CLC418 [NSC]

Dual High-Speed, Low-Power Line Driver; 双高速,低功耗线路驱动器
CLC418
型号: CLC418
厂家: National Semiconductor    National Semiconductor
描述:

Dual High-Speed, Low-Power Line Driver
双高速,低功耗线路驱动器

驱动器
文件: 总12页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 1996  
N
Comlinear CLC418  
Dual High-Speed, Low-Power Line Driver  
General Description  
Features  
The Comlinear CLC418 dual high-speed current-feedback  
operational amplifier is designed to drive low-impedance and  
high capacitance loads while maintaining high signal fidelity.  
Operating on ±5V power supplies, each of the CLC418’s  
amplifiers produces a continuous 96mA output current. Into a  
back-terminated 50load, the devices produce -85/-64dBc  
130MHz bandwidth (A = +2)  
v
96mA output current  
1.5mA supply current  
-85/-75dBc HD2/HD3  
15ns settling to 0.2%  
-74dBc input-referred crosstalk (5MHz)  
Single version available (CLC408)  
second/third harmonic distortion (A = +2, V = 2V , f = 1MHz).  
v
o
pp  
The CLC418’s current-feedback architecture maintains consistent  
performance over a wide range of gain and signal levels. DC gain  
and bandwidth can be set independently. With proper resistor  
selection, either maximally flat gain response or linear phase  
response can be selected.  
Applications  
ADSL/HDSL driver  
Coaxial cable driver  
UTP differential line driver  
Transformer/coil driver  
High capacitive-load driver  
Video line driver  
Portable/battery-powered line driver  
Differential A/D driver  
Requiring a mere 15mW quiescent power per amplifier, the  
CLC418 offers superior performance-vs-power with a 130MHz  
small-signal bandwidth, 350V/ms slew rate and quick 4.6ns  
rise/fall times (2Vstep). The combination of low quiescent power,  
high output current drive and high performance make the  
CLC418 a great choice for many battery-powered personal  
communication/computing systems.  
Non-Inverting Frequency Response  
(Av = +2V/V, RL = 100)  
Combining the CLC418’s two amplifiers (shown below) results in  
a powerful differential line driver for driving video signals over  
unshielded twisted-pair (UTP). The CLC418 can also be used for  
driving differential-input step-up transformers for applications  
such as Asynchronous Digital Subscriber Lines (ADSL) or High-  
Bit-Rate Digital Subscriber Lines (HDSL).  
The CLC418’s amplifiers make excellent low-power high-  
resolution A-to-D converter drivers with their very fast 15ns set-  
tling time (to 0.2%) and ultra-low -85/-75dBc harmonic distortion  
1M  
10M  
100M  
(A = +2, V = 2V , f = 1MHz, R = 1k).  
v
o
pp  
L
Frequency (Hz)  
Typical Application Diagram  
Pinout  
Differential Line Driver  
DIP & SOIC  
with Load Impedance Conversion  
Rg2  
Rf2  
Vo1  
Vinv1  
VCC  
Vd/2  
Vin  
Rt1  
Vo2  
+
1/2  
CLC418  
Rm/2  
Io  
-
I:n  
-Vd/2  
+
Vo  
-
1/2  
CLC418  
Zo  
Vnon-inv1  
VEE  
Vinv2  
Vnon-inv2  
-
Req  
RL  
Rf1  
+
UTP  
Rt2  
Rm/2  
Rg1  
© 1996 National Semiconductor Corporation  
Printed in the U.S.A.  
http://www.national.com  
(A = +2, R = 1k, V = + 5V, RL = 100Ω, T = 25°C; unless specified)  
CLC418 Electrical Characteristics  
V
f
cc  
PARAMETERS  
CONDITIONS  
TYP  
MIN/MAX RATINGS  
UNITS  
NOTES  
Ambient Temperature  
CLC418AJ  
+25˚C  
+25˚C  
0 to 70˚C -40 to 85˚C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth  
Vo < 1.0Vpp  
Vo < 4.0Vpp  
Vo < 1.0Vpp  
Vo < 1.0Vpp  
DC to 200MHz  
<30MHz  
130  
45  
30  
80  
33  
25  
80  
29  
20  
75  
28  
20  
MHz  
MHz  
MHz  
B
-
0.1dB bandwidth  
gain flatness  
peaking  
0
0.5  
0.45  
0.4  
0.9  
0.6  
0.5  
1.0  
0.6  
0.5  
dB  
dB  
deg  
%
B
B
rolloff  
0.2  
0.2  
0.1  
0.4  
linear phase deviation  
differential gain  
differential phase  
<30MHz  
NTSC, RL=150Ω  
NTSC, RL=150Ω  
deg  
TIME DOMAIN RESPONSE  
rise and fall time  
settling time to 0.2%  
overshoot  
2V step  
2V step  
2V step  
2V step  
4.6  
15  
5
7.0  
30  
12  
7.5  
38  
12  
8.0  
40  
12  
ns  
ns  
%
slew rate  
AV = +2  
350  
260  
225  
215  
V/µs  
DISTORTION AND NOISE RESPONSE  
2
nd harmonic distortion  
2Vpp, 1MHz  
2Vpp, 1MHz; RL = 1kΩ  
2Vpp, 5MHz  
-85  
-85  
-65  
-64  
-75  
-50  
-74  
-60  
-45  
-68  
-58  
-44  
-68  
-58  
-44  
-68  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
B
B
3rd harmonic distortion  
2Vpp, 1MHz  
2Vpp, 1MHz; RL = 1kΩ  
2Vpp, 5MHz  
2Vpp, 5MHz  
crosstalk (input-referred)  
equivalent input noise  
voltage (eni)  
>1MHz  
>1MHz  
>1MHz  
5
1.4  
13  
6.3  
1.8  
16  
6.6  
1.9  
17  
6.7  
2.3  
18  
nV/Hz  
pA/Hz  
pA/Hz  
non-inverting current (ibn)  
inverting current (ibi)  
STATIC DC PERFORMANCE  
input offset voltage  
average drift  
input bias current (non-inverting)  
average drift  
input bias current (inverting)  
average drift  
power supply rejection ratio  
common-mode rejection ratio  
