W-6237TD-T [NIDEC]

High Voltage CMOS Boost;
W-6237TD-T
型号: W-6237TD-T
厂家: NIDEC COMPONENTS    NIDEC COMPONENTS
描述:

High Voltage CMOS Boost

文件: 总13页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W-6237  
High Voltage CMOS Boost  
White LED Driver  
Description  
The W-6237 is a DC/DC VWHSïXS converter that delivers an  
DFFXUDWe constant FXUUHQW ideal for driving LEDs. Operation at a  
constant switching IUHTXHQF\ of 1 MHz allows the device to be XVHG  
with small YDOXH external ceramic capacitors and LQGXFWRr. LEDs  
connected in series are driven with a UHJXODWHG FXUUHQW set E\ the  
external resistor R1. LEDꢀFXUUHQWsꢀXSꢀWRꢀꢁꢂꢀPA can be sXSSRUWHGꢀRYHr  
a wLGHꢀUDQJHꢀRIꢀLQSXWꢀsXSSO\ꢀYROWDJHs from 2.8 V to 5.5 V, making the  
device ideal for batterpowered applications. The W-6237  
highïvoltage RXWSXW stage is perfect for driving six, seven or eight  
white /('VꢀLQꢀVHULHVꢀZLWKꢀLQKHUHQWꢀFXUUHQWꢀPDWFKLQJꢀLQꢀ/&'ꢀEDFNOLJKt  
applications.  
LEDꢀGLPPLQJꢀFDQꢀEHꢀGRQHꢀE\ꢀXVLQJꢀDꢀ'&ꢀYROWDJHꢃꢀDꢀORJLFꢀVLJQDOꢃꢀRr  
a SXOVH width PRGXODWLRQ (PWM) signal. The VKXWGRZQ LQSXW pin  
allows the device to be placed in powerïdown mode with “zero”  
TXLHVFHQtꢀFXUUHQWꢄ  
In addition to thermal protection and overload FXUUHQW limiting, the  
device also enters a YHU\ low power operating mode GXULQJ “Open  
LED” IDXOW conditions. The device is KRXVHG in a low profile (1 mm  
max height) 5ïlead thin SOT23 package for space critical  
applications.  
5
1
TSOTï23  
PIN CONNECTIONS  
1
VIN  
SW  
*1'  
FB  
SHDN  
(Top View)  
MARKING DIAGRAMS  
Features  
v Drives 6 to 8 White LEDs in Series from 3 V  
v Up to 87% EfILFLHQF\  
UDYM  
v LoZꢀ4Xiescent GroXQd CXUUentꢀꢂ.6 mA  
v $GMXVWDEOHꢀ2XWSXWꢀ&XUUHQWꢀꢅXSꢀWRꢀꢁꢂꢀP$ꢆ  
v High FreTXenc\ꢀꢇꢀ0+z Operation  
v High Voltage Power Switch  
8'ꢅ ꢅ:ꢀꢁꢂꢃꢄ7'ï*7ꢃ  
Y = Production Year (Last Digit)  
M = Production Month (1ï9, A, B, C or O, N, D)  
v ShXtdown &Xrrent Less than 1 A  
v Open LED Low Power Mode  
ORDERING INFORMATION  
v $XWRPDWLFꢀ6KXWGRZQꢀDWꢀꢇꢄꢈꢀ9ꢀꢅ89/2ꢆ  
v 7KHUPDOꢀ6KXWGRZQꢀ3URWHFWLRQ  
Device  
Package  
Shipping  
TSOTï23  
(PbïFree)  
3,000/  
:ꢀꢁꢂꢃꢄ7'ï*7ꢃ  
v Thin SOT23 5ïlead (1 mm Max Height)  
(Note 1)  
Tape & Reel  
v These Devices are PbïFree, Halogen Free/BFR Free and are RoHS  
Compliant  
NiPdAu Plated Finish (RoHSïcompliant)  
Applications  
1.  
v Color LCD and Ke\Sad Backlighting  
v CellXlar Phones  
v Handheld Devices  
v Digital Cameras  
v PDAs  
v Portable Game Machine  
¢ NIDEC COPAL ELECTRONICS CORP.  
'HFHPEHU,201ꢁꢀïRev. ꢂ  
1
Publication Order Number:ꢀ  
W-6237/(  
W-6237  
L
D
V
OUT  
V
IN  
33  
H
3 V to  
4.2 V  
C
2
C
1
4.7  
F
0.22 F  
SW  
FB  
VIN  
W-6237  
V
= 300 mV  
FB  
20 mA  
OFF  
ON  
SHDN  
R
GND  
1
15  
L: Sumida CDRH3D16ï330  
D: Central CMDSH05ï4 (rated 40 V)  
C2: Taiyo Yuden UMK212BJ224 (rated 50 V)  
Figure 1. Typical Application Circuit  
Table 1. ABSOLUTE MAXIMUM RATINGS  
Parameters  
Ratings  
ï0.3 to +7  
ï0.3 to +7  
ï0.3 to +55  
ï65 to +160  
ï40 to +150  
300  
Units  
V
IN  
, FB voltage  
V
V
V
C
C
C
SHDN voltage  
