W-5200-5 [NIDEC]

Low Noise Regulated;
W-5200-5
型号: W-5200-5
厂家: NIDEC COMPONENTS    NIDEC COMPONENTS
描述:

Low Noise Regulated

文件: 总11页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W-5200-5  
Low Noise Regulated  
Charge Pump DC-DC Converter  
Description  
The:ꢀꢁꢂꢃꢃïꢁareswitchedcapacitorboostconvertersthatdeliverꢀ  
alownoise,regulatedoutputvoltage.ꢀ  
W-520ꢃïꢁgivesafixedregulated5Voutput.  
Theconstantfrequency2MHz charge pump allows small 1ȝF  
ceramic capacitorsto be used.  
Maximum output loads of up to 100 mA can be supported over a  
wide range of input supply voltages (2.7 V to 4.5 V) making the device  
ideal for batteryïpowered applications.  
1
TSOTï23  
A shutdown control input allows the device to be placed in  
powerïd own mode, reducing the supply current to less than ꢁȝ$.  
In the event of short circuit or overload conditions, the device is  
fully protected by both foldback current limiting and thermal overload  
detection. In addition, a soft start, slew rate control circuit limits inrush  
current during powerïup.  
PIN CONFIGURATIONS  
:ꢀꢁꢂꢃꢃïꢁ  
SOT23  
The:ꢀꢁꢂꢃꢃïꢁisaꢄïOHDGꢅ1mmmaxthinSOT23package.ꢀ  
1
OUT  
GND  
CPOS  
IN  
Features  
v Constant HighFrequency(2 MHz) Operation  
CNEG  
SHDN  
v 100 mAOutput Current  
(Top Views)  
v Regulated OutputVoltage (5 VFixed ꢂ  
v Low Quiescent Current (1.7 mA Typ.)  
v InputVoltageOperation down to 2.7 V  
v Soft Start, Slew Rate Control  
v Thermal Overload Shutdown Protection  
v LowValue External Capacitors (1ȝF)  
v Foldback Current Overload Protection  
v ShutdownCurrent less than 1ȝA  
v Low Profile (1 mm Thin)ꢄïl eadTSO2 3 Packageꢀ  
v These Devices are PbïFree, Halogen Free/BFR Freeand are RoHS  
Compliant  
ORDERING INFORMATION  
Device  
Package  
Shipping  
TSOT23ï6  
(PbïFree)  
3,000 / Tape &  
Reel  
:ꢀꢁꢂꢃꢃ7',ï*73  
(Note 1)  
1.  
NiPdAu Plated Finish (RoHcompliant).  
Applications  
v 3 V to 5 V Boost Conversion  
v White LED Driver  
v USB OnïTheïGo 5 V Supply  
v Local 5 V Supply from Lower Rail  
v Battery Backup Systems  
v Handheld Portable Devices  
¢ NIDEC COPAL ELECTRONICS CORP.  
1RYHPEHU,201ꢁꢀï Rev. 1ꢂ  
1
Publication Order Number:ꢀ  
W-5200/(  
W-5200ï5  
MARKING DIAGRAMS  
VA = W-5200TDI-GT3  
Y = Production Year (Last Digit)  
M = Production Month (1-9, A, B, C or O, N, D)  
R = Production Revision  
VAYM  
Typical Application  
1
F
CNEG  
IN  
CPOS  
OUT  
5 V  
100 mA  
V
OUT  
V
IN  
:ꢀꢁꢂꢃꢃïꢁ  
OFF  
+
ON  
F
SHDN  
3.3 V  
GND  
ï
1
1
F
V
OUT  
OUT  
= 5 V  
OUT  
I
I
b 50 mA, for V r 2.8 V  
IN  
b 90 mA, for V r 3 V  
IN  
Figure 1. Typical Application ï 5 V Output  
Table 1. PIN DESCRIPTIONS  
Designation  
Description  
OUT  
GND  
SHDN  
CNEG  
IN  
Regulatedoutputvoltage.  
Ground reference for all voltages.ꢀ  
Shutdown control logic input (Active LOW)ꢀ  
Negative connection for the flying capacitor.ꢀ  
Input power supply.  
CPOS  
Positive connection for the flying capacitor..  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Parameters  
Ratings  
ï0.6 to +6.0  
Indefinite  
200  
Units  
V
V
, V  
, SHDN, C  
