GE28F320W30TD70 [NUMONYX]

Flash, 2MX16, 70ns, PBGA56, 0.75 MM PITCH, VFBGA-56;
GE28F320W30TD70
型号: GE28F320W30TD70
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 2MX16, 70ns, PBGA56, 0.75 MM PITCH, VFBGA-56

内存集成电路 闪存
文件: 总104页 (文件大小:1443K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Wireless Flash Memory (W30)  
28F640W30, 28F320W30, 28F128W30  
Datasheet  
Product Features  
High Performance Read-While-Write/Erase  
— Burst Frequency at 40 MHz  
— 70 ns Initial Access Speed  
Flash Architecture  
— Multiple 4-Mbit Partitions  
— Dual Operation: RWW or RWE  
— Parameter Block Size = 4-Kword  
— Main block size = 32-Kword  
— Top or Bottom Parameter Blocks  
Flash Security  
— 25 ns Page-Mode Read Speed  
— 20 ns Burst-Mode Read Speed  
— Burst-Mode and Page-Mode in All Blocks  
and across All Partition Boundaries  
— Burst Suspend Feature  
— 128-bit Protection Register: 64 Unique  
Device Identifier Bits; 64 User OTP  
Protection Register Bits  
— Enhanced Factory Programming:  
3.5 µs per Word Program Time  
— Programmable WAIT Signal Polarity  
Flash Power  
— Absolute Write Protection with V at  
PP  
Ground  
— V = 1.70 V – 1.90 V  
— Program and Erase Lockout during Power  
CC  
— V  
= 2.20 V – 3.30 V  
Transitions  
CCQ  
— Standby Current (130 nm) = 8 µA (typ.)  
— Read Current = 7 mA  
— Individual and Instantaneous Block  
Locking/Unlocking with Lock-Down  
Density and Packaging  
(4 word burst, typical)  
Flash Software  
— 130 nm: 32Mb, 64Mb, and 128Mb in VF  
BGA Package; 64Mb, 128Mb in QUAD+  
Package  
— 180 nm: 32Mb and 128Mb Densities in VF  
BGA Package; 64Mb Density in µBGA*  
Package  
— 5 µs/9 µs (typ.) Program/Erase Suspend  
Latency Time  
— Intel® Flash Data Integrator (FDI) and  
Common Flash Interface (CFI) Compatible  
Quality and Reliability  
— Operating Temperature:  
— 56 Active Ball Matrix, 0.75 mm Ball-Pitch  
–40 °C to +85 °C  
— 16-bit Data Bus  
— 100K Minimum Erase Cycles  
— 130 nm ETOX™ VIII Process  
— 180 nm ETOX™ VII Process  
The Intel® Wireless Flash Memory (W30) device combines state-of-the-art Intel® Flash technology to  
provide a versatile memory solution for high performance, low power, board constraint memory  
applications. The W30 flash memory device offers a multi-partition, dual-operation flash architecture  
that enables the flash device to read from one partition while programming or erasing in another partition.  
This Read-While-Write or Read-While-Erase capability makes it possible to achieve higher data  
throughput rates compared to single partition devices. Two processors can interleave code execution,  
because program and erase operations can now occur as background processes.  
The W30 flash memory device incorporates an Enhanced Factory Programming (EFP) mode to improve  
12 V factory programming performance. This feature helps eliminate manufacturing bottlenecks associated  
with programming high-density flash memory devices. The EFP program time is 3.5 µs per word,  
compared to the standard factory program time of 8.0 µs per word, so EFP mode saves significant factory  
programming time for improved factory efficiency.  
The W30 flash memory device also includes block lock-down and programmable WAIT signal polarity,  
and is supported by an array of software tools.  
Notice: This document contains information on new products in production. The specifications  
are subject to change without notice. Verify with your local Intel sales office that you have the  
latest datasheet before finalizing a design.  
Order Number: 290702, Revision: 011  
June 2005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT.  
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by  
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Intel products are not intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® Wireless Flash Memory (W30) may contain design defects or errors known as errata which may cause the product to deviate from  
published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel's website at http://www.intel.com.  
Intel, ETOX, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2005, Intel Corporation.All rights reserved.  