SW voltage  
Storage Temperature Range  
Junction Temperature Range  
Lead Temperature  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
Table 2. RECOMMENDED OPERATING CONDITIONS  
Parameters  
Range  
2.8 to 5.5  
0 to 30  
Units  
V
V
IN  
SW pin voltage  
V
Ambient Temperature Range  
6, 7 or 8 LEDs  
ï40 to +85  
1 to 40  
C
mA  
NOTE: Typical application circuit with external components is shown above.  
3. Thin SOT23ï5 package thermal resistance  
= 135$C/W when mounted on board over a ground plane.  
JA  
2
W-6237  
Table 3. DC ELECTRICAL CHARACTERISTICS  
(V = 3.6 V, ambient temperature of 25$C (over recommended operating conditions unless otherwise specified))  
IN  
Symbol  
Parameter  
Operating Current  
Conditions  
= 0.2 V  
Min  
Typ  
Max  
Unit  
I
Q
V
FB  
V
FB  
0.6  
0.1  
1.5  
0.6  
mA  
= 0.4 V (not switching)  
I
Shutdown Current  
FB Pin Voltage  
V
= 0 V  
0.1  
1
315  
1
A
mV  
A
SD  
SHDN  
V
8 LEDs with I  
= 20 mA  
285  
300  
FB  
FB  
LED  
I
FB pin input leakage  
Programmed LED Current  
I
R1 = 10  
R1 = 15  
R1 = 20  
28.5  
19  
30  
20  
15  
31.5  
21  
mA  
LED  
14.25  
15.75  
V
SHDN Logic High  
SHDN Logic Low  
Enable Threshold Level  
0.8  
0.7  
1.5  
V
IH  
V
Shutdown Threshold Level  
0.4  
0.8  
IL  
F
Switching Frequency  
1.0  
450  
1.0  
1
1.3  
600  
2.0  
5
MHz  
mA  
SW  
LIM  
I
Switch Current Limit  
350  
R
Switch “On” Resistance  
Switch Leakage Current  
Thermal Shutdown  
I
= 100 mA  
SW  
SW  
I
Switch Off, V  
= 5 V  
A
$C  
$C  
V
LEAK  
SW  
150  
20  
Thermal Hysteresis  
V
Undervoltage Lockout (UVLO) Threshold  
Overvoltage Threshold  
1.9  
35  
UVLO  
V
V
OV-SW  
Pin Description  
VIN is the supply input for the internal logic. The device is  
compatible with supply voltages down to 2.8 V and up to  
5.5 V. It is recommended that a small bypass ceramic  
capacitor (4.7 F) be placed between the VIN and GND pins  
near the device. If the supply voltage drops below 1.9 V, the  
device stops switching.  
SW pin is connected to the drain of the internal CMOS  
power switch of the boost converter. The inductor and the  
Schottky diode anode should be connected to the SW pin.  
Traces going to the SW pin should be as short as possible  
with minimum loop area. An over-voltage detection circuit  
is connected to the SW pin. When the voltage reaches 35 V,  
the device enters a low power operating mode preventing the  
SW voltage from exceeding the maximum rating.  
SHDN is the shutdown logic input. When the pin is tied to  
a voltage lower than 0.4 V, the device is in shutdown mode,  
drawing nearly zero current. When the pin is connected to a  
voltage higher than 1.5 V, the device is enabled.  
GND is the ground reference pin. This pin should be  
connected directly to the ground place on the PCB.  
FB feedback pin is regulated at 0.3 V. A resistor connected  
between the FB pin and ground sets the LED current  
according to the formula:  
0.3 V  
R1  
ILED  
The lower LED cathode is connected to the FB pin.  
Table 4. PIN DESCRIPTIONS  
