LP3972SQX-E514 [NSC]

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC40, 5 X 5 MM, LLP-40, Power Management Circuit;
LP3972SQX-E514
型号: LP3972SQX-E514
厂家: National Semiconductor    National Semiconductor
描述:

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC40, 5 X 5 MM, LLP-40, Power Management Circuit

文件: 总60页 (文件大小:787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 8, 2009  
LP3972  
Power Management Unit for Advanced Application  
Processors  
General Description  
Features  
The LP3972 is a multi-function, programmable Power Man-  
agement Unit, designed especially for advanced application  
processors. The LP3972 is optimized for low power handheld  
applications and provides 6 low-dropout, low-noise linear reg-  
ulators, three DC/DC magnetic buck regulators, a back-up  
battery charger and two GPIO’s. A high speed serial interface  
is included to program individual regulator output voltages as  
well as on/off control.  
Compatible with advanced applications processors  
requiring DVM (Dynamic Voltage Management)  
Three buck regulators for powering high current processor  
functions or I/O's  
6 LDO's for powering RTC, peripherals, and I/O's  
Backup battery charger with automatic switch for lithium-  
manganese coin cell batteries and Super capacitors  
I2C compatible high speed serial interface  
Software control of regulator functions and settings  
Precision internal reference  
Key Specifications  
Buck Regulators  
Thermal overload protection  
Programmable VOUT from 0.725 to 3.3V  
Current overload protection  
Up to 95% efficiency  
Tiny 40-pin 5x5 mm LLP package  
Up to 1.6A output current  
±3% output voltage accuracy  
Applications  
PDA phones  
LDO’s  
Smart phones  
Programmable VOUT of 1.0V–3.3V  
Personal Media Players  
±3% output voltage accuracy  
Digital cameras  
150/300/400 mA output currents  
Application processors  
LDO_RTC 30 mA  
LDO1 300 mA  
LDO2 150 mA  
LDO3 150 mA  
LDO4 150 mA  
LDO5 400 mA  
Marvell PXA  
Freescale  
Samsung  
100 mV (typ) dropout  
© 2009 National Semiconductor Corporation  
202076  
www.national.com  
Simplified Application Circuit  
20207601  
www.national.com  
2
20207628  
The I2C lines are pulled up via a I/O source  
VINLDOs 4, 5 can either be powered from main battery source, or by a buck regulator or VIN  
.
3
www.national.com  
Connection Diagrams and Package Mark Information  
40-Pin Leadless Leadframe Package  
NS Package Number SQF40A  
20207602  
Note: Circle marks pin 1 position.  
Package Mark  
20207604  
Top View  
Note: The actual physical placement of the package marking will vary from part to part.  
(*) UZTTYY format: 'U' — wafer fab code; 'Z' — assembly code; 'XY' 2 digit date code; 'TT' — die run code.  
See http://www.national.com/quality/marking_convertion.html for more information on marking information.  
www.national.com  
4
Ordering Information  
Voltage Option  
Order Number  
Package Type  
NSC Package Package Marking  
Drawing  
Supplied As  
Voltage A514  
Voltage A514  
LP3972SQ-A514  
40 lead LLP  
40 lead LLP  
40 lead LLP  
40 lead LLP  
40 lead LLP  
40 lead LLP  
SQF040A  
SQF040A  
SQF040A  
SQF040A  
SQF040A  
SQF040A  
72-A514  
72-A514  
72-A413  
72-A413  
72-E514  
72-E514  
1000 tape & reel  
4500 tape & reel  
1000 tape & reel  
4500 tape & reel  
1000 tape & reel  
4500 tape & reel  
LP3972SQX-  
A514  
Voltage A413  
Voltage A413  
LP3972SQ-A413  
LP3972SQX-  
A413  
Voltage E514  
Voltage E514  
LP3972SQ-E514  
LP3972SQX-  
E514  
Voltage I414  
Voltage I414  
Voltage I514  
Voltage I514  
Voltage 0514*  
Voltage 0514*  
LP3972SQ-I414  
LP3972SQX-I414  
LP3972SQ-I514  
LP3972SQX-I514  
LP3972SQ-0514  
LP3972SQX-0514  
40 lead LLP  
40 lead LLP  
40 lead LLP  
40 lead LLP  
40 lead LLP  
40 lead LLP  
SQF040A  
SQF040A  
SQF040A  
SQF040A  
SQF040A  
SQF040A  
72–I414  
72–I414  
72-I514  
72-I514  
72-0514  
72-0514  
1000 tape & reel  
4500 tape & reel  
1000 tape & reel  
4500 tape & reel  
1000 tape & reel  
4500 tape & reel  
* Option 0514 has default tracking enabled.  
20207605  
Default VOUT Coding  
Z
0
1
2
3
4
5
6
7
8
9
Default VOUT  
1.3  
1.8  
2.5  
2.8  
3.0  
3.3  
1.0  
1.4  
1.2  
1.25  
5
www.national.com  
Pin Descriptions  
Pin #  
Name  
I/O  
Type  
Description  
1
PWR_ON  
I
D
This is an active HI push button input which can be used to signal PWR_ON  
and PWR_OFF events to the CPU by controlling the ext_wakeup [pin4] and  
select contents of register 8H'88  
2
3
4
nTEST_JIG  
SPARE  
I
I
D
D
D
This is an active LOW input signal used for detecting an external HW event.  
The response is seen in the ext_wakeup [pin4] and select contents of register  
8H'88  
This is an input signal used for detecting a external HW event. The response  
is seen in the ext_wakeup [pin4] and select contents of register 8H'88. The  
polarity on this pin is assignable  
EXT_WAKEUP  
O
This pin generates a single 10 mS pulse output to CPU in response to input  
from pin[s] 1, 2, and 3. Flags CPU to interrogate register 8H'88  
5
6
7
8
9
FB1  
VIN  
I
I
A
Buck1 input feedback terminal  
Battery Input (Internal circuitry and LDO1-3 power input)  
LDO1 output  
PWR  
PWR  
PWR  
D
VOUT LDO1  
VOUT LDO2  
nRSTI  
O
O
I
LDO2 output  
Active low Reset pin. Signal used to reset the IC (by default is pulled high  
internally). Typically a push button reset.  
10  
11  
12  
13  
14  
GND1  
VREF  
G
O
O
O
I
G
Ground  
A
Bypass Cap. for the high internal impedance reference.  
VOUT LDO3  
VOUT LDO4  
VIN LDO4  
PWR  
PWR  
PWR  
LDO3 output  
LDO4 output  
Power input to LDO4, this can be connected to either from a 1.8V supply to  
main Battery supply.  
15  
16  
17  
VIN BUBATT  
VOUT LDO_RTC  
nBATT_FLT  
I
PWR  
PWR  
D
Back Up Battery input supply.  
O
O
LDO_RTC output supply to the RTC of the application processor.  
Main Battery fault output, indicates the main battery is low  
(discharged) or the dc source has been removed from the system. This gives  
the processor an indicator that the power will shut down. During this time the  
processor will operate from the back up coin cell.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
PGND2  
SW2  
G
O
I
G
PWR  
PWR  
D
Buck2 NMOS Power Ground  
Buck2 switcher output  
VIN Buck2  
SDA  
Battery input power to Buck2  
I2C Data (Bidirectional)  
I2C Clock  
I/O  
I
SCL  
D
FB2  
I
A
Buck2 input feedback terminal  
Reset output from the PMIC to the processor  
LDO5 output  
nRSTO  
VOUT LDO5  
VIN LDO5  
O
O
I
D
PWR  
PWR  
Power input to LDO5, this can be connected to VIN or to a separate 1.8V  
supply.  
27  
28  
29  
VDDA  
FB3  
I
I
PWR  
A
Analog Power for VREF, BIAS  
Buck3 Feedback  
GPIO1 /  
nCHG_EN  
I/O  
D
General Purpose I/O / Ext. backup battery charger enable pin. This pin  
enables the main battery / DC source power to charge the backup battery.  
This pin toggled via the application processor. By grounding this pin the DC  
source continuously charges the backup battery  
30  
31  
32  
33  
GPIO2  
VIN Buck3  
SW3  
I/O  
I
D
General Purpose I/O  
PWR  
PWR  
G
Battery input power to Buck3  
Buck3 switcher output  
O
G
PGND3  
Buck3 NMOS Power Ground  
www.national.com  
6
Pin #  
34  
Name  
BGND1,2,3  
SYNC  
I/O  
G
I
Type  
G
Description  
Bucks 1, 2 and 3 analog Ground  
35  
D
Frequency Synchronization: Connection to an external clock signal PLL to  
synchronize the PMIC internal oscillator.  
Input Digital enable pin for the high voltage power domain supplies. Output  
from the Monahans processor.  
36  
SYS_EN  
I
D
Digital enable pin for the Low Voltage domain supplies. Output signal from  
the Monahans processor  
37  
38  
39  
40  
PWR_EN  
PGND1  
SW1  
I
D
G
O
I
G
Buck1 NMOS Power Ground  
Buck1 Switcher output  
PWR  
PWR  
VIN Buck1  
Battery input power to Buck1  
A: Analog Pin D: Digital Pin G: Ground Pin P: Power Pin I: Input Pin I/O: Input/Output Pin O: Output Pin  
Note: In this document active low logic items are prefixed with a lowercase “n”  
7
www.national.com  
Maximum Lead Temp (Soldering)  
ESD Rating (Note 5)  
Human Body Model  
260°C  
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
2 kV  
200V  
Machine Model  
All Inputs  
−0.3V to +6.5V  
±0.3V  
Operating Ratings  
GND to GND SLUG  
Junction Temperature (TJ-MAX  
Storage Temperature  
VIN LDO 4,5  
2.7V to 5.5V  
1.74 to (VIN  
)
150°C  
−65°C to +150°C  
VEN  
Junction Temperature (TJ)  
Operating Temperature (TA)  
−40°C to +125°C  
−40°C to +85°C  
Power Dissipation  
(TA = 70°C) (Note 3)  
3.2W  
Junction-to-Ambient Thermal  
Maximum Power Dissipation  
(TA = 70°C) (Notes 3, 4)  
Resistance θJA (Note 3)  
2.2W  
25°C/W  
General Electrical Characteristics Typical values and limits appearing in normal type apply for  
TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, −40°C to +125°C.  
(Notes 2, 6)  
Symbol  
VIN, VDDA, VIN Buck1, 2 and 3  
VINLDO4, VINLDO5  
TSD  
Parameter  
Battery Voltage  
Conditions  
Min  
2.7  
Typ  
3.6  
3.6  
160  
20  
Max  
5.5  
Units  
V
V
Power Supply for LDO 4 and 5  
Thermal Shutdown (Note 14)  
1.74  
5.5  
Temperature  
Hysteresis  
°C  
**No input supply should be higher then VDDA  
Supply Specifications (Notes 2, 5)  
VOUT (Volts)  
IMAX  
Maximum Current  
Supply  
Range  
Resolution  
(mV)  
Current (mA)  
(V)  
30 mA dc source 10 mA backup  
source  
LDO_RTC  
LDO1 (VCC_MVT)  
LDO2  
2.8V  
N/A  
25  
1.7 to 2.0  
1.8 to 3.3  
1.8 to 3.3  
1.0 to 3.3  
300  
150  
100  
LDO3  
100  
150  
LDO4  
50-600  
25  
150  
LDO5 (VCC_SRAM)  
BUCK1 (VCC_APPS)  
BUCK2  
0.850 to 1.5  
0.725 to 1.5  
0.8 to 3.3  
400  
25  
1600  
1600  
1600  
50-600  
50-600  
BUCK3  
0.8 to 3.3  
www.national.com  
8
Default Voltage Option (Notes 2, 5)  
Version  
Enable  
LDO_RTC  
LDO1  
LP3972SQ-A514  
Version A  
LP3972SQ-A413  
Version A  
2.8  
1.8  
1.8D  
3D  
2.8  
1.8  
1.8D  
3D  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
LDO2  
LDO3  
LDO4  
3D  
2.8D  
1.4  
1.4  
3
LDO5  
1.4  
1.4  
3.3  
1.8  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
BUCK1  
BUCK2  
BUCK3  
1.8  
Version  
Enable  
LDO_RTC  
LDO1  
LP3972SQ-E514  
LP3972SQ-I514  
Version E  
Version I  
2.8  
1.8  
1.8E  
3D  
2.8  
1.8  
1.8E  
3E  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
LDO2  
LDO3  
LDO4  
3D  
3E  
LDO5  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
1.4  
1.4  
3.3  
1.8  
1.4  
1.4  
3.3  
1.8  
BUCK1  
BUCK2  
BUCK3  
Version  
Enable  
LDO_RTC  
LDO1  
LP3972SQ-I414  
LP3972SQ-0514  
Version I  
Version 0  
2.8  
1.8  
1.8E  
3E  
Tracking enabled  
SYS_EN  
3.3 w/ tracking  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
1.8  
1.8E  
3.3E  
3E  
LDO2  
SYS_EN  
LDO3  
SYS_EN  
LDO4  
3E  
SYS_EN  
LDO5  
1.4  
1.4  
3.0  
1.8  
PWR_EN  
PWR_EN  
SYS_EN  
1.4  
BUCK1  
BUCK2  
BUCK3  
1.4  
3.3  
SYS_EN  
1.8  
Note : E = Regulator is ENABLED during startup  
D = Regulator is DISABLED during startup  
9
www.national.com  
LDO RTC  
Unless otherwise noted, VIN = 3.6V, CIN = 1.0 μF, COUT = 0.47 µF, COUT (VRTC) = 1.0 μF ceramic. Typical values and limits appearing  
in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation,  
−40°C to +125°C. (Notes 2, 6, 7) and (Note 10)  
Symbol  
VOUT  
Parameter  
Conditions  
VIN Connected, Load Current =  
1 mA  
Min  
Typ  
Max  
Units  
Output Voltage Accuracy  
2.632  
2.8  
2.968  
V
Accuracy  
Line Regulation  
Load Regulation  
VIN = (VOUT nom + 1.0V) to 5.5V  
(Note 11) Load Current = 1 mA  
0.15  
0.05  
0.5  
%/V  
ΔVOUT  
From Main Battery  
Load Current = 1 mA to 30 mA  
%/mA  
From Backup Battery  
VIN = 3.0V  
Load Current = 1 mA to 10 mA  
ISC  
Short Circuit Current Limit  
From Main Battery  
VIN = VOUT +0.3V to 5.5V  
100  
30  
mA  
mV  
From Backup Battery  
Load Current = 10 mA  
IOUT = 0 mA  
VIN - VOUT Dropout Voltage  
375  
IQ_Max  
TP1  
Maximum Quiescent Current  
30  
μA  
V
RTC LDO Input Switched from Main VIN Falling  
2.9  
Battery to Backup Battery  
TP2  
CO  
RTC LDO Input Switched from  
Backup Battery to Main Battery  
VIN Rising  
3.0  
1.0  
V
Output Capacitor  
Capacitance for Stability  
ESR  
0.7  
5
μF  
500  
mΩ  
www.national.com  
10  
LDOs 1 to 5  
Unless otherwise noted, VIN = 3.6V, CIN = 1.0 μF, COUT = 0.47 µF, COUT (VRTC) = 1.0 μF ceramic. Typical values and limits appearing  
in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation,  
−40°C to +125°C. (Notes 2, 6, 7, 10, 11, 15) and (Note 16).  
Symbol  
VOUT  
Parameter  
Conditions  
Load Current = 1 mA  
Min  
−3  
Typ  
Max  
3
Units  
Output Voltage Accuracy (Default  
%
VOUT  
)
Accuracy  
Line Regulation  
VIN =3.1V to 5.0V, (Note 11) Load  
Current = 1 mA  
0.15  
%/V  
ΔVOUT  
Load Regulation  
VIN = 3.6V,  
0.011  
%/mA  
Load Current = 1 mA to IMAX  
ISC  
Short Circuit Current Limit  
LDO1–4, VOUT = 0V  
LDO5, VOUT = 0V  
400  
500  
mA  
VIN - VOUT Dropout Voltage  
Load Current = 50 mA (Note 7)  
f = 10 kHz, Load Current = IMAX  
IOUT = 0 mA  
150  
mV  
dB  
PSRR  
IQ  
Power Supply Ripple Rejection  
45  
40  
Quiescent Current “On”  
Quiescent Current “On”  
Quiescent Current “Off”  
Turn On Time  
IOUT = IMAX  
60  
µA  
μsec  
µF  
EN is de-asserted  
0.03  
300  
0.47  
TON  
Start up from Shut-down  
Capacitance for Stability  
0°C TJ 125°C  
COUT  
Output Capacitor  
0.33  
0.68  
5
1.0  
−40°C TJ 125°C  
ESR  
500  
mΩ  
11  
www.national.com  
LDO Dropout Voltage vs. Load Current Collect Data For All LDO’s  
Dropout Voltage vs. Load Current  
Change in Output Voltage vs. Load Current  
20207629  
20207630  
LDO1 Line Regulation  
VOUT = 1.8 volts VIN 3 to 4 volts Load = 100 mA  
LDO1 Load Transient  
VIN = 4.1 volts VOUT = 1.8 volts no-load-100 mA  
20207631  
20207632  
Enable Start-up time (LDO1)  
LDO1 Channel 2 LDO4 Channel 1 Sys_enable from 0 volts  
Load = 100 mA  
20207633  
www.national.com  
12  
Buck Converters SW1, SW2, SW3  
Unless otherwise noted, VIN = 3.6V, CIN = 10 μF, COUT = 10 μF, LOUT = 2.2 μH ceramic. Typical values and limits appearing in  
normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation,  
−40°C to +125°C. (Notes 2, 6, 12) and (Note 13).  
Symbol  
VOUT  
Parameter  
Output Voltage Accuracy  
Efficiency  
Conditions  
Default VOUT  
Min  
Typ  
Max  
Units  
%
−3  
+3  
Eff  
Load Current = 500 mA  
EN is de-asserted  
95  
0.1  
13  
%
ISHDN  
Shutdown Supply Current  
Sync Mode Clock Frequency  
μA  
MHz  
Synchronized from 13 MHz System  
Clock  
10.4  
15.6  
2.4  
fOSC  
IPEAK  
IQ  
Internal Oscillator Frequency  
Peak Switching Current Limit  
Quiescent Current “On”  
2.0  
2.1  
MHz  
A
No Load PFM Mode  
No Load PWM Mode  
21  
μA  
200  
240  
200  
500  
RDSON (P)  
RDSON (N)  
TON  
Pin-Pin Resistance PFET  
Pin-Pin Resistance NFET  
Turn On Time  
mΩ  
mΩ  
μsec  
µF  
Start up from Shut-down  
Capacitance for Stability  
Capacitance for Stability  
CIN  
Input Capacitor  
8
8
CO  
Output Capacitor  
µF  
Buck1 Output Efficiency vs. Load Current Varied from 1mA to 1.5 Amps  
VIN = 3, 3.5 volts VOUT = 1.4 volts Forced PWM  
VIN = 4.0-4.5 volts VOUT = 1.4 volts Forced PWM  
20207634  
20207635  
13  
www.national.com  
VIN = 3, 3.5 volts VOUT = 1.4 volts Forced PWM  
Line Transient Response  
VIN = 3 – 3.6 V, VOUT = 1.2 V, 250 mA load  
20207637  
20207636  
Load Transient  
3.6 VIN, 3.3 VOUT, 0 – 100 mA load  
Mode Change  
Load transients 20 mA to 560 mA  
VOUT = 1.4 volts [PFM to PWM] VIN = 4.1 volts  
20207638  
20207639  
Startup  
Startup into PWM Mode 980 mA [channel 2]  
VOUT = 1.4 volts VIN = 4.1 volts  
20207638  
www.national.com  
14  
Back-Up Charger Electrical Characteristics  
Unless otherwise noted, VIN = VBATT = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing  
in boldface type apply over the entire junction temperature range for operation, −40°C to +125°C. (Notes 2, 6) and (Note 8).  
Symbol  
VIN  
Parameter  
Conditions  
Voltage at VIN  
Min  
3.3  
Typ  
Max  
5.5  
Units  
Operational Voltage Range  
Backup Battery Charging Current  
V
IOUT  
VIN = 3.6V, Backup_Bat = 2.5V,  
Backup Battery Charger Enabled  
(Note 8)  
190  
μA  
VOUT  
Charger Termination Voltage  
VIN = 5.0V Backup Battery Charger  
Enabled. Programmable  
2.91  
3.1  
9
V
Backup Battery Charger Short Circuit Backup_Bat = 0V, Backup Battery  
Current  
mA  
dB  
Charger Enabled  
PSRR  
Power Supply Ripple Rejection Ratio  
15  
IOUT 50 μA, VOUT = 3.15V  
VOUT + 0.4 VBATT = VIN 5.0V  
f < 10 kHz  
IQ  
Quiescent Current  
25  
IOUT < 50 μA  
μA  
μF  
COUT  
Output Capacitance  
Output Capacitor ESR  
0.1  
0 μA IOUT 100 μA  
5
500  
mΩ  
continued the battery switch will disconnect the input of the  
LDO_RTC from the main battery and connect to the backup  
battery.  
LP3972 Battery Switch Operation  
The LP3972 has provisions for two battery connections, the  
main battery VBAT and Backup Battery  
The main battery voltage at which the LDO_RTC is  
switched over from main to backup battery is 2.8V typically.  
There is a hysteric voltage in this switch operation, thus  
The function of the battery switch is to connect power to the  
LDO_RTC from the appropriate battery, depending on con-  
ditions described below:  
the LDO_RTC will not be reconnected to main battery until  
main battery voltage is greater than 3.1V typically.  
If only the backup battery is applied, the switch will auto-  
matically connect the LDO_RTC power to this battery.  
If only the main battery is applied, the switch will auto-  
matically connect the LDO_RTC power to this battery  
If both batteries are applied, and the main battery is suf-  
The system designer may wish to disable the battery  
switch when only a main battery is used. This is accomplished  
by setting the “no back up battery bit” in the control register  
8h’0B bit 7 NBUB. With this bit set to “1”, the above described  
switching will not occur, that is the LDO_RTC will remain con-  
nected to the main battery even as it is discharged below the  
2.9V threshold. The Backup battery input should also be con-  
nected to main battery.  
ficiently charged (VBAT > 3.1V), the switch will automatically  
connect the LDO_RTC power to the main battery.  
As the main battery is discharged a separate circuit called  
nBATT_FLT will warn the system. Then if no action is taken  
to restore the charge on the main battery, and discharging is  
15  
www.national.com  
Logic Inputs and Outputs DC Operating Conditions (Note 2)  
Logic Inputs (SYS_EN, PWR_EN, SYNC, nRSTI, PWR_ON, nTEST_JIG, SPARE and GPI's)  
Symbol  
VIL  
Parameter  
Low Level Input Voltage  
High Level Input Voltage  
Conditions  
Min  
Max  
0.5  
Units  
V
V
VIH  
VRTC  
−0.5V  
−1  
ILEAK  
Input Leakage Current  
+1  
µA  
Logic Outputs (nRSTO, EXT_WAKEUP and GPO's)  
Symbol Parameter  
VOL Output Low Level  
Conditions  
Load = +0.2 mA = IOL Max  
Load = −0.1 mA = IOL Max  
Min  
Max  
0.5  
Units  
V
V
VOH  
Output High Level  
VRTC  
−0.5V  
ILEAK  
Output Leakage Current  
VON = VIN  
+5  
µA  
Logic Output (nBATT_FLT)  
Symbol Parameter  
Conditions  
Min  
2.4  
Typ  
Max  
3.4  
Units  
nBATT_FLT Threshold Voltage  
Programmable via Serial Interface  
Default = 2.8V  
2.8  
V
VOL  
Output Low Level  
Output High Level  
Load = +0.4 mA = IOL Max  
Load = −0.2 mA = IOH Max  
0.5  
+5  
V
V
VOH  
VRTC  
−0.5V  
ILEAK  
Input Leakage Current  
μA  
www.national.com  
16  
I2C Compatible Serial Interface Electrical Specifications (SDA and SCL)  
Unless otherwise noted, VIN = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in  
boldface type apply over the entire junction temperature range for operation, −40°C to +125°C. (Notes 2, 6) and (Note 9)  
Symbol  
VIL  
Parameter  
Low Level Input Voltage  
High Level Input Voltage  
Low Level Output Voltage  
Low Level Output Current  
Clock Frequency  
Conditions  
Min  
−0.5  
0.7 VRTC  
0
Typ  
Max  
0.3 VRTC  
VRTC  
Units  
(Note 14)  
(Note 14)  
(Note 14)  
V
VIH  
VOL  
0.2 VTRC  
IOL  
VOL = 0.4V (Note 14)  
(Note 14)  
3.0  
mA  
FCLK  
tBF  
400  
kHz  
Bus-Free Time Between Start and Stop  
Hold Time Repeated Start Condition  
CLK Low Period  
(Note 14)  
1.3  
0.6  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
μs  
μs  
ns  
tHOLD  
tCLKLP  
tCLKHP  
tSU  
(Note 14)  
(Note 14)  
CLK High Period  
(Note 14)  
Set Up Time Repeated Start Condition  
Data Hold Time  
(Note 14)  
tDATAHLD  
tCLKSU  
TSU  
(Note 14)  
Data Set Up Time  
(Note 14)  
100  
0.6  
Set Up Time for Start Condition  
(Note 14)  
μs  
TTRANS  
Maximum Pulse Width of Spikes that Must (Note 14)  
be Suppressed by the Input Filter of Both  
DATA & CLK Signals  
50  
ns  
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the  
device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the  
Electrical Characteristics tables.  
Note 2: All voltages are with respect to the potential at the GND pin.  
Note 3: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be  
derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power  
dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (θJA), as given by the  
following equation: TA-MAX = TJ-MAX-OP – (θJA x PD-MAX).  
Note 4: Junction-to-ambient thermal resistance (θJA) is taken from a thermal modeling result, performed under the conditions and guidelines set forth in the  
JEDEC standard JESD51–7. The test board is a 4-layer FR-4 board measuring 102 mm x 76 mm x 1.6 mm with a 2x1 array of thermal vias. The ground plane  
on the board is 50 mm x 50 mm. Thickness of copper layers are 36 µm/1.8 µm/18 µm/36 µm (1.5 oz/1 oz/1 oz/1.5 oz). Ambient temperature in simulation is 22°  
C, still air. Power dissipation is 1W. Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum  
power dissipation exists, special care must be paid to thermal dissipation issues in board design. The value of θJA of this product can vary significantly, depending  
on PCB material, layout, and environmental conditions. In applications where high maximum power dissipation exists (high VIN, high IOUT), special care must be  
paid to thermal dissipation issues. For more information on these topics, please refer to Application Note 1187: Leadless Leadframe Package (LLP) and the Power  
Efficiency and Power Dissipation section of this datasheet.  
Note 5: The Human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin. (MIL-STD-883 3015.7) The machine model is a 200  
pF capacitor discharged directly into each pin. (EAIJ)  
Note 6: All limits guaranteed at room temperature (standard typeface) and at temperature extremes (bold typeface). All room temperature limits are production  
tested, guaranteed through statistical analysis or guaranteed by design. All limits at temperature extremes are guaranteed via correlation using standard Statistical  
Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
Note 7: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.  
Note 8: Back-up battery charge current is programmable via the I2C compatible interface. Refer to the Application Section for more information.  
Note 9: The I2C signals behave like open-drain outputs and require an external pull-up resistor on the system module in the 2 kto 20 krange.  
Note 10: LDO_RTC voltage can track LDO3 voltage. LP3972 has a tracking function (nIO_TRACK). When enabled, LDO_RTC voltage will track LDO3 voltage  
within 200mV down to 2.8V when LDO3 is enabled  
Note 11: VIN minimum for line regulation values is 2.7V for LDOs 1–3 and 1.8V for LDOs 4 and 5. Condition does not apply to input voltages below the minimum  
input operating voltage.  
Note 12: The input voltage range recommended for ideal applications performance for the specified output voltages is given below:  
VIN = 2.7V to 5.5V for 0.80V < VOUT < 1.8V  
VIN = (VOUT+ 1V) to 5.5V for 1.8V VOUT 3.3V  
Note 13: Test condition: for VOUT less than 2.7V, VIN = 3.6V; for VOUT greater than or equal to 2.7V, VIN = VOUT+ 1V.  
Note 14: This electrical specification is guaranteed by design.  
Note 15: An increase in the load current results in a slight decrease in the output voltage and vice versa.  
Note 16: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply  
for input voltages below 2.7V for LDOs 1–3 and 1.8V for LDOs 4 and 5.  
17  
www.national.com  
 
