LM4937 [NSC]

Audio Sub-System with OCL Stereo Headphone Output and RF Suppression; 音频子系统与OCL立体声耳机输出和射频抑制
LM4937
型号: LM4937
厂家: National Semiconductor    National Semiconductor
描述:

Audio Sub-System with OCL Stereo Headphone Output and RF Suppression
音频子系统与OCL立体声耳机输出和射频抑制

射频
文件: 总40页 (文件大小:865K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
February 2007  
LM4937  
Audio Sub-System with OCL Stereo Headphone Output  
and RF Suppression  
General Description  
Key Specifications  
The LM4937 is an integrated audio sub-system designed for  
mono voice, stereo music cell phones connecting to base  
band processors with mono differential analog voice paths.  
Operating on a 3.3V supply, it combines a mono speaker am-  
plifier delivering 520mW into an 8load, a stereo headphone  
amplifier delivering 36mW per channel into a 32load, and  
a mono earpiece amplifier delivering 55mW into a 32load.  
It integrates the audio amplifiers, volume control, mixer, and  
power management control all into a single package. In ad-  
dition, the LM4937 routes and mixes the single-ended stereo  
and differential mono inputs into multiple distinct output  
modes. The LM4937 features an I2S serial interface for full  
range audio and an I2C or SPI compatible interface for control.  
The full range music path features an SNR of 85dB with an  
18-bit 48kHz input.  
■ꢀPOUT, BTL, 8, 3.3V, 1%  
■ꢀPOUT H/P, 32, 3.3V, 1%  
■ꢀPOUT Mono Earpiece, 32Ω, 1%  
■ꢀShutdown current  
520mW (typ)  
36mW (typ)  
55mW (typ)  
0.6µA (typ)  
85dB (typ)  
■ꢀSNR (DAC + Amplifier)  
Features  
18-bit stereo DAC  
Multiple distinct output modes  
Mono speaker amplifier  
Stereo headphone amplifier  
Boomer audio power amplifiers are designed specifically to  
provide high quality output power with a minimal amount of  
external components.  
Mono earpiece amplifier  
Differential mono analog input  
Independent loudspeaker, headphone and mono earpiece  
volume controls  
I2C/SPI (selectable) compatible interface  
Ultra low shutdown current  
Click and Pop Suppression circuit  
Applications  
Cell Phones  
PDAs  
Boomer® is a registered trademark of National Semiconductor Corporation.  
© 2007 National Semiconductor Corporation  
202020  
www.national.com  
Block Diagram  
20202001  
FIGURE 1. Audio Sub-System Block Diagram with OCL HP Outputs  
(HP outputs may also be configured as cap-coupled)  
Connection Diagrams  
36 – Bump Micro SMD  
20202058  
Top View (Bump Side Down)  
Order Number LM4937TL  
See NS Package Number TLA36LVA  
www.national.com  
2
36 – Bump Micro SMD  
Top Marking Drawing  
20202002  
Top View  
XY — 2 Digit Date Code  
TT — Die Traceability  
G — Boomer Family  
I1 — LM4937TL  
3
www.national.com  
Pin Descriptions  
Pin  
Pin Name  
Digital/  
Analog  
I/O, Power  
Description  
A1  
A2  
A3  
A4  
A5  
A6  
B1  
B2  
B3  
B4  
B5  
B6  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
E4  
E5  
E6  
F1  
F2  
F3  
F4  
F5  
F6  
DGND  
MCLK  
I2S_WS  
SDA/SDI  
DVDD  
VDD_IO  
PLL_VDD  
I2S_SDATA  
I2S_CLK  
GPIO  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
P
I
DIGITAL GND  
MASTER CLOCK  
I/O  
I/O  
P
P
P
I
I2S WORD SELECT  
I2C SDA OR SPI SDI  
DIGITAL SUPPLY VOLTAGE  
I/O SUPPLY VOLTAGE  
PLL SUPPLY VOLTAGE  
I2S SERIAL DATA INPUT  
I2S CLOCK SIGNAL  
I/O  
O
P
I
TEST PIN (MUST BE LEFT FLOATING)  
I2C SUPPLY VOLTAGE  
I2C_VDD  
SDL/SCK  
PLL_GND  
PLL_OUT  
PLL_IN  
ADDR/ENB  
BYPASS  
AVDD  
AGND  
AGND  
NC  
I2C_SCL OR SPI_SCK  
P
O
I
PLL GND  
PLL FILTER OUTPUT  
PLL FILTER INPUT  
I
I2C ADDRESS OR SPI ENB DEPENDING ON MODE  
HALF-SUPPLY BYPASS  
ANALOG SUPPLY VOLTAGE  
ANALOG GND  
I
P
P
P
ANALOG GND  
NO CONNECT  
MODE  
RHP  
D
A
A
A
A
A
I
O
O
I
SELECTS BETWEEN I2C OR SPI CONTROL  
RIGHT HEADPHONE OUTPUT  
HEADPHONE CENTER PIN OUTPUT (1/2 VDD or GND)  
ANALOG NEGATIVE DIFFERENTIAL INPUT  
ANALOG LEFT CHANNEL INPUT  
ANALOG RIGHT CHANNEL INPUT  
NO CONNECT  
CHP  
DIFF_  
LIN  
I
RIN  
I
NC  
LHP  
A
A
A
A
A
A
A
A
O
P
I
LEFT HEADPHONE OUTPUT  
ANALOG GND  
AGND  
DIFF+  
EP_  
ANALOG POSITIVE DIFFERENTIAL INPUT  
MONO EARPIECE-  
O
O
O
P
O
EP+  
MONO EARPIECE+  
LS-  
LOUDSPEAKER OUT-  
AVDD  
LS+  
ANALOG SUPPLY VOLTAGE  
LOUD SPEAKER OUT+  
www.national.com  
4
Thermal Resistance  
ꢁθJA (TLA36)  
See AN-1279  
Absolute Maximum Ratings (Notes 1, 2)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
100°C/W  
Operating Ratings  
Temperature Range  
TMIN TA TMAX  
Supply Voltage  
Analog Supply Voltage  
Digital Supply Voltage  
Storage Temperature  
Input Voltage  
6.0V  
6.0V  
-65°C to +150°C  
-0.3V to VDD +0.3V  
Internally Limited  
2000V  
−40°C TA +85°C  
Power Dissipation (Note 3)  
ESD Susceptibility (Note 4)  
ESD Susceptibility (Note 5)  
Junction Temperature  
2.7V AVDD 5.5V  
2.7V DVDD 4.0V  
2.4V I2CVDD 4.0V  
200V  
150°C  
Audio Amplifier Electrical Characteristics AVDD = 3.0V, DVDD = 3.0V (Notes 1, 2)  
The following specifications apply for the circuit shown in Figure 1 with all programmable gain set at 0dB, unless otherwise specified.  
Limits apply for TA = 25°C.  
Symbol  
Parameter  
Conditions  
LM4937  
Typical Limits  
(Note 6) (Notes 7, 8)  
Units  
(Limits)  
VIN = 0, No Load  
14  
19  
mA (max)  
All Amps On + DAC, OCL (Note 11)  
Headphone Mode Only, OCL  
4.6  
7
6.25  
11.5  
mA (max)  