Pin #  
Name  
Function  
1
2
3
4
5
SW  
Switch pin. This is the drain of the internal power switch.  
GND  
FB  
Ground pin. Connect the pin to the ground plane.  
Feedback pin. Connect to the last LED cathode.  
Shutdown pin (Logic Low). Set high to enable the driver.  
Power Supply input.  
SHDN  
VIN  
3
W-6237  
Block Diagram  
33  
H
V
IN  
SW  
C2  
F
C1  
F
4.7  
0.22  
1 MHz  
Over Voltage  
Protection  
Oscillator  
300 mV  
+
V
REF  
Driver  
V
LED  
IN  
A1  
+
PWM &  
Logic  
Current  
A2  
R
C
Enable  
C
N
1
C
Thermal  
Shutdown  
& UVLO  
+
SHDN  
R
S
GND  
FB  
Current  
Sense  
R1  
15  
Figure 2. Block Diagram  
Device Operation  
Thermal overload protection circuitry has been included  
to prevent the device from operating at unsafe junction  
temperatures above 150$C. In the event of a thermal  
overload condition the device will automatically shutdown  
and wait till the junction temperatures cools to 130$C before  
normal operation is resumed.  
The W-6237 is a fixed frequency (1 MHz), low noise,  
inductive boost converter that provides a constant current  
with excellent line and load regulation. The device uses a  
high-voltage CMOS power switch between the SW pin and  
ground to energize the inductor. When the switch is turned  
off, the stored energy in the inductor is released into the load  
via the Schottky diode.  
Light Load Operation  
Under light load condition (under 4 mA) and with input  
voltage above 4.2 V, the W-6237 driving 6 LEDs, the  
driver starts pulse skipping. Although the LED current  
remains well regulated, some lower frequency ripple may  
appear.  
The on/off duty cycle of the power switch is internally  
adjusted and controlled to maintain a constant regulated  
voltage of 0.3 V across the feedback resistor connected to the  
feedback pin (FB). The value of the resistor sets the LED  
current accordingly (0.3 V/R1).  
During the initial power-up stage, the duty cycle of the  
internal power switch is limited to prevent excessive in-rush  
currents and thereby provide a “soft-start” mode of  
operation.  
While in normal operation, the device can deliver up to  
40 mA of load current into a string of up to 8 white LEDs.  
In the event of an “Open LED” fault condition, where the  
feedback control loop becomes open, the output voltage will  
continue to increase. Once this voltage exceeds 35 V, an  
internal protection circuit will become active and place the  
device into a very low power safe operating mode where  
only a small amount of power is transferred to the output.  
This is achieved by pulsing the switch once every 60 s and  
keep it on for about 1 s only.  
Figure 3. Switching Waveform V = 4.2 V,  
IN  
I
= 4 mA  
LED  
4
W-6237  
TYPICAL CHARACTERISTICS  
(V = 3.6 V, C = 4.7 F, C  
= 0.22 F, L = 33 H with 8 LEDs at 20 mA, T  
= 25$C, unless otherwise specified.)  
AMB  
IN  
IN  
OUT  
140  
120  
2.0  
1.5  
1.0  
100  
80  
60  
VFB = 0.4 V  
40  
(not switching)  
0.5  
0
20  
0
2.7  
