NJU6679BCH [NJRC]

Liquid Crystal Driver, 260-Segment, CMOS, BUMP, DIE-321;
NJU6679BCH
型号: NJU6679BCH
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver, 260-Segment, CMOS, BUMP, DIE-321

驱动 接口集成电路
文件: 总45页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6679  
PRELIMINARY  
128-common x 132-segment  
BIT MAP LCD DRIVER  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6679 is a 128-common x 132-segment bit map LCD driver to  
display graphics or characters.  
It contains 25,344 bits display data RAM, microprocessor interface cir-  
cuits, instruction decoder, and common and segment drivers.  
An image data from CPU through the serial or 8-bit parallel interface are  
stored into the 25,344 bits internal display data RAM and are displayed  
on the LCD panel through the commons and segments drivers.  
The NJU6679 displays 128 x 132 dots graphics or 8-character 8-line by  
16 x 16 dots character.  
NJU6679CJ  
The NJU6679 contains a built-in OSC circuit for reducing external com-  
ponents. And it features Partial Display Function containing selectable  
active display block(s) (two blocks max.) and optimizing the duty cycle  
ratio. This function dramatically reduces the operating current, setting  
the optimum boosted voltage combined with a programmable voltage  
booster circuit and an electrical variable resister. As result, it reduces  
the operating current.  
The operating voltage from 2.4V to 3.6V and low operating current are  
suitable for small size battery operation items.  
FEATURES  
Direct Correspondence of Display Data RAM to LCD Pixel  
Display Data RAM - 25,344 bits ;(1.5 times over than display size)  
LCD drivers - 128-common and 132-segment  
Direct connection to 8-bit Microprocessor interface for both of 68 and 80 type MPU  
Serial Interface  
Partial Display Function Two limited active display blocks setting. Duty ratio set automatically.  
Easy Vertical Scroll by setting the start line address of over size display data RAM  
Programmable Bias selection ; 1/4,1/5,1/6,1/7,1/8,1/9,1/10,1/11,1/12 bias  
Common Driver Order Assignment by mask option  
Version  
NJU6679A Com0 to Com127  
NJU6679B Com127 to Com0  
Useful Instruction Sets  
C0 to C127(Pin name)  
Display ON/OFF Cont, Display Start Line Set, Page Address Set, Column Address Set, Status Read,  
Display Data Read/Write, Inverse Display, All On/Off, Partial Display, Bias Select, n-Line Inverse,  
Voltage Booster Circuits Multiple Select(Maximum 6-time), Read Modify Write, Power Saving, ADC Select, etc.  
Power Supply Circuits for LCD; Programmable Voltage Booster Circuits(6-time Maximum, Voltage boosting  
polarity:Negative voltage(VDD Common)),Regulator, Voltage Follower (x 4)  
Precision Electrical Variable Resistance  
Low Power Consumption  
Operating Voltage  
--- 2.4V to 3.6V  
LCD Driving Voltage --- 6.0V to 18V  
Package Outline  
--- COF / TCP / Bumped Chip  
C-MOS Technology (Substrate:N)  
2001  
Ver.4.8  
NJU6679  
PAD LOCATION  
C46  
C47  
DUMMY19  
DUMMY18  
DUMMY17  
DUMMY16  
DUMMY15  
DUMMY14  
DUMMY13  
DUMMY12  
VDD  
C63  
S0  
V1  
V2  
V3  
V4  
V5  
VR  
VDD  
-
C1  
C1 +  
-
C2  
C2+  
-
C3  
C3+  
-
C4  
C4+  
X
-
C5  
C5+  
VOUT  
VSS  
D7  
D6  
D5  
Y
D4  
D3  
D2  
D1  
D0  
RD  
WR  
A0  
CS  
OSC2  
OSC1  
T1  
T2  
VSS  
RES  
SEL68  
P/S  
VDD  
DUMMY11  
DUMMY10  
DUMMY9  
DUMMY8  
DUMMY7  
DUMMY6  
DUMMY5  
DUMMY4  
DUMMY3  
DUMMY2  
DUMMY1  
S131  
C127  
1
DUMMY0  
C111  
C110  
Chip Center  
Chip Size  
Chip Thickness  
Bump Size  
Pad pitch  
: X=0um,Y=0um  
: X=10.31mm,Y=3.13mm  
: 675um + 30um  
: 45um x 83um  
: 60um(Min)  
Bump Height  
Bump Material  
: 15um TYP.  
: Au  
Voltage boosting polarity :Negative voltage (VDD Common)  
Substrate :N  
NJU6679  
TERMINAL DESCRIPTION  
Chip Size 10.31 x 3.13mm (Chip Center X=0um,Y=0um)  
PAD No.  
1
Terminal  
DUMMY0  
DUMMY1  
DUMMY2  
DUMMY3  
DUMMY4  
DUMMY5  
DUMMY6  
DUMMY7  
DUMMY8  
DUMMY9  
DUMMY10  
DUMMY11  
VDD  
X= um  
-4884  
-4132  
-4062  
-3992  
-3922  
-3852  
-3782  
-3712  
-3642  
-3572  
-3502  
-3432  
-3270  
-3104  
-2884  
-2648  
-2490  
-2333  
-2098  
-1877  
-1641  
-1420  
-1184  
-954  
Y= um  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
PAD No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Terminal  
V2  
X= um  
2792  
2862  
2932  
3315  
3385  
3455  
3525  
3595  
3665  
3735  
4884  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
Y= um  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1405  
-1416  
-1356  
-1296  
-1236  
-1176  
-1116  
-1056  
-996  
-936  
-876  
-816  
-756  
-696  
-636  
-576  
-516  
-456  
-396  
-336  
-276  
-216  
-156  
-96  
2
V1  
3
VDD  
4
DUMMY12  
DUMMY13  
DUMMY14  
DUMMY15  
DUMMY16  
DUMMY17  
DUMMY18  
DUMMY19  
C0  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
C1  
P/S  
C2  
SEL68  
RES  
C3  
C4  
VSS  
C5  
T2  
C6  
T1  
C7  
OSC1  
OSC2  
CS  
C8  
C9  
C10  
A0  
C11  
WR  
C12  
RD  
-717  
C13  
D0  
-481  
C14  
D1  
-260  
C15  
D2  
-40  
C16  
D3  
180  
C17  
D4  
400  
C18  
D5  
621  
C19  
D6(SCL)  
D7(SI)  
VSS  
841  
C20  
1061  
1222  
1398  
1468  
1538  
1608  
1678  
1748  
1818  
1888  
1958  
2028  
2098  
2168  
2327  
2582  
2652  
2722  
C21  
C22  
VOUT  
C5+  
C5-  
C4+  
C4-  
C3+  
C3-  
C2+  
C23  
-36  
C24  
24  
C25  
84  
C26  
144  
C27  
204  
C28  
264  
C29  
324  
C30  
384  
C2-  
C1+  
C1-  
C31  
444  
C32  
504  
C33  
564  
VDD  
C34  
624  
VR  
C35  
684  
V5  
C36  
744  
V4  
C37  
804  
V3  
C38  
864  
NJU6679  
PAD No.  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
Terminal  
C39  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
C50  
C51  
C52  
C53  
C54  
C55  
C56  
C57  
C58  
C59  
C60  
C61  
C62  
C63  
S0  
X= um  
4995  
4995  
4995  
4995  
4995  
4995  
4995  
5010  
4950  
4890  
4830  
4770  
4710  
4650  
4590  
4530  
4470  
4410  
4350  
4290  
4230  
4170  
4110  
4050  
3990  
3930  
3870  
3810  
3750  
3690  
3630  
3570  
3510  
3450  
3390  
3330  
3270  
3210  
3150  
3090  
3030  
2970  
2910  
2850  
2790  
2730  
2670  
2610  
2550  
2490  
Y= um  
924  
PAD No.  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Terminal  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
S57  
S58  
S59  
S60  
S61  
S62  
S63  
S64  
S65  
S66  
S67  
S68  
S69  
S70  
S71  
S72  
S73  
S74  
X= um  
Y= um  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
2430  
2370  
2310  
2250  
2190  
2130  
2070  
2010  
1950  
1890  
1830  
1770  
1710  
1650  
1590  
1530  
1470  
1410  
1350  
1290  
1230  
1170  
1110  
1050  
990  
984  
1044  
1104  
1164  
1224  
1284  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
930  
S1  
870  
S2  
810  
S3  
750  
S4  
690  
S5  
630  
S6  
570  
S7  
510  
S8  
450  
S9  
390  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
330  
270  
210  
150  
90  
30  
-30  
-90  
-150  
-210  
-270  
-330  
-390  
-450  
-510  
NJU6679  
PAD No.  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
Terminal  
S75  
X= um  
-570  
Y= um  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
PAD No.  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
Terminal  
S125  
S126  
S127  
S128  
S129  
S130  
S131  
C127  
C126  
C125  
C124  
C123  
C122  
C121  
C120  
C119  
C118  
C117  
C116  
C115  
C114  
C113  
C112  
C111  
C110  
C109  
C108  
C107  
C106  
C105  
C104  
C103  
C102  
C101  
C100  
C99  
X= um  
Y= um  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1405  
1284  
1224  
1164  
1104  
1044  
984  
-3570  
-3630  
-3690  
-3750  
-3810  
-3870  
-3930  
-3990  
-4050  
-4110  
-4170  
-4230  
-4290  
-4350  
-4410  
-4470  
-4530  
-4590  
-4650  
-4710  
-4770  
-4830  
-4890  
-4950  
-5010  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
S76  
-630  
S77  
-690  
S78  
-750  
S79  
-810  
S80  
-870  
S81  
-930  
S82  
-990  
S83  
-1050  
-1110  
-1170  
-1230  
-1290  
-1350  
-1410  
-1470  
-1530  
-1590  
-1650  
-1710  
-1770  
-1830  
-1890  
-1950  
-2010  
-2070  
-2130  
-2190  
-2250  
-2310  
-2370  
-2430  
-2490  
-2550  
-2610  
-2670  
-2730  
-2790  
-2850  
-2910  
-2970  
-3030  
-3090  
-3150  
-3210  
-3270  
-3330  
-3390  
-3450  
-3510  
S84  
S85  
S86  
S87  
S88  
S89  
S90  
S91  
S92  
S93  
S94  
S95  
S96  
S97  
S98  
S99  
S100  
S101  
S102  
S103  
S104  
S105  
S106  
S107  
S108  
S109  
S110  
S111  
S112  
S113  
S114  
S115  
S116  
S117  
S118  
S119  
S120  
S121  
S122  
S123  
S124  
924  
864  
804  
744  
684  
C98  
624  
C97  
564  
C96  
504  
C95  
444  
C94  
384  
C93  
324  
C92  
264  
C91  
204  
C90  
144  
C89  
84  
C88  
24  
C87  
-36  
C86  
-96  
C85  
-156  
NJU6679  
PAD No.  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
Terminal  
C84  
C83  
C82  
C81  
C80  
C79  
C78  
C77  
C76  
C75  
C74  
C73  
C72  
C71  
C70  
C69  
C68  
C67  
C66  
C65  
C64  
X= um  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
-4995  
Y= um  
-216  
-276  
-336  
-396  
-456  
-516  
-576  
-636  
-696  
-756  
-816  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
-876  
-936  
-996  
-1056  
-1116  
-1176  
-1236  
-1296  
-1356  
-1416  
NJU6679  
BLOCK DIAGRAM  
C
0
C
63  
S
0
S
131  
C
127  
C64  
VSS  
VDD  
to V  
5
C O M  
S E G  
D r i v e r  
C O M  
V
1
5
D r i v e r  
D r i v e r  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
S h i f t  
S h i f t  
Voltage  
R e g i s t e r  
R e g i s t e r  
COM SEG  
Timing  
Generator  
Generator  
D i s p l a y D a t a L a t c h  
VR  
T1,T2  
Display Data RAM  
192 x 132  
Culumn Address Decoder  
Culumn Address Counter  
Display  
Timing  
Generator  
Culumn Address Register  
M u l t i p l e x e r  
OSC1  
OSC2  
OSC.  
Instruction Decoder  
B F  
B u s H o l d e r  
S t a t u s  
I n t e r n a l B u s  
M P U I n t e r f a c e  
R e s e t  
RES  
SEL68  
RD  
D0 to D7 (SI,SCL)  
CS  
WR  
A0  
P/S  
NJU6679  
TERMINAL DESCRIPTION  
No.  
Symbol I/O  
F u n c t i o n  
DUMMY0  
to  
1 to 12,  
54 to 61  
Dummy Terminals.  
These are open terminals electrically.  
DUMMY19  
Power  
VDD  
13,46,53  
17,34  
Power Supply Terminal (+2.4V - +3.6V)  
VSS  
GND Ground Terminal (0V)  
Power  
52  
51  
50  
49  
48  
V1  
V2  
V3  
V4  
V5  
LCD Driving Voltage Supplying Terminals. In case of the external power supply  
operation without internal power supply operation, each level of LCD driving  
voltage is supplied from outside fitting with following relation.  
VDD>V1>V2>V3>V4>V5>VOUT  
In case of the internal power supply, LCD driving voltages V1-V4 depending on  
the Bias selection are supplied as shown in follows;  
Bias  
V1  
V2  
V3  
V4  
V
5+3/4VLCD  
V5+2/4VLCD  
V5+3/5VLCD  
V5+4/6VLCD  
V5+5/7VLCD  
V5+6/8VLCD  
V5+7/9VLCD  
V5+2/4VLCD  
V5+2/5VLCD  
V5+2/6VLCD  
V5+2/7VLCD  
V5+2/8VLCD  
V5+2/9VLCD  
V5+1/4VLCD  
V5+1/5VLCD  
V5+1/6VLCD  
V5+1/7VLCD  
V5+1/8VLCD  
V5+1/9VLCD  
1/4Bias  
1/5Bias  
1/6Bias  
1/7Bias  
1/8Bias  
1/9Bias  
1/10Bias  