mA (max)  
Mono Loudspeaker Mode Only (Note 11)  
IDD  
Supply Current  
Mono Earpiece Speaker Mode Only  
D_6 = 0 (register 01h)  
D_6 = 1  
3.7  
3.3  
5
mA (max)  
mA  
DAC Off, All Amps On (OCL) (Note 11)  
10  
15.5  
2
mA (max)  
ISD  
Shutdown Current  
0.6  
μA (max)  
Speaker; THD = 1%;  
f = 1kHz, 8BTL  
Headphone; THD = 1%;  
f = 1kHz, 32SE  
420  
27  
370  
24  
mW (min)  
mW (min)  
PO  
Output Power  
Earpiece; THD = 1%;  
f = 1kHz, 32BTL  
mW (min)  
45  
2.4  
40  
VFS DAC  
THD+N  
Full Scale DAC Output  
Total Harmonic Distortion  
Vpp  
%
Speaker; PO = 200mW;  
f = 1kHz, 8BTL  
Headphone; PO = 10mW;  
f = 1kHz, 32SE  
Earpiece; PO = 20mW;  
f = 1kHz, 32BTL  
Speaker  
0.04  
0.01  
0.04  
%
%
10  
55  
50  
40  
mV (max)  
mV (max)  
mV (max)  
VOS  
Offset Voltage  
Earpiece  
8
8
Headphone (OCL)  
Output Noise  
A = weighted; 0dB gain;  
See Table 1  
Table 1  
O
PSRR  
Power Supply Rejection Ratio  
f = 217Hz; Vripple = 200mVP-P  
Table 2  
–60  
CB = 2.2μF; See Table 2  
Headphone; PO= 10mW  
f = 1kHz; OCL  
Xtalk  
TWU  
Crosstalk  
dB  
35  
85  
56  
ms (max)  
ms (max)  
dB  
Wake-Up Time  
CB = 2.2μF, CD6 = 0  
CB = 2.2μF, CD6 = 1  
CMRR  
Common-Mode Rejection Ratio  
f = 217Hz, VRMS = 200mVpp  
5
www.national.com  
Audio Amplifier Electrical Characteristics AVDD = 5.0V, DVDD = 3.3V (Notes 1, 2)  
The following specifications apply for the circuit shown in Figure 1 with all programmable gain set at 0dB, unless otherwise specified.  
Limits apply for TA = 25°C.  
Symbol  
Parameter  
Conditions  
LM4937  
Typical Limits  
Units  
(Limits)  
(Note 6) (Notes 7,  
8)  
VIN = 0, No Load  
17.5  
mA (max)  
All Amps On + DAC, OCL (Note 11)  
Headphone Mode Only (OCL)  
5.8  
11.6  
5
mA (max)  
mA (max)  
mA (max)  
mA (max)  
μA (max)  
IDD  
Supply Current  
Mono Loudspeaker Mode Only (Note 11)  
Mono Earpiece Mode Only (Note 11)  
DAC Off, All Amps On (OCL) (Note 11)  
12.9  
1.6  
ISD  
Shutdown Current  
Speaker; THD = 1%;  
f = 1kHz, 8BTL  
Headphone; THD = 1%;  
f = 1kHz, 32SE  
1.25  
80  
mW (min)  
mW (min)  
PO  
Output Power  
Earpiece; THD = 1%;  
f = 1kHz, 32BTL  
175  
2.4  
mW (min)  
Vpp  
VFS DAC  
Full Scale DAC Output  
Total Harmonic Distortion  
Speaker; PO = 500mW;  
f = 1kHz, 8BTL  
Headphone; PO = 30mW;  
f = 1kHz, 32SE  
Earpiece; PO = 40mW;  
f = 1kHz, 32BTL; CD4 = 0  
Speaker  
0.03  
%
THD+N  
0.01  
0.04  
%
%
10  
8
mV  
mV  
mV  
VOS  
Offset Voltage  
Earpiece  
HP (OCL)  
8
Output Noise  
A = weighted; 0dB gain;  
See Table 1  
O
Table 1  
Table 3  
–56  
PSRR  
Power Supply Rejection Ratio  
f = 217Hz; Vripple = 200mVP-P  
CB = 2.2μF; See Table 3  
Headphone; PO= 15mW  
f = 1kHz; OCL  
Xtalk  
TWU  
Crosstalk  
dB  
45  
ms  
ms  
CB = 2.2μF, CD6 = 0  
CB = 2.2μF, CD6 = 1  
Wake-Up Time  
130  
www.national.com  
6
Volume Control Electrical Characteristics (Notes 1, 2)  
The following specifications apply for 3V AVDD 5V and 2.7V DVDD 4.0V, unless otherwise specified. Limits apply for TA =  
25°C.  
Symbol  
Parameter  
Conditions  
LM4937  
Typical  
Units  
(Limits)  
Limits  
(Note 6) (Notes 7,  
8)  
–7  
dB (min)  
dB (max)  
dB (max)  
dB (min)  
dB (min)  
dB (max)  
dB (max)  
dB (min)  
dB (min)  
dB (max)  
dB (min)  
dB (max)  
minimum gain setting  
–6  
–5  
Stereo Analog Inputs PreAmp Gain  
Setting Range  
15.5  
maximum gain setting  
minimum gain setting  
maximum gain setting  
minimum gain setting  
maximum gain setting  
15  
14.5  
PGR  
–13  
–12  
–11  
Differential Mono Analog Input  
PreAmp Gain Setting Range  
9.5  
9
8.5  
–59  
–56  
–53  
Output Volume Control for  
Loudspeaker, Headphone Output,  
or Earpiece Output  
VCR  
4.5  
+5  
5.5  
Stereo Channel to Channel Gain  
Mismatch  
ΔACH-CH  
0.3  
dB  
Vin = 1Vrms, Gain = 0dB  
with load  
Mute Attenuation  
AMUTE  
RINPUT  
Headphone  
<-90  
dB (min)  
kΩ (min)  
kΩ (max)  
DIFF+, DIFF-, LIN and RIN Input  
Impedance  
18  
23  
28  
Digital Section Electrical Characteristics (Notes 1, 2)  
The following specifications apply for 3V AVDD 5V and 2.7V DVDD 4.0V, unless otherwise specified. Limits apply for TA =  
25°C.  
Symbol  
Parameter  
Conditions  
LM4937  
Typical  
Units  
(Limits)  
Limits  
(Note 6) (Notes 7,  
8)  
Mode 0, DVDD = 3.0V  
DISD  
Digital Shutdown Current  
No MCLK  
0.01  
μA  
fMCLK = 12MHz, DVDD = 3.0V  
ALL MODES EXCEPT 0  
DIDD  
Digital Power Supply Current  
PLL Quiescent Current  
5.3  
4.8  
6.5  
6
mA (max)  
mA (max)  
PLLIDD  
fMCLK = 12MHz, DVDD = 3.0V  
Audio DAC (Typical numbers are with 6.144MHz audio clock and 48kHz sampling frequency  
RDAC  
Audio DAC Ripple  
dB  
kHz  
dB  
20Hz - 20kHz through headphone output  
-3dB point  
+/-0.1  
22.6  
76  
PBDAC  
SBADAC  
Audio DAC Passband width  
Audio DAC Stop band Attenuation Above 24kHz  
Audio DAC Dynamic Range  
DC - 20kHz, –60dBFS; AES17 Standard  
See Table 4  
DRDAC  
Table 4  
dB  
Audio DAC-AMP Signal to Noise  
Ratio  
A-Weighted, Signal = VO at 0dBFS, f = 1kHz  
SNR  
Table 4  
95  
dB  
dB  
Noise = digital zero, A-weighted, See Table  
4
SNRDAC  
Internal DAC SNR  
A-weighted (Note 10)  
PLL  
10  
26  
fIN  
Input Frequency on MCLK pin  
12  
MHz  
7
www.national.com  
Symbol  
Parameter  
Conditions  
LM4937  
Typical  
Units  
(Limits)  
Limits  
(Note 6) (Notes 7,  
8)  
SPI/I2C  