, C Voltage  
POS  
V
IN  
OUT  
NEG  
Short Circuit Duration  
OUT  
Output Current  
mA  
V
ESD Protection (HBM)  
Junction Temperature  
Storage Temperature Range  
2000  
150  
oC  
oC  
oC  
W
ï65 to +160  
300  
Lead Soldering Temperature (10 sec)  
Power Dissipation (SOT23ï6)  
0.3  
StressesexceedingMaximumRatingsmaydamagethedevice.MaximumRatingsarestressratingsonly.Functionaloperationabovetheꢀ  
RecommendedOperatingConditions is not implied. Extendedexposure to stresses above theRecommended OperatingConditions may affectꢀ  
device reliability.  
2
W-5200ï5  
Table 3. RECOMMENDED OPERATING CONDITIONS  
Parameters  
Ratings  
2.7 to 4.5  
1
Units  
V
V
IN  
C
, C , C  
OUT FLY  
F
IN  
I
0 to 100  
ï40 to +85  
mA  
oC  
LOAD  
Ambient Temperature Range  
Table 4. ELECTRICAL SPECIFICATIONS  
(Recommended operating conditions unless otherwise specified. C , C  
, C  
OUT FLY  
are 1 F ceramic capacitors and V is set to 3.6 V.)  
IN  
IN  
Symbol  
Parameter  
Regulated Output  
Conditions  
b 40 mA, V r 2.7 V  
Min  
Typ  
Max  
Units  
V
OUT  
I
I
4.8  
5.0  
5.2  
V
LOAD  
LOAD  
IN  
b 100 mA, V r 3.1 V  
IN  
V
Line Regulation  
3.1 V b V b 4.5 V, I  
= 50 mA  
6
mV  
mV  
LINE  
IN  
LOAD  
V
LOAD  
Load Regulation  
I
= 10 mA to 100 mA, V = 3.6 V  
IN  
20  
2.0  
30  
LOAD  
F
OSC  
Switching Frequency  
Output Ripple Voltage  
1.3  
2.6  
MHz  
V
I
= 100 mA  
mVpïp  
R
LOAD  
W-520ꢃï5 Only  
I
I
I
I
I
= 50mA, V = 3 V, W-520ꢃïꢁꢀ  
Efficiency  
80  
%
mA  
A
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
INꢀ  
= 0 mA, SHDN = V  
I
I
Ground Current  
1.6  
4
1
IN  
GND  
= 0 mA, SHDN = 0 V to V  
Shutdown Input Current  
OpenïLoopResistance  
INꢀ  
SHDN  
R
= 100 mA, V = 3 V (Note 1)  
IN  
10  
0.5  
0.8  
OL  
V Turnïon time (10% to 90%)ꢀ  
OUTꢀ  
T
= 0 mA, V = 3 V  
IN  
ms  
V
ON  
V
1.3  
30  
High Detect Shutdown Thresholdꢀ  
Low Detect Shutdown Thresholdꢀ  
Reverse Leakage into OUT pinꢀ  
Shortïcircuit Output  
IHSHDN  
V
0.4  
V
ILSHDN  
I
V
V
= 5 V, Shutdown mode (Note 2)  
= 0 V  
15  
80  
A
ROUT  
OUT  
I
mA  
oC  
oC  
SC  
OUT  
T
160  
20  
Thermal Shutdown  
SD  
T
HYST  
ThermalHysteresis  
1. R = (2V ï V )/I  
OUT OUT  
OL  
IN  
2. In the event of a controlled shutdown, the output will be isolated from the input, but will remain connected to the internal resistor feedback  
network. This will cause a small level of reverse current to flow back into the device to ground.  
3
W-5200ï5  
TYPICAL PERFORMANCE CHARACTERISTICS (W-5200ï5)  
(T  
AMB  
= 25$C, C = C  
= C = 1 F, V = 3.3 V unless specified otherwise.)  
FLY IN  
IN  
OUT  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
0.5  
0.4  
2.7  
2.7  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.5  
4.5  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure . Shutdown Input Threshold vs.ꢁ  
SupplyVoltage  
Figure . Ground Current vs. Supply Voltageꢁ  
(NoLoad)  
5.2  
5.1  
5.0  
5.2  
5.1  
5.0  
20 mA Load  
VIN = 3.2 V  
100 mA Load  
4.9  
4.8  
4.9  
4.8  
VIN = 3.0 V  
VIN = 2.7 V  
3.0  
3.3  
3.6  
3.9  
4.2  
0
50  
100  