1/11Bias  
V5+4/5VLCD  
V5+5/6VLCD  
V5+6/7VLCD  
V5+7/8VLCD  
V5+8/9VLCD  
V5+9/10VLCD  
V5+8/10VLCD V5+2/10VLCD V5+1/10VLCD  
V5+10/11VLCD V5+9/11VLCD V5+2/11VLCD V5+1/11VLCD  
V5+11/12VLCD V5+10/12VLCD V5+2/12VLCD V5+1/12VLCD  
1/12Bias  
(VLCD=VDD-V5)  
44,45  
42,43  
40,41  
38,39  
36,37  
C1+,C1-  
C2+,C2-  
C3+,C3-  
C4+,C4-  
C5+,C5-  
O
Capacitor connecting terminals for Internal Voltage Booster.Boosting time is  
programmed by instruction (2 to 6 times )  
35  
VOUT  
O
I
Boosted voltage output terminal. Connects the capacitor between VOUT  
terminal and VSS.  
47  
VR  
VLCD voltage adjustment terminal. The gain of VLCD setup circuit for V5 level is  
adjusted by external resistors.  
19  
18  
T1  
T2  
I
LCD bias voltage control terminals.  
Voltage  
T1  
T2  
Voltage Adj.  
V/F Cir.  
booster Cir.  
Available  
L
H
H
L/H  
L
Available  
Available  
Not Avail.  
Available  
Available  
Available  
Not Avail.  
Not Avail.  
H
26 to 33  
D0 to  
D7  
I/O Data Input/Output terminals.  
In Pararel Interface Mode (P/S="H")  
I/O terminals of 8-bit bus.  
(SI)  
(SCL)  
In Serial Interface Mode (P/S="L")  
D7: Input terminal of serial data ( SI ).  
D6: Input terminal of serial data clock ( SCL ).  
D0 to D5 terminals are Hi-impedance.  
When CS="H", D0 to D7 terminals are Hi-impedance.  
23  
A0  
I
Data discremination signal input terminal. The signal from MPU discreminates  
transmoitted data between Display data and Instruction.  
A0  
H
L
Distin. Display Data Instruction  
16  
22  
RES  
CS  
I
I
Reset terminal.  
Reset operation is executing during "L" state of RES.  
Chip select signal input terminal.  
Data Input/Output are available during CS ="L".  
NJU6679  
No  
Symbol I/O  
F u n c t i o n  
25  
24  
RD(E)  
I
RD(80 type) or E(68 type) signal input terminal.  
<In 80 type MPU mode >( SEL68="L" )  
RD signal from 80 type MPU input terminal. Active "L".  
D0 to D7 terminals are output during "L" level.  
<In 68 type MPU mode >( SEL68="H" )  
Enable signal from 68 type MPU input terminal. Active "H".  
WR(RW)  
I
WR(80 type) or R/W(68 type) signal input terminal  
<In 80 type MPU mode >( SEL68="L" )  
WR signal from 80 type MPU input terminal. Active "L".  
The data transmitted during WR="L" are fetched at the rising edge of WR.  
<In 68 type MPU mode > ( SEL68="H" )  
R/W signal from 68 type MPU input terminal.  
R/W  
H
L
State  
Read  
Write  
15  
14  
SEL68  
P/S  
I
I
MPU interface type selection terminal. This terminal must connect to V DD or  
VSS.  
SEL68  
State  
H
L
68 Type  
80 Type  
Parallel or Serial interface selection signal input terminal.  
Data/Command  
Chip Select  
CS  
Read/Write serial Clock  
P/S  
"H"  
"L"  
Data  
D0 to D7 RD,WR  
SI(D7)  
A
-
CS  
A0  
-
SCL(D6)  
In case of serial interface( P/S="L")  
RAM data and status read operation do not work in mode of the serial  
interface. RD and WR terminals must fix to "H" or "L". D0 to D5 terminals are  
Hi-impedance.  
20  
21  
I
External clock input terminal. In Internal oscillation operation, OSC1 and OSC2  
terminals should be Open.In External clock operation, the external clock input to  
OSC1 terminal.  
OSC1  
OSC2  
62 to 125  
C0 to  
C63  
O
LCD driving signal output terminals.  
Common output terminals:C 0 to C127  
Segment output terminals:S 0 to S131  
Common output terminal  
Following output voltage is selected by the combination of alternating (FR)  
signal and Common scanning data.  
Scan data  
H
FR  
H
L
Output Voltage  
V5  
VDD  
V1  
126 to 257 S0  
O
O
toS131  
H
L
L
V4  
Segment output terminal  
Following output voltage is selected by the combination of alternating (FR)  
signal and display data in the DD RAM.  
321 to 258 C64 to  
C127  
Output Voltage  
RAM  
Data  
FR  
Normal  
Reverse  
V2  
H
L
VDD  
V5  
H
L
V3  
H
L
V2  
VDD  
V5  
V3  
NJU6679  
Functional Description  
(1) Description for each blocks  
(1-1) Busy Flag (BF)  
The Busy Flag (BF) is set to logical ”1” in busy of internal execution by an instruction, and any instruction  
excepting for the “Status Read” is disable at this time. Busy Flag is outputted through D7 terminal by “Status  
Read” instruction. Although another instructions should be inputted after check of Busy Flag, no need to check  
Busy flag if the system cycle time (tCYC) as shown in AC Characteristics is secured completely.  
(1-2)Display Start Line Register  
The Display Start Line Register is a register to set a display data RAM address corresponding to the COM0  
display line (the top line normally) for the vertical scroll on the LCD, Page address change and so forth. The  
Display Start Line Address set instruction sets the 8-bit display start address into this register.  
(1-3) Line Counter  
Line Counter is reset when the internal FR signal is switched and outputs the line address of the display data  
RAM by count up operation synchronizing with common cycle of NJU6679.  
(1-4) Column Address Counter  
Column Address Counter is the 8-bit preset-able counter to point the column address of the display data RAM  
(DD RAM) as shown in Figure 1. The counter is incremented automatically after the display data read/write  
instructions execution. When the Column address counter reaches to the maximum existing address by the  
increment operations, the count up operation (increment) is frozen. However, when new address is set to the  
column address counter again, it restarts the count up operation from a set address. The operation of Column  
Address Counter is independent against Page Address Register.  
By the address inverse instruction (ADC select) as shown in Figure 1, Column Address Decoder reverses the  
correspondence between Column address and Segment output of display data RAM.  
(1-5) Page address Register  
Page Address Register assigns the page address of the display data RAM as shown in Figure 1. In case of  
accessing from the MPU with changing the page address, Page Address Set instruction is required.  
(1-6) Display Data RAM  
The Display data RAM (DD RAM) is the bit map RAM consisting of 25,344 bits to store the display data corre-  
sponding to the LCD pixel on LCD panel.  
The DD RAM data and the state of the LCD:  
In Normal Display : “1”=Turn-On Display, 0” =Turn-Off Display  
In Reveres Display : “1”=Turn-Off Display, 0” =Turn-On Display  
DD RAM output 132 bits parallel data addressed by line address counter then the data latched in the display data  
latch. Asynchronous data access to the DD RAM is available due to the access to the DD RAM from the CPU  
and latch to the display data latch operation are done independently.  
(1-7) Common Driver Assignment  
This circuit determines the scanning direction of the common output.  
Table 1  
C O M O utputs Terminals  
62  
125  
258  
321  
P A D N o .  
P in na m e  
Ver.A  
C 0  
C 63  
C O M 63  
C O M 64  
C 127  
C 64  
C O M 64  
C O M 63  
C O M 0  
C O M 127  
C O M 127  
C O M 0  
Ver.B  
The Mask fixes the common scanning direction between version A and B that can not be changed by the instruction.  
NJU6679  
F o r example the  
Line  
P a g e A d d ress  
D A TA  
D ispla y P a tte rn  
D ispla y start line  
Address  
is 10H  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
0 0  
0 1  
0 2  
0 3  
0 4  
0 5  
0 6  
0 7  
0 8  
0 9  
0 A  
0 B  
0C  
0D  
0 E  
D 4 ,D 3 ,D 2 ,D 1 ,D 0  
(0,0,0,0,0)  
P e g e 0  
D 4 ,D 3 ,D 2 ,D 1 ,D 0  
(0,0,0,0,1)  
P e g e 1  
0 F  
1 0  
11  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
C n Out  
C 0  
C 1  
C 2  
D 4 ,D 3 ,D 2 ,D 1 ,D 0  
(0,0,0,1,0)  
C 3  
P e g e 2  
C 4  
C 5  
C 6  
C 7  
C 8  
C 9  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
8 6  
8 7  
8 8  
8 9  
8 A  
8 B  
8C  
8D  
8 E  
8 F  
9 0  
9 1  
9 2  
9 3  
9 4  
9 5  
9 6  
9 7  
9 8  
9 9  
C 118  
C 119  
C 1 2 0  
C 1 2 1  
C 1 2 2  
C 1 2 3  
C 1 2 4  
C 1 2 5  
C 1 2 6  
C 1 2 7  
D 4 ,D 3 ,D 2 ,D 1 ,D 0  
(1,0,0,0,1)  
P e g e 1 7  
D 4 ,D 3 ,D 2 ,D 1 ,D 0  
(1,0,0,1,0)  
P e g e 1 8  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
B 6  
B 7  
B 8  
B 9  
B A  
B B  
B C  
B D  
B E  
B F  
D 4 ,D 3 ,D 2 ,D 1 ,D 0  
(1,0,1,1,1)  
P e g e 2 3  
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 0  
0 1 0 2 0 3 0 4 0 5  
0 6  
0 7 0 8 0 9  
7 A 7 B 7 C 7 D 7 E 7 F 8 0  
8 1 8 2 8 3  
D 0="0"  
D 0="1"  
A
D
C
C o lum n  
A d d ress  
8 3 8 2  
8 1 8 0 7 F 7 E 7 D 7 C 7 B 7 A  
0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0  
S e g m e nt  
Output  
1 2 2  
1 2 3  
1 2 4  
1 2 5  
1 2 6  
1 2 7  
1 2 8  
1 2 9  
1 3 0  
1 3 1  
0
1
2
3
4
5
6
7
8
9
Fig.1 Correspondence with Display Data RAM Address  
NJU6679  
(1-8) Reset Circuit  
When the input signal to RES terminal goes to “L”, the reset circuit executes initialization as below;  
The Initialization state (default)  
1
2
Display Off  
Normal Display (not inverse)  
3
4
ADC Select : Normal (ADC Instruction D0 =”0”)  
Read Modify Write Mode Off  
5
6
Voltage Booster off, Voltage Regulator off, Voltage follower off  
Static Drive Off  
7
Driver Output Off  
8
9
Clear the data of serial interface register  
Set the Column Address Counter to 00H  
Set the Display Start Line Register to 00H  
Set the Page Address Register to page “0”  
Set the EVR register to FFH  
Set the Partial Display(1/128 duty)  
Set the Bias select(1/12 Bias)  
Set the Voltage Booster(6 times)  
Set the n-line inverse register to 0H  
10  
11  
12  
13  
14  
15  
16  
The RES terminal connects to the reset terminal of the MPU synchronization with the MPU initialization as shown  
in “ the MPU interface “ in the Application Circuit section. The “L” level input signal as reset signal must keep the  
period over than 10us as shown in DC Characteristics. The NJU6679 takes 1us for the reset operation after the  
rising edge of the RES signal.  
The reset operation by RES =”L” initializes each resister setting as above reset status, but the internal oscillation  
circuit and output terminals (D0 to D7) are not affected.  
To avoid the lock-up, the reset operation by the RES terminal must be required every time when power terns on.  
The reset operation by the reset instruction, function 9 to 16 operations mentioned above is performed.  
The RES terminal must be keep “L” level when the power terns on in not use of the built-in LCD power supply circuit  
for no affect to the internal execution.  
(1-9) LCD Driving Circuit  
(a) LCD Driving Circuits  
LCD driver is 260 sets of multiplexer consisting of 132 segments and 128 commons drivers to output LCD driving  
voltage. The common driver outputs the common scan signals formed with the shift register. The segment driver  
outputs the segment driving signal determined by a combination of display data in the DD RAM, common timing, FR  
signal, and alternating signal for LCD. The output wave forms of segment/common are shown in LCD DRIVING  
WAVEFORM.  
(b) Display Data Latch Circuits  
Display Data Latch Circuit latches the 132-bit display data outputted from the DD RAM addressed by the Line  
