
t
ASTH  
ASTB  
RD  
t
ASTRD  
t
WDH  
t
RDL2  
t
WDS  
t
RDWD  
t
WDWR  
WR  
t
ASTWR  
t
WRL1  
t
WRADH  
WAIT  
t
RDWT2  
t
WTRD  
t
WTL  
t
WRWT  
t
WTL  
t
WTWR  
40  
µPD78P014  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCY 1.2  
t
KL1.2  
t
KH1.2  
t
R2  
t
F2  
SCK  
t
SIK1.2  
t
KSI1.2  
SI  
Input Data  
t
KSO1.2  
SO  
Output Data  
SBI mode (bus release signal transfer):  
t
KCY3.4  
t
KL3.4  
R4  
t
KH3.4  
t
t
F4  
SCK  
t
KSB  
t
SBL  
t
SBK  
t
SIK3.4  
t
KSI3.4  
t
SBH  
SB0, SB1  
t
KSO3.4  
SBI mode (command signal transfer):  
tKCY3.4  
tKL3.4  
tR4  
tKH3.4  
tF4  
SCK  
tSIK3.4  
tKSI3.4  
tKSB  
tSBK  
SB0, SB1  
tKSO3.4  
41  
µPD78P014  
2-wire serial I/O mode:  
t
KCY5.6  
t
KL5.6  
R6  
t
KH5.6  
t
t
F6  
SCK  
t
SIK5.6  
t
KSI5.6  
t
KSO5.6  
SB0, SB1  
3-wire serial I/O mode with automatic transmit/receive function:  
SO  
SI  
D2  
D1  
D0  
D7  
D2  
D1  
D0  
D7  
t
SIK7.8  
t
KSI7.8  
t
KH7.8  
t
KSO7.8  
t
F8  
SCK  
STB  
t
SBD  
t
SBW  
t
KL7.8  
t
R8  
t
KCY7.8  
3-wire serial I/O mode with automatic transmit/receive function (Busy processing):  
7
8
9Note  
10Note  
10+nNote  
1
SCK  
t
BYS  
t
BYH  
t
SPS  
BUSY  
(Active high)  
Note The signal is not actually low here, but is represented in this way to show the timing.  
42  
µPD78P014  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (Ta = –40 to +85 °C)  
Symbol  
VDDDR  
MIN.  
2.0  
TYP.  
MAX.  
6.0  
Unit  
V
Parameter  
Test Conditions  
Data retention power  
supply voltage  
VDDDR = 2.0 V  
Data retention power  
supply current  
IDDDR  
tSREL  
0.1  
10  
µA  
µs  
Subsystem clock stop and  
feedback resistor disconnected  
0
Release signal set time  
218/fx  
ms  
ms  
Release by RESET  
Oscillation  
tWAIT  
stabilization wait time  
Release by interrupt  
Note  
Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection  
of 213/fx and 215/fx to 218/fx is possible.  
Data Retention Timing (STOP Mode Release by RESET)  
Internal Reset Operation  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retention Mode  
V
DD  
VDDDR  
t
SREL  
Stop Instruction Execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retention Mode  
VDD  
VDDDR  
tSREL  
Stop Instruction Execution  
Standby Release Signal  
(Interrupt Request)  
tWAIT  
43  
µPD78P014  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0-INTP2  
t
INTL  
INTP3  
RESET Input Timing  
t
RSL  
RESET  
44  
µPD78P014  
DC Programming Characteristics (Ta = 25 ± 5 °C, VSS = 0 V)  
Symbol SymbolNote  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Parameter  
Input voltage  
high  
0.7 VDDP  
VDDP  
VIH  
VIH  
Input voltage  
low  
0
0.3 VDDP  
10  
V
VIL  
ILIP  
VIL  
ILI  
Input leakage  
current  
0 VI VDDP  
µA  
IOH = –400 µA  
IOH = –100 µA  
2.4  
V
V
VOH1  
VOH2  
VOH1  
VOH2  
Output  
voltage high  
VDD – 0.7  
Output  
IOL = 2.1 mA  
0.45  
10  
V
VOL  
ILO  
VOL  
voltage low  
Output  
leakage  
current  
0 VO VDDP, OE = VIH  
µA  
Program memory write mode  
Program memory read mode  
Program memory write mode  
Program memory read mode  
Program memory write mode  
5.75  
4.5  
6.0  
5.0  
6.25  
5.5  
V
V
V
VDDP supply  
voltage  
VDDP  
VPP  
VCC  
VPP  
12.5  
12.5  
12.8  