150  
INPUTVOLTAGE(V)ꢀ  
LOADCURRENT(mA)ꢀ  
Figureꢁꢄ.LineRegulation  
Figureꢁꢃ.LoadRegulation  
2.6  
2.4  
2.2  
2.0  
100  
90  
VIN = 2.7 V  
VIN = 3.2 V  
80  
70  
60  
50  
VIN = 3.7 V  
VIN = 4.5 V  
1.8  
1.6  
40  
30  
3.0  
3.3  
3.6  
3.9  
4.2  
1
10  
100  
INPUT VOLTAGE (V)  
LOADCURRENT(mA)  
Figure . Efficiency vs. Load Current  
Figure . Oscillator Frequency vs. Supplyꢁ  
Voltage  
4
W-5200ï5  
TYPICAL PERFORMANCE CHARACTERISTICS (W-5200ï5)  
(T  
AMB  
= 25$C, C = C  
= C = 1 F, V = 3.3 V unless specified otherwise.)  
FLY IN  
IN  
OUT  
Figureꢁꢇ.SoftStartPowerUpꢁ  
Figure . Load Step Response (3.3 V Input)  
(90 mA Load, 3.3 V Input)  
250  
200  
150  
100  
50  
0
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
INPUT VOLTAGE (V)  
Figure1. Output Rippleꢁ  
Figure 1. Short Circuit Current vs. Supplyꢁ  
(100 mA Load, 3.3 V Input)  
Voltage  
2
1
0
4
2
0
10 mA Load  
ï1  
ï2  
ï2  
ï4  
ï40  
ï20  
0
20  
40  
60  
80  
100  
ï40  
ï20  
0
20  
40  
60  
80  
100  
TEMPERATURE ($C)  
TEMPERATURE ($C)  
Figure 1. Output Voltage Change vs.ꢁ  
Figure 1. Oscillator Frequency Change vs.ꢁ  
Temperature  
Temperature  
5
W-5200ï5  
Block Diagram  
CNEG CPOS  
2V  
IN  
2 MHz  
Voltage  
Doubler  
IN  
SHDN  
EN  
+
ï
1.25 V  
5 V  
OUT  
100 mA  
300 k  
100 k  
GND  
)LJXUHꢄꢅꢆꢄ:ꢀꢁꢂꢃꢃï5 5 V Fixed Output  
Pin Functions  
IN is the power supply. During normal operation the device  
draws a supply current which is almost constant. A very  
brief interval of nonïconduction will occur at the switching  
frequency. The duration of the nonïconduction interval is  
set by the internal nonïoverlapping “breakïbeforeïmake”  
timing. IN should be bypassed with a 1 F to 4.7 F low  
ESR (Equivalent Series Resistance) ceramic capacitor  
For filtering, a low ESR ceramic bypass capacitor (1 F)  
in close proximity to the IN pin prevents noise from being  
injected back into the power supply.  
a low ESR ceramic bypass capacitor (1 F to 4.7 F) in close  
proximity to the OUT pin. The ESR of the output capacitor  
will directly influence the output ripple voltage.  
When the shutdown mode is entered, the output is  
immediately isolated from the input supply, however, the  
output will remain connected to the internal feedback  
resistor network (400 k ). The feedback network will result  
in a reverse current of 10 A to 20 A to flow back through  
the device to ground.  
Whenever the device is taken out of shutdown mode, the  
output voltage will experience a slew rate controlled  
powerïup. Full operating voltage is typically achieved in  
less than 0.5 msec.  
SHDN is the logic control input (Active LOW) that places  
the device into shutdown mode. The internal logic is CMOS  
and the pin does not use an internal pullïdown resistor. The  
SHDN pin should not be allowed to float.  
CPOS, CNEG are the positive and negative connections  
respectively for the charge pump flying capacitor. A low  
ESR ceramic capacitor (1 F) should be connected between  
these pins. During initial powerïup it may be possible for the  