address counter to LCD driver at every common signal cycle temporarily. The original data in the DD RAM is not  
changed because of the Normal/Reverse display, Display On/Off, Static drive On/Off instruction processes only  
stored data in this Display Data Latch Circuit.  
(c) Signal forming to Line Counter and Display Data Latch Circuit  
The count clock to Line Counter and the latch clock to Display Data Latch Circuit are formed using the internal  
display clock (CL). The display data of 132 bits from Display Data RAM pointed by the line address synchroniz-  
ing with the internal display clock are latched into the Display Data Latch Circuit and are outputted to LCD  
driving circuits.  
The display data read out operation from DD RAM to the LCD Driver Circuit is completely independent operation with  
an access to the display data RAM from MPU.  
(d) Display Timing Generation Circuit  
The display timing generation circuit generates the internal timing of the display system by the master clock and the  
internal FR signal. As for it, the internal FR signal and the LCD alternating signal generate the wave form of 2-frame  
alternating drive wave form or the n-line inverse drive method for the LCD Driving circuit.  
NJU6679  
(e)Common Timing Generator  
The Common Timing Generator generates the common timing signal from the display clock (CL ).  
-2-frame alternating drive mode  
127 128 1  
2
3
4
5
6
7
8
125 126 127 128 1  
2
3
4
5
CL  
FR  
V
DD  
V
1
C0  
C1  
V
4
V
5
V
DD  
V1  
V
4
V
5
RAM DATA  
Sn  
V
V
2
DD  
V
3
V
5
Fig.2  
-n-line inverse drive mode (n=7, line inverting register sets to 6)  
127 128 1  
2
3
4
5
6
7
8
125 126 127 128 1  
2
3
4
5
CL  
FR  
V
DD  
V
1
C0  
C1  
V
4
V
5
V
DD  
V
1
V
4
V
5
RAM DATA  
Sn  
V
V
2
DD  
V
3
V
5
Fig.3  
NJU6679  
(f) Oscillation Circuit  
The Oscillation Circuit is a low power type CR oscillator using an internal resistor and capacitor. The oscillator  
output is using for the display timing clock and for the voltage booster circuit. And the display clock(CL) is generated  
from this oscillator output frequency by dividing.  
-The relation between duty and divide  
Table 2  
Duty  
1/8  
1/16 1/24 1/32 1/40 1/48 1/56 1/64 1/72 1/80,88 1/96,104 1/112,120,128  
1/9 1/8 1/7 1/6 1/5 1/4  
Divide  
1/64 1/32 1/21 1/16 1/12 1/10  
(g) Power Supply Circuit  
The internal power supply circuit generates the voltage for driving LCD. It consists of voltage booster circuits (from 2  
times to 6 times), voltage regulator circuits, and voltage followers.  
The operation of internal Power Supply Circuits is controlled by the Internal Power Supply On/Off Instruction.  
When the Internal Power Supply Off Instruction is executed, all of the voltage booster circuits, regulator circuits,  
voltage follower circuits are turned off. In this time, the bias voltage of V1, V2, V3, V4,V5 and VOUT for the LCD  
should be supplied from outside, terminals C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, and VR should be  
open. The status of internal power supply is selected by T1 and T2 terminal. Furthermore the external power  
supply operates with some of internal power supply function.  
Table 3  
Voltage  
Booster  
C1+,C1- to  
C5+,C5-  
T1  
T2  
Voltage Adj.  
Buffer(V/F) Ext.Pow Supply  
VR Term.  
L
L/H  
L
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
-
H
H
VOUT  
Open  
Open  
H
OFF  
V5,VOUT  
Open  
When (T1, T2)=(H, L), C1+, C1-, C2+, C2-,C3+, C3-, C4+, C4-, C5+, C5- terminals for voltage booster circuits are  
open because the voltage booster circuits doesn't operate. Therefore LCD driving voltage to the VOUT terminal  
should be supplied from outside.  
When (T1, T2)=(H, H), terminals for voltage booster circuits and VR are open, because the voltage booster circuits  
and Voltage adjust circuits do not operate.  
The internal power supply Circuits is designed specially for a small-size LCD like as normal cellular phone size  
LCD panel. When NJU6679 apply to the large size LCD panel application (large capacitive load), external power  
supply is required to keep good display condition..  
To keep good display condition, external component of the capacitors connecting to the V1 to V5 terminals and  
voltage booster circuits and the feedback resistors for the V5 operational amplifier must fix each optimized con-  
stant after checking various display patterns on LCD panel actually in the application.  
NJU6679  
Power Supply applications  
(1) Internal Power Supply Example.  
All of the Internal Booster, Voltage Regulator,  
Voltage Follower using.  
(2) Only VOUT Supply from outside Example.  
Internal Voltage Regulator, Voltage Follower using  
Internal power supply ON (Instruction) (T1,T2) = (H,L)  
Internal power supply ON (instruction) (T1,T2)=(L,L)  
VDD  
VDD  
T1  
T2  
T1  
T2  
+
+
+
+
+
+
+
+
+
+
+
V
1
V1  
V2  
V3  
C1+  
V
2
C1-  
C2+  
V
3
C2-  
V4  
C
3+  
3-  
4+  
V4  
C
C
V5  
V5  
C4-  
C5+  
VOUT  
VOUT  
C5-  
VSS  
V
VSS  
V
DD  
VR  
V
5
DD  
VR  
V5  
(3) VOUT and V5 supply from outside Example.  
Internal Voltage Follower using.  
(4) External Power Supply Example  
All of V1 to V5 and VOUT supply from outside  
Internal power supply (Instruction) (T1,T2) =(H,H)  
Internal power supply (Instruction) (T1,T2) =(H,H)  
V
DD  
V
DD  
T1  
T2  
T1  
T2  
+
+
+
+
V1  
V1  
V
V
2
2
V
3
V
3
V4  
V4  
V5  
V5  
VOUT  
VOUT  
VSS  
VSS  
: These switches should be open during the power save mode.  
NJU6679  
(2) Instruction  
The NJU6679 distinguishes the data on the data bus D0 to D7 as an instruction by combination of A0, RD, and WR(R/W)  
signals. The decoding of the instruction and exection performes with only high speed internal timing without relation to  
the external clock. Therefore, no busy flag check required normally. In case of the serial interface, the data input as  
MSB(D7) first serially. Table.4 shows the instruction codes of the NJU6679.  
(*:Don't Care)  
Table 4. Instruction Code  
C o d e  
In s truc tio n  
D e s c rip tio n  
A 0 R D W R D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0  
0 /1  
(a )  
(b )  
D i s p la y O N /O F F  
0
1
0
1
0
1
0
1
1
1
L C D D i s p la y O N /O F F  
0 :O F F 1 :O N  
D i s p la y S ta rt L ine S e t  
H ig h O r d e r 4 b i t s  
0
1
0
0
1
0
1
H ig h O r d e r  
A d d re s s  
D e te rm ine the D isp la y L i n e o f  
R A M to the C O M 0 .  
(S e t th e H ig h e r o rd e r 4 b its )  
D i s p la y S ta rt L ine S e t  
L o w e r O rd e r 4 b its  
0
0
0
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
L o w e r O rd e r  
A d d re s s  
D e te rm ine the D isp la y L i n e o f  
R A M to the C O M 0 .  
(S e t th e L o w e r o rd e r 4 b its )  
H i.  
(c)  
(d )  
P a g e A d d re s s S e t  
H ig h O r d e r 1 b i t s  
*
*
*
S e t th e H ig h e r o rd e r 1 b it p a g e  
o f D D R A M to the P a g e  
A d d re s s R e g iste r  
P a g e A d d re s s S e t  
L o w e r O rd e r 4 b its  
L o w e r O rd e r  
P a g e A d d re s s o f D D R A M to the P a g e  
S e t th e L o w e r o rd e r 4 b it p a g e  
A d d re s s R e g iste r  
C o lum n A d d re s s S e t  
H ig h O r d e r 4 b i t s  
0
0
0
1
1
0
1
1
0
1
0
1
0
0
1
0
1
0
0
0
0
0
0
0
1
0
H ig h O r d e r  
C o lum n A d d .  
S e t th e H ig h e r o rd e r 4 b its  
C o lum n A d d re s s to the R e g .  
C o lum n A d d re s s S e t  
L o w e r O rd e r 4 b its  
L o w e r O rd e r  
C o lum n A d d .  
S e t th e L o w e r o rd e r 4 b its  
C o lum n A d d re s s to the R e g .  
(e )  
(f)  
S ta tus R e a d  
S ta tus  
0
0
0
0
R e a d o ut the inte rna l S ta tus  
W rite D i s p la y D a ta  
R e a d D i s p la y D a ta  
W rite D a ta  
R e a d D a ta  
W rite the d a ta into the D isp la y  
D a ta R A M  
(g )  
(h)  
R e a d the d a ta fro m the D isp la y  
D a ta R A M  
0 /1  
N o rm a l o r Inve rs e  
O N /O F F S e t  
1
0
1
0
0
1
1
Inve r s e t h e O N a n d O F F  
D i s p la y  
0 :N o rm a l 1 :Inve rse  
0 /1  
0
(i)  
(j)  
S ta tic D rive O N  
/N o rm a l D i s p la y  
0
0
1
1
0
0
1
0
0
1
1
1
0
1
0
0
1
0
0
0
W h o le D i s p la y Turns O N  
0 :N o rm a l 1 :W h o le D isp . O N  
S u b i n s truc tio n ta b le  
m o d e  
S e t th e S ub instruc tio n ta b le .  
(k)P a rtia l D isp la y  
1 s t B lo c k , S e t  
0
0
1
1
0
0
0
0
0
0
0
1
0
S ta rt d i s p la y  
unit  
S e t th e S ta rt d i s p lay unit of 1st  
B lo c k .  
S ta rt d i s p lay unit  
1 s t B lo c k ,  
S e t The n u m b e r o f  
d isp la y units  
num b e r o f d i s p la y  
units  
S e t the num b e r o f d i s p lay units  
o f 1 s t B lo c k .  
2 n d B lo c k , S e t  
0
0
1
1
0
0
1
1
1
1
0
1
0
S ta rt d i s p la y  
unit  
S e t th e S ta rt d i s p lay unit of 2nd  
B lo c k .  
S ta rt d i s p lay unit  
2 n d B lo c k ,  
S e t The n u m b e r o f  
d isp la y units  
num b e r o f d i s p la y  
units  
S e t the num b e r o f d i s p lay units  
o f 2 n d B lo c k .  
P a rtia l d i s p la y o n  
0
1
0
0
1
0
0
0
0
0
0
It c o m e s o ff the m o d e to s e t  
a n d a d i s p la y is e xe c ute d .  
Sub  
Inst.  
(l)n-line Inve rse D rive S e t  
R e g iste r S e t  
H ig h e r o rd e r 2 b its  
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
0
1
*
*
hig h e r S e t the num b e r o f inve rse d rive  
o rd e r  
line .  
R e g iste r S e t  
L o w e r o rd e r 4 b its  
L o w e r o rd e r  
S e t the num b e r o f inve rse d rive  
line .  
n-lin e Inve r s e D rive  
S e t is e xe c ute d .  
0
0
0
0
T h e e xe c uti o n o f the line inve rse  
d rive .  
(m )E V R R e g iste r S e t  
E V R R e g iste r S e t  
H ig h e r o rd e r 4 b its  
0
0
1
1
0
0
1
1
0
0
0
0
0
1
E V R D a ta  
H ig h e r o rd e r  
S e t th e V 5 o u tp u t le v e l to the  
E V R re g iste r. (H i g h e r o r d e r 4  
b its )  
E V R R e g iste r S e t  
L o w e r o rd e r 4 b its  
E V R D a ta  
L o w e r o rd e r  
S e t th e V 5 o u tp u t le v e l to the  
E V R re g iste r. (L o w e r o rd e r 4  
b its )  
E V R R e g iste r S e t  
is e xe c ute d .  
0
0
1
1
0
0
1
0
0
1
1
1
0
1
0
0
0
0
0
0
0
1
T h e e xe c uti o n o f the E V R .  
(n)  
E n d o f s u b i n s truc tio n  
ta b le m o d e  
It e n d s the s e tting o f sub  
instruc tio n ta b le .  
NJU6679  
(*:Don't Care)  
C o d e  
Instruc tio n  
D e s c rip ti o n  
A 0 R D W R D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0  
(o )  
(p )  
(q )  
(r)  
B i a s S e le c t  
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
0
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
B i a s  
S e le c t th e b i a s  
(9 P a tte rns)  
B o o s t L e vel S e le c t  
B o o s t  
0
0
0
0
0
S e t th e B o o s te r circuits  
M ultiple  
0
0 /1  
R e a d M o d ify W rite  
/E nd  
0
0
0
0
R e a d M o d ify W rite m o d e  
D 0 = 0 :O n D 0 = 1 :E nd  
R e s e t  
1
0
1
0
Initia lize the inte rna l C ircuits  
0 /1  
(s)  
(t)  
Inte rna l P o w e r S u p p ly  
O N /O F F  
0 :Int. P o w e r S u p p ly O F F  
1 :Int. P o w e r S u p p ly O N  
