74LVC2G66DC [NEXPERIA]

Bilateral switchProduction;
74LVC2G66DC
型号: 74LVC2G66DC
厂家: Nexperia    Nexperia
描述:

Bilateral switchProduction

PC 光电二极管
文件: 总22页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
74LVC2G66  
Bilateral switch  
Rev. 13 — 9 September 2022  
Product data sheet  
1. General description  
The 74LVC2G66 is a dual single pole, single-throw analog switch. Each switch has two input/output  
terminals (nY and nZ) and a digital enable input (nE). When nE is LOW, the analog switch is turned  
off. Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these  
devices as translators in mixed 3.3 V and 5 V environments.  
Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.  
2. Features and benefits  
Wide supply voltage range from 1.65 V to 5.5 V  
Very low ON resistance:  
7.5 Ω (typical) at VCC = 2.7 V  
6.5 Ω (typical) at VCC = 3.3 V  
6 Ω (typical) at VCC = 5 V  
Switch current capability of 32 mA  
Overvoltage tolerant inputs to 5.5 V  
High noise immunity  
CMOS low power consumption  
TTL interface compatibility at 3.3 V  
Latch-up performance meets requirements of JESD78 Class I  
Complies with JEDEC standards:  
JESD8-7 (1.65 V to 1.95 V)  
JESD8-5 (2.3 V to 2.7 V)  
JESD8C (2.7 V to 3.6 V)  
JESD36 (4.5 V to 5.5 V)  
ESD protection:  
HBM JESD22-A114F exceeds 2 kV  
MM JESD22-A115-A exceeds 200 V  
Multiple package options  
Specified from -40 °C to +85 °C and -40 °C to +125 °C  
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
3. Ordering information  
Table 1. Ordering information  
Type number  
Package  
Temperature range  
-40 °C to +125 °C  
Name  
Description  
Version  
74LVC2G66DP  
74LVC2G66DC  
74LVC2G66GT  
74LVC2G66GN  
TSSOP8  
plastic thin shrink small outline package; 8 leads; SOT505-2  
body width 3 mm; lead length 0.5 mm  
-40 °C to +125 °C  
-40 °C to +125 °C  
-40 °C to +125 °C  
VSSOP8  
XSON8  
XSON8  
plastic very thin shrink small outline package;  
8 leads; body width 2.3 mm  
SOT765-1  
SOT833-1  
SOT1116  
plastic extremely thin small outline package;  
no leads; 8 terminals; body 1 × 1.95 × 0.5 mm  
extremely thin small outline package; no leads;  
8 terminals; body 1.2 × 1.0 × 0.35 mm  
4. Marking  
Table 2. Marking codes  
Type number  
Marking code[1]  
74LVC2G66DP  
74LVC2G66DC  
74LVC2G66GT  
74LVC2G66GN  
V66  
V66  
V66  
VL  
[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.  
5. Functional diagram  
1Y  
1E  
2Z  
1Z  
2Y  
1
1
#
#
X1  
1
1
X1  
2E  
001aag497  
001aah808  
Fig. 1. Logic symbol  
Fig. 2. IEC logic symbol  
nZ  
nY  
nE  
V
CC  
mna658  
Fig. 3. Logic diagram (one switch)  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
2 / 22  
 
 
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
6. Pinning information  
6.1. Pinning  
74LVC2G66  
1Y  
1Z  
1
2
3
4
8
7
6
5
V
CC  
1E  
74LVC2G66  
2E  
2Z  
2Y  
V
1Y  
1Z  
1
2
3
4
8
7
6
5
CC  
1E  
2Z  
2Y  
GND  
2E  
GND  
001aaf567  
Transparent top view  
001aaa529  
Fig. 4. Pin configuration SOT505-2 (TSSOP8) and  
SOT765-1 (VSSOP8)  
Fig. 5. Pin configuration SOT833-1 and  
SOT1116 (XSON8)  
6.2. Pin description  
Table 3. Pin description  
Symbol  
1Y  
Pin  
1
Description  
independent input or output  
independent input or output  
enable input (active HIGH)  
ground (0 V)  
1Z  
2
2E  
3
GND  
2Y  
4
5
independent input or output  
independent input or output  
enable input (active HIGH)  
supply voltage  
2Z  
6
1E  
7
VCC  
8
7. Functional description  
Table 4. Function table  
H = HIGH voltage level; L = LOW voltage level.  
Input nE  
Switch  
L
OFF-state  
ON-state  
H
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
3 / 22  
 