capacitor to experience a voltage reversal and for this reason,  
avoid using a polarized (tantalum or aluminum) flying  
capacitor.  
GND is the ground reference for all voltages on :ꢀꢁꢂꢃꢃïꢁ  
devices.  
OUT is the regulated output voltage to power the load.  
During normal operation, the device will deliver a train of  
current pulses to the pin at a frequency of 2 MHz. Adequate  
filtering on the pin can typically be achieved through the use  
6
W-5200ï5  
Device Operation  
The:ꢀꢁꢂꢃꢃïꢁuseaswitchedcapacitorchargepump to  
boost the voltage at IN to a regulated outputvoltage.ꢀ  
RegulationisachievedbysensingtheoutputꢀYRODWDJH  
throughaninternalresistordivider(:ꢀꢁꢂꢃꢃïꢁꢆandꢀ  
modulatingthechargepump outputcurrent based onthe  
error signal. A 2ïphase nonïoverlapping clock activates the  
charge pump switches. The flying capacitor is charged from  
the IN voltage on the first phase of the clock. On the second  
phase of the clock it is stacked in series with the input voltage  
and connected to OUT. The charging and discharging the  
flying capacitor continues at a free running frequency of  
typically 2 MHz.  
The:ꢀꢁꢂꢃꢃïꢁwillcycleinandoutofthermal shutdown  
indefinitely withoutlatchïu p or damageuntil  
shortïcircuit on OUT is removed.  
a
In shutdown mode all circuitry is turned off and the  
:ꢀꢁꢂꢃꢃï5 drawonlyleakagecurrentfromtheVIN  
supply.OUTisdisconnectedfromIN.TheSHDNpinis a  
CMOS input with a threshold voltage of approximately  
0.8V.The:ꢀꢁꢂꢃꢃïꢁisinshutdownwhenalogicLOWis  
applied to the SHDN pin. The SHDN pin is ahighꢀ  
impedanceCMOSinput.SHDNdoesnothavean  
internal pullïdown resistor and should not be allowed to  
float and. It must always be driven with a valid logic level.  
ShortïCircuit and Thermal Protection  
The:ꢀꢁꢂꢃꢃïꢁhaveEXLOWïLQshortïcircuitcurrentꢀ  
limitingandovertemperatureprotection.Duringoverloadꢀ  
conditions,outputcurrentislimitedtoapproximately225ꢀ  
mA.Athighertemperatures,or if the input voltage is high  
enough to cause excessive chipselfheating,thethermalꢀ  
shutdowncircuitshutsdownthechargepumpastheꢀ  
junctiontemperatureexceedsapproximately 160oC. Once  
the junction temperature dropsbacktoapproximatelyꢀ  
140oC,thechargepumpisenabled.  
7
W-5200ï5  
Thermal Management  
Application Information  
Ceramic Capacitors  
Ceramic capacitors of different dielectric materials lose  
their capacitance with higher temperature and voltage at  
different rates. For example, a capacitor made of X5R or  
X7R material will retain most of its capacitance from – 40$C  
to 85$C whereas a Z5U or Y5V style capacitor will lose  
considerable capacitance over that range.  
Z5U and Y5V capacitors may also have voltage  
coefficient causing them to lose 60% or more of their  
capacitance when the rated voltage is applied. When  
comparing different capacitors it is often useful consider the  
amount of achievable capacitance for a given case size rather  
than discussing the specified capacitance value. For  
example, over rated voltage and temperature conditions, a  
1 F, 10 V, Y5V ceramic capacitor in an 0603 case may not  
