LMX9820 [NSC]

Bluetooth Serial Port Module; 蓝牙串口模块
LMX9820
型号: LMX9820
厂家: National Semiconductor    National Semiconductor
描述:

Bluetooth Serial Port Module
蓝牙串口模块

蓝牙
文件: 总40页 (文件大小:559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 2004  
LMX9820  
Bluetooth™ Serial Port Module  
The firmware supplied within this device offers a complete  
Bluetooth (v1.1) stack including profiles and command  
interface. This firmware features point-to-point and point-  
to-multipoint link management supporting data rates up to  
the theoretical maximum over RFComm of 704 kbps. The  
internal memory supports up to three active Bluetooth  
links.  
1.0 General Description  
®
The National Semiconductor LMX9820 Bluetooth™ Serial  
Port module is a highly integrated radio, baseband control-  
ler and memory device implemented on an LTCC (Low  
Temperature Co-fired Ceramic) substrate. All hardware  
and firmware is included to provide a complete solution  
from antenna through the complete lower and upper layers  
of the Bluetooth stack, up to the application including the  
Generic Access Profile (GAP), the Service Discovery Appli-  
cation Profile (SDAP), and the Serial Port Profile (SPP).  
The module includes a configurable service database to  
fulfil service requests for additional profiles on the host.  
The LMX9820 features a small form factor (10.1 x 14.0 x  
1.9 mm) design; thus, solving many of the challenges  
associated with system integration. Moreover, the  
LMX9820 is pre-qualified as a Bluetooth Integrated Com-  
ponent. Conformance testing through the Bluetooth qualifi-  
cation program enables a short time to market after system  
integration by insuring a high probability of compliance and  
interoperability.  
1.1 APPLICATIONS  
Personal Digital Assistants  
POS Terminals  
Data Logging Systems  
Based on National’s CompactRISC 16-bit processor  
architecture and Digital Smart Radio technology, the  
LMX9820 is optimized to handle the data and link manage-  
ment processing requirements of a Bluetooth node.  
2.0 Functional Block Diagram  
UART_RX  
UART_TX  
FIRMWARE  
(INCLUDES  
LINK  
MGMNT  
UART  
UART_RTS#  
UART_CTS#  
PROFILES AND  
COMMAND  
PROCESSOR  
(LMP)  
INTERFACE)  
IOVCC  
TX_SWITCH_P  
ENV0  
ENV1  
AUX  
LSTAT_0  
LSTAT_1  
HOST_WU  
RESET_B#  
RESET_5100#  
LNA  
PORTS  
DIGITAL  
SMART  
RADIO  
BASEBAND  
COMPACTRISC™  
CORE  
TR  
SW  
CONTROLLER  
PA  
ISEL1  
ISEL2  
INTERFACE  
SELECT  
FLASH  
RAM  
JTAG  
SYNTHESIZER  
VDD_ANA_OUT  
ANALOG  
DIGITAL  
VOLTAGE  
VDD_DIG_OUT  
REGULATORS  
VDD_DIG_PWR_D#  
CRYSTAL/OSCILLATOR  
VCC  
DIG_GND[1:2]  
CompactRISC is a trademark of National Semiconductor Corporation.  
Bluetooth is a trademark of Bluetooth SIG, Inc. and is used under license by National Semiconductor.  
www.national.com  
© 2004 National Semiconductor Corporation  
On-chip application including:  
3.0 Features  
– Command Interface:  
Bluetooth version 1.1 qualified  
– Link setup and configuration (also Multipoint)  
– Configuration of the module  
– In system programming  
Implemented in CMOS technology on LTCC substrate.  
Temperature Range: -40°C to +85°C  
– Service database modifications  
– Default connections  
– UART Transparent mode  
3.1 DIGITAL HARDWARE  
Baseband and Link Management processors  
CompactRISC Core  
– Different Operation modes:  
– Automatic mode  
– Command mode  
Integrated Memory:  
– Flash  
– RAM  
3.3 DIGITAL SMART RADIO  
Accepts external clock or crystal input:  
– 12 MHz  
UART Command/Data Port:  
– Support for up to 921.6k baud rate  
Auxiliary Host Interface Ports:  
– Link Status  
– 20 ppm cumulative clock error required for Bluetooth  
Synthesizer:  
– Transceiver Status (Tx or Rx)  
– Operating Environment Control:  
– Integrated VCO and loop filter  
– Provides all clocking for radio and baseband func-  
tions  
– Default Bluetooth mode  
– In System Programming (ISP) mode  
Advanced Power Management (APM) features  
Antenna Port (50 Ohms nominal impedance):  
– Embedded front-end filter for enhanced out of band  
performance  
3.2 FIRMWARE  
Integrated transmit/receive switch (full duplex operation  
Complete Bluetooth Stack including:  
– Baseband and Link Manager  
– L2CAP, RFCOMM, SDP  
– Profiles:  
via antenna port)  
Embedded Balun  
Better than -77 dBm input sensitivity  
0 dBm typical output power  
– GAP  
– SDAP  
– SPP  
3.4 PHYSICAL  
Compact size - 10.1mm x 14.0mm x 1.9mm  
Additional Profile support on Host for:  
Complete system interface provided in Land Grid Array  
– Dial Up Networking (DUN)  
– Facsimile Profile (FAX)  
– File Transfer Protocol (FTP)  
– Object Push Profile (OPP)  
– Synchronization Profile (SYNC)  
on underside for surface mount assembly  
Metal shield included  
Figure 1. Physical Illustration  
www.national.com  
2
Table of Contents  
1.0  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
1.1 APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
9.0  
System Power-Up Sequence . . . . . . . . . . . . . . . . . . . 20  
10.0 Integrated Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10.1 FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10.1.1 Operation Modes . . . . . . . . . . . . . . . . . . . . . . 21  
10.1.2 Default Connections . . . . . . . . . . . . . . . . . . . . 21  
10.1.3 Event Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10.1.4 Default Link Policy . . . . . . . . . . . . . . . . . . . . . 21  
11.0 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
11.1 POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . 23  
11.2 ENABLING AND DISABLING UART  
2.0  
3.0  
3.1  
3.2  
3.3  
3.4  
DIGITAL HARDWARE . . . . . . . . . . . . . . . . . . . . . . 2  
FIRMWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
DIGITAL SMART RADIO . . . . . . . . . . . . . . . . . . . . 2  
PHYSICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
4.0  
5.0  
6.0  
Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pad Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . .8  
TRANSPORT  
23  
6.1  
6.2  
6.3  
6.4  
GENERAL SPECIFICATIONS . . . . . . . . . . . . . . . . 8  
DC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . 9  
RF PERFORMANCE CHARACTERISTICS . . . .10  
PERFORMANCE DATA (TYPICAL) . . . . . . . . . . 12  
11.2.1 Hardware Wake up functionality . . . . . . . . . . . 23  
11.2.2 Disabling the UART transport layer . . . . . . . . 23  
11.2.3 LMX9820 enabling the UART interface . . . . . 23  
11.2.4 Enabling the UART transport layer  
7.0  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . 14  
from the host  
23  
7.1  
BASEBAND AND LINK MANAGEMENT  
PROCESSORS  
12.0 Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
12.1 FRAMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
12.1.1 Start and End Delimiter . . . . . . . . . . . . . . . . . . 24  
12.1.2 Packet Type ID . . . . . . . . . . . . . . . . . . . . . . . . 24  
12.1.3 Opcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
12.1.4 Data Length . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
12.1.5 Checksum: . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
12.2 COMMAND SET OVERVIEW . . . . . . . . . . . . . . 25  
13.0 Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
13.1 SCENARIO 1: POINT-TO-POINT  
14  
7.1.1 Bluetooth Lower Link Controller . . . . . . . . . . . . 14  
7.1.2 Bluetooth Upper Layer Stack . . . . . . . . . . . . . .14  
7.1.3 Profile support . . . . . . . . . . . . . . . . . . . . . . . . .14  
7.1.4 Application with command interface . . . . . . . . . 14  
7.2  
7.3  
7.4  
MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
CONTROL AND TRANSPORT PORT . . . . . . . . . 15  
AUXILIARY PORTS . . . . . . . . . . . . . . . . . . . . . . . 15  
7.4.1 Reset_5100 and Reset_b . . . . . . . . . . . . . . . . 15  
7.4.2 Operating Environment Pads  
CONNECTION  
29  
(Env0 and Env1)  
15  
13.2 SCENARIO 2: AUTOMATIC POINT-TO-POINT  
CONNECTION  
13.3 SCENARIO 3: POINT-TO-MULTIPOINT CONNEC-  
7.4.3 Interface Select Inputs (ISEL1, ISEL2) . . . . . .15  
7.4.4 Module and LInk Status Outputs . . . . . . . . . . . 15  
Digital Smart Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
30  
8.0  
TION  
31  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
RADIO RECEIVER . . . . . . . . . . . . . . . . . . . . . . .16  
LOW NOISE AMPLIFIER (LNA) . . . . . . . . . . . . . 16  
RX MIXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
CHANNEL SELECT FILTER . . . . . . . . . . . . . . . .16  
LIMITER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
FM DISCRIMINATOR . . . . . . . . . . . . . . . . . . . . . 16  
RECEIVE SIGNAL STRENGTH INDICATOR  
(RSSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
RADIO TRANSMITTER . . . . . . . . . . . . . . . . . . . .16  
MODULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
14.0 Application Information . . . . . . . . . . . . . . . . . . . . . . . 32  
14.1 MATCHING NETWORK . . . . . . . . . . . . . . . . . . . 32  
14.2 FILTERED POWER SUPPLY . . . . . . . . . . . . . . . 32  
14.3 HOST INTERFACE . . . . . . . . . . . . . . . . . . . . . . 32  
14.4 CLOCK INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
14.5 SCHEMATIC AND LAYOUT EXAMPLES . . . . . 32  
15.0 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
16.0 Datasheet Revision History . . . . . . . . . . . . . . . . . . . . 38  
17.0 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8.8  
8.9  
8.10 TRANSMIT FREQUENCY OUTPUT . . . . . . . . . . 16  
8.11 FREQUENCY SYNTHESIZERS . . . . . . . . . . . . . 16  
8.12 CRYSTAL CIRCUIT . . . . . . . . . . . . . . . . . . . . . . . 16  
8.13 EXTERNAL CRYSTAL OSCILLATORS . . . . . . . 16  
8.13.1 Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
8.13.2 TCXO (Temperature Compensated Crystal  
Oscillator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision 1.0  
3
www.national.com  
4.0 Connection Diagram  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
PI1_  
Tx_rx_  
Tx_rx_  
synch  
CCB_  
Clock  
BBCLK PI2_TP12  
RF_CE_TP11 clock  
RF GND RF GND RF GND RF GND RF GND RF GND  
RF GND RF GND RF GND RF GND RF GND RF GND  
Clk-  
Clk+  
AAI_srd  
Env1  
AAI_std  
32kHz_CLKI  
Tx_rx_  
data  
Uart_rx  
Uart_rts#  
AAI_sfs  
AAI_sclk 32kHz_CLKO  
RF GND RF GND RF GND RF GND RF GND RF GND CCB_data Uart_tx Uart_cts#  
Reset_ Dig_gnd_1  
5100#  
NC  
NC  
RF GND RF GND RF GND RF GND RF GND RF GND  
RF GND RF GND RF GND RF GND RF GND RF GND  
Lstat_0  
Lstat_1  
Env0  
Host_wu  
J_tms  
J_rdy  
J_tdi  
