NJW4170U2-B [NJRC]

Current Mode Control High Speed Frequency Internal 1A MOSFET Switching Regulator IC for Buck Converter;
NJW4170U2-B
型号: NJW4170U2-B
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Current Mode Control High Speed Frequency Internal 1A MOSFET Switching Regulator IC for Buck Converter

文件: 总24页 (文件大小:476K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJW4170  
Current Mode Control High Speed Frequency  
Internal 1A MOSFET Switching Regulator IC for Buck Converter  
GENERALDESCRIPTION  
PACKAGE OUTLINE  
The NJW4170 is a high speed oscillating frequency buck  
converter with 40V/1A MOSFET. Current mode control and built-in  
phase compensation circuit minimize external parts and contribute  
to using a Low ESR Output Capacitor(MLCC) within wide input  
range from 4.5V to 40V. Therefore, the NJW4170 can realize  
downsizing of applications.  
NJW4170U2  
Also, it has a soft start function, an external clock synchronization  
function, an over current protection and a thermal shutdown circuit.  
Over 2MHz of Switching frequency can avoid interference with  
theAM radio frequency.  
It is suitable for supplying power to a CarAccessory,Audio  
Automation Equipment, Industrial Instrument and so on.  
NJW4170KV1  
FEATURES  
Oscillating Frequency  
2.4MHz typ. (Aver.)  
2.1MHz typ. (B ver.)  
80ns typ.(Aver.)  
Minimum ON time  
85ns typ.(B ver.)  
Current mode Control  
External Clock Synchronization  
Wide Operating Voltage Range  
Switching Current  
4.5V to 40V  
1.4Amin.  
PWM Control  
Built-in Compensation Circuit  
Correspond to Ceramic Capacitor (MLCC)  
Soft Start Function  
4ms typ.  
UVLO (Under Voltage Lockout)  
Over Current Protection (Hiccup type)  
Thermal Shutdown Protection  
Standby Function  
Package Outline  
NJW4170U2 : SOT-89-5  
NJW4170KV1 : DFN8-V1(ESON8-V1)  
PRODUCTCLASSIFICATION  
Oscillating  
Frequency  
Operating  
Temperature Range  
General Spec.  
-40 C to +125 C  
General Spec.  
-40 C to +125 C  
General Spec.  
-40 C to +125 C  
Part Number  
NJW4170U2-A  
NJW4170KV1-A  
NJW4170U2-B  
Version  
Package  
A
A
B
2.4MHz typ.  
2.4MHz typ.  
2.1MHz typ.  
SOT-89-5  
DFN8-V1  
(ESON8-V1)  
SOT-89-5  
Ver.2016-01-25  
- 1 -  
NJW4170  
PIN CONFIGURATION  
EN/SYNC 1  
GND 2  
5 V+  
SW  
N.C. 2  
V+  
N.C. 4  
1
8
7
6
5
IN-  
N.C.  
GND  
EN/SYNC  
8
7
6
5
1
2
3
4
(2) GND  
4 SW  
3
IN- 3  
Exposed PAD on backside  
connect to GND.  
(Top View)  
(Bottom View)  
NJW4170KV1  
NJW4170U2  
PIN DESCRIPTIONS  
PIN NAME  
PIN NUMBER  
FUNCTION  
DFN8-V1  
SOT-89-5  
(ESON8)  
Standby Control pin  
The EN/SYNC pin internally pulls down with 100k . Normal  
Operation at the time of High Level. Standby Mode at the time of  
Low Level or OPEN.  
EN/SYNC  
1
5
Moreover, it operates by inputting clock signal at the oscillatory  
frequency that synchronized with the input signal.  
GND pin  
GND  
IN-  
2
3
6
8
Output Voltage Detecting pin  
Connects output voltage through the resistor divider tap to this pin in  
order to voltage of the IN- pin become 0.8V.  
Switch Output pin of Power MOSFET  
Power Supply pin for Power Line  
Non connection  
SW  
V+  
N.C.  
4
5
1
3
2, 4, 7  
Exposed  
PAD  
Connect to GND (Only DFN8-V1 PKG)  
Ver.2016-01-25  
- 2 -  
NJW4170  
BLOCK DIAGRAM  
V+  
SLOPE  
COMP.  
CURRENT  
SENSE  
UVLO  
OCP  
EN/SYNC  
High: ON  
Low : OFF(Standby)  
Enable  
(Standby)  
100k  
S
R
Q
SYNC  
OSC  
Buffer  
SW  
TSD  
PWM  
IN-  
ER AMP  
Soft Start  
Vref  
0.8V  
GND  
Ver.2016-01-25  
- 3 -  
NJW4170  
ABSOLUTE MAXIMUM RATINGS  
(Ta=25°C)  
PARAMETER  
