NJM2823F [NJRC]

Three Terminal Voltage Reference, 1 Output, 1.136V, Trim/Adjustable, BIPolar, PDSO5, SOT-23, 5PIN;
NJM2823F
型号: NJM2823F
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Three Terminal Voltage Reference, 1 Output, 1.136V, Trim/Adjustable, BIPolar, PDSO5, SOT-23, 5PIN

ISM频段 光电二极管
文件: 总6页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJM2823  
Precision Micropower Shunt Voltage Reference  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
NJM2823
is a precision and low quiescent current shunt voltage  
reference.  
Reference voltage form bandgap circuit has guaranteed the high  
accuracy of the ±0.4% with trimming. In addition the temperature drift of  
15ppm/°C typ. was actualized by the temperature compensating circuit.  
The reference voltage circuit operates by consumed low quiescent current  
of the 60µA for low power technology.  
NJM2823F  
The Output capacitor is unnecessary by the phase compensating circuit  
which is built in. Tolerates capacitive loads, it is easy to use for application.  
It is suitable for data converters, instrumentation, and other applications  
where precision reference is required.  
FEATURES  
PRODUCT VARIATION  
Precision Reference Voltage  
Low temperature coefficient  
Low Quiescent Current  
1136mV 0.4%  
15ppm/°C typ.  
60µA max.  
NJM2824**  
Small PKG  
No Output Capacitor Required  
Tolerates Capacitive Loads  
Bipolar Technology  
NJM2823  
0.4%, IMIN=60µA  
Package Outline  
NJM2823F : SOT-23-5 (MTP5)  
NJM2820  
0.7%, IMIN=500µA  
** Planning  
BLOCK DIAGRAM  
PIN CONFIGURATION  
CATHODE  
NC 1  
5 CATHODE  
4 FB  
ANODE 2  
NC 3  
VREF  
FB  
NJM2823F  
ANODE  
Ver.2009-03-05  
- 1 -  
NJM2823  
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)  
PARAMETER  
SYMBOL  
MAXIMUM RATINGS  
UNIT  
Cathode Voltage  
VKA  
14  
V
Cathode Current  
IK  
20  
mA  
mA  
mW  
°C  
Cathode-Anode Reverse Current  
Power Dissipation  
-IK  
10  
PD  
TOPR  
TSTG  
200  
Operating Temperature Range  
Storage Temperature Range  
-40 +85  
-40 +125  
°C  
RECOMMENDED OPERATING CONDITIONS (Ta=25°C)  
PARAMETER  
Cathode Voltage  
Cathode Current  
SYMBOL MIN.  
TYP.  
MAX.  
13  
12  
UNIT  
V
mA  
VKA  
IK  
VREF  
0.06  
ELECTRICAL CHARACTERISTICS (IK=100µA,Ta=25°C)  
PARAMETER  
SYMBOL  
TEST CONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
Reference Voltage  
VREF  
VFB=VA  
VFB=VA, IMINIK1mA  
VFB=VA, 1mAIK12mA  
(*1)  
(*1)  
(*1)  
1131.5  
1136.0 1140.5  
mV  
mV  
mV  
0.15  
1.5  
1.1  
6
VREF  
/
Load Regulation  
IK  
Reference Voltage  
Change vs. Cathode  
Voltage Change  
Minimum Operating  
Current  
VREF  
/
VREFVKA13V,  
(*2)  
-0.52  
-2.8  
mV/V  
VKA  
R1=120k, R2=val (Note 1)  
IMIN  
IFB  
VFB=VA  
(*1)  
(*2)  
(*1)  
20  
100  
0.1  
60  
200  
µA  
nA  
Feedback Current  
R1=, R2=120kΩ  
VFB=VA, f120Hz,  
Dynamic Impedance  
ZKA  
IK=1mA, IAC=0.1IK  
TEMPERATURE CHARACTERISTICS (IK=100µA, Ta=-40°C 85°C)  
PARAMETER  
SYMBOL  
TEST CONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
mV  
Reference Voltage  
Change (Note 2)  
Reference Input  
Current Change  
5.7  
15  
8.2  
50  
VREF_T VFB=VA  
(*1)  
(*2)  
ppm/°C  
IFB_T  
200  
nA  