 
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
8. Limiting values  
Table 5. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
Min  
-0.5  
-0.5  
-50  
-
Max  
+6.5  
+6.5  
-
Unit  
V
VCC  
VI  
supply voltage  
input voltage  
[1]  
[2]  
V
IIK  
input clamping current  
VI < -0.5 V or VI > VCC + 0.5 V  
mA  
mA  
V
ISK  
switch clamping current VI < -0.5 V or VI > VCC + 0.5 V  
±50  
VSW  
ISW  
ICC  
IGND  
Tstg  
Ptot  
switch voltage  
enable and disable mode  
-0.5  
-
VCC + 0.5  
±50  
switch current  
VSW > -0.5 V or VSW < VCC + 0.5 V  
mA  
mA  
mA  
°C  
supply current  
-
100  
ground current  
-100  
-65  
-
-
storage temperature  
total power dissipation  
+150  
250  
Tamb = -40 °C to +125 °C  
[3]  
mW  
[1] The minimum input voltage rating may be exceeded if the input current rating is observed.  
[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.  
[3] For SOT505-2 (TSSOP8) package: Ptot derates linearly with 4.6 mW/K above 96 °C.  
For SOT765-1 (VSSOP8) package: Ptot derates linearly with 4.9 mW/K above 99 °C.  
For SOT833-1 (XSON8) package: Ptot derates linearly with 3.1 mW/K above 68 °C.  
For SOT1116 (XSON8) package: Ptot derates linearly with 4.2 mW/K above 90 °C.  
9. Recommended operating conditions  
Table 6. Operating conditions  
Symbol Parameter  
Conditions  
Min  
Max  
5.5  
Unit  
V
VCC  
VI  
supply voltage  
1.65  
input voltage  
0
0
5.5  
V
VSW  
Tamb  
Δt/ΔV  
switch voltage  
[1] [2]  
[3]  
VCC  
+125  
20  
V
ambient temperature  
input transition rise and fall rate  
-40  
-
°C  
VCC = 1.65 V to 2.7 V  
VCC = 2.7 V to 5.5 V  
ns/V  
ns/V  
-
10  
[1] To avoid sinking GND current from terminal nZ when switch current flows in terminal nY, the voltage drop across the bidirectional  
switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no GND current will flow from terminal nY. In this case, there  
is no limit for the voltage drop across the switch.  
[2] For overvoltage tolerant switch voltage capability, refer to 74LVCV2G66.  
[3] Applies to control signal levels.  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
4 / 22  
 
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
10. Static characteristics  
Table 7. Static characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
-40 °C to +85 °C  
Typ[1]  
-40 °C to +125 °C  
Unit  
Min  
Max  
Min  
Max  
VIH  
VIL  
II  
HIGH-level input VCC = 1.65 V to 1.95 V  
0.65 × VCC  
-
-
0.65 × VCC  
-
V
V
V
V
V
V
V
V
μA  
voltage  
VCC = 2.3 V to 2.7 V  
1.7  
-
-
1.7  
-
VCC = 2.7 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
2.0  
-
-
2.0  
-
0.7 × VCC  
-
-
0.35 × VCC  
0.7  
0.7 × VCC  
-
0.35 × VCC  
0.7  
LOW-level input VCC = 1.65 V to 1.95 V  
-
-
-
-
-
-
-
-
-
-
-
voltage  
VCC = 2.3 V to 2.7 V  
-
VCC = 2.7 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
-
-
0.8  
0.8  
0.3 × VCC  
±1  
0.3 × VCC  
±1  
input leakage  
current  
pin nE; VI = 5.5 V or GND; [2]  
VCC = 0 V to 5.5 V  
±0.1  
IS(OFF) OFF-state  
leakage current  
VCC = 5.5 V; see Fig. 6.  
VCC = 5.5 V; see Fig. 7.  
VI = 5.5 V or GND;  
[2]  
[2]  
[2]  
-
-
-
±0.1  
±0.1  
0.1  
±0.2  
±1  
4
-
-
-
±0.5  
±2  
4
μA  
μA  
μA  
IS(ON)  
ON-state  
leakage current  
ICC  
supply current  
VSW = GND or VCC  
;
VCC = 1.65 V to 5.5 V  
ΔICC  
additional supply pin nE; VI = VCC - 0.6 V;  
[2]  
-
5
500  
-
500  
μA  
current  
VSW = GND or VCC  
;
VCC = 5.5 V  
CI  
input  
capacitance  
-
-
-
2.0  
5.0  
9.5  
-
-
-
-
-
-
-
-
-
pF  
pF  
pF  
CS(OFF) OFF-state  
capacitance  
CS(ON) ON-state  
capacitance  
[1] All typical values are measured at Tamb = 25 °C.  
[2] These typical values are measured at VCC = 3.3 V.  
10.1. Test circuits  
V
V
CC  
CC  
nE  
nZ  
nE  
nZ  
V
V
IH  
IL  
nY  
nY  
I
I
S
S
GND  
GND  
V
I
V
O
V
I
V
O
001aag488  
001aag489  
VI = VCC or GND and VO = GND or VCC  
.
VI = VCC or GND and VO = open circuit.  
Fig. 6. Test circuit for measuring OFF-state leakage  
current  
Fig. 7. Test circuit for measuring ON-state leakage  
current  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
5 / 22  
 
 
 