0 /1 D 0 = 0 : L C D D rive r Outouts OFF  
D 0 = 1 : L C D D rive r Outputs ON  
D rive r O utputs  
O N /O F F  
(u)  
P o w e r S a ve  
(C o m p le x C o m m a n d )  
S e t th e P o w e r S a ve M o d e  
(L C D D i s p la y O F F  
+ W h o le D isp lay Turns O N )  
0 /1  
(v)  
A D C S e le c t  
0
1
0
1
0
1
0
0
0
0
S e t th e D D R A M vs S e g m e nt  
D 0 = 0 :N o r m a l D 0 = 1 :Inve rse  
NJU6679  
(2-1) Explanation of Instruction Code  
(a) Display On/Off  
It executes the ON/OFF control of the whole display without relation to the DD RAM or any internal conditions.  
A 0  
0
RD  
1
W R  
0
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
1
D 2  
1
D 1  
1
D 0  
D
D 0:Display Off  
1:Display On  
(b) Display Start Line  
It sets the DD RAM line address corresponding to the COM0 terminal (normally assigned to the top display line).  
In this instruction execution, the display area is automatically set by the lines that correspond to the display duty  
ratio to the upward direction of the line address. Changing the line address by this instruction performs smooth  
scrolling to a vertical direction. In this time, the DD RAM data are unchanged.  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
0
D 4  
1
D 3  
A 7  
D 2  
A 6  
D 1  
A 5  
D 0  
A 4  
0
1
0
0
1
1
0
A3  
A2  
A1  
A0  
A7  
0
A6  
A5  
A4  
0
A3  
0
A2  
0
A1  
A0  
Line Address(HEX)  
0
0
0
0
0
0
0
1
00  
01  
0
0
0
0
:
:
:
:
1
0
1
1
1
1
1
1
BF  
(c) Page Address Set  
When MPU access to the DD RAM, a page address is set by page Address Set instruction before writing the  
data. (Note: the change of page address is not affected to the display.)  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
0
D 4  
0
D 3  
*
D 2  
*
D 1  
*
D 0  
A 4  
0
1
0
1
1
0
0
A3  
A2  
A1  
A0  
(*:Don't Care)  
A4  
A3  
A2  
0
A1  
0
A0  
0
Page  
0
0
0
0
0
1
0
0
1
:
:
:
:
1
0
1
1
1
23  
NJU6679  
(d) Column Address  
When MPU accesses to the DD RAM , the row address set by Page Address Set instruction is required with the  
column address before writing the data. The column address set requires twice address set which are higher  
order 4 bits address set and lower order 4 bits.  
When the MPU access to the DD RAM continuously, the column address increments automatically from the set  
address after each data access. Therefore, the MPU can transmit only the Data continuously without setting the  
column address at every transmission time. The increment of column address is stopped at the maximum column  
address plus 1 limited by each display mode. When the column address count up is stopped, the row address is  
not changed.  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
0
D 5  
0
D 4  
1
D 3  
A 7  
D 2  
A 6  
D 1  
A 5  
D 0  
A 4  
Higher Order  
Lower Order  
0
1
0
0
0
0
0
A3  
A2  
A1  
A0  
A7  
0
A6  
A5  
0
A4  
A3  
A2  
0
A1  
A0  
Column Address(HEX)  
0
0
0
0
0
0
:
0
0
0
1
0
1
:
0
0
0
:
:
1
0
0
0
0
0
1
1
83  
(e) Status Read  
This instruction reads out the internal status of "BUSY", “ADC", "ON/OFF" and "RESET" described as follows.  
A 0  
0
RD  
0
W R  
1
D 7  
D 6  
D 5  
D 4  
D 3  
0
D 2  
0
D 1  
0
D 0  
0
ON/OFF  
R E S E T  
BUSY  
A D C  
BUSY : BUSY=1 indicate the operating or the Reset cycle.  
All instructions can be input after the BUSY status change to "0".  
ADC  
: Indicate the output correspondence of column (segment) address and segment driver.  
0 :Counterclockwise Output (Inverse)  
1 :Clockwise Output  
(Normal)  
(Note) The data "0=Inverse" and "1=Normal" of ADC status is inverted with the ADC select  
Instruction of "1=Inverse" and "0=Normal".  
ON/OFF : Indicate the whole display On/Off status.  
0 : Whole Display "On  
1 : Whole Display "Off"  
(Note) The data "0=On" and "1=Off" of Display On/Off status is inverted with the Display On/Off  
instruction data of "1=On" and "0=Off".  
RESET : Indicate the initializing by RES terminal signal or reset instruction.  
0 : Not Reset status  
1 : In the Reset status  
NJU6679  
(f) Write Display Data  
It writes the data on the data bus into the DD RAM. column address increments automatically after data writing,  
therefore, the MPU can write the data into the DD RAM continuously without the address setting at every writing  
time once the starting address is set.  
A 0  
1
RD  
1
W R  
0
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
W R ITE DATA  
(g) Read Display Data  
This instruction reads out the 8-bit data from DD RAM addressed by the column and the page address. The  
column address automatically increments after the 8-bit data read out, therefore, the MPU can read the data from  
the DD RAM continuously without the address setting at every reading time once the starting address is set.  
Note that the dummy read is required just after setting the column address (see “(4-4) Access to the DD RAM  
and the Internal Register”).  
In the serial interface mode, the display data is unable to read out.  
A 0  
1
RD  
0
W R  
1
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
R E A D D ATA  
(h) Normal or Inverse On/Off Set  
It changes the display condition of normal or reverse for entire display area. The execution of this instruction does  
not change the display data in the DD RAM.  
A 0  
0
RD  
1
W R  
0
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
1
D 1  
1
D 0  
D
D 0 : Normal  
1 : Inverse  
RAM data "1" correspond to "On"  
RAM data "0" correspond to "On"  
(i) Static Drive  
This instruction turns all the pixels ON regardless the data stored in the DD RAM. In this time, the data in DD  
RAM are remained and unchanged. This instruction is executed prior to the "Normal or Inverse On/Off Set"  
Instruction.  
A 0  
0
RD  
1
W R  
0
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
1
D 1  
0
D 0  
D
D 0 : Normal Display  
1 : Whole Display turns On  
When the “Static Drive ON” instruction is executed at Display OFF status, the NJU6679 operates in  
Power Save Mode. (Refer “ Power Save Mode “)  
NJU6679  
(j) Sub Instruction table mode  
This instruction switches the instruction table from the main to the sub. The sub instruction table contains instruc-  
tions of partial display, n-line inverse drive set and EVR register set as mentioned in (k), (l) and (m).  
The instruction of sub instruction table mode must be executed before above 3 sub instructions execution. The  
instruction of end of sub instruction table mode (n) switches the instruction table from the sub to the main. If any  
main instructions are written in the sub instruction mode, the NJU6679 will malfunction.  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
0
-Set sub Instruction table flow is shown below:  
Sub Instruction table  
mode  
Switches to Sub instruction table mode.  
Switches to Main instruction mode.  
Set sub instructions.  
End of Sub Instruction  
table mode.  
(k) Partial Display  
It selects two active display areas on the LCD Panel partially. The display area is divided to 16 units with four  
commons each and selected two display blocks by setting Unit number and number of Unit required (not overlap,  
not over than 16 units) to display on the LCD panel. These two display blocks are assigned optionally on the LCD  
panel. Duty selects an adapted ratio number corresponding to the total number of two display blocks automati-  
cally.  
Partial Display function adjusts the LCD driving voltage, Voltage boosting times and E.V.R level by the instruction  
to generate the optimum LCD driving voltage for display quality. As result, the operating current is reduced.  
· Display Unit Structure  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
0
1
2
3
4
5
6
7
(8 commons)  
128-common  
8
9
10  
11  
12  
13  
14  
15  
(8 commons)  
132-segment  
NJU6679  
Partial display instruction  
When Partial Display functions, both of Top Unit Number of display area (the Start Unit) and the number of the  
effective continuous unit (Display Unit) from the Start Unit for the first display block and the second. Attention that  
the first display block and the second definition must not be overlap of display area and not be over than 16 units  
in total.  
In case of whole display (1/128 duty), the first display block defines Start Unit=0 (0,0,0,0) and Display Unit = 16  
(1,0,0,0,0) for all of display area selection. In this time, the definition of the second display block is ignored.  
In case of only the first block display, the second display block defines Start Unit=0 (0,0,0,0) and Display Unit = 0  
(0,0,0,0,0) for no display area.  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
0
D 5  
0
D 4  
0
D 3  
D
D 2  
D
D 1  
D
D 0  
D
Start unit  
1st Block  
2nd Block  
The display unit  
number  
0
0
0
1
1
1
0
0
0
0
1
1
0
1
1
1
0
1
D
0
D
D
D
D
D
D
D
D
D
D
D
D
Start unit  
The display unit  
number  
D
By input following instruction, the duty ratio is changed automatically and executes  
the partial display function.  
Partial display  
on  
0
1
0
0
1
0
0
0
0
0
0
D :unit number (Hex.)  
Notes)  
Attention followings due to prevent from mulfunction  
· The input order of Partial Display instructions must follow above.  
· Prohibits the overlap of the 1st partial display block and the 2nd.  
· The Start Unit of the 1st partial display block must not be over 15.  
· The total Display Unit Number (the sum of the 1st and 2nd partial display block Unit Num  
ber) must not be over 16.  
· On the LCD panel, no active display area inserts between the 1st display block and the 2nd .  
However, the display data of the 1st display block and the 2nd must store continuously in  
the display data RAM.  
NJU6679  
Example of the Partial Display setting.  
UNIT 0  
1st Block  
UNIT 1  
UNIT 2  
UNIT 3  
UNIT 4  
UNIT 5  
UNIT 6  
UNIT 7  
UNIT 8  
UNIT 9  
UNIT 10  
UNIT 11  
UNIT 12  
UNIT 13  
UNIT 14  
UNIT 15  
2nd Block  
active display-block  
The above partial display condition is set as follows:  
1)Set sub instruction mode  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
D 0  
0
Set sub instruction  
mode.  
0
2)Set partial display conditions  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
0
D 5  
0
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
0
1st Block, Set start unit  
to ”0”  
1st Block, Set the display  
unit number to ”2”  
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
0
2nd Block, Set start unit  
to ”4”  
2nd Block, Set the display  
units number to ”5”  
Execute Partial display.  
The Duty is changed to 1/56 automatically.  
3)End sub instruction mode  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
1
End sub instruction  
mode. Back to main  
instruction mode.  
Duty is changed automatically when Partial Display execution. But LCD Driving Voltage, Bias, Driving form like as  
2-frame alternating driving or n-line inverse are not changed. Therefore, Display Off should operate before Partial  
Display execution for prevention of unexpected display, and Voltage Booster Select instruction, E.V.R Register  