provide any more capacitance than a 0.22 F, 10 V, X7R  
available in the same 0603 case. For many W-5200/  
:ꢀꢁꢂꢃꢃï5 applications these capacitors can be considered  
roughly equivalent.  
Forhigherinputvoltagesandmaximumoutputcurrentꢀ  
therecanbesubstantialpowerdissipationintheꢀ  
:ꢀꢁꢂꢃꢃïꢁ. If the junction temperature increases to 160$C,  
the thermal shutdown circuitry will automatically turn off  
the output.  
A good thermal connection to the PC board is  
recommended to reduce the chip temperature. Connecting  
theGNDpin(Pin2toagroundplane,andmaintainingaꢀ  
solidgroundplaneunder the device reduces the overall  
thermal resistance.  
The overall junction to ambient thermal resistance ( JAꢆ  
for device power dissipation (PDꢆꢇFRQVLVWVꢇSULPDULO\ꢇRIꢇWZo  
paths in series. The first path is the junction to the case ( JCꢆ  
which is defined by the package style, and the second path  
is case to ambient ( CAthermal resistance which is  
dependent on board layout. The final operating junction  
temperature for any set of conditions can be estimated by the  
following thermal equation:  
T
JUNC = TAMB + PD ( JCꢆꢇꢈꢇ3D ( CAꢆ  
TJUNC = TAMB + PD ( JAꢆ  
The capacitor manufacturer·s data sheet should be  
consulted to determine what value of capacitor is needed to  
ensure the desired capacitance at all temperatures and  
TheSOT23package,whenmountedonprintedcircuitꢀ  
boardwithtwosquareinchesofcopperallocatedfor “heat  
spreading”, will result with an overalleJ Aof less than  
150$C/W.  
For a typical application operating from a 3.8 V input  
supply, the maximum power dissipation is 260 mW  
(100 mA x 3 9ꢆꢉ This would result if a maximum junction  
temperature of:  
voltages. Below is  
a list of ceramic capacitor  
manufacturers and how to contact them:  
Table 5. CERAMIC CAPACITOR MANUFACTURERS  
Capacitor  
Manufacturer  
Web  
Phone  
T
T
T
JUNC = TAMB + PD ( JAꢆ  
Murata  
www.murata.com  
www.avxcorp.com  
www.vishay.com  
www.kemet.com  
www.tïyuden.com  
814.237.1431  
843.448.9411  
JUNC = 85$C + 0.26 W (150$&ꢊ:ꢆ  
JUNC = 85$C + 39$C = 124$C  
AVX/Kemet  
Vishay  
The use of multiïlayer board construction with power  
planes will further enhance the overall thermal performance.  
In the event of no dedicated copper area being used for heat  
spreading,amultiïl ayerboardwilltypicallyprovidetheꢀ  
withanoverallJAof200$C/W.Thislevelofthermalꢀ  
conductionwouldallowupto200mWbesafelyꢀ  
dissipated within the device.  
Kemet  
408.986.0424  
408.573.4150  
Taiyo Yuden  
8
W-5200ï5  
Typical Applications  
1
F
1
F
4
IN  
6
OUT  
4
6
4 V ) V ) 5 V  
IN  
1
5
3
5
3
1
1
IN  
OUT  
3.3 V ( 10%  
SHDN  
V
SHDN  
W-5200ï5  
OUT  
F
1
F
V
OUT  
1
F
5 V ( 4%  
1
F
W-5200ï5  
5 V ( 4%  
100 mA  
GND  
2
GND  
2
Figure 1. 3.3 V Supply to 5 V  
Figure 1. USB Port to Regulated 5 V Power Supply  
1
F
4
6
Cï  
C+  
Drive up to 5 LEDs  
100 1 100 1  
5
1
OUT  
IN  
+
1
F
3 V to 4.4 V  
Liïion  
1
F
100 1  
100 1  
100 1  
W-5200ï5  
Battery  
3
2
t
OFF  
SHDN  
SGND  
ON  
Apply PWM Waveform for  
Adjustable Brightness Control  
V
SHDN  
