LP3971 [NSC]

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS; 电源管理单元用于高级应用处理器
LP3971
型号: LP3971
厂家: National Semiconductor    National Semiconductor
描述:

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
电源管理单元用于高级应用处理器

文件: 总42页 (文件大小:1373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 2006  
LP3971  
Power Management Unit for Advanced Application  
Processors  
General Description  
Features  
n Compatible with advanced applications processors  
requiring DVM (Dynamic Voltage Management)  
n Three buck regulators for powering high current  
processor functions or I/O’s  
The LP3971 is a multi-function, programmable Power Man-  
agement Unit, designed especially for advanced application  
processors. The LP3971 is optimized for low power hand-  
held applications and provides 6 low dropout, low noise  
linear regulators, three DC/DC magnetic buck regulators, a  
back-up battery charger and two GPIO’s. A high speed serial  
interface is included to program individual regulator output  
voltages as well as on/off control.  
n 6 LDO’s for powering RTC, peripherals, and I/O’s  
n Backup battery charger with automatic switch for  
lithium-manganese coin cell batteries and Super  
capacitors  
n I2C compatible high speed serial interface  
n Software control of regulator functions and settings  
n Precision internal reference  
Key Specifications  
Buck Regulators  
n Thermal overload protection  
n Current overload protection  
n Programmable VOUT from 0.8 to 3.3V  
n Up to 95% efficiency  
n Tiny 40-pin 5x5 mm LLP package  
n Up to 1.6A output current  
n
3% output voltage accuracy  
Applications  
LDO’s  
n PDA phones  
n Programmable VOUT of 1.0V–3.3V  
n Smart phones  
n Personal Media Players  
n Digital cameras  
n Application processors  
— Intel Xscale  
n
3% output voltage accuracy  
n 150/300/370 mA output currents  
— LDO RTC 30 mA  
— LDO 1 300 mA  
— LDO 2 150 mA  
— LDO 3 150 mA  
— Freescale  
— LDO 4 150 mA  
— Samsung  
— LDO 5 370 mA  
n 100 mV (typ) dropout  
© 2006 National Semiconductor Corporation  
DS201807  
www.national.com  
Simplified Application Circuit  
20180701  
Connection Diagrams and Package Mark Information  
40-Pin Leadless Leadframe Package  
NS Package Number SQF40A  
20180702  
Note: Circle marks pin 1 position.  
www.national.com  
2
Connection Diagrams and Package Mark Information (Continued)  
Package Mark  
20180704  
Top View  
Note: The actual physical placement of the package marking will vary from part to part. The package marking “UZYY” designates  
the date code. “TT” is a NSC internal code for die traceability. Both will vary considerably. “LP3971SQF” identifies the device (part  
number, option, etc.).  
Ordering Information  
Option  
Order Number  
LP3971SQ-A514  
LP3971SQX-A514  
LP3971SQ-B410  
LP3971SQX-B410  
Package Marking  
71-A514  
Supplied As  
Default Voltage version – A**  
Default Voltage version – A**  
‘Default Voltage version - B  
Default Voltage version - B  
250 units, Tape-and-Reel  
2500 units, Tape-and-Reel  
250 units, Tape-and-Reel  
2500 units, Tape-and-Reel  
71-A514  
71-B410  
71-B410  
** To be Released  
20180705  
Default VOUT Coding  
Z
0
1
2
3
4
5
Default VOUT  
1.3  
1.8  
2.5  
2.8  
3.0  
3.3  
3
www.national.com  
Pin Descriptions  
Pin #  
Name  
PWR_ON  
nTEST_JIG  
SPARE  
I/O  
I
Type  
D
D
D
D
A
Description  
1
CPU Wakeup input  
CPU Wakeup input  
CPU Wakeup input  
CPU Wakeup output  
Buck1 Feedback  
2
I
3
I
4
EXT_WAKEUP  
FB1  
O
I
5
6
VIN  
I
P
Battery Input (Internal circuitry and LDO1–3 power input)  
LDO1 output  
7
VOUT LDO1  
VOUT LDO2  
nRSTI  
O
O
I
P
8
P
LDO2 output  
9
D
G
A
Reset Input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
GND1  
G
O
O
O
I
Ground  
VREF  
Bypass Cap. for reference  
LDO3 output  
VOUT LDO3  
VOUT LDO4  
VIN LDO4  
VIN BUBATT  
VOUT LDO_RTC  
nBATT_FLT  
PGND2  
P
P
LDO4 output  
P
Input power for LDO4  
Back Up Battery input  
LDO_RTC output  
I
P
O
O
G
O
I
P
D
G
P
Main Battery fault output  
Buck2 NMOS Power Ground  
Buck2 Output  
SW2  
VIN Buck2  
SDA  
P
Buck2 battery input  
I2C Data  
I2C Clock  
I/O  
I
D
D
A
SCL  
FB2  
I
Buck2 Feedback  
nRSTO  
O
O
I
D
P
Reset output  
VOUT LDO5  
VIN LDO5  
VDDA  
LDO5 output  
P
Input power for LDO5  
Analog Power  
I
P
FB3  
I
A
Buck3 Feedback  
GPIO1/nCHG_EN  
GPIO2  
I/O  
I/O  
I
D
D
P
General Purpose I/O/Ext. backup battery charger enable  
General Purpose I/O  
Buck3 battery input  
Buck3 Output  
VIN Buck3  
SW3  
O
G
G
I
P
PGND3  
G
G
D
D
D
G
P
Buck3 NMOS Power Ground  
Bucks 1, 2 and 3 analog Ground  
Bucks external clock input  
High voltage domain enable  
Low Voltage domain enable  
Buck1 NMOS Power Ground  
Buck1 Output  
BGND1,2,3  
SYNC  
SYS_EN  
PWR_EN  
PGND1  
I
I
G
O
I
SW1  
VIN Buck1  
P
Buck1 battery input  
A: Analog Pin  
D: Digital Pin  
G: Ground Pin  
P: Power Pin  
I: Input Pin  
I/O: Input/Output Pin  
O: Output Pin  
Note: In this document active low logic items are prefixed with a lowercase “n”  
www.national.com  
4
Applications Schematic Diagrams  
Diagram 1 LDO 4 and LDO5 Connected To VBATTERY  
20180706  
See Application Hints for recommended external components and component selection  
** NOTE: RTC LDO – In applications when Vbatt drops below 1.7V (ie. removing the main battery), system reset will be enabled. To void this situation, replace the  
RTC LDO (pin 16) 1.0uF capacitor with a 10uF capacitor.  
5
www.national.com  
Applications Schematic Diagrams (Continued)  
Diagram 2 LDO 4 and LDO5 Connected To 1.8V Supply  
20180707  
www.national.com  
6
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
ESD Rating (Note 5)  
Human Body Model  
Machine Model  
2 kV  
200V  
All Inputs  
−0.3V to +6V  
0.3V  
Operating Ratings  
VIN  
GND to GND SLUG  
Junction Temperature (TJ-MAX  
Storage Temperature  
Power Dissipation  
2.7V to 5.5V  
0 to (VIN + 0.3V)  
−40˚C to +125˚C  
−40˚C to +85˚C  
)
150˚C  
VEN  
−65˚C to +150˚C  
Junction Temperature (TJ)  
Operating Temperature (TA)  
Maximum Power Dissipation  
(TA = 70˚C) (Notes 3, 4)  
(TA = 70˚C) (Note 3)  
Junction-to-Ambient Thermal  
Resistance θJA (Note 3)  
3.2W  
2.2W  
25˚C/W  
260˚C  
Maximum Lead Temp (Soldering)  
General Electrical Characteristics Typical values and limits appearing in normal type apply for TJ  
25˚C. Limits appearing in boldface type apply over the entire junction temperature range for operation, −40˚C to +125˚C.  
(Notes 2, 6)  
=
Symbol  
Parameter  
Conditions  
Min  
2.7  
Typ  
Max  
5.5  
Units  
V
3
IN, VDDA, VIN Buck1, 2 and Battery Voltage  
3.6  
V
VINLDO4, VINLDO5  
TSD  
Power Supply for LDO 4 and 5  
Thermal Shutdown (Note 14)  
1.74  
3.6  
160  
20  
5.5  
V
Temperature  
Hysteresis  
˚C  
**No input supply should be higher then VDDA  
Supply Specification (Notes 2, 6)  
IMAX  
Maximum Output  
VOUT (Volts)  
Supply  
Range (V)  
Resolution (mV)  
N/A  
Current (mA) (Note 14)  
LDO_RTC  
LDO1  
Tracking (Note 10)  
1.8 to 3.3  
30 or 10  
300  
100  
LDO2  
1.8 to 3.3  
100  
150  
LDO3  
1.8 to 3.3  
100  
150  
LDO4  
1.0 to 3.3  
50-600  
50-600  
50-600  
50-600  
50-600  
150  
LDO5  
1.0 to 3.3  
370  
BUCK 1  
BUCK 2  
BUCK 3  
0.8 to 3.3  
1600  
1600  
1600  
0.8 to 3.3  
0.8 to 3.3  
Defaults (Notes 2, 6)  
‘A’ Version  
Enable ‘A’  
‘B’ Version  
Enable ‘B’  
Supply  
LDO_RTC  
LDO1  
(V)  
2.8  
1.8  
1.8  
3.0  
3.0  
1.4  
1.4  
3.3  
1.8  
(V)  
2.8  
3.0  
3.0  
3.0  
1.3  
1.1  
1.4  
3.0  
1.8  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
LDO2  
LDO3  
LDO4  
LDO5  
BUCK1  
BUCK2  
BUCK3  
**Version-A LDO Tracking Disabled, Version-B LDO Tracking Enabled  
7
www.national.com  
LDO RTC  
Unless otherwise noted, VIN = 3.6V, CIN = 1.0 µF, COUT = 0.47 µF, COUT (VRTC) = 1.0 µF ceramic. Typical values and limits  
appearing in normal type apply for TJ = 25˚C. Limits appearing in boldface type apply over the entire junction temperature  
range for operation, −40˚C to +125˚C. (Notes 2, 6, 7) and (Note 10)  
Symbol  
VOUT  
Parameter  
Conditions  
VIN Connected, Load Current =  
1 mA  
Min  
Typ  
Max  
Units  
Output Voltage Accuracy  
2.632  
2.8  
2.968  
V
Accuracy  
VOUT  
Line Regulation  
Load Regulation  
VIN = (VOUT nom + 1.0V) to 5.5V  
(Note 11) Load Current = 1 mA  
From Main Battery  
0.15  
0.05  
0.5  
%/V  
Load Current = 1 mA to 30 mA  
From Backup Battery  
VIN = 3.0V  
%/mA  
Load Current = 1 mA to 10 mA  
From Main Battery  
ISC  
Short Circuit Current Limit  
Dropout Voltage  
100  
30  
VIN = VOUT +0.3V to 5.5V  
From Backup Battery  
Load Current = 10 mA  
mA  
mV  
VIN  
-
375  
VOUT  
IQ_Max  
TP1  
Maximum Quiescent Current  
RTC LDO Input Switched from  
Main Battery to Backup Battery  
RTC LDO Input Switched from  
Backup Battery to Main Battery  
Output Capacitor  
IOUT = 0 mA  
VIN Falling  
30  
µA  
V
2.9  
TP2  
CO  
VIN Rising  
3.0  
1.0  
V
Capacitance for Stability  
ESR  
0.7  
5
µF  
500  
mΩ  
www.national.com  
8
LDO 1 to 5  
Unless otherwise noted, VIN = 3.6V, CIN = 1.0 µF, COUT = 0.47 µF, COUT (VRTC) = 1.0 µF ceramic. Typical values and limits  
appearing in normal type apply for TJ = 25˚C. Limits appearing in boldface type apply over the entire junction temperature  
range for operation, −40˚C to +125˚C. (Notes 2, 6, 7, 10, 11, 15) and (Note 16).  
Symbol  
Parameter  
Conditions  
Min  
−3  
Typ  
Max  
3
Units  
VOUT  
Output Voltage Accuracy (Default  
Load Current = 1 mA  
%
Accuracy VOUT  
)
VOUT  
Line Regulation  
VIN =3.1v to 5.0V, (Note 11) Load  
Current = 1 mA  
0.15  
%/V  
Load Regulation  
VIN = 3.6V,  
0.011  
%/mA  
Load Current = 1 mA to IMAX  
LDO1–4, VOUT = 0V  
ISC  
Short Circuit Current Limit  
Dropout Voltage  
400  
500  
mA  
mV  
LDO5, VOUT = 0V  
VIN  
-
Load Current = 50 mA (Note 7)  
150  
VOUT  
PSRR  
IQ  
Power Supply Ripple Rejection  
Quiescent Current “On”  
Quiescent Current “On”  
Quiescent Current “Off”  
Turn On Time  
f = 10 kHz, Load Current = IMAX  
IOUT = 0 mA  
45  
40  
dB  
µA  
IOUT = IMAX  
60  
EN is de-asserted  
Start up from Shut-down  
Capacitance for Stability  
0˚C TJ 125˚C  
−40˚C TJ 125˚C  
ESR  
0.03  
300  
0.47  
TON  
µsec  
µF  
COUT  
Output Capacitor  
0.33  
0.68  
5
1.0  
500  
MΩ  
Buck Converters SW1, SW2, SW3  
Unless otherwise noted, VIN = 3.6V, CIN = 10 µF, COUT = 10 µF, LOUT = 2.2 µH ceramic. Typical values and limits appearing in  
normal type apply for TJ = 25˚C. Limits appearing in boldface type apply over the entire junction temperature range for opera-  
tion, −40˚C to +125˚C. (Notes 2, 6, 12) and (Note 13).  
Symbol  
VOUT  
Eff  
Parameter  
Output Voltage Accuracy  
Efficiency  
Conditions  
Default VOUT  
Min  
Typ  
Max  
Units  
%
−3  
+3  
Load Current = 500 mA  
EN is de-asserted  
90  
0.1  
13  
%
ISHDN  
Shutdown Supply Current  
Sync Mode Clock Frequency  
µA  
Synchronized from 13 MHz System  
Clock  
10.4  
15.6  
2.4  
MHz  
fOSC  
IPEAK  
IQ  
Internal Oscillator Frequency  
Peak Switching Current Limit  
Quiescent Current “On”  
2.0  
2.1  
21  
MHz  
A
No Load PFM Mode  
No Load PWM Mode  
µA  
200  
240  
RDSON  
(P)  
Pin-Pin Resistance PFET  
Pin-Pin Resistance NFET  
mΩ  
RDSON  
(N)  
150  
500  
mΩ  
TON  
CIN  
Turn On Time  
Start up from Shut-down  
Capacitance for Stability  
Capacitance for Stability  
µsec  
µF  
Input Capacitor  
Output Capacitor  
8
8
CO  
µF  
9
www.national.com  
Back-Up Charger Electrical Characteristics  
Unless otherwise noted, VIN = VBATT = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25˚C. Limits ap-  
pearing in boldface type apply over the entire junction temperature range for operation, −40˚C to +125˚C. (Notes 2, 6) and  
(Note 8).  
Symbol  
VIN  
Parameter  
Conditions  
Voltage at VIN  
Min  
3.3  
Typ  
Max  
5.5  
Units  
V
Operational Voltage Range  
Backup Battery Charging Current  
IOUT  
VIN = 3.6V, Backup_Bat = 2.5V,  
Backup Battery Charger Enabled  
(Note 8)  
190  
µA  
VOUT  
Charger Termination Voltage  
VIN = 5.0V Backup Battery Charger  
Enabled. Programmable  
2.91  
3.1  
9
V
Backup Battery Charger Short  
Circuit Current  
Backup_Bat = 0V, Backup Battery  
Charger Enabled  
mA  
dB  
PSRR  
Power Supply Ripple Rejection  
Ratio  
IOUT 50 µA, VOUT = 3.15V  
VOUT + 0.4 VBATT = VIN 5.0V  
15  
<
f
10 kHz  
<
IQ  
Quiescent Current  
IOUT 50 µA  
25  
µA  
µF  
COUT  
Output Capacitance  
Output Capacitor ESR  
0 µA IOUT 100 µA  
0.1  
5
500  
MΩ  
Logic Inputs and Outputs DC Operating Conditions (Note 2)  
Logic Inputs (SYS_EN, PWR_EN, SYNC, nRSTI, PWR_ON, nTEST_JIG, SPARE and GPI’s)  
Symbol  
VIL  
Parameter  
Low Level Input Voltage  
High Level Input Voltage  
Conditions  
Min  
Max  
0.5  
Units  
V
V
VIH  
VRTC  
−0.5V  
−1  
ILEAK  
Input Leakage Current  
+1  
µA  
Logic Outputs (nRSTO, EXT_WAKEUP and GPO’s)  
Symbol Parameter  
VOL Output Low Level  
Conditions  
Load = +0.2 mA = IOL Max  
Load = −0.1 mA = IOL Max  
Min  
Max  
0.5  
Units  
V
V
VOH  
Output High Level  
VRTC  
−0.5V  
ILEAK  
Output Leakage Current  
VON = VIN  
+5  
µA  
Logic Output (nBATT_FLT)  
Symbol Parameter  
Conditions  
Programmable via Serial Interface  
Default = 2.8V  
Min  
2.4  
Typ  
Max  
3.4  
Units  
nBATT_FLT Threshold Voltage  
2.8  
V
VOL  
Output Low Level  
Output High Level  
Load = +0.4 mA = IOL Max  
Load = −0.2 mA = IOH Max  
0.5  
+5  
V
V
VOH  
VRTC  
−0.5V  
ILEAK  
Input Leakage Current  
µA  
www.national.com  
10  
I2C Compatible Serial Interface Electrical Specifications (SDA and SCL)  
Unless otherwise noted, VIN = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25˚C. Limits appearing in  
boldface type apply over the entire junction temperature range for operation, −40˚C to +125˚C. (Notes 2, 6) and (Note 9)  
Symbol  
VIL  
Parameter  
Low Level Input Voltage  
High Level Input Voltage  
Low Level Output Voltage  
Low Level Output Current  
Clock Frequency  
Conditions  
Min  
−0.5  
0.7 VRTC  
0
Typ  
Max  
Units  
(Note 14)  
(Note 14)  
(Note 14)  
0.3 VRTC  
VRTC  
V
VIH  
VOL  
0.2 VTRC  
IOL  
VOL = 0.4V (Note 14)  
(Note 14)  
3.0  
mA  
kHz  
µs  
FCLK  
tBF  
400  
Bus-Free Time Between Start and Stop (Note 14)  
1.3  
0.6  
1.3  
0.6  
0.6  
0
tHOLD  
tCLKLP  
tCLKHP  
tSU  
Hold Time Repeated Start Condition  
CLK Low Period  
(Note 14)  
(Note 14)  
(Note 14)  
(Note 14)  
(Note 14)  
(Note 14)  
(Note 14)  
(Note 14)  
µs  
µs  
CLK High Period  
µs  
Set Up Time Repeated Start Condition  
µs  
tDATAHLD Data Hold Time  
µs  
tCLKSU  
TSU  
Data Set Up Time  
100  
0.6  
ns  
Set Up Time for Start Condition  
Maximum Pulse Width of Spikes that  
Must be Suppressed by the Input Filter  
of Both DATA & CLK Signals  
µs  
TTRANS  
50  
ns  
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device  
is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical  
Characteristics tables.  
Note 2: All voltages are with respect to the potential at the GND pin.  
Note 3: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be  
derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125˚C), the maximum power  
dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (θ ), as given by the  
JA  
following equation: TA-MAX = TJ-MAX-OP – (θ x PD-MAX).  
JA  
Note 4: Junction-to-ambient thermal resistance (θ ) is taken from a thermal modeling result, performed under the conditions and guidelines set forth in the JEDEC  
JA  
standard JESD51–7. The test board is a 4-layer FR-4 board measuring 102 mm x 76 mm x 1.6 mm with a 2x1 array of thermal vias. The ground plane on the board  
is 50 mm x 50 mm. Thickness of copper layers are 36 µm/1.8 µm/18 µm/36 µm (1.5 oz/1 oz/1 oz/1.5 oz). Ambient temperature in simulation is 22˚C, still air. Power  
dissipation is 1W. Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation  
exists, special care must be paid to thermal dissipation issues in board design. The value of θ of this product can vary significantly, depending on PCB material,  
JA  
layout, and environmental conditions. In applications where high maximum power dissipation exists (high V , high I  
), special care must be paid to thermal  
IN  
OUT  
dissipation issues. For more information on these topics, please refer to Application Note 1187: Leadless Leadframe Package (LLP) and the Power Efficiency and  
Power Dissipation section of this datasheet.  
Note 5: The Human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin. (MIL-STD-883 3015.7). The machine model is a 200 pF  
capacitor discharged directly into each pin. (EAIJ)  
Note 6: All limits guaranteed at room temperature (standard typeface) and at temperature extremes (bold typeface). All room temperature limits are production  
tested, guaranteed through statistical analysis or guaranteed by design. All limits at temperature extremes are guaranteed via correlation using standard Statistical  
Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
Note 7: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.  
2
Note 8: Back-up battery charging current is programmable via the I C compatible interface. Refer to the Application Section for more information.  
2
Note 9: The I C signals behave like open-drain outputs and require an external pull-up resistor on the system module in the 2 kto 20 krange.  
Note 10: LDO_RTC voltage can track LDO1 (I/O) Voltage. Refer to LP3971 Controls Section for more information.  
Note 11: V minimum for line regulation values is 2.7V for LDOs 1–3 and 1.8V for LDOs 4 and 5. Condition does not apply to input voltages below the minimum  
IN  
input operating voltage.  
Note 12: The input voltage range recommended for ideal applications performance for the specified output voltages is given below:  
<
<
OUT  
V
IN  
V
IN  
= 2.7V to 5.5V for 0.80V  
V
1.8V  
+ 1V) to 5.5V for 1.8V V 3.3V  
OUT  
= (V  
OUT  
Note 13: Test condition: for V  
less than 2.7V, V = 3.6V; for V  
greater than or equal to 2.7V, V = V  
+ 1V.  
OUT  
OUT  
IN  
OUT  
IN  
Note 14: This electrical specification is guaranteed by design.  
Note 15: An increase in the load current results in a slight decrease in the output voltage and vice versa.  
Note 16: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply  
for input voltages below 2.7V for LDOs 1–3 and 1.8V for LDOs 4 and 5.  
11  
www.national.com  
Input Test Signals  
20180708  
FIGURE 1. Line Transient Response Input Test Signal  
20180709  
FIGURE 2. PSRR Input Test Signal  
www.national.com  
12  
Functional Block Diagram  
20180710  
13  
www.national.com  
Buck Converter Operation  
DEVICE INFORMATION  
The LP3971 includes three high efficiency step down DC-DC  
switching buck converters. Using a voltage mode architec-  
ture with synchronous rectification, the buck converters have  
the ability to deliver up to 1600 mA depending on the input  
voltage, output voltage, ambient temperature and the induc-  
tor chosen. There are three modes of operation depending  
on the current required - PWM, PFM, and shutdown. The  
device operates in PWM mode at load currents of approxi-  
mately 100 mA or higher, having voltage tolerance of 3%  
with 95% efficiency or better. Lighter load currents cause the  
device to automatically switch into PFM for reduced current  
consumption. Shutdown mode turns off the device, offering  
the lowest current consumption (IQ,  
= 0.01 µA  
SHUTDOWN  
20180711  
typ). Additional features include soft-start, under voltage pro-  
tection, current overload protection, and thermal shutdown  
protection. The part uses an internal reference voltage of  
0.5V. It is recommended to keep the part in shutdown until  
the input voltage is 2.8V or higher.  
FIGURE 3. Typical PWM Operation  
Internal Synchronous Rectification  
CIRCUIT OPERATION  
While in PWM mode, the converters uses an internal NFET  
as a synchronous rectifier to reduce rectifier forward voltage  
drop and associated power loss. Synchronous rectification  
provides a significant improvement in efficiency whenever  
the output voltage is relatively low compared to the voltage  
drop across an ordinary rectifier diode.  
The buck converter operates as follows. During the first  
portion of each switching cycle, the control block turns on the  
internal PFET switch. This allows current to flow from the  
input through the inductor to the output filter capacitor and  
load. The inductor limits the current to a ramp with a slope of  
(VIN–VOUT)/L, by storing energy in a magnetic field.  
Current Limiting  
During the second portion of each cycle, the controller turns  
the PFET switch off, blocking current flow from the input, and  
then turns the NFET synchronous rectifier on. The inductor  
draws current from ground through the NFET to the output  
filter capacitor and load, which ramps the inductor current  
down with a slope of - VOUT/L.  
A current limit feature allows the converters to protect itself  
and external components during overload conditions. PWM  
mode implements current limiting using an internal compara-  
tor that trips at 2.1A (typ). If the output is shorted to ground  
the device enters a timed current limit mode where the NFET  
is turned on for a longer duration until the inductor current  
falls below a low threshold, ensuring inductor current has  
more time to decay, thereby preventing runaway.  
The output filter stores charge when the inductor current is  
high, and releases it when inductor current is low, smoothing  
the voltage across the load.  
The output voltage is regulated by modulating the PFET  
switch on time to control the average current sent to the load.  
The effect is identical to sending a duty-cycle modulated  
rectangular wave formed by the switch and synchronous  
rectifier at the SW pin to a low-pass filter formed by the  
inductor and output filter capacitor. The output voltage is  
equal to the average voltage at the SW pin.  
PFM OPERATION  
At very light loads, the converter enters PFM mode and  
operates with reduced switching frequency and supply cur-  
rent to maintain high efficiency.  
The part will automatically transition into PFM mode when  
either of two conditions occurs for a duration of 32 or more  
clock cycles:  
A: The inductor current becomes discontinuous.  
PWM OPERATION  
B: The peak PMOS switch current drops below the IMODE  
During PWM operation the converter operates as a voltage  
mode controller with input voltage feed forward. This allows  
the converter to achieve good load and line regulation. The  
DC gain of the power stage is proportional to the input  
voltage. To eliminate this dependence, feed forward in-  
versely proportional to the input voltage is introduced.  
<
level, (Typically IMODE 30 mA + VIN/42).  
While in PWM (Pulse Width Modulation) mode, the output  
voltage is regulated by switching at a constant frequency  
and then modulating the energy per cycle to control power to  
the load. At the beginning of each clock cycle the PFET  
switch is turned on and the inductor current ramps up until  
the comparator trips and the control logic turns off the switch.  
The current limit comparator can also turn off the switch in  
case the current limit of the PFET is exceeded. Then the  
NFET switch is turned on and the inductor current ramps  
down. The next cycle is initiated by the clock turning off the  
NFET and turning on the PFET.  
www.national.com  
14  
nominal PWM output voltage. If the output voltage is below  
the “high” PFM comparator threshold, the PMOS power  
switch is turned on. It remains on until the output voltage  
reaches the ‘high’ PFM threshold or the peak current ex-  
ceeds the IPFM level set for PFM mode. The typical peak  
current in PFM mode is: IPFM = 112 mA + VIN/27. Once the  
PMOS power switch is turned off, the NMOS power switch is  
turned on until the inductor current ramps to zero. When the  
NMOS zero-current condition is detected, the NMOS power  
switch is turned off. If the output voltage is below the ‘high’  
PFM comparator threshold (see Figure 5), the PMOS switch  
is again turned on and the cycle is repeated until the output  
reaches the desired level. Once the output reaches the ‘high’  
PFM threshold, the NMOS switch is turned on briefly to ramp  
the inductor current to zero and then both output switches  
are turned off and the part enters an extremely low power  
mode. Quiescent supply current during this ‘sleep’ mode is  
16 µA (typ), which allows the part to achieve high efficiencies  
under extremely light load conditions. When the output drops  
below the ‘low’ PFM threshold, the cycle repeats to restore  
the output voltage (average voltage in PFM mode) to  
Buck Converter Operation (Continued)  
20180712  
FIGURE 4. Typical PFM Operation  
<
1.15% above the nominal PWM output voltage. If the load  
current should increase during PFM mode (see Figure 5)  
causing the output voltage to fall below the ‘low2’ PFM  
threshold, the part will automatically transition into fixed-  
frequency PWM mode. Typically when VIN = 3.6V the part  
transitions from PWM to PFM mode at 100 mA output  
current.  
During PFM operation, the converter positions the output  
voltage slightly higher than the nominal output voltage during  
PWM operation, allowing additional headroom for voltage  
drop during a load transient from light to heavy load. The  
PFM comparators sense the output voltage via the feedback  
pin and control the switching of the output FETs such that the  
<
<
output voltage ramps between 0.6% and 1.7% above the  
20180713  
FIGURE 5. Operation in PFM Mode and Transfer to PWM Mode  
15  
www.national.com  
VIN, MIN = ILOAD * (RDSON, PFET + RINDUCTOR) + VOUT  
Buck Converter Operation (Continued)  
SHUTDOWN MODE  
ILOAD  
RDSON, PFET  
Load Current  
Drain to source resistance of PFET  
switch in the triode region  
Inductor resistance  
During shutdown the PFET switch, reference, control and  
bias circuitry of the converters are turned off. The NFET  
switch will be on in shutdown to discharge the output. When  
the converter is enabled, soft start is activated. It is recom-  
mended to disable the converter during the system power up  
and undervoltage conditions when the supply is less than  
2.8V.  
RINDUCTOR  
BUCK CONVERTER EFFICIENCY  
VIN (V)  
3.6  
VOUT (V)  
1.4  
IOUT (mA)  
100  
EFF(%)  
85  
SOFT START  
3.6  
1.4  
500  
89  
The buck converter has a soft-start circuit that limits in-rush  
current during start-up. During start-up the switch current  
limit is increased in steps. Soft start is activated only if EN  
goes from logic low to logic high after VIN reaches 2.8V. Soft  
start is implemented by increasing switch current limit in  
steps of 213 mA, 425 mA, 850 mA and 1700 mA (typ. Switch  
current limit). The start-up time thereby depends on the  
output capacitor and load current demanded at start-up.  
Typical start-up times with 10 µF output capacitor and 1000  
mA load current is 390 µs and with 1 mA load current its  
295 µs.  
3.6  
1.4  
1000  
84  
3.6  
1.4  
1500  
78  
VIN (V)  
3.6  
VOUT (V)  
3.3  
IOUT (mA)  
100  
EFF(%)  
92  
3.6  
3.3  
500  
96  
3.6  
3.3  
1000  
93  
3.6  
3.3  
1500  
90  
VIN (V)  
3.6  
VOUT (V)  
1.8  
IOUT (mA)  
100  
EFF(%)  
85  
LDO - LOW DROP OUT OPERATION  
The LP3971 can operate at 100% duty cycle (no switching;  
PMOS switch completely on) for low drop out support of the  
output voltage. In this way the output voltage will be con-  
trolled down to the lowest possible input voltage. When the  
device operates near 100% duty cycle, output voltage ripple  
is approximately 25 mV. The minimum input voltage needed  
to support the output voltage is  
3.6  
1.8  
500  
91  
3.6  
1.8  
1000  
87  
3.6  
1.8  
1500  
82  
I2C Compatible Interface  
I2C DATA VALIDITY  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can  
only be changed when CLK is LOW.  
20180714  
I2C START and STOP CONDITIONS  
generates START and STOP bits. The I2C bus is considered  
to be busy after START condition and free after STOP con-  
dition. During data transmission, I2C master can generate  
repeated START conditions. First START and repeated  
START conditions are equivalent, function-wise.  
START and STOP bits classify the beginning and the end of  
the I2C session. START condition is defined as SDA signal  
transitioning from HIGH to LOW while SCL line is HIGH.  
STOP condition is defined as the SDA transitioning from  
LOW to HIGH while SCL is HIGH. The I2C master always  
www.national.com  
16  
I2C Compatible Interface (Continued)  
20180715  
TRANSFERRING DATA  
After the START condition, a chip address is sent by the I2C  
master. This address is seven bits long followed by an eighth  
bit which is a data direction bit (R/W). The LP3971 address  
is 46h. For the eighth bit, a “0” indicates a WRITE and a “1”  
indicates a READ. The second byte selects the register to  
which the data will be written. The third byte contains data to  
write to the selected register.  
Every byte put on the SDA line must be eight bits long, with  
the most significant bit (MSB) being transferred first. The  
number of bytes that can be transmitted per transfer is  
unrestricted. Each byte of data has to be followed by an  
acknowledge bit. The acknowledge related clock pulse is  
generated by the master. The transmitter releases the SDA  
line (HIGH) during the acknowledge clock pulse. The re-  
ceiver must pull down the SDA line during the 9th clock  
pulse, signifying an acknowledge. A receiver which has been  
addressed must generate an acknowledge after each byte  
has been received.  
I2C CHIP ADDRESS - 7h’34  
MSB  
ADR6  
Bit7  
0
ADR5  
Bit6  
1
ADR4  
Bit5  
1
ADR3  
Bit4  
0
ADR2  
Bit3  
1
ADR1  
Bit2  
0
ADR0  
Bit1  
0
R/W  
Bit0  
R/W  
Write Cycle  
20180716  
When a READ function is to be accomplished, a WRITE function must precede the READ function as follows.  
Read Cycle  
20180717  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = 34h (Chip Address)  
17  
www.national.com  
2
I C Register Definitions  
I2C CONTROL REGISTERS  
Register  
Address  
8h’02  
8h’07  
8h’0B  
8h’0E  
8h’10  
8h’11  
8h’12  
8h’13  
8h’20  
8h’23  
8h’24  
8h’25  
8h’29  
8h’2A  
8h’2B  
8h’32  
8h’33  
8h’34  
8h’38  
8h’39  
8h’3A  
8h’3B  
Register  
Name  
Read/  
Write  
R
Register Description  
ISR  
Interrupt Status Register A  
System Control Register 1  
SCR1  
R/W  
R/W  
R/W  
R/W  
R
BBCC  
SCR2  
Backup Battery Charger Control Register  
System Control Register 2  
BOVEN  
BOVSR  
LDOEN  
LDOVS  
VCC1  
Buck Output Voltage Enable Register  
Buck Output Voltage Status Register  
LDO Output Voltage Enable Register  
LDO Output Voltage Status Register  
Voltage Change Control Register 1  
Buck 1 Target Voltage 1 Register  
Buck 1 Target Voltage 2 Register  
Buck 1 Ramp Control  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B1TV1  
B1TV2  
B1RC  
B2TV1  
B2TV2  
B2RC  
Buck 2 Target Voltage 1 Register  
Buck 2 Target Voltage 2 Register  
Buck 2 Voltage Ramp Control  
B3TV1  
B3TV2  
B3RC  
Buck 3 Target Voltage 1 Register  
Buck 3 Target Voltage 2 Register  
Buck 3 Voltage Ramp Control  
BFR  
Buck Function Register  
L21VCR  
L43VCR  
L5VCR  
LDO2 & 1 Voltage Control Registers  
LDO4 & LDO3 Voltage Control Registers  
LDO5 Voltage Control Registers  
INTERRUPT STATUS REGISTER (ISR) 8h’02  
Bit  
7
T100  
0
6
T125  
0
5
GPI2  
0
4
GPI1  
0
3
WU3L  
0
2
WUPS  
0
1
WUPT  
0
0
WUPS  
0
Designation  
Reset Value  
INTERRUPT STATUS REGISTER (ISR) 8h’02 DEFINITIONS  
Bit  
7
Access  
Name  
-
Description  
-
Reserved  
Status bit for thermal warming PMIC T 125˚C  
>
6
R
T125  
<
0 = PMIC Temp. 125˚C  
>
1 = PMIC Temp. 125˚C  
5
4
3
2
R
R
R
R
GPI2  
GPI1  
Status bit for the input read in from GPIO 2 when set as Input  
0 = GPI2 Logic Low  
1 = GPI2 Logic High  
Status bit for the input read in from GPIO 1 when set as Input  
0 = GPI1 Logic Low  
1 = GPI1 Logic High  
WU3L  
WUPS  
PWR_ON Pin Long Pulse Wake Up Status  
0 = 1 No wake up event  
1 = Long pulse wake up event  
PWR_ON Pin Short Pulse Wake Up Status  
0 = No wake up event  
1 = Short pulse wake up event  
www.national.com  
18  
2
I C Register Definitions (Continued)  
Bit  
Access  
Name  
Description  
1
R
WUPT  
TEST_JIG Pin Wake Up Status  
0 = No wake up event  
1 = Wake up event  
0
R
WUPS  
SPARE Pin Wake Up Status  
0 = No wake up event  
1 = Wake up event  
SYSTEM CONTROL REGISTER 1 (SCR1) 8h’07  
Bit  
7
BPSEN  
0
6
Reserved  
1
5
4
3
2
FPWM2  
0
1
FPWM1  
0
0
ECEN  
0
Designation  
SENDL  
FPWM3  
0
Reset Value  
0
0
Note: Gray denotes EPROM programmable registers for default value.  
SYSTEM CONTROL REGISTER 1 (SCR1) 8h’07 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
BPSEN  
Bypass System enable safety Lock. Prevents activation of PWR_EN when SYS_EN is low.  
0 = PWR_EN “AND” with SYS_EN signal  
1 = PWR_EN independent of SYS_EN  
6
-
-
Reserved  
5:4  
R/W  
SENDL  
Delay time for High Voltage Power Domains LDO2, LDO3, LDO4, Buck2, and Buck3 after  
activation of SYS_EN. VCC_LDO1 has no delay.  
Data Code  
2h’0  
Delay mS  
0.0  
Notes  
Default for “B”  
2h’1  
0.5  
2h’2  
1.0  
Default for “A”  
2h’3  
1.4  
3
2
1
0
R/W  
R/W  
R/W  
R/W  
FPWM3  
FPWM2  
FPWM1  
ECEN  
Buck 3 PWM/PFM Mode Select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
Buck 2 PWM/PFM Mode Select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
Buck 1 PWM/PFM Mode Select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
External Clock Select  
0 = Internal Oscillator clock for Buck Converters  
1 = External 13 MHz Oscillator clock for Buck Converters  
19  
www.national.com  
2
I C Register Definitions (Continued)  
BACKUP BATTERY CHARGER CONTROL REGISTER (BBCC) 8h’0B  
Bit  
7
NBUB  
0
6
CNBFL  
0
5
4
nBFLT  
1
3
2
BUCEN  
0
1
0
Designation  
Reset Value  
IBUC  
0
0
0
1
BACKUP BATTERY CHARGER CONTROL REGISTER (BBCC) 8h’0B DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
NBUB  
No back-up battery default setting. Logic will not allow switch over to back-up battery.  
0 = Back up Battery Enabled  
1 = Back up Battery Disabled  
6
R/W  
R/W  
CNBFL  
BFLT  
Control for nBATT_FLT output signal  
0 = nBATT_FLT Enabled  
1 = nBATT_FLT Disabled  
5:3  
nBATT_FLT monitors the battery voltage and can be set to the De-assert voltages listed  
below.  
Data Code  
3h’00  
Asserted  
2.4  
De-Asserted  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3h’01  
2.6  
3h’02  
2.8  
3h’03  
3.0  
3h’04  
3.2  
3h’05  
3.4  
2
R/W  
R/W  
BUCEN  
IBUC  
Enables backup battery charger  
0 = Back up Battery Charger Disabled  
1 = Back up Battery Charger Enabled  
Charger current setting for back-up battery  
1:0  
Data Code  
2h’00  
BU Charger I (µA)  
260  
190  
325  
390  
2h’01  
2h’02  
2h’03  
www.national.com  
20  
2
I C Register Definitions (Continued)  
SYSTEM CONTROL REGISTER (SCR2) 8h’0E  
Bit  
7
6
5
4
WUP3_  
sense  
1
3
2
1
0
Designation  
BBCS  
SEB2  
BPTR  
GPIO2  
GPIO1  
Reset Value  
1
0
0
0
0
0
0
SYSTEM CONTROL REGISTER (SCR2) 8h’0E DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
BBCS  
Sets GPIO1 as control input for Back Up battery charger  
0 = Back Up battery Charger GPIO Disabled  
1 = Back Up battery Charger GPIO Pin Enabled  
6
5
R/W  
R/W  
R/W  
R/W  
SEB2  
BPTR  
PWR_EN soft Low voltage Supply Enabled OR’ed with PWR_EN Pin  
0 = Low voltage Supply Output Enabled  
1 = Low voltage Supply Output Disabled  
Bypass RTC_LDO Output Voltage to LDO1 Output Voltage Tracking  
0 = Disabled RTC_LDO1 Tracking enabled  
1 = Enabled RTC-LDO1 Tracking disabled  
Spare Wakeup control input  
4
WUP3_  
sense  
0 = Active High  
1 = Active Low  
3:2  
GPIO2  
GPIO1  
Configure direction and output sense of GPIO2 Pin  
Data Code  
2h’00  
GPIO2  
Hi-Z  
2h’01  
Output Low  
Input  
2h’02  
2h’03  
Output high  
1:0  
R/W  
Configure direction and output sense of GPIO1 Pin  
Data Code  
2h’00  
GPIO1  
Hi-Z  
2h’01  
Output Low  
Input  
2h’02  
2h’03  
Output high  
21  
www.national.com  
2
I C Register Definitions (Continued)  
BUCKS OUTPUT VOLTAGE ENABLE REGISTER (BOVEN) 8h’10  
Bit  
7
Reserved  
0
6
B2ENC  
1
5
Reserved  
0
4
B3EN  
1
3
Reserved  
0
2
B2EN  
1
1
Reserved  
0
0
B1EN  
1
Designation  
Reset Value  
BUCKS ENABLE REGISTER (BOVEN) 8h’10 DEFINITIONS  
Bit  
7
Access  
...  
Name  
...  
Description  
Reserved  
6
R/W  
B2ENC  
Connects Buck 2 enable to SYS_EN or PWR_EN Logic Control pin  
0 = Buck 2 enable connected to PWR_EN  
1 = Buck 2 enable connected to SYS_EN  
Reserved  
5
4
...  
...  
R/W  
B3EN  
VCC_Buck3 Supply Output Enabled  
0 = VCC_Buck3 Supply Output Disabled  
1 = VCC_Buck3 Supply Output Enabled  
Reserved  
3
2
...  
...  
R/W  
B2EN  
VCC_Buck2 Supply Output Enabled  
0 = VCC_Buck2 Supply Output Disabled  
1 = VCC_Buck2 Supply Output Enabled  
Reserved  
1
0
...  
...  
R/W  
B1EN  
VCC_Buck1 Supply Output Enabled  
0 = VCC_Buck2 Supply Output Disabled  
1 = VCC_Buck2 Supply Output Enabled  
BUCK STATUS REGISTER (BOVSR) 8h’11  
Bit  
7
BT_OK  
0
6
Reserved  
0
5
Reserved  
0
4
B3_OK  
0
3
Reserved  
0
2
B2_OK  
0
1
0
B1_OK  
0
Designation  
Reset Value  
0
BUCK STATUS REGISTER (BOVSR) 8h’11 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R
BT_OK  
Buck 1–3 Supply Output Voltage Status  
<
0 = (Buck 1–3) output voltage 90% Default value  
>
1 = (Buck 1–3) output voltage 90% Default value  
6:5  
4
...  
R
...  
Reserved  
B3_OK  
Buck 3 Supply Output Voltage Status  
<
0 = (Buck 3) output voltage 90% Default value  
>
1 = (Buck 3) output voltage 90% Default value  
3
2
...  
R
...  
Reserved  
B2_OK  
Buck 2 Supply Output Voltage Status  
<
0 = (Buck 2) output voltage 90% Default value  
>
1 = (Buck 2) output voltage 90% Default value  
1
0
...  
R
...  
Reserved  
B1_OK  
Buck 1 Supply Output Voltage Status  
<
0 = (Buck 1) output voltage 90% Default value  
>
1 = (Buck 1) output voltage 90% Default value  
www.national.com  
22  
2
I C Register Definitions (Continued)  
LDO OUTPUT VOLTAGE ENABLE REGISTER (LDOEN) 8h’12  
Bit  
7
L5EC  
0
6
L4EC  
0
5
LDO5_EN  
1
4
LDO4_EN  
1
3
LDO3_EN  
1
2
LDO2_EN  
1
1
LDO1_EN  
1
0
Reserved  
0
Designation  
Reset Value  
LDO OUTPUT VOLTAGE ENABLE REGISTER (LDOEN) 8h’12 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
L5EC  
Connects LDO5 enable to SYS_EN or PWR_EN Logic Control pin  
0 = LDO 5 enable connected to PWR_EN  
1 = LDO 5 enable connected to SYS_EN  
Connects LDO4 enable to SYS_EN or PWR_EN Logic Control pin  
0 = LDO 4 enable connected to PWR_EN  
1 = LDO 4 enable connected to SYS_EN  
LDO_5 Output Voltage Enable  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
...  
L4EC  
LDO5_EN  
LDO4_EN  
LDO3_EN  
LDO2_EN  
LDO1_EN  
...  
0 = LDO5 Supply Output Disabled  
1 = LDO5 Supply Output Enabled  
LDO_4 Output Voltage Enable  
0 = LDO4 Supply Output Disabled  
1 = LDO4 Supply Output Enabled  
LDO_3 Output Voltage Enable  
0 = LDO3 Supply Output Disabled  
1 = LDO3 Supply Output Enabled  
LDO_2 Output Voltage Enable  
0 = LDO2 Supply Output Disabled  
1 = LDO2 Supply Output Enabled  
LDO_1 Output Voltage Enable  
0 = LDO1 Supply Output Disabled  
1 = LDO1 Supply Output Enabled  
Reserved  
LDO OUTPUT VOLTAGE STATUS REGISTER (LDOVS) 8h’13  
Bit  
7
LDOS_OK  
0
6
N/A  
0
5
LDO5_0K  
0
4
LDO4_OK  
0
3
LDO3_OK  
0
2
LDO2_OK  
0
1
LDO1_OK  
0
0
N/A  
0
Designation  
Reset Value  
LDO OUTPUT VOLTAGE STATUS REGISTER (LDOVS) 8h’13 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R
LDO_OK  
LDO 1–5 Supply Output Voltage Status  
<
0 = (LDO 1–5) output voltage 90% of selected value  
>
1 = (LDO 1–5) output voltage 90% of selected value  
6
5
...  
R
...  
Reserved  
LDO5_OK  
LDO_5 Output Voltage Status  
<
0 = (VCC_LDO5) output voltage 90% of selected value  
>
1 = (VCC_LDO5) output voltage 90% of selected value  
4
3
R
R
LDO4_OK  
LDO3_OK  
LDO_4 Output Voltage Status  
<
>
0 = (VCC_LDO4) output voltage 90% of selected value  
1 = (VCC_LDO4) output voltage 90% of selected value  
LDO_3 Output Voltage Status  
<
0 = (VCC_LDO3) output voltage 90% of selected value  
>
1 = (VCC_LDO3) output voltage 90% of selected value  
23  
www.national.com  
2
I C Register Definitions (Continued)  
Bit  
Access  
Name  
Description  
2
R
LDO2_OK  
LDO_2 Output Voltage Status  
0 = (VCC_LDO2) output voltage 90% of selected value  
<
>
1 = (VCC_LDO2) output voltage 90% of selected value  
1
R
LDO1_OK  
LDO_1 Output Voltage Status  
<
0 = (VCC_LDO1) output voltage 90% of selected value  
>
1 = (VCC_LDO1) output voltage 90% of selected value  
0
...  
...  
Reserved  
VOLTAGE CHANGE CONTROL REGISTER 1 (VCC1) 8h’20  
Bit  
7
B3VS  
0
6
B3GO  
0
5
B2VS  
0
4
B2GO  
0
3
2
1
B2VS  
0
0
B2GO  
0
Designation  
Reset Value  
Reserved  
0
0
VOLTAGE CHANGE CONTROL REGISTER 1 (VCC1) 8h’20 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
B3VS  
Buck 3 Target Voltage Select  
0 = Buck 3 Output Voltage to B1TV1  
1 = Buck 3 Output Voltage to B1TV2  
Start Buck 3 Voltage Change  
6
5
4
R/W  
R/W  
R/W  
B3GO  
B2VS  
B2GO  
0 = Hold Buck 3 Output Voltage at current level  
1 = Ramp Buck 3 Output Voltage as selected by B3VS  
Buck 2 Target Voltage Select  
0 = Buck 2 Output Voltage to B2TV1  
1 = Buck 2 Output Voltage to B2TV2  
Start Buck 2 Voltage Change  
0 = Hold Buck 2 Output Voltage at current level  
1 = Ramp Buck 2 Output Voltage as selected by B2VS  
Reserved  
3:2  
1
...  
...  
R/W  
B1VS  
Buck 1 Target Voltage Select  
0 = Buck 2 Output Voltage to B1TV1  
1 = Buck 2 Output Voltage to B1TV2  
Start Buck 1 Voltage Change  
0
R/W  
B1GO  
0 = Hold Buck 3 Output Voltage at current level  
1 = Ramp Buck 3 Output Voltage as selected by B1VS  
www.national.com  
24  
2
I C Register Definitions (Continued)  
BUCK1 TARGET VOLTAGE 1 REGISTER (B1TV1) 8h’23  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 1 Output Voltage (B1OV)  
0
0
0
1
1
0
1
BUCK1 TARGET VOLTAGE 1 REGISTER (B1TV1) 8h’23 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
Output Voltage  
Data Code  
5h’01  
R/W  
B1OV  
(V)  
Data Code  
5h’0D  
5h’0E  
5h’0F  
5h’11  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h’02  
5h’03  
5h’04  
5h’05  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’06  
5h’07  
5h’08  
5h’09  
5h’0A  
5h’0B  
5h’0C  
BUCK1 TARGET VOLTAGE 2 REGISTER (B1TV2) 8h’24  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 1 Output Voltage (B1OV)  
0
0
0
1
1
0
1
BUCK1 TARGET VOLTAGE 2 REGISTER (B1TV2) 8h’24 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
Output Voltage  
Data Code  
5h’01  
R/W  
B1OV  
(V)  
Data Code  
5h’0D  
5h’0E  
5h’0F  
5h’11  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h’02  
5h’03  
5h’04  
5h’05  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’06  
5h’07  
5h’08  
5h’09  
5h’0A  
5h’0B  
5h’0C  
25  
www.national.com  
2
I C Register Definitions (Continued)  
BUCK 1 VOLTAGE RAMP CONTROL REGISTER (B1RC) 8h’25  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Reserved  
Ramp Rate  
0
0
0
0
1
0
1
0
BUCK 1 VOLTAGE RAMP CONTROL REGISTER (B1RC) 8h’25 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
R/W  
B1RS  
DVM Ramp Speed  
Ramp Rate  
(mV/µs)  
Data Code  
4h’0  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
Instant  
1
2
3
4
5
6
7
8
9
10  
BUCK 2 TARGET VOLTAGE 1 REGISTER (B2TV1) 8h’29  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 2 Output Voltage (B2OV)  
0
0
1
1
0
0
0
BUCK 2 TARGET VOLTAGE 1 REGISTER (B2TV1) 8h’29 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
Output Voltage  
Data Code  
5h’01  
R/W  
B2OV  
(V)  
Data Code  
5h’0D  
5h’0E  
5h’0F  
5h’11  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h’02  
5h’03  
5h’04  
5h’05  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’06  
5h’07  
5h’08  
5h’09  
5h’0A  
5h’0B  
5h’0C  
www.national.com  
26  
2
I C Register Definitions (Continued)  
BUCK 2 TARGET VOLTAGE 2 REGISTER (B2TV2) 8h’2A  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 2 Output Voltage (B2OV)  
0
0
1
1
0
0
0
BUCK 2 TARGET VOLTAGE 2 REGISTER (B2TV2) 8h’2A DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
Output Voltage  
Data Code  
5h’01  
R/W  
B2OV  
(V)  
Data Code  
5h’0D  
5h’0E  
5h’0F  
5h’11  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h’02  
5h’03  
5h’04  
5h’05  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’06  
5h’07  
5h’08  
5h’09  
5h’0A  
5h’0B  
5h’0C  
BUCK 2 VOLTAGE RAMP CONTROL REGISTER (B2RC) 8h’2B  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Reserved  
Ramp Rate  
0
0
0
0
1
0
1
0
BUCK 2 VOLTAGE RAMP CONTROL REGISTER (B2RC) 8h’2B DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
R/W  
B2RS  
DVM Ramp Speed  
Ramp Rate  
(mV/µs)  
Data Code  
4h’0  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
Instant  
1
2
3
4
5
6
7
8
9
10  
27  
www.national.com  
2
I C Register Definitions (Continued)  
BUCK 3 TARGET VOLTAGE 1 REGISTER (B3TV1) 8h’32  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 3 Output Voltage (B3OV)  
0
0
1
0
1
0
0
BUCK 3 TARGET VOLTAGE 1 REGISTER (B3TV1) 8h’32 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
Output Voltage  
Data Code  
5h’01  
R/W  
B3OV  
(V)  
Data Code  
5h’0D  
5h’0E  
5h’0F  
5h’11  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h’02  
5h’03  
5h’04  
5h’05  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’06  
5h’07  
5h’08  
5h’09  
5h’0A  
5h’0B  
5h’0C  
BUCK 3 TARGET VOLTAGE 2 REGISTER (B3TV2) 8h’33  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 2 Output Voltage (B2OV)  
0
0
1
0
1
0
0
BUCK 3 TARGET VOLTAGE 2 REGISTER (B3TV2) 8h’33 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
Output Voltage  
Data Code  
5h’01  
R/W  
B2OV  
(V)  
Data Code  
5h’0D  
5h’0E  
5h’0F  
5h’11  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h’02  
5h’03  
5h’04  
5h’05  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’06  
5h’07  
5h’08  
5h’09  
5h’0A  
5h’0B  
5h’0C  
www.national.com  
28  
2
I C Register Definitions (Continued)  
BUCK 3 VOLTAGE RAMP CONTROL REGISTER (B3RC) 8h’34  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Reserved  
Ramp Rate  
0
0
0
0
1
0
1
0
BUCK 2 VOLTAGE RAMP CONTROL REGISTER (B2RC) 8h’34 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
...  
Name  
...  
Description  
Reserved  
R/W  
B2RS  
DVM Ramp Speed  
Ramp Rate  
(mV/µs)  
Data Code  
4h’0  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
Instant  
1
2
3
4
5
6
7
8
9
10  
BUCK FUNCTION REGISTER (BFR) 8h’38  
Bit  
7
6
5
Reserved  
0
4
3
2
1
0
Designation  
Reset Value  
SHBU  
0
BK_SLOMOD  
1
BK_SSEN  
0
0
0
0
0
BUCK FUNCTION REGISTER (BFR) 8h’38 DEFINITIONS  
Bit  
Access  
Name  
...  
Description  
7:3  
...  
Reserved  
SHBU  
Shut down Back up battery to prevent battery drain during shipping  
0 = Back up Battery Enabled  
1 = Back up Battery Disabled  
1
0
R
R
BK_SLOMOD Buck Spread Spectrum Modulation Buck 1–3  
0 = 10 kHz triangular wave spread spectrum modulation  
1 = 2 kHz triangular wave spread spectrum modulation  
BK_SSEN  
Spread spectrum function Buck 1–3  
0 = SS Output Disabled  
1 = SS Output Enabled  
29  
www.national.com  
2
I C Register Definitions (Continued)  
LDO2–LDO1 VOLTAGE CONTROL REGISTER (L21VCR) 8h’39  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
LDO 2 Output Voltage (L20V)  
LDO 3 Output Voltage (L1OV)  
1
1
0
0
1
1
0
0
LDO2–LDO1 VOLTAGE CONTROL REGISTER (L21VCR) 8h’39 DEFINITIONS  
Bit  
Access  
Name  
Description  
Output Voltage  
Data Code  
4h’0  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
4h’B  
4h’C  
4h’D  
4h’E  
4h’F  
4h’0  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
4h’B  
4h’C  
4h’D  
4h’E  
4h’F  
7:4  
R/W  
L2OV  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3:0  
R/W  
L1OV  
www.national.com  
30  
2
I C Register Definitions (Continued)  
LDO4–LDO3 VOLTAGE CONTROL REGISTER (L21VCR) 8h’3A  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
LDO 4 Output Voltage (L4OV)  
LDO 3 Output Voltage (L3OV)  
0
1
1
0
1
1
0
0
LDO4–LDO3 VOLTAGE CONTROL REGISTER (L21VCR) 8h’3A DEFINITIONS  
Bit  
Access  
Name  
Description  
Output Voltage  
Data Code  
4h’0  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
4h’B  
4h’C  
4h’D  
4h’E  
4h’F  
4h’0  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
4h’B  
4h’C  
4h’D  
4h’E  
4h’F  
7:4  
R/W  
L4OV  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.50  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
1.8  
3:0  
R/W  
L3OV  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
31  
www.national.com  
2
I C Register Definitions (Continued)  
VCC_LDO5 VOLTAGE CONTROL REGISTER (L5VCR) 8h’3B  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Reserved  
LDO 5 Output Voltage (L5OV)  
0
0
0
0
0
0
1
0
VCC_LDO5 VOLTAGE CONTROL REGISTER (L5VCR) 8h’3B DEFINITIONS  
Bit  
Access  
Name  
Description  
7:5  
...  
...  
Reserved  
Data Code  
Output Voltage  
4:0  
R/W  
B1OV  
4h’0  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
4h’B  
4h’C  
4h’D  
4h’E  
4h’F  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.50  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
Serial interface register selection codes (Bold face voltages are default values).  
Register Programming Examples  
Example 1. Setting register 8h’12 value to 8h’3E’ will enable LDOs 1–5.  
Example 2. Setting register 8h’39 to 8h’CC’ will set LDOs 1 and 2 to 3.0V. These voltages will appear at the LDO outputs if the  
corresponding LDO has been enabled. Programming a voltage value to a LDO, which is off, will affect the LDO output voltage  
after the LDO is enabled. Enabling and programming the output voltage are separate operations.  
www.national.com  
32  
2
I C Register Definitions (Continued)  
I2C DVM TIMING FOR VCC APPS (Buck 1)  
20180718  
LP3971 Controls  
DIGITAL INTERFACE CONTROL SIGNALS  
Signal  
SYS_EN  
Definition  
Active State  
High  
Signal Direction  
Input  
High Voltage Power Enable  
PWR_EN  
SCL  
Low Voltage Power Enable  
High  
Input  
Serial Bus Clock Line  
Clock  
Input  
SDA  
Serial Bus Data Line  
Bidirectional  
Input  
nRSTI  
Forces an Unconditional Hardware Reset  
Forces an Unconditional Hardware Reset  
Main Battery Removed or Discharged Indicator  
Wakeup Input to CPU  
Low  
Low  
nRSTO  
Output  
nBATT_FLT  
PWR_ON  
nTEST_JIG  
SPARE  
Low  
Output  
High  
Low  
Input  
Wakeup Input to CPU  
Input  
Wakeup Input to CPU  
High/Low*  
High  
-/Low  
-
Input  
EXT_WAKEUP  
GPIO1/nCHG_EN  
Wake-Up Output for Application Processor  
General Purpose I/O/External Back-Up Battery Charger  
General Purpose I/O  
Output  
Bidirectional/Input  
Bidirectional  
GPIO2  
*
POWER DOMAIN ENABLES  
LDO_RTC TRACKING (nIO_TRACK)  
LP3971 has a tracking function (nIO_TRACK). When en-  
abled, LDO_RTC voltage will track LDO1 voltage within 200  
mV down to 2.8V when LDO1 is enabled. This function can  
be switched on/off by BPTR (8h’0E) register bit.  
PMU Output  
LDO_RTC  
LDO1  
HW Enable  
SW Enable  
-
-
SYS_EN  
LDO1_EN  
LDO2_EN  
LDO3_EN  
LDO4_EN  
LDO5_EN  
B1_EN  
LDO2  
SYS_EN  
LDO4, LDO5 AND BUCK 2 ENABLE SELECTION  
(LDO4_ESEL, LDO5_ESEL AND BUCK2_ESEL)  
LDO3  
SYS_EN  
LDO4  
PWR_EN/SYS_EN  
PWR_EN/SYS_EN  
PWR_EN  
LDO4, 5 and BUCK2 power domain enable is possible to  
change between SYS_EN and PWR_EN by register bits.  
LDO5  
BUCK1  
BUCK2  
BUCK3  
WAKE-UP FUNCTIONALITY (PWR_ON, nTEST_JIG,  
SPARE AND EXT_WAKEUP)  
SYS_EN/PWR_EN  
SYS_EN  
B2_EN  
B3_EN  
Three input pins can be used to assert wakeup output for 10  
ms for application processor notification to wakeup. SPARE  
input can be programmed through I2C compatible interface  
33  
www.national.com  
de-bounce filtering. Furthermore PWR_ON have distinguish-  
ing between short and long (1s) pulses (push button input).  
LP3971 also has an internal Thermal Shutdown early warn-  
ing that generates a wakeup to the system also. This is  
generated usually at 125˚C.  
LP3971 Controls (Continued)  
to be active low or high (SPARE bit, Default is active low ‘1’).  
A reason for wakeup event can be read through I2C compat-  
ible interface also. Additionally wakeup inputs have 30 ms  
20180719  
BATTERY SWITCH AND BACK UP BATTERY CHARGER  
WAKEUP Register Bits  
Reason for WAKEUP  
SPARE  
When Back-Up battery is connected but main battery re-  
moved or voltage too low, LP3971 uses Back-Up Battery for  
generating LDO_RTC voltage. When Main Battery is avail-  
able the battery switch changes main battery for LDO_RTC  
voltage. When Main battery voltage is too low or removed  
nBATT_FLT is asserted to system acknowledge. If no back  
up battery exists, the battery switch to back up can be  
switched off by nBU_BAT_EN bit. User can set the battery  
fault determination voltage and battery charger termination  
voltage via I2C compatible interface. Enabling of back up  
battery charger can be done via serial interface  
(nBAT_CHG_EN) or external charger enable pin  
(nCHG_EN). Pin 29 is set as external charger enable input  
by default.  
WUP0  
WUP1  
WUP2  
WUP3  
TSD_EW  
TEST_JIG  
PWR_ON Short Pulse  
PWR_ON Long Pulse  
TSD Early Warning  
INTERNAL THERMAL SHUTDOWN PROCEDURE  
Thermal shutdown is build to generate early warning (typ.  
125˚C) which triggers the EXT_WAKEUP for the processor  
acknowledge. When  
a thermal shutdown triggers (typ.  
160˚C) the PMU will reset the system until the device cools  
down.  
www.national.com  
34  
input, output or hi-Z mode. Inputs value can be read via  
serial interface (GPI1,2 bits). The pin 29 functionality needs  
to be set to GPIO by serial interface register bit  
nEXTCHGEN.  
LP3971 Controls (Continued)  
GENERAL PURPOSE I/O FUNCTIONALITY (GPIO1 AND  
GPIO2)  
LP3971 has 2 general purpose I/Os for system control. I2C  
compatible interface will be used for setting any of the pins to  
LP3971 GPIO Control Table  
Controls  
Port Function  
Reg.  
batmonchg  
Function  
< >  
1
< >  
0
GPIO1  
GPIO1  
nextchgen_sel  
bucen  
GPIO1  
Input = 0  
Input = 1  
X
gpin 1  
X
X
1
X
0
1
0
1
X
X
0
X
0
0
1
1
1
1
1
X
0
0
0
0
0
o
0
0
0
Enabled  
Not Enabled  
X
1
X
Enabled  
X
X
X
X
HiZ  
0
Input  
0
>
Input (dig)-  
Output = 0  
Output= 1  
0
< >  
1
< >  
0
GPIO2  
GPIO2  
Factory fm disabled  
GPIO_tstiob  
GPIO2  
HiZ  
gpin2  
0
1
0
1
0
0
1
1
1
1
1
1
0
Input  
0
>
Input (dig)-  
Output = 0  
Output = 1  
0
The LP3971 Back Up Charger can be enabled/disabled by  
two separate mechanisms. They are; 1) A dedicated control  
register bit named BUCEN (Register 0B Bit 2) and 2) GPIO1  
input Pin 29, when configured for charger control.  
bit is asserted (Default state), GPIO1 is charger control.  
When this bit is de-asserted, charger enable is deter-  
mined only by the state of control register bit BUCEN.  
One additional feature of the charger enable is when the  
main battery voltage Vin (Pin 6) is less than the back up  
battery voltage Vin BUBATT (Pin 15), The charger will  
automatically disable regardless of the input received  
from BUCEN or GPIO1.  
Description of this operation is as follows:  
In the default state, the BUCEN bit is not asserted, and  
GPIO1 is configured as charger control. High level ap-  
plied to GPIO1 will disable the back up charger, Low level  
applied to GPIO1 will enable the back up charger. There  
is an internal pull up that will disable the back up charger  
if GPIO1 is “open”.  
REGULATED VOLTAGES OK  
All the power domains have own register bit (x_OK) that  
processor can read via serial interface to be sure that en-  
abled powers are OK (regulating). Note that these read only  
bits are only valid when regulators are settled (avoid reading  
these bits during voltage change or power up).  
If BUCEN bit is asserted with GPIO1 configured for  
charger control, the back up charger will always be en-  
abled, and GPIO1 input will have no effect.  
Configuration of GPIO1 charger function is via control  
register bit named BBCS (Register 0E Bit 7). When this  
35  
www.national.com  
enables can be changed for further flexibility. Please note  
that LDO1 is recommended to be used for I/Os if RTC  
voltage need to track I/O voltage. Also LDO4 and LDO5 has  
an own VIN pin which can be driven from a buck regulator for  
higher system efficiency.  
Application Note  
TYPICAL CONNECTION DIAGRAMS  
LP3971 is flexible for different system configurations. Differ-  
ent power domains can be selected based on current and  
voltage needs. Additionally Buck2 LDO4 and lDO5 default  
Typical Application Diagram with Advanced Applications Processor Version “A”  
20180720  
www.national.com  
36  
Application Note (Continued)  
Typical Application Diagram with PXA27x Advanced Applications Processor Version “B”  
20180721  
LP3971 & PXA27x START-UP  
timer set to 125 mS.  
6. The LP3971 enables the high-voltage power supplies.  
Initial Cold Start Power On Sequence  
-LDO1 power for VCC_MVT, BG, OSC13M and PLL  
enabled first, followed by others if delay is on.  
1. The Back up battery is connected to the PMU, power is  
applied to the back-up battery pin, the RTC_LDO turns  
7. Countdown timer expires; the Applications processor  
asserts PWR_EN (ext. pin or I2C) to enable the low-  
voltage power supplies. The processor starts the count-  
down timer set to 125 mS period.  
on and supplies  
a stable output voltage to the  
VCC_BATT pin of the Applications processor (initiating  
the power-on reset event) with nRSTO asserted from the  
LP3971 to the processor.  
8. The Applications processor asserts PWR_EN (ext. pin or  
I2C), the LP3971 enables the low-voltage regulators.  
2. The Applications processor waits for the de-assertion of  
nBATT_FLT to indicate system power (VIN) is available.  
9. Countdown timer expires; If enabled power domains are  
OK (I2C read) the power up sequence continues by  
enabling the processors 13 MHz oscillator and PLL’s.  
3. IF system power (Vbat) is avaliable, the LP3971 de-  
asserts nBATT_FLT.  
4. nRSTO de-asserts after a minimum of 50 mS.  
10. The Applications processor begins the execution of  
code.  
5. The Applications processor asserts SYS_EN, the  
LP3971 enables the system high-voltage power sup-  
plies. The Applications processor starts its countdown  
37  
www.national.com  
Application Note (Continued)  
Code Start Power on Timing  
20180722  
POWER-ON TIMING  
Symbol  
Description  
Min  
Typ  
Max  
Units  
mS  
t1  
t3  
t4  
t5  
Delay from VCC_RTC assertion to nRSTO de-assertion  
Delay from nRST de-assertion to SYS_EN assertion  
Delay from SYS_EN assertion to PWR_EN assertion  
Delay from PWR_EN assertion to nRSTO de-assertion  
50  
10  
mS  
125  
125  
mS  
mS  
LP3971 & PXA27x RESET SEQUENCE  
Hardware Reset Sequence  
plies. The Applications processor starts its countdown  
timer set to 125 mS.  
5. The LP3971 enables the high-voltage power supplies.  
Hardware reset initiates when the nRSTI signal is asserted  
(low). Upon assertion of nRST the processor enters hard-  
ware reset state. The LP3971 holds the nRST low long  
enough (50ms typ.) to allow the processor time to initiate the  
reset state.  
6. Countdown timer expires; the Applications processor  
asserts PWR_EN to enable the low-voltage power sup-  
plies. The processor starts the countdown timer set to  
125 mS period.  
7. The Applications processor asserts PWR_EN, the  
LP3971 enables the low-voltage regulators.  
Reset Sequence  
8. Countdown timer expires; If enabled power domains are  
OK (I2C read) the power up sequence continues by  
enabling the processors 13 MHz oscillator and PLL’s.  
1. nRSTI is asserted  
2. If VBATT is above the set point the PMIC de-asserts  
nBATT_FLT to indicate system power (VIN) is available.  
9. The Applications processor begins the execution of  
code.  
3. nRSTO is asserted and will de-asserts after a minimum  
of 50 mS.  
4. The Applications processor asserts SYS_EN, the  
LP3971 enables the system high-voltage power sup-  
www.national.com  
38  
For both input and output capacitors, careful interpretation of  
the capacitor specification is required to ensure correct de-  
vice operation. The capacitor value can change greatly, de-  
pending on the operating conditions and capacitor type.  
Application Hints  
LDO CONSIDERATIONS  
External Capacitors  
In particular, the output capacitor selection should take ac-  
count of all the capacitor parameters, to ensure that the  
specification is met within the application. The capacitance  
can vary with DC bias conditions as well as temperature and  
frequency of operation. Capacitor values will also show  
some decrease over time due to aging. The capacitor pa-  
rameters are also dependant on the particular case size,  
with smaller sizes giving poorer performance figures in gen-  
eral. As an example, Figure 6 shows a typical graph com-  
paring different capacitor case sizes in a Capacitance vs. DC  
Bias plot. As shown in the graph, increasing the DC Bias  
condition can result in the capacitance value falling below  
the minimum value given in the recommended capacitor  
specifications table. Note that the graph shows the capaci-  
tance out of spec for the 0402 case size capacitor at higher  
bias voltages. It is therefore recommended that the capacitor  
manufacturers’ specifications for the nominal value capacitor  
are consulted for all conditions, as some capacitor sizes  
(e.g. 0402) may not be suitable in the actual application.  
The LP3971’s regulators require external capacitors for  
regulator stability. These are specifically designed for por-  
table applications requiring minimum board space and small-  
est components. These capacitors must be correctly se-  
lected for good performance.  
Input Capacitor  
An input capacitor is required for stability. It is recommended  
that a 1.0 µF capacitor be connected between the LDO input  
pin and ground (this capacitance value may be increased  
without limit).  
This capacitor must be located a distance of not more than 1  
cm from the input pin and returned to a clean analogue  
ground. Any good quality ceramic, tantalum, or film capacitor  
may be used at the input.  
Important: Tantalum capacitors can suffer catastrophic fail-  
ures due to surge current when connected to a low imped-  
ance source of power (like a battery or a very large capaci-  
tor). If a tantalum capacitor is used at the input, it must be  
guaranteed by the manufacturer to have a surge current  
rating sufficient for the application.  
There are no requirements for the ESR (Equivalent Series  
Resistance) on the input capacitor, but tolerance and tem-  
perature coefficient must be considered when selecting the  
capacitor to ensure the capacitance will remain approxi-  
mately 1.0 µF over the entire operating temperature range.  
Output Capacitor  
The LDO’s are designed specifically to work with very small  
ceramic output capacitors. A 1.0 µF ceramic capacitor (tem-  
perature types Z5U, Y5V or X7R) with ESR between 5 mto  
500 m, are suitable in the application circuit.  
For this device the output capacitor should be connected  
between the VOUT pin and ground.  
It is also possible to use tantalum or film capacitors at the  
device output, COUT (or VOUT), but these are not as attrac-  
tive for reasons of size and cost (see the section Capacitor  
Characteristics).  
20180723  
FIGURE 6. Graph Showing a Typical Variation in  
Capacitance vs. DC Bias  
The output capacitor must meet the requirement for the  
minimum value of capacitance and also have an ESR value  
that is within the range 5 mto 500 mfor stability.  
The ceramic capacitor’s capacitance can vary with tempera-  
ture. The capacitor type X7R, which operates over a tem-  
perature range of −55˚C to +125˚C, will only vary the capaci-  
tance to within 15%. The capacitor type X5R has a similar  
tolerance over a reduced temperature range of −55˚C to  
+85˚C. Many large value ceramic capacitors, larger than  
1 µF are manufactured with Z5U or Y5V temperature char-  
acteristics. Their capacitance can drop by more than 50% as  
the temperature varies from 25˚C to 85˚C. Therefore X7R is  
recommended over Z5U and Y5V in applications where the  
ambient temperature will change significantly above or be-  
low 25˚C.  
No-Load Stability  
The LDO’s will remain stable and in regulation with no ex-  
ternal load. This is an important consideration in some cir-  
cuits, for example CMOS RAM keep-alive applications.  
Capacitor Characteristics  
The LDO’s are designed to work with ceramic capacitors on  
the output to take advantage of the benefits they offer. For  
capacitance values in the range of 0.47 µF to 4.7 µF, ceramic  
capacitors are the smallest, least expensive and have the  
lowest ESR values, thus making them best for eliminating  
high frequency noise. The ESR of a typical 1.0 µF ceramic  
capacitor is in the range of 20 mto 40 m, which easily  
meets the ESR requirement for stability for the LDO’s.  
Tantalum capacitors are less desirable than ceramic for use  
as output capacitors because they are more expensive when  
comparing equivalent capacitance and voltage ratings in the  
0.47 µF to 4.7 µF range.  
Another important consideration is that tantalum capacitors  
have higher ESR values than equivalent size ceramics. This  
means that while it may be possible to find a tantalum  
capacitor with an ESR value within the stable range, it would  
39  
www.national.com  
Method 2:  
Application Hints (Continued)  
A more conservative and recommended approach is to  
choose an inductor that has saturation current rating greater  
than the max current limit of 2.1A.  
have to be larger in capacitance (which means bigger and  
more costly) than a ceramic capacitor with the same ESR  
value. It should also be noted that the ESR of a typical  
tantalum will increase about 2:1 as the temperature goes  
from 25˚C down to −40˚C, so some guard band must be  
allowed.  
A 2.2 µH inductor with a saturation current rating of at least  
1150 mA is recommended for most applications. The induc-  
tor’s resistance should be less than 0.3for good efficiency.  
Table 1 lists suggested inductors and suppliers. For low-cost  
applications, an unshielded bobbin inductor could be consid-  
ered. For noise critical applications, a toroidal or shielded  
bobbin inductor should be used. A good practice is to lay out  
the board with overlapping footprints of both types for design  
flexibility. This allows substitution of a low-noise shielded  
inductor, in the event that noise from low-cost bobbin models  
is unacceptable.  
BUCK CONSIDERATIONS  
Inductor Selection  
There are two main considerations when choosing an induc-  
tor; the inductor should not saturate, and the inductor current  
ripple is small enough to achieve the desired output voltage  
ripple. Different saturation current rating specs are followed  
by different manufacturers so attention must be given to  
details. Saturation current ratings are typically specified at  
25˚C so ratings at max ambient temperature of application  
should be requested from manufacturer.  
INPUT CAPACITOR SELECTION  
A ceramic input capacitor of 10 µF, 6.3V is sufficient for most  
applications. Place the input capacitor as close as possible  
to the VIN pin of the device. A larger value may be used for  
improved input voltage filtering. Use X7R or X5R types, do  
not use Y5V. DC bias characteristics of ceramic capacitors  
must be considered when selecting case sizes like 0805 and  
0603. The input filter capacitor supplies current to the PFET  
switch of the converter in the first half of each cycle and  
reduces voltage ripple imposed on the input power source. A  
ceramic capacitor’s low ESR provides the best noise filtering  
of the input voltage spikes due to this rapidly changing  
current. Select a capacitor with sufficient ripple current rat-  
ing. The input current ripple can be calculated as:  
There are two methods to choose the inductor saturation  
current rating.  
Method 1:  
The saturation current is greater than the sum of the maxi-  
mum load current and the worst case average to peak  
inductor current. This can be written as  
IRIPPLE: Average to peak inductor current  
IOUTMAX: Maximum load current (1500 mA)  
VIN: Maximum input voltage in application  
L: Min inductor value including worst case tolerances  
(30% drop can be considered for method 1)  
The worst case is when VIN = 2 * VOUT  
f: Minimum switching frequency (1.6 MHz)  
VOUT: Output voltage  
TABLE 1. Suggested Suppliers  
Dimensions LxWxH (mm)  
Vendor  
Toko  
D.C.R (Max)  
70 mΩ  
2.8 x 3.0 x 1.2  
3.0 x 3.0 x 1.2  
3.76 x 4.2 x 1.8  
4.45 x 6.6 x 2.92  
3.3 x 3.3 x 1.4  
Toko  
160 mΩ  
70 mΩ  
Coilcraft  
Coilcraft  
Coilcraft  
70 mΩ  
200 mΩ  
OUTPUT CAPACITOR SELECTION  
The output voltage ripple is caused by the charging and  
discharging of the output capacitor and also due to its ESR  
and can be calculated as:  
Use a 10 µF, 6.3V ceramic capacitor. Use X7R or X5R types,  
do not use Y5V. DC bias characteristics of ceramic capaci-  
tors must be considered when selecting case sizes like 0805  
and 0603. DC bias characteristics vary from manufacturer to  
manufacturer and dc bias curves should be requested from  
them as part of the capacitor selection process. The output  
filter capacitor smoothes out current flow from the inductor to  
the load, helps maintain a steady output voltage during  
transient load changes and reduces output voltage ripple.  
These capacitors must be selected with sufficient capaci-  
tance and sufficiently low ESR to perform these functions.  
Voltage peak-to-peak ripple due to capacitance can be ex-  
pressed as follows  
Voltage peak-to-peak ripple due to ESR can be expressed  
as follows  
VPP-ESR = (2 * IRIPPLE) * RESR  
www.national.com  
40  
Note that the output voltage ripple is dependent on the  
inductor current ripple and the equivalent series resistance  
of the output capacitor (RESR).  
Application Hints (Continued)  
Because these two components are out of phase the rms  
value can be used to get an approximate value of peak-to-  
peak ripple.  
The RESR is frequency dependent (as well as temperature  
dependent); make sure the value used for calculations is at  
the switching frequency of the part.  
Voltage peak-to-peak ripple, root mean squared can be ex-  
pressed as follows  
TABLE 2. Suggested Capacitor and their Suppliers  
Type Vendor Voltage  
Model  
Case Size  
Inch (mm)  
10 µF  
GRM21BR60J106K  
JMK212BJ106K  
Ceramic, X5R  
Murata  
6.3V  
6.3V  
6.3V  
0805 (2012)  
0805 (2012)  
0805 (2012)  
Ceramic, X5R  
Ceramic, X5R  
Taiyo-Yuden  
TDK  
C2012X5R0J106K  
per fill as a pseudo-ground plane. Then, connect this to  
the ground-plane (if one is used) with several vias. This  
reduces ground-plane noise by preventing the switching  
currents from circulating through the ground plane. It  
also reduces ground bounce at the converter by giving it  
a low-impedance ground connection.  
Board Layout Considerations  
PC board layout is an important part of DC-DC converter  
design. Poor board layout can disrupt the performance of a  
DC-DC converter and surrounding circuitry by contributing to  
EMI, ground bounce, and resistive voltage loss in the traces.  
These can send erroneous signals to the DC-DC converter  
IC, resulting in poor regulation or instability.  
4. Use wide traces between the power components and for  
power connections to the DC-DC converter circuit. This  
reduces voltage errors caused by resistive losses across  
the traces.  
Good layout for the converters can be implemented by fol-  
lowing a few simple design rules.  
1. Place the converters, inductor and filter capacitors close  
together and make the traces short. The traces between  
these components carry relatively high switching cur-  
rents and act as antennas. Following this rule reduces  
radiated noise. Special care must be given to place the  
input filter capacitor very close to the VIN and GND pin.  
5. Route noise sensitive traces, such as the voltage feed-  
back path, away from noisy traces between the power  
components. The voltage feedback trace must remain  
close to the converter circuit and should be direct but  
should be routed opposite to noisy components. This  
reduces EMI radiated onto the DC-DC converter’s own  
voltage feedback trace. A good approach is to route the  
feedback trace on another layer and to have a ground  
plane between the top layer and layer on which the  
feedback trace is routed. In the same manner for the  
adjustable part it is desired to have the feedback divid-  
ers on the bottom layer.  
2. Arrange the components so that the switching current  
loops curl in the same direction. During the first half of  
each cycle, current flows from the input filter capacitor  
through the converter and inductor to the output filter  
capacitor and back through ground, forming a current  
loop. In the second half of each cycle, current is pulled  
up from ground through the converter by the inductor to  
the output filter capacitor and then back through ground  
forming a second current loop. Routing these loops so  
the current curls in the same direction prevents mag-  
netic field reversal between the two half-cycles and re-  
duces radiated noise.  
6. Place noise sensitive circuitry, such as radio RF blocks,  
away from the DC-DC converter, CMOS digital blocks  
and other noisy circuitry. Interference with noise-  
sensitive circuitry in the system can be reduced through  
distance.  
3. Connect the ground pins of the converter and filter ca-  
pacitors together using generous component-side cop-  
41  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
40-Pin LLP  
NS Drawing SQF40A  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain  
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
Leadfree products are RoHS compliant.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LP3971SQ-A514

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
NSC

LP3971SQ-B410

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
NSC

LP3971SQ-B410

3-CHANNEL POWER SUPPLY SUPPORT CKT, PQCC40, 5 X 5 MM, LLP-40
TI

LP3971SQ-B510

IC 3-CHANNEL POWER SUPPLY SUPPORT CKT, PQCC40, 5 X 5 MM, LLP-40, Power Management Circuit
NSC

LP3971SQ-B510/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQ-F211/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQ-P55A/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQ-U511/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQE-7848/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQE-N510/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQX-A514

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
NSC

LP3971SQX-B410

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
NSC