Set, Bias Select and n-line Inverse Driving Set should set optimum conditions for good display in the mean time of  
Partial Display instruction execution. The optimum conditions should fix refering the result of actual display  
eveluation.  
NJU6679  
-Set Partial Display flow is shown below:  
Inte rna l P o w e r S up p ly O F F  
S u b In s tru c tio n Ta b le M o d e  
S e t a S ta rt U n i t o f t h e f i r s t d i s p l a y u n i t  
S e t a n u m b e r o f D i s p la y Unit of the first  
S e t a S ta rt U n i t o f t h e s e c o n d d i s p la y unit  
S e t a n u m b e r o f D i s p la y U n i t o f t h e s e c o n d  
E xe c ute s P a rtia l D i s p la y func tio n  
n-lin e Inve rs e D rive S e t  
E V R R e g i s te r S e t  
E n d S u b In s tru c tio n Ta b le  
M o d e  
B i a s S e le c t  
V o lta g e B o o s te r Tim e s S e le c t  
W a it Tim e  
Inte rna l P o w e r S up p ly O N  
(l) n-line Inverse Drive Mode  
n-Line Inverse Register Set (refer +Functional Description Fig.3 n-line Inverse alternative drive mode)  
It sets a line number to inverse the polarity of common driver and segment.  
The instructions must be input in order of followings. These instructions are sub instruction sets and must be set  
after (j)Sub instruction table mode.  
1)Set sub instruction mode  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
0
Set sub instruction  
mode.  
2)Set n-line Inverse number  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
0
D 4  
1
D 3  
*
D 2  
*
D 1  
A 5  
D 0  
A 4  
Higher order  
Low order  
0
1
0
0
1
1
0
A3  
A2  
A1  
A0  
A5  
0
0
A4  
0
0
A3  
0
A2  
0
A1  
0
A0  
0
Inverse line  
(*:2-frame alternating  
drive mode.)  
-(*)  
2
0
0
0
1
:
:
1
1
1
1
1
1
64  
3)Execute the n-line Inverse  
A 0  
0
RD  
1
W R  
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
0
0
4)End sub instruction mode  
A 0  
RD  
W R  
0
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
1
End sub instruction  
mode. Back to main  
instruction mode.  
0
1
NJU6679  
(m) EVR Register Set  
It controls the voltage regulator circuit of the internal LCD power supply to adjust the LCD display contrast by  
changing the LCD driving voltage “V5”. By data setting into the EVR register, the LCD driving voltage “V5” selects  
out of 201 steps of regulated voltage. The voltage adjustable range of “V5” is fixed by the external resistors. For  
details, refer the section “(3-2) Voltage Adjust Circuits”.  
1)Set sub instruction mode  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
0
Set sub instruction  
mode.  
2)Set EVR Register  
A 0  
0
RD  
1
W R  
0
D 7  
1
D 6  
0
D 5  
0
D 4  
0
D 3  
A 7  
D 2  
A 6  
D 1  
A 5  
D 0  
A 4  
0
1
0
1
0
0
1
A3  
A2  
A1  
A0  
A7  
0
A6  
0
A5  
1
A4  
1
A3  
0
A2  
1
A1  
1
A0  
VLCD  
1
Low  
:
:
:
:
1
1
1
1
1
1
1
1
High  
VLCD=VDD-V5  
When EVR doesn't use, set the EVR register to (1,1,1,1,1,1,1,1).  
3)Execute the EVR  
A 0  
RD  
1
W R  
0
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
0
0
4)End sub instruction mode  
A 0  
RD  
W R  
0
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
1
End sub instruction  
mode. Back to main  
instruction mode.  
0
1
(n) End of Sub instruction table mode  
"End of sub instruction table mode" instruction switches instruction table from sub to main.  
(k)Partial display, (l)n-line inverse drive mode, and (m)EVR are sub instruction sets on the sub instruction table.  
The instruction of “END of sub instruction mode” must be set after these sub instruction sets. The NJU6679 may  
occur incorrect operation if any main instructions on the main instruction table are input in mode of sub instruction  
table.  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
1
NJU6679  
(o) Bias Select  
This instruction sets the bias voltage.  
A0  
0
RD  
1
W R  
0
D 7  
1
D 6  
0
D 5  
1
D 4  
1
D 3  
A 3  
D 2  
A 2  
D 1  
A 1  
D 0  
A 0  
(*:Don't Care)  
A3  
0
A2  
0
0
0
0
1
1
1
1
*
A1  
0
0
1
1
0
0
1
1
*
A0  
0
1
0
1
0
1
0
1
*
Bias  
1/4  
1/5  
0
0
1/6  
0
1/7  
0
1/8  
0
1/9  
0
1/10  
1/11  
1/12  
0
1
(p) Boost Level Select  
This instruction sets the boost level (2 to 6 times). When “Partial Display Instruction” execution, the “Boost Level  
Select” also must be executed. If the external capasitors are connected as the lower than 6 times boost level,  
don’t set the boost level by the instruction over than the boost level by conecting capasitors. If set the boost level  
over than it, the device will make malfunction.  
A0  
0
RD  
1
W R  
0
D 7  
0
D 6  
0
D 5  
1
D 4  
1
D 3  
0
D 2  
A 2  
D 1  
A 1  
D 0  
A 0  
Command  
A1  
Booster Multiple  
6times external 5times external 4times external 3times external 2times external  
A2  
A0  
capacitors  
capacitors  
capacitors  
capacitors  
capacitors  
connections  
connections  
connections  
connections  
connections  
0
0
0
0
1
0
0
1
1
*
0
1
0
1
*
2-time  
3-time  
4-time  
5-time  
6-time  
2-time  
3-time  
4-time  
5-time  
2-time  
3-time  
4-time  
2-time  
3-time  
2-time  
NJU6679  
(q) Read Modify Write/End  
This instruction sets the Read Modify Write controlling the page address increment. In this mode, the Column  
Address only increments when execute the display data “Write” instruction; but no change when the display data  
“Read” Instruction. This status is continued until the End instruction execution. When the End instruction is  
executed, the Column Adddress goes back to the start address before the execution of this “Read Modify Write”  
instruction. This function reduces the load of MPU for repeating display data change of the fixed area (ex. cursor  
blink).  
A 0  
0
RD  
1
W R  
0
D 7  
1
D 6  
1
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
D
D 0 : Read Modify Write On  
1 : End  
Note) In this “Read Modify Write” mode, out of display dara “Read”/”Write”, any instructions except  
“Column Address Set” can be executed.  
- The Example of Read Modify Write Sequence  
Page Address Set  
Set to the Start  
Address of Cursor  
Display  
Column Address Set  
Read Modify Write  
Dummy Read  
Start the Read Modify Write  
The data is ignored  
Column Counter doesn't increase  
Data Read  
Column Counter  
doesn't increase  
Data inverse by MPU  
Data Write  
Column Counter increase  
Dummy Read  
Data Read  
Data Write  
Column Counter doesn't increase  
Column Counter doesn't increase  
Column Counter increase  
Dummy Read  
Data Read  
Data Write  
Column Counter doesn't increase  
Column Counter doesn't increase  
Column Counter increase  
End  
End the Read Modify Write  
NO  
Finish?  
YES  
NJU6679  
(r) Reset  
This instruction executes the following initialization.  
The reset by the reset signal input to the RES terminal (hardware reset) is required when power turns on. This  
reset instruction does not use instead of this hardware reset when power turns on.  
Initialization  
1
2
Set the Column Address Counter to 00H  
Set the Display Start Line Register to 00H  
Set the Page Address Register to page “0”  
Set the EVR register to FFH  
Set the Partial Display(1/128 duty)  
Set the Bias select(1/12 Bias)  
3
4
5
6
7
8
Set the Voltage Booster(6 times)  
Set the n-line inverse register to 0H  
The DD RAM is not affected by this initialization.  
A 0  
0
RD  
1
W R  
0
D 7  
1
D 6  
1
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
1
D 0  
0
(s) Internal Power Supply ON/OFF  
This instruction control ON and OFF for the internal Voltage Converter, Voltage Regulator and Voltage Follower  
circuits. For the Booster circuits operation, the oscillation circuits must be in operation.  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
D
D 0 : Internal Power Supply Off  
1 : Internal Power Supply On  
The internal Power Supply must be Off when external power supply using.  
*1 The set up period of internal power supply On depends on the step up capacitors, voltage stabilizer  
capacitors, VDD and VLCD.  
Therefore it requires the actual evaluation using the LCD module to get the correct time. (Refer to the  
(3-4) Fig.5)  
NJU6679  
(t) Driver Outputs ON/OFF  
This instruction controlls ON/OFF of the LCD Driver Outputs.  
A 0  
0
RD  
1
W R  
0
D 7  
0
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
1
D 0  
D
D 0 : LCD driving waveform output Off  
1 : LCD driving waveform output On  
The NJU6679 implements low power LCD driving voltage generator circuit and requires the following Power Supply  
ON/OFF sequence.  
- LCD Driving Power Supply ON/OFF Sequences  
The sequences below are required when the power supply turns ON/OFF.  
For the power supply turning on operation after the power-save mode, refer the ”power save release sequence”  
mentioned after.  
Turn ON sequence  
Turn OFF sequence  
EVR Register Set  
Display OFF  
Internal Power Supply ON  
Whole Display ON  
or  
External Power supply  
ON  
Internal Power Supply OFF  
or  
External Power Supply OFF  
(Wait Time) *1  
Driver Outputs OFF  
Drivier Outputs ON  
NJU6679 Power OFF  
*1 The Internal Power Supply rise time is depending on the condition of the Supply Voltage, VLCD=VDD-V5,  
External Capacitor of Booster, and External Capacitor connected to V1 to V5. To know the rise time correctly,  
test by using the actual LCD module.  
NJU6679  
(u) Power Save (complex comand)  
When Static Drive ON at the Display OFF status (inverse order also same), the internal circuits goes to the Power  
Save Mode and the operating current is dramatically reduced, almost same as the standby current.  
The internal status in the Power Save Mode is shown as follows;  
1: The Oscillation Circuits and the Internal Power Supply Circuits stop the operation.  
2: LCD driving is stopped. Segment and Common drivers output VDD level voltage.  
3: The display data and the internal operating condition are remained and kept as just before enter the  
Power Save Mode.  
4: All the LCD driving bias voltage (V1 to V5) is fixed to the VDD level.  
The power save and its release perform according to the following sequences.  
Power Save Sequence  
Display OFF  
Power Save Release Sequence  
(Static Drive ON)  
Normal Display  
Display ON  
Static Drive ON  
(Wait Time)  
Driver Outputs OFF  
Driver Outputs ON  
The NJU6679 constantly spends the current without the execution of the Driver Outputs OFF instruction. The LCD drive  
waveform is not output until the Driver Outputs ON instruction is executed.  
*1 In the Power Save sequence, the Power Save Mode starts after the Static Drive ON command is executed.  
*2 In the Power Save Release sequence, the Power Save Mode releases just after the Static Drive OFF instruction  
execution. The Display ON instruction is allowed to execute at any time after the Static Drive OFF instruction  
is completed.  
*3 The Internal Power Supply rise time is depending on the condition of the Supply Voltage, VLCD=VDD-V5,  
External Capacitor of Booster, and External Capacitor connected to V1 to V5. To know the rise time cor  
rectly, test by using the actual LCD module.  