fSPI  
Maximum SPI Frequency  
SPI Data Setup Time  
SPI ENB Setup Time  
SPI Data Hold Time  
SPI ENB Hold Time  
SPI Clock Low Time  
SPI Clock High Time  
I2C_CLK Frequency  
I2C_DATA Hold Time  
I2C_DATA Setup Time  
I2C/SPI Input High Voltage  
4000  
100  
100  
100  
100  
125  
125  
400  
100  
100  
kHz (max)  
ns (max)  
ns (max)  
ns (max)  
ns (max)  
ns (max)  
ns (max)  
kHz (max)  
ns (max)  
ns (max)  
tSPISETD  
tSPISETENB  
tSPIHOLDD  
tSPIHOLDENB  
tSPICL  
tSPICH  
fCLKI2C  
tI2CHOLD  
tI2CSET  
I2CVDD 0.7 x  
I2CVDD  
VIH  
V (min)  
V (max)  
I2C/SPI Input Low Voltage  
0
0.3 x  
I2CVDD  
VIL  
I2S  
I2S_RES = 0  
I2S_RES = 1  
1536  
3072  
6144  
12288  
40  
I2S_CLK Frequency  
kHz (max)  
fCLKI2S  
I2S_WS Duty Cycle  
50  
%
60  
Digital Input High Voltage  
0.7 x  
DVDD  
VIH  
VIL  
V (min)  
V (max)  
Digital Input Low Voltage  
0.3 x  
DVDD  
Note 1: All voltages are measured with respect to the GND pin unless otherwise specified.  
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
functional but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions  
which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters  
where no limit is given, however, the typical value is a good indication of device performance.  
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX JA, and the ambient temperature, TA. The maximum  
allowable power dissipation is PDMAX = (TJMAX – TA) / θ JA or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4937 typical application  
with VDD = 3.3V, RL = 8Ω stereo operation, the total power dissipation is TBDW. θJA = TBD°C/W.  
Note 4: Human body model: 100pF discharged through a 1.5kresistor.  
Note 5: Machine model: 220pF - 240pF discharged through all pins.  
Note 6: Typicals are measured at 25°C and represent the parametric norm.  
Note 7: Limits are guaranteed to National’s AOQL (Average Outgoing Quality Level).  
Note 8: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.  
Note 9: Shutdown current is measured in a normal room environment.  
Note 10: Internal DAC only with DAC modes 00 and 01.  
Note 11: Enabling mono bit (D_6 in Output Control Register 01h) will save 400μA (typ) from specified current.  
www.national.com  
8
TABLE 1. Output Noise  
Output Noise AVDD = 5V and AVDD = 3V. All gains set to 0dB. Units in μV. A - weighted  
MODE  
EP  
22  
22  
22  
68  
38  
29  
38  
LS  
22  
22  
22  
88  
48  
34  
48  
HP OCL  
Units  
μV  
1
2
3
4
5
6
7
8
8
μV  
8
μV  
46  
24  
18  
24  
μV  
μV  
μV  
μV  
TABLE 2. PSRR AVDD = 3V  
PSRR AVDD = 3V. f = 217Hz; Vripple = 200mVp-p; CB = 2.2μF.  
MODE  
EP(Typ)  
69  
LS (Typ)  
76  
LS (Limit)  
HP (Typ)  
HP (Limit)  
Units  
1
2
3
4
5
6
7
72  
72  
72  
55  
61  
64  
61  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
69  
76  
67  
68  
69  
76  
63  
62  
69  
68  
69  
70  
69  
68  
TABLE 3. PSRR AVDD = 5V  
PSRR AVDD = 5V. All gains set to 0dB. f = 217Hz; Vripple = 200mVp-p; CB = 2.2μF  
MODE  
EP (Typ)  
LS (Typ)  
72  
HP (Typ)  
Units  
1
2
3
4
5
6
7
68  
68  
68  
68  
68  
69  
68  
71  
71  
71  
69  
70  
71  
70  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
72  
72  
66  
69  
72  
69  
TABLE 4. Dynamic Range and SNR  
Dynamic Range and SNR. 3V AVDD 5V. All programmable gain set to 0dB. Units in dB.  
DR (Typ)  
SNR (Typ)  
Units  
LS  
HP  
EP  
95  
95  
97  
85  
85  
85  
dB  
dB  
dB  
9
www.national.com  
System Control  
The LM4937 is controlled via either a two wire I2C compatible interface or three wire SPI interface, selectable with the MODE pin.  
This interface is used to configure the operating mode, interfaces, data converters, mixers and amplifiers. The LM4937 is controlled  
by writing 8 bit data into a series of write-only registers, the device is always a slave for both type of interfaces.  
THREE WIRE, SPI INTERFACE (MODE = 1)  
Three Wire Mode Write Bus Transaction  
20202059  
Three Wire Mode Write Bus Timing  
20202060  
FIGURE 2. Three Wire Mode Write Bus  
When the part is configured as an SPI device and the enable (ENB) line is lowered the serial data on SDI is clocked in on the rising  
edge of the SCK line. The protocol used is 16bit, MSB first. The upper 8 bits (15:8) are used to select an address within the device,  
the lower 8 bits (7:0) contain the updated data for this register.  
TWO WIRE I2C COMPATIBLE INTERFACE (MODE = 0)  
Two Wire Mode Write Bus Transaction  
202020j6  
www.national.com  
10  
Two Wire Mode Write Bus Timing  
20202062  
FIGURE 3. Two Wire Mode Write Bus  
When the part is configured as an I2C device then the LM4937 will respond to one of two addresses, according to the ADDR input.  
If ADDR is low then the address portion of the I2C transaction should be set to write to 0010000. When ADDR is high then the  
address input should be set to write to 1110000.  
TABLE 5. Chip Address  
A7  
0
A6  
EC  
0
A5  
EC  
0
A4  
1
A3  
0
A2  
0
A1  
0
A0  
0
Chip Address  
ADR = 0  
0
1
0
0
0
0
ADR = 1  
0
1
1
1
0
0
0
0
EC — Externally configured by ADR pin  
11  
www.national.com  
www.national.com  
12  
13  
www.national.com  
System Controls  
TABLE 7. Loudspeaker, Earpiece, HP Left or Right Volume Control  
EP_VOL_4,  
LS_VOL_4,  
HP_L_VOL_4,  
HP_R_VOL_4  
EP_VOL_3,  
EP_VOL_2,  
LS_VOL_2,  
HP_L_VOL_2,  
HP_R_VOL_2  
EP_VOL_1,  
LS_VOL_1,  
HP_L_VOL_1,  
HP_R_VOL_1  
EP_VOL_0,  
LS_VOL_0,  
HP_L_VOL_0,  
HP_R_VOL_0  
LS_VOL_3,  
HP_L_VOL_3,  
HP_R_VOL_3  
Gain (dB)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
<–90 (MUTE)  
–56  
–52  
–48  
–45  
–42  
–39  
–36  
–33  
–30  
–28  
–26  
–24  
–22  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
–3  
–2  
–1  
0
+1  
+2  
+3  
+4  
+5  
www.national.com  
14  
TABLE 8. Mixer Code Control  
Mode  
CD3  
CD2  
CD1  
CD0  
Mono  
Earpiece  
Loudspeaker Headphone  
L
Headphone  
R
0
1
2
3
4
5
0
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
SD  
M
SD  
M
SD  
M
SD  
M
AL+AR  
M+AL+AR  
DL+DR  
AL+AR  
M+AL+AR  
DL+DR  
AL  
AR  
M+AL  
DL  
M+AR  
DR  
DL+DR+  
AL+AR  
DL+AL  
AL+AR  
DL+AL  
DR+AR  
6
1
1
1
1
1
1
0
1
M+DL+AL+  
DR+AR  
M+DL+AL+  
DR+AR  
M+DL+AL  
M+DL  
M+DR+AR  
M+DR  
7
M+DL+DR  
M+DL+DR  
SD — Shutdown  
M — Mono Differential Input  
AL — Analog Left Channel  
AR — Analog Right Channel  
DL — I2S DAC Left Channel  
DR — I2S DAC Right Channel  
MUTE — Mute  
Note: Power-On Default Mode is Mode 0  
15  
www.national.com  
TABLE 9. Output Control (01h)  
LS_OUTPUT = 1  
Output On  
LS_OUTPUT = 0  
Output Off  
Loudspeaker  
HP_L_OUTPUT = 1  
Output On  
HP_L_OUTPUT = 0  
Headphone Left Channel  
Output Off  
Output Mute  
(OCL = 1)  
(OCL = 0)  
HP_R_OUTPUT = 1  
Output On  
HP_R_OUTPUT = 0  
Headphone Right Channel  
Output Off  
(OCL = 0)  
Output Mute  
(OCL = 1)  
EP_OUTPUT = 1  
Output On  
EP_OUTPUT = 0  
Earpiece  
Output Off  
CD3 = 0  
CD3 = 1  
All Outputs  
Outputs Toggled Via Register Control  
All Outputs Off  
TABLE 10. Mono Differential Amplifier Input Gain Select (08h)  
MONO_IN_GAIN_2  
MONO_IN_GAIN_1  
MONO_IN_GAIN_0  
Input Gain Setting  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
–12dB  
–9dB  
–6dB  
–3dB  
0dB  
3dB  
6dB  
9dB  
TABLE 11. Analog Single-Ended Input Amplifier Gain Select (07h)  
ANA_L_GAIN_2  
ANA_R_GAIN_2  
ANA_L_GAIN_1  
ANA_R_GAIN_1  
ANA_L_GAIN_0  
ANA_R_GAIN_0  
Input Gain Setting  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
–6dB  
–3dB  
0dB  
3dB  
6dB  
9dB  
12dB  
15dB  
TABLE 12. DAC Gain Select (08h)  
DIG_L_GAIN_1  
DIG_R_GAIN_1  
DIG_L_GAIN_0  
DIG_R_GAIN_0  
Input Gain Setting  
0
0
1
1
0
1
0
1
–3dB  
0dB  
3dB  
6dB  
www.national.com  
16  
PLL Configuration Registers  
PLL M DIVIDER CONFIGURATION REGISTER  
This register is used to control the input divider of the PLL.  
PLL_M (0Ah) (Set = logic 1, Clear = logic 0)  
Bits  
Register  
Description  
6:0  
PLL_M  
Programs the PLL input divider to select:  
PLL_M  
Divide Ratio  
0
1
Divider Off  
1
2
1.5  
2
3
4
2.5  
...  
3→  
126  
63.5  
NOTES:  
The M divider should be set such that the output of the divider is between 0.5 and 5MHz. See the PLL setup section for details.  
The division of the M divider is derived from PLL_M as such:  
M = (PLL_M+1) / 2  
PLL N DIVIDER CONFIGURATION REGISTER  
This register is used to control PLL N divider.  
PLL_N (0Bh) (Set = logic 1, Clear = logic 0)  
Bits  
Register  
Description  
7:0  
PLL_N  
Programs the PLL feedback divider:  
PLL_N  
0
Divide Ratio  
Divider Off  
10  
1 10  
11  
11  
12  
12  
...  
...  
248  
249  
248  
249  
NOTES:  
The N divider should be set such that the output of the divider is between 0.5 and 5MHz. See the PLL setup section for details. The N divider should never be  
set so that (Fin/M) * N > 55MHz (or 80MHz if FAST_VCO is set in the PLL_N_MOD register).  
The non-sigma-delta division of the N divider is derived from the PLL_N as such:  
N = PLL_N  
Fin /M is often referred to as Fcomp (Frequency of Comparison) or Fref (Reference Frequency). In this document, Fcomp is used.  
PLL P DIVIDER CONFIGURATION REGISTER  
This register is used to control the PLL's P divider.  
17  
www.national.com  
PLL_P (0Dh) (Set = logic 1, Clear = logic 0)  
Bits  
3:0  
Register  
PLL_P  
Description  
Programs the PLL input divider to select:  
0
1
Divider Off  
1
1.5  
2
2
3
...  
13  
14  
15  
–> 2.5  
7
7.5  
8
NOTES:  
The output of this divider should be either 12 or 24MHz in USB mode or 11.2896MHz, 12.288MHz or 24.576MHz in non-USB modes.  
The division of the P divider is derived from PLL_P as such:  
P = (PLL_P+1) / 2  
PLL N MODULATOR AND DITHER SELECT CONFIGURATION REGISTER  
This register is used to control the Fractional component of the PLL.  
PLL_N_MOD (0Ch) (Set = logic 1, Clear = logic 0)  
Bits  
Register  
Description  
4:0  
PLL_N_MOD  
This programs the PLL N Modulator's fractional component:  
PLL_N_MOD  
Fractional Addition  
0
1
0/32  
1/32  
2 30  
2/32 30/32  
6:5  
DITHER_LEVEL  
FAST_VCO  
Allows control over the dither used by the N Modulator  
DITHER_LEVEL  
DAC Sub-system Input Source  
Medium (32)  
00  
01  
10  
Small (16)  
Large (48)  
7
If set the VCO maximum and minimum frequencies are raised:  
FAST_VCO  
Maximum FVCO  
40–55MHz  
0
NOTES:  
The complete N divider is a fractional divider as such:  
N = PLL_N + (PLL_N_MOD/32)  
If the modulus input is zero, then the N divider is simply an integer N divider. The output from the PLL is determined by the following formula:  
Fout = (Fin * N) / (M * P)  
Please see over for more details on the PLL and common settings.  
www.national.com  
18  
Further Notes on PLL Programming  
The sigma-delta PLL is designed to drive audio circuits requiring accurate clock frequencies of up to 25MHz with frequency errors  
noise-shaped away from the audio band. The 5 bits of modulus control provide exact synchronization of 48kHz and 44.1kHz sample  
rates from any common clock source when the oversampling rate of the audio system is 125fs. In systems where 128x oversampling  
must be used (for example with an isochronous I2S data stream) a clock synchronous to the sample rate should be used as input  
to the PLL (typically the I2S clock). If no isochronous source is available then the PLL can be used to obtain a clock that is accurate  
to within typical crystal tolerances of the real sample rate.  
20202063  
Example Of PLL Settings For 48Khz Sample Rates  
f_in (MHz)  
11  
fsamp (kHz)  
M
11  
5
N
60  
P
5
5
5
5
5
5
5
5
6
5
5
PLL_M  
21  
9
PLL_N  
60  
PLL_N_MOD  
PLL_P  
f_out (MHz)  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
0
0
9
9
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
25  
25  
12.288  
13  
4
19.53125  
60  
7
19  
17  
0
9
13  
9
25  
17  
53  
27  
25  
53  
40  
32  
60  
9
14.4  
37.5  
100  
37  
16  
0
9
16.2  
27  
14  
13  
27  
20.5  
16.5  
100  
50  
9
16.8  
50  
0
9
19.2  
40.625  
100  
40  
20  
0
9
19.44  
19.68  
19.8  
100  
62  
11  
9
62.5  
50  
16  
0
50  
9
Example PLL Settings For 44.1Khz Sample Rates  
f_in (MHz)  
11  
fsamp (kHz)  
44.1  
M
N
55.125  
P
PLL_M  
21  
PLL_N  
55  
PLL_N_MOD  
PLL_P  
f_out (MHz)  
11.025000  
11.025000  
11.025000  
11.025000  
11.025000  
11.025000  
11.025000  
11.025000  
11.025000  
11.025000  
11.025000  
11  
5
4
2
9
11.2896  
12  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
8
39.0625  
22.96875  
55.125  
5
5
5
5
5
5
5
5
4
5
15  
9
39  
22  
55  
45  
30  
55  
45  
38  
45  
30  
9
9
9
9
9
9
9
9
7
9
5
31  
4
13  
13  
12  
9
25  
23  
17  
33  
31  
26  
40  
21  
14.4  
16.2  
16.8  
19.2  
19.44  
19.68  
19.8  
45.9375  
30.625  
30  
20  
25  
30  
9
17  
16  
55.78125  
45.9375  
13.5 38.28125  
20.5 45.9375  
30  
20  
11  
30.625  
These tables cover the most common applications, obtaining clocks for sample rates such as 22.05kHz and 192kHz should be  
done by changing the P divider value or the R divider in the clock configuration diagram.  
19  
www.national.com  
If the user needs to obtain a clock unrelated to those described above, the following method is advised. An example of obtaining  
11.2896 from 12.000MHz is shown below.  
Choose a small range of P so that the VCO frequency is swept between 45 and 55MHz (or 60-80MHz if VCOFAST is used).  
Remembering that the P divider can divide by half integers. So for P = 4.0 7.0 sweep the M inputs from 2.5 24. The most  
accurate N and N_MOD can be calculated by:  
N = FLOOR(((Fout/Fin)*(P*M)),1)  
N_MOD = ROUND(32*((((Fout)/Fin)*(P*M)-N),0)  
This shows that setting M = 11.5, N = 75 N_MOD = 47 P = 7 gives a comparison frequency of just over 1MHz, a VCO frequency  
of just under 80MHz (so VCO_FAST must be set) and an output frequency of 11.289596 which gives a sample rate of  
44.099985443kHz, or accurate to 0.33 ppm.  
Care must be taken when synchronization of isochronous data is not possible, i.e. when the PLL has to be used in the above mode.  
The I2S should be master on the LM4937 so that the data source can support appropriate SRC as required. This method should  
only be used with data being read on demand to eliminate sample rate mismatch problems.  
Where a system clock exists at an integer multiple of the required DAC clock rate it is preferable to use this rather than the PLL.  
The LM4937 is designed to work in 8,12,16,24,32, and 48kHz modes from a 12MHz clock without the use of the PLL. This saves  
power and reduces clock jitter.  
Clock Configuration Register  
This register is used to control the multiplexers and clock R divider in the clock module.  
CLOCK (09h) (Set = logic 1, Clear = logic 0)  
Bits  
Register  
Description  
0
FAST_CLOCK  
If set master clock is divided by two.  
FAST_CLOCK  
MCLK Frequency  
Normal  
0
1
Divided by 2  
1
2
PLL_INPUT  
Programs the PLL input multiplexer to select:  
PLL_INPUT  
PLL Input Source  
0
1
MCLK  
I2S Input Clock  
AUDIO_CLK_SEL  
Selects which clock is passed to the audio sub-system  
DAC_CLK_SEL  
DAC Sub-system  
Input Source  
0
1
PLL Input  
PLL Output  
3
PLL_ENABLE  
If set enables the PLL. (MODES 4–7 only)  
www.national.com  
20  
Bits  
Register  
Description  
7:4  
R_DIV  
Programs the R divider  
R_DIV  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Divide Value  
1
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
20202053  
By default the stereo DAC operates at 250*fs, i.e. 12.000MHz (at the clock generator input clock) for 48kHz data. It is expected  
that the PLL be used to drive the audio system unless a 12.000MHz master clock is supplied. The PLL can also use the I2S clock  
input as a source. In this case, the audio DAC uses the clock from the output of the PLL.  
21  
www.national.com  
Common Clock Settings for the DAC  
The DAC can work in 4 modes, each with different oversampling rates, 125,128,64 & 32. In normal operation 125x oversampling  
provides for the simplest clocking solution as it will work from 12.000MHz (common in most systems with Bluetooth or USB) at  
48kHz exactly. The other modes are useful if data is being provided to the DAC from an uncontrollable isochronous source (such  
as a CD player, DAB, or other external digital source) rather than being decoded from memory. In this case the PLL can be used  
to derive a clock for the DAC from the I2S clock.  
The DAC oversampling rate can be changed to allow simpler clocking strategies, this is controlled in the DAC SETUP register but  
the oversampling rates are as follows:  
DAC MODE  
Over sampling Ratio Used  
00  
01  
10  
11  
125  
128  
64  
32  
The following table describes the clock required at the clock generator input for various clock sample rates in the different DAC  
modes:  
Fs (kHz)  
8
DAC Oversampling Ratio  
Required CLock at DAC Clock Generator Input (MHz)  
125  
128  
125  
128  
125  
128  
125  
128  
125  
128  
125  
128  
125  
128  
125  
128  
125  
128  
64  
2
8
2.048  
2.75625  
2.8224  
3
11.025  
11.025  
12  
12  
3.072  
4
16  
16  
4.096  
5.5125  
5.6448  
6
22.05  
22.05  
24  
24  
6.144  
8
32  
32  
8.192  
11.025  
11.2896  
12  
44.1  
44.1  
48  
48  
12.288  
11.2896  
12.288  
22.5792  
24.576  
88.2  
96  
64  
176.4  
192  
32  
32  
Methods for producing these clock frequencies are described in the PLL section.  
The R divider can be used when the master clock is exactly 12.00 MHz in order to generate different sample rates. The Table  
below shows different sample rates supported from 12.00MHz by using only the R divider and disabling the PLL. In this way we  
can save power and the clock jitter will be low.  
R_DIV  
Divide Value  
DAC Clock Generator Input Frequency <MHz>  
Sample Rate Supported <KHz>  
11  
9
6
5
2
2.4  
3
8
9.6  
12  
7
4
5
3
4
16  
4
2.5  
4.8  
19.2  
www.national.com  
22  
R_DIV  
Divide Value  
DAC Clock Generator Input Frequency <MHz>  
Sample Rate Supported <KHz>  
3
2
0
2
1.5  
1
6
8
24  
32  
48  
12  
The R divider can also be used along with the P divider in order to create the clock needed to support low sample rates.  
23  
www.national.com  
DAC Setup Register  
This register is used to configure the basic operation of the stereo DAC.  
DAC_SETUP (0Eh) (Set = logic 1, Clear = logic 0)  
Bits  
Register  
Description  
1:0  
DAC_MODE  
The DAC used in the LM4937 can operate in one of 4 oversampling modes.  
The modes are described as follows:  
DAC_MODE  
Oversampling  
Rate  
Typical FS  
Clock Required  
00  
01  
125  
48KHz  
12.000MHz (USB  
Mode)  
128  
44.1KHz  
48KHz  
11.2896MHz  
12.288MHz  
10  
11  
64  
32  
96KHz  
12.288MHz  
24.576MHz  
192KHz  
2
3
4
5
MUTE_L  
MUTE_R  
Mutes the left DAC channel on the next zero crossing.  
Mutes the right DAC channel on the next zero crossing.  
If set the dither in DAC is disabled.  
DITHER_OFF  
DITHER  
If set the dither in DAC is enabled all the time.  
ALWAYS_ON  
6
CUST_COMP  
If set the DAC frequency response can be programmed manually via a 5 tap FIR  
“compensation” filter. This can be used to enhance the frequency response of small  
loudspeakers or provide a crude tone control. The compensation Coefficients can be  
set by using registers 10h to 15h.  
www.national.com  
24  
Interface Control Register  
This register is used to control the I2S and I2C compatible interface on the chip.  
INTERFACE (0Fh) (Set = logic 1, Clear = logic 0)  
Bits  
Register  
Description  
0
I2S_MASTER_SLAVE  
If set the LM4937 acts as a master for  
I2S, so both I2S clock and I2S word  
select are configured as outputs. If  
cleared the LM4937 acts as a slave  
where both I2S clock and word select  
are configured as inputs.  
1
I2S_RESOLUTION  
If set the I2S resolution is set to 32 bits.  
If clear, resolution is set to 16 bits. This  
bit only affects the I2S Interface in  
master mode. In slave mode the I2S  
Interface can support any I2S  
compatible resolution. In master mode  
the I2S resolution also depends on the  
DAC mode as the note below explains.  
2
3
I2S_MODE  
I2C_FAST  
If set the I2S is configured in left  
justified mode timing. If clear, the I2S  
interface is configured in normal I2S  
mode timing.  
If set enables the I2C to run in fast  
mode with an I2C clock up to 3.4MHz.  
If clear the I2C speed gets its default  
value of a maximum of 400kHz  
NOTES:  
The master I2S format depends on the DAC mode. In USB mode the number of bits per word is 25 (i.e. 2.4MHz for a 48kHz sample rate). The duty cycle is 40/60.  
In non-USB modes the format is 32 or 16 bits per word, depending on I2S_RESOLTION and the duty cycle is always 50-50. In slave mode it will decode any I2S  
compatible data stream.  
20202027  
I2S Mode Timing  
20202028  
Left Justified Mode Timing  
25  
www.national.com  
must be programmed via the I2C/SPI Interface in bytes as  
follows:  
FIR Compensation Filter  
Configuration Registers  
These registers are used to configure the DAC’s FIR com-  
pensation filter. Three 16 bit coefficients are required and  
COMP_COEFF (10h 15h) (Set = logic 1, Clear = logic 0)  
Address  
10h  
Register  
Description  
COMP_COEFF0_LSB  
COMP_COEFF0_MSB  
COMP_COEFF1_LSB  
COMP_COEFF1_MSB  
COMP_COEFF2_LSB  
COMP_COEFF2_MSB  
Bits [7:0] of the 1st and 5th FIR tap (C0 and C4)  
Bits [15:8] of the 1st and 5th FIR tap (C0 and C4)  
Bits [7:0] of the 2nd and 4th FIR tap (C1 and C3)  
Bits [15:8] of the 2nd and 4th FIR tap (C1 and C3)  
Bits [7:0] of the 3rd FIR tap (C2)  
11h  
12h  
13h  
14h  
15h  
Bits [15:8] of the 3rd FIR tap (C2)  
NOTES:  
The filter must be phase linear to ensure the data keeps the correct stereo imaging so the second half of the FIR filter must be the reverse of the 1st half.  
20202055  
If the CUST_COMP option in register 0Eh is not set the FIR  
filter will use its default values for a linear response from the  
DAC into the analog mixer, these values are:  
DAC_OSR  
00  
C0, C4  
434  
C1, C3  
–2291  
–371  
C2  
26984  
25699  
01, 10, 11  
61  
If using 96 or 192kHz data then the custom compensation  
may be required to obtain flat frequency responses above  
24kHz. The total power of any custom filter must not exceed  
that of the above examples or the filters within the DAC will  
clip. The coefficient must be programmed in 2’s complement.  
www.national.com  
26  
Typical Performance Characteristics  
THD+N vs Frequency  
3V EP Out, RL = 32Ω, PO = 20mW  
THD+N vs Frequency  
3V HP Out, RL = 16Ω, PO = 20mW  
20202064  
20202065  
20202067  
20202070  
THD+N vs Frequency  
3V LS Out, RL = 8Ω, PO = 200mW  
THD+N vs Frequency  
5V EP, RL = 32Ω, PO = 40mW  
20202066  
THD+N vs Frequency  
5V HP Out, RL = 16Ω, PO = 60mW  
THD+N vs Frequency  
5V HP Out, RL = 32Ω, PO = 30mW  
20202069  
27  
www.national.com  
THD+N vs Frequency  
5V LS Out, RL = 8Ω, PO = 500mW  
THD+N vs Output Power  
3V EP Out, RL = 16Ω, f = 1kHz  
20202071  
20202073  
20202077  
20202072  
20202076  
20202019  
THD+N vs Output Power  
3V EP Out, RL = 32Ω, f = 1kHz  
THD+N vs Output Power  
3V HP Out, RL = 16Ω, f = 1kHz  
THD+N vs Output Power  
3V HP Out, RL = 32Ω, f = 1kHz  
THD+N vs Output Power  
3V LS Out, RL = 8Ω, f = 1kHz  
www.national.com  
28  
THD+N vs Output Power  
5V EP Out, RL = 16Ω, f = 1kHz  
THD+N vs Output Power  
5V EP Out, RL = 32Ω, f = 1kHz  
20202078  
20202079  
THD+N vs Output Power  
5V HP Out, RL = 16Ω, f = 1kHz  
THD+N vs Output Power  
5V HP Out, RL = 32Ω, f = 1kHz  
20202080  
20202081  
THD+N vs Output Power  
5V LS Out, RL = 8Ω, f = 1kHz  
THD+N vs I2S Level  
EP Out  
20202083  
20202082  
29  
www.national.com  
THD+N vs I2S Level  
HP Out  
THD+N vs I2S Level  
LS Out  
20202085  
20202084  
20202086  
20202088  
PSRR vs Frequency  
3V EP Out Mode 1  
PSRR vs Frequency  
3V EP Out Mode 4  
20202087  
PSRR vs Frequency  
3V HP Out Mode 2  
PSRR vs Frequency  
3V HP Out Mode 4  
20202089  
www.national.com  
30  
PSRR vs Frequency  
3V LS Out Mode 2  
PSRR vs Frequency  
3V LS Out Mode 4  
20202090  
20202092  
20202094  
20202091  
20202093  
20202095  
PSRR vs Frequency  
5V HP Out Mode 2  
PSRR vs Frequency  
5V HP Out Mode 4  
PSRR vs Frequency  
5V LS Out Mode 4  
PSRR vs Frequency  
5V LS Out Mode 2  
31  
www.national.com  
Output Power vs Supply Voltage  
EP Out , RL = 32Ω, 1% THD+N  
Output Power vs Supply Voltage  
HP Out , RL = 32Ω, 1% THD+N  
20202097  
20202096  
Output Power vs Supply Voltage  
LS Out , RL = 8Ω, 1% THD+N  
20202098  
www.national.com  
32  
Application Information  
I2S  
The LM4937 supports both master and slave I2S transmission at either 16 or 32 bits per word at clock rates up to 3.072MHz (48kHz  
stereo, 32bit). The basic format is shown below:  
20202007  
FIGURE 4.  
MONO ONLY SETTING  
The LM4937 may be restricted to mono amplification only by setting D-6 in Output Control register 0x01h to 1. This may save an  
additional 400μA from IDD  
.
LM4937 DEMOBOARD OPERATION  
BOARD LAYOUT  
Pin 3 — I2S_SDI  
Pin 4 — I2S_WS  
JP20 — Toslink SPDIF Input  
JP21 — Coaxial SPDIF Input  
DIGITAL SUPPLIES  
JP14 — Digital Power DVDD  
JP10 — I/O Power IOVDD  
JP13 — PLL Supply PLLVDD  
JP16 — USB Board Supply BBVDD  
JP15 — I2C VDD  
Coaxial and Toslink inputs may be toggled between by use of  
S25. Only one may be used at a time. Must be used in con-  
junction with on-board SPDIF receiver chip.  
OUTPUTS  
JP5 — BTL Loudspeaker Output  
All supplies may be set independently. All digital ground is  
common. Jumpers may be used to connect all the digital sup-  
plies together.  
JP1 — Left Headphone Output (Single-Ended or OCL)  
JP3 — Right Headphone Output (Single-Ended or OCL)  
P1 — Stereo Headphone Jack (Same as JP1, JP2, Single-  
Ended or OCL)  
S9 – connects VDD_PLL to VDD_D  
S10 – connects VDD_D to VDD_IO  
JP12 — Mono BTL Earpiece Output  
S11 – connects VDD_IO to VDD_I2C  
CONTROL INTERFACE  
S12 – connects VDD_I2C to Analog VDD  
S17 – connects BB_VDD to USB3.3V (from USB board)  
S19 – connects VDD_D to USB3.3V (from USB board)  
S20 – connects VDD_D to SPDIF receiver chip  
X1, X2 – USB Control Bus for I2C/SPI  
X1  
Pin 9 – Mode Select (SPI or I2C)  
ANALOG SUPPLY  
JP11 — Analog Supply  
X2  
S12 — connects Analog VDD with Digital VDD (I2C_VDD)  
S16 — connects Analog Ground with Digital Ground  
S21 — connects Analog VDD to SPDIF receiver chip  
Pin 1 – SDA  
Pin 3 – SCL  
Pin 15 – ADDR/END  
Pin 14 – USB5V  
Pin 16 – USB3.3V  
Pin 16 – USB GND  
INPUTS  
Analog Inputs  
JP2 — Mono Differential Input  
JP6 — Left Input  
MISCELLANEOUS  
I2S BUS SELECT  
JP7 — Right Input  
S23, S24, S26, S27 – I2S Bus select. Toggles between on-  
board and external I2S (whether on-board SPDIF receiver is  
used). All jumpers must be set the same. Jumpers on top two  
Digital Inputs  
JP19 — Digital Interface  
Pin 1 — MCLK  
Pin 2 — I2S_CLK  
33  
www.national.com  
pins selects external bus (JP19). Jumpers on bottom two pins  
selects on-board SPDIF receiver output.  
using the common SPDIF output found on most CD/DVD  
players today. There are some limitations in its useage, as the  
receiver will not work with digital supplies of less than 3V and  
analog supplies of less than 4V. This means low analog sup-  
ply voltage testing of the LM4937 must be done on the exter-  
nal digital bus.  
HEADPHONE OUTPUT CONFIGURATION  
Jumpers S1, S2, S3, and S4 are used to configure the head-  
phone outputs for either cap-coupled outputs or output ca-  
pacitorless (OCL) mode in addition to the register control  
internal to the LM4937 for this feature. Jumpers S1 and S3  
bypass the output DC blocking capacitors when OCL mode  
is required. S2 connects the center amplifer HPCOUT to the  
headphone ring when in OCL mode. S4 connects the center  
ring to GND when cap-coupled mode is desired. S4 must be  
removed for OCL mode to function properly. Jumper settings  
for each mode:  
The choice of using on-board or external digital bus is made  
usign jumpers S23, S24, S26, and S27 as described above.  
S25 selects whether the Toslink or Coaxial SPDIF input is  
used. The top two pins connects the toslink, the bottom two  
connect the coaxial input.  
Power on the digital side is routed through S20 (connecting  
to the other digital supplies), while on the analog side it is  
interrupted by S21. Both jumpers must be in place for the re-  
ceiver to function. The part is already configured for I2S  
standard outputs. Jumper S28 allows the DATA output to be  
pulled either high or low. Default is high (jumper on right two  
pins).  
OCL (CD_6 = 1)  
S1 = ON  
S2 = ON  
S3 = ON  
It may be necessary to quickly toggle S29 to reset the receiver  
and start it working upon initial power up.. A quick short across  
S29 should clear this condition.  
S4 = OFF  
Cap-Coupled (CD_6 = 0)  
S1 = OFF  
S2 = OFF  
LM4937 I2C/SPI INTERFACE SOFTWARE  
S3 = OFF  
Convenient graphical user interface software is available for  
demonstration purposes of the LM4937. It allows for either  
SPI or I2C control via either USB or parallel port connections  
to a Windows computer. Control options include all mode and  
output settings, volume controls, PLL and DAC setup, FIR  
setting and on-the-fly adjustment by an easy to use graphical  
interface. An advanced option is also present to allow direct,  
register-level commands. Software is available from  
www.national.com and is compatible with Windows operating  
systems of Windows 98 or more (with USB support) with the  
latest .NET updates from Microsoft.  
S4 = ON  
PLL FILTER CONFIGURATION  
The LM4937 demo board comes with a simple filter setup by  
connecting jumpers S5 and S6. Removing these and con-  
necting jumpers S7 and S8 will allow for an alternate PLL filter  
configuration to be used at R2 and C23.  
ON-BOARD SPDIF RECEIVER  
The SPDIF receiver present on the LM4937 demo board al-  
lows quick demonstration of the capabilities of the LM4937 by  
www.national.com  
34  
Demonstration Board Schematic  
35  
www.national.com  
www.national.com  
36  
37  
www.national.com  
Revision History  
Rev  
1.0  
1.1  
1.2  
Date  
Description  
Initial release.  
Text edits.  
10/04/06  
10/13/06  
12/15/06  
Changed the datasheet title from RF  
Resistant Topology to RF Suppression.  
1.3  
02/09/07  
Replaced curve (THD+N vs Output Power,  
3V LS Out) with the curve 20166975 from  
LM4934. These 2 curves have identical  
performance).  
www.national.com  
38  
Physical Dimensions inches (millimeters) unless otherwise noted  
36-Bump micro SMD  
Order Number LM4937TL  
NS Package Number TLA36LVA  
X1 = 3255±30μm, X2 = 3510±30μm, X3 = 600±75μm  
39  
www.national.com  
Notes  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2007 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor Europe  
Customer Support Center  
Fax: +49 (0) 180-530-85-86  
National Semiconductor Asia  
Pacific Customer Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Customer Support Center  
Fax: 81-3-5639-7507  
Email:  
new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +49 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LM49370

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier
NSC

LM49370RL

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier
NSC

LM49370RL/NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370RLX

IC SPECIALTY CONSUMER CIRCUIT, PBGA49, 4 X 4 MM, MICRO, SMDXT-49, Consumer IC:Other
NSC

LM49370RLX-NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370RLX/NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370_08

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode
NSC

LM4937RL

IC SPECIALTY CONSUMER CIRCUIT, PBGA36, MICRO, SMD-36, Consumer IC:Other
NSC

LM4937TL

Audio Sub-System with OCL Stereo Headphone Output and RF Suppression
NSC

LM4937TL/NOPB

IC SPECIALTY CONSUMER CIRCUIT, PBGA36, ROHS COMPLIANT, MICRO, SMD-36, Consumer IC:Other
NSC

LM4937TLX

IC,AUDIO AMPLIFIER,SINGLE,BGA,36PIN,PLASTIC
TI

LM4937TLX/NOPB

IC SPECIALTY CONSUMER CIRCUIT, PBGA36, ROHS COMPLIANT, MICRO, SMD-36, Consumer IC:Other
NSC