supply current  
2
25  
2
60  
2
20  
55  
52  
3.0  
8
8
10  
50  
48  
3.4  
11  
35  
11  
80  
18  
90  
48  
46  
3.6  
11  
40  
15  
110  
20  
110  
48  
mV  
µV/˚C  
µA  
nA/˚C  
µA  
nA/˚C  
dB  
dB  
A
A
A
B
A
DC  
DC  
46  
3.6  
RL= , 2 channels  
mA  
MISCELLANEOUS PERFORMANCE  
input resistance (non-inverting)  
input capacitance (non-inverting)  
common mode input range  
output voltage range  
5
1
2.7  
3.3  
4.0  
3
2
2.3  
2.9  
3.8  
2.5  
2
1
2
2.0  
2.6  
3.5  
MΩ  
pF  
V
V
V
±
±
±
±
±
±
±2.2  
±2.8  
±3.7  
±
±
±
RL = 100Ω  
RL = ∞  
output voltage range  
output current  
output resistance, closed loop  
96  
0.03  
96  
0.15  
96  
0.2  
60  
0.3  
mA  
C
DC  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are  
determined from tested parameters.  
Absolute Maximum Ratings  
supply voltage  
Notes  
A) J-level: spec is 100% tested at +25°C, sample tested at +85°C.  
L-level: spec is 100% wafer probed at +25°C.  
B) J-level: spec is sample tested at +25°C.  
C)The output current sourced or sunk by the CLC418 can  
exceed the maximum safe output current limit.  
±
7V  
96mA  
VCC  
output current (see note C)  
common-mode input voltage  
maximum junction temperature  
storage temperature range  
lead temperature (soldering 10 sec)  
ESD rating (human body model)  
±
+175°C  
-65°C to +150°C  
+300°C  
4000V  
http://www.national.com  
2
(A = +2, R = 1k, R = 100, VCC = + 5V, T = 25°C; CLC418AJ; unless specified)  
Typical Performance Characteristics  
v
f
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
Frequency Response vs. RL  
RL=1k  
Vo = 1Vpp  
Vo = 1Vpp  
Vo = 1Vpp  
Rf=1.21k  
RL=25  
Av+2  
Av+5  
Rf=0.95k  
RL=100  
Rf=1k  
Av-1  
Av-5  
Gain  
Gain  
Gain  
Av-10  
Av+1  
Av+10  
Av-2  
RL=100  
Phase  
Phase  
Phase  
0
0
0
Av+10  
RL=1k  
Av-5  
Rf=301  
-90  
-180  
-270  
-90  
-90  
-180  
-270  
Rf=200  
Av+5  
RL=25  
-180  
-270  
-360  
-450  
Rf=402  
Av-10  
Rf=200  
Av+2  
Rf=953  
Av-2  
Rf=681  
-360  
-450  
Av+1  
Rf=3k  
-360  
-450  
Av-1  
Rf=806  
1M  
10M  
100M  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Small Signal Channel Matching  
Frequency Response vs. Vout  
Frequency Response vs. Capacitive Load  
Vo = 1Vpp  
Vo = 1Vpp  
CL=0pF  
Rs =0  
Channel A  
CL=100pF  
Rs =24.9  
Channel B  
Channel A  
0.10Vpp  
CL=1000pF  
0
1.0Vpp  
2.0Vpp  
Rs =5.7  
-45  
-90  
-135  
-180  
-225  
+
-
Rs  
CL  
4.0Vpp  
Channel B  
1k  
1k  
CL=10pF  
Rs =100  
1k  
1M  
10M  
100M  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Open Loop Transimpedance Gain, Z(s)  
PSRR and CMRR  
Equivalent Input Noise  
1M  
100k  
10k  
1k  
180  
140  
100  
60  
100  
10  
1
100  
10  
1
60  
50  
40  
30  
20  
10  
0
Gain  
Phase  
ibi  
CMRR  
eni  
PSRR  
-
Vo  
CLC418  
Ii  
+
100  
ibn  
100  
20  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Input-Referred Crosstalk  
2nd & 3rd Harmonic Distortion  
2nd Harmonic Distortion, RL = 25  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
Vo = 1Vpp  
Vo = 2Vpp  
10MHz  
5MHz  
2nd  
RL = 100  
3rd  
RL = 100  
2MHz  
1MHz  
3rd  
RL = 1k  
2nd  
RL = 1k  
1M  
10M  
100M  
1M  
10M  
0
1
2
3
4
5
Frequency (Hz)  
Frequency (Hz)  
Output Amplitude (Vpp  
)
2nd Harmonic Distortion, RL = 100Ω  
3rd Harmonic Distortion, RL = 100Ω  
3rd Harmonic Distortion, RL = 25Ω  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
10MHz  
10MHz  
10MHz  
5MHz  
2MHz  
5MHz  
5MHz  
2MHz  
2MHz  
1MHz  
1MHz  
1MHz  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
Output Amplitude (Vpp  
)
3
http://www.national.com  
(A = +2, R = 1k, R = 100, VCC = + 5V, T = 25°C; CLC418AJ; unless specified)  
Typical Performance Characteristics  
v
f
L
3rd Harmonic Distortion, RL = 1kΩ  
2nd Harmonic Distortion, RL = 1kΩ  
Closed Loop Output Resistance  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
100  
10  
1
10MHz  
10MHz  
5MHz  
5MHz  
2MHz  
1MHz  
2MHz  
1MHz  
0.1  
0
1
2
3
4
5
0
1
2
3
4
5
10M  
100M  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Frequency (Hz)  
Large Signal Pulse Response  
Gain Flatness & Linear Phase Deviation  
Small Signal Pulse Response  
4.0  
2.0  
0
0.20  
0.10  
0
Av+2  
Av+2  
Phase  
Gain  
Av-2  
-2.0  
-4.0  
-0.10  
-0.20  
Av-2  
Time (10ns/div)  
1M  
10M  
Time (10ns/div)  
Frequency (Hz)  
Pulse Crosstalk  
Short Term Settling Time  
Long Term Settling Time  
0.2  
0.1  
0
0.4  
0.2  
0
Vout = 2Vstep  
Active Output Channel  
-0.2  
-0.4  
-0.1  
-0.2  
Time (10ns/div)  
0
20n  
40n  
60n  
80n  
100n  
1µ  
10µ  
100µ  
1m  
10m  
100m  
1
Time (s)  
Time (s)  
Settling Time vs. Capacitive Load  
IBI, IBN, VOS vs. Temperature  
70  
60  
50  
40  
30  
20  
10  
60  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VOS  
50  
40  
30  
20  
10  
0
Rs  
IBI  
0.05%  
0.1%  
IBN  
20p  
100p  
1000p  
