CLC452AJM5X [NSC]

IC OP-AMP, 8000 uV OFFSET-MAX, 190 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN, Operational Amplifier;
CLC452AJM5X
型号: CLC452AJM5X
厂家: National Semiconductor    National Semiconductor
描述:

IC OP-AMP, 8000 uV OFFSET-MAX, 190 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN, Operational Amplifier

放大器 光电二极管
文件: 总12页 (文件大小:189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 1999  
N
CLC452  
Single Supply, Low-Power, High Output,  
Current Feedback Amplifier  
General Description  
Features  
The CLC452 has a new output stage that delivers high output  
drive current (100mA), but consumes minimal quiescent supply  
current (3.0mA) from a single 5V supply. Its current feedback  
architecture, fabricated in an advanced complementary bipolar  
process, maintains consistent performance over a wide range of  
gains and signal levels, and has a linear-phase response up to  
one half of the -3dB frequency.  
100mA output current  
3.0mA supply current  
130MHz bandwidth (A = +2)  
v
-78/-85dBc HD2/HD3 (1MHz)  
25ns settling to 0.05%  
400V/µs slew rate  
Stable for capacitive loads up to 1000pF  
Single 5V to ±5V supplies  
The CLC452 offers superior dynamic performance with a  
Available in Tiny SOT23-5 package  
130MHz small-signal bandwidth, 400V/µs slew rate and 4.5ns  
Applications  
rise/fall times (2V  
). The combination of low quiescent power,  
step  
Coaxial cable driver  
high output current drive, and high-speed performance make  
the CLC452 well suited for many battery-powered personal  
communication/computing systems.  
Twisted pair driver  
Transformer/Coil Driver  
High capacitive load driver  
The ability to drive low-impedance, highly capacitive loads,  
makes the CLC452 ideal for single ended cable applications. It  
also drives low impedance loads with minimum distortion. The  
CLC452 will drive a 100load with only -75/-74dBc second/third  
harmonic distortion (A = +2, V = 2V , f = 1MHz). With a 25Ω  
Video line driver  
Portable/battery-powered applications  
A/D driver  
Maximum Output Voltage vs. RL  
10  
v
out  
pp  
load, and the same conditions, it produces only -65/-77dBc sec-  
ond/third harmonic distortion. It is also optimized for driving high  
currents into single-ended transformers and coils.  
9
8
VCC = ±5V  
7
6
5
4
When driving the input of high-resolution A/D converters, the  
CLC452 provides excellent -78/-85dBc second/third harmonic  
distortion (A = +2, V  
= 2V , f = 1MHz, R = 1k) and fast  
v
out  
pp L  
3
2
1
Vs = +5V  
settling time.  
Available in SOT23-5, the CLC452 is ideal for applications where  
space is critical.  
10  
100  
1000  
RL ()  
Response After 10m of Cable  
+5V  
Typical Application  
Single Supply Cable Driver  
Vin = 10MHz, 0.5Vpp  
6.8µF  
+
5kΩ  
0.1µF  
5kΩ  
10m of 75Ω  
Coaxial Cable  
0.1µF  
7
Vin  
3
+
75Ω  
6
Vo  
75Ω  
CLC452  
2
-
0.1µF  
4
1kΩ  
20ns/div  
1kΩ  
0.1µF  
Vo  
VCC  
Pinout  
Pinout  
SOT23-5  
DIP & SOIC  
VEE  
VEE  
Vnon-inv  
Vinv  
© 1999 National Semiconductor Corporation  
Printed in the U.S.A.  
http://www.national.com  
(A = +2, R = 1k, R = 100,V = +5V1,Vcm = VEE + (Vs/2), RL tied to Vcm, unless specified)  
+5V Electrical Characteristics  
v
f
L
s
PARAMETERS  
CONDITIONS  
TYP  
MIN/MAX RATINGS  
0 to 70°C -40 to 85°C  
UNITS  
NOTES  
Ambient Temperature  
CLC452AJ  
+25°C  
+25°C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth  
Vo = 0.5Vpp  
Vo = 2.0Vpp  
Vo = 0.5Vpp  
130  
95  
30  
0
0.1  
0.1  
95  
80  
25  
0.5  
0.3  
0.2  
90  
77  
20  
0.9  
0.3  
0.3  
85  
75  
20  
1.0  
0.3  
0.3  
MHz  
MHz  
MHz  
dB  
dB  
deg  
-0.1dB bandwidth  
gain peaking  
gain rolloff  
linear phase deviation  
<200MHz, Vo = 0.5Vpp  
<30MHz, Vo = 0.5Vpp  
<30MHz, Vo = 0.5Vpp  
TIME DOMAIN RESPONSE  
rise and fall time  
settling time to 0.05%  
overshoot  
2V step  
1V step  
2V step  
2V step  
4.5  
25  
11  
6.0  
15  
300  
6.4  
18  
275  
6.8  
18  
260  
ns  
ns  
%
slew rate  
400  
V/µs  
DISTORTION AND NOISE RESPONSE  
2nd harmonic distortion  
2Vpp, 1MHz  
2Vpp, 1MHz; R = 1kΩ  
-75  
-78  
-65  
-74  
-85  
-60  
-69  
-70  
-58  
-70  
-75  
-55  
-67  
-68  
-56  
-68  
-73  
-53  
-67  
-68  
-56  
-68  
-73  
-53  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
L
2Vpp, 5MHz  
2Vpp, 1MHz  
3rd harmonic distortion  
2Vpp, 1MHz; R = 1kΩ  
2Vpp, 5MHz  
L
equivalent input noise  
voltage (eni)  
>1MHz  
>1MHz  
>1MHz  
2.8  
7.5  
10.5  
3.5  
10  
14  
3.8  
11  
15  
3.8  
11  
15  
nV/Hz  
pA/Hz  
pA/Hz  
non-inverting current (ibn)  
inverting current (ibi)  
STATIC DC PERFORMANCE  
input offset voltage  
average drift  
input bias current (non-inverting)  
average drift  
input bias current (inverting)  
average drift  
power supply rejection ratio  
common-mode rejection ratio  
supply current  
1
8
6
40  
6
25  
48  
51  
3.0  
4
18  
14  
45  
48  
3.4  
6
22  
16  
43  
46  
3.6  
6
24  
17  
43  
46  
3.6  
mV  
µV/˚C  
µA  
nA/˚C  
µA  
nA/˚C  
dB  
dB  
A
A
A
DC  
DC  
RL= ∞  
mA  
A
MISCELLANEOUS PERFORMANCE  
input resistance (non-inverting)  
input capacitance (non-inverting)  
input voltage range, High  
input voltage range, Low  
0.39  
1.5  
4.2  
0.8  
4.0  
1.0  
4.1  
0.9  
100  
70  
0.28  
2.3  
4.1  
0.9  
3.9  
1.1  
4.0  
1.0  
80  
0.25  
2.3  
4.0  
1.0  
3.8  
1.2  
4.0  
1.0  
65  
0.25  
2.3  
4.0  
1.0  
3.8  
1.2  
3.9  
1.1  
40  
MΩ  
pF  
V
V
V
V
V
V
mA  
mΩ  
output voltage range, High  
output voltage range, Low  
output voltage range, High  
output voltage range, Low  
output current  
RL = 100Ω  
RL = 100Ω  
RL = ∞  
RL = ∞  
B
output resistance, closed loop  
DC  
105  
105  
140  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are  
determined from tested parameters.  
Notes  
Absolute Maximum Ratings  
A) J-level: spec is 100% tested at +25°C.  
B) The short circuit current can exceed the maximum safe  
output current.  
supply voltage (VCC - VEE  
)
+14V  
output current (see note C)  
common-mode input voltage  
maximum junction temperature  
storage temperature range  
lead temperature (soldering 10 sec)  
ESD rating (human body model)  
140mA  
VEE to VCC  
+150°C  
1) Vs = VCC - VEE  
-65°C to +150°C  
+300°C  
Reliability Information  
500V  
Transistor Count  
49  
31Mhr  
MTBF (based on limited test data)  
http://www.national.com  
2
(A = +2, R = 1k, R = 100, VCC = ±5V, unless specified)  
±5V Electrical Characteristics  
v
f
L
PARAMETERS  
CONDITIONS  
TYP  
GUARANTEED MIN/MAX  
+25°C 0 to 70°C -40 to 85°C  
UNITS  
NOTES  
Ambient Temperature  
CLC452AJ  
+25°C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth  
Vo = 1.0Vpp  
Vo = 4.0Vpp  
Vo = 1.0Vpp  
160  
75  
30  
135  
60  
25  
0.5  
0.2  
0.2  
120  
57  
25  
0.9  
0.3  
0.3  
115  
55  
20  
1.0  
0.3  
0.3  
MHz  
MHz  
MHz  
dB  
dB  
deg  
%
-0.1dB bandwidth  
gain peaking  
gain rolloff  
linear phase deviation  
differential gain  
differential phase  
<200MHz, Vo = 1.0Vpp  
<30MHz, Vo = 1.0Vpp  
<30MHz, Vo = 1.0Vpp  
NTSC, RL=150Ω  
0
0.1  
0.1  
0.05  
0.08  
NTSC, RL=150Ω  
deg  
TIME DOMAIN RESPONSE  
rise and fall time  
settling time to 0.05%  
overshoot  
2V step  
2V step  
2V step  
2V step  
3.2  
20  
8
4.2  
12  
400  
4.5  
15  
370  
5.0  
15  
350  
ns  
ns  
%
slew rate  
540  
V/µs  
DISTORTION AND NOISE RESPONSE  
2nd harmonic distortion  
2Vpp, 1MHz  
2Vpp, 1MHz; R = 1kΩ  
-77  
-78  
-69  
-72  
-90  
-58  
-71  
-72  
-63  
-68  
-80  
-54  
-69  
-70  
-61  
-66  
-78  
-52  
-69  
-70  
-61  
-66  
-78  
-52  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
L
2Vpp, 5MHz  
2Vpp, 1MHz  
3rd harmonic distortion  
2Vpp, 1MHz; R = 1kΩ  
2Vpp, 5MHz  
L
equivalent input noise  
voltage (eni)  
>1MHz  
>1MHz  
>1MHz  
2.8  
7.5  
10.5  
3.5  
10  
14  
3.8  
11  
15  
3.8  
11  
15  
nV/Hz  
pA/Hz  
pA/Hz  
non-inverting current (ibn)  
inverting current (ibi)  
STATIC DC PERFORMANCE  
input offset voltage  
average drift  
input bias current (non-inverting)  
average drift  
input bias current (inverting)  
average drift  
power supply rejection ratio  
common-mode rejection ratio  
supply current  
1
10  
3
40  
13  
30  
48  
53  
3.2  
6
18  
24  
45  
50  
3.8  
8
23  
31  
43  
48  
4.0  
8
25  
31  
43  
48  
4.0  
mV  
µV/˚C  
µA  
nA/˚C  
µA  
nA/˚C  
dB  
dB  
DC  
DC  
RL= ∞  
mA  
MISCELLANEOUS PERFORMANCE  
input resistance (non-inverting)  
input capacitance (non-inverting)  
common-mode input range  
output voltage range  
0.52  
1.2  
0.35  
1.8  
0.30  
1.8  
0.30  
1.8  
MΩ  
pF  
V
V
V
±
±
±
4.2  
3.8  
4.0  
±
±
±
4.1  
3.6  
3.8  
±
±
±
4.1  
3.6  
3.8  
±
±
±
4.0  
3.5  
3.7  
RL = 100Ω  
RL = ∞  
output voltage range  
output current  
output resistance, closed loop  
130  
60  
100  
90  
80  
90  
50  
120  
mA  
mΩ  
B
DC  
Notes  
Ordering Information  
B) The short circuit current can exceed the maximum safe  
output current.  
Model  
Temperature Range  
Description  
CLC452AJP  
CLC452AJE  
CLC452AJM5  
CLC452ALC  
CLC452A8B  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +175°C  
8-pin PDIP  
8-pin SOIC  
5-pin SOT  
dice  
8-pin CerDIP,  
MIL-STD-883  
Package Thermal Resistance  
Package  
θJC  
θJA  
Plastic (AJP)  
105°C/W  
95°C/W  
140°C/W  
25°C/W  
70°C/W  
155°C/W  
175°C/W  
210°C/W  
CLC452ALC  
-55°C to +175°C  
dice, MIL-STD-883  
Surface Mount (AJE)  
Surface Mount (AJM5)  
Dice (ALC)  
CerDIP (A8B)  
215°C/W  
3
http://www.national.com  
(A = +2, R = 1k, R = 100, V = +5V1, Vcm = VEE + (Vs/2), RL tied to Vcm, unless specified)  
+5V Typical Performance  
v
f
L
s
Non-Inverting Frequency Response  
Inverting Frequency Response  
Frequency Response vs. RL  
Av = 2  
Rf = 750Ω  
Vo = 0.5Vpp  
Gain  
Vo = 0.5Vpp  
Vo = 0.5Vpp  
RL = 1kΩ  
Av = 1  
Rf = 1kΩ  
Av = -1  
Rf = 681Ω  
RL = 100Ω  
Gain  
Gain  
Av = -2  
Rf = 604Ω  
Phase  
Phase  
Phase  
0
-180  
-225  
-270  
-315  
-360  
-405  
0
-90  
RL = 25Ω  
-90  
Av = 5  
Rf = 402Ω  
-180  
-270  
-360  
-450  
-180  
-270  
-360  
-450  
Av = -5  
Rf = 453Ω  
Av = 10  
Rf = 249Ω  
Av = -10  
Rf = 402Ω  
1M  
10M  
100M  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Frequency Response vs. Vo  
Frequency Response vs. CL  
Open Loop Transimpedance Gain, Z(s)  
120  
100  
80  
220  
180  
140  
100  
60  
Gain  
Vo = 0.5Vpp  
CL = 10pF  
Vo = 1Vpp  
Phase  
Rs = 46.4Ω  
CL = 100pF  
Rs = 20Ω  
CL = 1000pF  
Rs = 6.7Ω  
Vo = 2.5Vpp  
60  
+
-
Rs  
CL  
Vo = 0.1Vpp  
1k  
40  
1k  
1k  
20  
20  
1M  
10M  
100M  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Equivalent Input Noise  
Frequency (Hz)  
Gain Flatness  
2nd & 3rd Harmonic Distortion  
12.5  
10  
3.2  
-40  
-50  
-60  
-70  
-80  
-90  
Vo = 2Vpp  
Inverting Current 10.5pA/Hz  
3rd  
3.1  
3
RL = 100Ω  
2nd  
RL = 1kΩ  
Non-Inverting Current 7.5pA/Hz  
7.5  
5
2nd  
3rd  
RL = 1kΩ  
2.9  
2.8  
RL = 100Ω  
Voltage 2.85nV/Hz  
2.5  
10  
20  
30  
1k  
100k  
1M  
10M  
1M  
10M  
Frequency (MHz)  
Frequency (Hz)  
Frequency (Hz)  
2nd Harmonic Distortion, RL = 25Ω  
3rd Harmonic Distortion, RL = 25Ω  
2nd Harmonic Distortion, RL = 100Ω  
-44  
-46  
-48  
-50  
-52  
-54  
-56  
-58  
-60  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-60  
-65  
-70  
-75  
-80  
10MHz  
10MHz  
10MHz  
5MHz  
5MHz  
2MHz  
5MHz  
2MHz  
1MHz  
2MHz  
1MHz  
1MHz  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
3rd Harmonic Distortion, RL = 100Ω  
2nd Harmonic Distortion, RL = 1kΩ  
3rd Harmonic Distortion, RL = 1kΩ  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-60  
-65  
-70  
-75  
-80  
-85  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
10MHz  
5MHz  
10MHz  
10MHz  
5MHz  
2MHz  
1MHz  
5MHz  
2MHz  
1MHz  
2MHz  
1MHz  
0.5  
0
0.5  
1
1.5  
2
2.5  
0
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
http://www.national.com  
4
(A = +2, R = 1k, R = 100, V = + 5V1, Vcm = VEE + (Vs/2), RL tied to Vcm, unless specified)  
+5V Typical Performance  
v
f
L
s
Closed Loop Output Resistance  
Recommended Rs vs. CL  
Large & Small Signal Pulse Response  
70  
60  
50  
40  
30  
20  
10  
0
100  
+
-
Rs  
CL  
Large Signal  
1k  
1k  
10  
1
1k  
Small Signal  
0.1  
0.01  
10k  
100k  
1M  
10M  
100M  
10  
100  
1000  
Time (10ns/div)  
Frequency (Hz)  
CL (pF)  
PSRR & CMRR  
IBN, Vos vs. Temperature  
Maximum Output Voltage vs. RL  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
6
60  
50  
40  
30  
20  
10  
0
4.8  
4.4  
4
PSRR  
CMRR  
5
4
3
2
1
IBN  
Vos  
3.6  
3.2  
2.8  
2.4  
2
-1.1  
1.6  
1k  
10k  
100k  
1M  
10M  
100M  
-100  
-50  
0
50  
100  
150  
10  
100  
1000  
Frequency (Hz)  
Temperature (°C)  
RL ()  
(A = +2, R = 1k, R = 100, VCC = ± 5V, unless specified)  
±5V Typical Performance  
v
f
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
Frequency Response vs. RL  
Vo = 1Vpp  
Vo = 1Vpp  
Vo = 1Vpp  
RL = 1kΩ  
Av = +2  
Rf = 750Ω  
Av = -2  
Rf = 604Ω  
RL = 100Ω  
Gain  
Gain  
Gain  
Av = +1  
Rf = 1kΩ  
Av = -1  
Rf = 681Ω  
Phase  
Phase  
Phase  
0
-180  
-225  
-270  
-315  
-360  
-425  
0
-45  
RL = 25Ω  
-90  
-90  
-180  
-270  
-360  
-450  
Av = +5  
Av = -5  
Rf = 402  
Rf = 453Ω  
-135  
-180  
-225  
Av = +10  
Rf = 249Ω  
Av = -10  
Rf = 402Ω  
1M  
10M  
100M  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Frequency Response vs. Vo  
Frequency Response vs. CL  
Gain Flatness  
Vo = 0.1Vpp  
Vo = 1Vpp  
CL = 10pF  
Rs = 68.1Ω  
Vo = 1Vpp  
CL = 100pF  
Rs = 17.4Ω  
Vo = 5Vpp  
Vo = 2Vpp  
CL = 1000pF  
Rs = 6.7Ω  
+
Rs  
-
CL  
1k  
1k  
1k  
1M  
10M  
100M  
1M  
10M  
100M  
0
5
10  
15  
20  
25  
30  
Frequency (Hz)  
Frequency (Hz)  
Frequency (MHz)  
5
http://www.national.com  
(A = +2, R = 1k, R = 100, VCC = ± 5V, unless specified)  
±5V Typical Performance  
v
f
L
Small Signal Pulse Response  
Large Signal Pulse Response  
2nd & 3rd Harmonic Distortion  
-40  
-50  
-60  
-70  
-80  
-90  
Vo = 2Vpp  
Av = +2  
Av = +2  
3rd  
R
L = 100Ω  
2nd  
L = 1kΩ  
R
2nd  
RL = 100Ω  
Av = -2  
Av = -2  
3rd  
RL = 1kΩ  
Time (10ns/div)  
Time (10ns/div)  
1M  
10M  
Frequency (Hz)  
2nd Harmonic Distortion, RL = 25Ω  
3rd Harmonic Distortion, RL = 25Ω  
2nd Harmonic Distortion, RL = 100Ω  
-40  
-30  
-55  
-60  
-65  
-70  
-75  
-80  
10MHz  
-40  
-50  
-60  
-70  
-80  
-90  
-45  
10MHz  
10MHz  
5MHz  
5MHz  
2MHz  
-50  
-55  
-60  
-65  
5MHz  
1MHz  
2MHz  
2MHz  
1MHz  
1MHz  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
3rd Harmonic Distortion, RL = 100Ω  
2nd Harmonic Distortion, RL = 1kΩ  
3rd Harmonic Distortion, RL = 1kΩ  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-60  
-65  
-70  
-75  
-80  
-85  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
10MHz  
10MHz  
5MHz  
5MHz  
2MHz  
2MHz  
5MHz  
2MHz  
1MHz  
10MHz  
1MHz  
1MHz  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
Recommended Rs vs. CL  
Maximum Output Voltage vs. RL  
Differential Gain & Phase  
10  
8
-0.01  
-0.015  
-0.02  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
70  
60  
50  
40  
30  
20  
10  
0
+
-
f = 3.58MHz  
Rs  
Gain Positive Sync  
CL  
RL  
1k  
Gain Negative Sync  
1k  
6
-0.025  
-0.03  
Phase Positive Sync  
4
Phase Negative Sync  
2
-0.035  
10  
100  
1000  
10  
100  
1000  
1
2
3
4
CL (pF)  
RL ()  
Number of 150Loads  
IBN, Vos vs. Temperature  
Short Term Settling Time  
Long Term Settling Time  
1.5  
1
12  
0.2  
0.1  
0
0.2  
0.15  
0.1  
Vo = 2Vstep  
Vo = 2Vstep  
8
0.05  
0
0.5  
0
4
IBN  
-0.05  
-0.1  
-0.15  
-0.2  
Vos  
0
-0.1  
-0.2  
-0.5  
-4  
-100  
-50  
0
50  
100  
150  
1
10  
100  
1000  
1µ  
10µ  
100  
µ
1m  
10m  
100m  
1
Temperature (°C)  
Time (ns)  
Time (s)  
http://www.national.com  
6
CLC452 Operation  
The CLC452 is a current feedback amplifier built in an  
V
A
o
v
R
=
advanced complementary bipolar process. The CLC452  
operates from a single 5V supply or dual ±5V supplies.  
Operating from a single supply, the CLC452 has the  
following features:  
Equation 1  
V
f
in  
1+  
Z(jω)  
where:  
A is the closed loop DC voltage gain  
v
Provides 100mA of output current while  
consuming 15mW of power  
Offers low -78/-85dB 2nd and 3rd harmonic  
R is the feedback resistor  
f
Z(jω) is the CLC452’s open loop transimpedance  
distortion  
gain  
Provides BW > 80MHz and 1MHz distortion  
Z jω  
(
)
is the loop gain  
< -70dBc at V = 2.0V  
o
pp  
R
f
The CLC452 performance is further enhanced in ±5V  
supply applications as indicated in the ±5V Electrical  
Characteristics table and ±5V Typical Performance plots.  
The denominator of Equation 1 is approximately equal to  
1 at low frequencies. Near the -3dB corner frequency, the  
interaction between R and Z(jω) dominates the circuit  
f
Current Feedback Amplifiers  
performance. The value of the feedback resistor has a  
Some of the key features of current feedback technology  
are:  
large affect on the circuits performance. Increasing R  
has the following affects:  
f
Independence of AC bandwidth and voltage gain  
Inherently stable at unity gain  
Adjustable frequency response with feedback resistor  
High slew rate  
Decreases loop gain  
Decreases bandwidth  
Reduces gain peaking  
Lowers pulse response overshoot  
Fast settling  
Affects frequency response phase linearity  
Current feedback operation can be described using a simple  
equation. The voltage gain for a non-inverting or inverting  
current feedback amplifier is approximated by Equation 1.  
Refer to the Feedback Resistor Selection section for  
more details on selecting a feedback resistor value.  
CLC452 Design Information  
Single Supply Operation (V = +5V, V = GND)  
The specifications given in the +5V Electrical Character-  
istics table for single supply operation are measured with  
For single supply DC coupled operation, keep input  
signal levels above 0.8V DC. For input signals that drop  
below 0.8V DC, AC coupling and level shifting the signal  
are recommended. The non-inverting and inverting  
configurations for both input conditions are illustrated in  
the following 2 sections.  
CC  
EE  
a common mode voltage (V ) of 2.5V. V is the volt-  
cm  
cm  
age around which the inputs are applied and the  
output voltages are specified.  
Operating from a single +5V supply, the Common Mode  
Input Range (CMIR) of the CLC452 is typically +0.8V to  
DC Coupled Single Supply Operation  
Figures 1 and 2 show the recommended non-inverting  
and inverting configurations for input signals that remain  
above 0.8V DC.  
+4.2V. The typical output range with R =100is +1.0V  
L
to +4.0V.  
VCC  
VCC  
Note: Rb, provides DC bias  
Note: Rt, RL and Rg are tied  
for non-inverting input.  
6.8µF  
6.8µF  
to Vcm for minimum power  
+
+
Rb, RL and Rt are tied  
consumption and maximum  
output swing.  
to Vcm for minimum power  
consumption and maximum  
output swing.  
0.1µF  
0.1µF  
7
3
7
3
2
Vin  
+
+
6
6
Vo  
Vo  
RL  
Vcm  
CLC452  
CLC452  
Rb  
2
Rt  
Vcm  
-
-
RL  
Vcm  
4
4
Rf  
Vcm  
Rt  
Vcm  
Rg  
Rf  
Vin  
Rg  
R
R
V
o
f
= A = 1+  
R
v
V
o
Select Rt to yield  
desired Rin = Rt || Rg  
f
V
Vcm  
= A = −  
v
g
in  
V
R
g
in  
Figure 1: Non-Inverting Configuration  
Figure 2: Inverting Configuration  
7
http://www.national.com  
AC Coupled Single Supply Operation  
VCC  
6.8µF  
Figures 3 and 4 show possible non-inverting and invert-  
ing configurations for input signals that go below 0.8V  
DC. The input is AC coupled to prevent the need for  
level shifting the input signal at the source. The resistive  
+
0.1µF  
Rb  
Rg  
7
3
2
+
voltage divider biases the non-inverting input to V ÷ 2  
CC  
6
Vo  
CLC452  
= 2.5V (For V = +5V).  
CC  
-
4
Rf  
VCC  
Vin  
Rt  
Note: Rb provides DC bias  
for the non-inverting input.  
Select Rt to yield desired  
Rin = Rt || Rg.  
6.8µF  
0.1µF  
+
R
R
+
Cc  
0.1µF  
7
3
2
Rf  
Vo  
Vin  
6.8µF  
+
= Av = −  
6
Vo  
V
Rg  
in  
VEE  
CLC452  
VCC  
2
-
4
Rf  
Figure 6: Dual Supply Inverting Configuration  
Feedback Resistor Selection  
The feedback resistor, R , affects the loop gain and  
frequency response of a current feedback amplifier.  
Optimum performance of the CLC452, at a gain of +2V/V,  
Rg  
C
R
f
f
V = V 1+  
+ 2.5  
o
in  
R
g
1
R
low frequency cutoff =  
, where: R  
=
R >> R  
source  
in  
2πR C  
2
c
in  
is achieved with R equal to 1k.The frequency response  
f
plots in the Typical Performance sections  
Figure 3: AC Coupled Non-Inverting Configuration  
illustrate the recommended R for several gains. These  
f
recommended values of R provide the maximum band-  
f
VCC  
width with minimal peaking. Within limits, R can be  
f
6.8µF  
adjusted to optimize the frequency response.  
+
VCC  
2
Decrease R to peak frequency response and  
extend bandwidth  
R
R
f
0.1µF  
7
3
2
+
6
Vo  
Increase R to roll off frequency response and  
f
CLC452  
Cc  
Rg  
Vin  
compress bandwidth  
-
4
Rf  
As a rule of thumb, if the recommended R is doubled,  
then the bandwidth will be cut in half.  
f
R
f
V = V  
+ 2.5  
Unity Gain Operation  
o
in  
R
g
The recommended R for unity gain (+1V/V) operation  
f
1
low frequency cutoff =  
is 1k. R is left open. Parasitic capacitance at the  
g
2πR C  
g
c
inverting node may require a slight increase in R to  
f
maintain a flat frequency response.  
Figure 4: AC Coupled Inverting Configuration  
Bandwidth vs. Output Amplitude  
The bandwidth of the CLC452 is at a maximum for  
Dual Supply Operation  
The CLC452 operates on dual supplies as well as single  
supplies. The non-inverting and inverting configurations  
are shown in Figures 5 and 6.  
output voltages near 1V . The bandwidth decreases  
pp  
for smaller and larger output amplitudes. Refer to the  
Frequency Response vs. V plots.  
o
VCC  
6.8µF  
Load Termination  
+
The CLC452 can source and sink near equal amounts of  
current. For optimum performance, the load should be  
0.1µF  
tied to V  
.
7
cm  
Vin  
3
2
+
6
Vo  
CLC452  
Driving Cables and Capacitive Loads  
Rt  
-
When driving cables, double termination is used to  
prevent reflections. For capacitive load applications, a  
small series resistor at the output of the CLC452 will  
improve stability and settling performance. The  
4
Rf  
R
V
o
f
= A = 1+  
v
0.1µF  
Rg  
V
R
g
in  
+
Frequency Response vs. C and Recommended R  
L
s
6.8µF  
vs. C plots, in the typical performance section, give the  
L
VEE  
recommended series resistance value for optimum  
flatness at various capacitive loads.  
Figure 5: Dual Supply Non-Inverting Configuration  
http://www.national.com  
8
1.0  
0.8  
0.6  
0.4  
0.2  
0
Transmission Line Matching  
One method for matching the characteristic impedance  
AJP  
AJE  
(Z ) of a transmission line or cable is to place the  
o
appropriate resistor at the input or output of the amplifier.  
Figure 7 shows typical inverting and non-inverting circuit  
configurations for matching transmission lines.  
SOT  
C6  
Z0  
R1  
R3  
R2  
Rg  
R5  
+
Z0  
Vo  
R7  
CLC452  
+
-
V1  
V2  
R6  
-
Z0  
Rf  
R4  
-40 -20  
0
20 40 60 80 100 120 140 160 180  
Ambient Temperature (°C)  
+
-
Figure 8: Power Derating Curves  
Layout Considerations  
Figure 7:Transmission Line Matching  
A proper printed circuit layout is essential for achieving  
high frequency performance. Comlinear provides  
evaluation boards for the CLC452 (730013-DIP, 730027-  
SOIC, 730068-SOT) and suggests their use as a guide  
for high frequency layout and as an aid for device testing  
and characterization.  
Non-inverting gain applications:  
Connect R directly to ground.  
g
Make R , R , R , and R equal to Z .  
1
2
6
7
o
Use R to isolate the amplifier from reactive  
3
loading caused by the transmission line,  
or by parasitics.  
General layout and supply bypassing play major roles in  
high frequency performance. Follow the steps below as  
a basis for high frequency layout:  
Inverting gain applications:  
Connect R directly to ground.  
3
Include 6.8µF tantalum and 0.1µF ceramic  
capacitors on both supplies.  
Place the 6.8µF capacitors within 0.75 inches  
of the power pins.  
Place the 0.1µF capacitors less than 0.1 inches  
from the power pins.  
Remove the ground plane under and around the  
part, especially near the input and output pins to  
reduce parasitic capacitance.  
Minimize all trace lengths to reduce series  
inductances.  
Use flush-mount printed circuit board pins for  
prototyping, never use high profile DIP sockets.  
Make the resistors R , R , and R equal to Z .  
4
6
7
o
Make R II R = Z .  
5
g
o
The input and output matching resistors attenuate the  
signal by a factor of 2, therefore additional gain is needed.  
Use C to match the output transmission line over a  
6
greater frequency range. C compensates for the increase  
of the amplifier’s output impedance with frequency.  
6
Power Dissipation  
Follow these steps to determine the power consumption  
of the CLC452:  
1. Calculate the quiescent (no-load) power:  
P
= I (V - V  
)
amp  
CC  
CC  
EE  
Evaluation Board Information  
2. Calculate the RMS power at the output stage:  
P = (V - V ) (I ), where V and I  
load  
Data sheets are available for the CLC730013/  
CLC730027 and CLC730068 evaluation boards. The  
evaluation board data sheets provide:  
o
CC  
load  
load  
load  
are the RMS voltage and current across the  
external load.  
3. Calculate the total RMS power:  
Evaluation board schematics  
P = P  
+ P  
Evaluation board layouts  
t
amp  
o
General information about the boards  
The maximum power that the DIP, SOIC, and SOT  
packages can dissipate at a given temperature is  
illustrated in Figure 8. The power derating curve for  
any CLC452 package can be derived by utilizing the  
following equation:  
The CLC730013/CLC730027 data sheet also contains  
tables of recommended components to evaluate several  
of Comlinear’s high speed amplifiers. This table for the  
CLC452 is illustrated below. Refer to the evaluation  
board data sheet for schematics and further information.  
(175° − T  
)
amb  
Components Needed to Evaluate the  
CLC452 on the Evaluation Board:  
θ
JA  
where  
R , R - Use this product data sheet to select values  
f
g
T
= Ambient temperature (°C)  
R , R - Typically 50(Refer to the Basic  
amb  
in  
out  
θ
= Thermal resistance, from junction to ambient,  
for a given package (°C/W)  
Operation section of the evaluation board data  
sheet for details)  
JA  
9
http://www.national.com  
R - Optional resistor for inverting gain configura-  
R
t
f
Gain = K = 1+  
tions (Select R to yield desired input impedance  
t
R
g
= R || R )  
g
t
1
C , C - 0.1µF ceramic capacitors  
1
2
Corner frequency = ω =  
c
C , C - 6.8µF tantalum capacitors  
R R C C  
2 1 2  
3
4
1
Components not used:  
1
Q =  
C , C , C , C  
5
6
7
8
8
R C  
R C  
R C  
1 1  
2
2
1
2
+
+ (1K)  
R thru R  
1
R C  
R C  
R C  
2 2  
1
1
2
1
The evaluation boards are designed to accommodate  
dual supplies. The boards can be modified to provide  
single supply operation. For best performance; 1) do  
not connect the unused supply, 2) ground the unused  
supply pin.  
For R = R = R and C = C = C  
1
2
1
2
1
ω =  
c
RC  
1
Q =  
SPICE Models  
(3 K)  
Figure 10: Design Equations  
This example illustrates a lowpass filter with Q = 0.707  
SPICE models provide a means to evaluate amplifier  
designs. Free SPICE models are available for  
Comlinear’s monolithic amplifiers that:  
Support Berkeley SPICE 2G and its many derivatives  
and corner frequency f = 10MHz. A Q of 0.707 was cho-  
c
Reproduce typical DC, AC, Transient, and Noise  
sen to achieve a maximally flat, Butterworth response.  
Figure 11 indicates the filter response.  
performance  
Support room temperature simulations  
3
0
The readme file that accompanies the diskette lists  
released models, and provides a list of modeled parame-  
ters. The application note OA-18, Simulation SPICE  
Models for Comlinear’s Op Amps, contains schematics  
and a reproduction of the readme file.  
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
Application Circuits  
Single Supply Cable Driver  
The typical application shown on the front page shows  
the CLC452 driving 10m of 75coaxial cable. The  
CLC452 is set for a gain of +2V/V to compensate for the  
1M  
10M  
100M  
Frequency (Hz)  
divide-by-two voltage drop at V .  
o
Figure 11: Lowpass Response  
Twisted Pair Driver  
The high output current and low distortion, of the  
CLC452, make it well suited for driving transformers.  
Figure 12 illustrates a typical twisted pair driver utilizing  
the CLC452 and a transformer. The transformer  
provides the signal and its inversion for the twisted pair.  
Single Supply Lowpass Filter  
Figures 9 and 10 illustrate a lowpass filter and design  
equations. The circuit operates from a single supply of  
+5V. The voltage divider biases the non-inverting input to  
2.5V. And the input is AC coupled to prevent the need for  
level shifting the input signal at the source. Use the  
design equations to determine R , R , C , and C based  
1
2
1
2
on the desired Q and corner frequency.  
n
V = AvV  
Vin  
Rt  
+5V  
in  
3
2
V = Av Vin  
6
4
+
Rm  
IL  
1:n  
CLC452  
-
+
Vo  
-
Zo  
0.1µF  
RL  
Rf  
5kΩ  
UTP  
0.1µF  
C1  
6
R1  
R2  
7
3
2
Vin  
+
-n  
4
0.1µF  
Req  
Rg  
V =  
AvV  
in  
Vo  
100Ω  
158158Ω  
CLC452  
Rf  
1n  
2
Vo  
=
AvV  
in  
Av = 1+  
-
5kΩ  
C2  
Rg  
4
Rf  
1kΩ  
100pF  
Figure 12:Twisted Pair Driver  
1.698kRg  
0.1µF  
To match the line’s characteristic impedance (Z ) set:  
o
R = Z  
L
o
R = R  
Figure 9: Lowpass Filter Topology  
m
eq  
http://www.national.com  
10  
Where R is the transformed value of the load imped-  
The load current (I ) and voltage (V ) are related to the  
L o  
eq  
ance, (R ), and is approximated by:  
CLC452’s maximum output voltage and current by:  
L
R
L
V
n V  
R
=
o
max  
eq  
2
n
I
max  
I
Select the transformer so that it loads the line with a  
value close to Z , over the desired frequency range. The  
L
n
o
From the above current relationship, it is obvious that an  
amplifier with high output drive capability is required.  
output impedance, R , of the CLC452 varies with  
frequency and can also affect the return loss. The return  
loss, shown below, takes into account an ideal  
o
transformer and the value of R .  
o
R
Z
2
o
o
Return Loss(dB) ≈ − 20log  
n
10  
11  
http://www.national.com  
Customer Design Applications Support  
National Semiconductor is committed to design excellence. For sales, literature and technical support, call the  
National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.  
Life Support Policy  
National’s products are not authorized for use as critical components in life support devices or systems without the express written approval of  
the president of National Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or  
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
2501 Miramar Tower  
1-23 Kimberley Road  
Tsimshatsui, Kowloon  
Hong Kong  
National Semiconductor  
Japan Ltd.  
Tel: 81-043-299-2309  
Fax: (+49) 0-180-530 85 86  
E-mail: europe.support.nsc.com  
Deutsch Tel: (+49) 0-180-530 85 85  
English Tel: (+49) 0-180-532 78 32  
Francais Tel: (+49) 0-180-532 93 58  
Italiano Tel: (+49) 0-180-534 16 80  
Fax: 81-043-299-2408  
N
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said  
circuitry and specifications.  
http://www.national.com  
12  

相关型号:

CLC452AJP

OP-AMP, 8000uV OFFSET-MAX, 190MHz BAND WIDTH, PDIP8, PLASTIC, MDIP-8
TI

CLC452AM5

OP-AMP, 8000uV OFFSET-MAX, PDSO5
TI

CLC452AM5X

OP-AMP, 8000 uV OFFSET-MAX, PDSO5
TI

CLC453

Comlinear CLC453 Single Supply, Low-Power, High Output, Programmable Buffer
NSC

CLC453AJE

Comlinear CLC453 Single Supply, Low-Power, High Output, Programmable Buffer
NSC

CLC453AJM5

Comlinear CLC453 Single Supply, Low-Power, High Output, Programmable Buffer
NSC

CLC453AJP

Comlinear CLC453 Single Supply, Low-Power, High Output, Programmable Buffer
NSC

CLC453ALC

Comlinear CLC453 Single Supply, Low-Power, High Output, Programmable Buffer
NSC

CLC4550

Low Power, Low Offset, 2V to 36V Comparators
CADEKA

CLC4550ISO14X

Low Power, Low Offset, 2V to 36V Comparators
CADEKA

CLC4600ISO14

Dual, Triple, and Quad 300MHz Amplifiers
CADEKA

CLC4600ISO14X

Dual, Triple, and Quad 300MHz Amplifiers
CADEKA