 
 
 
 
 
 
 
next cycle is initiated by the clock turning off the NFET and  
turning on the PFET.  
Buck Converter Operation  
DEVICE INFORMATION  
The LP3972 includes three high efficiency step down DC-DC  
switching buck converters. Using a voltage mode architecture  
with synchronous rectification, the buck converters have the  
ability to deliver up to 1600 mA depending on the input volt-  
age, output voltage, ambient temperature and the inductor  
chosen.  
There are three modes of operation depending on the current  
required - PWM, PFM, and shutdown. The device operates in  
PWM mode at load currents of approximately 100 mA or high-  
er, having voltage tolerance of ±3% with 95% efficiency or  
better. Lighter load currents cause the device to automatically  
switch into PFM for reduced current consumption. Shutdown  
mode turns off the device, offering the lowest current con-  
sumption (IQ, SHUTDOWN = 0.01 µA typ).  
Additional features include soft-start, under voltage protec-  
tion, current overload protection, and thermal shutdown  
protection.  
20207611  
FIGURE 1. Typical PWM Operation  
The part uses an internal reference voltage of 0.5V. It is rec-  
ommended to keep the part in shutdown until the input voltage  
is 2.7V or higher.  
Internal Synchronous Rectification  
While in PWM mode, the converters uses an internal NFET  
as a synchronous rectifier to reduce rectifier forward voltage  
drop and associated power loss. Synchronous rectification  
provides a significant improvement in efficiency whenever the  
output voltage is relatively low compared to the voltage drop  
across an ordinary rectifier diode.  
CIRCUIT OPERATION  
The buck converter operates as follows. During the first por-  
tion of each switching cycle, the control block turns on the  
internal PFET switch. This allows current to flow from the input  
through the inductor to the output filter capacitor and load. The  
inductor limits the current to a ramp with a slope of (VIN–  
VOUT)/L, by storing energy in a magnetic field.  
Current Limiting  
A current limit feature allows the converters to protect itself  
and external components during overload conditions. PWM  
mode implements current limiting using an internal compara-  
tor that trips at 2.0 A (typ). If the output is shorted to ground  
the device enters a timed current limit mode where the NFET  
is turned on for a longer duration until the inductor current falls  
below a low threshold, ensuring inductor current has more  
time to decay, thereby preventing runaway.  
During the second portion of each cycle, the controller turns  
the PFET switch off, blocking current flow from the input, and  
then turns the NFET synchronous rectifier on. The inductor  
draws current from ground through the NFET to the output  
filter capacitor and load, which ramps the inductor current  
down with a slope of –VOUT/L.  
The output filter stores charge when the inductor current is  
high, and releases it when inductor current is low, smoothing  
the voltage across the load.  
PFM OPERATION  
At very light loads, the converter enters PFM mode and op-  
erates with reduced switching frequency and supply current  
to maintain high efficiency.  
The output voltage is regulated by modulating the PFET  
switch on time to control the average current sent to the load.  
The effect is identical to sending a duty-cycle modulated rect-  
angular wave formed by the switch and synchronous rectifier  
at the SW pin to a low-pass filter formed by the inductor and  
output filter capacitor. The output voltage is equal to the av-  
erage voltage at the SW pin.  
The part will automatically transition into PFM mode when ei-  
ther of two conditions occurs for a duration of 32 or more clock  
cycles:  
A: The inductor current becomes discontinuous.  
B: The peak PMOS switch current drops below the IMODE  
PWM OPERATION  
level, (Typically IMODE < 30 mA + VIN/42Ω).  
During PWM operation the converter operates as a voltage  
mode controller with input voltage feed forward. This allows  
the converter to achieve good load and line regulation. The  
DC gain of the power stage is proportional to the input voltage.  
To eliminate this dependence, feed forward inversely propor-  
tional to the input voltage is introduced.  
While in PWM (Pulse Width Modulation) mode, the output  
voltage is regulated by switching at a constant frequency and  
then modulating the energy per cycle to control power to the  
load. At the beginning of each clock cycle the PFET switch is  
turned on and the inductor current ramps up until the com-  
parator trips and the control logic turns off the switch. The  
current limit comparator can also turn off the switch in case  
the current limit of the PFET is exceeded. Then the NFET  
switch is turned on and the inductor current ramps down. The  
www.national.com  
18  
the “high” PFM comparator threshold, the PMOS power  
switch is turned on. It remains on until the output voltage  
reaches the ‘high’ PFM threshold or the peak current exceeds  
the IPFM level set for PFM mode. The typical peak current in  
PFM mode is: IPFM = 112 mA + VIN/27Ω. Once the PMOS  
power switch is turned off, the NMOS power switch is turned  
on until the inductor current ramps to zero. When the NMOS  
zero-current condition is detected, the NMOS power switch is  
turned off. If the output voltage is below the ‘high’ PFM com-  
parator threshold (see Figure 3), the PMOS switch is again  
turned on and the cycle is repeated until the output reaches  
the desired level. Once the output reaches the ‘high’ PFM  
threshold, the NMOS switch is turned on briefly to ramp the  
inductor current to zero and then both output switches are  
turned off and the part enters an extremely low power mode.  
Quiescent supply current during this ‘sleep’ mode is 21 μA  
(typ), which allows the part to achieve high efficiencies under  
extremely light load conditions. When the output drops below  
the ‘low’ PFM threshold, the cycle repeats to restore the out-  
put voltage (average voltage in PFM mode) to <1.15% above  
the nominal PWM output voltage. If the load current should  
increase during PFM mode (see Figure 3) causing the output  
voltage to fall below the ‘low2’ PFM threshold, the part will  
automatically transition into fixed-frequency PWM mode. Typ-  
ically when VIN = 3.6V the part transitions from PWM to PFM  
mode at 100 mA output current .  
20207612  
FIGURE 2. Typical PFM Operation  
During PFM operation, the converter positions the output volt-  
age slightly higher than the nominal output voltage during  
PWM operation, allowing additional headroom for voltage  
drop during a load transient from light to heavy load. The PFM  
comparators sense the output voltage via the feedback pin  
and control the switching of the output FETs such that the  
output voltage ramps between <0.6% and <1.7% above the  
nominal PWM output voltage. If the output voltage is below  
20207613  
FIGURE 3. Operation in PFM Mode and Transfer to PWM Mode  
SHUTDOWN MODE  
SOFT START  
During shutdown the PFET switch, reference, control and  
bias circuitry of the converters are turned off. The NFET  
switch will be open in shutdown to discharge the output. When  
the converter is enabled, EN, soft start is activated. It is rec-  
ommended to disable the converter during the system power  
up and undervoltage conditions when the supply is less than  
2.7V.  
The buck converter has a soft-start circuit that limits in-rush  
current during start-up. During start-up the switch current limit  
is increased in steps. Soft start is activated only if EN goes  
from logic low to logic high after VIN reaches 2.7V. Soft start  
is implemented by increasing switch current limit in steps of  
213 mA, 425 mA, 850 mA and 1700 mA (typ. Switch current  
limit). The start-up time thereby depends on the output ca-  
pacitor and load current demanded at start-up. Typical start-  
19  
www.national.com  
 