June 2005  
2
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Contents  
1.0 Introduction ...............................................................................................................................8  
1.1  
1.2  
1.3  
Document Purpose ...............................................................................................................8  
Nomenclature .......................................................................................................................8  
Conventions..........................................................................................................................9  
2.0 Functional Overview ............................................................................................................10  
2.1  
2.2  
Overview.............................................................................................................................10  
Memory Map and Partitioning.............................................................................................11  
3.0 Package Information............................................................................................................14  
3.1  
3.2  
W30 Flash Memory Device – 130 nm Lithography.............................................................14  
W30 Flash Memory Device – 180 nm Lithography.............................................................16  
4.0 Ballout and Signal Descriptions......................................................................................19  
4.1  
4.2  
Signal Ballout......................................................................................................................19  
Signal Descriptions .............................................................................................................21  
5.0 Maximum Ratings and Operating Conditions ...........................................................25  
5.1  
5.2  
Absolute Maximum Ratings................................................................................................25  
Operating Conditions..........................................................................................................26  
6.0 Electrical Specifications.....................................................................................................27  
6.1  
6.2  
DC Current Characteristics.................................................................................................27  
DC Voltage Characteristics.................................................................................................28  
7.0 AC Characteristics................................................................................................................29  
7.1  
7.2  
7.3  
7.4  
Read Operations - 130 nm Lithography..............................................................................29  
Read Operations - 180 nm Lithography..............................................................................30  
AC Write Characteristics.....................................................................................................40  
Erase and Program Times..................................................................................................44  
8.0 Power and Reset Specifications .....................................................................................45  
8.1  
8.2  
8.3  
8.4  
Active Power.......................................................................................................................45  
Automatic Power Savings (APS) ........................................................................................45  
Standby Power ...................................................................................................................45  
Power-Up/Down Characteristics.........................................................................................46  
8.4.1 System Reset and RST# .......................................................................................46  
8.4.2 VCC, VPP, and RST# Transitions .........................................................................46  
Power Supply Decoupling...................................................................................................46  
Reset Specifications ...........................................................................................................47  
AC I/O Test Conditions.......................................................................................................48  
Flash Device Capacitance ..................................................................................................49  
8.5  
8.6  
8.7  
8.8  
9.0 Flash Device Operations ....................................................................................................50  
9.1  
Bus Operations...................................................................................................................50  
9.1.1 Read ......................................................................................................................50  
9.1.2 Burst Suspend .......................................................................................................51  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
3
28F640W30, 28F320W30, 28F128W30  
9.1.3 Standby..................................................................................................................51  
9.1.4 Reset .....................................................................................................................52  
9.1.5 Write ......................................................................................................................52  
Flash Device Commands....................................................................................................52  
Command Sequencing.......................................................................................................56  
9.2  
9.3  
10.0 Read Operations....................................................................................................................57  
10.1 Read Array..........................................................................................................................57  
10.2 Read Device ID...................................................................................................................57  
10.3 Read Query (CFI) ...............................................................................................................58  
10.4 Read Status Register..........................................................................................................58  
10.5 Clear Status Register..........................................................................................................60  
11.0 Program Operations.............................................................................................................61  
11.1 Word Program ....................................................................................................................61  
11.2 Factory Programming.........................................................................................................63  
11.3 Enhanced Factory Program (EFP) .....................................................................................63  
11.3.1 EFP Requirements and Considerations ................................................................64  
11.3.2 Setup .....................................................................................................................64  
11.3.3 Program.................................................................................................................64  
11.3.4 Verify......................................................................................................................65  
11.3.5 Exit.........................................................................................................................65  
12.0 Program and Erase Operations.......................................................................................67  