VPP supply  
voltage  
VPP = VDDP  
5
30  
30  
mA  
mA  
VDDP supply  
current  
Program memory read mode  
CE = VIL, VI = VIH  
IDD  
IPP  
ICC  
5
5
1
Program memory write mode  
CE = VIL, OE = VIH  
30  
mA  
VPP supply  
current  
IPP  
Program memory read mode  
100  
µA  
Note Corresponding µPD27C256A symbol.  
45  
µPD78P014  
Program Operation  
AC Characteristics (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V)  
SymbolNote  
Parameter  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Symbol  
2
2
2
2
µs  
µs  
µs  
µs  
Address setup time (to CE)  
OEdelay time from data  
tAS  
tOES  
tDS  
tSAC  
tDDOO  
tSIDC  
tHCA  
Input data setup time (to CE)  
Address hold time (from CE)  
tAH  
Input data hold time  
2
0
µs  
tDH  
tDF  
tHCID  
(from CE)  
Output data hold time  
130  
ns  
tHOOD  
(from OE)  
VPP setup time (to CE)  
VDDP setup time (to CE)  
1
1
ms  
ms  
ms  
tVPS  
tVDS  
tPW  
tSVPC  
tSVDC  
tWL1  
0.95  
1.0  
1.05  
Initial program pulse width  
Additional program pulse width  
Data output time from OE↓  
2.85  
78.75  
1
ms  
tOPW  
tOE  
tWL2  
µs  
tDOOD  
Note Corresponding µPD27C256A symbol.  
Read Operation  
AC Characteristics (Ta = 25 ± 5 °C, VDD = 5.0 ± 0.5 V, VPP = VDD, VSS = 0 V)  
Symbol SymbolNote  
Parameter  
Test Conditions  
MIN.  
TYP.  
MAX. Unit  
200  
200  
75  
ns  
ns  
ns  
ns  
ns  
Data output time from address  
tDAOD  
tDCOD  
tDOOD  
tHCOD  
tHAOD  
tACC  
tCE  
Data output time from CE  
Data output time from OE  
tOE  
tDF  
0
0
60  
Data hold time (from OE)  
Data hold time (from address)  
tOH  
Note Corresponding µPD27C256A symbol.  
PROM Mode Setting  
AC Characteristics (Ta = 25 ± 5 °C, VSS = 0 V)  
Parameter  
Symbol  
Test Conditions  
MIN.  
10  
TYP.  
MAX.  
Unit  
tSMA  
µs  
PROM mode setup time  
46  
µPD78P014  
PROM Write Mode Timing  
Valid Address  
Data Output  
A0-A14  
t
SAC  
t
HCA  
D0-D7  
Data Input  
Data Input  
t
t
SIDC  
t
HCID  
t
HOOD  
t
SIDC  
t
HCID  
V
PP  
V
PP  
V
DDP  
SVPC  
V
DDP+1  
V
DDP  
V
DDP  
t
SVDC  
V
IH  
IL  
CE  
V
t
WL1  
t
DOOD  
t
WL2  
t
DDOO  
V
IH  
OE  
V
IL  
Cautions 1. VDDP should be applied before VPP, and cut after VPP.  
2. VPP should not reach +13V or above including overshoot.  
47  
µPD78P014  
PROM Read Mode Timing  
Valid Address  
A0-A14  
CE  
OE  
t
DCOD  
t
DOOD  
t
HAOD  
t
DAOO  
t
HCOD  
Hi-z  
Hi-z  
Data Output  
D0-D7  
PROM Mode Setting Timing  
VDDP  
VDD  
0
RESET  
VDDP  
VPP  
0
tSMA  
A0-A14  
Valid Address  
48  
µPD78P014  
9. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)  
IDD vs VDD (Main System Clock : 8.38 MHz)  
(Ta = 25°C)  
10.0  
5.0  
PCC=00H  
PCC=01H  
PCC=02H  
PCC=03H  
PCC=04H  
PCC=30H  
and HALT (X1 Oscillation,  
XT1 Oscillation)  
1.0  
0.5  
PCC=B0H  
0.1  
0.05  
HALT (X1 Stop,  
XT1 Oscillation)  
STOP (X1 Stop, XT1  
Oscillation) and Reset  
0.01  
f
f
X
= 8.38 MHz  
0.005  
XT= 32.768 kHz  
0.001  
0
2
3
4
5
6
7
8
Supply Voltage VDD [V]  
49  
µPD78P014  
IDD vs VDD (Main System Clock : 4.19 MHz)  
(T  
a
= 25°C)  
10.0  
5.0  
PCC=00H  
PCC=01H  
PCC=02H  
PCC=03H  
PCC=04H  
PCC=30H  
HALT (X1 Oscillation,  
XT1 Oscillation)  
1.0  
0.5  
PCC=B0H  
0.1  
0.05  
HALT (X1 Stop,  
XT1 Oscillation)  