2.7  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 4. Quiescent Current vs. V  
(Not Switching)  
Figure 5. Quiescent Current vs. V  
(Switching)  
IN  
IN  
315  
310  
315  
310  
8 LEDs at 20 mA  
VOUT = 26 V  
8 LEDs  
305  
300  
295  
305  
300  
295  
290  
285  
290  
285  
3.0  
3.3  
INPUT VOLTAGE (V)  
Figure 6. FB Pin Voltage vs. Supply Voltage  
3.6  
3.9  
4.2  
4.5  
4.8  
0
5
10  
15  
20  
25  
30  
OUTPUT CURRENT (mA)  
Figure 7. FB Pin Voltage vs. Output Current  
1040  
1020  
1000  
SW pin  
20V/div  
Inductor  
Current  
100mA/div  
980  
960  
VOUT  
AC coupled  
200mV/div  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
0.5 sec/div  
INPUT VOLTAGE (V)  
Figure 8. Switching Frequency vs. Supply  
Voltage  
Figure 9. Switching Waveforms  
5
W-6237  
TYPICAL CHARACTERISTICS  
(V = 3.6 V, C = 4.7 F, C  
= 0.22 F, L = 33 H with 8 LEDs at 20 mA, T  
= 25$C, unless otherwise specified.)  
AMB  
IN  
IN  
OUT  
35  
30  
1.0  
R
= 10  
FB  
0.5  
25  
20  
15  
10  
R
R
= 15  
FB  
FB  
0
= 20  
ï0.5  
ï1.0  
5
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
30  
30  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.0  
30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 10. LED Current vs. Input Voltage  
(8 LEDs)  
Figure 11. LED Current Regulation (20 mA)  
90  
85  
90  
85  
20 mA  
15 mA  
VIN = 4.2 V  
VIN = 3.6 V  
80  
75  
80  
75  
8 LEDs  
8 LEDs  
70  
65  
70  
65  
VOUT ~ 27 V at 20 mA  
VOUT ~ 27 V at 20 mA  
L = 33  
H
L = 33  
H
5
10  
15  
20  
25  
3.0  
3.5  
4.0  
4.5  
LED CURRENT (mA)  
INPUT VOLTAGE (V)  
Figure 12. 8 LED Efficiency vs. Load Current  
Figure 13. 8 LED Efficiency vs. Input Voltage  
90  
85  
90  
85  
VIN = 4.2 V  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 3.6 V  
80  
75  
80  
75  
6 LEDs  
7 LEDs  
VOUT ~ 20 V at 20 mA  
VOUT ~ 23 V at 20 mA  
70  
65  
70  
65  
L = 33  
H
L = 33  
H
5
10  
15  
LED CURRENT (mA)  
Figure 14. 7 LED Efficiency vs. Load Current  
20  
25  
5
10  
15  
LED CURRENT (mA)  
Figure 15. 6 LED Efficiency vs. Load Current  
20  
25  
6
W-6237  
TYPICAL CHARACTERISTICS  
(V = 3.6 V, C = 4.7 F, C  
= 0.22 F, L = 33 H with 8 LEDs at 20 mA, T  
= 25$C, unless otherwise specified.)  
AMB  
IN  
IN  
OUT  
2.0  
EN  
5V/div  
1.5  
1.0  
0.5  
VOUT  
10V/div  
Input  
Current  
100mA/  
div  
0
2.5  
3.0  
3.5  
4.0  
4.5  
50 sec/div  
INPUT VOLTAGE (V)  
Figure 16. Powerïup with 8 LEDs at 20 mA  
Figure 17. Switch ON Resistance vs. Input  
Voltage  
303  
302  
1.0  
0.8  
0.6  
ï40$C  
25$C  
301  
300  
299  
85$C  
125$C  
0.4  
0.2  
V
LED  
= 3.6 V, 8 LEDs  
IN  
298  
297  
I
= 20 mA  
ï50  
0
50  
100  
150  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE ($C)  
INPUT VOLTAGE (V)  
Figure 18. FB Pin Voltage vs. Temperature  
Figure 19. Shutdown Voltage vs. Input Voltage  
140  
120  
100  
VOUT = 15 V  
80  
60  
40  
VOUT = 20 V  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT VOLTAGE (V)  
Figure 20. Maximum Output Current vs. Input  
Voltage  
7
W-6237  
Application Information  