 
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
10.2. ON resistance  
Table 8. ON resistance  
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Fig. 9 to Fig. 14.  
Symbol Parameter Conditions -40 °C to +85 °C -40 °C to +125 °C Unit  
Min  
Typ[1]  
Max  
Min  
Max  
RON(peak) ON resistance VI = GND to VCC; see Fig. 8.  
(peak)  
ISW = 4 mA;  
-
34.0  
130  
-
195  
Ω
VCC = 1.65 V to 1.95 V  
ISW = 8 mA; VCC = 2.3 V to 2.7 V  
-
-
-
-
12.0  
10.4  
7.8  
30  
25  
20  
15  
-
-
-
-
45  
38  
30  
23  
Ω
Ω
Ω
Ω
ISW = 12 mA; VCC = 2.7 V  
ISW = 24 mA; VCC = 3 V to 3.6 V  
ISW = 32 mA; VCC = 4.5 V to 5.5 V  
6.2  
RON(rail) ON resistance VI = GND; see Fig. 8  
(rail)  
ISW = 4 mA;  
-
8.2  
18  
-
27  
Ω
VCC = 1.65 V to 1.95 V  
ISW = 8 mA; VCC = 2.3 V to 2.7 V  
ISW = 12 mA; VCC = 2.7 V  
-
-
-
-
7.1  
6.9  
6.5  
5.8  
16  
14  
12  
10  
-
-
-
-
24  
21  
18  
15  
Ω
Ω
Ω
Ω
ISW = 24 mA; VCC = 3 V to 3.6 V  
ISW = 32 mA; VCC = 4.5 V to 5.5 V  
VI = VCC; see Fig. 8  
ISW = 4 mA;  
-
10.4  
30  
-
45  
Ω
VCC = 1.65 V to 1.95 V  
ISW = 8 mA; VCC = 2.3 V to 2.7 V  
ISW = 12 mA; VCC = 2.7 V  
-
-
-
-
7.6  
7.0  
6.1  
4.9  
20  
18  
15  
10  
-
-
-
-
30  
27  
23  
15  
Ω
Ω
Ω
Ω
ISW = 24 mA; VCC = 3 V to 3.6 V  
ISW = 32 mA; VCC = 4.5 V to 5.5 V  
RON(flat) ON resistance VI = GND to VCC  
[2]  
(flatness)  
ISW = 4 mA;  
-
26.0  
-
-
-
Ω
VCC = 1.65 V to 1.95 V  
ISW = 8 mA; VCC = 2.3 V to 2.7 V  
ISW = 12 mA; VCC = 2.7 V  
-
-
-
-
5.0  
3.5  
2.0  
1.5  
-
-
-
-
-
-
-
-
-
-
-
-
Ω
Ω
Ω
Ω
ISW = 24 mA; VCC = 3 V to 3.6 V  
ISW = 32 mA; VCC = 4.5 V to 5.5 V  
[1] Typical values are measured at Tamb = 25 °C and nominal VCC  
.
[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical VCC and  
temperature.  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
6 / 22  
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
10.3. ON resistance test circuit and graphs  
mna673  
40  
R
ON  
(Ω)  
30  
(1)  
20  
10  
0
(2)  
(3)  
V
SW  
(4)  
(5)  
V
CC  
nE  
nY  
V
0
1
2
3
4
5
IH  
V (V)  
I
nZ  
(1) VCC = 1.8 V  
(2) VCC = 2.5 V  
(3) VCC = 2.7 V  
(4) VCC = 3.3 V  
(5) VCC = 5.0 V  
GND  
V
I
I
SW  
001aag490  
RON = VSW / ISW  
Fig. 9. Typical ON resistance as a function of input  
voltage; Tamb = 25 °C  
Fig. 8. Test circuit for measuring ON resistance  
001aaa712  
001aaa708  
55  
15  
R
ON  
(Ω)  
R
ON  
(Ω)  
45  
13  
35  
25  
15  
5
11  
9
(4)  
(3)  
(2)  
(1)  
(1)  
(2)  
(3)  
(4)  
7
5
0
0.4  
0.8  
1.2  
1.6  
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V (V)  
I
V (V)  
I
(1) Tamb = 125 °C  
(2) Tamb = 85 °C  
(3) Tamb = 25 °C  
(4) Tamb = -40 °C  
(1) Tamb = 125 °C  
(2) Tamb = 85 °C  
(3) Tamb = 25 °C  
(4) Tamb = -40 °C  
Fig. 10. ON resistance as a function of input voltage;  
VCC = 1.8 V  
Fig. 11. ON resistance as a function of input voltage;  
VCC = 2.5 V  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
7 / 22  
 