STOP (X1 Stop, XT1  
Oscillation)  
0.01  
f
f
X
= 4.19 MHz  
0.005  
XT= 32.768 kHz  
0.001  
0
2
3
4
5
6
7
8
Supply Voltage VDD [V]  
50  
µPD78P014  
VOL vs IOL (Ports 0 , 2 to 5, P64 to P67)  
(T  
a
= 25 °C)  
V
DD = 5 V  
V
DD = 6 V  
30  
20  
10  
0
VDD = 4 V  
VDD = 3 V  
0
0.5  
1.0  
Output Voltage Low VOL [V]  
VOL vs IOL (Port 1)  
(Ta = 25 °C)  
VDD = 6 V  
VDD = 5 V  
30  
20  
10  
0
VDD = 4 V  
V
DD = 3 V  
0
0.5  
1.0  
Output Voltage Low VOL [V]  
51  
µPD78P014  
VOL vs IOL (P60 to P63)  
(Ta = 25 °C)  
VDD = 6 V VDD = 5 V  
30  
20  
10  
0
VDD = 4 V  
VDD = 3 V  
0
0.5  
1.0  
Output Voltage Low VOL [V]  
VOH vs IOH (Ports 0 to 5, P64 to P67)  
(Ta = 25 °C)  
VDD = 6 VVDD = 5 V  
–10  
VDD = 4 V  
VDD = 3 V  
–5  
0
0
0.5  
1.0  
Output Voltage High VDD – VOH [V]  
52  
µPD78P014  
10. PACKAGE DRAWINGS  
64 PIN PLASTIC SHRINK DIP (750 mil)  
64  
33  
32  
1
A
K
L
F
D
M
R
B
C
M
N
NOTE  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
58.68 MAX.  
1.78 MAX.  
1.778 (T.P.)  
2.311 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.750 (T.P.)  
0.669  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
19.05 (T.P.)  
17.0  
J
K
L
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0~15°  
0~15°  
P64C-70-750A,C-1  
53  
µPD78P014  
64 PIN CERAMIC SHRINK DIP (750 mil)  
S
64  
33  
1
32  
A
K
L
F
M
D
N
CB  
0 to 15°  
M
P64DW-70-750A  
NOTES  
ITEM  
MILLIMETERS  
58.68 MAX.  
1.78 MAX.  
1.778 (T.P.)  
0.46 +0.05  
INCHES  
1) Each lead centerline is located within 0.25 mm  
(0.010 inch) of its true position (T.P.) at maxi-mum  
material condition.  
A
B
C
D
F
2.310 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed  
parallel.  
+0.002  
0.018 –  
0.8 MIN.  
0.031 MIN.  
+0.012  
+0.3  
0.138 –  
G
H
I
3.5  
1.0 MIN.  
3.0  
0.039 MIN.  
0.118  
J
5.08 MAX.  
19.05 (T.P.)  
18.8  
0.200 MAX.  
0.750 (T.P.)  
0.740  
K
L
+0.05  
M
N
S
0.25  
0.010+00..000023  
0.25  
8.89  
0.01  
0.350  
54  
µPD78P014  
64 PIN PLASTIC QFP ( 14)  
A
B
48  
49  
33  
32  
detail of lead end  
64  
1
17  
16  
G
H
M
I
J
K
N
L
P64GC-80-AB8-3  
INCHES  
NOTE  
ITEM  
A
MILLIMETERS  
Each lead centerline is located within 0.15  
mm (0.006 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
17.6 0.4  
0.693 0.016  
+0.009  
–0.008  
±
B
14.0 0.2  
0.551  
+0.009  
±
C
D
F
14.0 0.2  
0.551  
–0.008  
±
±
0.693 0.016  
17.6 0.4  
1.0  
1.0  
0.039  
G
H
I
0.039  
+0.004  
–0.005  
±
0.35 0.10  
0.014  
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P.)  
±
±
K
1.8 0.2  
0.071 0.008  
+0.009  
–0.008  
±
0.031  
L
0.8 0.2  
+0.10  
+0.004  
–0.003  
0.15  
M
N
P
0.006  
–0.05  
0.10  
2.55  
0.004  
0.100  
±
Q
S
0.1 0.1  
±
0.004 0.004  
2.85 MAX.  
0.112 MAX.  
55  
µPD78P014  
11. RECOMMENDED SOLDERING CONDITIONS  
The µPD78P014 should be soldered and mounted under the conditions recommended in the table below.  
For detail of recommended soldering conditions, refer to the information document “Semiconductor Device  
Mounting Technology Manual” (IEI-1207).  
For soldering methods and conditions other than those recommended below, contact our salesman.  
Table 11-1. Surface Mounted Type Soldering Conditions  
µPD78P014GC-AB8: 64-pin plastic QFP (14 × 14 mm)  