given current. In order to achieve the best efficiency, this  
forward voltage should be as low as possible. The response  
time is also critical since the driver is operating at 1 MHz.  
Central Semiconductor Schottky diode CMDSH05ï4  
(500 mA rated) is recommended for most applications.  
External Component Selection  
Capacitors  
The W-6237 only requires small ceramic capacitors of  
4.7 F on the input and 0.22 F on the output. Under normal  
condition, a 4.7 F input capacitor is sufficient. For  
applications with higher output power, a larger input  
capacitor of 10 F may be appropriate. X5R and X7R  
capacitor types are ideal due to their stability across  
temperature range.  
LED Current Setting  
The LED current is set by the external resistor R1  
connected between the feedback pin (FB) and ground. The  
formula below gives the relationship between the resistor  
and the current:  
0.3 V  
LED  
R1  
current  
Inductor  
A 33 H inductor is recommended for most of the  
W-6237 applications. In cases where the efficiency is  
critical, inductances with lower series resistance are  
preferred. Inductors with current rating of 300 mA or higher  
are recommended for most applications. Sumida  
CDRH3D16ï330 33 H inductor has a rated current of  
320 mA and a series resistance (D.C.R.) of 520 m typical.  
Table 5. RESISTOR R AND LED CURRENT  
1
LED Current (mA)  
R ( )  
1
5
60  
30  
20  
15  
12  
10  
10  
15  
20  
25  
30  
Schottky Diode  
The current rating of the Schottky diode must exceed the  
peak current flowing through it. The Schottky diode  
performance is rated in terms of its forward voltage at a  
8
W-6237  
Open LED Protection  
2.0  
1.5  
1.0  
In the event of an “Open LED” fault condition, the  
W-6237 will continue to boost the output voltage with  
maximum power until the output voltage reaches  
approximately 35 V. Once the output exceeds this level, the  
internal circuitry immediately places the device into a very  
low power mode where the total input power is limited to  
about 4 mW (about 1 mA input current with a 3.6 V supply).  
The SW pin clamps at a voltage below its maximum rating  
of 60 V. There is no need to use an external zener diode  
between Vout and the FB pin. A 50 V rated C2 capacitor is  
required to prevent any overvoltage damage in the open  
LED condition.  
0.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Schottky 100 V  
(Central CMSH1ï100)  
L
INPUT VOLTAGE (V)  
V
IN  
V
OUT  
33  
H
Figure 23. Open LED Supply Current vs. V without  
IN  
C
1
C
2
Zener  
4.7  
F
0.22  
F
50  
SW  
FB  
VIN  
W-6237  
45  
40  
V
FB  
= 300 mV  
OFF  
SHDN  
GND  
ON  
R1  
15  
Figure 21. Open LED Protection without Zener  
35  
30  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT VOLTAGE (V)  
Figure 24. Open LED Output Voltage vs. V without  
IN  
Zener  
SW PIN  
10 V/div  
10 sec/div  
Figure 22. Open LED Switching Waveforms without  
Zener  
9
W-6237  
Dimming Control  
There are several methods available to control the LED  
brightness.  
VIN  
W-6237  
SW  