-50  
0
50  
100  
CL (F)  
Temperature (°C)  
http://www.national.com  
4
CLC418 OPERATION  
The CLC418 has a current-feedback (CFB) architecture  
where:  
built in an advanced complementary bipolar process.  
The key features of current-feedback are:  
A is the DC voltage gain  
v
R is the feedback resistor  
f
Z(jω) is the CLC418’s open-loop  
transimpedance gain  
AC bandwidth is independent of voltage gain  
Inherently unity-gain stability  
Frequency response may be adjusted with  
Z jω  
(
)
is the loop gain  
feedback resistor (R in Figures 1-3)  
f
R
f
High slew rate  
The denominator of the equation above is approximately  
at low frequencies. Near the -3dB corner  
frequency, the interaction between R and Z(jω)  
Low variation in performance for a wide range  
of gains, signal levels and loads  
Fast settling  
1
f
dominates the circuit performance. Increasing R does  
f
Current-feedback operation can be explained with a  
simple model. The voltage gain for the circuits in Figures 1  
and 2 is approximately:  
the following:  
Decreases loop gain  
Decreases bandwidth  
V
A
Reduces gain peaking  
o
v
R
=
V
Lowers pulse response overshoot  
f
in  
1+  
Affects frequency response phase linearity  
Z jω  
(
)
CLC418 DESIGN INFORMATION  
Standard op amp circuits work with CFB op amps. There  
are 3 unique design considerations for CFB:  
The normalized gain plots in the Typical Performance  
Characteristics section show different feedback  
resistors (R ) for different gains. These values of R are  
recommended for obtaining the highest bandwidth with  
f
f
The feedback resistor (R in Figures 1-3) sets  
AC performance  
f
minimal peaking. The resistor R provides DC bias for  
t
R cannot be replaced with a short or a capacitor  
f
the non-inverting input.  
The output offset voltage is not reduced by  
balancing input resistances  
For A < 6, use linear interpolation on the nearest A  
v
v
v
values to calculate the recommended value of R . For A  
f
The following sub-sections cover:  
6, the minimum recommended R is 200.  
f
Design parameters, formulas and techniques  
Interfaces  
Application circuits  
Layout techniques  
SPICE model information  
R
f
Select R to set the DC gain:  
R =  
g
g
A 1  
v
DC gain accuracy is usually limited by the tolerance of R  
f
and R .  
g
DC Gain (non-inverting)  
The non-inverting DC voltage gain for the configuration  
DC Gain (unity gain buffer)  
The recommended R for unity gain buffers is 3k. R is  
f
g
R
left open. Parasitic capacitance at the inverting node  
f
shown in Figure 1 is:  
A = 1+  
v
may require a slight increase of R to maintain a flat  
R
f
g
frequency response.  
VCC  
6.8µF  
DC Gain (inverting)  
+
The inverting DC voltage gain for the configuration  
R
f
shown in Figure 2 is:  
A = −  
0.1µF  
v
8
Vin  
3(5)  
2(6)  
R
+
g
1(7)  
Vo  
1/2  
CLC418  
The normalized gain plots in the Typical Performance  
Characteristics section show different feedback  
resistors (R ) for different gains. These values of R are  
Rt  
-
4
Rf  
f
f
0.1µF  
Rg  
recommended for obtaining the highest bandwidth with  
minimal peaking. The resistor R provides DC bias for  
the non-inverting input.  
t
+
6.8µF  
VEE  
For |A | < 6, use linear interpolation on the nearest A  
v
v
values to calculate the recommended value of R . For  
f
Figure 1: Non-Inverting Gain  
|A | 6, the minimum recommended R is 200.  
v
f
5
http://www.national.com  
VCC  
Rt  
Rg  
Rref  
6.8µF  
+
+
Vo  
1/2  
CLC418  
Vin  
-
0.1µF  
Rt  
8
3(5)  
2(6)  
+
1(7)  
Vo  
1/2  
CLC418  
Rf  
Vref  
-
Rg  
4
Rf  
Vin  
Figure 4: Level Shifting Circuit  
DC Design (DC offsets)  
The DC offset model shown in Fig. 5 is used to calculate  
the output offset voltage. The equation for output offset  
voltage is:  
0.1µF  
+
6.8µF  
VEE  
R
f
Figure 2: Inverting Gain  
V = − V +I  
R
1+  
+ I  
R
(
)
(
)
o
os  
eq1  
BN  
BI  
f
R
eq2  
R
f
Select R to set the DC gain:  
. At large gains,  
R =  
g
g
The current offset terms, I  
and I , do not track  
BI  
each other. The specifications are stated in terms of  
magnitude only. Therefore, the terms V , I , and I  
can have either polarity. Matching the equivalent  
resistance seen at both input pins does not reduce the  
output offset voltage.  
A
BN  
v
R becomes small and will load the previous stage. This  
g
os BN  
BI  
can be solved by driving R with a low impedance buffer  
g
like the CLC111, or increasing R and R . See the  
f
g
AC Design (small signal bandwidth) sub-section for  
the tradeoffs.  
IBN  
DC gain accuracy is usually limited by the tolerance of R  
f
+
and R .  
+
g
Vo  
1/2  
Vos  
CLC418  
-
Req1  
DC Gain (transimpedance)  
-
RL  
Figure 3 shows a transimpedance circuit where the  
current I is injected at the inverting node. The current  
IBI  
Req2  
Rf  
in  
source’s output resistance is much greater than R .  
f
V
o
The DC transimpedance gain is:  
A
=
= −R  
f
R
I
in  
The recommended R is 3k. Parasitic capacitance at  
f
Figure 5: DC Offset Model  
DC Design (output loading)  
the inverting node may require a slight increase of R to  
f
maintain a flat frequency response.  
R , R , and R load the op amp output. The equivalent  
load seen by the output in Figure 5 is:  
L
f
g
DC gain accuracy is usually limited by the tolerance of R .  
f
VCC  
R || (R + R ), non-inverting gain  
L
f
eq2  
R
=
6.8µF  
L(eq)  
{
R || R , inverting and transimpedance gain  
+
L
f
The equivalent output load (R  
) needs to be large  
L(eq)  
0.1µF  
Rt  
8
enough so that the output current can produce the  
required output voltage swing.  
3(5)  
2(6)  
+
1(7)  
Vo  
1/2  
CLC418  
-
AC Design (small signal bandwidth)  
The CLC418 current-feedback amplifier bandwidth is a  
4
Rf  
0.1µF  
function of the feedback resistor (R ), not of the DC voltage  
Iin  
f
gain (A ). The bandwidth is approximately proportional  
V
+
1
6.8µF  
.
to  
As a rule, if R doubles, the bandwidth is cut in half.  
f
R
VEE  
f
Other AC specifications will also be degraded.  
Figure 3: Transimpedance Gain  
Decreasing R from the recommended value increases  
f
peaking, and for very small values of R oscillation  
will occur.  
DC Design (level shifting)  
Figure 4 shows a DC level shifting circuit for inverting  
f
gain configurations. V produces a DC output level shift  
ref  
AC Design (minimum slew rate)  
R
f
Slew rate influences the bandwidth of large signal  
sinusoids. To determine an approximate value of slew  
rate necessary to support a large sinusoid, use the  
of V  
, which is independent of the DC output  
ref  
R
ref  
produced by V .  
in  
http://www.national.com  
6
following equation:  
SR > 5 f V  
AC Design (crosstalk)  
Crosstalk performance depends on the layout. Three  
layout techniques that can reduce crosstalk are:  
peak  
where V  
is the peak output sinusoidal voltage.  
peak  
Provide short symmetrical ground return paths for:  
the inputs  
the supply bypass capacitors  
the load  
The slew rate of the CLC418 in inverting gains is always  
higher than in non-inverting gains.  
AC Design (linear phase/constant group delay)  
Provide a short, grounded guard trace that:  
The recommended value of R produces minimal peaking  
goes underneath the package  
f
and a reasonably linear phase response. To improve  
phase linearity when |A | < 6, increase R approximately  
is 0.1” (3mm) from the package pins  
is on top and bottom of the printed circuit  
v
f
50% over its recommended value. Some adjustment of  
board with connecting vias  
R may be needed to achieve phase linearity for your  
application. See the AC Design (small signal band-  
f
Try different bypass capacitors to reduce high  
frequency crosstalk  
width) sub-section for other effects of changing R .  
f
The CLC418’s evaluation board was used to produce the  
Input-Referred Crosstalk plot.  
Propagation delay is approximately equal to group delay.  
Group delay is related to phase by this equation:  
Capacitive Loads  
Capacitive loads, such as found in A/D converters,  
require a series resistor (R ) in the output to improve  
d φ f  
( )  
≈ −  
∆φ f  
( )  
1
1
τ
f = −  
( )  
gd  
360° d f  
360° ∆f  
s
settling performance. The Settling Time vs. Capacitive  
Load plot in the Typical Performance Characteristics  
section provides the information for selecting this resistor.  
where φ(f) is the phase in degrees. Linear phase implies  
constant group delay. The technique for achieving linear  
phase also produces a constant group delay.  
Using a resistor in series with a reactive load will also  
reduce the load’s effect on amplifier loop dynamics. For  
instance, driving coaxial cables without an output series  
resistor may cause peaking or oscillation.  
AC Design (peaking)  
Peaking is sometimes observed with the recommended  
R . If a small increase in R does not solve the problem,  
f
f
then investigate the possible causes and remedies  
listed below:  
Transmission Line Matching  
One method for matching the characteristic impedance  
of a transmission line is to place the appropriate  
resistor at the input or output of the amplifier. Figure 6  
shows the typical circuit configurations for matching  
transmission lines.  
Capacitance across R  
f
Do not place a capacitor across R  
f
Use a resistor with low parasitic  
capacitance for R  
f
A capacitive load  
C6  
Z0  
R1  
R3  
R2  
Rg  
R5  
Use a series resistor between the output  
+
Z0  
Vo  
R7  
1/2  
and a capacitive load (see the Settling  
+
-
CLC418  
-
V1  
V2  
R6  
Time versus C plot)  
L
Z0  
Rf  
R4  
Long traces and/or lead lengths between R  
and the CLC418  
f
+
-
Keep these traces as short as possible  
Figure 6: Transmission Line Matching  
For non-inverting and transimpedance gain configurations:  
In non-inverting gain applications, R is connected  
Extra capacitance between the inverting  
g
directly to ground. The resistors R , R , R6, and R are  
pin and ground (C )  
1
2
7
g
equal to the characteristic impedance, Z , of the  
o
See the Printed Circuit Board Layout  
transmission line or cable. Use R to isolate the  
3
sub-section below for suggestions on  
amplifier from reactive loading caused by the transmis-  
sion line, or by parasitics.  
reducing C  
g
Increase R if peaking is still observed  
f
after reducing C  
g
In inverting gain applications, R is connected directly to  
3
ground. The resistors R , R , and R are equal to Z . The  
For inverting gain configurations:  
4
6
7
o
parallel combination of R and R is also equal to Z .  
5
g
o
Inadequate ground plane at the non-inverting  
pin and/or long traces between non-inverting  
pin and ground  
The input and output matching resistors attenuate the  
signal by a factor of 2, therefore additional gain is needed.  
Place a 50 to 200resistor between the  
Use C to match the output transmission line over a greater  
6
non-inverting pin and ground (see R in  
Figure 2)  
frequency range. It compensates for the increase of  
the op amps output impedance with frequency.  
t
7
http://www.national.com  
Thermal Design  
Dynamic Range (noise)  
To calculate the power dissipation for the CLC418, follow  
these steps for each individual amplifier:  
The output noise defines the lower end of the CLC418’s  
useful dynamic range. Reduce the value of resistors in  
the circuit to reduce noise.  
1) Calculate the no-load op amp power:  
P
= I (V – V  
)
amp  
CC  
CC  
EE  
See the App Note Noise Design of CFB Op Amp  
Circuits for more details. Our SPICE models support noise  
simulations.  
2) Calculate the output stage’s RMS power:  
P = (V – V ) I , where V and I  
load  
are the RMS voltage and current across the  
external load  
3) Calculate the total op amp RMS power:  
o
CC  
load  
load  
load  
Dynamic Range (distortion)  
The distortion plots in the Typical Performance  
Characteristics section show distortion as a function  
of load resistance, frequency, and output amplitude.  
Distortion places an upper limit on the CLC418’s  
dynamic range.  
P = P  
+ P  
t
amp  
o
Now calculate the total power dissipated in the package:  
4) Sum P for both op amps to obtain P  
t
tot  
To calculate the maximum allowable ambient tempera-  
ture, solve the following equation: T = 175 – P  
,
θ
amb  
tot  
JA  
The CLC418’s output stage combines a voltage buffer  
with a complementary common emitter current source.  
The interaction between the buffer and the current  
source produces a small amount of crossover distortion.  
This distortion mechanism dominates at low output swing  
and low resistance loads. To avoid this type of distortion,  
use the CLC418 at high output swing.  
where  
is the thermal resistance from junction  
θ
JA  
to ambient in °C/W, and T  
Thermal Resistance section contains the thermal  
resistance for various packages.  
is in °C. The Package  
amb  
Dynamic Range (input /output protection)  
ESD diodes are present on all connected pins for protec-  
tion from static voltage damage. For a signal that may  
exceed the supply voltages, we recommend using diode  
clamps at the amplifier’s input to limit the signals to less  
than the supply voltages.  
Realized output distortion is highly dependent upon the  
external circuit. Some of the common external circuit  
choices that can improve distortion are:  
Short and equal return paths from the load to  
the supplies  
The CLC418’s output current can exceed the maximum  
safe output current. To limit the output current to < 96mA:  
De-coupling capacitors of the correct value  
Higher load resistance  
Limit the output voltage swing with diode  
clamps at the input  
V
o(max)  
Make sure that  
R
Printed Circuit Board Layout  
L
I
o(max)  
High frequency op amp performance is strongly dependent  
on proper layout, proper resistive termination and  
adequate power supply decoupling. The most important  
layout points to follow are:  
V
is the output voltage swing limit, and I  
is the  
o(max)  
o(max)  
maximum safe output current.  
Dynamic Range (input /output levels)  
The Electrical Characteristics section specifies the  
Common-Mode Input Range and Output Voltage  
Range; these voltage ranges scale with the supplies.  
Output Current is also specified in the Electrical  
Characteristics section.  
Use a ground plane  
Bypass power supply pins with:  
monolithic capacitors of about 0.1µF place  
less than 0.1” (3mm) from the pin  
tantalum capacitors of about 6.8µF for  
Unity gain applications are limited by the Common-Mode  
Input Range. At greater non-inverting gains, the Output  
Voltage Range becomes the limiting factor. Inverting  
gain applications are limited by the Output Voltage  
Range (and by the previous amplifier’s ability to drive  
large signal current swings or improved  
power supply noise rejection;  
we recommend a minimum of 2.2µF  
for any circuit  
R ). For transimpedance gain applications, the sum of  
the input currents injected at the inverting input pin of  
g
Minimize trace and lead lengths for components  
between the inverting and output pins  
V
Remove ground plane 0.1” (3mm) from all  
input/output pads  
max  
the op amp needs to be: I  
, where V  
is the  
max  
in  
R
f
For prototyping, use flush-mount printed circuit  
board pins; never use high profile DIP sockets.  
Output Voltage Range (see the DC Gain (transimpedance)  
sub-section for details).  
Evaluation Board  
The equivalent output load needs to be large enough  
so that the minimum output current can produce the  
required output voltage swing. See the DC Design  
(output loading) sub-section for details.  
Separate evaluation boards are available for proto-typing  
and measurements. Additional information is available in  
the evaluation board literature.  
http://www.national.com  
8
2
SPICE Models  
SPICE models provide a means to evaluate op amp  
designs. Free SPICE models are available that:  
n
Z
(jω)  
o(418)  
Return Loss -20 log  
, dB  
10  
Z
o
where Z  
(jω) is the output impedance of the CLC418,  
o(418)  
Support Berkeley SPICE 2G and its many  
derivatives  
and |Z  
(jω)| << R .  
o(418)  
m
Reproduce typical DC, AC, Transient, and  
Noise performance  
Support room temperature simulations  
The load voltage and current will fall in the ranges:  
n V  
V
o
max  
The readme file that accompanies the models lists the  
released models, and provides a list of modeled  
parameters. The application note Simulation  
SPICE Models for Comlinear’s Op Amps contains  
schematics and detailed information.  
I
max  
I
o
n
The CLC418’s high output drive current and low  
distortion make it a good choice for this application.  
Lowpass Anti-aliasing Filter  
with Delay Equalization  
The circuit shown in Figure 7 is a 5th-order Butterworth  
lowpass filter with group delay equalization. V needs to  
CLC418 Applications  
Differential Line Driver With Load  
Impedance Conversion  
in  
be a voltage source with low output impedance. Section  
The circuit shown in the Typical Application schematic  
on the front page operates as a differential line driver.  
The transformer converts the load impedance to  
a value that best matches the CLC418’s output  
capabilities. The single-ended input signal is  
converted to a differential signal by the CLC418. The  
line’s characteristic impedance is matched at both the  
input and the output. The schematic shows Unshielded  
Twisted Pair for the transmission line; other types of lines  
can also be driven.  
A
is  
a
simple single-pole filter. Section  
B
provides a single-pole allpass function for group delay  
equalization. Sections C and D are Sallen-Key lowpass  
biquad sections.  
R1A  
Vin  
+
R1B  
VoA  
1/2  
+
CLC418  
C2A  
VoB  
1/2  
-
U1A  
RfA  
CLC418  
C2B  
R3B  
-
U1B  
RfB  
Set up the CLC418 as a difference amplifier:  
V
R
R
d
f1  
f2  
= 2 1+  
= 2  
V
R
R
g2  
g1  
in  
C5C  
C5D  
R1C R3C  
C4C  
R1D  
αD  
+
R3D  
C4D  
VoC  
Make the best use of the CLC418’s output drive  
capability as follows:  
1/2  
CLC418  
+
Vo  
1/2  
CLC418  
-
R1D  
1- αD  
U2C  
RfC  
-
U2D  
RfD  
2 V  
max  
R
+R  
=
eq  
m
I
max  
RgD  
where R  
is the transformed value of the load  
eq  
impedance, V  
is the Output Voltage Range, and I  
max  
max  
is the maximum Output Current.  
Figure 7: Lowpass Anti-aliasing Filter  
Match the line’s characteristic impedance:  
The filter specifications we built to are:  
f = 10MHz (passband corner frequency)  
R = Z  
c
o
L
f = 20MHz (stopband corner frequency)  
s
R
= R  
eq  
m
A = 3.01dB (maximum passband attenuation)  
p
R
L
n =  
A = 30dB  
(minimum stopband attenuation)  
(DC gain)  
s
R
eq  
H = 0dB  
o
Select the transformer so that it loads the line with a  
value very near Z over your frequency range. The out-  
put impedance of the CLC418 also affects the match.  
With an ideal transformer we obtain:  
The designed component values are in the table below.  
The pre-distorted values compensate for the finite band-  
width of the CLC418.  
o
9
http://www.national.com  
For more information on the design of Sallen-Key filters and  
filter pre-distortion, see Comlinear’s App Notes on filters.  
Value  
Component  
Ideal  
Pre-distorted  
Precision Full-Wave Rectifier  
Figure 9 shows a precision full-wave rectifier using the  
R
C
238Ω  
67pF  
3.01kΩ  
314Ω  
67pF  
953Ω  
953Ω  
108Ω  
1.06kΩ  
22pF  
100pF  
3.01kΩ  
256Ω  
256Ω  
900Ω  
22pF  
211Ω  
300Ω  
1A  
2A  
CLC418. When V > 0, D is on, D is off, V = 0 and an  
in  
1
2
2
R
fA  
1B  
2B  
3B  
overall non-inverting gain is achieved. When V < 0, D  
in  
1
R
C
R
is off, D is on, both V and V are positive, and an over-  
2
1
2
all inverting gain is achieved. The output voltage of the  
rectifier is:  
R
fB  
R
R
C
C
100Ω  
1.07kΩ  
1C  
3C  
4C  
5C  
R +R +R  
2
5
7
R
1
V ,V < 0  
in in  
R +R  
R
R
2
5
4
6
1+  
1+  
V =  
o
R
R
fC  
/α  
3
R
227Ω  
227Ω  
850Ω  
1D  
D
R
R
R
2
7
5
>
V ,V  
0
R
/(1-α )  
D
in in  
1D  
R
1
R
C
C
3D  
4D  
5D  
100pF  
953Ω  
953Ω  
R2 V1 R5  
D1  
D2  
R7  
R
fD  
R1  
Vin  
R
gD  
-
-
Vo  
1/2  
1/2  
CLC418  
+
CLC418  
Table 1: Filter Component Values  
+
U1a  
R3  
U1b  
R4  
R6  
The nearest standard values for capacitors and resistors  
were used to build this filter. The resistors were 1%  
tolerance, and the capacitors 5% tolerance. The ideal  
and measured gains are shown in Figure 8.  
20Ω  
V2  
C1  
0
-10  
-20  
Figure 9: Precision Full-Wave Rectifier  
Diodes D and D need to be Schottky or PIN diodes to  
1
2
minimize delay.  
Select the voltage gain for U1a (G < 0) and U1b (G ).  
-30  
1
2
Measured  
G needs to be 1, approximately, to ensure realizable  
2
-40  
-50  
values of R . The overall gain is:  
4
V
o
= G G , V > 0  
Ideal  
1
2
in  
-60  
V
in  
1
10  
Frequency (MHz)  
Set R = R to the recommended feedback resistor  
2
3
value for the gain A = R . You may need to increase R  
v
2
2
1
Figure 8: Lowpass Anti-aliasing Filter Response  
and R slightly to compensate for the delays through D  
3
and D .  
To change the cutoff frequency of this filter, do the following:  
2
Set R to the recommended feedback resistor value for  
Determine the new cutoff frequency:  
7
the gain A = (1 + G ).  
f
v
2
3dB(418)  
, where f  
is the  
f
3dB(418)  
c(new)  
10  
bandwidth of the CLC418  
Calculate the ratio:  
Scale (multiply) all frequency specifications and  
plot axes by f /f  
Make sure that your system requirements are met  
R
R
R
R
R
1
7
2
2
3
7
3
1+  
1+  
1+  
G −  
2
R
G
c(new) c  
R
R
2
4
=
R
R
R
6
7
3
2
G
+
Scale (multiply) all capacitor values by f /f  
2
c c(new)  
R
3
Set the resistors to the Ideal Values in the table  
above (the pre-distorted values do not linearly  
scale with frequency)  
If this ratio is negative, reduce G and recalculate the  
values up to this point.  
2
http://www.national.com  
10  
Calculate all other resistor values:  
We built and tested a full-wave rectifier with the  
following values:  
R
2
R =  
1
D = D = Schottky Diodes,  
G
1
2
1
Digi-Key # SD101ACT-ND  
R
7
R =  
R = R = R = 1.00kΩ  
2 3 7  
5
G
2
R = 1.00kΩ  
1
R
R = 1.50kΩ  
5
5
R =  
6
R = 882Ω  
R
R
6
4
6
1+  
R = 618Ω  
4
The rectifier had equal inverting and non-inverting gains  
for frequencies less than 10MHz. The -3dB bandwidth  
was about 25MHz.  
R = R R  
6
4
5
Notice that R and R are selected so that U1a and the  
4
6
diodes see a balanced load for both polarities of V .  
in  
The capacitor C is optional. It helps compensate for the  
1
difference between the gains V /V and V /V at high  
o
1
o
2
frequencies. Both R and R must be > 0.  
4
6
Ordering Information  
Package Thermal Resistance  
Model  
Temperature Range  
Description  
Package  
Plastic (AJP)  
Surface Mount (AJE)  
θJC  
θJA  
CLC418AJP  
CLC418AJE  
CLC418AJE-TR  
CLC418AJE-TR13  
CLC418ALC  
-40 C to +85 C  
8-pin PDIP  
8-pin SOIC  
8-pin SOIC, 750pc reel  
8-pin SOIC, 2500pc reel  
dice (commercial)  
80 C/W  
95 C/W  
˚
˚
˚
˚
-40 C to +85 C  
95 C/W  
115 C/W  
˚
˚
˚
˚
-40 C to +85 C  
˚
˚
-40 C to +85 C  
˚
˚
Reliability Information  
-40 C to +85 C  
˚
˚
Transistor Count  
MTBF (based on limited test data)  
76  
34Mhr  
11  
http://www.national.com  
Customer Design Applications Support  
National Semiconductor is committed to design excellence. For sales, literature and technical support, call the  
National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.  
Life Support Policy  
National’s products are not authorized for use as critical components in life support devices or systems without the express written approval  
of the president of National Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or  
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax: (+49) 0-180-530 85 86  
E-mail: europe.support.nsc.com  
Deutsch Tel: (+49) 0-180-530 85 85  
English Tel: (+49) 0-180-532 78 32  
Francais Tel: (+49) 0-180-532 93 58  
Italiano Tel: (+49) 0-180-534 16 80  
13th Floor, Straight Block  
Ocean Centre, 5 Canton Road  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
N
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said  
circuitry and specifications.  
http://www.national.com  
12  
Lit #150418-003  

相关型号:

CLC418AJ

Dual High-Speed, Low-Power Line Driver
NSC

CLC418AJE

IC DUAL OP-AMP, 11000 uV OFFSET-MAX, 125 MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8, Operational Amplifier
NSC

CLC418AJE

DUAL OP-AMP, 11000uV OFFSET-MAX, 125MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
TI

CLC418AJE-TR

DUAL OP-AMP, 11000uV OFFSET-MAX, 130MHz BAND WIDTH, PDSO8, SOIC-8
TI

CLC418AJE-TR13

DUAL OP-AMP, 11000uV OFFSET-MAX, 125MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
TI

CLC418AJP

DUAL OP-AMP, 11000uV OFFSET-MAX, 125MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8
TI

CLC418ALC

IC DUAL OP-AMP, 11000 uV OFFSET-MAX, 125 MHz BAND WIDTH, UUC, DIE, Operational Amplifier
TI

CLC420

High-Speed, Voltage Feedback Op Amp
NSC

CLC420A8B

IC OP-AMP, 2000 uV OFFSET-MAX, 300 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier
NSC

CLC420A8D

Operational Amplifier, 1 Func, 2000uV Offset-Max, BIPolar, CDIP8,
NSC

CLC420AE-QML

Operational Amplifier, 1 Func, 2000uV Offset-Max, CQCC20, LCC-20
ROCHESTER

CLC420AE-QML

IC OP-AMP, 2000 uV OFFSET-MAX, 300 MHz BAND WIDTH, CQCC20, LCC-20, Operational Amplifier
NSC