Symbol  
Soldering Method  
Infrared ray reflow  
Soldering Conditions  
Package peak temperature: 230 °C  
Duration: 30 sec. max. (at 210 °C or above) Number of times: Once  
Time limit: 2 daysNote (thereafter 20 hours prebaking required at 125 °C)  
IR30-202-1  
Package peak temperature: 215 °C  
VPS  
Duration: 40 sec. max. (at 200 °C or above) Number of times: Once  
Time limit: 2 daysNote (thereafter 20 hours prebaking required at 125 °C)  
VP15-202-1  
Pin temperature: 300 °C max. Duration: 3 sec. max.  
Pin partial heating  
(Per side of the device)  
Note For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.  
Caution Use of more than one soldering method should be avoided (except in the case of pin partial heating).  
Table 11-2. Insert Type Soldering Conditions  
µPD78P014CW: 64-pin plastic shrink DIP (750 mil)  
µPD78P014DW: 64-pin ceramic shrink DIP (with window) (750 mil)  
Soldering Method  
Soldering Conditions  
Wave soldering  
(Pin only)  
Solder bath temperature : 260 °C max. Duration: 10 sec. max.  
Pin partial heating  
Pin temperature: 300 °C max. Duration: 3 sec. max (per 1 pin).  
Caution The wave soldering applies to the pin only. Ensure that no solder touches the body directly.  
56  
µPD78P014  
APPENDIX A. DEVELOPMENT TOOLS  
The following development tools are available for system development using the µPD78P014.  
Language Processing Software  
Note 1, 2, 3  
RA78K/0  
CC78K/0  
DF78014  
78K/0 series common assembler package  
78K/0 series common C compiler package  
µPD78014 subseries device file  
Note 1, 2, 3  
Note 1, 2, 3  
Note 1, 2, 3  
CC78K/0-L  
78K/0 series common C compiler library source file  
PROM Writing Tools  
PG-1500  
PROM programmer  
PA-78P014CW  
PA-78P014GC  
Programmer adapter connected to PG-1500  
PG-1500 control program  
PG-1500 controller Note 1, 2  
Debugging Tools  
IE-78000-R  
78K/0 series common in-circuit emulators  
78K/0 series common break board  
IE-78000-R-BK  
IE-78014-R-EM  
EP-78240CW-R  
EP-78240GC-R  
EV-9200GC-64  
SD78K/0 Note 1, 2  
SM78K/0 Note 3, 4, 5, 6  
DF78014 Note 1, 2, 3, 4, 5  
µPD78002/78014 subseries evaluation emulation boards  
µPD78244 subseries common emulation probes  
Socket to be mounted on a user system board made for 64-pin plastic QFP  
IE-78000-R screen debugger  
78K/0 series common system simulator  
µPD78014 subseries device file  
Real-Time OS  
RX78K/0 Note 1, 2, 3  
78K/0 series common real-time OS  
78K/0 series common OS  
MX78K/0 Note 1, 2, 3, 6  
57  
µPD78P014  
Fuzzy Inference Development Support System  
FE9000 Note 1/FE9200 Note 5  
FT9080 Note 1/FT9085 Note 2  
FI78K0 Note 1, 2  
Fuzzy knowledge data creation tool  
Translator  
Fuzzy inference module  
Fuzzy inference debugger  
FD78K0 Note 1, 2  
Notes 1. PC-9800 series (MS-DOSTM) based  
2. IBM PC/ATTM (PC DOSTM) based  
3. HP9000 series 300TM, HP9000 series 700TM (HP-UXTM) based, SPARCstationTM (SunOSTM) based, EWS-4800  
series (EWS-UX/V) based  
4. PC-9800 series (MS-DOS+WindowsTM) based  
5. IBM PC/AT (PC DOS + Windows) based  
6. Under development  
Remarks 1. For third party development tools, see the 78K/0 Series Selection Guide (IF-1185).  
2. RA78K/0, CC78K/0, SD78K/0, and SM78K/0 are used together with the DF78014.  