R1=, R2=120kΩ  
Note 1: VREF···Reference voltage includes error.  
Note 2: Reference Voltage Change is defined as  
VREF_T [mV] = <VREF × 0.4%> < Reference Voltage Change [ppm/°C] > × <-40°C 25°C> ×  
.
The maximum value of “Reference Voltage Change” is determined based on sampling evaluation fromthe 5 initial  
production lots, and thus not tested in the production test. Therefore, these values are for the reference design  
purpose only.  
(*1): Test Circuit (Fig.1)  
(*2): Test Circuit (Fig.2)  
Ver.2009-03-05  
- 2 -  
NJM2823  
TEST CIRCUIT  
Input  
VKA  
IK  
Input  
VKA  
IK  
VREF  
FB  
CATHODE  
VREF  
FB  
CATHODE  
R1  
R2  
ANODE  
IFB  
ANODE  
Fig.1 VKA=VREF to test circuit  
VFB=VA  
Fig.2 VKA>VREF to test circuit  
R2  
R1  
REF  
V
KA = V  
1+  
+ IFB × R2  
TYPICAL CHARACTERISTICS  
Reference Voltage vs. Temperature  
Reference Voltage vs. Cathode Current  
(VFB=VA, Ta=25oC)  
(IK=100µA, VFB=VA)  
1140  
6
4
1139  
1138  
1137  
1136  
1135  
1134  
2
0
-2  
-4  
-6  
0.01  
0.1  
1
10  
100  
-50 -25  
0
25 50 75 100 125  
Cathode Current I (mA)  
o
K
Ambient Temperature Ta (C)  
Reference Voltage vs. Cathode Current  
(VFB=VA, Ta=25oC)  
Reference Voltage vs. Cathode Voltage  
(R1=120k, R2=val, I =100µA, Ta=25oC)  
K
1300  
1200  
1100  
1000  
900  
1150  
1145  
1140  
1135  
1130  
1125  
1120  
800  
0
20  
40  
60  
80  
100  
0
2
4
6
8
10 12 14  
Cathode Current I (µA)  
Cathode Voltage VKA (V)  
K
Ver.2009-03-05  
- 3 -  
NJM2823  
TYPICAL CHARACTERISTICS  
Dynamic Impedance  
(IK=1mA, V =V , Ta=25oC)  
Feedback Current vs. Temperature  
(R1=Open, R2=120k, IK=100µA)  
FB  
A
200  
150  
100  
50  
14  
12  
10  
8
6
4
2
0
0
-50 -25  
0
25 50 75 100 125  
0.01  
0.1  
1
10  
100  
o
Cathode Current Frequency f (kHz)  
Ambient Temperature Ta (C)  
Sefty Operating Boundary Condition  
(VFB=VA, Ta=25oC)  
1.5  
1.25  
1
Ceramic Capacitor  
Stable Operation Region  
0.75  
0.5  
0.25  
0
Note) Oscillation might occur while operating within the range  
of safety curve.  
Unstable  
Operation  
Region  
So that, it is necessary to make ample margins by  
taking considerations of fluctuation of the device.  
0.001  
0.01  
0.1  
1
10  
Output Capacitance Co (µF)  
Power Dissipation vs. Temperature  
(MTP5=Itself, Tj=  
125oC)  
250  
200  
150  
100  
50  
0
0
25  
50  
75  
100  
Ambient Temperature Ta (oC)  
Ver.2009-03-05  
- 4 -  
NJM2823  
Application Information  
The NJM2823 creates a highly accurate reference voltage, enabling a low power consumption application circuit to be  
configured.  
In the basic application (Fig.1) of the shunt regulator, a voltage drop is created by resistor Rs connected between the  
input voltage and the NJM2823, and the output voltage (cathode – anode voltage = VKA) is controlled to a constant  
value. The voltage drop due to Rs is determined by the total of the output current and the cathode current.  
The feedback to the output voltage is controlled by the FB terminal, and the cathode current changes so that the set  
voltage is obtained.  
VIN  
RS  
VOUT=VKA  
As a result, Rs must conform to the following conditions.  
*Minimum cathode current = 60 uA min  
Conditions under which the input voltage is a minimum  
and the output current is a maximum.  
IK  
R1  
R2  
VREF  
CO  
*Maximum cathode current = 12 mA max  
Conditions under which the input voltage is a maximum  
and the output current is a minimum.  
IFB  
The value of resistor Rs is obtained by means of the following formula.  
Fig.1 basic application  
V
VOUT  
IN  
RS  
=
[]  
IK + IOUT  
The output voltage can be set using any desired value between VREF and 13 V.  
The output voltage is set according to the ratio between the values of the two external resistors, however an error  
occurs depending upon the feedback current. The error can be minimized by combining two external resistors with low  
resistance values. The formula for calculating the output voltage setting is shown below.  
R2  
R1  
VOUT  
=
+1 × V  
+ IFB ×R2  
REF  
As shown in the “reference voltage versus cathode voltage”  
characteristics example, the reference voltage value has  
negative characteristics. The reference voltage is corrected by  
using VREF/VKA stipulated by the electrical characteristics.  
VKA (V)  
1.20  
1.50  
1.80  
2.50  
3.30  
5.00  
R1 (k  
)
R2 (k  
)
Open  
120  
120  
120  
120  
120  
Short  
38.2  
69.5  
142.8  
226.4  
404.3  
VREF  
VKA  
VREF  
=
× VOUT  
Table.1 Examples of output voltage settings at the standard  
Table 1 shows an example of combining constants in the case where R1 is assumed to be 120 k.  
The error in the output voltage also varies with the accuracy of the resistors. In order to realize a highly accurate  
application, the relative accuracy can be improved by either using accurate resistors or combining integrated resistors.  
The NJM2823 contains an optimized phase compensation circuit. Consequently, in the basic application a stable  
reference voltage is generated without the use of an output capacitor. As is indicated in the “dynamic impedance  
versus frequency” characteristics, the impedance increases in proportion to the frequency. If necessary, connect an  
output capacitor to reduce the high frequency impedance. You can connect a ceramic capacitor to obtain high stability,  
but in this case be sure to use the NJM2823 in the stable operation region while referring to the “stable operation  
boundary conditions” characteristics example.  
Ver.2009-03-05  
- 5 -  
NJM2823  
MEMO  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
Ver.2009-03-05  
- 6 -  

相关型号:

NJM2825

Precision Micropower Shunt Voltage Reference
NJRC

NJM2825F

Precision Micropower Shunt Voltage Reference
NJRC

NJM2825F-TE1

Precision Micropower Shunt Voltage Reference
NJRC

NJM2825F-TE2

Voltage Reference,
NJRC

NJM2825_09

Precision Micropower Shunt Voltage Reference
NJRC

NJM2827

Negative Output Low Drop Out voltage regulator
NJRC

NJM2827F3-05

Negative Output Low Drop Out voltage regulator
NJRC

NJM2827F3-06

Negative Output Low Drop Out voltage regulator
NJRC

NJM2827F3-07

Negative Output Low Drop Out voltage regulator
NJRC

NJM2827F3-08

Negative Output Low Drop Out voltage regulator
NJRC

NJM2827F3-10

Fixed Negative LDO Regulator, 10V, BIPolar, PDSO5, SC-88A, 5 PIN
NJRC

NJM2827F3-14

Negative Output Low Drop Out voltage regulator
NJRC