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
001aaa709  
001aaa710  
13  
10  
R
ON  
(Ω)  
R
ON  
(Ω)  
11  
8
6
4
(1)  
(1)  
(2)  
9
7
5
(2)  
(3)  
(3)  
(4)  
(4)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V (V)  
3.0  
0
1
2
3
4
V (V)  
I
I
(1) Tamb = 125 °C  
(2) Tamb = 85 °C  
(3) Tamb = 25 °C  
(4) Tamb = -40 °C  
(1) Tamb = 125 °C  
(2) Tamb = 85 °C  
(3) Tamb = 25 °C  
(4) Tamb = -40 °C  
Fig. 12. ON resistance as a function of input voltage;  
VCC = 2.7 V  
Fig. 13. ON resistance as a function of input voltage;  
VCC = 3.3 V  
001aaa711  
7
R
ON  
(Ω)  
6
5
4
3
(1)  
(2)  
(3)  
(4)  
0
1
2
3
4
5
V (V)  
I
(1) Tamb = 125 °C  
(2) Tamb = 85 °C  
(3) Tamb = 25 °C  
(4) Tamb = -40 °C  
Fig. 14. ON resistance as a function of input voltage; VCC = 5.0 V  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
8 / 22  
 
Nexperia  
74LVC2G66  
Bilateral switch  
11. Dynamic characteristics  
Table 9. Dynamic characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 17.  
Symbol Parameter Conditions  
-40 °C to +85 °C  
Typ[1]  
-40 °C to +125 °C Unit  
Min  
Max  
Min  
Max  
tpd  
propagation nY to nZ or nZ to nY;  
delay see Fig. 15.  
[2] [3]  
VCC = 1.65 V to 1.95 V  
-
-
-
-
-
0.8  
0.4  
0.4  
0.3  
0.2  
2.0  
1.2  
1.0  
0.8  
0.6  
-
-
-
-
-
3.0  
2.0  
1.5  
1.5  
1.0  
ns  
ns  
ns  
ns  
ns  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V  
VCC = 3.0 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
ten  
enable time nE to nY or nZ; see Fig. 16.  
VCC = 1.65 V to 1.95 V  
VCC = 2.3 V to 2.7 V  
[4]  
[5]  
[6]  
1.0  
1.0  
1.0  
1.0  
1.0  
4.6  
2.7  
2.7  
2.4  
1.8  
10  
5.6  
5.0  
4.4  
3.9  
1.0  
1.0  
1.0  
1.0  
1.0  
13.0  
7.5  
6.5  
6.0  
5.0  
ns  
ns  
ns  
ns  
ns  
VCC = 2.7 V  
VCC = 3.0 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
tdis  
disable time nE to nY or nZ; see Fig. 16.  
VCC = 1.65 V to 1.95 V  
VCC = 2.3 V to 2.7 V  
1.0  
1.0  
1.0  
1.0  
1.0  
3.8  
2.1  
3.5  
3.0  
2.2  
9.0  
5.5  
6.5  
6.0  
5.0  
1.0  
1.0  
1.0  
1.0  
1.0  
11.5  
7.0  
8.5  
8.0  
6.5  
ns  
ns  
ns  
ns  
ns  
VCC = 2.7 V  
VCC = 3.0 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
CPD  
power  
CL = 50 pF; fi = 10 MHz;  
dissipation VI = GND to VCC  
capacitance  
VCC = 2.5 V  
-
-
-
9.0  
-
-
-
-
-
-
-
-
-
pF  
pF  
pF  
VCC = 3.3 V  
VCC = 5.0 V  
11.0  
15.7  
[1] Typical values are measured at Tamb = 25 °C and nominal VCC  
.
[2] tpd is the same as tPLH and tPHL  
.
[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when  
driven by an ideal voltage source (zero output impedance).  
[4] ten is the same as tPZH and tPZL  
.
[5] tdis is the same as tPLZ and tPHZ  
.
[6] CPD is used to determine the dynamic power dissipation (PD in μW).  
PD = CPD × VCC 2 × fi × N + Σ{(CL + CS(ON)) × VCC 2 × fo} where:  
fi = input frequency in MHz; fo = output frequency in MHz;  
CL = output load capacitance in pF;  
CS(ON) = maximum ON-state switch capacitance in pF;  
VCC = supply voltage in V;  
N = number of inputs switching;  
Σ{(CL + CS(ON)) × VCC 2 × fo} = sum of the outputs.  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
9 / 22  
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
11.1. Waveforms and test circuit  
V
I
nY or nZ  
input  
V
V
M
M
GND  
t
t
PLH  
PHL  
V
OH  
nZ or nY  
output  
V
V
M
M
V
OL  
001aaa541  
Measurement points are given in Table 10.  
Logic levels: VOL and VOH are typical output voltage levels that occur with the output load.  
Fig. 15. Input (nY or nZ) to output (nZ or nY) propagation delays  
V
I
nE input  
V
M
GND  
t
t
PZL  
PLZ  
V
CC  
output  
nY or nZ  
nY or nZ  
LOW-to-OFF  
OFF-to-LOW  
V
M
V
X
V
OL  
t
t
PZH  
PHZ  
V
OH  
V
Y
output  
HIGH-to-OFF  
OFF-to-HIGH  
V
M
GND  
switch  
enabled  
switch  
enabled  
switch  
disabled  
001aaa542  
Measurement points are given in Table 10.  
Logic levels: VOL and VOH are typical output voltage levels that occur with the output load.  
Fig. 16. Enable and disable times  
Table 10. Measurement points  
Supply voltage  
VCC  
Input  
Output  
VM  
VM  
VX  
VY  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
2.7 V  
0.5 × VCC  
0.5 × VCC  
1.5 V  
0.5 × VCC  
0.5 × VCC  
1.5 V  
VOL + 0.15 V  
VOL + 0.15 V  
VOL + 0.3 V  
VOL + 0.3 V  
VOL + 0.3 V  
VOH - 0.15 V  
VOH - 0.15 V  
VOH - 0.3 V  
VOH - 0.3 V  
VOH - 0.3 V  
3.0 V to 3.6 V  
4.5 V to 5.5 V  
1.5 V  
1.5 V  
0.5 × VCC  
0.5 × VCC  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
10 / 22  
 
 
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
t
W
V
I
90 %  
negative  
pulse  
V
V
V
V
M
M
10 %  
0 V  
t
t
r
f
t
t
f
r
V
I
90 %  
positive  
pulse  
M
M
10 %  
0 V  
t
W
V
EXT  
V
CC  
R
L
V
V
O
I
PULSE  
GENERATOR  
DUT  
R
T
C
L
R
L
001aae235  
Test data is given in Table 11.  
Definitions test circuit:  
RT = Termination resistance should be equal to output impedance Zo of the pulse generator.  
CL = Load capacitance including jig and probe capacitance.  
RL = Load resistance.  
VEXT = External voltage for measuring switching times.  
Fig. 17. Test circuit for measuring switching times  
Table 11. Test data  
Supply voltage  
VCC  
Input  
VI  
Load  
CL  
VEXT  
tr, tf  
RL  
tPLH, tPHL  
open  
tPZH, tPHZ  
tPZL, tPLZ  
2 × VCC  
2 × VCC  
6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
2.7 V  
VCC  
VCC  
2.7 V  
2.7 V  
VCC  
≤ 2.0 ns  
≤ 2.0 ns  
≤ 2.5 ns  
≤ 2.5 ns  
≤ 2.5 ns  
30 pF  
30 pF  
50 pF  
50 pF  
50 pF  
1 kΩ  
GND  
GND  
GND  
GND  
GND  
500 Ω  
500 Ω  
500 Ω  
500 Ω  
open  
open  
3.0 V to 3.6 V  
4.5 V to 5.5 V  
open  
6 V  
open  
2 × VCC  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
11 / 22  
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
11.2. Additional dynamic characteristics  
Table 12. Additional dynamic characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); Tamb = 25 °C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max Unit  
THD  
total harmonic  
distortion  
RL = 10 kΩ; CL = 50 pF; fi = 1 kHz; see Fig. 18.  
VCC = 1.65 V  
-
-
-
-
0.032  
0.008  
0.006  
0.005  
-
-
-
-
%
%
%
%
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
RL = 10 kΩ; CL = 50 pF; fi = 10 kHz; see Fig. 18.  
VCC = 1.65 V  
VCC = 2.3 V  
-
-
-
-
0.068  
0.009  
0.008  
0.006  
-
-
-
-
%
%
%
%
VCC = 3.0 V  
VCC = 4.5 V  
f(-3dB)  
-3 dB frequency  
response  
RL = 600 Ω; CL = 50 pF; see Fig. 19.  
VCC = 1.65 V  
-
-
-
-
135  
145  
150  
155  
-
-
-
-
MHz  
MHz  
MHz  
MHz  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
RL = 50 Ω; CL = 10 pF; see Fig. 19.  
VCC = 1.65 V  
-
-
-
-
200  
350  
410  
440  
-
-
-
-
MHz  
MHz  
MHz  
MHz  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
RL = 50 Ω; CL = 5 pF; see Fig. 19.  
VCC = 1.65 V  
-
-
-
-
> 500  
> 500  
> 500  
> 500  
-
-
-
-
MHz  
MHz  
MHz  
MHz  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
αiso  
isolation  
(OFF-state)  
RL = 600 Ω; CL = 50 pF; fi = 1 MHz; see Fig. 20.  
VCC = 1.65 V  
-
-
-
-
-46  
-46  
-46  
-46  
-
-
-
-
dB  
dB  
dB  
dB  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
RL = 50 Ω; CL = 5 pF; fi = 1 MHz; see Fig. 20.  
VCC = 1.65 V  
-
-
-
-
-37  
-37  
-37  
-37  
-
-
-
-
dB  
dB  
dB  
dB  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
12 / 22  
 