Supply Voltage  
V+- SW pin Voltage  
EN/SYNC pin Voltage  
IN- pin Voltage  
SYMBOL  
MAXIMUM RATINGS  
-0.3 to +45  
+45  
UNIT  
V
V+  
VV-SW  
VEN/SYNC  
VIN-  
V
-0.3 to +45  
-0.3 to +6  
V
V
625 (*1)  
2,400 (*2)  
SOT-89-5  
Power Dissipation  
PD  
mW  
DFN8-V1  
(ESON8-V1)  
600 (*3)  
1,800 (*4)  
Junction Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Tj  
Topr  
Tstg  
-40 to +150  
-40 to +125  
-50 to +150  
C
C
C
(*1): Mounted on glass epoxy board. (76.2×114.3×1.6mm:based on EIA/JDEC standard size, 2Layers, Cu area 100mm2)  
(*2): Mounted on glass epoxy board. (76.2×114.3×1.6mm:based on EIA/JDEC standard, 4Layers)  
(For 4Layers:Applying 74.2×74.2mm inner Cu area and a thermal via hall to a board based on JEDEC standard JESD51-5)  
(*3): Mounted on glass epoxy board. (101.5 114.5 1.6mm: based on EIA/JEDEC standard, 2Layers FR-4, with Exposed Pad)  
(*4): Mounted on glass epoxy board. (101.5 114.5 1.6mm: based on EIA/JEDEC standard, 4Layers FR-4, with Exposed Pad)  
(For 4Layers: Applying 99.5 99.5mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5)  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
Supply Voltage  
External Clock Input Range  
SYMBOL  
V+  
MIN.  
4.5  
TYP.  
MAX.  
40  
UNIT  
V
Aversion  
B version  
fSYNC  
2.3  
2.0  
2.8  
2.5  
MHz  
Ver.2016-01-25  
- 4 -  
NJW4170  
ELECTRICALCHARACTERISTICS  
(Unless otherwise noted, V+=VEN/SYNC=12V, Ta=25 C)  
PARAMETER  
SYMBOL  
TESTCONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
Under Voltage Lockout Block  
ON Threshold Voltage  
OFF Threshold Voltage  
Hysteresis Voltage  
VT_ON  
VT_OFF  
VHYS  
V+= LH  
V+= H L  
4.2  
4.11  
70  
4.35  
4.26  
90  
4.5  
4.41  
V
V
mV  
Soft Start Block  
Soft StartTime  
tSS  
VB=0.75V  
2.5  
4
8
ms  
Oscillator Block  
Aversion, VIN-=0.7V  
B version, VIN-=0.7V  
Aversion, VIN-=0.2V  
B version, VIN-=0.2V  
2.2  
1.9  
2.4  
2.1  
340  
290  
2.6  
2.3  
MHz  
MHz  
kHz  
Oscillating Frequency  
fOSC  
fOSC_LOW  
fDV  
Oscillating Frequency  
(Low Frequency Control)  
Oscillating Frequency  
deviation (Supply voltage)  
Oscillating Frequency  
deviation (Temperature)  
kHz  
V+=4.5 to 40V  
1
5
%
%
fDT  
Ta= -40 C to +85 C  
ErrorAmplifier Block  
Reference Voltage  
Input Bias Current  
VB  
IB  
-1.0%  
-0.1  
0.8  
+1.0%  
+0.1  
V
A
PWM Comparate Block  
Maximum Duty Cycle  
MAXDUTY A, B version, VIN-=0.7V  
77.5  
82  
80  
85  
80  
85  
%
ns  
ns  
ns  
ns  
Aversion  
115  
120  
115  
120  
Minimum ON Time1  
(Use Built-in Oscillator)  
tON-min1  
B version  
Aversion, fSYNC =2.6kHz  
tON-min2  
Minimum ON Time2  
(Use Ext CLK)  
B version, fSYNC =2.3kHz  
Ver.2016-01-25  
- 5 -  
NJW4170  
ELECTRICALCHARACTERISTICS  
(Unless otherwise noted, V+=VEN/SYNC=12V, Ta=25 C)  
PARAMETER  
SYMBOL  
TESTCONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
Over Current Protection Block  
Cool Down Time  
tCOOL  
75  
ms  
Output Block  
Output ON Resistance  
Switching Current Limit  
SW Leak Current  
RON  
ILIM  
ILEAK  
ISW=1A  
VEN/SYNC=0V, V+=40V, VSW=0V  
1.4  
0.4  
1.9  
0.65  
2.4  
1
A
A
Standby Control / Sync Block  
EN/SYNC pin  
HighThreshold Voltage  
VTHH_EN/SYNC VEN/SYNC= LH  
VTHL_EN/SYNC VEN/SYNC= H L  
1.6  
0
V+  
0.5  
390  
V
V
A
EN/SYNC pin  
LowThreshold Voltage  
Input Bias Current  
(EN/SYNC pin)  
IEN  
VEN/SYNC=12V  
270  
General Characteristics  
Quiescent Current  
Standby Current  
A, B version,  
RL=no load, VIN-=0.9V  
VEN/SYNC=0V  
IDD  
2.0  
2.4  
1
mA  
A
IDD_STB  
Ver.2016-01-25  
- 6 -  
NJW4170  
POWER DISSIPATION vs.AMBIENTTEMPERATURE  
NJW4170KV1 (DFN8-V1 Package)  
NJW4170U2 (SOT89-5 Package)  
Power Dissipation vs. Ambient Temperature  
(Tj=~150°C)  
Power Dissipation vs. Ambient Temperature  
(Tj=~150°C)  
3000  
2500  
2000  
1500  
1000  
500  
3000  
At on 4 layer PC Board (*8)  
At on 2 layer PC Board (*7)  
At on 4 layer PC Board (*6)  
At on 2 layer PC Board (*5)  
2500  
2000  
1500  
1000  
500  
0
0
-50  
-25  
0
25  
50  
75  
100 125 150  
-50  
-25  
0
25  
50  
75  
100 125 150  
Ambient Temperature Ta (°C)  
Ambient Temperature Ta (°C)  
(*5): Mounted on glass epoxy board. (76.2×114.3×1.6mm:based on EIA/JDEC standard size, 2Layers, Cu area 100mm2)  
(*6): Mounted on glass epoxy board. (76.2×114.3×1.6mm:based on EIA/JDEC standard, 4Layers)  
(For 4Layers:Applying 74.2×74.2mm inner Cu area and a thermal via hall to a board based on JEDEC standard JESD51-5)  
(*7): Mounted on glass epoxy board. (101.5 114.5 1.6mm: based on EIA/JEDEC standard, 2Layers FR-4, with Exposed Pad)  
(*8): Mounted on glass epoxy board. (101.5 114.5 1.6mm: based on EIA/JEDEC standard, 4Layers FR-4, with Exposed Pad)  
(For 4Layers: Applying 99.5 99.5mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5)  
TYPICALAPPLICATIONS  
L
VIN  
VOUT  
CIN  
V+  
SW  
IN-  
R2  
CFB  
NJW4170  
EN/  
SYNC GND  
SBD  
COUT  
R1  
EN/SYNC  
High: ON  
Low: OFF  
(Standby)  
Ver.2016-01-25  
- 7 -  
NJW4170  
TYPICALCHARACTERISTICS (A, B version)  
Reference Voltage vs. Temperature  
(V+=12V)  
Reference Voltage vs. Supply Voltage  
(Ta=25ºC)  
0.81  
0.805  
0.8  
0.81  
0.805  
0.8  
0.795  
0.79  
0.795  
0.79  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Supply Voltage :V+ (V)  
Output ON Resistance vs. Temperature  
(ISW=1A)  
Switching Current Limit vs. Temperature  
2.6  
2.4  
2.2  
2
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V+=12V  
V+=40V  
V+=5V  
1.8  
1.6  
1.4  
1.2  
V+=40V  
V+=12V  
V+=5V  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Maximum Duty Cycle vs. Temperature  
(V+=12V, VIN-=0.7V)  
90  
88  
86  
84  
82  
80  
78  
76  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Ver.2016-01-25  
- 8 -  
NJW4170  
TYPICALCHARACTERISTICS (A, B version)  
Soft Start Time vs. Temperature  
(V+=12V, VB=0.75V)  
Under Voltage Lockout Voltage vs. Temperature  
4.5  
8
7
6
5
4
3
2
4.45  
4.4  
4.35  
VT_ON  
4.3  
4.25  
4.2  
VT_OFF  
4.15  
4.1  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Switching Leak Current vs. Temperature  
(V+=40V, VEN/SYNC=0V, VSW=0V)  
Standby Current vs. Temperature  
(VEN/SYNC=0V)  
2
1.5  
1
1
0.8  
0.6  
0.4  
0.2  
0
V+=40V  
V+=12V  
V+=4.5V  
0.5  
0
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Quiescent Current vs. Temperature  
(RL=no Load, VIN-=0.9V)  
Quiescent Current vs. Supply Voltage  
(RL=no Load, VIN-=0.9V, Ta=25ºC)  
3
2.5  
2
3
2.5  
2
V+=4.5V, 12V, 40V  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Supply Voltage :V+ (V)  
Ver.2016-01-25  
- 9 -  
NJW4170  
TYPICALCHARACTERISTICS (Aversion)  
Oscillating Frequency vs Temperature  
(A ver., V+=12V, VIN-=0.7V)  
Oscillating Frequency vs. Supply Voltage  
(A ver., VIN-=0.7V, Ta=25ºC)  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Supply Voltage : V+ (V)  
Minimum ON Time1 vs. Temperature  
(A ver., V+=12V)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Ver.2016-01-25  
- 10 -  
NJW4170  
TYPICALCHARACTERISTICS (B version)  
Oscillating Frequency vs Temperature  
(B ver., V+=12V, VIN-=0.7V)  
Oscillating Frequency vs. Supply Voltage  
(B ver., VIN-=0.7V, Ta=25ºC)  
2.4  
2.3  
2.2  
2.1  
2
2.4  
2.3  
2.2  
2.1  
2
1.9  
1.8  
1.9  
1.8  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Supply Voltage :V+ (V)  
Minimum ON Time1 vs. Temperature  
(B ver., V+=12V)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
-50 -25  
0
25 50 75 100 125 150  
Temperature : (ºC)  
Ver.2016-01-25  
- 11 -  
NJW4170 Application Manual  
Technical Information  
Description of Block Features  
1. Basic Functions / Features  
ErrorAmplifier Section (ERAMP)  
0.8V±1% precise reference voltage is connected to the non-inverted input of this section.  
To set the output voltage, connects converter's output to inverted input of this section (IN- pin). If requires output  
voltage over 0.8V, inserts resistor divider.  
Because the optimized compensation circuit is built-in, the application circuit can be composed of minimum  
external parts.  
PWM Comparator Section (PWM), Oscillating Circuit Section (OSC)  
The NJW4170 uses a constant frequency, current mode step down architecture. The oscillating frequency are  
2.4MHz (typ.) at A version and 2.1MHz (typ.) at B version. The PWM signal is output by feedback of output voltage  
and slope compensation switching current at the PWM comparator block.  
The maximum duty ratio is 82% (typ.).  
The minimum ON time are limited to 80ns (typ.) atAversion and 85ns (typ.) at B version.  
The buck converter of ON time is decided the following formula.  
VOUT  
ton  
s
V
fOSC  
IN  
VIN shows input voltage and VOUT shows output voltage.  
When the ON time becomes below in tON-min, in order to maintain output voltage at a stable state, change of duty or  
pulse skip operation may be performed.  
Power MOSFET (SW Output Section)  
The power is stored in the inductor by the switch operation of built-in power MOSFET. The output current is limited  
to 1.4A(min.) the overcurrent protection function. In case of step-down converter, the forward direction bias voltage is  
generated with inductance current that flows into the external regenerative diode when MOSFET is turned off.  
The SW pin allows voltage between the V+ pin and the SW pin up to +45V. However, you should use an Schottky  
diode that has low saturation voltage.  
Power Supply, GND pin (V+ and GND)  
In line with switching element drive, current flows into the IC according to frequency. If the power supply  
impedance provided to the power supply circuit is high, it will not be possible to take advantage of IC performance  
due to input voltage fluctuation. Therefore insert a bypass capacitor close to the V+ pin – the GND pin connection in  
order to lower high frequency impedance.  
Ver.2016-01-25  
- 12 -  
NJW4170 Application Manual  
Technical Information  
Description of Block Features (Continued)  
2. Additional and Protection Functions / Features  
Under Voltage Lockout (UVLO)  
The UVLO circuit operating is released above V+=4.35V(typ.) and IC operation starts. When power supply voltage  
is low, IC does not operate because the UVLO circuit operates. There is 90mV(typ.) width hysteresis voltage at rise  
and decay of power supply voltage. Hysteresis prevents the malfunction at the time of UVLO operating and  
releasing.  
Soft Start Function (Soft Start)  
The output voltage of the converter gradually rises to a set value by the soft start function. The soft start time is  
4ms (typ.). It is defined with the time of the error amplifier reference voltage becoming from 0V to 0.75V. The soft  
start circuit operates after the release UVLO and/or recovery from thermal shutdown. The operating frequency is  
controlled with a low frequency 340kHz (typ.) at A version and 290kHz (typ.) at B version, until voltage or the IN- pin  
becomes approximately 0.4V.  
0.8V  
Vref,  
IN- pin Voltage  
OSC Waveform  
ON  
SW pin  
OFF  
Low Frequency Control  
VIN-=approx 0.4V  
UVLO(4.35V typ.) Release,  
Standby,  
Recover from Thermal  
Shutdown  
Steady  
Operaton  
Soft Start time: Tss=4ms(typ.) to VB=0.75V  
Soft Start effective period to VB=0.8V  
Fig. 1. Startup Timing Chart  
Ver.2016-01-25  
- 13 -  
NJW4170 Application Manual  
Technical Information  
Description of Block Features (Continued)  
Over Current Protection Circuit (OCP)  
NJW4170 contains overcurrent protection circuit of hiccup architecture. The overcurrent protection circuit of hiccup  
architecture is able to decrease heat generation at the overload.  
The NJW4170 output returns automatically along with release from the over current condition.  
At when the switching current becomes ILIM or more, the overcurrent protection circuit is stopped the MOSFET  
output. The switching output holds low level down to next pulse output at OCPoperating.  
When IN- pin voltage becomes 0.3V or less, it operates with 340kHz (typ.) at A version and 290kHz (typ.) at B  
version.  
At the same time starts pulse counting, and stops the switching operation when the overcurrent detection  
continues 128 pulses.  
After NJW4170 switching operation was stopped, it restarts by soft start function after the cool down time of approx  
75ms (typ.).  
0.8V  
IN- pin  
Voltage  
0.3V  
0V  
OCP Operates  
Oscillating Frequency  
A ver.=2.4MHz typ.  
B ver.=2.1MHz typ.  
Oscillating Frequency  
A ver.=340kHz typ.  
B ver.=290kHz typ.  
ON  
SW pin  
OFF  
ILIM  
Switching  
Current  
0
Pulse by  
Pulse  
Pulse Count :128 pulse  
Cool Down time :75ms typ.  
Static Status  
Detect  
Soft Start  
Overcurrent  
Fig. 2. Timing Chart at Over Current Detection  
Thermal Shutdown Function (TSD)  
When Junction temperature of the NJW4170 exceeds the 165°C*, internal thermal shutdown circuit function stops  
SW function. When junction temperature decreases to 150°C* or less, SW operation returns with soft start operation.  
The purpose of this function is to prevent malfunctioning of IC at the high junction temperature. Therefore it is not  
something that urges positive use. You should make sure to operate within the junction temperature range rated  
(150 C). (* Design value)  
Standby Function  
The NJW4170 stops the operating and becomes standby status when the EN/SYNC pin becomes less than 0.5V.  
The EN/SYNC pin internally pulls down with 100k , therefore the NJW4170 becomes standby mode when the  
EN/SYNC pin is OPEN. You should connect this pin to V+ when you do not use standby function.  
Ver.2016-01-25  
- 14 -  
NJW4170 Application Manual  
Technical Information  
Description of Block Features (Continued)  
External Clock Synchronization  
By inputting a square wave to EN/SYNC pin, can be synchronized to an external frequency.  
You should fulfill the following specification about a square wave. (Table 1.)  
Table 1. The input square wave to an EN/SYNC pin.  
Aversion  
B version  
(fOSC =2.4MHz)  
(fOSC =2.1MHz)  
Input Frequency  
Duty Cycle  
Voltage  
2.3MHz to 2.8MHz  
2.0MHz to 2.5MHz  
40% to 60%  
1.6V or more at High level  
0.5V or less at Low level  
magnitude  
The trigger of the switching operating at the external synchronized mode is detected to the rising edge of the input  
signal. At the time of switching operation from standby or asynchronous to synchronous operation, it has set a delay  
time approx 5 s to 10 s in order to prevent malfunctions. (Fig. 3.)  
High  
EN/SYNC pin  
Low  
ON  
SW pin  
OFF  
Standby  
Delay Time  
External Clock Synchronization  
Fig. 3. Switching Operation by External Synchronized Clock  
Ver.2016-01-25  
- 15 -  
NJW4170 Application Manual  
Technical Information  
Application Information  
Inductors  
Because a large current flows to the inductor, you should select the inductor with the large current capacity not to  
saturate. Optimized inductor value is determined by the input voltage and output voltage.  
Reducing L decreases the size of the inductor. However a peak current increases and adversely affects the  
efficiency. (Fig. 4.)  
Moreover, you should be aware that the output current is limited because it becomes easy to operating to the  
overcurrent limit.  
The peak current is decided the following formula.  
V
VOUT VOUT  
IN  
IL  
[A]  
L V fOSC  
IN  
IL  
Ipk IOUT  
[A]  
2
Peak Current IPK  
Current  
Indunctor  
Peak Current IPK  
Indunctor  
Ripple Current  
I
L
Ripple Current IL  
Output Current  
IOUT  
0
tON  
tOFF  
tON  
tOFF  
Reducing LValue  
Increasing Lvalue  
Fig. 4. Inductor Current State Transition (Continuous Conduction Mode)  
Ver.2016-01-25  
- 16 -  
NJW4170 Application Manual  
Technical Information  
Application Information (Continued)  
Input Capacitor  
Transient current flows into the input section of a switching regulator responsive to frequency. If the power supply  
impedance provided to the power supply circuit is large, it will not be possible to take advantage of the NJW4170  
performance due to input voltage fluctuation. Therefore insert an input capacitor as close to the MOSFET as  
possible.Aceramic capacitor is the optimal for input capacitor.  
The effective input current can be expressed by the following formula.  
VOUT VIN VOUT  
IRMS IOUT  
[A]  
V
IN  
In the above formula, the maximum current is obtained when VIN = 2 VOUT, and the result in this case is  
IRMS = IOUT(MAX) 2.  
When selecting the input capacitor, carry out an evaluation based on the application, and use a capacitor that has  
adequate margin.  
Output Capacitor  
An output capacitor stores power from the inductor, and stabilizes voltage provided to the output.  
Because NJW4170 corresponds to the output capacitor of low ESR, the ceramic capacitor is the optimal for  
compensation.  
In addition, you should consider varied characteristics of capacitor (a frequency characteristic, a temperature  
characteristic, a DC bias characteristic and so on) and unevenness peculiar to a capacitor supplier enough.  
Therefore when selecting a capacitors, you should confirm the characteristics with supplier datasheets.  
When selecting an output capacitor, you must consider Equivalent Series Resistance (ESR) characteristics, ripple  
current, and breakdown voltage.  
The output ripple noise can be expressed by the following formula.  
1
Vripple(p p)  
IL ESR  
[V]  
8 fOSC COUT  
The effective ripple current that flows in a capacitor (Irms) is obtained by the following equation.  
IL  
Irms  
[Arms]  
2 3  
Ver.2016-01-25  
- 17 -  
NJW4170 Application Manual  
Technical Information  
Application Information (Continued)  
Catch Diode  
When the switch element is in OFF cycle, power stored in the inductor flows via the catch diode to the output  
capacitor. Therefore during each cycle current flows to the diode in response to load current. Because diode's  
forward saturation voltage and current accumulation cause power loss, a Schottky Barrier Diode (SBD), which has a  
low forward saturation voltage, is ideal.  
An SBD also has a short reverse recovery time. If the reverse recovery time is long, through current flows when  
the switching transistor transitions from OFF cycle to ON cycle. This current may lower efficiency and affect such  
factors as noise generation.  
Setting Output Voltage, Compensation Capacitor  
The output voltage VOUT is determined by the relative resistances of R1, R2. The current that flows in R1, R2 must  
be a value that can ignore the bias current that flows in ERAMP.  
R2  
VOUT  
1
VB [V]  
R1  
The zero points are formed with R2 and CFB, and it makes for the phase compensation of NJW4170.  
The zero point is shown the following formula.  
1
fZ1  
[Hz]  
2
R2 CFB  
You should set the zero point as a guide from 60kHz to 80kHz.  
Ver.2016-01-25  
- 18 -  
NJW4170 Application Manual  
Technical Information  
Application Information (Continued)  
Board Layout  
In the switching regulator application, because the current flow corresponds to the oscillating frequency, the  
substrate (PCB) layout becomes an important.  
You should attempt the transition voltage decrease by making a current loop area minimize as much as possible.  
Therefore, you should make a current flowing line thick and short as much as possible. Fig.5. shows a current loop  
at step-down converter. Especially, should lay out high priority the loop of CIN-SW-SBD that occurs rapid current  
change in the switching. It is effective in reducing noise spikes caused by parasitic inductance.  
NJW4170  
NJW4170  
Built-in SW  
L
Built-in SW  
L
VIN  
CIN  
SBD  
COUT  
VIN  
CIN  
SBD  
COUT  
(a) Buck Converter SW ON  
Fig. 5. Current Loop at Buck Converter  
Concerning the GND line, it is preferred to separate the power system and the signal system, and use single  
(b) Buck Converter SW OFF  
ground point.  
The voltage sensing feedback line should be as far away as possible from the inductance. Because this line has  
high impedance, it is laid out to avoid the influence noise caused by flux leaked from the inductance.  
Fig. 6. shows example of wiring at buck converter. Fig. 7 shows the PCB layout example.  
L
VOUT  
V+  
SW  
VIN  
CIN  
SBD  
COUT  
RL  
The capacitor is  
connected near an IC.  
NJW4170  
CFB  
IN-  
R2  
R1  
GND  
To avoid the influence of the voltage  
drop, the output voltage should be  
detected near the load.  
Separate Digital(Signal)  
GND from Power GND  
Because IN- pin is high impedance, the  
voltage detection resistance: R1/R2 is  
put as much as possible near IC(IN-).  
Fig. 6. Board Layout at Buck Converter  
Ver.2016-01-25  
- 19 -  
NJW4170 Application Manual  
Technical Information  
Application Information (Continued)  
GNDOUT  
VOUT  
Power GND Area  
COUT  
GND IN  
L
SBD  
CIN1  
CIN2  
VIN  
Feed back  
signal  
1pin  
R2  
EN/SYNC  
R1  
RFB CFB  
Signal GND Area  
Connect Signal GND line and Power GND line on backside pattern  
Fig. 7. Layout Example (upper view)  
Ver.2016-01-25  
- 20 -  
NJW4170 Application Manual  
Technical Information  
Calculation of Package Power  
A lot of the power consumption of buck converter occurs from the internal switching element (Power MOSFET).  
Power consumption of NJW4170 is roughly estimated as follows.  
Input Power:  
Output Power:  
Diode Loss:  
PIN = VIN IIN [W]  
POUT = VOUT IOUT [W]  
PDIODE = VF IL(avg) OFF duty [W]  
NJW4170 Power Consumption: PLOSS = PIN POUT PDIODE [W]  
Where:  
VIN  
: Input Voltage for Converter  
: Output Voltage of Converter  
: Diode's Forward Saturation Voltage  
IIN  
IOUT  
IL(avg)  
: Input Current for Converter  
: Output Current of Converter  
: InductorAverage Current  
VOUT  
VF  
OFF duty : Switch OFF Duty  
Efficiency ( ) is calculated as follows.  
= (POUT PIN) 100 [%]  
You should consider temperature derating to the calculated power consumption: PD.  
You should design power consumption in rated range referring to the power dissipation vs. ambient temperature  
characteristics.  
Ver.2016-01-25  
- 21 -  
NJW4170 Application Manual  
Technical Information  
Application Design Examples  
Buck ConverterApplication Circuit  
IC  
: NJW4170U2  
: VIN=12V  
: VOUT=5V  
: IOUT=1A  
Input Voltage  
Output Voltage  
Output Current  
Oscillating frequency :Aversion fOSC=2.4MHz  
: B version fOSC=2.1MHz  
L 3.3 H/2.33A  
VIN=12V  
VOUT=5V  
CIN  
10mF/50V  
CFB  
120pF  
R2  
16kW  
V+  
SW  
IN-  
NJW4170  
EN/  
SYNC GND  
SBD  
COUT  
22mF/6.3V  
R1  
3kW  
EN/SYNC  
High: ON  
Low: OFF  
(Standby)  
Reference  
Qty.  
1
1
Part Number  
NJW4170U2  
VLF504015MT-3R3M  
Description  
Internal 1AMOSFETSW.REG. IC  
Inductor 3.3 H, 2.33A  
Manufacturer  
New JRC  
TDK  
IC  
L
SBD  
CIN  
COUT  
CFB  
R1  
1
1
1
1
CMS16  
UMK325BJ106MM  
GRM31CB30J226ME18  
120pF  
3k  
Schottky Diode 40V, 3A  
Toshiba  
Taiyo Yuden  
Murata  
Std.  
Ceramic Capacitor 3225 10 F, 50V, X5R  
Ceramic Capacitor 3216 22 F, 6.3V, B  
Ceramic Capacitor 1608 120pF, 50V, CH  
Resistor 1608 3k , 1%, 0.1W  
1
Std.  
R2  
1
Std.  
16k  
Resistor 1608 16k , 1%, 0.1W  
Ver.2016-01-25  
- 22 -  
NJW4170 Application Manual  
Technical Information  
Application Characteristics  
Aversion  
Efficiency vs. Output Current  
Output Voltage vs. Output Current  
(VOUT=5V, Ta=25ºC)  
(Ta=25ºC)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
f=2.4MHz  
L=3.3 H  
f=2.4MHz  
L=3.3 H  
5.8  
VIN=8V  
5.6  
5.4  
VIN=18V  
VIN=12V  
5.2  
VIN=8V, 12V, 18V  
5
4.8  
4.6  
4.4  
4.2  
4
1
10  
100  
1000  
1
10  
100  
1000  
Output Current :IOUT (mA)  
Output Current :IOUT (mA)  
B version  
Efficiency vs. Output Current  
(VOUT=5V, Ta=25ºC)  
Output Voltage vs. Output Current  
(Ta=25ºC)  
100  
6
5.8  
5.6  
5.4  
5.2  
5
f=2.4MHz  
L=3.3 H  
f=2.1MHz  
L=3.3 H  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=8V  
VIN=18V  
VIN=8V, 12V, 18V  
VIN=12V  
4.8  
4.6  
4.4  
4.2  
4
1
10  
100  
1000  
1
10  
100  
1000  
Output Current :IOUT (mA)  
Output Current :IOUT (mA)  
Ver.2016-01-25  
- 23 -  
NJW4170  
MEMO  
[CAUTION]  
Thespecificationsonthisdatabookareonly  
givenforinformation,withoutanyguarantee  
asregardseither mistakesoromissions.The  
applicationcircuitsinthisdatabookare  
describedonlytoshowrepresentativeusages  
oftheproductandnotintendedforthe  
guaranteeorpermissionofanyrightincluding  
theindustrialrights.  
Ver.2016-01-25  
- 24 -  

相关型号:

NJW4180

High Voltage Low current consumption Regulator
NJRC

NJW4180F05

High Voltage Low current consumption Regulator
NJRC

NJW4180F25

High Voltage Low current consumption Regulator
NJRC

NJW4180F33

High Voltage Low current consumption Regulator
NJRC

NJW4181

High Voltage Very low current consumption Io=100mA Regulator
NJRC

NJW4181U3-05B

Fixed Positive Standard Regulator, 5VPSSO3, SOT-89, 3 PIN
NJRC

NJW4181U3-08B

Fixed Positive Standard Regulator, 8VPSSO3, SOT-89, 3 PIN
NJRC
NJRC

NJW4181U3-12B

Fixed Positive Standard Regulator, 12VPSSO3, SOT-89, 3 PIN
NJRC

NJW4181U3-25B

Regulator,
NJRC

NJW4181U3-33B

Fixed Positive Standard Regulator, 3.3VPSSO3, SOT-89, 3 PIN
NJRC

NJW4182F05-H(TE1)

Fixed Positive LDO Regulator,
NJRC