COP244C-XXX/N [NSC]

Single-Chip 1k and 2k CMOS Microcontrollers; 单芯片1K和2K CMOS微控制器
COP244C-XXX/N
型号: COP244C-XXX/N
厂家: National Semiconductor    National Semiconductor
描述:

Single-Chip 1k and 2k CMOS Microcontrollers
单芯片1K和2K CMOS微控制器

微控制器
文件: 总24页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 1992  
COP224C/COP225C/COP226C/COP244C/COP245C  
Single-Chip 1k and 2k CMOS Microcontrollers  
General Description  
Features  
Y
Lowest power dissipation (600 mW typical)  
The COP224C, COP225C, COP226C, COP244C and  
COP245C fully static, Single-Chip CMOS Microcontrollers  
are members of the COPSTM family, fabricated using dou-  
ble-poly, silicon gate microCMOS technology. These Con-  
troller Oriented Processors are complete microcomputers  
containing all system timing, internal logic, ROM, RAM, and  
I/O necessary to implement dedicated control functions in a  
variety of applications. Features include single supply oper-  
ation, a variety of output configuration options, with an in-  
struction set, internal architecture and I/O scheme de-  
signed to facilitate keyboard input, display output and BCD  
data manipulation. The COP224C and COP244C are 28 pin  
chips. The COP225C and COP245C are 24-pin versions (4  
inputs removed) and COP226C is 20-pin version with 15 I/O  
lines. Standard test procedures and reliable high-density  
techniques provide the medium to large volume customers  
with a customized microcontroller at a low end-product cost.  
These microcontrollers are appropriate choices in many de-  
manding control environments especially those with human  
interface.  
Y
Fully static (can turn off the clock)  
Y
Power saving IDLE state and HALT mode  
Y
4.4 ms instruction time  
Y
2k x 8 ROM, 128 x 4 RAM (COP244C/COP245C)  
Y
1k x 8 ROM, 64 x 4 RAM (COP224C/COP225C/  
COP226C)  
Y
Y
Y
Y
Y
Y
23 I/O lines (COP244C and COP224C)  
True vectored interrupt, plus restart  
Three-level subroutine stack  
Single supply operation (4.5V to 5.5V)  
Programmable read/write 8-bit timer/event counter  
Internal binary counter register with MICROWIRETM  
serial I/O capability  
Y
Y
Y
Y
General purpose and TRI-STATE outputs  
É
LSTTL/CMOS output compatible  
Software/hardware compatible with COP400 family  
b
a
Military temperature ( 55 C to 125 C) operation  
§
§
COPSTM, MicrobusTM, and MICROWIRETM are trademarks of National Semiconductor Corp.  
TRI-STATEÉ is a registered trademark of National Semiconductor Corp.  
Block Diagram  
FIGURE 1  
C
1995 National Semiconductor Corporation  
TL/DD/8422  
RRD-B30M105/Printed in U. S. A.  
Absolute Maximum Ratings  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales  
Office/Distributors for availability and specifications.  
b
b
a
55 C to 125 C  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature  
§
§
a
65 C to 150 C  
§
§
Supply Voltage (V  
)
6V  
CC  
(soldering, 10 seconds)  
300 C  
§
b
a
0.3V  
Voltage at any Pin  
0.3V to V  
CC  
Note: Absolute maximum ratings indicate limits beyond  
which damage to the device may occur. DC and AC electri-  
cal specifications are not ensured when operating the de-  
vice at absolute maximum ratings.  
Total Allowable Source Current  
Total Allowable Sink Current  
Total Allowable Power Dissipation  
25 mA  
25 mA  
150 mW  
s
s
s
s
a
V
CC  
b
DC Electrical Characteristics 55 C  
a
a
125 C, 4.5V  
T
A
5.5V unless otherwise specified  
§
§
Parameter  
Conditions  
Min  
Max  
Units  
Operating Voltage  
4.5  
5.5  
V
V
Power Supply Ripple (Notes 4, 5)  
Peak to Peak  
0.25 V  
CC  
e
(tc is instruction cycle time)  
e
Supply Current  
(Note 1)  
V
5.0V, tc 4.4 ms  
CC  
5
mA  
e
e
0 kHz  
HALT Mode Current (Note 2)  
Input Voltage Levels  
V
CC  
5.0V, F  
IN  
200  
mA  
RESET, CKI, D (clock input)  
0
Logic High  
Logic Low  
0.9 V  
0.7 V  
V
V
CC  
0.1 V  
0.2 V  
CC  
All Other Inputs  
Logic High  
V
V
CC  
Logic Low  
CC  
b
a
10  
Hi-Z Input Leakage  
10  
mA  
Input Capacitance (Note 4)  
7
pF  
Output Voltage Levels (except CKO)  
LSTTL Operation  
Logic High  
Standard Outputs  
e
g
5.0V 10%  
V
CC  
eb  
I
I
100 mA  
2.7  
V
V
OH  
e
Logic Low  
400 mA  
0.6  
0.2  
OL  
CMOS Operation  
Logic High  
eb  
b
0.2  
I
I
10 mA  
V
V
V
OH  
CC  
e
Logic Low  
10 mA  
OL  
CKO Current Levels (As Clock Out)  
d
d
d
d
d
d
Sink  
4
0.2  
0.4  
0.8  
mA  
mA  
mA  
mA  
mA  
mA  
e
e
8
CKI  
V
, V  
CC OUT  
V
CC  
16  
4
(
(
b
Source  
0.2  
e
CKI 0V, V  
e
b
b
8
0V  
0.4  
0.8  
OUT  
16  
Allowable Sink/Source Current per Pin  
(Note 6)  
5
mA  
Allowable Loading on CKO (as HALT)  
50  
pF  
Current Needed to Over-Ride HALT  
(Note 3)  
To Continue  
To Halt  
e
e
V
V
0.2 V  
0.7 V  
2.0  
3.0  
mA  
mA  
IN  
CC  
IN  
CC  
TRI-STATE or Open Drain  
Leakage Current  
b
a
10  
10  
mA  
2
s
s
s
s
a
V
CC  
b
AC Electrical Characteristics 55 C  
a
a
125 C, 4.5V  
T
A
5.5V unless otherwise specified.  
§
§
Parameter  
Conditions  
Min  
Max  
Units  
Instruction Cycle Time (tc)  
4.4  
DC  
ms  
d
d
d
Operating CKI  
Frequency  
4 mode  
8 mode  
16 mode  
DC  
DC  
DC  
0.9  
1.8  
3.6  
MHz  
MHz  
MHz  
(
e
e
e
Duty Cycle (Note 4)  
Rise Time (Note 4)  
Fall Time (Note 4)  
f
f
f
3.6 MHz  
40  
60  
60  
40  
%
ns  
ns  
1
1
1
3.6 MHz External Clock  
3.6 MHz External Clock  
e
e
g
30k 5%  
d
82 pF 5% ( 4 Mode)  
Instruction Cycle Time  
RC Oscillator (Note 4)  
R
C
g
6
18  
ms  
Inputs: (SeeFigure 3 ) (Note 4)  
a
t
G Inputs  
SI Input  
tc/4 0.8  
ms  
ms  
ms  
ms  
SETUP  
0.33  
All Others  
1.9  
t
0.4  
HOLD  
e
e
e
100 pF, R 5k  
L
Output Propagation Delay  
, t  
V
OUT  
1.5V, C  
L
t
1.4  
ms  
PD1 PD0  
Note 1: Supply current is measured after running for 2000 cycle times with a square-wave clock on CKI, CKO open, and all other pins pulled up to V  
with 5k  
CC  
resistors. See current drain equation on page 13.  
Note 2: The HALT mode will stop CKI from oscillating in the RC and crystal configurations. Test conditions: all inputs tied to V , L lines in TRI-STATE mode and  
CC  
tied to ground, all outputs low and tied to ground.  
Note 3: When forcing HALT, current is only needed for a short time (approx. 200 ns) to flip the HALT flip-flop.  
Note 4: This parameter is not tested but guaranteed by design. Variation due to the device included.  
Note 5: Voltage change must be less than 0.25 volts in a 1 ms period.  
Note 6: SO output sink current must be limited to keep V less than 0.2 V  
OL  
when part is running in order to prevent entering test mode.  
CC  
s
s
RETS COP244CX DC Parameters Test Conditions 5.3V  
V
CC  
3V Unless Otherwise Specified  
SBGRP 1  
a
SBGRP 2 SBGRP 3  
b
Drift  
Parameter  
a
25 C  
§
125 C  
§
55 C  
§
Ý
Symbol  
V
CC  
Conditions  
Test  
Limits Units  
(Note 1)  
(25 C)  
§
Min  
Max  
85  
Min  
Max  
155  
125  
Min  
Max  
85  
e
4V,  
I
I
Supply Current  
V
DD1  
DD2  
DD  
mA  
mA  
e
F
64 kHz  
IN  
e
Halt Current  
V
4V  
35  
35  
DD  
Input Voltage  
Reset, CKI:  
Logic High  
V
V
9 V  
9 V  
9 V  
V
V
IH1  
CC  
CC  
CC  
Logic Low  
1 V  
2 V  
1 V  
2 V  
1 V  
2 V  
IL1  
CC  
CC  
CC  
All Other Inputs:  
Logic High  
V
V
7 V  
7 V  
7 V  
V
V
IH2  
IL2  
CC  
CC  
CC  
Logic Low  
CC  
CC  
CC  
Output Voltage  
LSTTL Operation:  
Logic High  
e b  
V
V
4.75V I  
4.75V I  
100 mA  
10 mA  
2.7  
2.7  
2.7  
V
V
OH1  
OH  
e
Logic Low  
400 mA  
0.4  
0.4  
0.4  
OL1  
OL  
CMOS Operation:  
Logic High  
e b  
b
b
b
0.2  
CC  
V
V
4.75V I  
4.75V I  
V
0.2  
V
0.2  
V
V
V
OH2  
OL2  
OH  
CC  
CC  
e
Logic Low  
10 mA  
0.2  
0.2  
0.2  
OL  
Output Current  
Logic High  
e
e
b
200  
b
200  
b
200  
I
I
3V  
3V  
V
0V  
100  
100  
100  
mA  
mA  
OH  
Logic Low  
V
3V  
OL  
Input Leakage  
High-Z  
b
b
b
2.5  
I
I
2.5  
2.5  
4
2.5  
2.5  
4
2.5  
4
mA  
mA  
IN1  
IN2  
TRI-STATE or  
Open Drain  
b
b
b
4
4
4
RETS COP244CX  
DEVICE: COP244C-XXX/883 FUNCTION: 4-BIT CMOS MICROCONTROLLER  
3
s
s
3V Unless Otherwise Specified  
RETS COP244CX AC Parameters Test Conditions 5.3V  
V
CC  
SBGRP 9  
a
SBGRP 10 SBGRP 11  
b
55 C  
Drift  
a
25 C  
125 C  
§
§
§
Min Max Min Max Min Max  
Ý
Symbol  
Parameter  
V
CC  
Conditions  
Test  
Limits Units  
(25 C)  
§
t
Instruction Cycle  
Time (Note 1)  
Mode Divided by 8,  
e
CC  
80  
64  
125  
100  
80  
64  
125  
100  
80  
64  
125  
100  
ms  
V
DD  
3V  
e
F
Operating Clock  
V
DD  
3V,  
kHz  
IN  
s s  
30% Duty Cycle 50%  
Frequency (Note 1)  
Inputs  
e
t
t
(Note 2)  
V
4.5V  
2
2
2
ms  
ms  
SETUP  
Inputs  
32  
32  
32  
SETUP-G  
For SKGZ & SKGBZ  
(Note 2)  
t
(Note 1)  
0.6  
0.6  
0.6  
ms  
HOLD  
e
e
100 pF  
1.5V  
t
t
Output Prop Delay  
(Note 1)  
R
5k, C  
L
e
6
6
6
6
6
6
ms  
ms  
PD1  
L
4.5V  
V
PD2  
OUT  
RETS COP244CX  
DEVICE: COP244C-XXXD/883 FUNCTION: 4-BIT CMOS MICROCONTROLLER  
Note 1: Parameter tested go-no-go only.  
Note 2: Guaranteed by design and not tested.  
4
Connection Diagrams  
S.O. Wide and DIP  
S.O. Wide and DIP  
Top View  
TL/DD/8422–3  
Top View  
Order Number COP225C-XXX/N  
or COP245C-XXX/N  
See NS Molded Package Number N24A  
TL/DD/8422–2  
Order Number COP226C-XXX/N  
See NS Molded Package Number N20A  
Order Number COP225C-XXX/D  
or COP245C-XXX/D  
See NS Hermetic Package Number D24C  
Order Number COP226C-XXX/D  
See NS Hermetic Package Number D20A  
Order Number COP226C-XXX/WM  
See NS Surface Mount Package Number M20B  
DIP  
28 PLCC  
Top View  
TL/DD/8422–4  
TL/DD/842213  
Order Number COP224C-XXX/V  
or COP244C-XXX/V  
See NS PLCC Package Number V28A  
Order Number COP224C-XXX/N  
or COP244C-XXX/N  
See NS Molded Package Number N28B  
Order Number COP224C-XXX/D  
or COP244C-XXX/D  
See NS Hermetic Package Number D28C  
FIGURE 2  
5
Pin Descriptions  
Pin  
Description  
Pin  
Description  
L7L0  
8-bit bidirectional  
SK  
Logic controlled  
clock output  
port with TRI-STATE  
G3G0  
4-bit bidirectional  
I/O port  
CKI  
Chip oscillator input  
CKO  
Oscillator output,  
HALT I/O port or  
general purpose input  
D3D0  
4-bit output port  
IN3IN0  
4-bit input port  
(28 pin package only)  
RESET  
Reset input  
SI  
Serial input or  
counter input  
V
Most positive  
power supply  
CC  
SO  
Serial or general  
purpose output  
GND  
Ground  
Functional Description  
The internal architecture is shown in Figure 1. Data paths  
are illustrated in simplified form to depict how the various  
logic elements communicate with each other in implement-  
ing the instruction set of the device. Positive logic is used.  
When a bit is set, it is a logic ‘‘1’’, when a bit is reset, it is a  
logic ‘‘0’’.  
RAM addressing is implemented by a 7-bit B register whose  
upper 3 bits (Br) select 1 of 8 data registers and lower 4 bits  
(Bd) select 1 of 16 4-bit digits in the selected data register.  
Data memory consists of a 256-bit RAM for the COP224C/  
c
225C/226C, organized as 4 data registers of 16  
4-bits  
digits. The B register is 6 bits long. Upper 2 bits (Br) select 1  
of 4 data registers and lower 4 bits (Bd) select 1 of 16 4-bit  
digits in the selected data register. While the 4-bit contents  
of the selected RAM digit (M) are usually loaded into or  
from, or exchanged with, the A register (accumulator), it  
may also be loaded into or from the Q latches or T counter  
or loaded from the L ports. RAM addressing may also be  
performed directly by the LDD and XAD instructions based  
upon the immediate operand field of these instructions.  
Caution:  
The output options available on the COP224C/225C/226C  
and COP244C/245C are not the same as those available  
on the COP324C/325C/326C, COP344C/345C, COP424C/  
425C/426C and COP444C/445C. Options not available on  
the COP224C/225C/226C and COP244C/245C are: Option  
2 value 2; Option 4 value 0; Option 5 value 1; Option 9 value  
0; Option 17 value 1; Option 30, Dual Clock, all values; Op-  
tion 32, MicrobusTM, all values; Option 33 values 2, 4, and 6;  
Option 34 all values; and Option 35 all values.  
The Bd register also serves as a source register for 4-bit  
data sent directly to the D outputs.  
PROGRAM MEMORY  
INTERNAL LOGIC  
Program Memory consists of ROM, 1024 bytes for the  
COP224C/225C/226C and 2048 bytes for the COP244C/  
245C. These bytes of ROM may be program instructions,  
constants or ROM addressing data.  
The processor contains its own 4-bit A register (accumula-  
tor) which is the source and destination register for most I/O,  
arithmetic, logic, and data memory access operations. It can  
also be used to load the Br and Bd portions of the B regis-  
ter, to load and input 4 bits of the 8-bit Q latch or T counter,  
to input 4 bits of L I/O ports data, to input 4-bit G, or IN  
ports, and to perform data exchanges with the SIO register.  
ROM addressing is accomplished by an 11-bit PC register  
which selects one of the 8-bit words contained in ROM. A  
new address is loaded into the PC register during each in-  
struction cycle. Unless the instruction is a transfer of control  
instruction, the PC register is loaded with the next sequen-  
tial 11-bit binary count value.  
A 4-bit adder performs the arithmetic and logic functions,  
storing the results in A. It also outputs a carry bit to the 1-bit  
C register, most often employed to indicate arithmetic over-  
flow. The C register in conjunction with the XAS instruction  
and the EN register, also serves to control the SK output.  
Three levels of subroutine nesting are implemented by a  
three level deep stack. Each subroutine call or interrupt  
pushes the next PC address into the stack. Each return  
pops the stack back into the PC register.  
The 8-bit T counter is a binary up counter which can be  
loaded to and from M and A using CAMT and CTMA instruc-  
tions. This counter may be operated in two modes depend-  
ing on a mask-programmable option: as a timer or as an  
external event counter. When the T counter overflows, an  
DATA MEMORY  
Data memory consists of a 512-bit RAM for the COP244C/  
c
245C, organized as 8 data registers of 16  
4-bit digits.  
6
Functional Description (Continued)  
overflow flag will be set (see SKT and IT instructions below).  
The T counter is cleared on reset. A functional block dia-  
gram of the timer/counter is illustrated in Figure 7.  
SIO. SO can be enabled to output the most significant bit  
of SIO each cycle time. The SK outputs SKL ANDed with  
the instruction cycle clock.  
Four general-purpose inputs, IN3IN0, are provided.  
1. With EN1 set, interrupt is enabled. Immediately following  
an interrupt, EN1 is reset to disable further interrupts.  
The D register provides 4 general-purpose outputs and is  
used as the destination register for the 4-bit contents of Bd.  
2. With EN2 set, the L drivers are enabled to output the data  
in Q to the L I/O port. Resetting EN2 disables the L driv-  
ers, placing the L I/O port in a high-impedance input  
state.  
The G register contents are outputs to a 4-bit general-pur-  
pose bidirectional I/O port.  
The Q register is an internal, latched, 8-bit register, used to  
hold data loaded to or from M and A, as well as 8-bit data  
from ROM. Its contents are outputted to the L I/O ports  
when the L drivers are enabled under program control.  
3. EN3, in conjunction with EN0, affects the SO output. With  
EN0 set (binary counter option selected) SO will output  
the value loaded into EN3. With EN0 reset (serial shift  
register option selected), setting EN3 enables SO as the  
output of the SIO shift register, outputting serial shifted  
data each instruction time. Resetting EN3 with the serial  
shift register option selected disables SO as the shift reg-  
ister output; data continues to be shifted through SIO and  
can be exchanged with A via an XAS instruction but SO  
remains set to ‘‘0’’.  
The 8 L drivers, when enabled, output the contents of  
latched Q data to the L I/O port. Also, the contents of L may  
be read directly into A and M.  
The SIO register functions as a 4-bit serial-in/serial-out shift  
register for MICROWIRE I/O and COPS peripherals, or as a  
binary counter (depending on the contents of the EN regis-  
ter). Its contents can be exchanged with A.  
INTERRUPT  
The XAS instruction copies C into the SKL latch. In the  
counter mode, SK is the output of SKL; in the shift register  
mode, SK outputs SKL ANDed with the clock.  
The following features are associated with interrupt proce-  
dure and protocol and must be considered by the program-  
mer when utilizing interrupts.  
EN is an internal 4-bit register loaded by the LEI instruction.  
The state of each bit of this register selects or deselects the  
particular feature associated with each bit of the EN regis-  
ter:  
a. The interrupt, once recognized as explained below,  
pushes the next sequential program counter address  
a
(PC 1) onto the stack. Any previous contents at the bot-  
tom of the stack are lost. The program counter is set to  
hex address 0FF (the last word of page 3) and EN1 is  
reset.  
0. The least significant bit of the enable register, EN0, se-  
lects the SIO register as either a 4-bit shift register or a  
4-bit binary counter. With EN0 set, SIO is an asynchro-  
nous binary counter, decrementing its value by one upon  
each low-going pulse (‘‘1’’ to ‘‘0’’) occurring on the SI  
input. Each pulse must be at least two instruction cycles  
wide. SK outputs the value of SKL. The SO output equals  
the value of EN3. With EN0 reset, SIO is a serial shift  
register left shifting 1 bit each instruction cycle time. The  
data present at SI goes into the least significant bit of  
b. An interrupt will be recognized only on the following con-  
ditions:  
1. EN1 has been set.  
2. A low-going pulse (‘‘1’’ to ‘‘0’’) at least two instruction  
cycles wide has occurred on the IN input.  
1
3. A currently executing instruction has been completed.  
TL/DD/8422–5  
FIGURE 3. Input/Output Timing Diagrams (divide by 8 mode)  
TABLE I. Enable Register Modes Ð Bits EN0 and EN3  
EN0 EN3  
SIO  
Shift  
SI  
SO  
SK  
e e  
If SKL 1,SK clock  
If SKL 0,SK  
0
0
1
1
0
1
0
1
Input to Shift  
0
e
e
0
Register Register  
e e  
Input to Shift Serial If SKL 1,SK clock  
Shift  
e
e
0
Register Register  
out If SKL 0,SK  
e
SK SKL  
Binary  
Counter Counter  
Binary Input to  
Counter Counter  
Input to  
0
1
e
SK SKL  
7
Functional Description (Continued)  
4. All successive transfer of control instructions and suc-  
cessive LBIs have been completed (e.g. if the main  
program is executing a JP instruction which transfers  
program control to another JP instruction, the interrupt  
will not be acknowledged until the second JP instruc-  
tion has been executed).  
TIMER  
There are two modes selected by mask option:  
a. Time-base counter. In this mode, the instruction cycle fre-  
quency generated from CKI passes through a 2-bit divide-  
by-4 prescaler. The output of this prescaler increments  
the 8-bit T counter thus providing a 10-bit timer. The pre-  
scaler is cleared during execution of a CAMT instruction  
and on reset.  
c. Upon acknowledgement of an interrupt, the skip logic  
status is saved and later restored upon popping of the  
stack. For example, if an interrupt occurs during the exe-  
cution of ASC (Add with Carry, Skip on Carry) instruction  
which results in carry, the skip logic status is saved and  
program control is transferred to the interrupt servicing  
routine at hex address 0FF. At the end of the interrupt  
routine, a RET instruction is executed to pop the stack  
and return program control to the instruction following the  
original ASC. At this time, the skip logic is enabled and  
skips this instruction because of the previous ASC carry.  
Subroutines should not be nested within the interrupt  
service routine, since their popping of the stack will en-  
able any previously saved main program skips, interfering  
with the orderly execution of the interrupt routine.  
For example, using a 3.58 MHz crystal with a divide-by-16  
option, the instruction cycle frequency of 223.70 kHz in-  
crements the 10-bit timer every 4.47 ms. By presetting the  
counter and detecting overflow, accurate timeouts be-  
tween 17.88 ms (4 counts) and 4.577 ms (1024 counts)  
are possible. Longer timeouts can be achieved by accu-  
mulating, under software control, multiple overflows.  
b. External event counter. In this mode, a low-going pulse  
(‘‘1’’ to ‘‘0’’) at least 2 instruction cycles wide on the IN2  
input will increment the 8-bit T counter.  
Note: The IT instruction is not allowed in this mode.  
d. The instruction at hex address 0FF must be a NOP.  
e. An LEI instruction may be put immediately before the  
RET instruction to re-enable interrupts.  
INITIALIZATION  
The internal reset logic will initialize the device upon power-  
up if the power supply rise time is less than 1 ms and if the  
operating frequency at CKI is greater than 32 kHz, other-  
wise the external RC network shown in Figure 4 must be  
connected to the RESET pin (the conditions in Figure 4  
must be met). The RESET pin is configured as a Schmitt  
trigger input. If not used, it should be connected to V  
.
CC  
Initialization will occur whenever a logic ‘‘0’’ is applied to the  
RESET input, providing it stays low for at least three instruc-  
tion cycle times.  
Note: If CKI clock is less than 32 kHz, the internal reset logic (option  
Ý
e
29 1) MUST be disabled and the external RC circuit must be used.  
TL/DD/8422–7  
Crystal or Resonator  
Crystal  
Value  
Component Values  
R1  
R2  
C1(pF)  
C2(pF)  
32 kHz  
220k  
5k  
2k  
20M  
10M  
1M  
30  
80  
30  
30  
6–36  
40  
6–36  
6–36  
455 kHz  
2.096 MHz  
3.6 MHz  
1k  
1M  
TL/DD/8422–6  
FIGURE 4. Power-Up Circuit  
RC Controlled Oscillator  
Cycle  
Time  
Upon initialization, the PC register is cleared to 0 (ROM ad-  
dress 0) and the A, B, C, D, EN, IL, T and G registers are  
cleared. The SKL latch is set, thus enabling SK as a clock  
output. Data Memory (RAM) is not cleared upon initializa-  
tion. The first instruction at address 0 must be a CLRA  
(clear A register).  
R
C
V
CC  
t
4.5V  
30k  
82 pF  
6–18 ms  
s
s
150k  
Note: 15k  
R
s
s
50 pF  
C
150 pF  
FIGURE 5. Oscillator Component Values  
8
Functional Description (Continued)  
the external driver returns to high impedance state.  
By forcing a low level to CKO, the chip will continue  
and CKO will stay low.  
HALT MODE  
The COP244C/245C/224C/225C/226C is a FULLY STAT-  
IC circuit; therefore, the user may stop the system oscillator  
at any time to halt the chip. The chip may also be halted by  
the HALT instruction or by forcing CKO high when it is  
mask-programmed as a HALT I/O port. Once in the HALT  
mode, the internal circuitry does not receive any clock sig-  
nal and is therefore frozen in the exact state it was in when  
halted. All information is retained until continuing. The chip  
may be awakened by one of two different methods:  
As another option, CKO can be a general purpose in-  
put, read into bit 2 of A (accumulator) upon execution  
of an INIL instruction.  
#
OSCILLATOR OPTIONS  
There are three basic clock oscillator configurations avail-  
able as shown by Figure 5.  
a. Crystal Controlled Oscillator. CKI and CKO are connect-  
ed to an external crystal. The instruction cycle time equals  
the crystal frequency optionally divided by 4, 8 or 16.  
Continue function: by forcing CKO low, if it mask-pro-  
#
grammed as a HALT I/O port, the system clock is re-en-  
abled and the circuit continues to operate from the point  
where it was stopped.  
b. External Oscillator. The external frequency is optionally  
divided by 4, 8 or 16 to give the instruction cycle time.  
CKO is the HALT I/O port or a general purpose input.  
Restart: by forcing the RESET pin low (see Initializa-  
tion).  
#
c. RC Controlled Oscillator. CKI is configured as a single pin  
RC controlled Schmitt trigger oscillator. The instruction  
cycle equals the oscillation frequency divided by 4. CKO  
is the HALT I/O port or a general purpose input.  
The HALT mode is the minimum power dissipation state.  
CKO PIN OPTIONS  
a. Two-pin oscillatorÐ(Crystal). See Figure 6a.  
Figure 7 shows the clock and timer diagram.  
In a crystal controlled oscillator system, CKO is used as  
an output to the crystal network. The HALT mode may be  
entered by program control (HALT instruction) which  
forces CKO high, thus inhibiting the crystal network. The  
circuit can be awakened only by forcing the RESET pin to  
a logic ‘‘0’’ (restart).  
COP245C AND COP225C 24-PIN PACKAGE OPTION  
If the COP244C/224C is bonded in a 24-pin package, it be-  
comes the COP245C/225C, illustrated in Figure 2, Connec-  
tion diagrams. Note that the COP245C/225C does not con-  
tain the four general purpose IN inputs (IN3IN0). Use of  
this option precludes, of course, use of the IN options, inter-  
rupt feature, external event counter feature.  
b. One-pin oscillatorÐ(RC or external). See Figure 6b.  
If a one-pin oscillator system is chosen, two options are  
available for CKO:  
Note: If user selects the 24-pin package, options 9, 10, 19 and 20 must be  
selected as a ‘‘2’’. See option list.  
CKO can be selected as the HALT I/O port. In that  
#
case, it is an I/O flip-flop which is an indicator of the  
HALT status. An external signal can over-ride this pin  
to start and stop the chip. By forcing a high level to  
CKO, the chip will stop as soon as CKI is high and  
CKO output will stay high to keep the chip stopped if  
COP226C 20-PIN PACKAGE OPTION  
If the COP225C is bonded as 20-pin device it becomes the  
COP226C. Note that the COP226C contains all the  
COP225C pins except D , D , G , and G .  
0
1
0
1
Block Diagram  
TL/DD/8422–8  
FIGURE 6a. Halt ModeÐTwo-Pin Oscillator  
9
Block Diagrams (Continued)  
TL/DD/8422–9  
FIGURE 6b. Halt ModeÐOne-Pin Oscillator  
TL/DD/842210  
FIGURE 7. Clock and Timer  
10  
Instruction Set  
Table II is a symbol table providing internal architecture, in-  
struction operand and operation symbols used in the in-  
struction set table.  
Instruction Operand Symbols  
d
r
4-bit operand field, 015 binary (RAM digit select)  
TABLE II. Instruction Set Table Symbols  
3(2)-bit operand field, 07(3) binary  
(RAM register select)  
Symbol  
Definition  
a
y
11-bit operand field, 02047 (1023)  
4-bit operand field, 015 (immediate data)  
Internal Architecture Symbols  
RAM(x) RAM addressed by variable x  
ROM(x) ROM addressed by variable x  
A
4-bit accumulator  
B
7-bit RAM address register (6-bit for COP224C)  
Upper 3 bits of B (register address)  
(2-bit for COP224C)  
Br  
Operational Symbols  
Bd  
C
Lower 4 bits of B (digit address)  
1-bit carry register  
a
b
Plus  
Minus  
D
4-bit data output port  
x
Ý
e
Replaces  
EN  
G
4-bit enable register  
Is exchanged with  
Is equal to  
4-bit general purpose I/O port  
two 1-bit (IN0 and IN3) latches  
4-bit input port  
IL  
A
Z
:
One’s complement of A  
Exclusive-or  
Range of values  
IN  
L
8-bit TRI-STATE I/O port  
4-bit contents of RAM addressed by B  
11-bit ROM address program counter  
8-bit latch for L port  
M
PC  
Q
Table III provides the mnemonic, operand, machine code  
data flow, skip conditions and description of each instruc-  
tion.  
SA,SB,SC 11-bit 3-level subroutine stack  
SIO  
SK  
SKL  
T
4-bit shift register and counter  
Logic-controlled clock output  
1-bit latch for SK output  
8-bit timer  
TABLE III. COP244C/245C Instruction Set  
Machine  
Hex  
Language  
Code  
Skip  
Mnemonic  
Operand  
Data Flow  
Description  
Code  
Conditions  
(Binary)  
ARITHMETIC INSTRUCTIONS  
a
a
ASC  
30  
0011 0000  
À
A
RAM(B)  
x
A
Carry  
Add with Carry, Skip on  
Carry  
CarrCyx  
C
À
À
a
ADD  
ADT  
31  
4A  
b
0011 0001  
À
A
A
A
RAM(B)  
x
A
None  
None  
Carry  
Add RAM to A  
À
À
À
À
a
a
0100 1010  
À
1010x  
x
A
Add Ten to A  
À
AISC  
y
5
0101  
y
y
A
Add Immediate. Skip on  
i
Carry (y 0)  
À
À
a
Carry  
a
C
CASC  
10  
0001 0000  
À
A
RAM(B)  
x
x
A
Carry  
Complement and Add with  
Carry, Skip on Carry  
À
À
C
CLRA  
COMP  
NOP  
RC  
00  
40  
44  
32  
22  
02  
0000 0000  
À
0100 0100  
0
x
x
A
None  
None  
None  
None  
None  
None  
Clear A  
À
À
À
À
À
À
À
À
À
À
À
À
0100 0000  
À
0011 0010  
A
A
Ones complement of A to A  
No Operation  
Reset C  
None  
À
0010 0010  
‘‘0’’  
‘‘1’’  
x
x
C
C
À
0000 0010  
SC  
Set C  
À
Z
XOR  
A
RAM(B)  
x
A
Exclusive-OR RAM with A  
À
11  
Instruction Set (Continued)  
TABLE III. COP244C/245C Instruction Set (Continued)  
Machine  
Language  
Code  
Hex  
Skip  
Mnemonic  
Operand  
Data Flow  
Description  
Code  
Conditions  
(Binary)  
TRANSFER CONTROL INSTRUCTIONS  
JID  
FF  
1111 1111  
À
ROM (PC  
10:8  
A,M)  
x
PC  
None  
None  
Jump Indirect (Notes 1, 3)  
Jump  
7:0  
À
À
b
JMP  
a
a
6
0110 0 a  
À
a
x
x
PC  
10:8  
À
À
À
bb  
a
7:0  
À
À
bb  
JP  
1
a
a
PC  
None  
Jump within Page (Note 4)  
6:0  
6:0  
À
À
11  
À
5:0  
(pages 2, 3 only)  
or  
bb  
bb  
a
a
x
PC  
5:0  
À
À
À
(all other pages)  
a
JSRP  
JSR  
a
a
10  
a
PC x xSB  
x
x
SC  
SC  
None  
Jump to Subroutine Page  
(Note 5)  
000101xPSCA  
x
5:0  
À
À
À
10:6  
a
PC  
5:0  
b
a
6
0110 1 a  
À
x
SA  
x
SB  
None  
None  
Jump to Subroutine  
a
a
PxC 1PC  
10:8  
À
À
À
À
bb  
7:0  
À
0100 1001  
RET  
48  
0100 1000  
À
SC  
x
x
SB  
x
x
SA  
SA  
x
x
PC  
PC  
Return from Subroutine  
À
À
À
À
RETSK  
49  
SC  
SB  
Always Skip  
on Return  
Return from Subroutine  
then Skip  
À
0011 1000  
HALT  
IT  
33  
38  
33  
39  
0011 0011  
À
None  
HALT Processor  
À
À
À
À
À
À
À
À
À
0011 0011  
À
IDLE till Timer  
0011 1001  
À
None  
Overflows then Continues  
MEMORY REFERENCE INSTRUCTIONS  
CAMT  
CTMA  
CAMQ  
CQMA  
LD  
33  
3F  
0011 0011  
À
A
x
T
RAM(B)7x:4  
T
3:0  
None  
Copy A, RAM to T  
À
À
0011 1111  
À
À
À
33  
2F  
0011 0011  
À
T
7:4xRAM(B)  
À
À
À
À
0010 1111  
À
T3:0x  
A
None  
None  
Copy T to RAM, A  
Copy A, RAM to Q  
33  
0011 0011  
À
A
x
RAM(B)  
Q
7:4  
À
À
À
À
3C  
0011 1100  
À
x
7:4xRAM(B)  
3:0x  
Q
3:0  
33  
0011 0011  
À
Q
Q
None  
None  
None  
None  
None  
Copy Q to RAM, A  
À
À
À
À
2C  
0010 1100  
À
A
b
r
5
00  
r
0101  
RAM(B)  
x
xBr  
A
Load RAM into A,  
À
À
À
À
e
(r 0:3)  
Z
Br  
r
Exclusive-OR Br with r  
LDD  
r,d  
23  
bb  
0010 0011  
À
RAM(r,d)  
x
A
Load A with RAM pointed  
to directly by r,d  
À
À
À
À
0
r
d
À
À
À
LQID  
RMB  
BF  
1011 1111  
À
,A,M)  
10:8  
x
Q
Load Q Indirect (Note 3)  
RSBOxM(PSCC  
À
0100 0101  
À
0xRAM(B)  
0
1
2
3
4C  
45  
42  
43  
0100 1100  
À
x
Reset RAM Bit  
0
À
À
À
À
À
À
À
À
0xRAM(B)  
1
2
3
0100 0010  
À
0100 0011  
À
0
0xRRAAMM((BB))  
SMB  
0
1
2
3
4D  
47  
46  
4B  
0100 1101  
À
x
1xRAM(B)  
None  
Set RAM Bit  
1xRAM(B)  
0
1
2
3
À
À
À
À
À
À
À
À
0100 0111  
À
0100 0110  
À
0100 1011  
À
1
1xRRAAMM((BB))  
12  
Instruction Set (Continued)  
TABLE III. COP244C/245C Instruction Set (Continued)  
Machine  
Language  
Code  
Hex  
Skip  
Mnemonic  
Operand  
Data Flow  
Description  
Code  
Conditions  
(Binary)  
MEMORY REFERENCE INSTRUCTIONS (Continued)  
b
STII  
y
7
0111  
y
y
x
RAM(B)  
x
None  
None  
None  
Store Memory Immediate  
1 and Increment Bd  
À
À
À
À
a
Bd  
1
Bd  
b
X
r
6
00  
r
0110  
RAM(B)Ý  
x
A
Exchange RAM with A,  
Exclusive-OR Br with r  
À
À
À
e
(r 0:3)  
Z
Br  
r
Br  
XAD  
XDS  
r,d  
r
23  
bb  
0010 0011  
À
RAM(r,d)  
Ý
A
Exchange A with RAM  
Pointed to Directly by r,d  
À
À
1
r
d
À
À
À
À
b
7
00 r 0111  
À
RAM(B)  
Ý
A
Bd  
Exchange RAM with A  
and Decrement Bd.  
À
À
À
À
e
(r 0:3)  
b
Z
Bd  
Br  
x
Bd  
decrements  
past 0  
r
1 xBr  
Exclusive-OR Br with r  
b
XIS  
r
4
00  
r
0100  
RAM(B)  
Ý
A
Bd  
Exchange RAM with A  
and Increment Bd,  
À
À
À
e
(r 0:3)  
a
Bd  
Br  
1
x
increments  
past 15  
r
xBBrd  
Exclusive-OR Br with r  
Z
REGISTER REFERENCE INSTRUCTIONS  
CAB  
CBA  
LBI  
50  
4E  
0101 0000  
À
00 r (d1)  
A
x
Bdx  
Bd  
None  
None  
Copy A to Bd  
Copy Bd to A  
À
À
À
À
À
0100 1110  
À
A
bb  
r,d  
r,d  
x
B
Skip until  
not a LBI  
Load B Immediate with r,d  
(Note 6)  
À
À
À
e
(r 0:3:  
e
d
0,9:15)  
or  
33  
bb  
0011 0011  
À
À
À
1
r
d
À
À
À
À
(any r, any d)  
LEI  
y
33  
b
0011 0011  
y
x
EN  
None  
None  
Load EN Immediate (Note 7)  
Exchange A with Br (Note 8)  
À
À
À
À
À
À
6
0110  
y
À
XABR  
12  
0001 0010  
A
Ý
Br  
À
À
TEST INSTRUCTIONS  
e
e
SKC  
20  
21  
0010 0000  
C
A
‘‘1’’  
Skip if C is True  
À
À
À
À
SKE  
0010 0001  
À
RAM(B)  
Skip if A Equals RAM  
À
e
SKGZ  
33  
21  
0011 0011  
G
0
Skip if G is Zero  
(all 4 bits)  
3:0  
À
À
À
0000 0001  
À
À
0010 0001  
À
0001 0001  
SKGBZ  
33  
01  
11  
03  
13  
0011 0011  
À
1st byte  
2nd byte  
Skip if G Bit is Zero  
À
À
À
À
À
À
À
À
À
À
e
e
e
e
0
1
2
3
G
G
G
G
0
0
0
0
0
À
1
2
3
À
0000 0001  
0000 0011  
À
0001 0001  
0001 0011  
*
À
0000 0011  
e
e
e
e
SKMBZ  
SKT  
0
1
2
3
01  
11  
03  
13  
RAM(B)  
RAM(B)  
RAM(B)  
RAM(B)  
0
0
0
0
Skip if RAM Bit is Zero  
0
1
2
3
À
À
À
À
À
À
À
À
À
À
0100 0001  
À
0001 0011  
À
41  
A time-base  
counter carry  
has occurred  
since last test  
Skip on Timer  
(Note 3)  
À
À
À
13  
Instruction Set (Continued)  
TABLE III. COP244C/245C Instruction Set (Continued)  
Machine  
Language  
Code  
Hex  
Skip  
Mnemonic  
Operand  
Data Flow  
Description  
Code  
Conditions  
(Binary)  
INPUT/OUTPUT INSTRUCTIONS  
ING  
ININ  
INIL  
INL  
33  
2A  
0011 0011  
À
G
x
A
None  
None  
None  
None  
None  
None  
None  
None  
Input G Ports to A  
À
À
À
À
0010 1010  
À
33  
28  
0011 0011  
À
IN  
x
A
Input IN Inputs to A  
(Note 2)  
À
À
À
À
0010 1000  
À
33  
29  
0011 0011  
À
IL , CKO,‘‘0’’, IL0x  
A
Input IL Latches to A  
(Note 3)  
3
À
À
À
À
0010 1001  
À
33  
2E  
0011 0011  
À
L
7:4xRAM(B)  
Input L Ports to RAM,A  
À
À
À
À
0010 1110  
À
L
3:0x  
x
A
OBD  
OGI  
OMG  
XAS  
33  
3E  
0011 0011  
À
Bd  
D
Output Bd to D Outputs  
À
À
À
À
0011 1110  
À
y
33  
b
0011 0011  
À
y
x
G
Output to G Ports  
Immediate  
À
À
À
5
0101  
y
À
À
33  
3A  
0011 0011  
À
RAM(B)  
x
G
Output RAM to G Ports  
À
À
À
0011 1010  
À
À
4F  
0100 1111  
À
A
Ý
SIO, C  
x
SKL  
Exchange A with SIO  
(Note 3)  
À
À
Note 1: All subscripts for alphabetical symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where  
0 signifies the least significant bit (low-order, right-most bit). For example, A indicates the most significant (left-most) bit of the 4-bit A register.  
3
Note 2: The ININ instruction is not available on the 24-pin packages since these devices do not contain the IN inputs.  
Note 3: For additional information on the operation of the XAS, JID, LQID, INIL, and SKT instructions, see below.  
Note 4: The JP instruction allows a jump, while in subroutine pages 2 or 3, to any ROM location within the two-page boundary of pages 2 or 3. The JP instruction,  
otherwise, permits a jump to a ROM location within the current 64-word page. JP may not jump to the last word of a page.  
Note 5: A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3. JSRP  
may not jump to the last word in page 2.  
e
e.g., to load the lower four bits of B(Bd) with the value 9 (1001 ), the lower 4 bits of the LBI instruction equal 8 (1000 ). To load 0, the lower 4 bits of the LBI  
Note 6: LBI is a single-byte instruction if d  
0, 9, 10, 11, 12, 13, 14, or 15. The machine code for the lower 4 bits equals the binary value of the ‘‘d’’ data minus 1,  
2
2
instruction should equal 15 (1111 ).  
2
Note 7: Machine code for operand field y for LEI instruction should equal the binary value to be latched into EN, where a ‘‘1’’ or ‘‘0’’ in each bit of EN corresponds  
with the selection or deselection of a particular function associated with each bit. (See Functional Description, EN Register.)  
Note 8: For 2K ROM devices, A  
Ý
Br (0  
x
A3). For 1K ROM devices, A  
Ý
Br (0,0  
x
A3, A2).  
14  
Description of Selected Instructions  
pulse stays low for at least two instruction cycles. Execution  
of an INIL inputs IL3 and IL0 into A3 and A0 respectively,  
and resets these latches to allow them to respond to subse-  
quent low-going pulses on the IN3 and IN0 lines. If CKO is  
mask programmed as a general purpose input, an INIL will  
input the state of CKO into A2. If CKO has not been so  
programmed, a ‘‘1’’ will be placed in A2. A0 is input into A1.  
IL latches are cleared on reset. IL latches are not available  
on the COP245C/225C, and COP226C.  
XAS INSTRUCTION  
XAS (Exchange A with SIO) copies C to the SKL latch and  
exchanges the accumulator with the 4-bit contents of the  
SIO register. The contents of SIO will contain serial-in/seri-  
al-out shift register or binary counter data, depending on the  
value of the EN register. If SIO is selected as a shift register,  
an XAS instruction can be performed once every 4 instruc-  
tion cycles to effect a continuous data stream.  
LQID INSTRUCTION  
INSTRUCTION SET NOTES  
LQID (Load Q Indirect) loads the 8-bit Q register with the  
contents of ROM pointed to by the 11-bit word  
PC10:PC8,A,M. LQID can be used for table lookup or code  
a. The first word of a program (ROM address 0) must be a  
CLRA (Clear A) instruction.  
b. Although skipped instructions are not executed, they are  
still fetched from the program memory. Thus program  
paths take the same number of cycles whether instruc-  
tions are skipped or executed except for JID, and LQID.  
a
struction ‘‘pushes’’ the stack (PC  
1
conversion such as BCD to seven-sxegment. The LQID in-  
SA  
x
SB  
x
SC)  
AxPC7:4, RAM(B)  
PC8 unchanged. The ROM data pointed to by the new ad-  
and replaces the leastxsignPifCic3a:n0t, 8lebaitvsinogf thPeCP1C0,aPsCfo9lloawnsd:  
c. The ROM is organized into pages of 64 words each. The  
Program Counter is a 11-bit binary counter, and will count  
through page boundaries. If a JP, JSRP, JID, or LQID is  
the last word of a page, it operates as if it were in the next  
page. For example: a JP located in the last word of a  
page will jump to a location in the next page. Also, a JID  
or LQID located in the last word of every fourth page (i.e.  
hex address 0FF, 1FF, 2FF, 3FF, 4FF, etc.) will access  
data in the next group of four pages.  
stack is ‘‘popped’’ (SC  
x
SB  
x
SA  
dress is fetched and loaded into thexQ lPatCc)h,erse.stNoerixntg, tthhee  
stiaovne. dSivnacleueLQofIDPCputsohecsonStBinxue sSeCqu, ethnetiaplrepvroiogurasmcoenxteecnuts-  
of SC are lost.  
Note: LQID uses 2 instruction cycles if executed, one if skipped.  
JID INSTRUCTION  
JID (Jump Indirect) is an indirect addressing instruction,  
transferring program control to a new ROM location pointed  
to indirectly by A and M. It loads the lower 8 bits of the ROM  
address register PC with the contents of ROM addressed by  
the 11-bit word, PC10:8,A,M. PC10,PC9 and PC8 are not  
affected by JID.  
Note: The COP224C/225C/226C needs only 10 bits to address its ROM.  
Therefore, the eleventh bit (P10) is ignored.  
Power Dissipation  
The lowest power drain is when the clock is stopped. As the  
frequency increases so does current. Current is also lower  
at lower operating voltages. Therefore, the user should run  
at the lowest speed and voltage that his application will al-  
low. The user should take care that all pins swing to full  
supply levels to insure that outputs are not loaded down and  
that inputs are not at some intermediate level which may  
draw current. Any input with a slow rise or fall time will draw  
additional current. A crystal or resonator generated clock  
input will draw additional current. For example, a 500 kHz  
crystal input will typically draw 100 mA more than a square-  
wave input. An R/C oscillator will draw even more current  
since the input is a slow rising signal.  
Note: JID uses 2 instruction cycles if executed, one if skipped.  
SKT INSTRUCTION  
The SKT (Skip On Timer) instruction tests the state of the T  
counter overflow latch (see internal logic, above), executing  
the next program instruction if the latch is not set. If the  
latch has been set since the previous test, the next program  
instruction is skipped and the latch is reset. The features  
associated with this instruction allow the processor to gen-  
erate its own time-base for real-time processing, rather than  
relying on an external input signal.  
Note: If the most significant bit of the T counter is a 1 when a CAMT instruc-  
tion loads the counter, the overflow flag will be set. The following  
sample of codes should be used when loading the counter:  
If using an external squarewave oscillator, the following  
equation can be used to calculate operating current drain.  
CAMT ; load T counter  
e
a
Q
c
c
70 Fi  
a c c  
V 2400 Fi/Dv where:  
I
I
V
CO  
I
SKT  
; skip if overflow flag is set and reset it  
e
chip operating current drain in microamps  
NOP  
CO  
e
I
quiescent leakage current (from curve)  
Q
IT INSTRUCTION  
e
Fi CKI frequency in MegaHertz  
The IT (idle till timer) instruction halts the processor and  
puts it in an idle state until the time-base counter overflows.  
This idle state reduces current drain since all logic (except  
the oscillator and time base counter) is stopped. IT instruc-  
tion is not allowed if the T counter is mask-programmed as  
e
V
chip V in volts  
CC  
e
Dv divide by option selected  
For example at 5 volts V and 400 kHz (divide by 4)  
CC  
e
an external event counter (option 31 1).  
Ý
e
e
a
a
c
c
70 0.4  
a c c  
5 2400 0.4/4  
I
I
120  
5
CO  
CO  
a
e
INIL INSTRUCTION  
120 140 1200 1460 mA  
INIL (Input IL Latches to A) inputs 2 latches, IL3 and IL0,  
CKO and 0 into A. The IL3 and IL0 latches are set if a low-  
going pulse (‘‘1’’ to ‘‘0’’) has occurred on the IN3 and IN0  
inputs since the last INIL instruction, provided the input  
15  
Power Dissipation (Continued)  
If an IT instruction is executed, the chip goes into the IDLE  
mode until the timer overflows. In IDLE mode, the current  
drain can be calculated from the following equation:  
I/O OPTIONS  
Outputs have the following optional configurations, illustrat-  
ed in Figure 8 :  
e
a c c  
V 70 Fi  
Ici  
I
Q
a. Standard Ð A CMOS push-pull buffer with an N-channel  
device to ground in conjunction with a P-channel device  
For example, at 5 volts V  
and 400 kHz  
CC  
to V , compatible with CMOS and LSTTL.  
CC  
e
Ici 120  
a
c c e  
5 70 0.4 260 mA  
b. Open Drain Ð An N-channel device to ground only, al-  
lowing external pull-up as required by the user’s applica-  
tion.  
The total average current will then be the weighted average  
of the operating current and the idle current:  
c. Standard TRI-STATE L Output Ð A CMOS output buffer  
similar to a. which may be disabled by program control.  
To  
Ti  
e
c
a
c
Ici  
d. Open-Drain TRI-STATE L Output Ð This has the N-chan-  
nel device to ground only.  
Ita  
I
CO  
a
To Ti  
a
To Ti  
e
where: Ita total average current  
All inputs have the following option:  
e
I
operating current  
CO  
e. Hi-Z input which must be driven by the users logic.  
e
Ici idle current  
All output drivers use two common devices numbered 1 to  
) curves  
OUT  
are given in Figure 9 for each of these devices to allow the  
designer to effectively use these I/O configurations.  
e
To operating time  
2. Minimum and maximum current (I  
and V  
OUT  
e
Ti idle time  
TL/DD/842211  
c. Standard TRI-STATE ‘‘L’’ Output  
d. Open Drain TRI-STATE  
‘‘L’’ Output  
e. Hi-Z Input  
FIGURE 8. Input/Output Configurations  
16  
Power Dissipation (Continued)  
Minimum Sink Current  
(Except CKO)  
Minimum Source Current  
(Except CKO)  
Maximum Quiescent Current  
TL/DD/842212  
FIGURE 9. Input/Output Characteristics  
Option List  
The COP244C/245C/224C/225C/COP226C mask-pro-  
grammable options are assigned numbers which corre-  
spond with the COP244C/224C pins.  
Option 4: RESET input  
e
1: Hi-Z input  
Option 5: L7 Driver  
The following is a list of options. The options are pro-  
grammed at the same time as the ROM pattern to provide  
the user with the hardware flexibility to interface to various  
I/O components using little or no external circuitry.  
e
e
0: Standard TRI-STATE push-pull output  
2: Open-drain TRI-STATE output  
Option 6: L6 Driver Ð (same as option 5)  
Option 7: L5 Driver Ð (same as option 5)  
Option 8: L4 Driver Ð (same as option 5)  
Option 9: IN1 input  
Caution:  
The output options available on the COP224C/225C/226C  
and COP244C/245C are not the same as those available  
on the COP324C/325C/326C, COP344C/345C, COP424C/  
425C/426C and COP444C/445C. Options not available on  
the COP224C/225C/226C and COP244C/245C are: Option  
2 value 2; Option 4 value 0; Option 5 value 1; Option 9 value  
0; Option 17 value 1; Option 30, Dual Clock, all values; Op-  
tion 32, Microbus, all values; Option 33 values 2 4, and 6;  
Option 34 all values; and Option 35 all values.  
e
e
1: Hi-Z input, mandatory for 28 Pin Package  
2: Mandatory for 20 and 24 Pin Packages  
Option 10: IN2 input Ð (same as option 9)  
e
Option 11 0:  
V
Pin Ð no option available  
CC  
Option 12: L3 Driver Ð (same as option 5)  
Option 13: L2 Driver Ð (same as option 5)  
Option 14: L1 Driver Ð (same as option 5)  
Option 15: L0 Driver Ð (same as option 5)  
Option 16: SI input Ð (same as option 4)  
Option 17: SO Driver  
PLEASE FILL OUT THE OPTION TABLE on the next page.  
Photocopy the option data and send it in with your disk or  
EPROM.  
e
Option 1 0: Ground Pin Ð no options available  
Option 2: CKO Pin  
e
e
0: clock generator output to crystal/resonator  
0: Standard push-pull output  
e
e
1: HALT I/O port  
2: Open-drain output  
e
3: general purpose input, high-Z  
Option 3: CKI input  
Option 18: SK Driver Ð (same as option 17)  
Option 19: IN0 Input Ð (same as option 9)  
Option 20: IN3 Input Ð (same as option 9)  
Option 21: G0 I/O Port Ð (same as option 17)  
Option 22: G1 I/O Port Ð (same as option 17)  
Option 23: G2 I/O Port Ð (same as option 17)  
Option 24: G3 I/O Port Ð (same as option 17)  
Option 25: D3 Output Ð (same as option 17)  
Option 26: D2 Output Ð (same as option 17)  
Option 27: D1 Output Ð (same as option 17)  
e
e
e
e
e
e
e
0: Crystal controlled oscillator input divide by 4  
1: Crystal controlled oscillator input divide by 8  
2: Crystal controlled oscillator input divide by 16  
4: Single-pin RC controlled oscillator (divide by 4)  
5: External oscillator input divide by 4  
6: External oscillator input divide by 8  
7: External oscillator input divide by 16  
17  
Option List (Continued)  
Option 28: D0 Output Ð (same as option 17)  
Option 29: Internal Initialization Logic  
Option 33: COP bonding. See note.  
(1k and 2k Microcontroller)  
e
e
e
e
0: Normal operation  
0: 28-pin package  
1: 24-pin package  
1: No internal initialization logic  
e
Option 30 0: No Option Available  
Option 31: Timer  
(1k Microcontroller only)  
e
3: 20-pin package  
e
e
e
0: Time-base counter  
5: 24- and 20-pin package  
e
Ý
Ý
9, 10, 19, and 20  
1: External event counter  
Note:ÐIf opt.  
e
must 1.  
33  
0
then opt.  
e
Option 32 0: No Option Available  
e
e
If opt. 33 1 then opt. 9, 10, 19 and 20 must 2, and  
Ý
Ý
e
option 31 must 0.  
Ý
e
e
If opt. 33 3 or 5 then opt. 9, 10, 19, 20 must 2 and  
Ý
opt. 21, 22, 31 must 0.  
Ý
e
Ý
e
Option 34 0: No Option Available  
e
Option 35 0: No Option Available  
Option Table  
The following option information is to be sent to National along with the EPROM.  
OPTION DATA  
OPTION DATA  
0
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
OPTION 1 VALUE  
OPTION 2 VALUE  
OPTION 3 VALUE  
OPTION 4 VALUE  
OPTION 5 VALUE  
OPTION 6 VALUE  
OPTION 7 VALUE  
OPTION 8 VALUE  
OPTION 9 VALUE  
OPTION 10 VALUE  
OPTION 11 VALUE  
OPTION 12 VALUE  
OPTION 13 VALUE  
OPTION 14 VALUE  
OPTION 15 VALUE  
OPTION 16 VALUE  
OPTION 17 VALUE  
OPTION 18 VALUE  
IS: GROUND PIN  
IS: CKO PIN  
OPTION 19 VALUE  
OPTION 20 VALUE  
OPTION 21 VALUE  
OPTION 22 VALUE  
OPTION 23 VALUE  
OPTION 24 VALUE  
OPTION 25 VALUE  
OPTION 26 VALUE  
OPTION 27 VALUE  
OPTION 28 VALUE  
OPTION 29 VALUE  
OPTION 30 VALUE  
OPTION 31 VALUE  
OPTION 32 VALUE  
OPTION 33 VALUE  
OPTION 34 VALUE  
OPTION 35 VALUE  
IS: IN0 INPUT  
IS: IN3 INPUT  
IS: G0 I/O PORT  
IS: G1 I/O PORT  
IS: G2 I/O PORT  
IS: G3 I/O PORT  
IS: D3 OUTPUT  
IS: D2 OUTPUT  
IS: D1 OUTPUT  
IS: D0 OUTPUT  
IS: INT INIT LOGIC  
IS: N/A  
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
IS: CKI INPUT  
IS: RESET INPUT  
IS: L7 DRIVER  
IS: L6 DRIVER  
IS: L5 DRIVER  
IS: L4 DRIVER  
IS: IN1 INPUT  
IS: IN2 INPUT  
IS: VCC PIN  
1
0
0
0
IS: L3 DRIVER  
IS: L2 DRIVER  
IS: L1 DRIVER  
IS: L0 DRIVER  
IS: SI INPUT  
IS: TIMER  
IS: N/A  
IS: COP BONDING  
IS: N/A  
1
0
0
IS: SO DRIVER  
IS: SK DRIVER  
IS: N/A  
18  
19  
Physical Dimensions inches (millimeters)  
20-Lead Hermetic Dual-In-Line Package (D)  
Order Number COP226C-XXX/D  
NS Package Number D20A  
20  
Physical Dimensions inches (millimeters) (Continued)  
24-Lead Hermetic Dual-In-Line Package (D)  
Order Number COP225C-XXX/D or COP245C-XXX/D  
NS Package Number D24C  
28-Lead Hermetic Dual-In-Line Package (D)  
Order Number COP224C-XXX/D or COP244C-XXX/D  
NS Package Number D28C  
21  
Physical Dimensions inches (millimeters) (Continued)  
20-Lead Surface Mount Package (M)  
Order Number COP226C-XXX/WM  
NS Package Number M20B  
20-Lead Molded Dual-In-Line Package (N)  
Order Number COP226C-XXX/N  
NS Package Number N20A  
22  
Physical Dimensions inches (millimeters) (Continued)  
24-Lead Molded Dual-In-Line Package (N)  
Order Number COP225C-XXX/N or COP245C-XXX/N  
NS Package Number N24A  
28-Lead Molded Dual-In-Line Package (N)  
Order Number COP224C-XXX/N or COP244C-XXX/N  
NS Package Number N28B  
23  
Physical Dimensions inches (millimeters) (Continued)  
Plastic Leaded Chip Carrier (V)  
Order Number COP224C-XXX/V or COP244C-XXX/V  
NS Package Number V28A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
a
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax:  
(
49) 0-180-530 85 86  
@
13th Floor, Straight Block,  
Ocean Centre, 5 Canton Rd.  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
Email: cnjwge tevm2.nsc.com  
a
a
a
a
Deutsch Tel:  
English Tel:  
Fran3ais Tel:  
Italiano Tel:  
(
(
(
(
49) 0-180-530 85 85  
49) 0-180-532 78 32  
49) 0-180-532 93 58  
49) 0-180-534 16 80  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

COP244C-XXX/V

Single-Chip 1k and 2k CMOS Microcontrollers
NSC

COP244C-XXXD/883

Single-Chip 1k and 2k CMOS Microcontrollers
NSC

COP244XXX/D/883

4-BIT, MROM, 0.1MHz, MICROCONTROLLER, CDIP28, SIDE BRAZED, CERAMIC, DIP-28
TI

COP245C

Single-Chip 1k and 2k CMOS Microcontrollers
NSC

COP245C-XXX/D

Single-Chip 1k and 2k CMOS Microcontrollers
NSC

COP245C-XXX/N

Single-Chip 1k and 2k CMOS Microcontrollers
NSC

COP247C-XXX/D

IC,MICROCONTROLLER,4-BIT,COP400 CPU,CMOS,DIP,28PIN,CERAMIC
TI

COP248C-XXX/D

IC,MICROCONTROLLER,4-BIT,COP400 CPU,CMOS,DIP,24PIN,CERAMIC
TI

COP310C

Single-Chip CMOS Microcontrollers
NSC

COP310C-XXX/D

4-Bit Microcontroller
ETC

COP310C-XXX/N

4-Bit Microcontroller
ETC

COP310C-XXX/WM

4-Bit Microcontroller
ETC