Nexperia  
74LVC2G66  
Bilateral switch  
Symbol Parameter  
Conditions  
Min  
Typ  
Max Unit  
Vct  
crosstalk voltage between digital inputs and switch; RL = 600 Ω;  
CL = 50 pF; fi = 1 MHz; tr = tf = 2 ns; see Fig. 21.  
VCC = 1.65 V  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
-
-
-
-
-
-
-
-
-
mV  
mV  
mV  
mV  
91  
119  
205  
Xtalk  
crosstalk  
between switches; RL = 600 Ω; CL = 50 pF; fi = 1 MHz;  
see Fig. 22.  
VCC = 1.65 V  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
-56  
-56  
-56  
between switches; RL = 50 Ω; CL = 5 pF; fi = 1 MHz;  
see Fig. 22.  
VCC = 1.65 V  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
-29  
-28  
-28  
Qinj  
charge injection  
CL = 0.1 nF; Vgen = 0 V; Rgen = 0 Ω; fi = 1 MHz;  
RL = 1 MΩ; see Fig. 23.  
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 5.5 V  
-
-
-
-
-
3.3  
4.1  
5.0  
6.4  
7.5  
-
-
-
-
-
pC  
pC  
pC  
pC  
pC  
11.3. Test circuits  
V
0.5V  
CC  
CC  
nE  
V
R
L
IH  
10 µF  
nY/nZ  
600 Ω  
nZ/nY  
V
O
f
i
C
L
D
001aag492  
Test conditions:  
VCC = 1.65 V: Vi = 1.4 V (p-p)  
VCC = 2.3 V: Vi = 2 V (p-p)  
VCC = 3 V: Vi = 2.5 V (p-p)  
VCC = 4.5 V: Vi = 4 V (p-p)  
Fig. 18. Test circuit for measuring total harmonic distortion  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
13 / 22  
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
V
0.5V  
CC  
CC  
nE  
V
R
L
IH  
0.1 µF  
50 Ω  
nY/nZ  
nZ/nY  
V
O
f
i
C
L
dB  
001aag491  
Adjust fi voltage to obtain 0 dBm level at output. Increase fi frequency until dB meter reads -3 dB.  
Fig. 19. Test circuit for measuring the frequency response when switch is in ON-state  
0.5V  
V
0.5V  
CC  
CC  
CC  
nE  
R
L
V
R
L
IL  
0.1 µF  
nY/nZ  
nZ/nY  
V
O
f
i
50 Ω  
C
L
dB  
001aag493  
Adjust fi voltage to obtain 0 dBm level at input.  
Fig. 20. Test circuit for measuring isolation (OFF-state)  
V
CC  
nE  
nY/nZ  
nZ/nY  
V
O
logic  
input  
G
R
L
C
L
50 Ω  
600 Ω  
0.5V  
0.5V  
001aag494  
CC  
CC  
Fig. 21. Test circuit for measuring crosstalk voltage (between digital inputs and switch)  
0.5V  
CC  
1E  
V
R
L
IH  
0.1 µF  
50 Ω  
R
i
1Y or 1Z  
1Z or 1Y  
600 Ω  
CHANNEL  
ON  
C
L
f
V
O1  
i
50 pF  
0.5V  
CC  
2E  
V
R
L
IL  
2Y or 2Z  
2Z or 2Y  
CHANNEL  
OFF  
C
L
R
600 Ω  
V
i
O2  
50 pF  
001aag496  
20 log10 (VO2 / VO1) or 20 log10 (VO1 / VO2).  
Fig. 22. Test circuit for measuring crosstalk between switches  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
14 / 22  
 
 
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
V
CC  
nE  
R
gen  
nY/nZ  
nZ/nY  
V
O
R
C
L
0.1 nF  
G
logic  
input  
L
V
gen  
1 MΩ  
001aag495  
a. Test circuit  
logic  
input (nE)  
off  
on  
off  
V
O
ΔV  
O
mna675  
b. Input and output pulse definitions  
Qinj = ΔVO × CL  
ΔVO = output voltage variation  
Rgen = generator resistance  
Vgen = generator voltage  
Fig. 23. Test circuit for measuring charge injection  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
15 / 22  
 
Nexperia  
74LVC2G66  
Bilateral switch  
12. Package outline  
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm  
SOT505-2  
D
E
A
X
c
H
v
M
y
A
E
Z
5
8
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
detail X  
1
4
e
w
M
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
A
A
A
b
c
D
E
e
H
E
L
L
p
UNIT  
v
w
y
Z
θ
1
2
3
p
max.  
0.15  
0.00  
0.95  
0.75  
0.38  
0.22  
0.18  
0.08  
3.1  
2.9  
3.1  
2.9  
4.1  
3.9  
0.47  
0.33  
0.70  
0.35  
8°  
0°  
mm  
1.1  
0.65  
0.5  
0.2  
0.13  
0.1  
0.25  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
02-01-16  
SOT505-2  
- - -  
Fig. 24. Package outline SOT505-2 (TSSOP8)  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
16 / 22  
 
Nexperia  
74LVC2G66  
Bilateral switch  
VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm  
SOT765-1  
D
E
A
X
c
y
H
E
v
A
Z
5
8
Q
A
2
A
A
(A )  
3
1
pin 1 index  
θ
L
p
detail X  
1
4
L
e
w
b
p
0
5 mm  
scale  
Dimensions (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
Unit  
A
A
A
b
c
D
E
e
H
E
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
max.  
max  
mm nom  
min  
0.15 0.85  
0.00 0.60  
0.27 0.23 2.1 2.4  
0.17 0.08 1.9 2.2  
3.2  
3.0  
0.40 0.21  
0.15 0.19  
0.4  
8°  
1
0.12  
0.5  
0.4  
0.2 0.08 0.1  
0.1  
0°  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
sot765-1_po  
Issue date  
References  
Outline  
version  
European  
projection  
IEC  
JEDEC  
JEITA  
07-06-02  
16-05-31  
SOT765-1  
MO-187  
Fig. 25. Package outline SOT765-1 (VSSOP8)  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
17 / 22  
Nexperia  
74LVC2G66  
Bilateral switch  
XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 1 x 1.95 x 0.5 mm  
SOT833-1  
b
1
2
3
4
4×  
(2)  
L
L
1
e
8
7
6
5
e
e
e
1
1
1
8×  
(2)  
A
A
1
D
E
terminal 1  
index area  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
A
1
UNIT  
b
D
E
e
e
1
L
L
1
max max  
0.25  
0.17  
2.0  
1.9  
1.05  
0.95  
0.35 0.40  
0.27 0.32  
mm  
0.5 0.04  
0.6  
0.5  
Notes  
1. Including plating thickness.  
2. Can be visible in some manufacturing processes.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
07-11-14  
07-12-07  
SOT833-1  
- - -  
- - -  
MO-252  
Fig. 26. Package outline SOT833-1 (XSON8)  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
18 / 22  
Nexperia  
74LVC2G66  
Bilateral switch  
XSON8: extremely thin small outline package; no leads;  
8 terminals; body 1.2 x 1.0 x 0.35 mm  
SOT1116  
b
4
(2)  
1
2
3
(4×)  
L
L
1
e
8
7
6
5
e
e
e
1
1
1
(2)  
(8×)  
A
1
A
D
E
terminal 1  
index area  
0
0.5  
scale  
1 mm  
Dimensions  
Unit  
(1)  
A
A
b
D
E
e
e
1
L
L
1
1
max 0.35 0.04 0.20 1.25 1.05  
0.35 0.40  
0.15 1.20 1.00 0.55 0.3 0.30 0.35  
0.12 1.15 0.95 0.27 0.32  
mm nom  
min  
Note  
1. Including plating thickness.  
2. Visible depending upon used manufacturing technology.  
sot1116_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
10-04-02  
10-04-07  
SOT1116  
Fig. 27. Package outline SOT1116 (XSON8)  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
19 / 22  
Nexperia  
74LVC2G66  
Bilateral switch  
13. Abbreviations  
Table 13. Abbreviations  
Acronym  
Description  
CMOS  
DUT  
ESD  
HBM  
MM  
Complementary Metal-Oxide Semiconductor  
Device Under Test  
ElectroStatic Discharge  
Human Body Model  
Machine Model  
TTL  
Transistor-Transistor Logic  
14. Revision history  
Table 14. Revision history  
Document ID  
Release date Data sheet status  
20220909 Product data sheet  
Section 2 corrected.  
Change notice Supersedes  
74LVC2G66 v.13  
Modifications:  
-
74LVC2G66 v.12  
74LVC2G66 v.12  
Modifications:  
20210831  
Product data sheet  
-
74LVC2G66 v.11  
Section 1 and Section 2 updated.  
Type number 74LVC2G66GM (SOT902-2/XQFN8) removed.  
Section 8: Derating values for Ptot total power dissipation updated.  
74LVC2G66 v.11  
Modifications:  
20181030  
Type number 74LVC2G66GD (XSON8/SOT996-2) removed.  
20170413 Product data sheet 74LVC2G66 v.9  
Product data sheet  
-
74LVC2G66 v.10  
74LVC2G66 v.10  
Modifications:  
-
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of Nexperia.  
Legal texts have been adapted to the new company name where appropriate.  
Type number 74LVC2G66GN (XSON8/SOT1116) has been added.  
74LVC2G66 v.9  
Modifications:  
20161215  
Table 7: The maximum limits for leakage current and supply current have changed.  
20130402 Product data sheet 74LVC2G66 v.7  
For type number 74LVC2G66GD XSON8U has changed to XSON8.  
20120622 Product data sheet 74LVC2G66 v.6  
For type number 74LVC2G66GM the SOT code has changed to SOT902-2.  
Product data sheet  
-
74LVC2G66 v.8  
74LVC2G66 v.8  
Modifications:  
-
74LVC2G66 v.7  
Modifications:  
-
74LVC2G66 v.6  
Modifications:  
20111129  
Product data sheet  
-
74LVC2G66 v.5  
Legal pages updated.  
74LVC2G66 v.5  
74LVC2G66 v.4  
74LVC2G66 v.3  
74LVC2G66 v.2  
74LVC2G66 v.1  
20100616  
20080701  
20080310  
20070828  
20040629  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
-
74LVC2G66 v.4  
74LVC2G66 v.3  
74LVC2G66 v.2  
74LVC2G66 v.1  
-
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
20 / 22  
 