Figure ꢂꢃ. LithiumïI on Battery to 5 V White or Blue LED Driver  
9
W-5200ï5  
PACKAGE DIMENSIONS  
TSOTï23, 6 LEAD  
CASE 419AFï01  
ISSUE O  
SYMBOL  
MIN  
NOM  
MAX  
1.00  
0.10  
0.90  
0.45  
0.20  
D
A
A1  
A2  
b
e
0.01  
0.80  
0.30  
0.12  
0.05  
0.87  
c
0.15  
D
2.90 BSC  
2.80 BSC  
1.60 BSC  
0.95 TYP  
0.40  
E1  
E
E
E1  
e
L
0.30  
0.50  
L1  
L2  
e
0.60 REF  
0.25 BSC  
0º  
8º  
TOP VIEW  
A2 A  
A1  
L
b
c
L2  
L1  
SIDE VIEW  
END VIEW  
Notes:  
(1) All dimensions are in millimeters. Angles in degrees.  
(2) Complies with JEDEC MO-193.  
10  
W-5200ï5  
Example of Ordering Information (Note 5)  
Prefix  
Device #  
Suffix  
W
-
5200  
TD  
I
ï G  
T3  
Temperature Range  
I = Industrial (ï40oC to +85oC)  
Lead Finish  
G: NiPdAu  
Tape & Reel  
T: Tape & Reel  
3: 3,000 Units / Reel  
Company ID  
(Optional)  
Product Number  
5200  
Package  
TD: TSOTï23  
Z: MSOP  
3. All packages are RoHSïcompliant (Leadïfree, Halogenïfree).  
4. The standard lead finish is NiPdAu.  
5. The device used in the above example is a W-5200TDIïGT3 (TSOTï23, Industrial Temperature, NiPdAu, Tape & Reel, 3,000/Reel).  
NIDEC COPAL reserves the right to make changes without further notice to any products herein.  
NIDEC COPAL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does NIDEC COPAL assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in NIDEC COPAL data sheets and/or specifications can and do vary in different applications and actual performance may vary over time.  
$OOꢄRSHUDWLQJꢄSDUDPHWHUVꢅꢄLQFOXGLQJꢄ´7\SLFDOVµꢄPXVWꢄEHꢄYDOLGDWHGꢄIRUꢄHDFKꢄFXVWRPHUꢄDSSOLFDWLRQꢄE\ꢄFXVWRPHU·VꢄWHFKQLFDOꢄH[SHUWVꢆꢄ  
NIDEC COPAL does not convey any license under its patent rights nor the rights of others.  
NIDEC COPAL products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the NIDEC COPAL product could create a situation where personal injury or death may occur.  
Should Buyer purchase or use NIDEC COPAL products for any such unintended or unauthorized application, Buyer shall indemnify and hold NIDEC COPAL and its officers,  
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that NIDEC COPAL was negligent regarding the design or  
manufacture of the part.  
W-5200/(  

相关型号:

W-5200TDI-G3

Low Noise Regulated

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-5200TDI-GT

Low Noise Regulated

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-5200ZI-G3

Low Noise Regulated

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-5200ZI-GT

Low Noise Regulated

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-52TDI-G3

CMOS White LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-52TDI-GT

CMOS White LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-6

Fuse

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W-6137

CMOS Boost Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-6137TD-G3

CMOS Boost Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-6137TD-GT

CMOS Boost Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-6139

22 V High Current Boost

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC