CLC5602IM [NSC]

Dual, High Output, Video Amplifier; 双通道,高输出,视频放大器
CLC5602IM
型号: CLC5602IM
厂家: National Semiconductor    National Semiconductor
描述:

Dual, High Output, Video Amplifier
双通道,高输出,视频放大器

商用集成电路 视频放大器
文件: 总12页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 1999  
N
CLC5602  
Dual, High Output, Video Amplifier  
General Description  
Features  
The National CLC5602 has a new output stage that delivers high  
output drive current (130mA), but consumes minimal  
quiescent supply current (1.5mA/ch) from a single 5V supply. Its  
current feedback architecture, fabricated in an advanced comple-  
mentary bipolar process, maintains consistent performance over  
a wide range of gains and signal levels, and has a linear-phase  
response up to one half of the -3dB frequency.  
130mA output current  
0.06%, 0.02° differential gain, phase  
1.5mA/ch supply current  
135MHz bandwidth (A = +2)  
-87/-95dBc HD2/HD3 (1MHz)  
15ns settling to 0.05%  
300V/µs slew rate  
v
Stable for capacitive loads up to 1000pf  
Single 5V or ±5V supplies  
The CLC5602 offers 0.1dB gain flatness to 22MHz and differen-  
tial gain and phase errors of 0.06% and 0.02°. These features are  
ideal for professional and consumer video applications.  
Applications  
Video line driver  
The CLC5602 offers superior dynamic performance with a  
135MHz small-signal bandwidth, 300V/µs slew rate and 5.7ns  
ADSL/HDSL driver  
Coaxial cable driver  
rise/fall times (2V  
). The combination of low quiescent power,  
step  
UTP differential line driver  
high output current drive, and high-speed performance make  
the CLC5602 well suited for many battery-powered personal  
communication/computing systems.  
Transformer/coil driver  
High capacitive load driver  
Portable/battery-powered applications  
Differential A/D driver  
The ability to drive low-impedance, highly capacitive loads,  
makes the CLC5602 ideal for single ended cable applications.  
It also drives low impedance loads with minimum distortion.  
The CLC5602 will drive a 100load with only -86/-85dBc  
Maximum Output Voltage vs. RL  
10  
second/third harmonic distortion (A = +2, V = 2V , f = 1MHz).  
With a 25load, and the same conditions, it produces only -86/  
9
8
v
out  
pp  
VCC = ±5V  
-72dBc second/third harmonic distortion.  
7
6
5
4
The CLC5602 can also be used for driving differential-input step-  
up transformers for applications such as Asynchronous Digital  
Subscriber Lines (ADSL) or High-Bit-Rate Digital Subscriber  
Lines (HDSL).  
3
2
1
Vs = +5V  
When driving the input of high-resolution A/D converters, the  
CLC5602 provides excellent -87/-95dBc second/third harmonic  
10  
100  
1000  
RL ()  
distortion (A = +2, V  
= 2V , f = 1MHz, R = 1k) and fast  
v
out  
pp L  
settling time.  
Typical Application  
Differential Line Driver with Load Impedance Conversion  
Pinout  
DIP & SOIC  
Rg2  
Rf2  
Vo1  
+VCC  
Vo2  
Vd/2  
Vin  
Rt1  
+
V
inv1  
non-inv1  
-VCC  
1/2  
Rm/2  
Req  
Io  
-
CLC5602  
1:n  
-Vd/2  
+
Vo  
-
1/2  
Zo  
-
CLC5602  
RL  
V
V
inv2  
Rf1  
+
UTP  
Rt2  
Rm/2  
Vnon-inv  
2
Rg1  
© 1999 National Semiconductor Corporation  
Printed in the U.S.A.  
http://www.national.com  
(A = +2, R = 750, R = 100,V = +5V1,Vcm = VEE + (Vs/2), RL tied to Vcm, unless specified)  
+5V Electrical Characteristics  
v
f
L
s
PARAMETERS  
CONDITIONS  
TYP  
MIN/MAX RATINGS  
+25°C 0 to 70°C -40 to 85°C  
UNITS  
NOTES  
Ambient Temperature  
CLC5602IN/IM  
+25°C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth  
Vo = 0.5Vpp  
Vo = 2.0Vpp  
Vo = 0.5Vpp  
100  
65  
22  
85  
60  
20  
0.5  
0.3  
0.5  
75  
55  
17  
0.9  
0.4  
0.6  
70  
50  
15  
1.0  
0.5  
0.6  
MHz  
MHz  
MHz  
dB  
dB  
deg  
%
-0.1dB bandwidth  
gain peaking  
gain rolloff  
linear phase deviation  
differential gain  
differential phase  
<200MHz, Vo = 0.5Vpp  
<30MHz, Vo = 0.5Vpp  
<30MHz, Vo = 0.5Vpp  
NTSC, RL = 150to -1V  
NTSC, RL = 150to -1V  
0
0.1  
0.3  
0.04  
0.09  
deg  
TIME DOMAIN RESPONSE  
rise and fall time  
settling time to 0.05%  
overshoot  
2V step  
1V step  
2V step  
2V step  
6.1  
25  
10  
8.5  
35  
20  
9.2  
50  
22  
10.0  
80  
22  
ns  
ns  
%
slew rate  
220  
190  
165  
150  
V/µs  
DISTORTION AND NOISE RESPONSE  
2nd harmonic distortion  
2Vpp, 1MHz  
2Vpp, 1MHz; R = 1kΩ  
-77  
-80  
-63  
-85  
-82  
-62  
-74  
-77  
-59  
-81  
-79  
-57  
-71  
-75  
-57  
-78  
-76  
-54  
-71  
-70  
-57  
-78  
-76  
-54  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
L
2Vpp, 5MHz  
2Vpp, 1MHz  
3rd harmonic distortion  
2Vpp, 1MHz; R = 1kΩ  
2Vpp, 5MHz  
L
equivalent input noise  
voltage (eni)  
non-inverting current (ibn)  
inverting current (ibi)  
crosstalk (input referred)  
>1MHz  
>1MHz  
>1MHz  
10MHz, 1Vpp  
3.4  
6.3  
8.7  
-72  
4.4  
8.2  
11.3  
4.9  
9.0  
12.4  
4.9  
9.0  
12.4  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
STATIC DC PERFORMANCE  
input offset voltage  
average drift  
input bias current (non-inverting)  
average drift  
input bias current (inverting)  
average drift  
power supply rejection ratio  
common-mode rejection ratio  
supply current per channel  
1
7
5
25  
3
10  
48  
49  
1.5  
4
12  
10  
45  
47  
1.7  
5
6
mV  
µV/˚C  
µA  
nA/˚C  
µA  
nA/˚C  
dB  
dB  
A
A
A
15  
15  
60  
12  
20  
43  
45  
1.8  
15  
16  
60  
13  
20  
43  
45  
1.8  
DC  
DC  
RL= ∞  
mA  
A
MISCELLANEOUS PERFORMANCE  
input resistance (non-inverting)  
input capacitance (non-inverting)  
input voltage range, High  
input voltage range, Low  
0.46  
1.8  
4.2  
0.8  
4.0  
1.0  
4.1  
0.9  
100  
55  
0.36  
2.75  
4.1  
0.9  
3.9  
1.1  
4.0  
1.0  
80  
0.32  
2.75  
4.1  
0.9  
3.9  
1.1  
4.0  
1.0  
65  
0.32  
2.75  
4.0  
1.0  
3.8  
1.2  
3.9  
1.1  
40  
MΩ  
pF  
V
V
V
V
V
V
mA  
mΩ  
output voltage range, High  
output voltage range, Low  
output voltage range, High  
output voltage range, Low  
output current  
RL = 100Ω  
RL = 100Ω  
RL = ∞  
RL = ∞  
B
output resistance, closed loop  
DC  
90  
90  
120  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are  
determined from tested parameters.  
Notes  
Absolute Maximum Ratings  
A) J-level: spec is 100% tested at +25°C.  
B) The short circuit current can exceed the maximum safe  
output current.  
supply voltage (VCC - VEE  
)
+14V  
output current (see note C)  
common-mode input voltage  
maximum junction temperature  
storage temperature range  
lead temperature (soldering 10 sec)  
ESD rating (human body model)  
140mA  
VEE to VCC  
+150°C  
1) Vs = VCC - VEE  
-65°C to +150°C  
+300°C  
Reliability Information  
1000V  
Transistor Count  
MTBF (based on limited test data)  
98  
290Mhr  
http://www.national.com  
2
(A = +2, R = 750, R = 100, VCC = ±5V, unless specified)  
±5V Electrical Characteristics  
v
f
L
PARAMETERS  
CONDITIONS  
TYP  
GUARANTEED MIN/MAX  
+25°C 0 to 70°C -40 to 85°C  
UNITS  
NOTES  
Ambient Temperature  
CLC5602IN/IM  
+25°C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth  
Vo = 1.0Vpp  
Vo = 4.0Vpp  
Vo = 1.0Vpp  
135  
48  
20  
115  
45  
18  
0.5  
0.3  
0.3  
0.18  
0.04  
105  
42  
15  
0.9  
0.4  
0.4  
100  
40  
12  
1.0  
0.5  
0.4  
MHz  
MHz  
MHz  
dB  
dB  
deg  
%
-0.1dB bandwidth  
gain peaking  
gain rolloff  
linear phase deviation  
differential gain  
differential phase  
<200MHz, Vo = 1.0Vpp  
<30MHz, Vo = 1.0Vpp  
<30MHz, Vo = 1.0Vpp  
NTSC, RL=150Ω  
0
0.1  
0.15  
0.06  
0.02  
NTSC, RL=150Ω  
deg  
TIME DOMAIN RESPONSE  
rise and fall time  
settling time to 0.05%  
overshoot  
2V step  
2V step  
2V step  
2V step  
5.7  
15  
18  
6.2  
25  
20  
6.8  
40  
22  
7.3  
60  
22  
ns  
ns  
%
slew rate  
300  
225  
190  
175  
V/µs  
DISTORTION AND NOISE RESPONSE  
2nd harmonic distortion  
2Vpp, 1MHz  
2Vpp, 1MHz; R = 1kΩ  
-86  
-87  
-70  
-85  
-95  
-66  
-82  
-83  
-64  
-81  
-90  
-64  
-79  
-80  
-61  
-78  
-87  
-61  
-79  
-80  
-60  
-78  
-87  
-60  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
L
2Vpp, 5MHz  
2Vpp, 1MHz  
3rd harmonic distortion  
2Vpp, 1MHz; R = 1kΩ  
2Vpp, 5MHz  
L
equivalent input noise  
voltage (eni)  
non-inverting current (ibn)  
inverting current (ibi)  
crosstalk (input referred)  
>1MHz  
>1MHz  
>1MHz  
10MHz, 1Vpp  
3.4  
6.3  
8.7  
-72  
4.4  
8.2  
11.3  
4.9  
9.0  
12.4  
4.9  
9.0  
12.4  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
STATIC DC PERFORMANCE  
input offset voltage  
average drift  
input bias current (non-inverting)  
average drift  
input bias current (inverting)  
average drift  
power supply rejection ratio  
common-mode rejection ratio  
supply current (per channel)  
2
8
5
40  
8
20  
48  
51  
1.6  
6
12  
24  
45  
49  
1.9  
7
16  
28  
45  
43  
47  
2.0  
8
17  
28  
45  
43  
47  
2.0  
mV  
µV/˚C  
µA  
nA/˚C  
µA  
nA/˚C  
dB  
dB  
DC  
DC  
RL= ∞  
mA  
MISCELLANEOUS PERFORMANCE  
input resistance (non-inverting)  
input capacitance (non-inverting)  
common-mode input range  
output voltage range  
0.59  
1.45  
0.47  
2.15  
0.43  
2.15  
0.43  
2.15  
MΩ  
pF  
V
V
V
±
±
±
4.2  
3.8  
4.0  
±
±
±
4.1  
3.6  
3.8  
±
±
±
4.1  
3.6  
3.8  
±
±
±
4.0  
3.5  
3.7  
RL = 100Ω  
RL = ∞  
output voltage range  
output current  
output resistance, closed loop  
130  
40  
100  
70  
80  
70  
50  
90  
mA  
mΩ  
B
DC  
Notes  
Ordering Information  
B) The short circuit current can exceed the maximum safe  
output current.  
Model  
Temperature Range  
Description  
CLC5602IN  
CLC5602IM  
CLC5602IMX  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8-pin PDIP  
8-pin SOIC  
8-pin SOIC tape & reel  
Package Thermal Resistance  
Package  
θJC  
θJA  
Plastic (IN)  
Surface Mount (IM)  
65°C/W  
50°C/W  
130°C/W  
145°C/W  
3
http://www.national.com  
(A = +2, R = 750, R = 100, V = +5V1, Vcm = VEE + (Vs/2), RL tied to Vcm, unless specified)  
+5V Typical Performance  
v
f
L
s
Non-Inverting Frequency Response  
Inverting Frequency Response  
Frequency Response vs. RL  
Vo = 0.5Vpp  
Vo = 0.5Vpp  
Vo = 0.5Vpp  
RL = 1k  
Av = +2  
Rf = 649Ω  
Av = -1  
Rf = 649Ω  
RL = 100Ω  
Gain  
Gain  
Gain  
Av = +1  
Rf = 1.0kΩ  
Av = -2  
Rf = 649Ω  
Phase  
Phase  
Phase  
0
0
180  
135  
90  
-90  
RL = 25Ω  
-90  
-180  
-270  
-360  
-450  
-180  
-270  
-360  
-450  
Av = +5  
Av = -5  
Rf = 301Ω  
Rf = 649Ω  
45  
Av = +10  
Rf = 200Ω  
Av = -10  
Rf = 500Ω  
0
-45  
1M  
10M  
100M  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Frequency Response vs. Vo  
Gain Flatness & Linear Phase  
Open Loop Transimpedance Gain, Z(s)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
140  
120  
100  
80  
225  
180  
135  
90  
Phase  
Gain  
Vo = 0.1Vpp  
Gain  
Vo = 1Vpp  
Vo = 2Vpp  
Phase  
-0.1  
-0.2  
-0.3  
60  
45  
40  
0
1M  
10M  
100M  
0
10  
20  
30  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (MHz)  
Equivalent Input Noise  
Frequency (Hz)  
PSRR & CMRR  
2nd & 3rd Harmonic Distortion  
3.6  
12.5  
10  
60  
50  
40  
30  
20  
10  
0
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Vo = 2Vpp  
PSRR  
CMRR  
3.5  
3.4  
3.3  
3.2  
3rd  
RL = 1kΩ  
Inverting Current 8.7pA/Hz  
Non-Inverting Current 7pA/Hz  
Voltage 3.35nV/Hz  
7.5  
5
2nd  
RL = 1kΩ  
3rd  
RL = 100Ω  
2nd  
RL = 100Ω  
2.5  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
2nd & 3rd Harmonic Distortion, RL = 25  
2nd & 3rd Harmonic Distortion, RL = 100Ω  
2nd & 3rd Harmonic Distortion, RL = 1kΩ  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-40  
-50  
-50  
-60  
3rd, 10MHz  
3rd, 10MHz  
3rd, 10MHz  
2nd, 10MHz  
-60  
-70  
2nd, 10MHz  
3rd, 1MHz  
2nd, 10MHz  
3rd, 1MHz  
-70  
-80  
-80  
2nd, 1MHz  
3rd, 1MHz  
-90  
-90  
2nd, 1MHz  
2nd, 1MHz  
-100  
-100  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
Large & Small Signal Pulse Response  
Closed Loop Output Resistance  
IBI, IBN, VIO vs. Temperature  
-1.5  
1.0  
0.5  
0
3
100  
VCC = ±5V  
Large Signal  
VIO  
IBI  
2
10  
1
1
Small Signal  
0
-0.5  
-1.0  
-1.5  
-1  
-2  
-3  
IBN  
0.1  
0.01  
10k  
100k  
1M  
10M  
100M  
-60  
-20  
20  
60  
100  
140  
Time (10ns/div)  
Frequency (Hz)  
Temperature (°C)  
http://www.national.com  
4
(A = +2, R = 750, R = 100, VCC = ±5V, unless specified)  
±5V Typical Performance  
v
f
L
Inverting Frequency Response  
Vo = 1.0Vpp  
Frequency Response  
Frequency Response vs. RL  
Vo = 1.0Vpp  
Vo = 1.0Vpp  
Gain  
Av = -2  
Av = +2  
Rf = 649Ω  
RL = 1kΩ  
Rf = 649Ω  
Gain  
Gain  
Av = -1  
Av = +1  
RL = 100Ω  
Rf = 649Ω  
Rf = 1.0kΩ  
Phase  
Phase  
Phase  
180  
135  
90  
0
0
-45  
-90  
-90  
-180  
-270  
-360  
-450  
Av = -5  
Av = +5  
RL = 25Ω  
Rf = 649Ω  
Rf = 301Ω  
45  
-135  
-180  
-225  
Av = -10  
Rf = 500Ω  
Av = +10  
Rf = 200Ω  
0
-45  
1M  
10M  
100M  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Frequency Response vs. Vo  
Gain Flatness & Linear Phase  
Small Signal Pulse Response  
0.4  
0.3  
0.2  
0.1  
0
Vo = 5Vpp  
Av = +2  
Vo = 1Vpp  
Gain  
Vo = 0.1Vpp  
Vo = 2Vpp  
Phase  
Av = -2  
-0.1  
1M  
10M  
100M  
0
5
10  
15  
20  
25  
30  
Time (10ns/div)  
Frequency (Hz)  
Frequency (MHz)  
Large Signal Pulse Response  
Differential Gain & Phase  
2nd & 3rd Harmonic Distortion vs. Frequency  
0
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
0
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Vo = 2Vpp  
Av = +2  
Gain Neg Sync  
Gain Pos Sync  
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
2nd  
RL = 100Ω  
Phase Neg Sync  
2nd  
RL = 1kΩ  
Phase Pos Sync  
3rd  
RL = 100Ω  
3rd  
RL = 1kΩ  
Av = -2  
Time (20ns/div)  
1
2
3
4
1
10  
Number of 150 Loads  
Frequency (MHz)  
2nd & 3rd Harmonic Distortion, RL = 1kΩ  
2nd & 3rd Harmonic Distortion, RL = 25Ω  
2nd & 3rd Harmonic Distortion, RL = 100Ω  
-50  
-60  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-40  
-50  
3rd, 10MHz  
3rd, 10MHz  
3rd, 10MHz  
2nd, 10MHz  
-60  
-70  
2nd, 10MHz  
3rd, 1MHz  
-70  
2nd, 10MHz  
3rd, 1MHz  
-80  
2nd, 1MHz  
3rd, 1MHz  
-80  
-90  
-90  
2nd, 1MHz  
-100  
-110  
-100  
-110  
2nd, 1MHz  
0
1
2
3
4
5
0
1
2
3
4
5
0
0.5  
1
1.5  
2
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Short Term Settling Time  
Long Term Settling Time  
IBI, IBN, VOS vs. Temperature  
0.2  
0.15  
0.1  
1.4  
1.3  
1.2  
1.1  
1
3
0.2  
0.15  
0.1  
2
IBI  
1
0.05  
0
0.05  
0
0
VOS  
-0.05  
-0.1  
-0.15  
-0.2  
-0.05  
-0.1  
-0.15  
-0.2  
-1  
-2  
-3  
IBN  
0.9  
0.8  
1
10  
100  
1000  
10000  
1µ  
10  
µ
100  
µ
1m  
10m  
100m  
-60  
-20  
20  
60  
100  
140  
Time (ns)  
Time (s)  
Temperature (°C)  
5
http://www.national.com  
(A = +2, R = 750, R = 100, VCC = ±5V, unless specified)  
±5V Typical Channel Matching Performance  
v
f
L
Channel Matching  
Input Referred Crosstalk  
Pulse Crosstalk  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Vo = 1Vpp  
Active Output  
Channel  
Inactive Output  
Channel  
Channel 2  
Channel 1  
1M  
10M  
100M  
1M  
10M  
100M  
Time (10ns/div)  
Frequency (Hz)  
Frequency (Hz)  
CLC5602 OPERATION  
The CLC5602 is a current feedback amplifier built in an  
advanced complementary bipolar process. The CLC5602  
operates from a single 5V supply or dual ±5V supplies.  
Operating from a single supply, the CLC5602 has the  
following features:  
V
A
o
v
R
=
Equation 1  
V
f
in  
1+  
Z(jω)  
where:  
A is the closed loop DC voltage gain  
v
Provides 100mA of output current while  
consuming 7.5mW of power  
Offers low -80/-82dB 2nd and 3rd harmonic  
R is the feedback resistor  
f
Z(jω) is the CLC5602’s open loop  
distortion  
transimpedance gain  
Provides BW > 60MHz and 1MHz distortion  
Z jω  
(
)
is the loop gain  
< -65dBc at V = 2.0V  
o
pp  
R
f
The CLC5602 performance is further enhanced in ±5V  
supply applications as indicated in the ±5V Electrical  
Characteristics table and ±5V Typical Performance plots.  
The denominator of Equation 1 is approximately equal to  
1 at low frequencies. Near the -3dB corner frequency, the  
interaction between R and Z(jω) dominates the circuit  
f
Current Feedback Amplifiers  
performance. The value of the feedback resistor has a  
Some of the key features of current feedback technology  
are:  
large affect on the circuits performance. Increasing R  
has the following affects:  
f
Independence of AC bandwidth and voltage gain  
Inherently stable at unity gain  
Adjustable frequency response with feedback resistor  
High slew rate  
Decreases loop gain  
Decreases bandwidth  
Reduces gain peaking  
Lowers pulse response overshoot  
Fast settling  
Affects frequency response phase linearity  
Current feedback operation can be described using a simple  
equation. The voltage gain for a non-inverting or inverting  
current feedback amplifier is approximated by Equation 1.  
Refer to the Feedback Resistor Selection section for  
more details on selecting a feedback resistor value.  
CLC5602 DESIGN INFORMATION  
Single Supply Operation (V = +5V, V = GND)  
+4.2V. The typical output range with R =100is +1.0V  
CC  
EE  
L
The specifications given in the +5V Electrical Character-  
istics table for single supply operation are measured with  
to +4.0V.  
For single supply DC coupled operation, keep input  
signal levels above 0.8V DC. For input signals that drop  
below 0.8V DC, AC coupling and level shifting the signal  
are recommended. The non-inverting and inverting  
configurations for both input conditions are illustrated in  
the following 2 sections.  
a common mode voltage (V ) of 2.5V. V is the volt-  
cm  
cm  
age around which the inputs are applied and the  
output voltages are specified.  
Operating from a single +5V supply, the Common Mode  
Input Range (CMIR) of the CLC5602 is typically +0.8V to  
http://www.national.com  
6
VCC  
DC Coupled Single Supply Operation  
Figures 1 and 2 show the recommended non-inverting  
and inverting configurations for input signals that remain  
above 0.8V DC.  
6.8µF  
+
VCC  
2
R
R
0.1µF  
8
3
2
+
VCC  
1/2  
1
Vo  
Note: Rt, RL and Rg are tied  
CLC5602  
Cc  
6.8µF  
Rg  
to Vcm for minimum power  
Vin  
+
-
consumption and maximum  
output swing.  
4
Rf  
0.1µF  
8
3
2
Vin  
+
1/2  
1
Vo  
RL  
Vcm  
R
f
CLC5602  
V
= V  
+ 2.5  
o
in  
Rt  
R
g
-
4
Rf  
1
low frequency cutoff =  
2πR C  
g
c
Vcm  
Rg  
R
R
V
o
f
Figure 4: AC Coupled Inverting Configuration  
Dual Supply Operation  
= A = 1+  
v
V
Vcm  
g
in  
Figure 1: Non-Inverting Configuration  
The CLC5602 operates on dual supplies as well as  
single supplies. The non-inverting and inverting configu-  
rations are shown in Figures 5 and 6.  
VCC  
Note: Rb, provides DC bias  
for non-inverting input.  
6.8µF  
VCC  
+
Rb, RL and Rt are tied  
to Vcm for minimum power  
consumption and maximum  
output swing.  
6.8µF  
+
0.1µF  
8
3
+
1/2  
0.1µF  
1
Vo  
RL  
Vcm  
8
Vin  
3
2
+
CLC5602  
Rb  
2
1/2  
1
Vo  
-
CLC5602  
Rt  
4
Vcm  
Rt  
Vcm  
Rg  
Rf  
-
Vin  
4
Rf  
R
V
o
f
= A = 1+  
v
0.1µF  
Rg  
V
R
g
in  
R
V
Select Rt to yield  
desired Rin = Rt || Rg  
o
f
= A = −  
v
+
V
R
g
in  
6.8µF  
VEE  
Figure 2: Inverting Configuration  
AC Coupled Single Supply Operation  
Figure 5: Dual Supply Non-Inverting Configuration  
Figures 3 and 4 show possible non-inverting and invert-  
ing configurations for input signals that go below 0.8V  
DC. The input is AC coupled to prevent the need for  
level shifting the input signal at the source. The resistive  
VCC  
6.8µF  
+
voltage divider biases the non-inverting input to V ÷ 2  
CC  
0.1µF  
= 2.5V (For V = +5V).  
Rb  
Rg  
8
3
2
CC  
+
1/2  
1
Vo  
VCC  
CLC5602  
6.8µF  
-
+
4
Rf  
Vin  
Rt  
Note: Rb provides DC bias  
for the non-inverting input.  
R
Select Rt to yield desired  
Rin = Rt || Rg.  
0.1µF  
Cc  
0.1µF  
8
3
2
Vin  
+
1/2  
1
Vo  
+
CLC5602  
VCC  
2
Rf  
Vo  
R
6.8µF  
-
= Av = −  
4
Rf  
V
Rg  
in  
VEE  
Rg  
C
Figure 6: Dual Supply Inverting Configuration  
R
f
V
= V 1+  
+ 2.5  
o
in  
R
g
1
R
low frequency cutoff =  
, where: R  
=
R >> R  
source  
in  
2πR C  
2
c
in  
Figure 3: AC Coupled Non-Inverting Configuration  
7
http://www.national.com  
Feedback Resistor Selection  
Figure 8 shows typical inverting and non-inverting circuit  
configurations for matching transmission lines.  
The feedback resistor, R , affects the loop gain and  
f
frequency response of a current feedback amplifier.  
Optimum performance of the CLC5602, at a gain of  
Non-inverting gain applications:  
+2V/V, is achieved with R equal to 750. The frequency  
response plots in the Typical Performance sections  
f
Connect R directly to ground.  
g
Make R , R , R , and R equal to Z .  
1
2
6
7
o
illustrate the recommended R for several gains. These  
f
Use R to isolate the amplifier from reactive  
3
recommended values of R provide the maximum band-  
f
loading caused by the transmission line,  
or by parasitics.  
width with minimal peaking. Within limits, R can be  
f
adjusted to optimize the frequency response.  
C6  
Decrease R to peak frequency response and  
extend bandwidth  
Z0  
f
R1  
R3  
R2  
Rg  
R5  
+
Z0  
1/2  
Vo  
R7  
+
-
CLC5602  
V1  
V2  
R6  
Increase R to roll off frequency response and  
-
f
Z0  
compress bandwidth  
Rf  
R4  
+
-
As a rule of thumb, if the recommended R is doubled,  
f
then the bandwidth will be cut in half.  
Unity Gain Operation  
Figure 8:Transmission Line Matching  
The recommended R for unity gain (+1V/V) operation  
f
is 1k. R is left open. Parasitic capacitance at the  
Inverting gain applications:  
g
inverting node may require a slight increase in R to  
maintain a flat frequency response.  
f
Connect R directly to ground.  
3
Make the resistors R , R , and R equal to Z .  
4
6
7
o
Make R II R = Z .  
Load Termination  
5
g
o
The CLC5602 can source and sink near equal amounts  
of current. For optimum performance, the load should be  
The input and output matching resistors attenuate the  
signal by a factor of 2, therefore additional gain is needed.  
tied to V  
.
cm  
Use C to match the output transmission line over a  
6
greater frequency range. C compensates for the increase  
of the amplifier’s output impedance with frequency.  
Driving Cables and Capacitive Loads  
6
When driving cables, double termination is used to  
prevent reflections. For capacitive load applications, a  
small series resistor at the output of the CLC5602 will  
improve stability and settling performance. The  
Power Dissipation  
Follow these steps to determine the power consumption  
of the CLC5602:  
Frequency Response vs. C plot, shown below in  
L
Figure 7, gives the recommended series resistance value  
for optimum flatness at various capacitive loads.  
1. Calculate the quiescent (no-load) power:  
P
= I (V - V  
)
amp  
CC  
CC  
EE  
2. Calculate the RMS power at the output stage:  
P = (V - V ) (I ), where V and I  
load  
o
CC  
load  
load  
load  
Vo = 1Vpp  
are the RMS voltage and current across the  
external load.  
CL = 10pF  
Rs = 46.4  
CL = 100pF  
Rs = 20Ω  
3. Calculate the total RMS power:  
P = P  
+ P  
CL = 1000pF  
Rs = 6.7Ω  
t
amp  
o
+
The maximum power that the DIP and SOIC packages  
can dissipate at a given temperature is illustrated in  
Figure 9. The power derating curve for any CLC5602  
package can be derived by utilizing the following  
equation:  
Rs  
-
CL  
1k  
1k  
1k  
1M  
10M  
100M  
Frequency (Hz)  
(175° − T  
)
amb  
θ
Figure 7: Frequency Response vs. C  
JA  
L
where  
Transmission Line Matching  
One method for matching the characteristic impedance  
T
= Ambient temperature (°C)  
amb  
θ
= Thermal resistance, from junction to ambient,  
for a given package (°C/W)  
(Z ) of a transmission line or cable is to place the  
appropriate resistor at the input or output of the amplifier.  
JA  
o
http://www.national.com  
8
1.0  
0.8  
0.6  
0.4  
0.2  
0
Support Berkeley SPICE 2G and its many derivatives  
IN  
IM  
Reproduce typical DC, AC, Transient, and Noise  
performance  
Support room temperature simulations  
The readme file that accompanies the diskette lists  
released models, and provides a list of modeled parame-  
ters. The application note OA-18, Simulation SPICE  
Models for National’s Op Amps, contains schematics and  
a reproduction of the readme file.  
-40 -20  
0
20 40 60 80 100 120 140 160 180  
Ambient Temperature (°C)  
Figure 9: Power Derating Curves  
Application Circuits  
Layout Considerations  
A proper printed circuit layout is essential for achieving  
high frequency performance. National provides  
evaluation boards for the CLC5602 (CLC730038-DIP,  
CLC730036-SOIC) and suggests their use as a guide for  
high frequency layout and as an aid for device testing and  
characterization.  
Single Supply Cable Driver  
The typical application shown below shows one of the  
CLC5602 amplifiers driving 10m of 75coaxial cable.  
The CLC5602 is set for a gain of +2V/V to compensate  
for the divide-by-two voltage drop at V .  
o
+5V  
General layout and supply bypassing play major roles in  
high frequency performance. Follow the steps below as  
a basis for high frequency layout:  
6.8µF  
+
5kΩ  
0.1µF  
10m of 75Ω  
0.1µF  
8
Vin  
3
Include 6.8µF tantalum and 0.1µF ceramic  
+
Coaxial Cable  
75Ω  
1/2  
CLC5602  
1
Vo  
75Ω  
capacitors on both supplies.  
5kΩ  
2
-
0.1µF  
Place the 6.8µF capacitors within 0.75 inches  
4
1kΩ  
of the power pins.  
1kΩ  
Place the 0.1µF capacitors less than 0.1 inches  
from the power pins.  
0.1µF  
Remove the ground plane under and around the  
part, especially near the input and output pins to  
reduce parasitic capacitance.  
Figure 10: Single Supply Cable Driver  
Minimize all trace lengths to reduce series  
inductances.  
Vin = 10MHz, 0.5Vpp  
Use flush-mount printed circuit board pins for  
prototyping, never use high profile DIP sockets.  
Evaluation Board Information  
A data sheet is available for the CLC730038/ CLC730036  
evaluation boards. The evaluation board data sheet  
provides:  
Evaluation board schematics  
20ns/div  
Evaluation board layouts  
General information about the boards  
The evaluation boards are designed to accommodate  
dual supplies. The boards can be modified to provide  
single supply operation. For best performance; 1) do  
not connect the unused supply, 2) ground the unused  
supply pin.  
Figure 11: Response After 10m of Cable  
Single Supply Lowpass Filter  
Figures 12 and 13 illustrate a lowpass filter and design  
equations. The circuit operates from a single supply of  
+5V. The voltage divider biases the non-inverting input to  
2.5V. And the input is AC coupled to prevent the need for  
level shifting the input signal at the source. Use the  
SPICE Models  
SPICE models provide a means to evaluate amplifier  
designs. Free SPICE models are available for National’s  
monolithic amplifiers that:  
design equations to determine R , R , C , and C based  
1
2
1
2
on the desired Q and corner frequency.  
9
http://www.national.com  
+5V  
8
Differential Line Driver With Load  
Impedance Conversion  
0.1µF  
The circuit shown in the Typical Application schematic  
on the front page and in Figure 15, operates as a  
differential line driver. The transformer converts the load  
impedance to a value that best matches the CLC5602’s  
output capabilites. The single-ended input signal is  
converted to a differential signal by the CLC5602. The  
line’s characteristic impedance is matched at both the  
input and the output. The schematic shows Unshielded  
Twisted Pair for the transmission line; other types of lines  
can also be driven.  
5kΩ  
0.1µF  
C1  
1
R1  
R2  
3
2
Vin  
+
0.1µF  
1/2  
CLC5602  
Vo  
100Ω  
158158Ω  
-
5kΩ  
C2  
4
Rf  
100pF  
1kΩ  
1.698kRg  
0.1µF  
Figure 12: Lowpass Filter Topology  
Rg2  
Rf2  
Vd/2  
Vin  
Rt1  
R
+
1/2  
CLC5602  
f
Gain = K = 1+  
Rm/2  
Req  
Io  
-
1:n  
-Vd/2  
+
Vo  
-
1/2  
Zo  
R
-
g
CLC5602  
RL  
Rf1  
+
UTP  
1
Rt2  
Rm/2  
Corner frequency = ω =  
Rg1  
c
R R C C  
1 2  
1 2  
1
Q =  
Figure 15: Differential Line Driver wtih  
Load Impedance Conversion  
R C  
R C  
R C  
1 1  
2
2
1
2
+
+ (1K)  
R C  
R C  
R C  
2 2  
1 1  
2
1
Set up the CLC5602 as a difference amplifier:  
For R = R = R and C = C = C  
1
2
1
2
V
R
R
R
R
1
d
f1  
f2  
= 2 1+  
= 2  
ω =  
c
V
RC  
1
in  
g1  
g2  
Q =  
Make the best use of the CLC5602’s output drive  
capability as follows:  
(3 K)  
2 V  
max  
Figure 13: Design Equations  
R
+R  
=
eq  
m
I
max  
This example illustrates a lowpass filter with Q = 0.707  
where R is the transformed value of the load imped-  
and corner frequency f = 10MHz. A Q of 0.707 was  
eq  
c
ance, V  
is the Output Voltage Range, and I  
is the  
chosen to achieve a maximally flat, Butterworth  
response. Figure 14 indicates the filter response.  
max  
max  
maximum Output Current.  
Match the line’s characteristic impedance:  
3
-3  
-9  
R = Z  
L
o
R
= R  
eq  
m
R
L
n =  
R
eq  
Select the transformer so that it loads the line with a  
-15  
-21  
value very near Z over frequency range. The output  
o
impedance of the CLC5602 also affects the match. With  
an ideal transformer we obtain:  
1M  
10M  
100M  
Frequency (Hz)  
2
n
Z
jω  
o 5602  
(
)
(
)
Figure 14: Lowpass Response  
ReturnLoss = −20 log  
,dB  
10  
Z
o
http://www.national.com  
10  
where Z  
(jω) is the output impedance of the  
The receiver output voltages are:  
o(5602)  
CLC5602 and |Z  
(jω)| << R .  
m
o(5602)  
V
Z
(jω)  
o(5602)  
R
inB(A)  
f2  
V
V  
A +  
1−  
+
outA(B)  
inA(B)  
The load voltage and current will fall in the ranges:  
n V  
2
R
R
m1  
g2  
V
o
max  
where A is the attenuation of the cable, Z  
output impedance of the CLC5602 (see the Closed-Loop  
Output Resistance plot), and |Z (jω)| << R  
(jω) is the  
o(5602)  
I
max  
I
o
n
.
m1  
o(5602)  
The CLC5602’s high output drive current and low  
distortion make it a good choice for this application.  
We selected the component values as follows:  
R = 1.0k, the recommended value for the  
f1  
Full Duplex Cable Driver  
CLC5602 at unity gain  
The circuit shown in Figure 16 below, operates as a full  
duplex cable driver which allows simultaneous transmis-  
sion and reception of signals on one transmission line.  
The circuit on either side of the transmission line uses are  
CLC5602 as a cable driver, and the second CLC5602 as  
R
= Z = 50, the characteristic impedance  
o
m1  
of the transmission line  
R = R = 750R , the recommended  
f2  
g2  
m1  
value for the CLC5602 at A = 2  
v
R
a receiver. V is an attenuated version of Vi , while V  
m1  
oA  
nA  
oB  
R
= (R ||R ) –  
= 25Ω  
t2  
f2  
g2  
2
is an attenuated version of V  
.
inB  
These values give excellent isolation from the other input:  
VinA  
Rt1  
VinB  
+
+
Z0  
Rm1  
Rm1  
1/2  
1/2  
V
CLC5602  
CLC5602  
oA(B)  
Rt1  
-
-
≈ −38dB, f = 5.0MHz  
V
inB(A)  
Rf1  
Rf2  
Rf1  
Rf2  
Rg2  
Rg2  
The CLC5602 provides large output current drive, while  
consuming little supply current, at the nominal bias point.  
It also produces low distortion with large signal swings  
and heavy loads. These features make the CLC5602 an  
excellent choice for driving transmission lines.  
-
-
1/2  
CLC5602  
1/2  
VoB  
VoA  
CLC5602  
Rt2  
Rt2  
+
+
Figure 16: Full Duplex Cable Driver  
is used to match the transmission line. R and R  
g2  
R
m1  
f2  
set the DC gain of the CLC5602, which is used in a  
difference mode. R provides good CMRR and DC  
t2  
offset. The transmitting CLC5602’s are shown in a unity  
gain configuration because they consume the least  
power of any gain, for a given load. For proper operation  
we need R = R .  
f2  
g2  
11  
http://www.national.com  
Customer Design Applications Support  
National Semiconductor is committed to design excellence. For sales, literature and technical support, call the  
National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.  
Life Support Policy  
National’s products are not authorized for use as critical components in life support devices or systems without the express written approval of  
the president of National Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or  
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
2501 Miramar Tower  
1-23 Kimberley Road  
Tsimshatsui, Kowloon  
Hong Kong  
National Semiconductor  
Japan Ltd.  
Tel: 81-043-299-2309  
Fax: (+49) 0-180-530 85 86  
E-mail: europe.support.nsc.com  
Deutsch Tel: (+49) 0-180-530 85 85  
English Tel: (+49) 0-180-532 78 32  
Francais Tel: (+49) 0-180-532 93 58  
Italiano Tel: (+49) 0-180-534 16 80  
Fax: 81-043-299-2408  
N
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said  
circuitry and specifications.  
http://www.national.com  
12  

相关型号:

CLC5602IMX

Dual, High Output, Video Amplifier
NSC

CLC5602IN

Dual, High Output, Video Amplifier
NSC

CLC561

Wideband, Low Distortion DriveR-Amps
NSC

CLC5612

Dual, High Output, Programmable Gain Buffer
NSC

CLC5612IM

Dual, High Output, Programmable Gain Buffer
NSC

CLC5612IM

DUAL BUFFER AMPLIFIER, PDSO8, PLASTIC, SOIC-8
ROCHESTER

CLC5612IMX

Dual, High Output, Programmable Gain Buffer
NSC

CLC5612IMX

DUAL BUFFER AMPLIFIER, PDSO8, PLASTIC, SOIC-8
ROCHESTER

CLC5612IN

Dual, High Output, Programmable Gain Buffer
NSC

CLC561A8

Wideband, Low Distortion DriveR-Amps
NSC

CLC561A8C

Current-Feedback Operational Amplifier
ETC

CLC561AI

Wideband, Low Distortion DriveR-Amps
NSC