 
Nexperia  
74LVC2G66  
Bilateral switch  
injury, death or severe property or environmental damage. Nexperia and its  
suppliers accept no liability for inclusion and/or use of Nexperia products in  
such equipment or applications and therefore such inclusion and/or use is at  
the customer’s own risk.  
15. Legal information  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Data sheet status  
Document status Product  
Definition  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. Nexperia makes no representation  
or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
[1][2]  
status [3]  
Objective [short]  
data sheet  
Development  
This document contains data from  
the objective specification for  
product development.  
Customers are responsible for the design and operation of their applications  
and products using Nexperia products, and Nexperia accepts no liability for  
any assistance with applications or customer product design. It is customer’s  
sole responsibility to determine whether the Nexperia product is suitable  
and fit for the customer’s applications and products planned, as well as  
for the planned application and use of customer’s third party customer(s).  
Customers should provide appropriate design and operating safeguards to  
minimize the risks associated with their applications and products.  
Preliminary [short]  
data sheet  
Qualification  
Production  
This document contains data from  
the preliminary specification.  
Product [short]  
data sheet  
This document contains the product  
specification.  
[1] Please consult the most recently issued document before initiating or  
completing a design.  
Nexperia does not accept any liability related to any default, damage, costs  
or problem which is based on any weakness or default in the customer’s  
applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the  
customer’s applications and products using Nexperia products in order to  
avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). Nexperia does not accept any  
liability in this respect.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have  
changed since this document was published and may differ in case of  
multiple devices. The latest product status information is available on  
the internet at https://www.nexperia.com.  
Definitions  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. Nexperia does not give any representations or  
warranties as to the accuracy or completeness of information included herein  
and shall have no liability for the consequences of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the relevant  
full data sheet, which is available on request via the local Nexperia sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of commercial sale — Nexperia products are  
sold subject to the general terms and conditions of commercial sale, as  
published at http://www.nexperia.com/profile/terms, unless otherwise agreed  
in a valid written individual agreement. In case an individual agreement is  
concluded only the terms and conditions of the respective agreement shall  
apply. Nexperia hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of Nexperia products by  
customer.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
Nexperia and its customer, unless Nexperia and customer have explicitly  
agreed otherwise in writing. In no event however, shall an agreement be  
valid in which the Nexperia product is deemed to offer functions and qualities  
beyond those described in the Product data sheet.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, Nexperia does not give any  
representations or warranties, expressed or implied, as to the accuracy  
or completeness of such information and shall have no liability for the  
consequences of use of such information. Nexperia takes no responsibility  
for the content in this document if provided by an information source outside  
of Nexperia.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific Nexperia product is automotive qualified, the  
product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. Nexperia  
accepts no liability for inclusion and/or use of non-automotive qualified  
products in automotive equipment or applications.  
In no event shall Nexperia be liable for any indirect, incidental, punitive,  
special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal  
or replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards,  
customer (a) shall use the product without Nexperia’s warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
Nexperia’s specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies Nexperia for any liability, damages or failed  
product claims resulting from customer design and use of the product for  
automotive applications beyond Nexperia’s standard warranty and Nexperia’s  
product specifications.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, Nexperia’s aggregate and cumulative liability towards customer  
for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of Nexperia.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Right to make changes — Nexperia reserves the right to make changes  
to information published in this document, including without limitation  
specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the  
publication hereof.  
Trademarks  
Suitability for use — Nexperia products are not designed, authorized or  
warranted to be suitable for use in life support, life-critical or safety-critical  
systems or equipment, nor in applications where failure or malfunction  
of an Nexperia product can reasonably be expected to result in personal  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
21 / 22  
 
Nexperia  
74LVC2G66  
Bilateral switch  
Contents  
1. General description......................................................1  
2. Features and benefits.................................................. 1  
3. Ordering information....................................................2  
4. Marking..........................................................................2  
5. Functional diagram.......................................................2  
6. Pinning information......................................................3  
6.1. Pinning.........................................................................3  
6.2. Pin description.............................................................3  
7. Functional description................................................. 3  
8. Limiting values............................................................. 4  
9. Recommended operating conditions..........................4  
10. Static characteristics..................................................5  
10.1. Test circuits................................................................5  
10.2. ON resistance............................................................6  
10.3. ON resistance test circuit and graphs........................7  
11. Dynamic characteristics.............................................9  
11.1. Waveforms and test circuit.......................................10  
11.2. Additional dynamic characteristics...........................12  
11.3. Test circuits..............................................................13  
12. Package outline........................................................ 16  
13. Abbreviations............................................................20  
14. Revision history........................................................20  
15. Legal information......................................................21  
© Nexperia B.V. 2022. All rights reserved  
For more information, please visit: http://www.nexperia.com  
For sales office addresses, please send an email to: salesaddresses@nexperia.com  
Date of release: 9 September 2022  
©
74LVC2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 13 — 9 September 2022  
22 / 22  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY