CLC411A8B [NSC]

High-Speed Video Op Amp with Disable; 高速视频运算放大器具有禁用
CLC411A8B
型号: CLC411A8B
厂家: National Semiconductor    National Semiconductor
描述:

High-Speed Video Op Amp with Disable
高速视频运算放大器具有禁用

运算放大器
文件: 总8页 (文件大小:643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 1999  
N
CLC411  
High-Speed Video Op Amp with Disable  
General Description  
Features  
The CLC411 combines a state-of-the-art complementary bipolar  
process with National’s patented current-feedback architecture to  
provide a very high-speed op amp operating from ±15V supplies.  
Drawing only 11mA quiescent current, the CLC411 provides a  
200MHz small signal bandwidth and a 2300V/µs slew rate while  
deliveringacontinuous70mAcurrentoutputwith±4.5Voutputswing.  
TheCLC411’shigh-speedperformanceincludesa15nssettlingtime  
to 0.1% (2V step) and a 2.3ns rise and fall time (6V step).  
200MHz small signal bandwidth (1Vpp)  
±0.05dB gain flatness to 30MHz  
0.02%, 0.03° differential gain, phase  
2300V/µs slew rate  
10ns disable to high-impedance output  
70mA continuous output current  
±4.5V output swing into 100load  
±4.0V input voltage range  
The CLC411 is designed to meet the requirements of professional  
broadcastvideosystemsincludingcompositevideoandhighdefinition  
television.TheCLC411exceedstheHDTVstandardforgainflatness  
to 30MHz with it's ±0.05dB flat frequency response and exceeds  
composite video standards with its very low differential gain and  
phase errors of 0.02%, 0.03°. The CLC411 is the op amp of choice  
for all video systems requiring upward compatibility from NTSC and  
PAL to HDTV.  
Applications  
HDTVamplifier  
Video line driver  
High-speed analog bus driver  
Video signal multiplexer  
DAC output buffer  
Gain Flatness (Av=+2)  
TheCLC411featuresaveryfastdisable/enable(10ns/55ns)allowing  
themultiplexingofhigh-speedsignalsontoananalogbusthroughthe  
common output connections of multiple CLC411’s. Using the same  
signal source to drive disable/enable pins is easy since “break-  
before-makeisguaranteed.  
The CLC411 is available in several versions:  
CLC411AJP  
CLC411AJE  
CLC411A8B  
-40°Cto+85°C  
-40°Cto+85°C  
-55°Cto+125°C  
8-pin plastic DIP  
8-pin plastic SOIC  
8-pinhermeticCERDIP,  
MIL-STD-883  
0
Frequency (5MHz/div)  
50  
CLC411AMC  
-55°Cto+125°C  
dice, MIL-STD-883, Level B  
DESCSMDnumber:5962-94566  
+Vcc  
6.8µF  
DIS  
Pinout  
0.1µF  
DIP & SOIC  
Recommended  
Inverting Gain  
Configuration  
7
+Vr  
1
0.01µF  
8
+
3
2
+Vr  
1
2
3
4
8
7
6
5
DIS  
6
25Ω  
Vout  
CLC411  
-
Vinv  
Vnon-inv  
-Vcc  
+Vcc  
Vout  
-Vr  
_
0.01µF  
5
4
-Vr  
+
Vin  
Rg  
Rf  
0.1µF  
6.8µF  
Select RT to yield  
Rin = RT||Rg  
RT  
-Vcc  
1999NationalSemiconductorCorporation  
PrintedintheU.S.A.  
http://www.national.com  
CLC411 Electrical Characteristics  
                                                                                                                
(
                                                                                                                
                                                                                                                 
AV  
                                                                                                                 
                                                                                                                     
=
                                                                                                                      
                                                                                                                         
+
                                                                                                                         
                                                                                                                           
2;  
                                                                                                                           
                                                                                                                             
                                                                                                                             
                                                                                                                               
VCC  
                                                                                                                               
                                                                                                                                     
=
                                                                                                                                     
                                                                                                                                                       
±
                                                                                                                                                       
                                                                                                                                          
1
                                                                                                                                          
                                                                                                                                            
5
                                                                                                                                            
                                                                                                                                              
V
                                                                                                                                              
                                                                                                                                                
;
                                                                                                                                                 
                                                                                                                                                   
RL  
                                                                                                                                                   
                                                                                                                                                       
=
                                                                                                                                                       
                                                                                                                                                          
1
                                                                                                                                                          
                                                                                                                                                            
0
                                                                                                                                                            
                                                                                                                                                              
0
                                                                                                                                                              
                                                                                                                                                                                  
                                                                                                                                                                                  
                                                                                                                                                                   
;
                                                                                                                                                                   
                                                                                                                                                                     
Rf  
                                                                                                                                                                     
                                                                                                                                                                         
=
                                                                                                                                                                         
                                                                                                                                                                            
3
                                                                                                                                                                            
                                                                                                                                                                              
0
                                                                                                                                                                              
                                                                                                                                                                                
1Ω  
                                                                                                                                                                                
                                                                                                                                                                                                      
                                                                                                                                                                                                      
                                                                                                                                                                                     
,
                                                                                                                                                                                     
                                                                                                                                                                                       
u
                                                                                                                                                                                       
                                                                                                                                                                                         
n
                                                                                                                                                                                         
                                                                                                                                                                                            
l
                                                                                                                                                                                            
                                                                                                                                                                                             
e
                                                                                                                                                                                             
                                                                                                                                                                                               
s
                                                                                                                                                                                               
                                                                                                                                                                                                 
s
                                                                                                                                                                                                 
                                                                                                                                                                                                    
n
                                                                                                                                                                                                    
                                                                                                                                                                                                      
o
                                                                                                                                                                                                      
                                                                                                                                                                                                        
t
                                                                                                                                                                                                        
                                                                                                                                                                                                         
e
                                                                                                                                                                                                         
                                                                                                                                                                                                           
d
                                                                                                                                                                                                           
                                                                                                                                                                                                             
)
                                                                                                                                                                                                             
PARAMETERS  
CONDITIONS  
TYP  
MIN/MAX RATINGS  
UNITS  
SYMBOL  
AmbientTemperature  
CLC411AJ  
+25°C  
-40°C  
+25°C  
+85°C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth  
Vout < 1Vpp  
Vout < 6Vpp  
200  
75  
150  
50  
150  
50  
110  
40  
MHz  
MHz  
SSBW  
LSBW  
gain flatness  
peaking  
rolloff  
peaking  
rolloff  
linear phase deviation  
differential gain  
differential phase  
Vout < 1Vpp  
DC to 30MHz  
DC to 30MHz  
DC to 200MHz  
DC to 60MHz  
DC to 60MHz  
4.43MHz, RL=150W  
4.43MHz, RL=150W  
0.05  
0.05  
0.1  
0.2  
0.3  
0.02  
0.03  
0.2  
0.2  
0.6  
0.7  
1.0  
0.2  
0.2  
0.5  
0.4  
1.0  
0.3  
0.4  
0.6  
0.7  
1.0  
dB  
dB  
dB  
dB  
°
%
°
GFPL  
GFRL  
GFPH  
GFRH  
LPD  
DG  
DP  
TIME DOMAIN RESPONSE  
rise and fall time  
settling time to 0.1%  
overshoot  
6V step  
2V step  
2V step  
6V step  
2.3  
15  
5
ns  
ns  
%
V/µs  
TR  
TS  
OS  
SR  
23  
15  
18  
10  
23  
15  
slew rate  
2300  
DISTORTION AND NOISE RESPONSE (note 1)  
2ND harmonic distortion  
3RD harmonic distortion  
equivalent noise input  
voltage  
2Vpp, 20MHz  
2Vpp, 20MHz  
-48  
-52  
-35  
-42  
-35  
-42  
-35  
-35  
dBc  
dBc  
HD2  
HD3  
>1MHz  
>1MHz  
>1MHz  
>1MHz  
2.5  
12.9  
6.3  
-157  
45  
nV/Hz VN  
pA/Hz ICI  
pA/Hz ICN  
dBm1Hz SNF  
inverting current  
non-inverting current  
noise floor  
integrated noise  
1MHz to 200MHz  
µV  
INV  
STATIC DC PERFORMANCE  
*input offset voltage  
±2  
+30  
12  
±200  
±12  
±50  
56  
52  
11  
±13  
±50  
65  
±400  
±40  
±200  
48  
44  
14  
4.5  
±9.0  
±14  
±50  
±20  
±250  
±30  
±150  
48  
44  
12  
4.5  
mV  
µV/°C  
µA  
nA/°C  
µA  
nA/°C  
dB  
dB  
mA  
mA  
VIO  
DVIO  
IBN  
DIBN  
IBI  
____  
average temperature coefficient  
*input bias current non-inverting  
average temperature coefficient  
*input bias current inverting  
average temperature coefficient  
power supply rejection ratio  
common mode rejection ratio  
*supply current  
supply current  
30  
____  
±30  
____  
DIBI  
50  
46  
12  
3.5  
PSRR  
CMRR  
ICC  
no load  
disabled  
2.5  
ICCD  
DISABLE/ENABLE PERFORMANCE (note 2)  
disable time  
enable time  
DIS voltage  
to >50dB attenuation @10MHz  
10  
55  
30  
30  
60  
ns  
ns  
TOFF  
TON  
pin 8  
to disable  
to enable  
off isolation  
4.5  
5.5  
59  
<3.0  
>7.0  
55  
<3.0  
>6.5  
55  
<3.0  
>6.5  
55  
V
V
dB  
VDIS  
VEN  
OSD  
at 10MHz  
MISCELLANEOUS PERFORMANCE  
non-inverting input resistance  
1000  
2.0  
±6.0  
±4.5  
±4.0  
70  
250  
3.0  
750  
3.0  
±4.5  
±4.0  
±3.5  
50  
1000  
3.0  
kΩ  
pF  
V
V
V
RIN  
CIN  
VO  
VOL  
CMIR  
IO  
non-inverting input capacitance  
output voltage range  
output voltage range  
common mode input range  
output current  
no load  
RL=100Ω  
30  
40  
mA  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels  
are determined from tested parameters.  
Absolute Maximum Ratings  
Miscellaneous Ratings  
Vcc  
Iout  
±18V  
125mA  
Recommended gain range ±1 to ±10V/V  
Notes: * AJ :100% tested at +25°C.  
common-mode input voltage  
differential input voltage  
±Vcc  
note 1  
note 2  
:Specifications guaranteed using 0.01mF bypass capacitors  
on pins 1 & 5.  
:Break before make is guaranteed.  
±15V  
maximum junction temperature  
operating temperature range: AJ  
storage temperature range  
lead temperature (soldering 10 sec)  
ESD (human body model)  
+150°C  
-40°C to +85°C  
-65°C to +150°C  
+300°C  
Package Thermal Resistance  
1000V  
Package  
θJC  
θJA  
AJP  
AJE  
A8B  
65°C/W  
55°C/W  
25°C/W  
120°C/W  
135°C/W  
115°C/W  
Reliability Information  
Transistor count  
70  
http://www.national.com  
2
o
Non-Inverting Frequency Response  
Inverting Frequency Response  
Av = 2  
Rf = 301Ω  
Av = -2  
Rf = 301Ω  
Av = 1  
Rf = 402Ω  
Av = -1  
Rf = 301Ω  
Vout = 1Vpp  
Vout = 1Vpp  
0
-180  
-270  
-360  
-450  
-540  
-630  
-90  
-180  
-270  
-360  
-450  
Av = 10  
Rf = 200Ω  
Av = -10  
Rf = 200Ω  
Av = 5  
Rf = 200Ω  
Av = -5  
Rf = 249Ω  
1
100  
1
100  
Frequency (MHz)  
Frequency (MHz)  
3
http://www.national.com  
+Vcc  
+Vcc  
6.8µF  
0.1µF  
6.8µF  
0.1µF  
Figure 3: Recommended  
Inverting Gain Circuit  
DIS  
DIS  
7
+Vr  
7
+Vr  
0.01µF  
0.01µF  
8
8
Vin  
+
+
1
1
3
2
3
2
6
6
Vout  
25Ω  
Vout  
CLC411  
CLC411  
Rin  
_
0.01µF  
_
0.01µF  
5
5
4
4
-Vr  
-Vr  
Vin  
Rg  
Rf  
Rf  
Rg  
0.1µF  
6.8µF  
0.1µF  
6.8µF  
Select RT to yield  
Rin = RT||Rg  
RT  
Figure 1: Recommended  
Non-inverting Gain Circuit  
-Vcc  
-Vcc  
low-inductancegroundplane. BypassingtheVr pinswill  
reduce high frequency noise (>10MHz) in the amplifier.  
If this noise is not a concern these capacitors may be  
eliminated.  
Description  
TheCLC411isahigh-speedcurrent-feedbackoperational  
amplifier which operates from ±15V power supplies.  
The external supplies (±VCC) are regulated to lower  
voltages internally. The amplifier itself sees  
approximately ±6.5V rails. Thus the device yields  
performance comparable to Comlinear’s ±5V devices,  
butwithhighersupplyvoltages. Thereisnodegradation  
in rated specifications when the CLC411 is operated  
from ±12V. A slight reduction in bandwidth will be  
observed with ±10V supplies. Operation at less than  
±10V is not recommended.  
Differential Gain and Phase  
The differential gain and phase errors of the CLC411  
drivingonedoubly-terminatedvideoload(RL=150)are  
specified and guaranteed in the “Electrical  
Characteristics” table. The “Typical Performance” plot,  
“Differential Gain and Phase (4.43MHz)” shows the  
differential gain and phase performance of the CLC411  
when driving from one to four video loads. Application  
noteOA-08, “DifferentialGainandPhaseforComposite  
Video Systems,” describes in detail the techniques  
used to measure differential gain and phase.  
A block diagram of the amplifier and regulator topology  
is shown in Figure 2, “CLC411 Equivalent Circuit.” The  
regulatorsderivetheirreferencevoltagefromaninternal  
floating zener voltage source. External control of the  
zener reference pins can be used to level-shift amplifier  
operation which is discussed in detail in the section  
entitled “Extending Input/Output Range with Vr.”  
FeedbackResistor  
The loop gain and frequency response for a current-  
feedback operational amplifier is determined largely by  
the feedback resistor, Rf. The electrical characteristics  
and typical performance plots contained within the  
datasheet, unless otherwise stated, specify an Rf of  
301, a gain of +2V/V and operation with ±15V power  
supplies. The frequency response at different gain  
settings and supply voltages can be optimized by  
selecting a different value of Rf. Generally, lowering Rf  
will peak the frequency response and extend the  
bandwidth while increasing its value will roll off the  
response. For unity-gain voltage follower circuits, a  
+Vcc  
+Vr  
7
17kΩ  
1
+
reg  
3
2
+
+
-
6
Vz  
-
-Vr  
5
_
reg  
17kΩ  
-Vcc  
4
500  
Figure 2: CLC411 Equivalent Circuit  
400  
Inverting  
Power Supply Decoupling  
300  
There are four pins associated with the power supplies.  
The VCC pins (4,7) are the external supply voltages. The  
Vr pins (5,1) are connected to internal reference nodes.  
Figures 1 and 3 , “Recommended Non-inverting Gain  
Circuit” and "Recommended Inverting Gain Circuit"  
show the recommended supply decoupling scheme  
with four ceramic and two electrolytic capacitors. The  
ceramiccapacitorsmustbeplacedimmediatelyadjacent  
to the device pins and connected directly to a good  
Non-Inverting  
200  
100  
0
0
1
2
3
4
5
6
7
8
9
10  
Gain (V/V)  
Figure 4: Recommended Rf vs. Gain  
http://www.national.com  
4
non-zero Rf must be used with current-feedback  
operationalamplifierssuchastheCLC411. Application  
note OA-13, “Current-Feedback Loop-Gain Analysis  
and Performance Enhancements,” explains the  
ramifications of Rf and how to use it to tailor the desired  
frequencyresponsewithrespecttogain. Theequations  
found in the application note should be considered as a  
starting point for the selection of Rf. The equations do  
not factor in the effects of parasitic capacitance found  
ontheinvertinginput,theoutputnoracrossthefeedback  
resistor. Equations in OA-13 require values for Rf  
(301), Av(+2)andRi (invertinginputresistance, 50).  
CombiningthesevaluesyieldsaZt*(optimumfeedback  
transimpedance) of 400. Figure 4 entitled  
"Recommended Rf vs. Gain" will enable the selection of  
the feedback resistor that provides a maximally flat  
frequency response for the CLC411 over its gain range.  
The linear portion of the two curves (i.e. AV>4) results  
from the limitation on Rg (i.e. Rg 50).  
Enable/Disable Operation  
ThedisablefeatureallowstheoutputsofseveralCLC411  
devices to be connected onto a common analog bus  
formingahigh-speedanalogmultiplexer.Whendisabled,  
the output and inverting inputs of the CLC411 become  
high impedances. The disable pin has an internal pull-  
up resistor which is pulled-up to an internal voltage, not  
totheexternalsupply. TheCLC411isenabledwhenpin  
+
8 is left open or pulled-up to 7V and disabled when  
+
grounded or pulled below 3V. CMOS logic devices are  
necessary to drive the disable pin. For example, CMOS  
+
logicwithVDD 7Vwillguaranteeproperoperationover  
temperature. TTL voltage levels are inadequate for  
controlling the disable feature.  
For faster enable/disable operation than 15V CMOS  
logic devices will allow, the circuit of Figure 5 is  
recommended. Afastfour-transistorcomparator,Figure  
5A, interfaces between the CLC411 DISABLE pin and  
several standard logic families. This circuit has a  
differential input between the bases of Q1 and Q2. As  
such it may be driven directly from differential ECL  
logic, as in shown in Figure 5B. Single-ended logic  
familiesmayalsobeusedbyestablishinganappropriate  
threshold voltage on the Vth input, the base of Q2.  
+15V  
0.1µF  
Q3  
Q4  
CLC411 pin 8, DISABLE  
Disable  
Q1  
Q2  
Vth  
Q1,Q2 MPSH10  
Q3,Q4 MPSH81  
3.57kΩ  
0.1µF  
-15V  
Buffers  
Figure 5A: Disable Interface  
A
B
C
0
1
2
3
4
5
6
7
Q1  
Q2  
DIS (pin 8)  
330Ω  
330Ω  
+
-5.2V  
-5.2V  
ECL  
Gate  
A
-
CLC411  
Figure 5B: Differential ECL Interface  
DIS (pin 8)  
931Ω  
+
50Ω  
Q1  
Q2  
B
-
0.1µF  
10kΩ  
-15V  
330Ω  
ECL  
Gate  
CLC411  
-5.2V  
Figure 5C: ECL Interface  
Figure 6: General Multiplexing Circuit  
Figures 5C and 5D illustrate a single-ended ECL and  
TTL interface respectively. The Disable input, the base  
of Q1, is driven above and below the threshold, Vth.  
50Ω  
0.1µF  
50Ω  
Q2  
Q1  
332Ω  
TTL  
Gate  
1N914  
Fastest switching speeds result when the differential  
voltage between the bases of Q1 and Q2 is kept to less  
Figure 5D: TTL Interface  
5
http://www.national.com  
than one volt. Single-ended ECL, Figure 5C, maintains  
this desired maximum differential input voltage. TTL  
and CMOS have higher Vhigh to Vlow excursions. The  
circuit of figure 5D will ensure the voltage applied  
between the bases of Q1 and Q2 does not cause  
excessive switching delays in the CLC411. Under the  
aboveproscribedfour-transistorinterface, allvariations  
were evaluated with approximately 1ns rise and fall  
times which produced switching speeds equivalent to  
the rated disable/enable switching times found in the  
"CLC411 Electrical Characteristics" table.  
implicitly have 0V as their midpoint, i.e. the VO range  
is ±6V, centered at 0V.  
+
An external voltage source can be applied to Vr to shift  
the range of the input/output voltages. For example, if  
+
it were desired to move the positive VO range from 6V  
+
to a 9V maximum in unipolar operation, Figure 7, “DC  
+
Parameters as a Function of Vr”, is used to determine  
+
the required supply and Vr voltages. Referring to  
+
Figure 7, locate the point on the VOMAX line where the  
+
ordinate is 9V. Draw a vertical line from this point  
intersecting the other lines in the graph. The circuit  
voltages are the ordinates of these intersections. For  
this example these points are shown in the graph as  
A general multiplexer configuration using several  
CLC411s is illustrated in figure 6, where a typical 8-to-  
1 digital mux is used to control the switching operation  
of the paralleled CLC411s. Since "break-before-make"  
is a guaranteed specification of the CLC411 this  
configuration works nicely. Notice the buffers used in  
driving the disable pins of the CLC411s. These buffers  
may be 15V CMOS logic devices mentioned previously  
or any variation of the four-transistor comparator  
illustrated above.  
+
+
solid dots. The required voltage sources are Vr= 12V,  
+
+
VCC= 12V, -VCC=-12V. When these supply and  
reference voltages are applied, the range for VO is -3V  
+
+
to 9V,andCMIRrangesfrom-1Vto 7V.Thedifference  
between the minimum and maximum voltages is  
constant, i.e. 12V for VO, only the midpoint has been  
+
shifted, i.e. from 0V to 3V for VO.  
Note that in this example the -Vr pin has been left open  
(or bypassed to reduce high-frequency noise). The  
Extending Input/Output Range with Vr  
+
AscanbeseeninFigure3, themagnitudeoftheinternal  
regulated supply voltages is fixed by Vz. In normal  
difference between Vr and -Vr is fixed by Vz. A level-  
shifting voltage can be applied to only one of the  
reference pins, not both. If extended operation were  
needed in the negative direction, Figure 4 may be used  
by changing the signs, and applying the resultant  
negative voltage to the -Vr pin. It is recommended that  
+
operation, with ±15V external supplies, Vr is nominally  
+
9V when left floating. CMIR (common mode input  
range) and VO (output voltage range, no load) are  
specified under these conditions. These parameters  
+
Vr be used for positive shifts, and -Vr for negative  
shifts of input/output voltage range.  
Printed Circuit Layout & Evaluation Board  
Refer to application note OA-15, “Frequent Faux Pas in  
Applying Wideband Current Feedback Amplifiers,” for  
boardlayoutguidelinesandconstructiontechniques.Two  
veryimportantpointstoconsiderbeforecreatingalayout  
which are found in the above application note are worth  
reiteration. Firsttheinputandoutputpinsaresensitiveto  
parasitic capacitances. These parasitic capacitances  
can cause frequency-response peaking or sustained  
oscillation. To minimize the adverse effect of parasitic  
capacitances, thegroundplaneshouldberemovedfrom  
those pins to a distance of at least 0.25" Second, leads  
shouldbekeptasshortaspossibleinthefinishedlayout.  
Inparticular,thefeedbackresistorshouldhaveitsshortest  
leadontheinvertinginputsideoftheCLC411.Theoutput  
is less sensitive to parasitic capacitance and therefore  
can drive the longer of the two feedback resistor  
connections.TheevaluationboardavailablefortheCLC411  
(part#730013forthrough-holepackages,730027forSO-  
8) may be used as a reference for proper board layout.  
Applicationschematicsforthisevaluationboardareinthe  
product accessories section of the Comlinear databook.  
20  
15  
10  
5
+VCC  
max  
+Vr  
+VOmax  
-VOmin  
-10  
-5  
5
10  
15  
+
_
-5  
Vcm  
Vcm  
ange  
r
cc  
V
-10  
-15  
Recommended  
+
-VCC  
max  
ange  
r
cc  
V
Recommended  
-
Figure 7: DC Parameters as a Function of +Vr  
http://www.national.com  
6
This page intentionally left blank.  
7
http://www.national.com  
Customer Design Applications Support  
National Semiconductor is committed to design excellence. For sales, literature and technical support, call the  
National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.  
Life Support Policy  
National’s products are not authorized for use as critical components in life support devices or systems without the express written approval  
of the president of National Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or  
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
2501 Miramar Tower  
1-23 Kimberley Road  
Tsimshatsui, Kowloon  
Hong Kong  
National Semiconductor  
Japan Ltd.  
Tel: 81-043-299-2309  
Fax: (+49) 0-180-530 85 86  
E-mail: europe.support.nsc.com  
Deutsch Tel: (+49) 0-180-530 85 85  
English Tel: (+49) 0-180-532 78 32  
Francais Tel: (+49) 0-180-532 93 58  
Italiano Tel: (+49) 0-180-534 16 80  
Fax: 81-043-299-2408  
N
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said  
circuitry and specifications.  
http://www.national.com  
8

相关型号:

CLC411A8D

Current-Feedback Operational Amplifier
ETC

CLC411A8L-2

Current-Feedback Operational Amplifier
ETC

CLC411AIB

Current-Feedback Operational Amplifier
ETC

CLC411AID

Current-Feedback Operational Amplifier
ETC

CLC411AJ-QML

Current-Feedback Operational Amplifier
ETC

CLC411AJE

High-Speed Video Op Amp with Disable
NSC

CLC411AJE

Video Amplifier, 1 Channel(s), 1 Func, Bipolar, PDSO8, PLASTIC, SOIC-8
ROCHESTER

CLC411AJP

High-Speed Video Op Amp with Disable
NSC

CLC411ALC

Current-Feedback Operational Amplifier
ETC

CLC411AMC

High-Speed Video Op Amp with Disable
NSC

CLC411MDC

IC OP-AMP, 9000 uV OFFSET-MAX, UUC8, Operational Amplifier
NSC

CLC412

Dual Wideband Video Op Amp
NSC