*4 LCD driving waveform is output after the exection of the Driver Outputs ON instruction execution.  
*5 In case of the external power supply operation, the external power supply should be turned off before the Power  
Save Mode and connected to the VDD for fixing the voltage. In this time, VOUT terminal also should be made  
codition like as disconection or connection to VSS  
.
(v) ADC Select  
This instruction determines the correspondence of Column in the DD RAM with the Segment Driver Outputs.  
Segment Driver Output order is inversed when this instruction executes, therefore, the placement the NJU6679  
against the LCD panel becomes easy.  
R/W  
A0  
0
RD  
1
W R  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
D
0
D 0 : Clockwise Output (Normal)  
Segment Driver S  
0
to S131  
1 : Counterclockwise Output (Inverse) Segment Driver S131 to S  
0
NJU6679  
(3) Internal Power Supply  
(3-1) 6-time voltage booster circuits  
The 6-time voltage booster circuit outputs the negative Voltage(VDD Common) boosted 6 times of VDD-VSS from the  
VOUT terminal with connecting the six capacitors between C and C , C , C  
+ and C -, C + -, C + and C - + and C - + and  
-, and VSS and VOUT. The boosting time is selected out of 2 times to 6 by the combination of changing the external  
1
1
2
2
3
3
4
4
5
C
5
capacitors connection and “Booster Level Select” instruction. (refer (2-1)Instruction (p)Voltage Boost time select)  
Voltage Booster circuits requires the clock signals from internal oscillation circuit or the external clock signal,  
therefore, the internal oscillation circuits or the external clock supplier must be operating when the voltage booster is  
in operation.  
The boosted voltage of VDD-VOUT must be 18V or less.  
The boost voltage and the capacitor connection are shown below.  
The boosted voltage and VDD,VSS  
VDD=+3V  
VSS=+0V  
VOUT=-VDD=-3V  
VOUT=-2VDD=-6V  
VOUT=-3VDD=-9V  
VOUT=-4VDD=-12V  
VOUT=-5VDD=-15V  
2-time voltage  
3-time voltage  
4-time voltage  
5-time voltage  
4-time voltage  
6-time voltage  
Example of the external capacitor connection to the voltage booster circuits  
6-time voltage 5-time voltage  
VSS  
VSS  
VSS  
+
+
+
+
+
+
+
+
+
+
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
+
+
+
+
+
V
OUT  
V
OUT  
V
OUT  
3-time voltage  
SS  
2-time voltage  
V
VSS  
+
+
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
+
+
+
V
OUT  
V
OUT  
NJU6679  
(3-2)Voltage Adjust Circuits  
The boosted voltage of VOUT outputs V5 for LCD driving through the voltage adjust circuits. The output voltage of V5  
is adjusted by Ra and Rb within the range of |V5| < |VOUT|.  
The output is calculated by the following formula(1).  
VLCD = VDD-V5 = (1+Rb/Ra)VREG  
(1)  
The VREG voltage is a reference voltage generated by the built-in bleeder registance. VREG is adjustable by EVR  
functions (see section 3-3).  
For minor adjustment of V5, it is recommended that the Ra and Rb is composed of R2 as variable resistor and R1  
and R3 as fixed resistors, constant should be connected to VDD terminal,VR and V5 ,as shown below.  
V
DD  
V
REG  
Ra  
R1  
R2  
VR  
V
5
V
OUT  
R3  
Rb  
Fig. 4  
< Design example for R1, R2 and R3 /Reference >  
·R1+R2+R3=6MW  
(Determind by the current between VDD-V5)  
·Variable voltage range by the R2. -7V to -11V (VLCD=VDD-V5 : 10V to 12V)  
(Determind by the LCD electrical characteristics)  
·VREG=3V  
(In case of VDD=3V and EVR=FFh)  
R1,R2 and R3 are calculated by above conditions and the fomula of (1) to below;  
R1=1.5MW  
R2=0.3MW  
R3=4.2MW  
Note) V5 voltage is generated referencing with VREG voltage beased on the supply voltage (VDD and VSS) as shown  
in above figure. Therefore, VLCD (VDD-V5) is affected including the gain (Rb/Ra) by the fluctuation of VREG voltage  
based on the supply voltage. The power supply voltage should be stabilized for V5 stable operation.  
NJU6679  
(3-3) Contrast Adjustment by the EVR function  
The EVR selects the VREG voltage out of the following 201 conditions by setting 8-bit data into the EVR register. With  
the EVR function, VREG is controlled, and the LCD display contrast is adjusted. The EVR controls the voltage of VREG  
by instruction and changes the voltage of V5.  
A step with EVR is set like table shown below.  
37H to 4FH available for use. If keeping 3% precision, sets EVR over 4FH.  
EVR register  
(0,0,1,1,0,1,1,1)  
VREG[V]  
(100/300) x (VDD-VSS)  
:
VLCD  
Low  
3FH  
:
:
:
:
:
:
:
:
4FH  
(0,1,0,0,1,1,1,1)  
(124/300) x (VDD-VSS)  
:
:
:
:
:
:
FDH  
FEH  
FFH  
(1,1,1,1,1,1,0,1)  
(1,1,1,1,1,1,1,0)  
(1,1,1,1,1,1,1,1)  
(298/300) x (VDD-VSS)  
(299/300) x (VDD-VSS)  
(300/300) x (VDD-VSS)  
High  
In use of the EVR function, the voltage adjustment circuit must turn on by the power supply instruction.  
Adjustable range of the LCD driving voltage by EVR function  
The adjustable range is decided by the power supply voltage VDD and the ratio of external resistors  
Ra and Rb.  
[ Design example for the adjustable range / Reference ]  
- Condition VDD=3.0V, VSS=0V  
Ra=1MW, Rb=4MW ( Ra:Rb=1:4 )  
The adjustable range and the step voltage are calculated as follows in the above condition.  
In case of setting 4FH in the EVR register,  
VLCD = ((Ra+Rb)/Ra)VREG  
= (5/1) x [(124/300) x 3.0]  
= 6.2V  
In case of setting FFH in the EVR register,  
VLCD = ((Ra+Rb)/Ra)VREG  
= (5/1) x [(300/300) x 3.0]  
= 15.0V  
Min.4FH  
6.2 - - - - - - - - - - - - - - - - - - -  
50  
Max.FFH  
15.0 [V]  
Adjustable Range  
Step Voltagre  
[mV]  
* In case of VDD=3V  
NJU6679  
(3-4) LCD Driving Voltage Generation Circuits  
The LCD driving bias voltage of V1,V2,V3,V4 are generated by dividing the V5 voltage with the internal bleeder  
resistance and is supplied to the LCD driving circuits after the impedence conversion by the voltage follower.  
As shown in Figure 5, five external capacitors are required to connect to each LCD driving voltage terminal for voltage  
stabilization. The value of capacitors (C6 to C10) should be determined after the actual LCD panel display evaluation.  
Using the internal Power Supply  
Using the external Power Supply  
VSS  
VSS  
C1+  
C1+  
+
C1  
C1-  
C1-  
C2+  
C2+  
+
+
C2  
C3  
C4  
COUT  
C2-  
C2-  
C3+  
C3+  
+
+
C3-  
C3-  
C4+  
C4+  
C4-  
C5+  
C4-  
C5+  
+
C5  
C5-  
C5-  
*2  
VOUT  
VOUT  
NJU6679  
NJU6679  
R3  
V5  
V5  
*1  
R2  
VR  
VR  
R1  
VDD  
VDD  
V1  
C6  
C7  
+
+
+
+
+
V1  
V2  
V3  
V4  
V5  
External  
V2  
V3  
V4  
V5  
C8  
C9  
Voltage  
Generator  
C10  
Reference set up valueVLCD=VDD-V5 = 10 to 12V  
COUT  
C1 to C4, C9  
C5 to C8  
R1  
to 1uF  
to 1uF  
0.1 to 0.47uF  
1.5MW  
R2  
0.3MW  
R3  
4.2MW  
Fig.5  
*1 Short wiring or sealed wiring to the VR terminal is required due to the high impedance of VR terminal.  
*2 Following connection of VOUT is required when external power supply using.  
When VSS > V5 --- VOUT=V5  
When VSS < V5 --- VOUT=VSS  
NJU6679  
(4) MPU Interface  
(4-1) Interface type selection  
Two MPU interface types are available in the NJU6679: by 1) 8-bit bi-directional data bus (D7 to D0), 2) serial data  
input (SI:D7). The interface type (the 8 bit parallel or serial interface) is determined by the condition of the P/S  
terminals connecting to “H” or “L” level as shown in Table 5. In case of the serial interface, neither the status read-out  
nor the RAM data read-out operation is allowed.  
Table 5  
P/S  
H
Type  
Parallel  
Serial  
CS  
CS  
CS  
A0  
A0  
A0  
RD  
RD  
-
WR  
WR  
-
SEL68  
SEL68  
-
D7  
D7  
SI  
D6  
D6  
D0 to D5  
D0 to D5  
Hi-Z  
L
SCL  
Parallel Interface  
The NJU6679 interfaces the 68- or 80-type MPU directly if the parallel interface (P/S=”H”) is selected.  
The 68-type or 80-type MPU is selected by connecting the SEL68 terminal to “H” or “L” as shown in table 6.  
Table 6  
SEL68  
Type  
CS  
CS  
CS  
A0  
A0  
A0  
RD  
E
WR  
R/W  
WR  
D0 to D7  
D0 to D7  
D0 to D7  
H
L
68 type MPU  
80 type MPU  
RD  
(4-2) Discrimination of Data Bus Signal  
The NJU6679 discriminates the mean of signal on the data bus by the combination of A0, E, R/W, and (RD,WR)  
signals as shown in Table 7.  
Table 7  
Common  
68 type  
80 type  
Function  
Read Display Data  
A0  
H
H
L
R/W  
H
RD  
W R  
H
L
H
L
L
L
Write Display Data  
H
H
Status Read  
L
L
H
L
Write into the Register(Instruction)  
(4-3) Serial Interface.(P/S="L")  
The serial interface of the NJU6679 consists of the 8-bit shift register and 3-bit counter. In case the chip is  
selected (CS=L), the input to D7(SI) and D6(SCL) becomes available, and in case that the chip isn’t selected, the  
shift register and the counter are reset to the initial condition.  
The data input from the terminal(SI) is MSB first like as the order of D7, D6, · · · D0 by a serial interface, it is  
entered into with rise edge of serial clock(SCL). The data converted into parallel data of 8-bit with the rise edge of  
8th serial clock and processed.  
It discriminates display data or instructions by A0 input terminal. A0 is read with rise edge of (8 X n)th of serial  
clock (SCL), it is recognized display data by A0=H” and instruction by A0=”L”. A0 input is read in the rise edge of  
(8 X n)th of serial clock (SCL) after chip select and distinguished.  
However,in case of RES=“H” to “L” or CS=”L” to ”H” with trasfered data does not fill 8 bit, attention is necessary  
because it will processed as there was command input. Always, input the data of (8 X n) style.  
The SCL signal must be careful of the termination reflection by the wiring length and the external noise and  
confirmation by the actual machine is recommended by it.  
CS  
SI  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
1
2
3
4
5
6
7
8
9
10  
SCL  
A0  
Fig. 6  
NJU6679  
(4-4) Access to the Display Data RAM and Internal Register.  
The NJU6679 transfers data to the CPU through the bus holder with the internal data bus.  
In case of reading out the display data contents in the DD RAM, the data which was read in the first data read cycle  
(= the dummy read ) is memorized in the bus holder. Then the data is read out to the system bus from the bus holder  
in the next data read cycle. Also, In case that the MPU writes into DD RAM, the data is temporarily stored in the bus  
holder and is then written into DD RAM by the next data write cycle.  
Therefore, the limitation of the access to NJU6679 from MPU side is not access time (tACC,tDS) of Display Data RAM  
and the cycle time becomes dominant. With this, speed-up of the data transfer with the MPU becomes possible. In  
case of cycle time isn’t met, the MPU inserts NOP operation only and becomes an equivalent to an execution of wait  
operation on the sutisfy condition in MPU.  
When setting an address, the data of the specified address isn’t output immediately by the read operation after  
setting an address, and the data of the specified address is output at the the 2nd data read operation. Therefore, the  
dummy read is always necessary once after the address set and the write cycle. (See Fig. 7)  
