LM2937ES-15/NOPB [NSC]

IC VREG 15 V FIXED POSITIVE LDO REGULATOR, 1 V DROPOUT, PSSO3, PLASTIC, TO-263, 3 PIN, Fixed Positive Single Output LDO Regulator;
LM2937ES-15/NOPB
型号: LM2937ES-15/NOPB
厂家: National Semiconductor    National Semiconductor
描述:

IC VREG 15 V FIXED POSITIVE LDO REGULATOR, 1 V DROPOUT, PSSO3, PLASTIC, TO-263, 3 PIN, Fixed Positive Single Output LDO Regulator

输出元件 调节器
文件: 总13页 (文件大小:737K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 2005  
LM2937  
500 mA Low Dropout Regulator  
connections, two-battery jumps and up to +60V/−50V load  
dump transients. Familiar regulator features such as short  
circuit and thermal shutdown protection are also built in.  
General Description  
The LM2937 is a positive voltage regulator capable of sup-  
plying up to 500 mA of load current. The use of a PNP power  
transistor provides a low dropout voltage characteristic. With  
a load current of 500 mA the minimum input to output voltage  
differential required for the output to remain in regulation is  
typically 0.5V (1V guaranteed maximum over the full oper-  
ating temperature range). Special circuitry has been incor-  
porated to minimize the quiescent current to typically only  
10 mA with a full 500 mA load current when the input to  
output voltage differential is greater than 3V.  
Features  
n Fully specified for operation over −40˚C to +125˚C  
n Output current in excess of 500 mA  
n Output trimmed for 5% tolerance under all operating  
conditions  
n Typical dropout voltage of 0.5V at full rated load current  
n Wide output capacitor ESR range, up to 3  
n Internal short circuit and thermal overload protection  
n Reverse battery protection  
n 60V input transient protection  
n Mirror image insertion protection  
The LM2937 requires an output bypass capacitor for stabil-  
ity. As with most low dropout regulators, the ESR of this  
capacitor remains a critical design parameter, but the  
LM2937 includes special compensation circuitry that relaxes  
ESR requirements. The LM2937 is stable for all ESR below  
3. This allows the use of low ESR chip capacitors.  
Ideally suited for automotive applications, the LM2937 will  
protect itself and any load circuitry from reverse battery  
Connection Diagrams  
TO-220 Plastic Package  
SOT-223 Plastic Package  
01128002  
01128026  
Front View  
Front View  
TO-263 Surface-Mount Package  
01128006  
Side View  
01128005  
Top View  
© 2005 National Semiconductor Corporation  
DS011280  
www.national.com  
Ordering Information  
Package  
Temperature  
Range  
Part Number  
Packaging Marking  
LM2937ES-5.0  
LM2937ES-8.0  
LM2937ES-10  
LM2937ES-12  
LM2937ES-15  
Transport Media  
NSC Drawing  
TO-263  
−40˚C TJ 125˚C  
LM2937ES-5.0  
LM2937ESX-5.0  
LM2937ES-8.0  
LM2937ESX-8.0  
LM2937ES-10  
LM2937ESX-10  
LM2937ES-12  
LM2937ESX-12  
LM2937ES-15  
LM2937ESX-15  
LM2937ET-5.0  
LM2937ET-8.0  
LM2937ET-10  
LM2937ET-12  
LM2937ET-15  
LM2937IMP-5.0  
LM2937IMPX-5.0  
LM2937IMP-8.0  
LM2937IMPX-8.0  
LM2937IMP-10  
LM2937IMPX-10  
LM2937IMP-12  
LM2937IMPX-12  
LM2937IMP-15  
LM2937IMPX-15  
Rail  
TS3B  
500 Units Tape and Reel  
Rail  
500 Units Tape and Reel  
Rail  
500 Units Tape and Reel  
Rail  
500 Units Tape and Reel  
Rail  
500 Units Tape and Reel  
Rail  
TO-220  
−40˚C TJ 125˚C  
LM2937ET-5.0  
LM2937ET-8.0  
LM2937ET-10  
LM2937ET-12  
LM2937ET-15  
TO3B  
Rail  
Rail  
Rail  
Rail  
SOT-223  
−40˚C TJ 85˚C  
1k Units Tape and Reel  
2k Units Tape and Reel  
1k Units Tape and Reel  
2k Units Tape and Reel  
1k Units Tape and Reel  
2k Units Tape and Reel  
1k Units Tape and Reel  
2k Units Tape and Reel  
1k Units Tape and Reel  
2k Units Tape and Reel  
MP04A  
L71B  
L72B  
L73B  
L74B  
L75B  
www.national.com  
2
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
TO-263 (10 seconds)  
230˚C  
215˚C  
220˚C  
2 kV  
SOT-223 (Vapor Phase, 60 seconds)  
SOT-223 (Infared, 15 seconds)  
ESD Susceptibility (Note 3)  
Input Voltage  
Continuous  
26V  
60V  
Operating Conditions (Note 1)  
Temperature Range (Note 2)  
Transient (t 100 ms)  
Internal Power Dissipation (Note 2)  
Maximum Junction Temperature  
Storage Temperature Range  
TO-220 (10 seconds)  
Internally Limited  
150˚C  
LM2937ET, LM2937ES  
LM2937IMP  
−40˚C TJ 125˚C  
−40˚C TJ 85˚C  
26V  
−65˚C to +150˚C  
260˚C  
Maximum Input Voltage  
Electrical Characteristics  
VIN = VNOM + 5V, (Note 4) IOUTmax = 500 mA for the TO-220 and TO-263 packages, IOUTmax=400mA for the SOT-223 pack-  
age, COUT = 10 µF unless otherwise indicated. Boldface limits apply over the entire operating temperature range of the  
indicated device., all other specifications are for TA = TJ = 25˚C.  
Output Voltage (VOUT  
)
5V  
8V  
10V  
Units  
Parameter  
Output Voltage  
Conditions  
Typ  
Limit  
4.85  
4.75  
5.15  
5.25  
50  
Typ  
Limit  
7.76  
7.60  
8.24  
8.40  
80  
Typ  
Limit  
9.70  
5 mA IOUT IOUTmax  
V(Min)  
V(Min)  
5.00  
8.00  
10.00  
9.50  
10.30  
10.50  
100  
V(Max)  
V(Max)  
mV(Max)  
Line Regulation  
(VOUT + 2V) VIN 26V,  
IOUT = 5 mA  
15  
24  
30  
Load Regulation  
5 mA IOUT IOUTmax  
(VOUT + 2V) VIN 26V,  
IOUT = 5 mA  
5
2
50  
10  
8
2
80  
10  
10  
2
100  
10  
mV(Max)  
mA(Max)  
Quiescent Current  
VIN = (VOUT + 5V),  
IOUT = IOUTmax  
10  
20  
10  
20  
10  
20  
mA(Max)  
µVrms  
Output Noise  
Voltage  
10 Hz–100 kHz  
IOUT = 5 mA  
150  
240  
300  
Long Term Stability  
Dropout Voltage  
1000 Hrs.  
20  
0.5  
110  
1.0  
75  
32  
0.5  
110  
1.0  
75  
40  
0.5  
110  
1.0  
75  
mV  
IOUT = IOUTmax  
1.0  
250  
0.6  
60  
1.0  
250  
0.6  
60  
1.0  
250  
0.6  
60  
V(Max)  
mV(Max)  
A(Min)  
V(Min)  
IOUT = 50 mA  
Short-Circuit Current  
Peak Line Transient  
Voltage  
<
tf 100 ms, RL = 100Ω  
Maximum Operational  
Input Voltage  
26  
26  
26  
V(Min)  
V(Min)  
V(Min)  
Reverse DC  
VOUT −0.6V, RL = 100Ω  
−30  
−75  
−15  
−50  
−30  
−75  
−15  
−50  
−30  
−75  
−15  
−50  
Input Voltage  
<
tr 1 ms, RL = 100Ω  
Reverse Transient  
Input Voltage  
3
www.national.com  
Electrical Characteristics  
VIN = VNOM + 5V, (Note 4) IOUTmax = 500 mA for the TO-220 and TO-263 packages, IOUTmax=400mA for the SOT-223 pack-  
age, COUT = 10 µF unless otherwise indicated. Boldface limits apply over the entire operating temperature range of the  
indicted device., all other specifications are for TA = TJ = 25˚C.  
Output Voltage (VOUT  
)
12V  
15V  
Units  
Parameter  
Output Voltage  
Conditions  
Typ  
Limit  
11.64  
11.40  
12.36  
12.60  
120  
Typ  
Limit  
14.55  
14.25  
15.45  
15.75  
150  
5 mA IOUT IOUTmax  
V (Min)  
V(Min)  
12.00  
15.00  
V(Max)  
V(Max)  
mV(Max)  
Line Regulation  
(VOUT + 2V) VIN 26V,  
IOUT = 5 mA  
36  
45  
Load Regulation  
5 mA IOUT IOUTmax  
(VOUT + 2V) VIN 26V,  
IOUT = 5 mA  
12  
2
120  
10  
15  
2
150  
10  
mV(Max)  
mA(Max)  
Quiescent Current  
VIN = (VOUT + 5V),  
IOUT = IOUTmax  
10  
20  
10  
20  
mA(Max)  
µVrms  
Output Noise  
Voltage  
10 Hz–100 kHz,  
IOUT = 5 mA  
360  
450  
Long Term Stability  
Dropout Voltage  
1000 Hrs.  
44  
0.5  
110  
1.0  
75  
56  
0.5  
110  
1.0  
75  
mV  
IOUT = IOUTmax  
1.0  
250  
0.6  
60  
1.0  
250  
0.6  
60  
V(Max)  
mV(Max)  
A(Min)  
V(Min)  
IOUT = 50 mA  
Short-Circuit Current  
Peak Line Transient  
Voltage  
<
tf 100 ms, RL = 100Ω  
Maximum Operational  
Input Voltage  
26  
26  
V(Min)  
V(Min)  
V(Min)  
Reverse DC  
VOUT −0.6V, RL = 100Ω  
−30  
−75  
−15  
−50  
−30  
−75  
−15  
−50  
Input Voltage  
<
tr 1 ms, RL = 100Ω  
Reverse Transient  
Input Voltage  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device  
outside of its rated Operating Conditions.  
Note 2: The maximum allowable power dissipation at any ambient temperature is P  
= (125 − T )/θ , where 125 is the maximum junction temperature for  
A JA  
MAX  
operation, T is the ambient temperature, and θ is the junction-to-ambient thermal resistance. If this dissipation is exceeded, the die temperature will rise above  
A
JA  
125˚C and the electrical specifications do not apply. If the die temperature rises above 150˚C, the LM2937 will go into thermal shutdown. For the LM2937, the  
junction-to-ambient thermal resistance θ is 65˚C/W, for the TO-220 package, 73˚C/W for the TO-263 package, and 174˚C/W for the SOT-223 package. When used  
JA  
with a heatsink, θ is the sum of the LM2937 junction-to-case thermal resistance θ of 3˚C/W and the heatsink case-to-ambient thermal resistance. If the TO-263  
JA  
JC  
or SOT-223 packages are used, the thermal resistance can be reduced by increasing the P.C. board copper area thermally connected to the package (see  
Application Hints for more information on heatsinking).  
Note 3: ESD rating is based on the human body model, 100 pF discharged through 1.5 k.  
Note 4: Typicals are at T = 25˚C and represent the most likely parametric norm.  
J
www.national.com  
4
Typical Performance Characteristics  
Dropout Voltage vs. Output Current  
Dropout Voltage vs. Temperature  
01128007  
01128008  
Output Voltage vs. Temperature  
Quiescent Current vs. Temperature  
01128009  
01128010  
Quiescent Current vs. Input Voltage  
Quiescent Current vs. Output Current  
01128011  
01128012  
5
www.national.com  
Typical Performance Characteristics (Continued)  
Line Transient Response  
Load Transient Response  
01128014  
01128013  
Ripple Rejection  
Output Impedance  
01128015  
01128016  
Maximum Power Dissipation (TO-220)  
Maximum Power Dissipation (TO-263)(Note 2)  
01128017  
01128018  
www.national.com  
6
Typical Performance Characteristics (Continued)  
Low Voltage Behavior  
Low Voltage Behavior  
Output at Voltage Extremes  
Output Capacitor ESR  
01128019  
01128020  
01128022  
01128024  
Low Voltage Behavior  
01128021  
Output at Voltage Extremes  
01128023  
7
www.national.com  
Typical Performance Characteristics (Continued)  
Peak Output Current  
01128025  
Typical Application  
01128001  
* Required if the regulator is located more than 3 inches from the power supply filter capacitors.  
** Required for stability. C must be at least 10 µF (over the full expected operating temperature range) and located as close as possible to the regulator. The  
out  
equivalent series resistance, ESR, of this capacitor may be as high as 3.  
www.national.com  
8
The figure below shows the voltages and currents which are  
present in the circuit, as well as the formula for calculating  
the power dissipated in the regulator:  
Application Hints  
EXTERNAL CAPACITORS  
The output capacitor is critical to maintaining regulator sta-  
bility, and must meet the required conditions for both ESR  
(Equivalent Series Resistance) and minimum amount of ca-  
pacitance.  
MINIMUM CAPACITANCE:  
The minimum output capacitance required to maintain sta-  
bility is 10 µF (this value may be increased without limit).  
Larger values of output capacitance will give improved tran-  
sient response.  
ESR LIMITS:  
01128027  
The ESR of the output capacitor will cause loop instability if  
it is too high or too low. The acceptable range of ESR plotted  
versus load current is shown in the graph below. It is essen-  
tial that the output capacitor meet these requirements,  
or oscillations can result.  
I
= I + I  
L G  
IN  
P
= (V − V  
) I + (V ) I  
OUT L IN G  
D
IN  
FIGURE 2. Power Dissipation Diagram  
The next parameter which must be calculated is the maxi-  
mum allowable temperature rise, TR (max). This is calcu-  
lated by using the formula:  
Output Capacitor ESR  
TR (max) = TJ(max) − TA (max)  
where: TJ (max) is the maximum allowable junction tem-  
perature, which is 125˚C for commercial  
grade parts.  
TA (max) is the maximum ambient temperature  
which will be encountered in the  
application.  
Using the calculated values for TR(max) and PD, the maxi-  
mum allowable value for the junction-to-ambient thermal  
resistance, θ(J−A), can now be found:  
01128024  
θ(J−A) = TR (max)/PD  
IMPORTANT: If the maximum allowable value for θ(J−A) is  
found to be 53˚C/W for the TO-220 package, 80˚C/W for  
the TO-263 package, or 174˚C/W for the SOT-223 pack-  
age, no heatsink is needed since the package alone will  
dissipate enough heat to satisfy these requirements.  
FIGURE 1. ESR Limits  
It is important to note that for most capacitors, ESR is  
specified only at room temperature. However, the designer  
must ensure that the ESR will stay inside the limits shown  
over the entire operating temperature range for the design.  
If the calculated value for θ(J−A)falls below these limits, a  
heatsink is required.  
For aluminum electrolytic capacitors, ESR will increase by  
about 30X as the temperature is reduced from 25˚C to  
−40˚C. This type of capacitor is not well-suited for low tem-  
perature operation.  
HEATSINKING TO-220 PACKAGE PARTS  
The TO-220 can be attached to a typical heatsink, or se-  
cured to a copper plane on a PC board. If a copper plane is  
to be used, the values of θ(J−A) will be the same as shown in  
the next section for the TO-263.  
Solid tantalum capacitors have a more stable ESR over  
temperature, but are more expensive than aluminum elec-  
trolytics. A cost-effective approach sometimes used is to  
parallel an aluminum electrolytic with a solid Tantalum, with  
the total capacitance split about 75/25% with the Aluminum  
being the larger value.  
If a manufactured heatsink is to be selected, the value of  
heatsink-to-ambient thermal resistance, θ(H−A), must first be  
calculated:  
θ(H−A) = θ(J−A) θ(C−H) θ(J−C)  
If two capacitors are paralleled, the effective ESR is the  
parallel of the two individual values. The “flatter” ESR of the  
Tantalum will keep the effective ESR from rising as quickly at  
low temperatures.  
Where: θ(J−C) is defined as the thermal resistance from the  
junction to the surface of the case. A value of  
3˚C/W can be assumed for θ(J−C) for this  
calculation.  
HEATSINKING  
θ(C−H) is defined as the thermal resistance between  
the case and the surface of the heatsink. The  
value of θ(C−H) will vary from about 1.5˚C/W to  
about 2.5˚C/W (depending on method of at-  
tachment, insulator, etc.). If the exact value is  
unknown, 2˚C/W should be assumed for  
A heatsink may be required depending on the maximum  
power dissipation and maximum ambient temperature of the  
application. Under all possible operating conditions, the junc-  
tion temperature must be within the range specified under  
Absolute Maximum Ratings.  
θ(C−H)  
.
To determine if a heatsink is required, the power dissipated  
by the regulator, PD, must be calculated.  
9
www.national.com  
Application Hints (Continued)  
When a value for θ(H−A) is found using the equation shown,  
a heatsink must be selected that has a value that is less than  
or equal to this number.  
θ(H−A) is specified numerically by the heatsink manufacturer  
in the catalog, or shown in a curve that plots temperature rise  
vs power dissipation for the heatsink.  
HEATSINKING TO-263 AND SOT-223 PACKAGE PARTS  
Both the TO-263 (“S”) and SOT-223 (“MP”) packages use a  
copper plane on the PCB and the PCB itself as a heatsink.  
To optimize the heat sinking ability of the plane and PCB,  
solder the tab of the package to the plane.  
Figure 3 shows for the TO-263 the measured values of θ(J−A)  
for different copper area sizes using a typical PCB with 1  
ounce copper and no solder mask over the copper area used  
for heatsinking.  
01128029  
FIGURE 4. Maximum Power Dissipation vs. TAMB for  
the TO-263 Package  
Figure 5 and Figure 6 show the information for the SOT-223  
package. Figure 6 assumes a θ(J−A) of 74˚C/W for 1 ounce  
copper and 51˚C/W for 2 ounce copper and a maximum  
junction temperature of +85˚C.  
01128028  
FIGURE 3. θ(J−A) vs. Copper (1 ounce) Area for the  
TO-263 Package  
As shown in the figure, increasing the copper area beyond 1  
square inch produces very little improvement. It should also  
be observed that the minimum value of θ(J−A) for the TO-263  
package mounted to a PCB is 32˚C/W.  
01128030  
FIGURE 5. θ(J−A) vs Copper (2 ounce) Area for the  
As a design aid, Figure 4 shows the maximum allowable  
power dissipation compared to ambient temperature for the  
TO-263 device (assuming θ(J−A) is 35˚C/W and the maxi-  
mum junction temperature is 125˚C).  
SOT-223 Package  
www.national.com  
10  
Application Hints (Continued)  
SOT-223 SOLDERING RECOMMENDATIONS  
It is not recommended to use hand soldering or wave sol-  
dering to attach the small SOT-223 package to a printed  
circuit board. The excessive temperatures involved may  
cause package cracking.  
Either vapor phase or infrared reflow techniques are pre-  
ferred soldering attachment methods for the SOT-223  
package.  
01128031  
FIGURE 6. Maximum Power Dissipation vs TAMB for  
the SOT-223 Package  
11  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
Plastic Package  
Order Number LM2937ET-5.0,  
LM2937ET-8.0, LM2937ET-10, LM2937ET-12,  
or LM2937ET-15  
NS Package Number T03B  
TO-263 3-Lead Plastic Surface Mount Package  
Order Number LM2937ES-5.0, LM2937ES-8.0, LM2937ES-10, LM2937ES-12 or LM2937ES-15  
NS Package Number TS3B  
www.national.com  
12  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
SOT-223 3-Lead Plastic Surface Mount Package  
Order Number LM2937IMP-5.0, LM2937IMP-8.0, LM2937IMP-10, LM2937IMP-12 or LM2937IMP-15  
NS Package Number MP04A  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain  
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
Leadfree products are RoHS compliant.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LM2937ES-2.5

400mA and 500mA Voltage Regulators
NSC

LM2937ES-2.5

LM2937-2.5, LM2937-3.3 400mA and 500mA Voltage Regulators
TI

LM2937ES-2.5/NOPB

LM2937-2.5, LM2937-3.3 400mA and 500mA Voltage Regulators
TI

LM2937ES-3.3

400mA and 500mA Voltage Regulators
NSC

LM2937ES-3.3

LM2937-2.5, LM2937-3.3 400mA and 500mA Voltage Regulators
TI

LM2937ES-3.3/NOPB

LM2937-2.5, LM2937-3.3 400mA and 500mA Voltage Regulators
TI

LM2937ES-5.0

500 mA Low Dropout Regulator
NSC

LM2937ES-5.0

LM2937 500 mA Low Dropout Regulator
TI

LM2937ES-5.0/NOPB

LM2937 500 mA Low Dropout Regulator
TI

LM2937ES-8.0

500 mA Low Dropout Regulator
NSC

LM2937ES-8.0

LM2937 500 mA Low Dropout Regulator
TI

LM2937ES-8.0/NOPB

LM2937 500 mA Low Dropout Regulator
TI