up times with 10 μF output capacitor and 1000 mA load  
current is 390 μs and with 1 mA load current it is 295 μs.  
switching frequency, FC, is one parameter that system de-  
signers want to be as low as practical to reduce interference  
to the environment and subsystems within their products. The  
LP3972 has a user selectable function on chip, wherein a  
noise reduction technique known as “spread spectrum” can  
be employed to ease customer’s design and production is-  
sues.  
LDO - LOW DROP OUT OPERATION  
The LP3972 can operate at 100% duty cycle (no switching;  
PMOS switch completely on) for low drop out support of the  
output voltage. In this way the output voltage will be controlled  
down to the lowest possible input voltage. When the device  
operates near 100% duty cycle, output voltage ripple is ap-  
proximately 25 mV. The minimum input voltage needed to  
support the output voltage is  
The principle behind spread spectrum is to modulate the  
switching frequency slightly and slowly, and spread the signal  
frequency over a broader bandwidth. Thus, its power spectral  
density becomes attenuated, and the associated interference  
electro-magnetic energy is reduced. The clock used to mod-  
ulate the LP3972 buck regulator can be used as a spread  
spectrum clock via 2 I2C control register (System Control  
Register 1 (SCR1) 8h’80) bits bk_ssen, and slomod. With this  
feature enabled, the intense energy of the clock frequency  
can be spread across a small band of frequencies in the  
neighborhood of the center frequency. The results in a re-  
duction of the peak energy!  
VIN, MIN = ILOAD * (RDSON, PFET + RINDUCTOR) + VOUT  
Load Current  
ILOAD  
Drain to source resistance of PFET  
switch in the triode region  
RDSON, PFET  
Inductor resistance  
RINDUCTOR  
SPREAD SPECTRUM FEATURE  
The LP3972 spread spectrum clock uses a triangular modu-  
lation profile with equal rise and fall slopes. The modulation  
has the following characteristics:  
Periodic switching in the buck regulator is inherently a noisier  
function block compared to an LDO. It can be challenging in  
some critical applications to comply with stringent regulatory  
standards or simply to minimize interference to sensitive cir-  
cuits in space limited portable systems. The regulator’s  
switching frequency and harmonics can cause “noise” in the  
signal spectrum. The magnitude of this noise is measured by  
its power spectral density. The power spectral density of the  
The center frequency:  
The modulating frequency,  
Peak frequency deviation:  
Modulation index  
FC = 2 MHz, and  
fM = 6.8 kHz or 12 kHz.  
Δ_f = ±100 kHz (or ±5%)  
β = Δ_f/fM = 14.7 or 8.3  
Switching Energy RBW = 300 Hz  
20207641  
www.national.com  
20  
I2C Compatible Interface  
I2C DATA VALIDITY  
The data on SDA line must be stable during the HIGH period  
of the clock signal (SCL). In other words, state of the data line  
can only be changed when CLK is LOW.  
20207614  
I2C START and STOP CONDITIONS  
START and STOP bits. The I2C bus is considered to be busy  
after START condition and free after STOP condition. During  
data transmission, I2C master can generate repeated START  
conditions. First START and repeated START conditions are  
equivalent, function-wise.  
START and STOP bits classify the beginning and the end of  
the I2C session. START condition is defined as SDA signal  
transitioning from HIGH to LOW while SCL line is HIGH.  
STOP condition is defined as the SDA transitioning from LOW  
to HIGH while SCL is HIGH. The I2C master always generates  
20207615  
TRANSFERRING DATA  
acknowledge. A receiver which has been addressed must  
generate an acknowledge after each byte has been received.  
Every byte put on the SDA line must be eight bits long, with  
the most significant bit (MSB) being transferred first. The  
number of bytes that can be transmitted per transfer is unre-  
stricted. Each byte of data has to be followed by an acknowl-  
edge bit. The acknowledge related clock pulse is generated  
by the master. The transmitter releases the SDA line (HIGH)  
during the acknowledge clock pulse. The receiver must pull  
down the SDA line during the 9th clock pulse, signifying an  
After the START condition, a chip address is sent by the I2C  
master. This address is seven bits long followed by an eighth  
bit which is a data direction bit (R/W). The LP3972 address is  
34h. For the eighth bit, a “0” indicates a WRITE and a “1”  
indicates a READ. The second byte selects the register to  
which the data will be written. The third byte contains data to  
write to the selected register.  
I2C CHIP ADDRESS - 7h'34  
MSB  
ADR6  
Bit7  
ADR5  
Bit6  
ADR4  
Bit5  
ADR3  
Bit4  
ADR2  
Bit3  
ADR1  
Bit2  
ADR0  
Bit1  
R/W  
Bit0  
0
1
1
0
1
0
0
R/W  
21  
www.national.com  
Write Cycle  
Write cycle  
20207616  
Read Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function as follows.  
Read Cycle  
20207617  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = 34h (Chip Address)  
I2C DVM Timing for VCC_APPS (Buck1)  
20207618  
www.national.com  
22  
MULTI-BYTE I2C COMMAND SEQUENCE  
Register A Address, Ach,  
Register A Data, Ach  
Device Address,  
To correctly function with the Monahan’s Power Management  
I2C the LP3972’s I2C serial interface shall support Random  
register Multi-byte command sequencing: During a multi-byte  
write the Master sends the Start command followed by the  
Device address, which is sent only once, followed by the 8 Bit  
register address, then 8 bits of data. The I2C slave must then  
accept the next random register address followed by 8 bits of  
data and continue this process until the master sends a valid  
stop condition.  
Register M Address, Ach,  
Register M Data, Ach  
Register X Address, Ach,  
Register X Data, Ach  
Register Z Address, Ach,  
Register Z Data, Ach, Stop  
Note: the PMIC is not required to see the I2C device address  
for each transaction. A, M, X, and Z are Random numbers.  
A Typical Multi-byte random register transfer is outlined  
below:  
20207642  
INCREMENTAL REGISTER I2C COMMAND SEQUENCE  
been sent. Address incrimination may be required for non  
XScale applications. User can define whether multi-byte (de-  
fault) to random address or address incrimination will be used.  
The LP3972 supports address increment (burst mode). When  
you have defined register address n data bytes can be sent  
and register address is incremented after each data byte has  
20207643  
23  
www.national.com  
LP3972 CONTROL REGISTER  
Register Name  
Register Address  
8h’07  
8h’10  
8h’11  
8h’12  
8h’13  
8h’20  
8h’23  
8h’24  
8h’25  
8h’26  
8h’27  
8h’29  
8h’2A  
8h’32  
8h’33  
8h’39  
8h’3A  
8h’80  
8h’81  
8h’82  
8h’83  
8h’84  
8h’85  
8h’86  
8h’87  
8h’88  
8h’89  
8h’8E  
8h’8F  
Read/Write  
R/W  
R/W  
R
Register Description  
System Control Register  
SCR  
OVER1  
OVSR1  
OVER2  
OVSR2  
Output Voltage Enable Register 1  
Output Voltage Status Register 1  
Output Voltage Enable Register 2  
Output Voltage Status Register 2  
Voltage Change Control Register 1  
Buck1 Target Voltage 1 Register  
Buck1 DVM Target Voltage 2 Register  
VCC_APPS Voltage Ramp Control  
Dummy Register  
R/W  
R
VCC  
1
R/W  
R/W  
R/W  
R/W  
W
ADTV1  
ADTV2  
AVRC  
CDTC1  
CDTC2  
SDTV1  
SDTV2  
MDTV1  
MDTV2  
L2VCR  
L34VCR  
SCR1  
W
Dummy Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
LDO5 Target Voltage 1  
LDO5 Target Voltage 2  
LDO1 Target Voltage 1 Register  
LDO1 Voltage 2 Register  
LDO2 Voltage Control Registers  
LDO3 & LDO4 Voltage Control Registers  
System Control Register 1  
SCR2  
System Control Register 2  
OEN3  
Output Voltage Enable Register 3  
Output Voltage Status Register 3  
Output Voltage Enable Register 3  
VCC_Buck2 Target Voltage  
OSR3  
LOER4  
B2TV  
B3TV  
VCC_Buck3 Target Voltage  
B32RC  
ISRA  
Buck 3:2 Voltage Ramp Control  
Interrupt Status Register A  
BCCR  
II1RR  
R/W  
R
Backup Battery Charger Control Register  
Internal 1 Revision Register  
Internal 2 Revision Register  
II2RR  
R
SERIAL INTERFACE REGISTER SELECTION CODES (Bold face voltages are default values)  
System Control Status Register  
Register is an 8-bit register which specifies the control bits for the PMIC clocks. This register works in conjunction with the SYNC  
pin where an external clock PLL buffer operating at 13 MHz is synchronized with the oscillators of the buck converters.  
System Control Register (SCR) 8h’07  
Bit  
7
6
5
4
Reserved  
0
3
2
1
0
CLK_SCL  
0
Designation  
Reset Value  
0
0
0
0
0
0
System Control Register (SCR) 8h’07 Definitions  
Bit  
7-1  
0
Access  
Name  
Description  
Reserved  
R/W  
CLK_SCL  
External Clock Select  
0 = Internal Oscillator clock for Buck Converters  
1 = External 13 MHz Oscillator clock for Buck Converters  
www.national.com  
24  
OUTPUT VOLTAGE ENABLE REGISTER 1  
This register enables or disables the low voltage supplies LDO1 and Buck1. See details below.  
Output Voltage Enable Register 1 (OVER1) 8h’10  
Bit  
7
6
5
Reserved  
0
4
3
2
S_EN  
1
1
Reserved  
0
0
A_EN  
1
Designation  
Reset Value  
0
0
0
0
Output Voltage Enable Register 1 (OVER1) 8h’10 Definitions  
Bit  
Access  
Name  
Description  
7-3  
2
Reserved  
R/W  
S_EN  
VCC_SRAM (LDO5) Supply Output Enabled  
0 = VCC_SRAM (LDO5) Supply Output Disabled  
1 = VCC_SRAM (LDO5) Supply Output Enabled  
1
0
Reserved  
R/W  
A_EN  
VCC_APPS (Buck1) Supply Output Enabled  
0 = VCC_APPS (Buck1) Supply Output Disabled  
1 = VCC_APPS (Buck1) Supply Output Enabled  
OUTPUT VOLTAGE STATUS REGISTER  
This 8 bit register is used to indicate the status of the low voltage supplies. By polling each of the specify supplies is within its  
specified operating range.  
Output Voltage Status Register 1 (OVSR1) 8h’11  
Bit  
7
LP_OK  
0
6
5
4
3
2
S_OK  
0
1
Reserved  
0
0
A_OK  
0
Designation  
Reset Value  
Reserved  
0
0
0
0
Output Voltage Status Register 1 (OVSR1) 8h’11 Definitions  
Bit  
Access  
Name  
Description  
Low Voltage Supply Output Voltage Status  
7
R
LP_OK  
0 - VCC_APPS (Buck1) & VCC_SRAM (LDO5) output voltage < 90% of  
selected value  
1 - VCC_APPS (Buck1) & VCC_SRAM (LDO5) output voltage > 90% of  
selected value  
6:3  
2
Reserved  
R
S_OK  
VCC_SRAM Supply Output Voltage Status  
0 - VCC_SRAM (LDO5) output voltage < 90% of selected value  
1 - VCC_SRAM (LDO5) output voltage > 90% of selected value  
1
0
Reserved  
R
A_OK  
VCC_APPS Supply output Voltage Status  
0 - VCC_APPS (Buck1) output voltage < 90% of selected value  
1 - VCC_APPS (Buck1) output voltage > 90% of selected value  
25  
www.national.com  
OUTPUT VOLTAGE ENABLE REGISTER 2  
This 8 bit output register enables and disables the output voltages on the LDOs 2,3,4 supplies.  
Output Voltage Enable Register 2 (OVER2) 8h’12  
Bit  
Designation  
Reset Value  
7
6
Reserved  
0
5
4**  
LDO4_EN  
0
3**  
LDO3_EN  
0
2**  
LDO2_EN  
0
1
0
Reserved  
0
0
0
0
Note: ** denotes one time factory programmable EPROM registers for default values  
Output Voltage Enable Register 2 (OVER2) 8h’12 Definitions  
Bit  
7
Access  
Name  
Description  
Reserved  
Reserved  
Reserved  
6
5
4
R/W  
LDO4_EN  
LDO4 Output Voltage Enable  
0 = LDO4 Supply Output Disabled, Default  
1 = LDO4 Supply Output Enabled  
3
2
R/W  
R/W  
LDO3_EN  
LDO2_EN  
LDO3 Output Voltage Enable  
0 = LDO3 Supply Output Disabled, Default  
1 = LDO3 Supply Output Enabled  
LDO2 Output Voltage Enable  
0 = LDO2 Supply Output Disabled, Default  
1 = LDO2 Supply Output Enabled  
1
0
Reserved  
Reserved  
OUTPUT VOLTAGE ENABLE REGISTER 2  
Output Voltage Status Register 2 (OVSR2) 8h’13  
Bit  
Designation  
Reset Value  
7
LDO_OK  
0
6
N/A  
0
5
N/A  
0
4
LDO4_OK  
0
3
LDO3_OK  
0
2
LDO2_OK  
0
1
N/A  
0
0
N/A  
0
Output Voltage Status Register 2 (OVSR2) 8h’13 Definitions  
Bit  
Access  
Name  
Description  
LDOs 2-4 Supply Output Voltage Status  
7
R
LDO_OK  
0 - (LDOs 2-4) output voltage < 90% of selected value  
1 - (LDOs 2-4) output voltage > 90% of selected value  
6
5
4
Reserved  
Reserved  
R
LDO4_OK  
LDO4 Output Voltage Status  
0 - (VCC_LDO4) output voltage < 90% of selected value  
1 - (VCC_LDO4) output voltage > 90% of selected value  
3
2
R
R
LDO3_OK  
LDO2_OK  
LDO3 Output Voltage Status  
0 - (VCC_LDO3) output voltage < 90% of selected value  
1 - (VCC_LDO3) output voltage > 90% of selected value  
LDO2 Output Voltage Status  
0 - (VCC_LDO2) output voltage < 90% of selected value  
1 - (VCC_LDO2) output voltage > 90% of selected value  
1
0
Reserved  
Reserved  
www.national.com  
26  
DVM VOLTAGE CHANGE CONTROL REGISTER 1  
DVM Voltage Change Control Register 1 (VCC1) 8h’20  
Bit  
7
MVS  
0
6
MGO  
0
5
SVS  
0
4
SGO  
0
3
2
1
AVS  
0
0
AGO  
0
Designation  
Reset Value  
Reserved  
0
0
DVM Voltage Change Control Register 1 (VCC1) 8h’20 Definitions  
Bit  
Access  
Name  
Description  
VCC_MVT (LDO1) Voltage Select  
7
R/W  
MVS  
0 - Change VCC_MVT Output Voltage to MDVT1  
1 - Change VCC_MVT Output Voltage to MDVT2  
6
5
4
R/W  
R/W  
R/W  
MGO  
SVS  
Start VCC_MVT (LDO1) Voltage Change  
0 - Hold VCC_MVT Output Voltage at current Level  
1 - Ramp VCC_MVT Output Voltage as selected by MVS  
VCC_SRAM (LDO5) Voltage Select  
0 - Change VCC_SRAM Output Voltage to SDTV1  
1 - Change VCC_SRAM Output Voltage to SDTV2  
SGO  
Start VCC_SRAM (LDO5) Voltage Change  
0 - Hold VCC_SRAM Output Voltage at current Level  
1 - Change VCC_SRAM Output Voltage as selected by SVS  
3:2  
1
Reserved  
R/W  
AVS  
VCC_APPS (Buck1) Voltage Select  
0 - Ramp VCC_APPS Output Voltage to ADVT1  
1 - Ramp VCC_APPS Output Voltage to ADVT2  
0
R/W  
AGO  
Start VCC_APPS(Buck1) Voltage Change  
0 - Hold VCC_APPS Output Voltage at current Level  
1 - Ramp VCC_APPS Output Voltage as selected by AVS  
27  
www.national.com  
BUCK1 (VCC_APPS) VOLTAGE 1  
Buck1 (VCC_APPS) Target Voltage 1 Register (ADTV1) 8h’23  
Bit  
7
6
Reserved  
0
5
4**  
3**  
2**  
1**  
0**  
Designation  
Reset Value  
Buck1 Output Voltage (B1OV1)  
0
0
0
1
0
1
1
Note: ** denotes one time factory programmable  
Buck1 (VCC_APPS) Target Voltage 1 Register (ADTV1) 8h’23 Definitions  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
R/W  
B1OV1  
Data Code  
5h’0  
Output Voltage  
0.725  
Data Code  
5h’10  
5h’11  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’1A  
5h’1B  
5h’1C  
5h’1D  
5h’1E  
5h’1F  
Output Voltage  
1.125  
5h’1  
5h’2  
5h’3  
5h’4  
5h’5  
5h’6  
5h’7  
5h’8  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
5h’9  
5h’A  
5h’B  
5h’C  
5h’D  
5h’E  
5h’F  
www.national.com  
28  
BUCK1 (VCC_APPS) TARGET VOLTAGE 2 REGISTER  
Buck1 (VCC_APPS) Target Voltage 2 Register (ADTV2) 8h’24  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck1 Output Voltage (B1OV2)  
0
0
0
1
0
1
1
Buck1 (VCC_APPS) Target Voltage 2 Register (ADTV2) 8h’24 Definitions  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Data Code  
R/W  
B1OV2  
Output Voltage  
0.725  
Data Code  
5h’10  
5h’11  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’1A  
5h’1B  
5h’1C  
5h’1D  
5h’1E  
5h’1F  
Output Voltage  
1.125  
5h’0  
5h’1  
5h’2  
5h’3  
5h’4  
5h’5  
5h’6  
5h’7  
5h’8  
5h’9  
5h’A  
5h’B  
5h’C  
5h’D  
5h’E  
5h’F  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
29  
www.national.com  
BUCK1 (VCC_APPS) VOLTAGE RAMP CONTROL REGISTER  
Buck1 (VCC_APPS) Voltage Ramp Control Register (AVRC) 8h’25  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Ramp Rate (B1RR)  
0
0
0
0
1
1
0
Buck1 (VCC_APPS) Voltage Ramp Control Register (AVRC) 8h’25 Definitions  
Bit  
Access  
Name  
Description  
7:5  
Reserved  
DVM Ramp Speed  
Data Code  
Ramp Rate (mV/uS)  
5h’0  
5h’1  
Instant  
1
5h’2  
2
5h’3  
3
5h’4  
5h’5  
4
5
4:0  
R/W  
B1RR  
5h’6  
6
5h’7  
7
5h’8  
8
5h’9  
5h’A  
4h’B-4h’1F  
9
10  
Reserved  
www.national.com  
30  
VCC_COMM TARGET VOLTAGE 1 DUMMY REGISTER (CDTV1)  
VCC_COMM Target Voltage 1 Dummy Register (CDTV1) 8h’26 Write Only  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Output Voltage  
0
0
0
0
0
0
0
Note: CDTV1 must be writable by an I2C controller. This is a dummy register  
VCC_COMM TARGET VOLTAGE 2 DUMMY REGISTER (CDTV2)  
VCC_COMM Target Voltage 2 Dummy Register (CDTV2) 8h’27 Write Only  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Output Voltage  
0
0
0
0
0
0
0
Note: CDTV2 must be writable by an I2C controller. This is a dummy register and can not be read.  
This is a variable voltage supply to the internal SRAM of the Application processor.  
LDO5 (VCC_SRAM) TARGET VOLTAGE 1 REGISTER  
LDO5 (VCC_SRAM) Target Voltage 1 Register (SDTV1) 8H'29  
Bit  
7
6
Reserved  
0
5
4**  
3**  
2**  
1**  
0**  
Designation  
Reset Value  
LDO 5 Output Voltage (L5OV)  
0
0
0
1
0
1
1
Note: ** denotes one time factory programmable EPROM registers for default values  
LDO5 (VCC_SRAM) Target Voltage 1 Register (SDTV1) 8h’29 Definitions  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Data Code  
R/W  
B1OV  
Output Voltage  
Data Code  
Output Voltage  
1.125  
5h’0  
5h’1  
5h’2  
5h’3  
5h’4  
5h’5  
5h’6  
5h’7  
5h’8  
5h’9  
5h’A  
5h’B  
5h’C  
5h’D  
5h’E  
5h’F  
5h’10  
5h’11  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’1A  
5h’1B  
5h’1C  
5h’1D  
5h’1E  
5h’1F  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
31  
www.national.com  
LDO5 (VCC_SRAM) TARGET VOLTAGE 2 REGISTER  
LDO5 (VCC_SRAM) Target Voltage 2 Register (SDTV2) 8h’2A  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
LDO 5 Output Voltage (L5OV)  
0
0
0
1
0
1
1
LDO5 (VCC_SRAM) Target Voltage 2 Register (SDTV2) 8h’2A Definitions  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Data Code  
R/W  
B1OV  
Output Voltage  
Data Code  
Output Voltage  
1.125  
5h’0  
5h’1  
5h’2  
5h’3  
5h’4  
5h’5  
5h’6  
5h’7  
5h’8  
5h’9  
5h’A  
5h’B  
5h’C  
5h’D  
5h’E  
5h’F  
5h’10  
5h’11  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’1A  
5h’1B  
5h’1C  
5h’1D  
5h’1E  
5h’1F  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
VCC_MVT is low tolerance regulated power supply for the application processor ring oscillator and logic for communicating to the  
LP3972. VCC_MVT is enabled when SYS_EN is asserted and disabled when SYS_EN is deasserted.  
www.national.com  
32  
LDO1 (VCC_MVT) TARGET VOLTAGE 1 REGISTER (MDTV1)  
LDO1 (VCC_MVT) Target Voltage 1 Register (MDTV1) 8h’32  
Bit  
7
6
Reserved  
0
5
4**  
3**  
2**  
1**  
0**  
Designation  
Reset Value  
Output Voltage (OV)  
1
0
0
0
0
0
0
Note: ** denotes one time factory programmable EPROM registers for default values  
LDO1 (VCC_MVT) Target Voltage 1 Register (MDTV1) 8h’32 Definitions  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Data Code  
R/W  
L1OV  
Output Voltage  
1.700  
Notes:  
5h’0  
5h’1  
1.725  
5h’2  
1.750  
5h’3  
1.775  
5h’4  
5h’5  
1.800  
1.825  
5h’6  
1.850  
5h’7  
1.875  
5h’8  
1.900  
5h’9  
1.925  
5h’A  
5h’B  
5h’C  
5h’D-5h’F  
1.950  
1.975  
2.000  
Reserved  
33  
www.national.com  
LDO1 (VCC_MVT) TARGET VOLTAGE 2 REGISTER  
LDO1 (VCC_MVT) Target Voltage 2 Register (MDTV2) 8h’33  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Output Voltage (OV)  
0
0
0
0
1
1
1
LDO1 (VCC_MVT) Target Voltage 2 Register (MDTV2) 8h’33 Definitions  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Data Code  
R/W  
L1OV  
Output Voltage  
1.700  
Notes:  
5h’0  
5h’1  
1.725  
5h’2  
1.750  
5h’3  
1.775  
5h’4  
5h’5  
1.800  
1.825  
5h’6  
1.850  
5h’7  
1.875  
5h’8  
1.900  
5h’9  
1.925  
5h’A  
5h’B  
5h’C  
5h’D-5h’F  
1.950  
1.975  
2.000  
Reserved  
www.national.com  
34  
LDO2 VOLTAGE CONTROL REGISTER (L12VCR)  
LDO2 Voltage Control Register (L12VCR) 8h’39  
Bit  
7**  
6**  
5**  
4**  
3
2
1
0
Designation  
Reset Value  
LDO2 Output Voltage (L2OV)  
Reserved  
0
0
0
0
0
0
0
0
Note: ** denotes one time factory programmable EPROM registers for default values  
LDO2 Voltage Control Register (L12VCR) 8h’39 Definitions  
Bit  
Access  
Name  
Description  
7:4  
R/W  
L2OV  
Data Code  
4h’0  
4h’1  
Output Voltage  
Notes:  
Default  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
4h’B  
4h’C  
4h’D  
4h’E  
4h’F  
3:0  
Reserved  
35  
www.national.com  
LDO4 – LDO3 VOLTAGE CONTROL REGISTER (L34VCR)  
LDO4 – LDO3 Voltage Control Register (L34VCR) 8h’3A  
Bit  
Designation  
Reset Value  
7**  
6**  
5**  
4**  
3**  
2**  
1**  
0**  
LDO4 Output Voltage (L4OV)  
LDO3 Output Voltage (L3OV)  
0
0
0
0
0
0
0
0
Note: ** denotes one time factory programmable EPROM registers for default values  
LDO4 – LDO3 Voltage Control Register (L34VCR) 8h’3A Definitions  
Bit  
Access  
Name  
Description  
7:4  
R/W  
L4OV  
Data Code  
4h’0  
4h’1  
Output Voltage  
1.00  
Notes:  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.50  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
4h’B  
4h’C  
4h’D  
4h’E  
4h’F  
Default  
3:0  
R/W  
L3OV  
Data Code  
4h’0  
Output Voltage  
Notes:  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
4h’1  
4h’2  
4h’3  
4h’4  
4h’5  
4h’6  
4h’7  
4h’8  
4h’9  
4h’A  
4h’B  
4h’C  
4h’D  
4h’E  
4h’F  
Default  
www.national.com  
36  
NSC DEFINED CONTROL AND STATUS REGISTERS  
SYSTEM CONTROL REGISTER 1 (SCR1)  
System Control Register 1 (SCR1) 8h’80  
Bit  
Designation  
Reset Value  
7**  
BPSEN  
0
6**  
5**  
4
FPWM3  
0
3
FPWM2  
0
2
FPWM1  
0
1
0
BK_SSEN  
0
SENDL  
BK_SLOMOD  
0
1
0
Note: ** denotes one time factory programmable EPROM registers for default values  
System Control Register 1 (SCR1) 8h’80 Definitions  
Bit  
Access  
Name  
Description  
7
R/W  
BPSEN  
Bypass System enable safety Lock. Prevents activation of PWR_EN  
when SYS_EN is low.  
0 = PWR_EN “AND” with SYS_EN signal, Default  
1 = PWR_EN independent of SYS_EN  
Delay time for High Voltage Power Domains LDO2, LDO3, LDO4,  
Buck2, and Buck3 after activation of SYS_EN. VCC_LDO1 has no  
delay.  
Data Code  
2h’0  
Delay mS  
0.0  
Notes:  
6:5  
R/W  
SENDL  
2h’1  
2h’2  
2h’3  
0.5  
1.0  
1.4  
Default  
4
3
2
1
0
R/W  
R/W  
R/W  
R
FPWM3  
FPWM2  
Buck3 PWM/PFM Mode select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
Buck2 PWM/PFM Mode select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
FPWM1  
Buck1 PWM/PFM Mode select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
BK_SLOMOD  
BK_SSEN  
Buck Spread Spectrum Modulation Bucks 1-3  
0 = 10 kHz triangular wave spread spectrum modulation  
1 = 2 kHz triangular wave spread spectrum modulation  
R
Spread spectrum function Bucks 1-3  
0 = SS Output Disabled  
1 = SS Output Enabled  
37  
www.national.com  
SYSTEM CONTROL REGISTER 2 (SCR2)  
System Control Register 2 (SCR2) 8h’81  
Bit  
7
BBCS  
1
6
SHBU  
0
5**  
BPTR  
1
4
WUP3  
1
3
2
1
0
Designation  
GPIO2  
GPIO1  
0
0
1
0
Note: ** denotes one time factory programmable EPROM registers for default values  
System Control Register 2 (SCR2) 8h’81 Definitions  
Bit  
Access  
Name  
Description  
7
R/W  
BBCS  
Sets GPIO1 as control input for Back Up battery charger  
0 - Back Up battery Charger GPIO Disabled  
1 - Back Up battery Charger GPIO Pin Enabled  
Shut down Back up battery to prevent battery drain during shipping  
0 = Back up Battery Enabled  
1 = Back up battery Disabled  
6
5
R/W  
R/W  
SHBU  
BPTR  
Bypass LDO_RTC Output Voltage to LDO3 Output Voltage Tracking  
0 - LDO_RTC3 Tracking enabled  
1 - LDO_RTC3 Tracking disabled, Default  
4
R/W  
R/W  
WUP3  
GPIO2  
Spare Wakeup control input  
0 - Active High  
1 - Active Low  
3:2  
Configure direction and output sense of GPIO2 Pin  
Data Code  
2h’00  
GPIO2  
Hi-Z  
2h’01  
2h’02  
Output Low  
Input  
2h’03  
Output high  
1:0  
R/W  
GPIO1  
Configure direction and output sense of GPIO1 Pin  
Data Code  
2h’00  
GPIO1  
Hi-Z  
2h’01  
2h’02  
Output Low  
Input  
2h’03  
Output high  
www.national.com  
38  
OUTPUT ENABLE 3 REGISTER (OEN3) 8H’82  
Bit  
Designation  
Reset Value  
7
6
Reserved  
0
5
4**  
B3EN  
1
3
ENFLAG  
0
2**  
B2EN  
1
1
Reserved  
0
0**  
L1EN  
1
0
0
Note: ** denotes one time factory programmable EPROM registers for default values  
OUTPUT ENABLE 3 REGISTER (OEN3) 8H’82 DEFINITIONS  
Bit  
7:5  
4
Access  
Name  
Description  
Reserved  
R/W  
B3EN  
VCC_Buck3 Supply Output Enabled  
0 = VCC_Buck3 Supply Output Disabled  
1 = VCC_Buck3 Supply Output Enabled, Default  
3
2
R/W  
R/W  
ENFLAG  
B2EN  
Enable for Temperature Flags (BCT)  
0 = Temperature Flag Disabled  
1 = Temperature Flag Enabled  
VCC_Buck2 Supply Output Enabled  
0 = VCC_Buck2 Supply Output Disabled  
1 = VCC_Buck2 Supply Output Enabled, Default  
1
0
Reserved  
R/W  
L1EN  
LDO1 (MVT)Output Voltage Enable  
0 = LDO1 Supply Output Disabled  
1 = LDO1 Supply Output Enabled, Default  
STATUS REGISTER 3 (OSR3) 8H’83  
Bit  
Designation  
Reset Value  
7
BT_OK  
0
6
5
B2_OK  
0
4
LDO1_OK  
0
3
Reserved  
0
2
1
BCT1  
0
0
BCT0  
0
B3_OK  
BCT2  
0
0
STATUS REGISTER 3 (OSR3) DEFINITIONS 8H’83  
Bit  
Access  
Name  
Description  
7
R
BT_OK  
Bucks 2-3 Supply Output Voltage Status  
0 - (Bucks 1-3) output voltage < 90% Default value  
1 - (Bucsk 1-3) output voltage > 90% Default value  
6
5
4
R
R
R
B3_OK  
B2_OK  
Buck3 Supply Output Voltage Status  
0 - (Buck3) output voltage < 90% Default value  
1 - (Buck3) output voltage > 90% Default value  
Buck2 Supply Output Voltage Status  
0 - (Buck2) output voltage < 90% Default value  
1 - (Buck2) output voltage > 90% Default value  
LDO1_OK  
LDO1 Output Voltage Status  
0 - (VCC_LDO1) output voltage < 90% of selected value  
1 - (VCC_LDO1) output voltage > 90% of selected value  
3
Reserved  
39  
www.national.com  
Bit  
Access  
Name  
Description  
2:0  
R
BCT  
Binary coded thermal management flag status register  
Temperature  
Ascending °C  
Data Code  
000  
40  
60  
001  
80  
010  