The exsample of Read Modify Write operaion is mentioned in (2-1)Instruction –(q)The sequence of Inverse Display.  
Write Operation  
MPU  
WR  
DATA  
N
N+1  
N+2  
N+3  
Internal  
Timing  
Bus holder  
WR  
N+1  
N+2  
N+3  
N
Read Operation  
MPU  
WR  
RD  
N
n
n+1  
DATA  
N
Address Set N  
Data Read n  
Data Read n+1  
Dummy Read  
Internal  
Timing  
WR  
RD  
Column Address  
Bus holder  
N+1  
N+2  
n+1  
N
n
n+2  
N
Fig.7  
(4-6) Chip Select  
CS is the Chip Select terminal. In case of CS=”L”, the interface with MPU is available.  
In case of CS=”H” (Chip is not selected), the terminals of D to D are high impedance and A0, RD, WR, D  
(SCL) inputs are ignored. If the serial interface is selected when CS=”H”, the shift register and the counter for the  
serial interface are reset.  
However, the reset signal is always input and executed in any conditions of CS.  
0
7
7
(SI) and  
D
6
NJU6679  
ABSOLUTE MAXIMUM RATINGS  
P A R A M E T E R  
(Ta=25°C)  
SYMBOL  
VDD  
R A T I N G S  
-0.3 to +5.0  
UNIT  
Supply Voltage (1)  
V
Supply Voltage (2)  
Supply Voltage (3)  
Input Voltage  
V5  
V1 to V4  
VIN  
VDD-18.0 to VDD+0.3  
V5 to VDD+0.3  
V
V
-0.3 to VDD+0.3  
-30 to +80  
V
Operating Temperature  
Topr  
°C  
-55 to +125 (Chip)  
-55 to +100 (TCP)  
Storage Temperature  
Tstg  
°C  
VDD  
VSS  
VDD  
V5  
Note 1) All voltage values are specified as VSS=0V.  
Note 2) The relation of VDD³ V1³ V2³ V3³ V4³ V5>VOUT;VDD>VSS³ VOUT must be maintained.  
In case of inputting external LCD driving voltage , the LCD drive voltage should start supplying to  
NJU6679 at the mean time of turning on VDD power supply or after turned on VDD  
.
In use of the voltage boost circuit, the condition that the supply voltage: 18.0V³ VDD-VOUT is necessary.  
Note 3) If the LSI are used on condition beyond the absolute maximum rating, the LSI may be destroyed.  
Using LSI within electrical characteristics is strongly recommended for normal operation.  
Use beyond the erectric characteristics conditions will cause malfunction and poor reliability.  
Note 4) Decoupling capacitor should be connected between VDD and VSS due to the stabilized operation for the  
voltage converter.  
NJU6679  
ELECTRICAL CHARACTERISTICS (1)  
(VDD=2.7V to 3.3V, VSS=0V, Ta=-30 to +80°C)  
SYMBOL  
VDD  
Note  
5
P A R A M E T E  
C O N D I T I O N S  
MIN.  
2.4  
TYP.  
MAX.  
3.6  
UNIT  
V
Operating Voltage(1)  
V5  
VDD-18.0  
VDD-6.0  
VDD-0.5VLCD  
OperatingVoltage(2)  
V
6
V1,V2 VLCD= VDD-V5  
V3,V4  
VDD  
VDD-0.5VLCD  
V5  
High Level VIHC1 D0...D7,A0, CS,RES,RD,WR,SEL68,  
P/S Terminals  
0.8VDD  
VSS  
VDD  
0.2VDD  
VDD  
V
V
V
V
Input  
Voltage  
Low Level  
VILC1  
High Level VOHC11 D0...D7  
Terminals  
IOH=-0.5mA  
IOL= 0.5mA  
0.8VDD  
VSS  
Output  
Voltage  
Low Level VOLC11  
0.2VDD  
All Input terminals  
Input Leakage  
ILIO  
- 1.0  
1.0  
uA  
Current  
RON1  
RON2  
IDDQ  
VLCD=15.0V  
VLCD=8.0V  
2.0  
3.0  
3.0  
4.5  
5
Ta=25°C  
Driver On-resistance  
Stand-by Current  
Operating Current  
kW  
uA  
uA  
7
during Power save Mode  
0.05  
40  
8
9
IDD12 Display VLCD=15.0V  
IDD21 Accessing f CYC=200kHz  
A0,CS,RES,RD,WR,SEL68,  
80  
650  
850  
Input Terminal  
Capacitance  
P/S,T1,T2,D0...D7  
CIN  
10  
39  
pF  
10  
Ta=25°C  
Oscillation Frequency  
fOSC  
31.7  
46.3  
kHz  
Ta=25°C  
Reset time  
tR  
RES Terminal  
RES Terminal  
1.0  
10  
us  
us  
11  
12  
Reset "L" Level Pulse  
Width  
tRW  
Output Volt.  
VSS-Vout, 6-time voltage booster,  
VDD=3V  
VOUT1  
RTRI  
VDD-15.0V  
VDD-14.5V  
4000  
V
VDD=3V;COUT=4.7uF  
6-time voltage booster  
On-resistance  
2000  
W
Adjustment  
range of  
LCD  
Voltage Booster Circuit "OFF"  
VOUT2  
V5  
VDD-18.0V  
VDD-18.0V  
VDD-6.0V  
VDD-6.0V  
V
V
Voltage  
Booster  
13  
14  
Driving Volt.  
Voltage  
Voltage Adjustment Circuit "OFF"  
Follower  
VDD=3V, VLCD=12V  
COM/SEG Terminals Open  
No Access  
IOUT1  
IOUT2  
250  
45  
450  
90  
70  
3
Operating  
Current  
uA  
%
IOUT3  
35  
Display Checkered pattern  
Voltage Reg.  
VREG%  
VDD=3V,Ta=25°C, VREG=4F to FFH  
Note 5) Although the NJU6679 can operate in wide range of the operating voltage, it shall not be guaranteed in  
a sudden voltage fluctuation during the access with MPU.  
Note 6) The operating voltage when using external power supply.  
Note 7) RON is the resistance values in supplying 0.1V voltage-difference beteen power supply terminals  
(V1,V2,V3,V4) and each output terminals (common/ segment). This is specified within the range of  
Operating Voltage(2).  
Note 8,9) The value of after Driver Output On instruction execution.  
Note 8,9) Refers to the current consumption of the IC itself; external power supply is used for the LCD driving. In  
case of not use internal power supply circuit,meaning current of IC’s. LCD driving power supply are  
external power supply.  
Note 8) Applicable in case of not accessing to the MPU.  
Note 9) The operating current when writing a vertical stripe pattern on the tcyc. Current consumption during the  
access is approximately proportional to the access frequency. When not accessed, it consumpts only IDD01  
Note 10) Apply to A0, D  
0
-D  
7
, RD,WR,CS,RES,SEL68,P/S,T  
1
,T2 terminals.  
NJU6679  
Note 11) t  
R
( Reset Time ) refers to the reset completion time of the internal circuits from the rise edge of the RES  
signal.  
Note 12) Apply minimum pulse width of the RES signal. To reset, the “L” pulse over tRW shall be input. .  
Note 13) The voltage adjustment circuit controls V5 within the range of the voltage follower operating voltage.  
Note 14) Each operating current shall be defined as being measured in the following condition.  
Status  
T2  
Operating Condition  
External Voltage  
Supply  
(Input Terminal)  
SYMBOL  
Internal  
Oscillator  
Voltage  
Booster  
Voltage  
Adjustment  
Voltage  
Follower  
T1  
IOUT1  
IOUT2  
IOUT3  
L
L/H  
L
Validity  
Validity  
Validity  
Validity  
Invalidity  
Invalidity  
Validity  
Validity  
Invalidity  
Validity  
Validity  
Validity  
Unuse  
H
H
Use(VOUT)  
Use(VOUT,V5)  
H
MEASUREMENT BLOCK DIAGRAM  
:IOUT1  
VR  
V5  
VDD  
T1  
T2  
A
NJU6679  
VOUT  
VSS  
C1-C2+ C2-C3+ C3-C4+ C4-C5+ C5-  
C1+  
+
+
+
+
+
+
:IOUT2  
VR  
V5  
VDD  
T1  
T2  
A
NJU6679  
VOUT  
C5+  
C5-  
VSS  
C1-C2+ C2-C3+ C3-C4+ C4-  
C1+  
:IOUT3  
VR  
V5  
VDD  
T1  
T2  
A
NJU6679  
VOUT  
C1-C2+ C2-C3+ C3-C4+ C4-C5+ C5-  
VSSC1+  
NJU6679  
BUS TIMING CHARACTERISTICS  
- Read/Write operation sequence (80 Type MPU)  
t
CYC8  
A0,CS  
t
AW8  
t
AH8  
tCCL  
WR,RD  
t
CCH  
tDH8  
t
DS8  
D
(Write)  
0
to D  
7
t
f
tr  
tACC  
t
OH8  
D
0
to D  
7
(Read)  
(VDD=2.4V to 3.6V,Ta=-30 to +80°C)  
SYMBO-  
L
CONDITION  
P A R A M E T E R  
MIN.  
TYP.  
MAX.  
UNIT  
Address Hold Time  
Address Set Up Time  
System Cycle WR  
tAH8  
tAW8  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A0,CS  
Terminals  
tCYC8 (W)  
270  
350  
50  
220  
Time  
RD  
tCYC8 (R)  
tCCL(W)  
tCCL(R)  
tCCH(W)  
tCCH(R)  
tDS8  
WR,"L"  
WR,RD  
RD,"L" Terminals  
200  
220  
150  
35  
Control  
WR,"H"  
Pulse Width  
160  
RD,"H"  
Data Set Up Time  
Data Hold Time  
tDH8  
15  
D0 to D7  
Terminals  
RD Access Time  
Output Disable Time  
tACC8  
120  
50  
CL=100pF  
tOH8  
0
CS, WR, RD,  
A0, D0 to D7  
Terminals  
Rise Time, Fall Time  
tr,tf  
15  
ns  
Note 15) All timing based on 20% and 80% of VDD voltage level.  
NJU6679  
- Read/Write operation sequence (68 Type MPU)  
t
CYC6  
tEWL  
E
t
AW6  
t
EWH  
t
f
R/W  
t
r
t
AH6  
A0,CS  
tDH6  
t
DS6  
D
0
to D  
7
(Write)  
t
OH6  
t
ACC6  
D
0
to D  
7
(Read)  
(VDD=2.4V to 3.6V,Ta=-30 to +80°C)  
SYMBOL  
tAH6  
CONDITION  
P A R A M E T E R  
MIN.  
10  
TYP.  
MAX.  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Hold Time  
Address Set Up Time  
System Cycle Time(W)  
tAW6  
0
A0,CS,R/W  
Terminals  
tCYC6(W)  
tCYC6(R)  
270  
350  
200  
50  
220  
System Cycle Time(R)  
Read"H"  
tEWH  
tEWL  
Write"H"  
Enable  
E Terminal  
Pulse Width  
Read"L"  
Write"L"  
220  
150  
35  
160  
Data Set Up Time  
Data Hold Time  
Access Time  
tDS6  
tDH6  
15  
D0 to D7  
Terminals  
tACC6  
tOH6  
200  
50  
CL=100pF  
Output Disable Time  
0
A0, CS, R/W,  
E, D0 to D7  
Terminals  
Rise Time, Fall Time  
tr,tf  
15  
ns  
Note 16) All timing are based on 20% and 80% of VDD voltage level.  
Note 17) tCYC6 shows the cycle of the E signal in active CS.  
NJU6679  
- Write operation sequence (Serial Interface)  
t
CSS  
t
CSH  
CS  
A0  
t
SAS  
t
SAH  
t
SCYC  
t
SLW  
SCL  
SI  
t
SHW  
tSDS  
t
SDH  
t
f
t
r
(VDD=2.4V to 3.6V,Ta=-30 to +80°C)  
P A R A M E T E R  
SYMBOL  
tSCYC  
tSHW  
tSLW  
MIN.  
60  
TYP.  
MAX.  
CONDITION UNIT  
Serial Clock cycle  
SCL "H" pulse width  
SCL "L" pulse width  
Address Set Up Time  
Address Hold Time  
Data Set Up Time  
Data Hold Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
Terminal  
30  
30  
tSAS  
25  
A0 Terminal  
SI Terminal  
CS Terminal  
tSAH  
150  
25  
tSDS  
tSDH  
10  
tCSS  
10  
CS-SCL Time  
tCSH  
300  
SCL, A0,  
CS, SI  
Rise Time, Fall Time  
tr,tf  
15  
ns  
Terminals  
Note 18) All timing are based on 20% and 80% of VDD voltage level.  
Note 19) When inputting an instruction continuously, keep 450nS as the cycle of SCL between the instructions as  
follows  
SCL 8th clock  
SCL 1st clock  
SCL  
450 ns  
SCL"L"pulse width  
(Between the  
Instruction N+1  
Instruction N  
instruction and next)  
NJU6679  
LCD DRIVING WAVEFORM  
127  
126  
127  
0 1 2 3 4 5  
126  
0
1
2
3
4
VDD  
FR  
V
SS  
VDD  
COM0  
V
1
COM  
COM  
1
V
2
2
COM0  
V
3
COM  
COM  
3
V
4
4
COM  
COM  
V
5
5
6
VDD  
COM  
7
V
1
V
2
COM1  
V
3
COM  
8
V
4
COM  
9
V
5
COM  
10  
COM  
11  
COM  
12  
COM  
13  
VDD  
COM  
14  
COM  
15  
V
1
V
2
COM2  
V
3
V
4
V
5
VDD  
V
1
V
2
SEG0  
V
3
V
4
V
5
VDD  
V
1
V
2
SEG1  
V
3
V
4
V
5
V5  
V4  
V
3
V2  
V1  
V
DD  
COM0-SEG0  
-
V1  
V2  
V3  
V4  
V5  
-
-
-
-
V
5
V
4
V
3
V2  
V1  
V
DD  
COM0-SEG1  
-
V1  
V2  
V3  
V4  
V5  
-
-
-
-
NJU6679  
APPLICATION CIRCUIT  
MPU Interface (examples)  
The NJU6679 is connectable to 80-type MPU or 68-type. In use of Serial Interface, it is possible to be controlled by  
the signal line with the more small being.  
*:SEL68 terminal shall be connected to VDD or VSS  
.
- 80 Type MPU  
VDD  
VCC  
A0  
A0  
SEL68  
A1 to A7  
IORQ  
CS  
Decoder  
MPU  
NJU6679  
D0 to D7  
RD  
D0 to D7  
RD  
WR  
WR  
P/S  
RES  
RES  
GND  
VSS  
RESET  
- 68 Type MPU  
VCC  
VDD  
A0  
A0  
SEL68  
A1 to A15  
VMA  
CS  
Decoder  
NJU6679  
MPU  
D0 to D7  
D0 to D7  
E
E
R/W  
R/W  
RES  
P/S  
RES  
GND  
VSS  
RESET  
- Serial Interface  
VCC  
VDD  
A0  
A0  
SEL68  
A1 to A7  
CS  
Decoder  
VDD  
OR GND  
NJU6679  
MPU  
SI  
Port1  
Port2  
SCL  
P/S  
RES  
RES  
GND  
VSS  
RESET  
NJU6679  
LCD Panel Interface Example  
LCD Panel  
(128 x 132)  
NJU6679  
NJU6679  
BOTTOM VIEW  
CAUTION  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  