J_tck  
USB_D+ USB_D-  
J_tdo  
USB_VCC PH3_TP9  
G
H
J
RF GND RF GND RF GND RF GND RF GND  
NC  
Reset_b#  
Dig_gnd_2 USB_Gnd PH2_TP8  
VCC  
TX_  
NC  
RF GND RF GND RF GND RF_inout RF GND RF GND RF GND  
IOVCC  
ISEL2  
ISEL1  
Switch_P  
NC  
VDD_ANA_OUT  
VDD_DIG_OUT NC  
VDD_DIG_PWR_D#  
NC  
NC  
NC  
NC  
CCB_  
latch  
NC  
X-Ray (Top View)  
Figure 2. Connection Diagram LMX9820  
Table 1. Order Information  
Order Number  
LMX9820SB  
Shipment Method  
Tray  
LMX9820SBX  
Tape & Reel  
www.national.com  
4
5.0 Pad Descriptions  
Table 2. System Interface Signals  
Pad Name  
Pad  
Direction  
Description  
Location  
Clk-  
B8  
Input  
Input  
Xtal g or Negative Clock Input. Typically connected along with  
XTAL_D to an external surface mount AT cut crystal. Can also be con-  
figured as a frequency input when using an external crystal oscillator.  
When configured as a frequency input, typically connected to Ground  
with a 10 pF capacitor.  
Clk+  
B9  
Xtal d or Positive Clock Input. Typically connected along with  
XTAL_G to an external surface mount AT cut crystal. Can also be con-  
figured as a frequency input when using an external crystal oscillator.  
When configured as a frequency input, is typically connected to an ex-  
ternal Temperature Compensated Crystal Oscillator (TCXO) through  
an Alternating Current (AC) coupling capacitor.  
32kHz_CLKI  
32kHz_CLKO  
RF_inout  
B13  
C13  
H8  
Input  
Output  
32 kHz Clock input. Not supported. Place pad and do not connect to  
VCC or Ground.  
32 kHz Clock Output. Not supported. Place pad and do not connect to  
VCC or Ground.  
Input/Output  
RF Antenna Port. 50nominal impedance. Typically connected to an  
antenna through a 6.8pF capacitor.  
ISEL2  
ISEL1  
H13  
J13  
Input  
Input  
Module Interface Select Input Bit 1.  
Module Interface Select Input Bit 0.  
Table 3. USB Interface Signals (Not supported by lmx9820 firmware)  
Pad Name  
Pad  
Location  
Direction  
Description  
1
USB_VCC  
USB_D+  
USB_D-  
F12  
E11  
E12  
G12  
Input  
USB Transceiver Power Supply +  
1
Input/Output  
Input/Output  
Input  
USB Data Positive  
1
USB Data Negative  
1
USB_Gnd  
USB Transceiver Ground  
1. Treat as No Connect, Pad required for mechanical stability.  
Table 4. UART Interface Signals  
Pad Name  
Pad  
Location  
Direction  
Description  
Uart_tx  
D9  
C9  
Output  
Input  
UART Host Control Interface Transport, Transmit Data.  
UART Host Control Interface Transport, Receive Data.  
UART Host Control Interface Transport, Request to Send.  
UART Host Control Interface Transport, Clear to Send.  
Uart_rx  
Uart_rts#  
Uart_cts#  
C10  
D10  
Output  
Input  
Revision 1.0  
5
www.national.com  
5.0 Pad Descriptions (Continued)  
Table 5. Auxiliary Ports Interface Signals  
Pad Name  
Pad  
Location  
Direction  
Description  
IOVCC  
H12  
G8  
Input  
Input  
Input  
2.85V to 3.6V Logic Threshold Program Input.  
Reset_b#  
Reset_5100#  
Reset Input for Smart Radio. Normally connected to Reset_5100.  
D11  
Reset for Baseband and Link Management Processors. Active  
low.  
Lstat_0  
Lstat_1  
Host_wu  
Env0  
E8  
F8  
Output  
Output  
Output  
Input  
Link Status Bit 0.  
Link Status Bit 1.  
F9  
Host Wakeup  
E9  
Module Operating Environment Bit 0.  
Module Operating Environment Bit 1.  
Transceiver Status, 0 = Receive; 1 = Transmit.  
Env1  
B11  
H3  
Input  
TX_Switch_P  
Output  
Table 6. Audio Port Interface Signals (not supported by LMX9820 Firmware)  
Pad Name  
Pad  
Location  
Direction  
Description  
1
AAI_srd  
AAI_std  
AAI_sfs  
AAI_sclk  
B10  
B12  
C11  
C12  
Input  
Advanced Audio Interface Receive Data Input.  
1
Output  
Advanced Audio Interface Transmit Data Output.  
1
Input/Output  
Input/Output  
Advanced Audio Interface Frame Synchronization.  
1
Advanced Audio Interface Clock.  
1. Treat as No Connect, Pad required for mechanical stability.  
Table 7. Test Interface Signals  
Pad Name  
Pad  
Direction  
Description  
Location  
1
J_rdy  
J_tdi  
E10  
F10  
F11  
G9  
Output  
Input  
JTAG Ready.  
1
1
JTAG Test Data.  
J_tdo  
J_tms  
J_tck  
Input/Output  
Input/Output  
Input  
JTAG Test Data.  
1
JTAG Test Mode Select.  
1
G10  
A8  
JTAG Test Clock.  
1
PI1_RFCE_TP1  
1
Testpin  
Module Test Point.  
1
PI2_TP12  
Tx_rx_clock  
Tx_rx_data  
Tx_rx_synch  
CCB_Clock  
CCB_data  
CCB_latch  
BBCLK  
A13  
A9  
Testpin  
Testpin  
Testpin  
Testpin  
Testpin  
Testpin  
Testpin  
Testpin  
Module Test Point.  
1
Module Test Point.  
1
C8  
Module Test Point.  
1
A10  
A11  
D8  
Module Test Point.  
1
Module Test Point.  
1
Module Test Point.  
1
J12  
A12  
Module Test Point.  
1
Module Test Point.  
www.national.com  
6
5.0 Pad Descriptions (Continued)  
Table 7. Test Interface Signals (Continued)  
Pad Name  
Pad  
Location  
Direction  
Description  
1
1
PH3_TP9  
PH2_TP8  
F13  
G13  
Testpin  
Testpin  
Module Test Point.  
Module Test Point.  
1. Treat as No Connect, Pad required for mechanical stability.  
Table 8. Power, Ground, and No Connect Signals  
Pad Name  
Pad  
Direction  
Description  
Location  
NC  
A1, A2, A3, A4, A5,  
A6, A7, B1, C1, D1,  
D13, E1, E13, F1,  
G1, G7, H1, H4, J1,  
J3, J6, J7, J9, J10,  
J11  
not  
No Connect. Must have pad for mechanical stability.  
connected  
Input  
1
B2, B3, B4, B5, B6,  
B7, C2, C3, C4, C5,  
C6, C7, D2, D3, D4,  
D5, D6, D7, E2, E3,  
E4, E5, E6, E7, F2,  
F3, F4, F5, F6, F7,  
G2, G3, G4, G5,  
G6, H5, H6, H7, H9,  
H10, H11  
Radio System Ground. Must be connected to RF Ground  
plane. Thermal relief required for proper soldering.  
RF GND  
1
D12  
G11  
H2  
Input  
Input  
Input  
Digital Ground.  
Digital Ground.  
Dig_gnd_1  
1
Dig_gnd_2  
VCC  
2.85V to 3.6V Input for the Internal Power Supply Reg-  
ulators.  
VDD_ANA_OUT  
VDD_DIG_OUT  
J2  
J5  
J4  
Output  
Output  
Input  
Voltage Regulator Output/Power Supply for Analog  
Circuitry. If not used, place pad and do not connect to VCC  
or Ground.  
Voltage Regulator Output/Power Supply for Digital Cir-  
cuitry. If not used, place pad and do not connect to VCC or  
Ground.  
VDD_DIG_PWR  
_D#  
Power Down for the Internal Power Supply Regulator  
for the Digital Circuitry. Place pad and do not connect to  
VCC or Ground.  
1. Connect RF GND, Dig_gnd_1, and Dig_gnd_2 to single Ground plane.  
Revision 1.0  
7
www.national.com  
The following conditions are true unless otherwise stated in  
the tables below:  
6.0 Electrical Specifications  
6.1 GENERAL SPECIFICATIONS  
T = -40°C to +85°C  
A
Absolute Maximum Ratings (see Table 9) indicate limits  
beyond which damage to the device may occur. Operating  
Ratings (see Table 10) indicate conditions for which the  
device is intended to be functional.  
VCC = 3.3V  
RF system performance specifications are guaranteed  
on National Semiconductor Austin Board rev1.0b refer-  
ence design platform.  
This device is a high performance RF integrated circuit and  
is ESD sensitive. Handling and assembly of this device  
should be performed at ESD free workstations.  
Table 9. Absolute Maximum Ratings  
Min  
Symbol  
VCC  
Parameter  
Max  
Unit  
Core Logic Power Supply Voltage  
I/O Power Supply Voltage  
2.25  
2.25  
2.97  
3.6  
V
V
V
IOVCC  
3.6  
1
USB Power Supply Voltage  
3.63  
USB_VCC  
V
Voltage on any pad with GND = 0V  
-0.5  
VCC + 0.5  
V
I
PinRF  
RF Input Power  
+15  
dBm  
o
T
T
Storage Temperature Range  
-65  
+150  
S
L
C
o
Lead Temperature (solder 4 sec)  
+260  
C
ESD-HBM  
ESD-MM  
ESD - Human Body Model  
ESD - Machine Model  
2000  
200  
V
V
1. USB Interface not supported by LMX9820 firmware. Treat as no connect, place pad for mechanical stability.  
1
Table 10. Recommended Operating Conditions  
2
Symbol  
Parameter  
Min  
Max  
Unit  
Typ  
3.3  
3.3  
3.3  
VCC  
Module Power Supply Voltage  
I/O Power Supply Voltage  
USB Power Supply Voltage  
2.85  
2.85  
2.97  
3.6  
3.6  
V
V
V
IOVCC  
3
3.63  
USB_VCC  
t
Module Power Supply Rise Time  
Operating Temperature Range  
50  
+85  
90  
ms  
°C  
%
R
T
-40  
10  
O
HUM  
Humidity (operating, across operating  
temperature range)  
OP  
o
HUM  
5
95  
%
NONOP Humidity (non-operating, 38.7 C web bulb  
temperature)  
1. Maximum voltage difference allowed between VCC and IOVCC is 500 mV.  
2. Typical operating conditions are at 3.3V operating voltage and 25°C ambient temperature.  
3. USB Interface not supported by LMX9820 firmware. Treat as no connect, place pad for mechanical stability.  
Table 11. Power Supply Electrical Specifications: Analog and Digital LDOs  
1
Symbol  
Parameter  
Min  
2.20  
2.40  
Max  
2.75  
2.75  
Unit  
Typ  
2
VDD_ANA_OUT  
VDD_DIG_OUT  
2.54  
V
V
Analog Voltage Output Range  
3
2.60  
Digital Voltage Output Range  
o
1. Typical operating conditions are at 3.3V operating voltage and 25 C ambient temperature.  
2. Set in factory at 2.5V nominal output.  
3. Set in factory at 2.6V nominal output.  
www.national.com  
8
6.0 Electrical Specifications (Continued)  
NOTE: The voltage regulators are optimized for the internal  
operation of the LMX9820. As any noise or coupling into  
those can have influence on the radio performance, it is  
highly recommended to have no additional load on those  
outputs.  
1,2,3  
Table 12. Power Supply Requirements  
Min  
Symbol  
Parameter  
Typ  
Max  
Unit  
I
I
I
I
I
I
I
Power supply current for continous transmit  
Power supply current for continous receive  
56  
80  
mA  
CC-TX  
CC-RX  
RXSL  
RXM  
62  
33  
78  
mA  
mA  
mA  
mA  
mA  
mA  
4
Receive Data in SPP Link, Slave  
4
27  
Receive Data in SPP Link, Master  
4
12.3  
7
SnM  
Sniff Mode, Sniffintervall 1 second  
4
SC-TLDIS  
Idle  
Scanning, No Active Link, TL Disabled  
4
5.7  
Idle, Scanning Disabled, TL Disabled  
1. Power supply requirements based on Class II output power.  
2. VCC = 3.0V, IOVCC = 3.3V, Ambient Temperature = +25 °C.  
3. Based on UART Baudrate 115.2kbit/s.  
4. Average values  
6.2 DC CHARACTERISTICS  
Table 13. Digital DC Characteristics  
Condition  
Symbol  
VCC  
Parameter  
Min  
Max  
3.6  
Units  
Core Logic Supply Voltage  
IO Supply Voltage  
Logical 1 Input Voltage  
2.85  
2.85  
V
V
V
IOVCC  
3.6  
V
V
0.7*IOVCC  
IOVCC + 0.5  
0.2*IOVCC  
0.3*IOVCC  
IH  
IL  
Logical 0 Input Voltage  
-0.5  
-0.5  
V
V
1
32.768kHz Logical 0 Input Voltage  
32.768kHz Logical 1 Input Voltage  
External 32.768kHz clock  
External 32.768kHz clock  
V
XL2  
1
0.7*IOVCC  
IOVCC + 0.5  
V
V
V
XH2  
2
0.1*IOVCC  
-1.6  
V
HYS  
Hysteresis Loop Width  
I
I
I
I
Logical 1 Output Current  
Logical 0 Output Current  
Weak Pull-up Current  
V
= 1.8V,  
OH  
mA  
OH  
IOVCC = 2.25V  
V
= 0.45V,  
1.6  
-10  
mA  
µA  
OL  
OL  
IOVCC = 2.25V  
V
= 1.8V,  
OHW  
IH  
OH  
IOVCC = 2.25V  
High-level Input Current  
Low-level Input Current  
V
V
= IOVCC = 2.85V  
= 0  
- 1.0  
- 1.0  
1.0  
1.0  
µA  
µA  
IH  
IL  
3
I
I
IL  
High Impedance Input Leakage  
Current  
0V V IOVCC  
-2.0  
-2.0  
2.0  
2.0  
µA  
µA  
L
IN  
I
Output Leakage Current (I/O pins in  
input mode)  
0V V  
VCC  
OUT  
O(Off)  
1. Not supported, please place pad and leave unconnected.  
2. Guaranteed by design.  
3. Limit for I for the pins Reset_b#, Pl1_RFCE_TP & VDD_DIG_PWR_D# is +/-3uA.  
IL  
Revision 1.0  
9
www.national.com  
6.0 Electrical Specifications (Continued)  
6.3 RF PERFORMANCE CHARACTERISTICS  
All tests are measured at antenna port unless otherwise  
specified  
In the performance characteristics tables the following  
applies:  
T = -40°C to +85°C  
A
VCC = 3.3V unless otherwise specified  
All tests performed are based on Bluetooth Test Specifi-  
cation rev 0.91.  
RF system performance specifications are guaranteed  
on National Semiconductor Austin Board rev1.0b refer-  
ence design platform.  
Table 14. Receiver Performance Characteristics  
1
Symbol  
Parameter  
Condition  
Min  
Max  
Unit  
Typ  
2
Receive Sensitivity  
BER < 0.001  
2.402 GHz  
2.441 GHz  
2.480 GHz  
-77  
-77  
-77  
0
-74  
-74  
-74  
dBm  
dBm  
dBm  
dBm  
dB  
RX  
sense  
PinRF  
Maximum Input Level  
-20  
C/I  
Carrier to Interferer Ratio  
in the Presence of Co-  
channel Interferer  
P RF = -60 dBm,  
9
11  
0
CCI  
in  
BER < 0.001  
C/I  
Carrier to Interferer Ratio  
in the Presence of Adja-  
cent Channel Interferer  
F  
= + 1 MHz,  
-3  
dB  
dB  
dB  
dB  
ACI  
ACI  
P RF = -60 dBm,  
in  
BER < 0.001  
F  
= + 2 MHz.  
-42  
-46  
-20  
-30  
-40  
ACI  
P RF = -60 dBm,  
in  
BER < 0.001  
F  
= + 3 MHz,  
ACI  
P RF = -67 dBm,  
in  
BER < 0.001  
C/I  
C/I  
Image Frequency  
Interference  
F= - 2 MHz,  
-9  
IMAGE  
P RF = -67 dBm,  
in  
BER < 0.001  
-
Image Frequency  
Interference  
f = -3 MHz,  
PinRF = -67 dBm,  
BER < 0.001  
-32  
-31  
-20  
dB  
IMAGE  
1MHz  
3
Intermodulation  
Interference Performance  
F = + 3 MHz,  
-39  
dBm  
IMP  
1
F = + 6 MHz,  
2
P RF = -64 dBm  
in  
4
Input Impedance of RF  
Port (RF_inout)  
Single input impedance  
= 2.5 GHz  
50  
Z
RFIN  
F
in  
5
Return Loss  
-8  
dB  
Return Loss  
OOB  
Out Of Band Blocking  
Performance  
P RF = -10 dBm,  
-10  
-27  
-27  
-10  
dBm  
in  
30 MHz < F  
BER < 0.00  
< 2 GHz,  
CWI  
P RF = -27 dBm,  
dBm  
dBm  
dBm  
in  
2000 MHz < F  
BER < 0.001  
< 2399 MHz,  
< 3000 MHz,  
< 12.75 GHz,  
CWI  
OOB  
Out Of Band Blocking  
Performance  
(Continued)  
P RF = -27 dBm,  
in  
2498 MHz < F  
BER < 0.001  
CWI  
P RF = -10 dBm,  
in  
3000 MHz < F  
BER < 0.001  
CWI  
1. Typical operating conditions are at 3.3V operating voltage and 25°C ambient temperature.  
2. The receiver sensitivity is measured at the device interface.  
3. The f =-64dBm Bluetooth modulated signal, f =-39dBm sine wave, f =-39dBm Bluetooth modulated signal, f =2f -f ,  
0
1
2
0
1 2  
and |f -f |=n*1MHz, where n is 3,4 or 5. For the typical case, n = 3.  
2
1
4. Reference Smith Chart Figure 8 on page 13.  
5. Reference chart Figure 9 on page 14.  
www.national.com  
10  
6.0 Electrical Specifications (Continued)  
Table 15. Transmitter Performance Characteristics  
1
Symbol  
Parameter  
Condition  
2.402 GHz  
Min  
Max  
Unit  
Typ  
+1  
+1  
+1  
1
2
Transmit Output Power  
-3  
-3  
+4  
+4  
+4  
2
dBm  
dBm  
dBm  
dBm  
kHz  
P
RF  
OUT  
2.441 GHz  
2.480 GHz  
-3  
Power Density  
Power Density  
-4  
MOD F1  
Modulation Characteris-  
tics  
Data = 00001111  
Data = 10101010  
140  
165  
175  
AVG  
3
Modulation Characteris-  
tics  
115  
0.8  
125  
kHz  
MOD F2  
MAX  
4
Modulation Characteris-  
tics  
F2  
F1  
AVG  
5
AVG  
/
Adjacent Channel Power  
(In-band Spurious)  
+ 500 kHz  
-20  
-20  
-40  
dBc  
dBm  
dBm  
dB  
ACP  
| M - N | = 2  
-50  
-53  
-48  
-51  
-77  
| M - N | > 3  
6
nd  
Maximum gain setting:  
P
P
2*f  
PA 2 Harmonic  
OUT  
OUT  
o
f = 2402 MHz,  
0
Suppression  
P
= 4804 MHz  
out  
3
rd  
Maximum gain setting:  
f = 2402 MHz,  
-98  
50  
dB  
3*f  
PA 3 Harmonic  
o
Suppression  
0
P
= 7206 MHz  
out  
7
RF Output Impedance/In-  
put Impedance of RF Port  
(RF_inout)  
P
@ 2.5 GHz  
Z
out  
RFOUT  
8
Return Loss  
-8  
dB  
Return Loss  
o
1. Typical operating conditions are at 3.3V operating voltage and 25 C ambient temperature.  
2. The output power is measured at the antenna port, including all front end losses for balun, TX/RX switch and filter.  
3. F2max > 115 kHz for at least 99.9% of all f2max.  
4. Modulation index set between 0.28 and 0.35.  
5. Not tested in production.  
6. Out-of-Band spurs only exist at 2nd and 3rd harmonics of the CW frequency for each channel. Performance of the  
radio is significantly better than BT 1.1 specification.  
7. Reference Smith chart Figure 8 on page 13.  
8. Reference chart Figure 9 on page 14.  
1
Table 16. Synthesizer Performance Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
f
t
VCO Frequency Range  
2402  
2480  
MHz  
VCO  
Lock Time  
f + 20 kHz  
120  
0
µs  
LOCK  
0
f offset  
Initial Carrier Frequency Tolerance During preamble  
-75  
75  
kHz  
0
f drift  
Initial Carrier Frequency Drift  
DH1 data packet  
DH3 data packet  
DH5 data packet  
Drift Rate  
-25  
-40  
-40  
-20  
0
0
0
0
4
25  
40  
40  
20  
kHz  
kHz  
0
kHz  
kHz/50µs  
µs  
t -Tx  
Transmitter Delay Time  
From Tx data to anten-  
na  
D
1. Frequency accuracy dependent on crystal or oscillator chosen. Crystal/oscillator must have cumulative accuracy  
specifications of not more than +20 ppm to meet the Bluetooth specification.  
Revision 1.0  
11  
www.national.com  
6.0 Electrical Specifications (Continued)  
Table 17. Crystal/Oscillator Performance Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
f
f
Crystal Oscillator Frequency  
12  
MHz  
OSC  
1
Frequency Accuracy  
Cumulative over operating  
temperature range  
-20  
+20  
ppm  
ACC  
t
Oscillator Turn-On Time  
VCC applied, f  
= 12 MHz,  
OSC  
4
ms  
OSC-ON  
C
= 0.1 µF, settled to within  
ext  
f
ACC  
V
Oscillator Input Voltage  
External XO input  
0.6  
49  
2.0  
Vpp  
OSC  
ESR  
Equivalent Series Resis-  
tance  
50  
100  
D
Duty Cycle  
51  
%
CYCLE  
P
Phase Noise  
100Hz  
-105  
dBc/H  
z
NOISE  
1000Hz  
-125  
dBc/H  
z
BBCLK  
Baseband Clock Output  
Frequency  
12  
MHz  
1. Frequency accuracy dependent on crystal or oscillator chosen. Crystal/oscillator must have cumulative accuracy  
specifications of +15 ppm to provide margin for frequency drift with ageing and temperature.  
6.4 PERFORMANCE DATA (TYPICAL)  
Figure 5. Corresponding Eye Diagram  
Figure 3. Modulation  
Figure 6. Synthesizer Phase Noise  
Figure 4. Transmit Spectrum  
www.national.com  
12  
6.0 Electrical Specifications (Continued)  
Filter Insertion Loss  
0
-2  
-4  
IL(dB)  
-6  
-8  
-10
2.1E+09 2.2E+09 2.3E+09 2.4E+09 2.5E+09 2.6E+09 2.7E+09 2.8E+09  
Frequency (Hz)  
Figure 7. Front-End Bandpass Filter Response  
1.00  
2.00  
0.50  
m1  
0.00  
0.50  
2.00  
m2  
1.00  
m2  
freq=2.402ghz  
-0.50  
S(1.1)=0.093/-29.733  
-2.00  
impedance = Z0* (1.170 - j0.109)  
-1.00  
freq(2.400ghz to 2.500ghz)  
m1  
freq=2.500ghz  
S(1.1)=0.035/175.614  
impedance = Z0* (0.933 + j0.005)  
Figure 8. TX and RX Pin 50Impedance Characteristics  
Revision 1.0  
13  
www.national.com  
0.0  
-0.6  
-1.6  
-2.6  
-3.6  
-4.6  
-5.6  
-6.6  
-7.6  
-8.6  
-9.6  
m4  
freq=2.402GHz  
dB(S(1.1))=-8.282  
m4  
m5  
m3  
freq=2.483GHz  
dB(S(1.1))=-9.227  
freq=2.441GHz  
dB(S(1.1))=-9.313  
m5  
m3  
freq. ghz  
Figure 9. Transceiver Return Loss  
7.1.3 Profile support  
7.0 Functional Description  
The on-chip application of the LMX9820 allows full stand-  
alone operation, without any Bluetooth protocol layer nec-  
essary outside the module. It supports the Generic Access  
Profile (GAP), the Service Discovery Application Profile  
(SDAP), and the Serial Port Profile (SPP).  
7.1 BASEBAND AND LINK MANAGEMENT  
PROCESSORS  
Baseband and Lower Link control functions are imple-  
mented using a combination of National Semiconductor’s  
CompactRISC 16-bit processor and the Bluetooth Lower  
Link Controller. These processors operate from integrated  
Flash memory and RAM and execute on-board firmware  
implementing all Bluetooth functions.  
The on-chip profiles can be used as interfaces to additional  
profiles executed on the host. The LMX9820 includes a  
configurable service database to answer requests with the  
profiles supported.  
7.1.4 Application with command interface  
7.1.1 Bluetooth Lower Link Controller  
The module supports automatic slave operation eliminating  
the need for an external control unit. The implemented  
transparent option enables the chip to handle incoming  
data raw, without the need for packaging in a special for-  
mat. The device uses a fixed pin to block unallowed con-  
nections.  
The integrated Bluetooth Lower Link Controller (LLC) com-  
plies with the Bluetooth Specification version 1.1 and  
implements the following functions:  
Support for 1, 3, and 5 slot packet types  
79 Channel hop frequency generation circuitry  
Fast frequency hopping at 1600 hops per second  
Power management control  
Acting as master, the application offers a simple but versa-  
tile command interface for standard Bluetooth operation  
like inquiry, service discovery, or serial port connection.  
The firmware supports up to three slaves. Default Link Pol-  
icy settings and a specific master mode allow optimized  
configuration for the application specific requirements. See  
also Section "Integrated Firmware" on page 21.  
Access code correlation and slot timing recovery  
7.1.2 Bluetooth Upper Layer Stack  
The integrated upper layer stack is prequalified and  
includes the following protocol layers:  
7.2 MEMORY  
L2CAP  
RFComm  
SDP  
The LMX9820 includes 256kB of programmable Flash  
memory that can be used for code and constant data. It  
allows single cycle read access from the CPU. In addition  
www.national.com  
14  
to storing all algorithms and firmware, the on-board Flash  
also contains the IEEE 802 compliant Media Access Con-  
troller (MAC) address (BDADDR). The firmware and the  
BDADDR are programmed by National Semiconductor or  
can be programmed by the customer either before assem-  
bly into the host system or in system. Module firmware can  
be updated as well during manufacturing or by the con-  
sumer using the ISP capabilities of the LMX9820. The  
LMX9820 firmware uses the internal RAM for buffers and  
program variables.  
9.6kbit/s. Default configuration in NVS is 1 Stopbit, 1 Start-  
bit and No parity.  
Table 19 provides the ISEL1 and ISEL2 selection settings.  
Table 19. UART Speed Selection  
ISEL1  
ISEL2  
Interface  
UART  
Settings  
(Pad J13) (Pad H13) Speed (baud)  
1
0
1
1
1
0
921.6k  
115.2k  
9.6k  
Check NVS  
Check NVS  
7.3 CONTROL AND TRANSPORT PORT  
1Stop, 1Start,  
No Parity  
The LMX9820 provides one Universal Asynchronous  
Receiver Transmitter (UART). It supports 8-bit data formats  
with or without parity and one or two stop bits. The baud  
rate is generated by hardware that is programmed at boot  
time. Alternatively, the speed and configuration settings  
can be read out of internal memory settings. The UART  
can operate at baud rates of 2.4k, 4.8k, 7.2k, 9.6k, 19.2k,  
38.4k, 57.6k, 115.2k, 230.4k, 460.8k and 921.6k. It imple-  
ments flow control logic (RTS, CTS) to provide hardware  
handshaking capability. The UART offers wakeup from the  
power save modes via the multi-input wakeup module.  
UART logic thresholds are set via the IOVCC pin.  
0
0
Check NVS  
Check NVS  
7.4.4 Module and LInk Status Outputs  
The LMX9820 provides signals that the host can use to  
determine the real-time status of the radio link. The  
TX_Switch_P signal (pad H3) is a real-time indication of  
the current configuration (direction) of the transceiver. The  
link status lines (Lstat_0 and Lstat_1, pads E8 and F8,  
respectively) are GPIO lines controlled by the LMX9820  
firmware. The Host Wakeup line (Host_wu, pad F9) is  
implemented using GPIO and firmware. It is used to bring  
the host processor out of Sleep mode when link activity  
calls for host processing. Host_wu can also be used by the  
host to check if link activity is present. If Host_wu is active,  
then link activity is present and the host loses network  
awareness if the operating system continues to allow the  
host processor to enter the Sleep mode. Table 20 presents  
the definitions of the various module and link status out-  
puts.  
7.4 AUXILIARY PORTS  
7.4.1 Reset_5100 and Reset_b  
Reset_5100 and Reset_b are active low reset inputs for the  
baseband controller and digital smart radio portions of the  
LMX9820, respectively. These pins are normally tied  
together and are connected to the host system so that the  
host can initialize the LMX9820 by asserting the reset  
inputs. Upon removal, the status of the module operating  
environment (Env) pads are sampled and the LMX9820  
enters the corresponding operational mode.  
Table 20. Module / Link Status Definitions  
Mode  
7.4.2 Operating Environment Pads (Env0 and Env1)  
The module provides two operating environments (see  
Table 18) depending on the state of the Env pads after the  
removal of the reset inputs. At power up of the module,  
Env0 and Env1 are checked to determine which operating  
environment straps are selected and operating.  
x
1
x
x
At least 1 SPP link es-  
tablished  
The ISP mode allows end-of-line or field programming of  
the LMX9820 Flash memory by starting the baseband con-  
troller from the boot block of memory.  
x
x
x
x
x
0
x
x
x
x
x
1
0
x
x
x
x
x
0
1
No SPP link  
Transceiver = Transmit  
Transceiver = Receive  
Host can Sleep  
Table 18. Operating Environments  
Operating Environment  
Env1  
(Pad B11)  
Env0  
(Pad E9)  
Wakeup host/host  
shouldn’t Sleep  
ISP Mode  
1
1
0
1
Run (Normal) Mode (De-  
fault)  
7.4.3 Interface Select Inputs (ISEL1, ISEL2)  
The interface selection pads are used for setting the UART  
speed and settings. As ISEL1 and ISEL2 are set by internal  
weak-pull-ups, the default baudrate is 921.6kbit/s. The set-  
tings for Stopbits, Startbit and Parity are stored as internal  
NVS parameter. If a baudrate different to the listed needs  
to be used, ISEL 1 and ISEL2 have to be set to 0. This  
forces the device to get also the UART speed from the  
parameter table. The default baudrate value set in NVS is  
Revision 1.0  
15  
www.national.com  
8.8 RADIO TRANSMITTER  
8.0 Digital Smart Radio  
The signal path of the TX architecture contains an internal  
modulator for 1 Mb/s GFSK (Gaussian Frequency Shift  
Keying) modulation of the 2.5 GHz VCO. Closed loop ∆Σ  
modulation is chosen since it is the most low power solu-  
tion. The integrated pre-amplifier provides output levels  
sufficient for Class 2 Bluetooth operation.  
The LMX9820 Digital Smart Radio includes a high perfor-  
mance, monolithic, radio transceiver optimized for Blue-  
tooth communications systems.  
The radio transceiver is a highly integrated design and  
includes the Low Noise Amplifier (LNA), mixer, on-chip fil-  
ters, 2.5 GHz ∆Σ PLL, voltage controlled oscillator, Power  
Amplifier (PA) driver, and modem functions. Digital modula-  
tion and demodulation techniques are utilized for a robust  
manufacturable design. Power management includes con-  
trol over individual chip functions and internal voltage regu-  
lation for optimum performance.  
8.9 MODULATOR  
An internal digital Gaussian filter provides the FSK modula-  
tion waveform. A modulation input to the completely inte-  
grated 2.5 GHz ∆Σ PLL provides a consistent modulation  
deviation. This eliminates the risks of open loop modulation  
such as frequency drift and frequency offset.  
8.1 RADIO RECEIVER  
The signal path of the RX architecture contains an internal  
LNA and quadrature RF downconverting mixer at 2.5 GHz.  
A low Intermediate Frequency (IF) receiver provides high  
performance at low cost and low current consumption. The  
IF demodulator is implemented digitally in combination with  
a limiting amplifier.  
8.10 TRANSMIT FREQUENCY OUTPUT  
The transmit RF output is differential, and is connected to  
the antenna through an integrated passive balun.  
8.11 FREQUENCY SYNTHESIZERS  
The 2.4 to 2.5GHz RF range is provided by an on-chip volt-  
age controlled oscillator (VCO). A programmable 2.5 GHz  
∆Σ PLL selects the channel frequency. An internal crystal  
oscillator can be configured with 12MHz crystal, or for  
TCXO frequency input. Internal dividers provide internal  
clocks and clock outputs to the baseband controller.  
8.2 LOW NOISE AMPLIFIER (LNA)  
The on-board LNA is a single-ended structure designed  
with a 50input impedance for simple capacitive match-  
ing. The LNA is closely integrated with the mixer providing  
low noise and good immunity from blocking signals.  
8.12 CRYSTAL CIRCUIT  
8.3 RX MIXER  
Due to the need for clock accuracy, the LMX9820 has a  
dedicated crystal oscillator. The LMX9820 uses the crystal  
to supply a 12 MHz clock source to the baseband control-  
ler. The 12 MHz is buffered, providing a receive data clock  
to the baseband controller. It is also possible to configure  
the crystal oscillator for input only when another high qual-  
ity crystal oscillator is available in the system. The  
LMX9820 can accommodate 12 MHz crystal.  
The receive mixer is an image reject ring diode type mixer.  
An internal low noise gain block is incorporated prior to the  
mixer to achieve extremely low noise performance. A dif-  
ferential IF output improves noise immunity while maintain-  
ing a high intercept point.  
8.4 CHANNEL SELECT FILTER  
The IF circuitry is followed by an integrated complex active  
bandpass filter that provides the required channel selectiv-  
ity and image rejection. The I and Q outputs of the filter are  
then converted to the digital domain using a limiter, discrim-  
inator, and A/D converter.  
8.13 EXTERNAL CRYSTAL OSCILLATORS  
The LMX9820 contains a crystal driver circuit. This circuit  
operates with an external crystal and capacitors to form an  
oscillator. See Figure 10 on page 17 and Figure 11 on page  
17. The LMX9820 also can operate with an external TCXO  
(Temperature Compensated Crystal Oscillator).  
8.5 LIMITER  
The limiter circuit consists of I and Q limiting amplifiers that  
provide the remaining gain in the receiver such that an  
acceptable signal level exists at the frequency modulation  
(FM) discriminator. Limiting amplification of the downcon-  
verted wanted signal minimizes the input range require-  
ments of the A/D converter.  
8.13.1 Crystal  
The crystal appears inductive near its resonant frequency.  
It forms a resonant circuit with its load capacitors. The res-  
onant frequency may be trimmed with the crystal load  
capacitance.  
1. Load Capacitance  
8.6 FM DISCRIMINATOR  
For resonance at the correct frequency, the crystal should  
be loaded with its specified load capacitance, which is the  
value of capacitance used in conjunction with the crystal  
unit. Load capacitance is a parameter specified by the  
crystal, typically expressed in pF. The crystal circuit shown  
in Figure 11 is composed of:  
The limited signal is translated to digital format by using an  
analog Frequency Shift Keying (FSK) demodulator and A/D  
converter. The A/D converter extracts the RX signal at a  
sample rate of 72.0 MHz.  
8.7 RECEIVE SIGNAL STRENGTH INDICATOR  
(RSSI)  
C1 (motional capacitance)  
R1 (motional resistance)  
L1 (motional inductance)  
C0 (static or shunt capacitance)  
The receive signal strength indicator (RSSI) signal is  
derived from the input level to the limiter and covers a  
range low detector level = -59dBm and high detector level  
= -38dBm. The information is typically fed back to the  
baseband controller via the serial interface.  
The LMX9820 provides some of the load with internal  
capacitors C . The remainder must come from the exter-  
int  
nal capacitors labeled Ct1 and Ct2 as shown in Figure 10.  
Ct1 and Ct2 should have the same value for best noise  
www.national.com  
16  
performance. Crystal load capacitance (C is calculated as  
the following:  
Figure 12 shows the results are 100 kHz off the center fre-  
quency, which is –4 ppm. The pullability of the crystal is 24  
ppm/pF, so the load capacitance must be decreased by  
about 0.2 pF. By changing Ct1 or Ct2 to 9 pF, the total load  
capacitance is increased by 0.26 pF. Figure 13 shows the  
frequency offset test resuts. The frequency offset is now  
zero with Ct1 = 9 pF, Ct2 = 10 pF.  
L)  
C = C + Ct1//Ct2  
L
int  
The C above does not include the crystal internal self-  
L
capacitance C0 as shown in Figure 11 on page 17, so the  
total capacitance is:  
C
= C + C0  
5. Kinseki KSS CX-4025S  
total  
L
The LMX9820 has also been tested with the Kineski KSS  
CX-4025S. See Table 22 on page 17.  
XTL_G  
XTL_D  
Table 21. VXE4-1055-12M000  
Specification  
Package  
Frequency  
Mode  
Value  
6.0x3.5x1.1 mm - 4 pads  
12.000 MHz  
Crystal  
Ct2  
Ct1  
Fundamental  
Stability  
±18 ppm at -20 to +70°C (in-  
clusive of all conditions)  
Load Capacitance  
ESR  
9 pF  
40 max, 20 typ  
7 pF max  
Figure 10. LMX9820 Crystal Recommended  
Circuit  
Shunt Capacitance  
Drive Level  
10 to 100 µW  
24 ppm/pF min  
-40 to +85°C  
Pullability  
R1  
C1  
C0  
L1  
Storage Temperature  
Table 22. KSS CX-4025S  
Specification  
Package  
Frequency  
Mode  
Value  
4.0x2.5x0.75 mm - 4 pads  
12.000 MHz  
Figure 11. Crystal Equivalent Circuit  
Fundamental  
2. Crystal Pullability  
Pullability is another important parameter for a crystal,  
which is the change in frequency of a crystal with units of  
ppm/pF, either from the natural resonant frequency to a  
load resonant frequency, or from one load resonant fre-  
quency to another. The frequency can be pulled in a paral-  
lel resonant circuit by changing the value of load  
capacitance. A decrease in load capacitance causes an  
increase in frequency, and an increase in load capacitance  
causes a decrease in frequency.  
Stability  
±20 ppm at -30 to +80°C (in-  
clusive of all conditions)  
Load Capacitance  
ESR  
12pF  
80 max, 20 typ  
3 pF max  
Shunt Capacitance  
Drive Level  
100 µW max  
-40 to +85°C  
Storage Temperature  
3. Frequency Tuning  
Frequency Tuning is achieved by adjusting the crystal load  
capacitance with external capacitors. It is a Bluetooth  
requirement that the frequency is always within ±20 ppm.  
Crystal/oscillator must have cumulative accuracy specifica-  
tions of +15 ppm to provide margin for frequency drift with  
ageing and temperature.  
4. Vite Crystal  
The VXE4-1055 is a 12 MHz SMT crystal from Vite.  
National is using this crystal with the LMX9820. Table 21  
on page 17 shows the specification of VXE4-1055.  
Since the internal capacitance of the crystal circuit is 4-5 pF  
and the load capacitance is 9 pF, 10 pF is a good starting  
point for both Ct1 and Ct2. The 2480 MHz RF frequency  
offset is then tested. Figure 12 on page 18 shows the RF  
frequency offset test results.  
Revision 1.0  
17  
www.national.com  
8.0 Digital Smart Radio (Continued)  
Figure 12. Frequency Offset with 10 pF // 10 pF Capacitors  
www.national.com  
18  
8.0 Digital Smart Radio (Continued)  
Figure 13. Frequency Offset with 9 pF//10 pF Capacitors  
8.13.2 TCXO (Temperature Compensated Crystal  
Oscillator)  
The LMX9820 has also been tested with the NKG3184A  
TCXO. See Table 23 on page 19.  
Table 23. TCXO - NKG3184A  
The LMX9820 also can operate with an external TCXO  
(Temperature Compensated Crystal Oscillator). The TCXO  
signal is directly connected to the XTL_G.  
Specification  
Package  
Value  
5.0x3.2x1.4 mm - 4 pads  
12.000 MHz  
Input Impedance  
Frequency  
Stability  
The LMX9820 XTL_G pin has in input impedance of 2pF  
capacitance in parallel with >400kresistance.  
±18 ppm at -30 to +85°C (in-  
clusive of all conditions)  
NKG3184A TCXO  
Output Load  
10k// 13pF  
Current Consumption  
Output Level  
2.0mA  
0.3Vp-p to 2.0Vp-p  
-40 to +85°C  
Storage Temperature  
DC Cut Capacitor  
Included in VC-TCXO  
Revision 1.0  
19  
www.national.com  
The Reset_b# and Reset_5100# of the LMX9820 should  
be driven high minimum of 2ms after the LMX9820 voltage  
rails are high. The LMX9820 is properly reset.  
9.0 System Power-Up Sequence  
In order to correctly power-up the LMX9820 the following  
sequence must be performed:  
Reference Table 24 on page 20.  
Apply IOVCC and VCC to the LMX9820.  
VCC  
tPTOR  
IOVCC  
Reset_b#  
Low  
Reset_5100#  
Low  
BBP_CLOCK  
TX_RX_DATA  
High  
Low  
Low  
TX_RX_SYNC  
CCB_DATA  
Low  
CCB_CLOCK  
CCB_LATCH  
High  
LMX9820  
Oscillator  
Start-Up  
LMX9820  
Standby  
Active  
Initialization  
LMX9820  
Initialization  
LMX9820 in Normal Mode  
LMX9820 in  
Power-Up Mode  
Figure 14. LMX9820 System Power-Up Sequence Timing  
Table 24. LMX9820 System Power-up Sequence Timing  
Symbol  
Parameter  
Power to Reset  
Condition  
and IO at operating  
VCC  
Min  
Typ  
Max  
Unit  
t
V
2
ms  
PTOR  
CC  
voltage level to valid reset  
www.national.com  
20  
Transparent Mode  
10.0 Integrated Firmware  
The LMX9820 supports transparent data communication  
from the UART interface to a bluetooth link.  
The LMX9820 includes the full Bluetooth stack up to  
RFComm to support the following profiles:  
If activated, the module does not interpret the commands  
on the UART which normally are used to configure and  
control the module. The packages don’t need to be format-  
ted as described in Table 27 on page 24. Instead all data  
are directly passed through the firmware to the active blue-  
tooth link and the remote device.  
GAP (Generic Access Profile)  
SDAP (Service Discovery Application Profile)  
SPP (Serial Port Profile)  
Figure 15 shows the Bluetooth protocol stack with com-  
mand interpreter interface. The command interpreter offers  
a number of different commands to support the functional-  
ity given by the different profiles. Execution and interface  
timing is handled by the control application.  
Transparent mode can only be supported on a point-to-  
point connection. To leave Transparent mode, the host  
must send a UART_BREAK signal to the module  
Force Master Mode  
The chip has an internal data area in Flash that includes  
the parameters shown in Table 25 on page 22.  
In Force Master mode tries to act like an Accesspoint for  
multiple connections. For this it will only accept the link if a  
Master/slave role switch is accepted by the connecting  
device. After successful link establishment the LMX9820  
will be Master and available for additional incoming links.  
On the first incoming link the LMX9820 will switch to trans-  
parent depending on the setting for automatic or command  
mode. Additional links will only be possible if the device is  
not in transparent mode.  
Command Interpreter  
Control Application  
10.1.2 Default Connections  
SPP  
SDAP  
The LMX9820 supports the storage of up to 3 devices  
within its NVS. Those connections can either be connected  
after reset or on demand using a specific command.  
GAP  
RFComm  
SDP  
10.1.3 Event Filter  
The LMX9820 uses events or indicators to notify the host  
about successful commands or changes at the bluetooth  
interface. Depending on the application the LMX9820 can  
be configured. The following levels are defined:  
L2CAP  
Link Manager  
Baseband  
No Events:  
– The LMX9820 is not reporting any events. Optimized  
for passive cable replacement solutions.  
Figure 15. LMX9820 Software Implementation  
10.1 FEATURES  
Standard LMX9820 events:  
– only necessary events will be reported  
All events:  
10.1.1 Operation Modes  
– Additional to the standard all changes at the physical  
layer will be reported.  
On boot-up, the application configures the module follow-  
ing the parameters in the data area.  
Automatic Mode  
10.1.4 Default Link Policy  
No Default Connections Stored:  
Each Bluetooth Link can be configured to support M/S role  
switch, Hold Mode, Sniff Mode and Park Mode. The default  
link policy defines the standard setting for incoming and  
outgoing connections.  
In Automatic mode the module is connectable and discov-  
erable and automatically answers to service requests. The  
command interpreter listens to commands and links can be  
set up. The full command list is supported.  
If connected by another device, the module sends an event  
back to the host, where the RFComm port has been con-  
nected, and switches to transparent mode.  
Default Connections Stored:  
If default connections were stored on a previous session,  
once the LMX9820 is reset, it will attempt to connect each  
device stored within the data Flash three times. The host  
will be notified about the success of the link setup via a link  
status event.  
Command Mode  
In Command mode, the LMX9820 does not check the  
default connections section within the Data Flash. If con-  
nected by another device, it will NOT switch to transparent  
mode and continue to interpret data sent on the UART.  
Revision 1.0  
21  
www.national.com  
Table 25. Operation Parameters Stored in LMX9820  
Parameter  
Default Value  
Description  
BDADDR  
(Hard coded into Device)  
Bluetooth device address  
Local Name  
Serial port device  
PinCode  
0000  
Bluetooth PinCode  
Operation Mode  
Default Connections  
SDP Database  
Automatic  
0
Command or Automatic mode  
Up to three default devices to connect on default  
1 SPP entry:  
Name: COM1  
Service discovery database, control for supported  
profiles  
Authentication and encryption enabled  
UART Speed  
9600  
Sets the speed of the physical UART interface to the  
host  
UART Settings  
Ports to Open  
Link Keys  
1 Stop bit, parity disabled  
0000 0001  
Parity and stop bits on the hardware UART interface  
Defines the RFComm ports to open  
Link keys for paired devices  
No link keys  
2
Security Mode  
Page Scan Mode  
Inquiry Scan Mode  
Security mode  
Connectable  
Discoverable  
Connectable/Not connectable for other devices  
Discoverable/NotDiscoverable/LimitedDiscoverable  
for other devices  
Default Link Policy  
All modes allowed  
Configures modes allowed for incoming or outgoing  
connections (Role switch, Hold mode, Sniff mode,  
Park mode)  
Default Link Timeout 20 seconds  
Default link supervision timeout  
Event Filter  
Standard LMX9820 events reported  
Defines the level of reporting on the UART  
- no events  
- standard events  
- standard including ACL link events  
www.national.com  
22  
11.0 Low Power Modes  
The LMX9820 supports different Low Power Modes to  
reduce power in different operating situations. The modular  
structure of the LMX9820 allows the firmware to power  
down unused modules.  
Host  
LMX9820  
RTS#  
CTS#  
TX  
RTS#  
CTS#  
TX  
The Low power modes have influence on:  
UART transport layer  
RX  
RX  
– enabling or disabling the interface  
Bluetooth Baseband activity  
– firmware disables LLC and Radio if possible  
GPIO  
Host_WU  
(optional)  
11.1 POWER MODES  
Figure 16. UART NULL modem connection  
11.2.2 Disabling the UART transport layer  
The following LMX9820 power modes, which depend on  
the activity level of the UART transport layer and the radio  
activity are defined:  
The Host can disable the UART transport layer by sending  
the “Disable Transport Layer” Command. The LMX9820  
will empty its buffers, send the confirmation event and dis-  
able its UART interface. Afterwards the UART interface will  
be reconfigured to wake up on a falling edge of the CTS  
pin.  
The radio activity level mainly depends on application  
requirements and is defined by standard bluetooth opera-  
tions like inquiry/page scanning or an active link.  
A remote device establishing or disconnecting a link may  
also indirectly change the radio activity level.  
11.2.3 LMX9820 enabling the UART interface  
The UART transport layer by default is enabled on device  
power up. In order to disable the transport layer the com-  
mand “Disable Transport Layer” is used. Thus only the  
Host side command interface can disable the transport  
layer. Enabling the transport layer is controlled by the HW  
Wakeup signalling. This can be done from either the Host  
and the LMX9820. See also “LMX9820 Software Users  
Guide” for detailed information on timing and implementa-  
tion requirements.  
As the Transport Layer can be disabled in any situation the  
LMX9820 must first make sure the transport layer is  
enabled before sending data to the host. Possible scenar-  
ios can be incoming data or incoming link indicators. If the  
UART is not enabled the LMX9820 assumes that the Host  
is sleeping and waking it up by activating RTS and setting  
HOST_WU to 1. To be able to react on that Wake up, the  
host has to monitor the CTS pin.  
As soon as the host activates its RTS pin, the LMX9820 will  
first send a confirmation event and then start to transmit  
the events.  
Table 26. Power Mode activity  
Power  
Mode  
UART activity  
Radio activity  
11.2.4 Enabling the UART transport layer from the host  
PM0  
PM1  
PM2  
PM3  
PM4  
PM5  
OFF  
ON  
OFF  
If the host needs to send data or commands to the  
LMX9820 while the UART Transport Layer is disabled it  
must first assume that the LMX9820 is sleeping and wake  
it up using its RTS signal.  
OFF  
OFF  
ON  
Scanning  
Scanning  
SPP Link  
SPP Link  
When the LMX9820 detects the Wake-Up signal it acti-  
vates the UART HW and acknowledges the Wake-Up sig-  
nal by settings its RTS and HOST_WU signal. Additionally  
the Wake up will be confirmed by a confirmation event.  
When the Host has received this “Transport Layer  
Enabled” event, the LMX9820 is ready to receive com-  
mands.  
OFF  
ON  
11.2 ENABLING AND DISABLING UART  
TRANSPORT  
.
11.2.1 Hardware Wake up functionality  
In certain usage scenarios the host is able to switch off the  
transport layer of the LMX9820 in order to reduce power  
consumption. Afterwards both devices, host and LMX9820  
are able to shut down their UART interfaces.  
In order to save system connections the UART interface is  
reconfigured to hardware wakeup functionality. For a  
detailed timing and command functionality please see also  
the “LMX9820 Software Users Guide”.  
The interface between host and LMX9820 is defined as  
described in Figure 16.  
Revision 1.0  
23  
www.national.com  
12.1.2 Packet Type ID  
12.0 Command Interface  
This byte identifies the type of packet. See Table 28 for  
details.  
The LMX9820 offers Bluetooth functionality in either a self  
contained slave functionality or over a simple command  
interface. The interface is listening on the UART interface.  
12.1.3 Opcode  
The following sections describe the protocol transported on  
the UART interface between the LMX9820 and the host in  
command mode (see Figure 17). In Transparent mode, no  
data framing is necessary and the device does not listen  
for commands.  
The opcode identifies the command to execute. The  
opcode values can be found within the “LMX9820 Software  
User’s Guide” included within the LXMX9820 Evaluation  
Board.  
12.1.4 Data Length  
12.1 FRAMING  
Number of bytes in the Packet Data field. The maximum  
size is defined with 333 data bytes per packet.  
The connection is considered “Error free”. But for packet  
recognition and synchronization, some framing is used.  
All packets sent in both directions are constructed per the  
model shown in Table 27.  
12.1.5 Checksum:  
This is a simple Block Check Character (BCC) checksum  
of the bytes “Packet type”, “Opcode” and “Data Length”.  
The BCC checksum is calculated as low byte of the sum of  
all bytes (e.g., if the sum of all bytes is 0x3724, the check-  
sum is 0x24).  
12.1.1 Start and End Delimiter  
The “STX” char is used as start delimiter: STX = 0x02. ETX  
= 0x03 is used as end delimiter.  
Existing device  
without Bluetooth™  
capabilities  
LMX9820  
UART  
UART  
Figure 17. Bluetooth Functionality  
.
Table 27. Package Framing  
Start De-  
limiter  
Packet  
Type ID  
Opcode  
Data Length  
Checksum  
Packet Data  
End De-  
limiter  
1 Byte  
1 Byte  
1 Byte  
2 Bytes  
1 Byte  
<Data Length> Bytes  
1 Byte  
- - - - - - - - - - - - - Checksum - - - - - - - - - - - - -  
Table 28. Packet Type Identification  
Description  
ID  
Direction  
0x52  
‘R’  
REQUEST  
(REQ)  
A request sent to the Bluetooth module.  
All requests are answered by exactly one confirm.  
0x43  
‘C’  
Confirm  
(CFM)  
The Bluetooth modules confirm to a request.  
All requests are answered by exactly one confirm.  
0x69  
‘i’  
Indication  
(IND)  
Information sent from the Bluetooth module that is not a direct confirm to a request.  
Indicating status changes, incoming links, or unrequested events.  
0x72  
‘r’  
Response  
(RES)  
An optional response to an indication.  
This is used to respond to some type of indication message.  
www.national.com  
24  
Tables 29 through 38 show the actual command set and  
the events coming back from the device. A full documented  
description of the commands can be found in the  
“LMX9820 Software Users Guide”.  
12.2 COMMAND SET OVERVIEW  
The LMX9820 has a well defined command set to:  
Configure the device:  
– Hardware settings  
NOTE: For standard Bluetooth operation only commands  
from Table 29 through Table 31 will be used. Most of the  
remaining commands are for configuration purposes only.  
– Local Bluetooth parameters  
– Service database  
.
Set up and handle links  
Table 29. Device Discovery  
Command  
Event  
Description  
Inquiry  
Inquiry Complete  
Device Found  
Search for devices  
Lists BDADDR and class of device  
Get name of remote device  
Remote Device Name  
Remote Device Name Confirm  
Table 30. SDAP Client Commands  
Command  
Event  
Description  
SDAP Connect  
SDAP Disconnect  
SDAP Connect Confirm  
SDAP Disconnect Confirm  
Connection Lost  
Create an SDP connection to remote device  
Disconnect an active SDAP link  
Notification for lost SDAP link  
SDAP Service Browse  
SDAP Service Search  
SDAP Attribute Request  
Service Browse Confirm  
SDAP Service Search Confirm  
SDAP Attribute Request Confirm  
Get the services of the remote device  
Search a specific service on a remote device  
Searches for services with specific attributes  
Table 31. SPP Link Establishment  
Event Description  
Command  
Establish SPP Link  
Establishing SPP Link Confirm  
Link Established  
Initiates link establishment to a remote device  
Link successfully established  
Incoming Link  
A remote device established a link to the local  
device  
Release SPP Link  
SPP Send Data  
Release SPP Link Confirm  
SPP Send Data Confirm  
Incoming Data  
Initiate release of SPP link  
Send data to specific SPP port  
Incoming data from remote device  
Get current Link Supervision timeout  
Set Link Supervision timeout  
Get Link Timeout  
Set Link Timeout  
Transparent Mode  
Get Link Timeout Confirm  
Set Link Timeout Confirm  
Transparent Mode Confirm  
Switch to Transparent mode on the UART  
Table 32. Storing Default Connections  
Event Description  
Command  
Connect Default Connection  
Connect Default Connection Confirm  
Connects to either one or all stored default  
connections  
Store Default Connection  
Store Default Connection Confirm  
Store device as default connection  
Get list of Default Connections List of Default Devices  
Delete Default Connections Delete Default Connections Confirm  
Revision 1.0  
25  
www.national.com  
12.0 Command Interface (Continued)  
Table 33. Bluetooth Low Power Modes  
Event Description  
Command  
Set Default Link Policy  
Set Default Link Policy Confirm  
Defines the link policy used for any incoming  
or outgoing link.  
Get Default Link Policy  
Set Link Policy  
Get Default Link Policy Confirm  
Set Link Policy Confirm  
Returns the stored default link policy  
Defines the modes allowed for a specific link  
Returns the actual link policy for the link  
Get Link Policy  
Get Link Policy Confirm  
Enter Sniff Mode Confirm  
Exit Sniff Mode Confirm  
Enter Park Mode Confirm  
Enter Hold Mode Confirm  
Power Save Mode Changed  
Enter Sniff Mode  
Exit Sniff Mode  
Enter Park Mode  
Enter Hold Mode  
Remote device changed power save mode  
on the link  
Table 34. Wake Up Functionality  
Command  
Event  
Transport Layer Enabled  
Description  
Disable Transport Layer  
Disabling the UART Transport Layer and  
activates the Hardware Wakeup function  
Table 35. SPP Port Configuration and Status  
Command  
Event  
Description  
Set Port Config  
Set Port Config Confirm  
Set port setting for the “virtual” serial port link  
over the air  
Get Port Config  
Get Port Config Confirm  
Port Config Changed  
Read the actual port settings for a “virtual”  
serial port  
Notification if port settings were changed  
from remote device  
SPP Get Port Status  
SPP Get Port Status Confirm  
Returns status of DTR, RTS (for the active  
RFComm link)  
SPP Port Set DTR  
SPP Port Set RTS  
SPP Port BREAK  
SPP Port Set DTR Confirm  
SPP Port Set RTS Confirm  
SPP Port BREAK  
Sets the DTR bit on the specified link  
Sets the RTS bit on the specified link  
Indicates that the host has detected a break  
SPP Port Overrun Error  
SPP Port Overrun Error Confirm  
Used to indicate that the host has detected an  
overrun error  
SPP Port Parity Error  
SPP Port Parity Error Confirm  
SPP Port Framing Error Confirm  
SPP Port Status Changed  
Host has detected a parity error  
Host has detected a framing error  
SPP Port Framing Error  
Indicates that remote device has changed  
one of the port status bits  
Table 36. Local Bluetooth Settings  
Description  
Read actual friendly name of the device  
Command  
Event  
Read Local Name Confirm  
Read Local Name  
www.national.com  
26  
12.0 Command Interface (Continued)  
Table 36. Local Bluetooth Settings (Continued)  
Command  
Event  
Description  
Write Local Name  
Read Local BDADDR  
Change Local BDADDR  
Write Local Name Confirm  
Read Local BDADDR Confirm  
Change Local BDADDR Confirm  
Set the friendly name of the device  
Note: Only use if you have your own  
BDADDR pool  
Store Class of Device  
Set Scan Mode  
Store Class of Device Confirm  
Set Scan Mode Confirm  
Change mode for discoverability and  
connectability  
Set Scan Mode Indication  
Get Fixed Pin Confirm  
Reports end of Automatic limited  
discoverable mode  
Get Fixed Pin  
Reads current PinCode stored within the  
device  
Set Fixed Pin  
Set Fixed Pin Confirm  
Set the local PinCode  
Set Default Link Timeout  
Set Default Link Timeout Confirm  
Set Default Link Supervision Timeout for all  
incoming an outgoing links  
Get Default Link Timeout  
Get Default Link Timeout Confirm  
Read Default Link Supervision Timeout for all  
incoming an outgoing links  
Get Security Mode  
Set Security Mode  
Get Security Mode Confirm  
Set Security Mode Confirm  
Get actual Security mode  
Configure Security mode for local device  
(default 2)  
Remove Pairing  
Remove Pairing Confirm  
List of Paired Devices  
Remove pairing with a remote device  
List Paired Devices  
Get list of paired devices stored in the  
LMX9820 data memory  
Force Master Role  
Force Master Role Confirm  
Enables/Disables the request for Master role  
at incoming connections  
Table 37. Local Service Database Configuration  
Command  
Event  
Description  
Store SPP Record  
Store SPP Record Confirm  
Create a new SPP record within the service  
database  
Store DUN Record  
Store FAX Record  
Store OPP Record  
Store FTP Record  
Store IrMCSync Record  
Store DUN Record Confirm  
Store FAX Record Confirm  
Store OPP Record Confirm  
Store FTP Record Confirm  
Store IrMCSync Record Confirm  
Create a new DUN record within the service  
database  
Create a new FAX record within the service  
database  
Create a new OPP record within the service  
database  
Create a new FTP record within the service  
database  
Create a new IrMCSync record within the ser-  
vice database  
Enable SDP Record  
Delete All SDP Records  
Ports to Open  
Enable SDP Record Confirm  
Delete All SDP Records Confirm  
Ports to Open Confirmed  
Enable or disable SDP records  
Specify the RFComm Ports to open on  
startup  
Revision 1.0  
27  
www.national.com  
12.0 Command Interface (Continued)  
Table 38. Local Hardware Commands  
Command  
Event  
Description  
Set Event Filter  
Set Event Filter Confirm  
Configures the reporting level of the  
command interface  
Get Event Filter  
Read RSSI  
Get Event Filter Confirm  
Read RSSI Confirm  
Get the status of the reporting level  
Returns an indicator for the incoming signal  
strength  
Change UART Speed  
Change UART Speed Confirm  
Set specific UART speed; needs proper ISEL  
pin setting  
Change UART Settings  
Test Mode  
Change UART Settings Confirm  
Test Mode Confirm  
Change configuration for parity and stop bits  
Enable Bluetooth, EMI test, or local loopback  
Restore Factory Settings  
Reset  
Restore Factory Settings Confirm  
Dongle Ready  
Soft reset  
Firmware Upgrade  
Stops the bluetooth firmware and executes  
the In-system-programming code  
www.national.com  
28  
The SPP conformance of the LMX9820 allows any device  
using the SPP to connect to the LMX9820.  
13.0 Usage Scenarios  
Because of switching to Transparent automatically, the  
controller has no need for an additional protocol layer; data  
is sent raw to the other Bluetooth device.  
13.1 SCENARIO 1: POINT-TO-POINT  
CONNECTION  
LMX9820 acts only as slave, no further configuration is  
required.  
On default, a PinCode is requested to block unallowed tar-  
geting.  
Example: Sensor with LMX9820; hand-held device with  
standard Bluetooth option.  
Air Interface  
Sensor Device  
Standard Device  
with Bluetooth  
UART  
Inquiry Request  
Search for Devices  
Inquiry Response  
SDP Link Request  
SDP Link Accept  
Get Remote Services  
Service Browse  
Service Response  
Release SDP Link  
Release Confirm  
SPP Link Request  
Establish SPP Link  
Link Established  
Connected  
on Port L  
SPP Link Accept  
Transparent Mode  
Raw Data  
LMX9820  
Microcontroller  
No Bluetooth™ commands necessary  
only “connected” event indicated to controller  
The client software only  
shows high level functions  
Figure 18. Point-to-Point Connection  
Revision 1.0  
29  
www.national.com  
13.0 Usage Scenarios (Continued)  
If step 5 is executed, the stored default device is connected  
(step 4) after reset (in Automatic mode only) or by sending  
the command “Connect to Default Device”. The command  
can be sent to the device at any time.  
13.2 SCENARIO 2: AUTOMATIC POINT-TO-POINT  
CONNECTION  
LMX9820 at both sides.  
Example: Serial Cable Replacement.  
If step 6 is left out, the microcontroller has to use the com-  
mand “Send Data” instead of sending data directly to the  
module.  
Device #1 controls the link setup with a few commands as  
described.  
Serial Device #1  
Serial Device #2  
Air  
1. Devices in Range?  
Interface  
Inquiry  
Inquiry  
Inquiry Request  
Inquiry Result  
Inquiry Result  
Inquiry Response  
2. Choose the Device  
3. Which COM Port is  
available?  
Establish SDP Link  
Establish SDP Link  
SDP Link Request  
SDP Link Accept  
SDP Link Established  
SDP Link Established  
Service Browse  
Service Browse  
Browse Result  
Service Browse  
RFComm Port = R  
Service Response  
Release SDP Link  
SDP Link Released  
Release SDP Link  
SDP Link Released  
Release SDP Link  
Release Confirm  
4. Create SPP Link  
Establish SPP Link  
Establish SPP Link  
to Port R on Port L  
SPP Link Request  
SPP Link Accept  
to Port R1 on Port L2  
Connected on Port L  
Link Established  
Connected  
on Port R  
5. Connect on Default  
(Optional)  
Transparent Mode  
Store Default Device  
Device Stored  
Storing Default Device  
Device Stored  
6. Switch to  
Transparent  
Transparent Mode  
Transparent Mode  
Raw Data  
Microcontroller  
LMX9820  
Microcontroller  
LMX9820  
Bluetooth™ device controls link with  
a few commands  
No Bluetooth™ commands necessary;  
only “connected” event indicated to controller  
1. Port R indicates the remote RFComm channel to connect to. Usually the result of the SDP request.  
2. Port L indicates the Local RFComm channel used for that connection.  
Figure 19. Automatic Point-to-Point Connection  
www.national.com  
30  
Serial Device #1 is acting as master for both devices. As  
the host has to decide to or from which device data is com-  
ing from, data must be sent using the “Send data com-  
mand”. If the device receives data from the other devices, it  
is packaged into an event called “Incoming data event”.  
The event includes the device related port number.  
13.3 SCENARIO 3: POINT-TO-MULTIPOINT CON-  
NECTION  
LMX9820 acts as master for several slaves.  
Example: Two sensors with LMX9820; one hand-held  
device with implemented LMX9820.  
Serial Devices #2 and #3 establish the link automatically as  
soon as they are contacted by another device. No control-  
ler interaction is necessary for setting up the Bluetooth link.  
Both switch automatically into Transparent mode. The host  
sends raw data over the UART.  
If necessary, a link configuration can be stored as default in  
the master Serial Device #1 to enable the automatic recon-  
nect after reset, power-up, or by sending the “connect  
default connection” command.  
Serial Device #1  
Serial Device #2  
Air  
Interface  
Connect to Device #2  
see Scenario 2  
Connect to Device #2  
see Scenario 2  
Connection Request  
Link Established  
on Port L1  
Connected  
on Port L  
Automatic Link Setup  
Transparent Mode  
Link Established  
Send Data Command  
Receive Data Event  
Send Data to Port L1  
Raw Data  
Data Received  
from Port L1  
LMX9820  
Microcontroller  
Serial Device #3  
Connect to Device #3  
see Scenario 2  
Connect to Device #3  
see Scenario 2  
Connection Request  
Link Established  
Link Established  
on Port L2  
Connected  
on Port L  
Automatic Link Setup  
Transparent Mode  
Send Data Command  
Receive Data Event  
LMX9820  
Send Data to Port L2  
Raw Data  
Data Received  
from Port L2  
Microcontroller  
LMX9820  
Microcontroller  
Figure 20. Point-to-Multipoint Connection  
Revision 1.0  
31  
www.national.com  
ISEL2 (pad H13) and ISEL1 (pad J13) can be strapped to  
the host logic 0 and 1 levels to set the host interface boot-  
up configuration. Alternatively both ISEL2 and ISEL1 can  
be hardwired over 10Kpull-up/pull-down resistors.  
Env0 (pad E9) and Env1 (pad B11) can be left uncon-  
nected (both are read as high) if no ISP capability is  
required. If the environment mode ISP needs to be acti-  
vated by hardware (alternatively a firmware upgrade com-  
mand can be used) then Env0 must be set to Logical Low  
and Reset needs to be set. Upon removal of Reset, the  
LMX9820 boots into the mode corresponding to the values  
present on Env0 and Env1.  
14.0 Application Information  
Figure 21 on page 32 represents a typical system sche-  
matic for the LMX9820.  
14.1 MATCHING NETWORK  
The antenna matching network may or may not be  
required, depending upon the impedance of the antenna  
chosen. A 6.8pF blocking capacitor is recommended.  
14.2 FILTERED POWER SUPPLY  
It is imperative that the LMX9820 be provided with ade-  
quate Ground planes and a filtered power supply. It is  
highly recommended that a 0.1 µF and a 10 pF bypass  
capacitor be placed as close as possible to VCC (pad H2)  
on the LMX9820.  
14.4 CLOCK INPUT  
The clock source must be placed as close as possible to  
the LMX9820. The quality of the radio performance is  
directly related to the quality of the clock source connected  
to the oscillator port on the LMX9820. Careful attention  
must be paid to the crystal/oscillator parameters or radio  
performance could be drastically reduced.  
14.3 HOST INTERFACE  
To set the logic thresholds of the LMX9820 to match the  
host system, IOVCC (pad H12) must be connected to the  
logic power supply of the host system. It is highly recom-  
mended that a 10 pF bypass capacitor be placed as close  
as possible to the IOVCC pad on the LMX9820.  
14.5 SCHEMATIC AND LAYOUT EXAMPLES  
VCC  
IOVCC  
10 pF  
0.01 µF  
10 pF  
0.01 µF  
H2  
H12  
B1 Antenna  
6.8 pF  
H8  
C8  
Connect  
system  
to  
RF_inout  
Uart_rx  
Uart_tx  
Uart_cts  
Uart_rts  
D9  
UART bus.  
D10  
C10  
B9  
B8  
Clk+  
Clk-  
12 MHz  
Y1  
Reference  
D11  
G8  
Table 24 on  
page 20 for  
correct POR  
timing.  
Reset_5100  
Reset_b  
10 pF  
C1  
10 pF  
C2  
LMX9820  
Reference  
Table 18 on  
page 15.  
E9  
Env0  
Env1  
B11  
J13  
Reference  
Table 19 on  
page 15.  
ISEL1  
ISEL2  
USBGND  
G12  
Dig_gnd[1:2]  
D12, G11  
H13  
RF GND  
Notes:  
Capacitor values, C1, C2, C31 & C32, may vary depending on board design crystal manufacturer specification.  
Single ground plane is used for both RF and Digital grounds.  
Figure 21. Example System Schematic with pre-selected 115.2kbit/s UART speed  
www.national.com  
32  
14.0 Application Information (Continued)  
Figure 22. Component Placement - Layer 1  
Revision 1.0  
33  
www.national.com  
14.0 Application Information (Continued)  
Figure 23. Solid Ground Plane - Layer 2  
Figure 24. Signal Plane - Layer 3  
www.national.com  
34  
14.0 Application Information (Continued)  
Figure 25. Component Layout Bottom - Layer 4  
Revision 1.0  
35  
www.national.com  
the temperature at which the solder has molten com-  
ponents. The temperature that melting starts at.  
15.0 Soldering  
The LMX9820 bumps are designed to melt as part of the  
Surface Mount Assembly (SMA) process. The LMX9820 is  
assembled with a high temperature solder alloy to ensure  
there are no re-reflow conditions imposed upon the module  
when reflowed to a PCB with these typical low temperature  
60/40 (S = 183°C, L = 188°C), 62/36/2 (E = 179°C), or  
63/37 (E = 183°C) solder alloys.  
E: Eutectic  
– Denotes solid to liquid without a plastic phase.  
The low temperature solder alloy will reflow with the solder  
bump and provide the maximum allowable solder joint reli-  
ability.  
Reflow at a peak of 215 --> 220°C (approximately 30 sec-  
onds at peak) [not to exceed 225°C; measured in close  
proximity of the modules] to avoid any potential re-reflow  
conditions.  
Where:  
S: Solidus  
– Denotes the points in a phase diagram representing  
the temperature at which the solder composition be-  
gins to melt during heating, or complete freezing dur-  
ing cooling.  
Table 39 and Figure 26 on page 37 provide the soldering  
details required to properly solder the LMX9820 to stan-  
dard PCBs. The illustration serves only as a guide and  
National is not liable if a selected profile does not work.  
L: Liquidus  
– Denotes the points in a phase diagram representing  
Table 39. Soldering Details  
Parameter  
Value  
PCB Land Pad Diameter  
PCB Solder Mask Opening  
PCB Finish (HASL details)  
Stencil Aperture  
24 mil  
30 mil  
63/37 (difference in thickness < 28 micron)  
28 mil  
Stencil Thickness  
5 mil  
Solder Paste Used  
Low temperature 60/40 (S = 183°C, L = 188°C), 62/36/2 (E  
1
= 179°C), or 63/37 (E = 183°C) solder alloys  
1
Flux Cleaning Process  
Reflow Profiles  
No Clean Flux System  
See Figure 26 on page 37  
1. Typically defined by customer.  
www.national.com  
36  
15.0 Soldering (Continued)  
Profile  
#
Peak  
Min  
Max  
Max  
Rising  
Time  
Rising  
Time  
Total  
Time  
Above  
183  
Rising Falling Time 130 Between Time 160 Between  
Slope  
Slope  
130/160  
160/183  
1
2
213.9  
206.7  
32.8  
31.1  
2.50  
2.41  
-1.60  
-1.73  
208.01  
213.01  
109.00  
121.01  
99.01  
92.00  
57.00  
53.00  
75.00  
64.00  
Figure 26. Typical Reflow Profiles  
Revision 1.0  
37  
www.national.com  
stages/definitions of the datasheet. Table 41 lists the revi-  
sion history and Table 42 lists the specific edits to create  
the current revision.  
16.0 Datasheet Revision History  
This section is a report of the revision/creation process of  
the datasheet for the LMX9820. Table 40 provides the  
Table 40. Documentation Status Definitions  
Product Status Definition  
Datasheet Status  
Advance Information  
Formative or in Design This datasheet contains the design specifications for product de-  
velopment. Specifications may change in any manner without no-  
tice.  
Preliminary  
First Production  
This datasheet contains preliminary data. Supplementary data will  
be published at a later date. National Semiconductor Corporation  
reserves the right to make changes at any time without notice in  
order to improve design and supply the best possible product.S  
No Identification Noted Full production  
This datasheet contains final specifications. National Semicon-  
ductor Corporation reserves the right to make changes at any time  
without notice in order to improve design and supply the best pos-  
sible product.  
Obsolete  
Not in Production  
This datasheet contains specifications on a product that has been  
discontinued by National Semiconductor Corporation. The  
datasheet is printed for reference information only.  
Table 41. Revision History  
Revision #  
Revisions / Comments  
(PDF Date)  
0.3  
Third draft of preliminary datasheet. First pass through tech pubs.  
(January 2003)  
0.4  
(April 2003)  
Datasheet revised to include new radio and additional functionality. Several edits have been made  
to functional, performance, and electrical details.  
1.0  
Final datasheet. Several edits have been made to performance, electrical details and command  
interface. See Table 42 for details.  
(February 2004)  
Revision 1.0  
38  
www.national.com  
16.0 Datasheet Revision History (Continued)  
Table 42. Edits to Current Revision  
Revisions / Comments  
Section  
General  
Section "General Description" on page 1 updated  
– Text Description updated  
Description  
– Features Updated  
– Physical dimension changed to (10.1mm x 14.0mm x 1.9mm)  
Pad Description  
Table 2 "System Interface Signals" on page 5 updated  
– changed information on 32_CLK pins  
Electrical  
Specifications  
Table “USB Transceiver” removed  
Table 10 "Recommended Operating Conditions" on page 8 updated  
– USB_VCC Footnote added  
Table 11 "Power Supply Electrical Specifications: Analog and Digital LDOs" on page 8 added  
,,  
Table 12 "Power Supply Requirements " on page 9 updated  
Table 13 "Digital DC Characteristics" on page 9 updated  
Table 14 "Receiver Performance Characteristics" on page 10 updated  
Table 15 "Transmitter Performance Characteristics" on page 11 updated  
Figure 9 "Transceiver Return Loss" on page 14 added  
Functional  
Description  
Section 7.1.4 "Application with command interface" on page 14 updated  
Section 7.2 "Memory" on page 14 updated  
Section 7.4.3 "Interface Select Inputs (ISEL1, ISEL2)" on page 15 updated  
Section 7.4.4 "Module and LInk Status Outputs" on page 15 updated  
Table 20 "Module / Link Status Definitions" on page 15 updated  
Section 8.7 "Receive Signal Strength Indicator (RSSI)" on page 16 updated  
Section 8.11 "FRequency Synthesizers" on page 16 updated  
Section 8.13 "External Crystal Oscillators" on page 16 updated  
New in this revision  
Digital Smart  
Radio  
System Power  
Up Sequence  
Integrated  
Firmware  
Section 10.1 "Features" on page 21 updated  
Table 25 "Operation Parameters Stored in LMX9820" on page 22 updated  
New in this revision  
Low Power  
Modes  
Command  
Interface  
Table 34 "Wake Up Functionality" on page 26 added  
Table 36 "Local Bluetooth Settings" on page 26 updated  
Table 38 "Local Hardware Commands" on page 28 updated  
Section 14.1 "MATCHING NETWORK" on page 32 updated  
Section 14.2 "FILTERED POWER SUPPLY" on page 32 updated  
Section 14.3 "HOST INTERFACE" on page 32 updated  
Application|  
Information  
Figure 21 "Example System Schematic with pre-selected 115.2kbit/s UART speed" on page 32  
updated  
Soldering  
Figure 26 "Typical Reflow Profiles" on page 37 updated  
Revision 1.0  
39  
www.national.com  
17.0 Physical Dimensions inches (millimeters) unless otherwise noted  
NOTES:  
PAD PITCH IS 1.00 MILLIMETER (.0394”) NON-ACCUMULATIVE.  
UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS ARE IN INCHES.  
TOLERANCE, UNLESS OTHERWISE SPECIFIED:  
TWO PLACE (.00): ±.01  
THREE PLACE (.000): ±.002  
ANGULAR: ±1°  
Figure 27. LTCC (Low Temperature Co-Fired Ceramic) Package SB116A (RevA)  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems which, 2. A critical component is any component of a life support device  
(a) are intended for surgical implant into the body, or (b) support  
or sustain life, and whose failure to perform, when properly used  
in accordance with instructions for use provided in the labeling,  
can be reasonably expected to result in a significant injury to the  
user.  
or system whose failure to perform can be reasonably expected  
to cause the failure of the life support device or system, or to af-  
fect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship  
Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no “Banned  
Substances” as defined in CSP-9-111S2.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Asia Pacific  
National Semiconductor  
Japan Ltd.  
Tel: 1-800-272-9959  
Fax: 1-800-737-7018  
Email: support@nsc.com  
Customer Response Group  
Tel: 65-254-4466  
Fax: 65-250-4466  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Fax:  
+49 (0) 180-530 85 86  
Email: europe.support@nsc.com  
Deutsch Tel:  
+49 (0) 69 9508 6208  
+44 (0) 870 24 0 2171  
+33 (0) 1 41 91 8790  
English Tel:  
Email: ap.support@nsc.com  
Francais Tel:  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

LMX9820A

Bluetooth Serial Port Module
NSC

LMX9820ASM

Bluetooth Serial Port Module
NSC

LMX9820ASMX

Bluetooth Serial Port Module
NSC

LMX9820ASMX/NOPB

SPECIALTY TELECOM CIRCUIT, PBGA116, 10.10 X 14.10 MM, 2 MM HEIGHT, ROHS COMPLIANT, LGA-116
TI

LMX9820SB

Bluetooth Serial Port Module
NSC

LMX9820SBX

Bluetooth Serial Port Module
NSC

LMX9830

BluetoothTM Serial Port Module
NSC

LMX9830SM

BluetoothTM Serial Port Module
NSC

LMX9830SM/NOPB

IC SPECIALTY TELECOM CIRCUIT, PBGA60, 9 X 6 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, FBGA-60, Telecom IC:Other
NSC

LMX9830SMX

BluetoothTM Serial Port Module
NSC

LMX9838

Bluetooth Serial Port Module
NSC

LMX9838

Bluetooth Serial Port Module
TI