58  
µPD78P014  
APPENDIX B. RELATED DOCUMENTS  
Device Related Documents  
Document Name  
Document No. (Japanese) Document No. (English)  
µPD78014/78014Y Series User’s Manual  
IEU-780  
IEU-849  
IEU-1343  
78K/0 Series User's Manual Instructions  
IEU-1372  
Basic I  
IEA-715  
IEA-740  
IEA-744  
IEA-1288  
IEA-1299  
IEA-1301  
78K/0 Series Application Notes  
Basic II  
Electronic Notebook  
Development Tool Related Documents (User’s Manual)  
Document Name  
Document No. (Japanese) Document No. (English)  
Operation  
EEU-809  
EEU-815  
EEU-817  
EEU-656  
EEU-655  
EEU-651  
EEU-704  
EEU-810  
EEU-867  
EEU-1399  
EEU-1404  
EEU-1402  
EEU-1280  
EEU-1284  
EEU-1335  
EEU-1291  
EEU-1398  
EEU-1427  
RA78K Series Assembler Package  
Language  
RA78K Series Structured Assembler Preprocessor  
Operation  
CC78K Series C Compiler  
Language  
PG-1500 PROM Programmer  
PG-1500 Controller  
IE-78000-R  
IE-78000-R-BK  
Basic  
EEU-852  
EEU-816  
EEU-1414  
EEU-1413  
SD78K/0 Screen Debugger  
Reference  
Other Related Documents  
Document Name  
Document No. (Japanese) Document No. (English)  
Package Manual  
IEI-635  
IEI-616  
IEI-620  
MEI-603  
IEI-1213  
IEI-1207  
IEI-1209  
MEI-1202  
Semiconductor Device Mounting Technology Manual  
Quality Grades on Semiconductor Devices  
Semiconductor Devices Quality Guarantee Guide  
Caution The above related documents are subject to change without notice. For design purposes, etc., be  
sure to use the latest documents.  
59  
µPD78P014  
[MEMO]  
60  
µPD78P014  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Production  
process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
61  
µPD78P014  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear  
reactor control systems and life support systems. If customers intend to use NEC devices for above applications  
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact  
our sales people in advance.  
Application examples recommended by NEC Corporation  
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,  
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.  
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime  
systems, etc.  
M4 92.6  
FIP is a trademark of NEC Corporation.  
IEBus and QTOP are trademarks of NEC Corporation.  
MS-DOS and Windows are trademarks of Microsoft Corporation.  
PC/AT and PC DOS are trademarks of IBM Corporation.  
HP9000 series 300, HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.  
SPARCstation is a trademark of SPARC International, Inc.  
SunOS is a trademark of Sun Microsystems, Inc.  

相关型号:

UPD78P014CW

8-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD78P014DW

8-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD78P014GC-AB8

8-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD78P014YCW

8-Bit Microcontroller
ETC

UPD78P014YDW

8-Bit Microcontroller
ETC

UPD78P014YGC-AB8

8-Bit Microcontroller
ETC

UPD78P018FCW

8-Bit Microcontroller
ETC

UPD78P018FCW(A)

8-Bit Microcontroller
ETC

UPD78P018FDW

8-Bit Microcontroller
ETC

UPD78P018FGC(A)-AB8

8-Bit Microcontroller
ETC

UPD78P018FGC-AB8

8-Bit Microcontroller
ETC

UPD78P018FGK-8A8

8-Bit Microcontroller
ETC