100  
011  
120  
100  
140  
101  
160  
110  
Reserved  
111  
www.national.com  
40  
LOGIC OUTPUT ENABLE REGISTER (LOER) 8H’84  
Bit  
Designation  
Reset Value  
7
Reserved  
0
6*  
B3ENC  
1
5*  
B2ENC  
1
4*  
B1ENC  
0
3*  
L5EC  
0
2*  
L4EC  
1
1*  
L3EC  
1
0*  
L2EC  
1
Note: ** denotes one time factory programmable EPROM registers for default values  
LOGIC OUTPUT ENABLE REGISTER (LOER) DEFINITIONS 8H’84  
Bit  
7
Access  
Name  
Description  
Reserved  
6
R/W  
B3ENC  
Connects Buck3 enable to SYS_EN or PWR_EN Logic Control pin  
0 - Buck3 enable connected to PWR_EN  
1 - Buck3 enable connected to SYS_EN, Default  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B2ENC  
B1ENC  
L5EC  
Connects Buck2 enable to SYS_EN or PWR_EN Logic Control pin  
0 - Buck2 enable connected to PWR_EN  
1 - Buck2 enable connected to SYS_EN, Default  
Connects Buck1 enable to SYS_EN or PWR_EN Logic Control pin  
0 - Buck1 enable connected to PWR_EN, Default  
1 - Buck1 enable connected to SYS_EN  
Connects LDO5 enable to SYS_EN or PWR_EN Logic Control pin  
0 - LDO5 enable connected to PWR_EN, Default  
1 - LDO5 enable connected to SYS_EN  
L4EC  
Connects LDO4 enable to SYS_EN or PWR_EN Logic Control pin  
0 - LDO4 enable connected to PWR_EN  
1 - LDO4 enable connected to SYS_EN, Default  
L3EC  
Connects LDO3 enable to SYS_EN or PWR_EN Logic Control pin  
0 - LDO3 enable connected to PWR_EN  
1 - LDO3 enable connected to SYS_EN, Default  
L2EC  
Connects LDO2 enable to SYS_EN or PWR_EN Logic Control pin  
0 - LDO2 enable connected to PWR_EN  
1 - LDO2 enable connected to SYS_EN, Default  
41  
www.national.com  
VCC_BUCK2 TARGET VOLTAGE REGISTER (B2TV) 8H’85  
Bit  
7
6
Reserved  
0
5
4**  
3**  
2**  
1**  
0**  
Designation  
Reset Value  
Buck2 Output Voltage (B2OV)  
0
0
1
1
0
0
1
Note: ** denotes one time factory programmable EPROM registers for default values  
VCC_BUCK2 TARGET VOLTAGE REGISTER (B2TV) 8H’85 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
R/W  
B2OV  
Output Voltage  
Data Code  
5h’01  
5h’02  
5h’03  
5h’04  
5h’05  
5h’06  
5h’07  
5h’08  
5h’09  
5h’0A  
5h’0B  
5h’0C  
(V)  
Data Code  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
5h’0D  
5h’0E  
5h’0F  
5h’10  
5h’11  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
BUCK3 TARGET VOLTAGE REGISTER (B3TV) 8H’86  
Bit  
7
6
Reserved  
0
5
4**  
3**  
2**  
1**  
0**  
Designation  
Reset Value  
Buck3 Output Voltage (B3OV)  
0
0
1
0
1
0
0
Note: ** denotes one time factory programmable EPROM registers for default values  
BUCK3 TARGET VOLTAGE REGISTER (B3TV) 8H’86 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
R/W  
B3OV  
Output Voltage  
Data Code  
5h’01  
(V)  
Data Code  
5h’0D  
5h’0E  
5h’0F  
5h’11  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h’02  
5h’03  
5h’04  
5h’05  
5h’06  
5h’07  
5h’08  
5h’09  
Default  
5h’0A  
5h’0B  
5h’0C  
www.national.com  
42  
VCC_BUCK3:2 VOLTAGE RAMP CONTROL REGISTER (B32RC)  
VCC_Buck3:2 Voltage Ramp Control Register (B32RC) 8h’87  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Ramp Rate (B3RR)  
Ramp Rate (B2RR)  
1
0
1
0
1
0
1
0
Buck3:2 Voltage Ramp Control Register (B3RC) 8h’87 Definitions  
Bit  
Access  
Name  
Description  
7:4  
R/W  
B3RR  
Data Code  
4h’0  
Ramp Rate mV/µS  
Instant  
4h’1  
4h’2  
1
2
4h’3  
3
4h’4  
4
4h’5  
5
4h’6  
6
4h’7  
7
4h’8  
8
4h’9  
9
4h’A  
10  
3:0  
R/W  
B2RR  
Data Code  
4h’0  
Ramp Rate mV/µS  
Instant  
4h’1  
4h’2  
1
2
4h’3  
3
4h’4  
4
4h’5  
5
4h’6  
6
4h’7  
7
4h’8  
8
4h’9  
9
4h’A  
10  
43  
www.national.com  
INTERRUPT STATUS REGISTER ISRA  
This register specifies the status bits for the interrupts generated by the PMIC. Thermal warning of the IC, GPIO1, GPIO2, PWR_ON  
pin, TEST_JIG factory programmable on signal, and the SPARE pin.  
Interrupt Status Register ISRA 8h’88  
Bit  
Designation  
Reset Value  
7
Reserved  
0
6
T125  
0
5
GPI2  
0
4
GPI1  
0
3
WUP3  
0
2
WUP2  
0
1
WUPT  
0
0
WUPS  
0
Interrupt Status Register ISRA 8h’88 Definitions  
Bit  
7
Access  
Name  
Description  
Reserved  
6
R
T125  
Status bit for thermal warning PMIC T>125C  
0 = PMIC Temp. < 125°C  
1 = PMIC Temp. > 125°C  
5
4
3
2
1
0
R
R
R
R
R
R
GPI2  
GPI1  
Status bit for the input read in from GPIO 2 when set as Input  
0 = GPI2 Logic Low  
1 = GPI2 Logic High  
Status bit for the input read in from GPIO 1 when set as Input  
0 = GPI1 Logic Low  
1 = GPI1 Logic High  
WUP3  
WUP2  
WUPT  
WUPS  
PWR_ON Pin long pulse Wake Up Status  
0 = No wake up event  
1 = Long pulse wake up event  
PWR_ON Pin Short pulse Wake Up Status  
0 = No wake up event  
1 = Short pulse wake up event  
TEST_JIG Pin Wake Up Status  
0 = No wake up event  
1 = Wake up event  
SPARE Pin Wake Up Status  
0 = No wake up event  
1 = Wake up event  
www.national.com  
44  
BACKUP BATTERY CHARGER CONTROL REGISTER (BCCR)  
This register specifies the status of the main battery supply. NBUB bit  
Backup Battery Charger Control Register (BCCR) 8h’89  
Bit  
7**  
NBUB  
0
6
CNBFL  
0
5**  
4**  
nBFLT  
1
3**  
2
BUCEN  
0
1
0
Designation  
Reset Value  
IBUC  
0
0
0
1
Note: ** denotes one time factory programmable EPROM registers for default values  
Backup Battery Charger Control Register (BCCR) 8h’89 Definitions  
Bit  
Access  
Name  
Description  
7
R/W  
NBUB  
No back-up battery default setting. Logic will not allow switch over to back-up  
battery.  
0 = Back up Battery Enabled, Default  
1 = Back up Battery Disabled  
6
R/W  
CNBFL  
Control for nBATT_FLT output signal  
0 = nBATT_FLT Enabled  
1 = nBATT_FLT Disabled  
nBATT_FLT monitors the battery voltage and can be set to the Assert voltages  
listed below.  
Data Code  
3h’01  
Asserted  
2.6  
De-Asserted  
Note:  
2.8  
3.0  
3.2  
3.4  
3.6  
5:3  
2
R/W  
R/W  
BFLT  
3h’02  
3h’03  
3h’04  
3h’05  
2.8  
3.0  
3.2  
3.4  
Default  
BUCEN  
Enables backup battery charger  
0 = Back up Battery Charger Disabled  
1 = Back up Battery Charger Enabled  
Charger current setting for back-up battery  
Data Code  
2h’00  
BU Charger I (µA)  
Note:  
260  
190  
325  
390  
1:0  
R/W  
IBUC  
2h’01  
2h’02  
2h’03  
Default  
45  
www.national.com  
MARVELL PXA INTERNAL 1 REVISION REGISTER (II1RR) 8H’8E  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
II1RR  
0
0
0
0
0
0
0
0
MARVELL PXA INTERNAL 1 REVISION REGISTER (II1RR) 8H’8E DEFINITIONS  
Bit  
Access  
Name  
Description  
7:0  
R
II1RR  
Intel internal usage register for revision information.  
MARVELL PXA INTERNAL 2 REVISION REGISTER (II2RR) 8H’8F  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
II2RR  
0
0
0
0
0
0
0
0
MARVELL PXA INTERNAL 2 REVISION REGISTER (II2RR) 8H’8F DEFINITIONS  
Bit  
Access  
Name  
Description  
7:0  
R
II2RR  
Intel internal usage register for revision information.  
REGISTER PROGRAMMING EXAMPLES  
Example 1) Start of Day Sequence  
PMIC Register PMIC Register  
Register Data  
Description  
Address  
Name  
ADTVI  
SDTV1  
OVER1  
8h’23  
00011011  
00011011  
00000111  
Sets the SOD VCC_APPS voltage  
Sets the SOD VCC_SRAM voltage  
8h’29  
8h’10  
Enables VCC_SRAM and VCC_APPS to their programmed values.  
SODl Multi-byte random register transfer is outlined below:  
20207644  
www.national.com  
46  
Register A Address, Ach,  
Register A Data, Ach  
Device Address,  
Register M Address, Ach,  
Register M Data, Ach  
Register X Address, Ach,  
Register X Data, Ach  
Register Z Address, Ach,  
Register Z Data, Ach, Stop  
Example 2) Voltage change Sequence  
PMIC Register PMIC Register  
Register Data  
Description  
Address  
8h’24  
Name  
ADTV2  
SDTV2  
00010111  
00001111  
00110011  
Sets the VCC_APPS target voltage 2 to 1.3 V  
Sets the VCC_SRAM target voltage 2 to 1.1 V  
8h’2A  
8h’20  
VCC  
1
Enable VCC_SRAM and VCC_APPS to change to their programmed  
target values.  
I2C DATA EXCHANGE BETWEEN MASTER AND SLAVE DEVICE  
20207645  
47  
www.national.com  
LP3972 Controls  
DIGITAL INTERFACE CONTROL SIGNALS  
Signal  
Definition  
Active State Signal Direction  
SYS_EN  
PWR_EN  
SCL  
High Voltage Power Enable  
Low Voltage Power Enable  
Serial Bus Clock Line  
High  
High  
Input  
Input  
Clock  
Input  
SDA  
Serial Bus Data Line  
Bidirectional  
Input  
nRSTI  
Forces an unconditional hardware reset  
Forces an unconditional hardware reset  
Main Battery removed or discharged indicator  
Wakeup Input to CPU  
Low  
Low  
nRSTO  
Output  
nBATT_FLT  
PWR_ON  
nTEST_JIG  
SPARE  
Low  
Output  
High  
Low  
Input  
Wakeup Input to CPU  
Input  
Wakeup Input to CPU  
High/Low  
High  
Input  
EXT_WAKEUP  
Wake-Up Output for application processor  
Output  
GPIO1 / nCHG_EN General Purpose I/O /External Back-up Battery Charger enable  
GPIO2 General Purpose I/O  
Bidirectional /Input  
Bidirectional  
POWER DOMAIN ENABLES  
PMU Output  
HW Enable  
SW Enable  
PMU Output  
LDO5 (VCC_SRAM)  
Buck1 (VCC_APPS)  
BUCK2  
HW Enable  
SW Enable  
S_EN  
LDO_RTC  
LDO1 (VCC_MVT)  
LDO2  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
A_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
LDO1_EN  
LDO2_EN  
LDO3_EN  
LDO4_EN  
B2_EN  
B3_EN  
BUCK3  
LDO3  
LDO4  
POWER DOMAINS SEQUENCING (DELAY)  
LDO_RTC TRACKING (nIO_TRACK)  
By default SYS_EN must be on to have PWR_EN enable but  
this feature can be switched off by register bit BP_SYS.  
LP3972 has a tracking function (nIO_TRACK). When en-  
abled, LDO_RTC voltage will track LDO3 voltage within 200  
mV down to 2.8V when LDO3 is enabled. This function can  
be switched on/off by nIO_TRACK register bit BPTR.  
By default SYS_EN enables LDO1 always first and after a  
typical of 1 ms delay others. Also when SYS_EN is set off the  
LDO1 will go off last. This function can be switched off or delay  
can be changed by DELAY bits via serial interface as seen  
on table below.  
POWER SUPPLY ENABLE  
SYS_EN and PWR_EN can be changed by programmable  
register bits.  
8h’80 Bit 5:4  
DELAY bits  
Delay, ms  
00’  
0
01’  
0.5  
10’  
1.0  
11’  
1.5  
www.national.com  
48  
WAKE-UP FUNCTIONALITY (PWR_ON, nTEST_JIG,  
SPARE AND EXT_WAKEUP)  
WAKEUP register bits  
WUP0  
Reason for WAKEUP  
SPARE  
Three input pins can be used to assert wakeup output for 10  
ms for application processor notification to wakeup. SPARE  
Input can be programmed through I2C compatible interface to  
be active low or high (SPARE bit, Default is active low ‘1’). A  
reason for wakeup event can be read through I2C compatible  
interface also. Additionally wakeup inputs have 30 ms de-  
bounce filtering. Furthermore PWR_ON have distinguishing  
between short and long (1s) pulses (push button input).  
LP3972 also has an internal Thermal Shutdown early warning  
that generates a wakeup to the system also. This is generated  
usually at 125°C.  
WUP1  
TEST_JIG  
WUP2  
PWR_ON short pulse  
PWR_ON long pulse  
TSD Early Warning  
WUP3  
TSD_EW  
INTERNAL THERMAL SHUTDOWN PROCEDURE  
Thermal shutdown is build to generate early warning (typ.  
125°C) which triggers the EXT_WAKEUP for the processor  
acknowledge. When a thermal shutdown triggers (typ. 160°  
C) the PMU will reset the system until the device cools down.  
BATTERY SWITCH AND BACK UP BATTERY CHARGER  
When Back-Up battery is connected but the main battery has  
been removed or its supply voltage too low, LP3972 uses  
Back-Up Battery for generating LDO_RTC voltage. When  
Main Battery is available the battery FET switches over to the  
main battery for LDO_RTC voltage. When Main battery volt-  
age is too low or removed nBATT_FLT is asserted. If no back  
up battery exists, the battery switch to back up can be  
switched off by nBU_BAT_EN bit. User can set the battery  
fault determination voltage and battery charger current via  
I2C compatible interface. Enabling of back up battery charger  
can be done via serial interface (nBAT_CHG_EN) or external  
charger enable pin (nCHG_EN). Pin 29 is set as external  
charger enable input by default.  
20207619  
49  
www.national.com  
GENERAL PURPOSE I/O FUNCTIONALITY (GPIO1 AND  
GPIO2)  
LP3972 has 2 general purpose I/Os for system control. I2C  
compatible interface will be used for setting any of the pins to  
input, output or hi-Z mode. Inputs value can be read via serial  
interface (GPIO1,2 bits). The pin 29 functionality needs to be  
set to GPIO by serial interface register bit nEXTCHGEN.  
(GPIO/CHG)  
Controls  
Port Function  
GPIO1  
Reg  
batmonchg  
Function  
GPIO<1>  
GPIO<1>  
Nextchgen_sel  
bucen  
Gpin 1  
X
X
1
X
0
1
0
1
X
X
0
X
0
0
1
1
1
1
1
X
0
0
0
0
0
0
Input = 0  
Input = 1  
X
0
0
0
Enabled  
Not Enabled  
X
1
X
Enabled  
X
X
X
X
HiZ  
Input (dig)->  
Output = 0  
Output = 1  
Input  
0
0
GPIO<1>  
GPIO<1>  
Factory fm disabled  
GPIO_tstiob  
GPIO2  
HiZ  
gpin2  
0
0
1
0
1
0
0
1
1
1
1
1
1
Input (dig)->  
Output = 0  
Output = 1  
input  
0
0
The LP3972 has provision for two battery connections, the  
main battery VBAT and Backup Battery (See Applications  
Schematic Diagrams 1 & 2 of the LP3972 Data Sheet).  
There is a hysteresis voltage in this switch operation  
so, the LDO_RTC will not be reconnected to main  
battery until main battery voltage is greater than 3.1V  
typically.  
The function of the battery switch is to connect power to the  
LDO_RTC from the appropriate battery, depending on con-  
ditions described below:  
Additionally, the user may wish to disable the battery  
switch, such as, in the case when only a main battery is  
used. This is accomplished by setting the “no back up  
battery bit” in the control register 8h’89 bit 7 NBUB. With  
this bit set to “1”, the above described switching will not  
occur, that is the LDO_RTC will remain connected to the  
main battery even as it is discharged below the 2.9 Volt  
threshold.  
If only the backup battery is applied, the switch will  
automatically connect the LDO_RTC power to this battery.  
If only the main battery is applied, the switch will  
automatically connect the LDO_RTC power to this battery.  
If both batteries are applied, and the main battery is  
sufficiently charged (VBAT > 3.1V), the switch will  
automatically connect the RTC LDO power to the main  
battery.  
REGULATED VOLTAGES OK  
All the power domains have own register bit (X_OK) that pro-  
cessor can read via serial interface to be sure that enabled  
powers are OK (regulating). Note that these read only bits are  
only valid when regulators are settled (avoid reading these  
bits during voltage change or power up).  
As the main battery is discharged by use, the user will be  
warned by a separate circuit called nBATT_FLT. Then if  
no action is taken to restore the charge on the main  
battery, and discharging is continued the battery switch will  
protect the LDO_RTC by disconnecting from the main  
battery and connecting to the backup battery.  
The main battery voltage at which the LDO_RTC is  
switched from main to backup battery is 2.9V typically.  
www.national.com  
50  
THERMAL MANAGEMENT  
temperature range and resolution of these flags, might also  
be refined/redefined.  
Application: There is a mode wherein all 6 comparators (flags)  
can be turned on via the “enallflags” control register bit. This  
mode allows the user to interrogate the device or system  
temperature under the set operating conditions. Thus, the  
rate of temperature change can also be estimated. The sys-  
tem may then negotiate for speed and power trade off, or  
deploy cooling maneuvers to optimize system performance.  
The “enallflags” bit needs enabled only when the “bct<2:0>  
bits are read to conserve power.  
THERMAL WARNING  
2 of 6 low power comparators, each consumes less than 1  
µA, are always enabled to operate the “T=125°C warning flag  
with hysteresis. This allows continuous monitoring of a ther-  
mal-warning flag feature with very low power consumption.  
LP3972 THERMAL FLAGS FUNCTIONAL DIAGRAM,  
DATA FROM INITIAL SILICON  
Note: The thermal management flags have been verified  
functional. Presently these registers are accessible by factory  
only. If there is a demand for this function, the relevant register  
controls may be shifted into the user programmable bank; the  
The following functions are extra features from the thermal  
shutdown circuit:  
20207646  
51  
www.national.com  
Application Note - LP3972 Reset Sequence  
INITIAL COLD START POWER ON SEQUENCE  
6. The LP3972 enables the high-voltage power supplies.  
LDO1 power for VCC_MVT (Power for internal logic  
and I/O Blocks), BG (Bandgap reference voltage),  
OSC13M (13 MHz oscillator voltage) and PLL  
enabled first, followed by others if delay is on.  
1. The Back up battery is connected to the PMU, power is  
applied to the back-up battery pin, the LDO_RTC turns  
on and supplies a stable output voltage to the  
VCC_BATT pin of the Applications processor (initiating  
the power-on reset event) with nRSTO asserted from the  
LP3972 to the processor.  
7. Countdown timer expires; the Applications processor  
asserts PWR_EN to enable the low-voltage power  
supplies. The processor starts the countdown timer set  
to 125 mS period.  
2. nRSTO de-asserts after a minimum of 50 mS.  
3. The Applications processor waits for the de-assertion of  
nBATT_FLT to indicate system power (VIN) is available.  
8. The Applications processor asserts PWR_EN (ext. pin or  
I2C), the LP3972 enables the low-voltage regulators.  
4. After system power (VIN) is applied, the LP3972 de-  
asserts nBATT_FLT. Note that BOTH nRSTO and  
nBATT_FLT need to be de-asserted before SYS_EN is  
enabled. The sequence of the two signals is independent  
of each other.  
9. Countdown timer expires; If enabled power domains are  
OK (I2C read) the power up sequence continues by  
enabling the processors 13 MHz oscillator and PLL’s.  
10. The Applications processor begins the execution of  
code.  
5. The Applications processor asserts SYS_EN, the  
LP3972 enables the system high-voltage power  
supplies. The Applications processor starts its  
countdown timer set to 125 mS.  
20207622  
* Note that BOTH nRSTO and nBATT_FLT need to be de-asserted before SYS_EN is enabled. The sequence of the two signals is independent of each other  
and can occur is either order.  
www.national.com  
52  
POWER-ON TIMING  
Symbol  
Description  
Min  
Typ  
Max  
Units  
mS  
µS  
t1  
t2  
t3  
t4  
t5  
Delay from VCC_RTC assertion to nRSTO de-assertion  
Delay from nBATT_FLT de-assertion to nRSTI assertion  
Delay from nRST de-assertion to SYS_EN assertion  
Delay from SYS_EN assertion to PWR_EN assertion  
Delay from PWR_EN assertion to nRSTO de-assertion  
50  
100  
10  
mS  
mS  
mS  
125  
125  
HARDWARE RESET SEQUENCE  
Hardware reset initiates when the nRSTI signal is asserted  
(low). Upon assertion of nRST the processor enters hardware  
RESET SEQUENCE  
reset state. The LP3972 holds the nRST low long enough (50  
ms typ.) to allow the processor time to initiate the reset state.  
6. The LP3972 enables the high-voltage power supplies.  
1. nRSTI is asserted.  
7. Countdown timer expires; the Applications processor  
asserts PWR_EN to enable the low-voltage power  
supplies. The processor starts the countdown timer.  
2. nRSTO is asserted and will de-asserts after a minimum  
of 50 mS  
8. The Applications processor asserts PWR_EN, the  
LP3972 enables the low-voltage regulators.  
3. The Applications processor waits for the de-assertion of  
nBATT_FLT to indicate system power (VIN) is available.  
9. Countdown timer expires; If enabled power domains are  
OK (I2C read) the power up sequence continues by  
enabling the processors 13 MHz oscillator and PLL’s.  
4. After system power (VIN) is turned on, the LP3972 de-  
asserts nBATT_FLT.  
5. The Applications processor asserts SYS_EN, the  
LP3972 enables the system high-voltage power  
supplies. The Applications processor starts its  
countdown timer.  
10. The Applications processor begins the execution of  
code.  
53  
www.national.com  
the capacitor parameters, to ensure that the specification is  
met within the application. The capacitance can vary with DC  
bias conditions as well as temperature and frequency of op-  
eration. Capacitor values will also show some decrease over  
time due to aging. The capacitor parameters are also depen-  
dant on the particular case size, with smaller sizes giving  
poorer performance figures in general. As an example, Figure  
4 shows a typical graph comparing different capacitor case  
sizes in a Capacitance vs. DC Bias plot. As shown in the  
graph, increasing the DC Bias condition can result in the ca-  
pacitance value falling below the minimum value given in the  
recommended capacitor specifications table. Note that the  
graph shows the capacitance out of spec for the 0402 case  
size capacitor at higher bias voltages. It is therefore recom-  
mended that the capacitor manufacturers’ specifications for  
the nominal value capacitor are consulted for all conditions,  
as some capacitor sizes (e.g. 0402) may not be suitable in the  
actual application.  
Application Hints  
LDO CONSIDERATIONS  
External Capacitors  
The LP3972’s regulators require external capacitors for reg-  
ulator stability. These are specifically designed for portable  
applications requiring minimum board space and smallest  
components. These capacitors must be correctly selected for  
good performance.  
Input Capacitor  
An input capacitor is required for stability. It is recommended  
that a 1.0 µF capacitor be connected between the LDO input  
pin and ground (this capacitance value may be increased  
without limit).  
This capacitor must be located a distance of not more than 1  
cm from the input pin and returned to a clean analogue  
ground. Any good quality ceramic, tantalum, or film capacitor  
may be used at the input.  
Important: Tantalum capacitors can suffer catastrophic fail-  
ures due to surge current when connected to a low impedance  
source of power (like a battery or a very large capacitor). If a  
tantalum capacitor is used at the input, it must be guaranteed  
by the manufacturer to have a surge current rating sufficient  
for the application.  
There are no requirements for the ESR (Equivalent Series  
Resistance) on the input capacitor, but tolerance and tem-  
perature coefficient must be considered when selecting the  
capacitor to ensure the capacitance will remain approximately  
1.0 µF over the entire operating temperature range.  
Output Capacitor  
The LDO’s are designed specifically to work with very small  
ceramic output capacitors. A 1.0 μF ceramic capacitor (tem-  
perature types Z5U, Y5V or X7R) with ESR between 5 mto  
500 m, are suitable in the application circuit.  
For this device the output capacitor should be connected be-  
tween the VOUT pin and ground.  
20207623  
FIGURE 4. Graph Showing a Typical Variation in  
Capacitance vs. DC Bias  
It is also possible to use tantalum or film capacitors at the  
device output, COUT (or VOUT), but these are not as attractive  
for reasons of size and cost (see the section Capacitor Char-  
acteristics).  
The ceramic capacitor’s capacitance can vary with tempera-  
ture. The capacitor type X7R, which operates over a temper-  
ature range of −55°C to +125°C, will only vary the capacitance  
to within ±15%. The capacitor type X5R has a similar toler-  
ance over a reduced temperature range of −55°C to +85°C.  
Many large value ceramic capacitors, larger than 1 µF are  
manufactured with Z5U or Y5V temperature characteristics.  
Their capacitance can drop by more than 50% as the tem-  
perature varies from 25°C to 85°C. Therefore X7R is recom-  
mended over Z5U and Y5V in applications where the ambient  
temperature will change significantly above or below 25°C.  
The output capacitor must meet the requirement for the min-  
imum value of capacitance and also have an ESR value that  
is within the range 5 mto 500 mfor stability.  
No-Load Stability  
The LDO’s will remain stable and in regulation with no exter-  
nal load. This is an important consideration in some circuits,  
for example CMOS RAM keep-alive applications.  
Tantalum capacitors are less desirable than ceramic for use  
as output capacitors because they are more expensive when  
comparing equivalent capacitance and voltage ratings in the  
0.47 µF to 4.7 µF range.  
Capacitor Characteristics  
The LDO’s are designed to work with ceramic capacitors on  
the output to take advantage of the benefits they offer. For  
capacitance values in the range of 0.47 µF to 4.7 µF, ceramic  
capacitors are the smallest, least expensive and have the  
lowest ESR values, thus making them best for eliminating  
high frequency noise. The ESR of a typical 1.0 µF ceramic  
capacitor is in the range of 20 mto 40 m, which easily  
meets the ESR requirement for stability for the LDO’s.  
Another important consideration is that tantalum capacitors  
have higher ESR values than equivalent size ceramics. This  
means that while it may be possible to find a tantalum capac-  
itor with an ESR value within the stable range, it would have  
to be larger in capacitance (which means bigger and more  
costly) than a ceramic capacitor with the same ESR value. It  
should also be noted that the ESR of a typical tantalum will  
increase about 2:1 as the temperature goes from 25°C down  
to –40°C, so some guard band must be allowed.  
For both input and output capacitors, careful interpretation of  
the capacitor specification is required to ensure correct device  
operation. The capacitor value can change greatly, depend-  
ing on the operating conditions and capacitor type. In partic-  
ular, the output capacitor selection should take account of all  
www.national.com  
54  
 
BUCK CONSIDERATIONS  
Inductor Selection  
A 2.2 μH inductor with a saturation current rating of at least  
3A is recommended for most applications. The inductor’s re-  
sistance should be less than 0.3for a good efficiency. Table  
1 lists suggested inductors and suppliers. For low-cost appli-  
cations, an unshielded bobbin inductor could be considered.  
For noise critical applications, a toroidal or shielded bobbin  
inductor should be used. A good practice is to lay out the  
board with overlapping footprints of both types for design flex-  
ibility. This allows substitution of a low-noise shielded induc-  
tor, in the event that noise from low-cost bobbin models is  
unacceptable.  
There are two main considerations when choosing an induc-  
tor; the inductor should not saturate, and the inductor current  
ripple is small enough to achieve the desired output voltage  
ripple. Different saturation current rating specs are followed  
by different manufacturers so attention must be given to de-  
tails. Saturation current ratings are typically specified at 25°C  
so ratings at max ambient temperature of application should  
be requested from manufacturer.  
There are two methods to choose the inductor saturation cur-  
rent rating.  
Input Capacitor Selection  
A ceramic input capacitor of 10 μF, 6.3V is sufficient for most  
applications. Place the input capacitor as close as possible to  
the VIN pin of the device. A larger value may be used for im-  
proved input voltage filtering. Use X7R or X5R types, do not  
use Y5V. DC bias characteristics of ceramic capacitors must  
be considered when selecting case sizes like 0805 and 0603.  
The input filter capacitor supplies current to the PFET switch  
of the converter in the first half of each cycle and reduces  
voltage ripple imposed on the input power source. A ceramic  
capacitor’s low ESR provides the best noise filtering of the  
input voltage spikes due to this rapidly changing current. Se-  
lect a capacitor with sufficient ripple current rating. The input  
current ripple can be calculated as:  
Method 1  
The saturation current is greater than the sum of the maxi-  
mum load current and the worst case average to peak induc-  
tor current. This can be written as  
• IRIPPLE: Average to peak inductor current  
• IOUTMAX: Maximum load current (1500 mA)  
• VIN: Maximum input voltage in application  
• L: Min inductor value including worst case tolerances (30%  
drop can be considered for method 1)  
• f: Minimum switching frequency (1.6 MHz)  
• VOUT: Output voltage  
Method 2  
The worst case is when VIN = 2 * VOUT  
A more conservative and recommended approach is to  
choose an inductor that has saturation current rating greater  
than the max current limit of 3A.  
TABLE 1. Suggested Inductors and Their Suppliers  
Model  
Vendor  
Toko  
Dimensions LxWxH (mm)  
D.C.R. (Typ)  
160 mΩ  
80 mΩ  
FDSE0312-2R2M  
DO1608C-222  
3.0 x 3.0 x 1.2  
6.6 x 4.5 x 1.8  
Coilcraft  
Output Capacitor Selection  
Voltage peak-to-peak ripple due to ESR can be expressed as  
follows  
Use a 10 μF, 6.3V ceramic capacitor. Use X7R or X5R types,  
do not use Y5V. DC bias characteristics of ceramic capacitors  
must be considered when selecting case sizes like 0805 and  
0603. DC bias characteristics vary from manufacturer to man-  
ufacturer and dc bias curves should be requested from them  
as part of the capacitor selection process. The output filter  
capacitor smooths out current flow from the inductor to the  
load, helps maintain a steady output voltage during transient  
load changes and reduces output voltage ripple. These ca-  
pacitors must be selected with sufficient capacitance and  
sufficiently low ESR to perform these functions.  
VPP-ESR = (2 * IRIPPLE) * RESR  
Because these two components are out of phase the rms val-  
ue can be used to get an approximate value of peak-to-peak  
ripple.  
Voltage peak-to-peak ripple, root mean squared can be ex-  
pressed as follows  
The output voltage ripple is caused by the charging and dis-  
charging of the output capacitor and also due to its ESR and  
can be calculated as:  
Note that the output voltage ripple is dependent on the induc-  
tor current ripple and the equivalent series resistance of the  
output capacitor (RESR).  
The RESR is frequency dependent (as well as temperature  
dependent); make sure the value used for calculations is at  
the switching frequency of the part.  
55  
www.national.com  
 
TABLE 2. Suggested Capacitor and Their Suppliers  
Case Size  
Inch (mm)  
Model  
GRM21BR60J106K  
Type  
Ceramic, X5R  
Vendor  
Voltage  
Murata  
Taiyo-Yuden  
TDK  
6.3V  
6.3V  
6.3V  
0805 (2012)  
0805 (2012)  
0805 (2012)  
JMK212BJ106K  
Ceramic, X5R  
Ceramic, X5R  
C2012X5R0J106K  
www.national.com  
56  
Buck Output Ripple Management  
If VIN and ILOAD increase, the output ripple associated with the  
Buck Regulators also increases. The figure below shows the  
safe operating area. To ensure operation in the area of con-  
cern it is recommended that the system designer circumvents  
the output ripple issues to install Schottky diodes on the Buck  
(s) that are expected to perform under these extreme corner  
conditions.  
(Schottky diodes are recommended to reduce the output rip-  
ple, if system requirements include this shaded area of oper-  
ation. VIN > 1.5V and ILOAD > 1.24)  
20207647  
57  
www.national.com  
Board Layout Considerations  
PC board layout is an important part of DC-DC converter de-  
sign. Poor board layout can disrupt the performance of a DC-  
DC converter and surrounding circuitry by contributing to EMI,  
ground bounce, and resistive voltage loss in the traces. These  
can send erroneous signals to the DC-DC converter IC, re-  
sulting in poor regulation or instability.  
copper fill as a pseudo-ground plane. Then, connect this  
to the ground-plane (if one is used) with several vias. This  
reduces ground-plane noise by preventing the switching  
currents from circulating through the ground plane. It also  
reduces ground bounce at the converter by giving it a  
low-impedance ground connection.  
4. Use wide traces between the power components and for  
power connections to the DC-DC converter circuit. This  
reduces voltage errors caused by resistive losses across  
the traces.  
Good layout for the converters can be implemented by fol-  
lowing a few simple design rules.  
1. Place the converters, inductor and filter capacitors close  
together and make the traces short. The traces between  
these components carry relatively high switching  
5. Route noise sensitive traces, such as the voltage  
feedback path, away from noisy traces between the  
power components. The voltage feedback trace must  
remain close to the converter circuit and should be direct  
but should be routed opposite to noisy components. This  
reduces EMI radiated onto the DC-DC converter’s own  
voltage feedback trace. A good approach is to route the  
feedback trace on another layer and to have a ground  
plane between the top layer and layer on which the  
feedback trace is routed. In the same manner for the  
adjustable part it is desired to have the feedback dividers  
on the bottom layer.  
currents and act as antennas. Following this rule reduces  
radiated noise. Special care must be given to place the  
input filter capacitor very close to the VIN and GND pin.  
2. Arrange the components so that the switching current  
loops curl in the same direction. During the first half of  
each cycle, current flows from the input filter capacitor  
through the converter and inductor to the output filter  
capacitor and back through ground, forming a current  
loop. In the second half of each cycle, current is pulled  
up from ground through the converter by the inductor to  
the output filter capacitor and then back through ground  
forming a second current loop. Routing these loops so  
the current curls in the same direction prevents magnetic  
field reversal between the two half-cycles and reduces  
radiated noise.  
6. Place noise sensitive circuitry, such as radio RF blocks,  
away from the DC-DC converter, CMOS digital blocks  
and other noisy circuitry. Interference with noise-  
sensitive circuitry in the system can be reduced through  
distance.  
3. Connect the ground pins of the converter and filter  
capacitors together using generous component-side  
www.national.com  
58  
Physical Dimensions inches (millimeters) unless otherwise noted  
40-Pin Leadless Leadframe Package  
NS Package Number SQF40A  
59  
www.national.com  
Notes  
For more National Semiconductor product information and proven design tools, visit the following Web sites at:  
Products  
www.national.com/amplifiers  
Design Support  
www.national.com/webench  
Amplifiers  
WEBENCH® Tools  
App Notes  
Audio  
www.national.com/audio  
www.national.com/timing  
www.national.com/adc  
www.national.com/interface  
www.national.com/lvds  
www.national.com/power  
www.national.com/appnotes  
www.national.com/refdesigns  
www.national.com/samples  
www.national.com/evalboards  
www.national.com/packaging  
www.national.com/quality/green  
www.national.com/contacts  
www.national.com/quality  
www.national.com/feedback  
www.national.com/easy  
Clock and Timing  
Data Converters  
Interface  
Reference Designs  
Samples  
Eval Boards  
LVDS  
Packaging  
Power Management  
Green Compliance  
Distributors  
Switching Regulators www.national.com/switchers  
LDOs  
www.national.com/ldo  
www.national.com/led  
www.national.com/vref  
www.national.com/powerwise  
Quality and Reliability  
Feedback/Support  
Design Made Easy  
Solutions  
LED Lighting  
Voltage Reference  
PowerWise® Solutions  
www.national.com/solutions  
www.national.com/milaero  
www.national.com/solarmagic  
www.national.com/training  
Serial Digital Interface (SDI) www.national.com/sdi  
Mil/Aero  
Temperature Sensors  
Wireless (PLL/VCO)  
www.national.com/tempsensors SolarMagic™  
www.national.com/wireless  
PowerWise® Design  
University  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2009 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
National Semiconductor Europe  
Technical Support Center  
Email: europe.support@nsc.com  
National Semiconductor Asia  
Pacific Technical Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
Email: support@nsc.com  
Tel: 1-800-272-9959  
www.national.com  

相关型号:

LP3972SQX-E514/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN -40 to 125
TI

LP3972SQX-I514

Power Management Unit for Advanced Application Processors
NSC

LP3972SQXA413

Power Management Unit for Advanced Application Processors
NSC

LP3972SQXA514

Power Management Unit for Advanced Application Processors
NSC

LP3972SQXE514

Power Management Unit for Advanced Application Processors
NSC

LP3972_08

Power Management Unit for Advanced Application Processors
NSC

LP3974

PRODUCT BRIEF High Performance Power Management Unit for Application Processors
TI

LP3974RME/NOPB

PRODUCT BRIEF High Performance Power Management Unit for Application Processors
TI

LP3974RMX/NOPB

PRODUCT BRIEF High Performance Power Management Unit for Application Processors
TI

LP3981

Micropower, 300mA Ultra Low-Dropout CMOS Voltage
NSC

LP3981

LP3981 Micropower, 300mA Ultra Low-Dropout CMOS Voltage Regulator
TI

LP3981ILD-2.5

Micropower, 300mA Ultra Low-Dropout CMOS Voltage
NSC