相关型号:

NJU6679BH

Liquid Crystal Driver, 260-Segment, CMOS, TCP-321
NJRC

NJU6679CJ

Interface Circuit, CMOS
NJRC

NJU6679CL

128-common x 132-segment BIT MAP LCD DRIVER
NJRC

NJU6680

128-common x 128-segment 4-level Gray Scale BITMAP LCD DRIVER
NJRC

NJU6680CL

128-common x 128-segment 4-level Gray Scale BITMAP LCD DRIVER
NJRC

NJU6680CL-G

Liquid Crystal Driver, 256-Segment, CMOS, BUMP, DIE-394
NJRC

NJU6680T

LIQUID CRYSTAL DISPLAY DRIVER, XSS, COF
NJRC

NJU6682

160-common x 132-segment DOT MATRIX LCD DRIVER FOR 4 GRAY SCALE
NJRC

NJU6682ACH

Liquid Crystal Driver, 292-Segment, CMOS, BUMP, DIE-341
NJRC

NJU6682ACJ

Liquid Crystal Driver, 292-Segment, CMOS, 8.27 X 5.67MM, DIE-341
NJRC

NJU6682BCH

暂无描述
NJRC

NJU6682CH

160-common x 132-segment DOT MATRIX LCD DRIVER FOR 4 GRAY SCALE
NJRC