PWM Signal on the SHDN Pin  
SHDN  
GND  
LED brightness dimming can be done by applying a PWM  
signal to the SHDN input. The LED current is repetitively  
turned on and off, so that the average current is proportional  
to the duty cycle. A 100% duty cycle, with SHDN always  
high, corresponds to the LEDs at nominal current. Figure 25  
shows a 1 kHz signal with a 50% duty cycle applied to the  
SHDN pin. The recommended PWM frequency range is  
from 100 Hz to 2 kHz.  
FB  
PWN  
V
= 300 mV  
Signal  
FB  
LED  
Current  
2.5 V  
3.73 k  
1 k  
3.1 k  
VIN  
0 V  
R
R
A
R
B
2
C1  
F
i
R
1
15  
0.22  
Figure 26. Circuit for Filtered PWM Signal  
A PWM signal at 0 V DC, or a 0% duty cycle, results in  
a max LED current of about 22 mA. A PWM signal with a  
93% duty cycle or more, results in an LED current of 0 mA.  
25  
20  
15  
10  
5
0
Figure 25. Switching Waveform with 1 kHz PWM on  
SHDN  
0
10 20 30 40 50 60  
PWM DUTY CYCLE (%)  
70 80 90 100  
Filtered PWM Signal  
A filtered PWM signal used as a variable DC voltage can  
control the LED current. Figure 26 shows the PWM control  
circuitry connected to the W-6237 FB pin. The PWM  
signal has a voltage swing of 0 V to 2.5 V. The LED current  
can be dimmed within a range from 0 mA to 20 mA. The  
PWM signal frequency can vary from very low frequency up  
to 100 kHz.  
Figure 27. Filtered PWM Dimming (0 V to 2.5 V)  
10  
W-6237  
Board Layout  
The W-6237 is a KLJKïIUHTXHQF\ VZLWFKLQJ UHJXODWRU.  
7KHꢀWUDFHVꢀWKDWꢀFDUU\ꢀWKHꢀKLJKïIUHTXHQF\ꢀVZLWFKLQJꢀFXUUHQW  
haveꢀWRꢀEH FDUHIXOO\ꢀOD\RXWꢀRQꢀWKHꢀERDUGꢀLQꢀRUGHUꢀWRꢀPLQLPL]e  
EMI, ULSSOH DQG QRLVH LQ JHQHUDOꢄ The WKLFNHU OLQHV RQ  
)LJXUe ꢉꢊꢀVKRZꢀWKHꢀVZLWFKLQJ FXUUHQWꢀSDWKꢄ $OO these WUDFHs  
KDYHꢀWRꢀEHꢀVKRUWꢀDQGꢀZLGHꢀHQRXJKꢀWRꢀPLQLPL]HꢀWKHꢀSDUDVLWLF  
LQGXFWDQFe DQG UHVLVWDQFHꢄ The ORRS VKRZQ RQ )LJXUe 28  
FRUUHVSRQGs WR the FXUUHQW SDWK wKHQ the W-6237 LQWHUQDO  
VZLWFh is FORVHGꢄ 2Q )LJXUH 29 is VKRZQ the FXUUHQW ORRSꢃ  
wheQ the W-6237 VZLWFK is RSHQꢄ %RWK ORRS DUHDV VKRXOG  
EHꢀDVꢀVPDOOꢀDVꢀSRVVLEOH.  
&DSDFLWRU C1 has WR EH SODFHG as FORVH as SRVVLEOH WR the  
VIN SLQ DQG GND. The FDSDFLWRU C2 has WR EH FRQQHFWHG  
VHSDUDWHO\ WR the WRSꢀ/('ꢀDQRGHꢄꢀ$ꢀJURXQGꢀSODQHꢀXQGHUꢀWKe  
W-6237 DOORZV IRU GLUHFW FRQQHFWLRQ RI the FDSDFLWRUV WR  
JURXQGꢄ The UHVLVWRU R1 PXVW EH FRQQHFWHG GLUHFWO\ WR the  
GND SLQ RI the W-6237 DQG QRW VKDUHG with the VZLWFKLQg  
FXUUeQt ORRSVꢀDQGꢀaQ\ꢀRtheUꢀFRPSRQHQts.  
W-6237  
W-6237  
Open  
Closed  
Figure 28. Closedïswitch Current Loop  
Figure 29. Openïswitch Current Loop  
11  
W-6237  
PACKAGE DIMENSIONS  
TSOTï23, 5 LEAD  
CASE 419AEï01  
ISSUE O  
SYMBOL  
MIN  
NOM  
MAX  
1.00  
0.10  
0.90  
0.45  
0.20  
D
A
A1  
A2  
b
e
0.01  
0.80  
0.30  
0.12  
0.05  
0.87  
c
0.15  
D
2.90 BSC  
2.80 BSC  
1.60 BSC  
0.95 TYP  
0.40  
E1  
E
E
E1  
e
L
0.30  
0.50  
L1  
L2  
Q
0.60 REF  
0.25 BSC  
0º  
8º  
TOP VIEW  
A2 A  
A1  
L
b
c
L2  
L1  
SIDE VIEW  
END VIEW  
Notes:  
(1) All dimensions are in millimeters. Angles in degrees.  
(2) Complies with JEDEC MO-193.  
12  
W-6237  
Example of Ordering Information (Note 6)  
Prefix  
Device #  
Suffix  
W
-
6237  
TD  
ï G  
T3  
Company ID  
(Optional)  
Product Number  
Package  
TD: TSOTï23  
Lead Finish  
G: NiPdAu  
Blank: MatteïTin (Note 7)  
Tape & Reel  
T: Tape & Reel  
3: 3,000 / Reel  
6237  
4. All packages are RoHSïcompliant (Leadïfree, Halogenïfree).  
5. The standard lead finish is NiPdAu.  
6. The device used in the above example is a W-6237TGT3 (TSO23, NiPdAu Plated Finish, Tape & Reel, 3,000/Reel).  
7. For MatteïTin package option, please contact your nearest COPAL ELECTRONICS Sales office.  
NIDEC COPAL reserves the right to make changes without further notice to any products herein.  
NIDEC COPAL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does NIDEC COPAL assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in NIDEC COPAL data sheets and/or specifications can and do vary in different applications and actual performance may vary over time.  
$OOꢅRSHUDWLQJꢅSDUDPHWHUVꢆꢅLQFOXGLQJꢅ´7\SLFDOVµꢅPXVWꢅEHꢅYDOLGDWHGꢅIRUꢅHDFKꢅFXVWRPHUꢅDSSOLFDWLRQꢅE\ꢅFXVWRPHU·VꢅWHFKQLFDOꢅH[SHUWVꢇꢅ  
NIDEC COPAL does not convey any license under its patent rights nor the rights of others.  
NIDEC COPAL products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the NIDEC COPAL product could create a situation where personal injury or death may occur.  
Should Buyer purchase or use NIDEC COPAL products for any such unintended or unauthorized application, Buyer shall indemnify and hold NIDEC COPAL and its officers,  
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that NIDEC COPAL was negligent regarding the design or  
manufacture of the part.  
W-6237/(  

相关型号:

W-6238

High Efficiency 10 LED Boost Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-6238TD-GT3

High Efficiency 10 LED Boost Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NIDEC

W-7

Fuse

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W-8

Fuse

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W-CWP16-12

Silicon Controlled Rectifier, 37.68A I(T)RMS, 1200V V(DRM), 1200V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

W-CWP16-16

Silicon Controlled Rectifier, 37.68A I(T)RMS, 1600V V(DRM), 1600V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

W-CWP180-18

Silicon Controlled Rectifier, 282.6A I(T)RMS, 1800V V(DRM), 1800V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

W-CWP22-12

Silicon Controlled Rectifier, 47.1A I(T)RMS, 1200V V(DRM), 1200V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

W-CWP22-16

Silicon Controlled Rectifier, 47.1A I(T)RMS, 1600V V(DRM), 1600V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

W-CWP25-12

Silicon Controlled Rectifier, 54.95A I(T)RMS, 1200V V(DRM), 1200V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

W-CWP25-16

Silicon Controlled Rectifier, 54.95A I(T)RMS, 1600V V(DRM), 1600V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

W-CWP339-12

Silicon Controlled Rectifier, 321.85A I(T)RMS, 1200V V(DRM), 1200V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS