JL148BCA [NSC]

Quad 741 Op Amps; 四路741运算放大器
JL148BCA
型号: JL148BCA
厂家: National Semiconductor    National Semiconductor
描述:

Quad 741 Op Amps
四路741运算放大器

运算放大器
文件: 总18页 (文件大小:804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
February 2005  
LM148JAN  
Quad 741 Op Amps  
General Description  
Features  
n 741 op amp operating characteristics  
The LM148 is a true quad LM741. It consists of four inde-  
pendent, high gain, internally compensated, low power op-  
erational amplifiers which have been designed to provide  
functional characteristics identical to those of the familiar  
LM741 operational amplifier. In addition the total supply  
current for all four amplifiers is comparable to the supply  
current of a single LM741 type op amp. Other features  
include input offset currents and input bias current which are  
much less than those of a standard LM741. Also, excellent  
isolation between amplifiers has been achieved by indepen-  
dently biasing each amplifier and using layout techniques  
which minimize thermal coupling.  
n Class AB output stageno crossover distortion  
n Pin compatible with the LM124  
n Overload protection for inputs and outputs  
n Low supply current drain:  
n Low input offset voltage:  
n Low input offset current:  
n Low input bias current  
n High degree of isolation between amplifiers:  
n Gain bandwidth product (unity gain):  
0.6 mA/Amplifier  
1 mV  
4 nA  
30 nA  
120 dB  
1.0 MHz  
The LM148 can be used anywhere multiple LM741 or  
LM1558 type amplifiers are being used and in applications  
where amplifier matching or high packing density is required.  
Ordering Information  
NS PART NUMBER  
JL148BCA  
SMD PART NUMBER  
JM38510/11001BCA  
JM38510/11001BDA  
JM38510/11001BZA  
JM38510/11001SCA  
JM38510/11001SDA  
NS PACKAGE NUMBER  
PACKAGE DESCRIPTION  
J14A  
14LD CERDIP  
JL148BDA  
W14B  
WG14A  
J14A  
14LD CERPACK  
14LD Ceramic SOIC  
14LD CERDIP  
JL148BZA  
JL148SCA  
JL148SDA  
W14B  
14LD CERPACK  
Connection Diagram  
20122702  
Top View  
See NS Package Number J14A, W14B, WG14A  
© 2005 National Semiconductor Corporation  
DS201227  
www.national.com  
Schematic Diagram  
20122701  
* 1 pF in the LM149  
www.national.com  
2
Absolute Maximum Ratings (Note 1)  
Supply Voltage  
22V  
20V  
Input Voltage Range  
Input Current Range  
Differential Input Voltage (Note 2)  
Output Short Circuit Duration (Note 3)  
Power Dissipation (Pd at 25˚C) (Note 4)  
CERDIP  
−0.1mA to 10mA  
30V  
Continuous  
400mW  
350mW  
CERPACK  
Thermal Resistance  
θJA  
CERDIP (Still Air)  
103˚C/W  
52˚C/W  
CERDIP (500LF/ Min Air flow)  
CERPACK (Still Air)  
CERPACK (500LF/ Min Air flow)  
Ceramic SOIC (Still Air)  
Ceramic SOIC (500LF/ Min Air flow)  
θJC  
140˚C/W  
100˚C/W  
176˚C/W  
116˚C/W  
CERDIP  
19˚C/W  
25˚C/W  
25˚C/W  
CERPACK  
Ceramic SOIC  
Package Weight (typical)  
CERDIP  
TBD  
465mg  
CERPACK  
Ceramic SOIC  
415mg  
Maximum Junction Temperature (TJMAX  
)
175˚C  
Operating Temperature Range  
−55˚C TA +125˚C  
−65˚C TA +150˚C  
300˚C  
Storage Temperature Range  
Lead Temperature (Soldering, 10 sec.) Ceramic  
ESD tolerance (Note 5)  
500V  
Quality Conformance Inspection  
MIL-STD-883, Method 5005 — Group A  
Subgroup  
Description  
Temp ( ˚C)  
+25  
1
2
Static tests at  
Static tests at  
+125  
-55  
3
Static tests at  
4
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
Functional tests at  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
+25  
5
+125  
-55  
6
7
+25  
8A  
8B  
9
+125  
-55  
+25  
10  
11  
+125  
-55  
3
www.national.com  
Electrical Characteristics  
DC PARAMETERS (The following conditions apply to all parameters, unless otherwise specified.) VCC  
measure each amplifier.  
=
20V, VCM = 0V,  
Sub-  
groups  
Symbol  
Parameter  
Conditions  
Notes  
Min Max  
Units  
VIO  
Input Offset Voltage  
+VCC = 35V, −VCC = −5V,  
VCM = −15V  
−5.0 +5.0  
−6.0 +6.0  
−5.0 +5.0  
−6.0 +6.0  
−5.0 +5.0  
−6.0 +6.0  
−5.0 +5.0  
−6.0 +6.0  
−25 25  
−25 25  
−25 +25  
−75 +75  
−25 +25  
−75 +75  
−25 +25  
−75 +75  
−25 +25  
−75 +75  
-200 200  
–400 400  
−0.1 100  
−0.1 325  
−0.1 100  
−0.1 325  
−0.1 100  
−0.1 325  
−0.1 100  
−0.1 325  
−100 100  
−100 100  
76  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
µV/˚C  
µV/˚C  
nA  
1
2, 3  
1
+VCC = 5V, −VCC = −35V,  
VCM = +15V  
2, 3  
1
2, 3  
1
+VCC = 5V, −VCC = −5V,  
2, 3  
2
Delta VIO  
/
Input Offset Voltage  
Temperature Stability  
25˚C TA 125˚C  
−55˚C TA 25˚C  
+VCC = 35V, −VCC = −5V,  
VCM = −15V  
(Note 6)  
(Note 6)  
Delta  
3
T
IIO  
Input Offset Current  
1, 2  
3
nA  
+VCC = 5V, −VCC = −35V,  
VCM = +15V  
nA  
1, 2  
3
nA  
nA  
1, 2  
3
nA  
+VCC = 5V, −VCC = −5V,  
nA  
1, 2  
3
nA  
Delta IIO  
/
Input Offset Current  
Temperature Stability  
25˚C TA 125˚C  
−55˚C TA 25˚C  
+VCC = 35V, −VCC = −5V,  
VCM = −15V  
(Note 6)  
(Note 6)  
pA/˚C  
pA/˚C  
nA  
2
Delta  
3
T
IIB  
Input Bias Current  
1, 2  
3
nA  
+VCC = 5V, −VCC = −35V,  
VCM = +15V  
nA  
1, 2  
3
nA  
nA  
1, 2  
3
nA  
+VCC = 5V, −VCC = −5V,  
nA  
1, 2  
3
nA  
PSRR+ Power Supply Rejection Ratio −VCC = −20V, +VCC = 20V to 10V (Note 7)  
PSRR− Power Supply Rejection Ratio +VCC = 20V, −VCC = −20V to −10V (Note 7)  
µV/V  
µV/V  
dB  
1, 2, 3  
1, 2, 3  
1, 2, 3  
CMRR  
Common Mode Rejection Ratio VCM  
=
15 V, 5V VCC  
35V  
Electrical Characteristics  
AC / DC PARAMETERS (The following conditions apply to all parameters, unless otherwise specified.)  
VCC  
=
20V, VCM = 0V, measure each amplifier.  
Sub-  
groups  
1, 2  
3
Symbol  
Parameter  
Conditions  
Notes  
Min Max  
Units  
+ IOS  
Short Circuit Current  
Short Circuit Current  
Power Supply Current  
Open Loop Voltage Gain  
+VCC = 15V, −VCC = −15V,  
VCM = −10V  
−55  
−75  
55  
mA  
mA  
− IOS  
ICC  
+VCC = 15V, −VCC = −15V,  
VCM = +10V  
mA  
1, 2  
3
75  
mA  
+VCC = 15V, −VCC = −15V  
VOUT = −15V, RL = 10KΩ  
VOUT = −15V, RL = 2KΩ  
3.6  
4.5  
50  
mA  
1
mA  
2, 3  
4
−AVS  
V/mV  
V/mV  
V/mV  
V/mV  
25  
5, 6  
4
50  
25  
5, 6  
www.national.com  
4
Electrical Characteristics (Continued)  
AC / DC PARAMETERS (The following conditions apply to all parameters, unless otherwise specified.)  
VCC  
=
20V, VCM = 0V, measure each amplifier.  
Sub-  
groups  
4
Symbol  
Parameter  
Conditions  
Notes  
Min Max  
Units  
+AVS  
Open Loop Voltage Gain  
Open Loop Voltage Gain  
VOUT = +15V, RL = 10KΩ  
VOUT = +15V, RL = 2KΩ  
50  
25  
50  
25  
10  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
5, 6  
4
5, 6  
AVS  
VCC  
10KΩ  
VCC  
=
5V, VOUT  
=
=
2V, RL  
=
4, 5, 6  
=
5V, VOUT  
2V, RL = 2KΩ  
10  
+16  
+15  
-16  
-15  
1
V/mV  
V
4, 5, 6  
4, 5, 6  
+VOP  
-VOP  
Output Voltage Swing  
Output Voltage Swing  
RL = 10KΩ  
RL = 2KΩ  
RL = 10KΩ  
RL = 2KΩ  
V
4, 5, 6  
V
4, 5, 6  
V
4, 5, 6  
TRTR  
TROS  
SR  
Transient Response Time  
Transient Response Time  
Slew Rate  
VIN = 50mV, AV = 1  
VIN = 50mV, AV = 1  
µS  
%
7, 8A, 8B  
7, 8A, 8B  
7, 8A, 8B  
7, 8A, 8B  
25  
VIN = −5V to +5V, AV = 1  
VIN = +5V to −5V, AV = 1  
0.2  
0.2  
V/µS  
V/µS  
Electrical Characteristics  
AC PARAMETERS (The following conditions apply to all parameters, unless otherwise specified.) VCC  
measure each amplifier.  
=
20V, VCM = 0V,  
Sub-  
groups  
Symbol  
Parameter  
Conditions  
Notes  
Min Max  
Units  
NIBB  
NIPC  
CS  
Noise (Broadband)  
Noise (Popcorn)  
BW = 10Hz to 5KHz  
15  
40  
µVRMS  
µVPK  
dB  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
RS = 20KΩ  
Channel Separation  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
=
10V, A to B, RL = 2KΩ  
10V, A to C, RL = 2KΩ  
10V, A to D, RL = 2KΩ  
10V, B to A, RL = 2KΩ  
10V, B to C, RL = 2KΩ  
10V, B to D, RL = 2KΩ  
10V, C to A, RL = 2KΩ  
10V, C to B, RL = 2KΩ  
10V, C to D, RL = 2KΩ  
10V, D to A, RL = 2KΩ  
10V, D to B, RL = 2KΩ  
10V, D to C, RL = 2KΩ  
80  
=
=
=
=
=
=
=
=
=
=
=
80  
dB  
80  
dB  
80  
dB  
80  
dB  
80  
dB  
80  
dB  
80  
dB  
80  
dB  
80  
dB  
80  
dB  
80  
dB  
Electrical Characteristics  
DC DRIFT PARAMETERS (The following conditions apply to all parameters, unless otherwise specified.) VCC  
=
20V, VCM  
Sub-  
=
0V, measure each amplifier. Delta calculations performed on JAN S and QMLV devices at group B, subgroup 5 only.  
Symbol  
Parameter  
Conditions  
Notes  
Min Max  
Units  
groups  
VIO  
IIB  
Input Offset Voltage  
Input Bias Current  
−1  
1
mV  
nA  
1
1
−15 15  
5
www.national.com  
Electrical Characteristics (Continued)  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed  
specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test  
conditions.  
Note 2: The differential input voltage range shall not exceed the supply voltage range.  
Note 3: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction  
temperature will be exceeded.  
Note 4: The maximum power dissipation for these devices must be derated at elevated temperatures and is dicated by T  
, θ , and the ambient temperature,  
JMAX JA  
T . The maximum available power dissipation at any temperature is P = (T  
− T )/θ or the number given in the Absolute Maximum Ratings, whichever is less.  
A JA  
A
d
JMAX  
Note 5: Human body model, 1.5 kin series with 100 pF.  
Note 6: Calculated parameter.  
Note 7: Datalogs as µV  
Cross Talk Test Circuit VS  
=
15V  
20122706  
20122707  
20122743  
www.national.com  
6
Typical Performance Characteristics  
Supply Current  
Input Bias Current  
20122723  
20122724  
Voltage Swing  
Positive Current Limit  
20122725  
20122726  
Negative Current Limit  
Output Impedance  
20122728  
20122727  
7
www.national.com  
Typical Performance Characteristics (Continued)  
Common-Mode Rejection Ratio  
Open Loop Frequency Response  
20122729  
20122730  
Bode Plot LM148  
Large Signal Pulse Response (LM148)  
20122733  
20122731  
Small Signal Pulse Response (LM148)  
Undistorted Output Voltage Swing  
20122735  
20122737  
www.national.com  
8
Typical Performance Characteristics (Continued)  
Gain Bandwidth  
Slew Rate  
20122738  
20122739  
Inverting Large Signal Pulse Response (LM148)  
Input Noise Voltage and Noise Current  
20122741  
20122742  
Positive Common-Mode Input Voltage Limit  
Negative Common-Mode Input Voltage Limit  
20122705  
20122743  
9
www.national.com  
connection) and the capacitance to reduce the phase shift  
resulting from the capacitive loading.  
Application Hints  
The LM148 series are quad low power LM741 op amps. In  
the proliferation of quad op amps, these are the first to offer  
the convenience of familiar, easy to use operating charac-  
teristics of the LM741 op amp. In those applications where  
LM741 op amps have been employed, the LM148 series op  
amps can be employed directly with no change in circuit  
performance.  
The output current of each amplifier in the package is limited.  
Short circuits from an output to either ground or the power  
supplies will not destroy the unit. However, if multiple output  
shorts occur simultaneously, the time duration should be  
short to prevent the unit from being destroyed as a result of  
excessive power dissipation in the IC chip.  
As with most amplifiers, care should be taken lead dress,  
component placement and supply decoupling in order to  
ensure stability. For example, resistors from the output to an  
input should be placed with the body close to the input to  
minimize “pickup” and maximize the frequency of the feed-  
back pole which capacitance from the input to ground cre-  
ates.  
The package pin-outs are such that the inverting input of  
each amplifier is adjacent to its output. In addition, the  
amplifier outputs are located in the corners of the package  
which simplifies PC board layout and minimizes package  
related capacitive coupling between amplifiers.  
The input characteristics of these amplifiers allow differential  
input voltages which can exceed the supply voltages. In  
addition, if either of the input voltages is within the operating  
common-mode range, the phase of the output remains cor-  
rect. If the negative limit of the operating common-mode  
range is exceeded at both inputs, the output voltage will be  
positive. For input voltages which greatly exceed the maxi-  
mum supply voltages, either differentially or common-mode,  
resistors should be placed in series with the inputs to limit  
the current.  
A feedback pole is created when the feedback around any  
amplifier is resistive. The parallel resistance and capacitance  
from the input of the device (usually the inverting input) to AC  
ground set the frequency of the pole. In many instances the  
frequency of this pole is much greater than the expected 3  
dB frequency of the closed loop gain and consequently there  
is negligible effect on stability margin. However, if the feed-  
back pole is less than approximately six times the expected  
3 dB frequency a lead capacitor should be placed from the  
output to the input of the op amp. The value of the added  
capacitor should be such that the RC time constant of this  
capacitor and the resistance it parallels is greater than or  
equal to the original feedback pole time constant.  
Like the LM741, these amplifiers can easily drive a 100 pF  
capacitive load throughout the entire dynamic output voltage  
and current range. However, if very large capacitive loads  
must be driven by a non-inverting unity gain amplifier, a  
resistor should be placed between the output (and feedback  
Typical Applications—LM148  
One Decade Low Distortion Sinewave Generator  
20122708  
f
= 5 kHz, THD 0.03%  
MAX  
R1 = 100k pot. C1 = 0.0047 µF, C2 = 0.01 µF, C3 = 0.1 µF, R2 = R6 = R7 = 1M,  
R3 = 5.1k, R4 = 12, R5 = 240, Q = NS5102, D1 = 1N914, D2 = 3.6V avalanche  
diode (ex. LM103), V  
=
15V  
S
A simpler version with some distortion degradation at high frequencies can be made by using A1 as a simple inverting amplifier, and by putting back to back  
zeners in the feedback loop of A3.  
www.national.com  
10  
Typical Applications—LM148 (Continued)  
Low Cost Instrumentation Amplifier  
20122709  
V
S
=
15V  
R = R2, trim R2 to boost CMRR  
Low Drift Peak Detector with Bias Current Compensation  
20122710  
Adjust R for minimum drift  
D3 low leakage diode  
D1 added to improve speed  
V
S
=
15V  
11  
www.national.com  
Typical Applications—LM148 (Continued)  
Universal State-Variable Filter  
20122711  
Tune Q through R0,  
4
For predictable results: f Q 4 x 10  
O
Use Band Pass output to tune for Q  
www.national.com  
12  
Typical Applications—LM148 (Continued)  
A 1 kHz 4 Pole Butterworth  
20122712  
Use general equations, and tune each section separately  
= 0.541, Q = 1.306  
Q
1stSECTION  
2ndSECTION  
The response should have 0 dB peaking  
A 3 Amplifier Bi-Quad Notch Filter  
20122713  
Ex: f  
= 3 kHz, Q = 5, R1 = 270k, R2 = R3 = 20k, R4 = 27k, R5 = 20k, R6 = R8 = 10k, R7 = 100k, C1 = C2 = 0.001 µF  
NOTCH  
Better noise performance than the state-space approach.  
13  
www.national.com  
Typical Applications—LM148 (Continued)  
A 4th Order 1 kHz Elliptic Filter (4 Poles, 4 Zeros)  
20122714  
R1C1 = R2C2 = t  
R'1C'1 = R'2C'2 = t'  
f
C
= 1 kHz, f = 2 kHz, f = 0.543, f = 2.14, Q = 0.841, f' = 0.987, f' = 4.92, Q' = 4.403, normalized to ripple BW  
S p Z P Z  
Use the BP outputs to tune Q, Q', tune the 2 sections separately  
R1 = R2 = 92.6k, R3 = R4 = R5 = 100k, R6 = 10k, R0 = 107.8k, R = 100k, R = 155.1k,  
L
H
R'1 = R'2 = 50.9k, R'4 = R'5 = 100k, R'6 = 10k, R'0 = 5.78k, R' = 100k, R' = 248.12k, R'f = 100k. All capacitors are 0.001 µF.  
L
H
Lowpass Response  
20122715  
www.national.com  
14  
Typical Simulation  
LM148, LM741 Macromodel for Computer Simulation  
20122721  
For more details, see IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, December 1974  
−16  
Note 8:  
Note 9:  
= 112I = 8 x 10  
S
o1  
= 144*C2 = 6 pF for LM149  
o2  
20122722  
15  
www.national.com  
Revision History Section  
Date  
Released  
Revision  
Section  
Originator  
Changes  
02/15/05  
A
New Release, Corporate format  
L. Lytle  
1 MDS data sheet converted into one  
Corp. data sheet format. MJLM148-X,  
Rev. 0C1. MDS data sheet will be  
archived.  
www.national.com  
16  
Physical Dimensions inches (millimeters)  
unless otherwise noted  
Ceramic Dual-In-Line Package (J)  
NS Package Number J14A  
Ceramic Flatpack (W)  
NS Package Number W14B  
17  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
Ceramic SOIC (WG)  
NS Package Number WG14A  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain  
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

JL148BDA

Quad 741 Op Amps
NSC

JL148BZA

Quad 741 Op Amps
NSC

JL148SCA

Quad 741 Op Amps
NSC

JL148SCA

航天级、四路、44V、1MHz 运算放大器 | J | 14 | -55 to 125
TI

JL148SDA

Quad 741 Op Amps
NSC

JL1558BGA

DUAL OP-AMP, 3000uV OFFSET-MAX, MBCY8, METAL CAN, TO-5, 8 PIN
TI

JL1558SGA

IC,OP-AMP,DUAL,BIPOLAR,CAN,8PIN,METAL
TI

JL156BGA

LF156JAN JFET Input Operational Amplifiers
TI

JL156SGA

LF156JAN JFET Input Operational Amplifiers
TI

JL15SKSBCP2

Illuminated Ultra-Thin Tactiles
NKK

JL15SKSBDP2

Illuminated Ultra-Thin Tactiles
NKK

JL15SKSBFP2

Illuminated Ultra-Thin Tactiles
NKK