12.1 Program/Erase Suspend and Resume...............................................................................67  
12.2 Block Erase.........................................................................................................................70  
12.3 Read-While-Write and Read-While-Erase..........................................................................72  
13.0 Security Modes.......................................................................................................................73  
13.1 Block Lock Operations........................................................................................................73  
13.1.1 Lock.......................................................................................................................74  
13.1.2 Unlock....................................................................................................................74  
13.1.3 Lock-Down.............................................................................................................75  
13.1.4 Block Lock Status..................................................................................................75  
13.1.5 Lock During Erase Suspend..................................................................................76  
13.1.6 Status Register Error Checking .............................................................................76  
13.1.7 WP# Lock-Down Control .......................................................................................76  
13.2 Protection Register.............................................................................................................77  
13.2.1 Reading the Protection Register............................................................................78  
13.2.2 Programing the Protection Register.......................................................................78  
13.2.3 Locking the Protection Register.............................................................................78  
13.3 VPP Protection ...................................................................................................................80  
14.0 Set Read Configuration Register....................................................................................81  
14.1 Read Mode (RCR[15])........................................................................................................ 83  
14.2 First Access Latency Count (RCR[13:11])..........................................................................83  
14.2.1 Latency Count Settings..........................................................................................84  
14.3 WAIT Signal Polarity (RCR[10])..........................................................................................85  
14.4 WAIT Signal Function.........................................................................................................85  
14.5 Data Hold (RCR[9]).............................................................................................................86  
14.6 WAIT Delay (RCR[8]) .........................................................................................................87  
June 2005  
4
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
14.7 Burst Sequence (RCR[7])...................................................................................................87  
14.8 Clock Edge (RCR[6]) ..........................................................................................................88  
14.9 Burst Wrap (RCR[3])...........................................................................................................89  
14.10 Burst Length (RCR[2:0]) .....................................................................................................89  
Appendix A Write State Machine...........................................................................................90  
Appendix B Common Flash Interface..................................................................................93  
Appendix C Ordering Information.......................................................................................103  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
5
28F640W30, 28F320W30, 28F128W30  
Revision History  
Date of  
Version  
Revision  
Description  
09/19/00  
-001  
Initial release  
28F3208W30 product references removed (product was discontinued)  
28F640W30 product added  
Revised Table 2, Signal Descriptions (DQ15–0, ADV#, WAIT, S-UB#, S-LB#, VCCQ  
Revised Section 3.1, Bus Operations  
)
Revised Table 5, Command Bus Definitions, Notes 1 and 2  
Revised Section 4.2.2, First Latency Count (LC2–0); revised Figure 6, Data Output  
with LC Setting at Code 3; added Figure 7, First Access Latency Configuration  
Revised Section 4.2.3, WAIT Signal Polarity (WT)  
Added Section 4.2.4, WAIT Signal Function  
Revised Section 4.2.5, Data Output Configuration (DOC)  
Added Figure 8, Data Output Configuration with WAIT Signal Delay  
Revised Table 13, Status Register DWS and PWS Description  
Revised entire Section 5.0, Program and Erase Voltages  
Revised entire Section 5.3, Enhanced Factory Programming (EFP)  
Revised entire Section 8.0, Flash Security Modes  
03/14/01  
-002  
Revised entire Section 9.0, Flash Protection Register; added Table 15,  
Simultaneous Operations Allowed with the Protection Register  
Revised Section 10.1, Power-Up/Down Characteristics  
Revised Section 11.3, DC Characteristics. Changed ICCS, CCWS, ICCES Specs from  
I
18 µA to 21µA; changed ICCR Spec from 12 mA to 15 mA (burst length = 4)  
Added Figure 20, WAIT Signal in Synchronous Non-Read Array Operation  
Waveform  
Added Figure 21, WAIT Signal in Asynchronous Page-Mode Read Operation  
Waveform  
Added Figure 22, WAIT Signal in Asynchronous Single-Word Read Operation  
Waveform  
Revised Figure 23, Write Waveform  
Revised Section 12.4, Reset Operations  
Clarified Section 13.2, SRAM Write Operation, Note 2  
Revised Section 14.0, Ordering Information  
Minor text edits  
Deleted SRAM Section  
Added 128M DC and AC Specifications  
Added Burst Suspend  
04/05/02  
-003  
Added Read While Write Transition Waveforms  
Various text edits  
Revised Device ID  
Revised Write Speed Bin  
Various text edits  
04/24/02  
10/20/02  
-004  
-005  
Added Latency Count Tables  
Updated Packing Ball-Out and Dimension  
Various text edits  
Minor text clarifications  
June 2005  
6
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Date of  
Revision  
Version  
Description  
Revised Table 20, DC Current Characteristics, ICCS  
Revised Table 20, DC Current Characteristics, ICCAPS  
Removed Intel Burst order  
01/14/03  
-006  
Minor text edits  
Updated Package Drawing and Dimensions  
Revised Table 22, Read Operations, tAPA  
03/22/03  
11/17/03  
-007  
-008  
Added note to table 15, Configuration Register Descriptions  
Added note to section 3.1.1, Read  
Updated Block Lock Operations (Sect. 7.1 and Fig. 11)  
Updated improved AC timings  
Added QUAD+ package option, and Appendix D  
Minor text edits including new product-naming conventions  
Corrected Absolute Maximum Rating for VCCQ (Sect. 10.1, Table 18)  
Minor text edits  
05/06/04  
05/17/04  
-009  
-010  
Restructured the datasheet according to new layout.  
Timing Diagram Nomenclature Synergy with other product families  
Added Ordering information  
06/2005  
-011  
Minor Text Edits  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
7
28F640W30, 28F320W30, 28F128W30  
1.0  
Introduction  
1.1  
Document Purpose  
This datasheet contains information about the Intel® Wireless Flash Memory (W30) device family.  
Throughout this document, this device family is referred to as the W30 flash memory device.  
This chapter provides a flash memory overview.  
Chapter 2.0 through Chapter 8.0 describe the memory functionality.  
Chapter 6.0 describes the electrical specifications for extended temperature product offerings.  
Appendix A describes the Write State Machine (WSM),  
Appendix B describes the Intel® Common Flash Interface (CFI) as it applies to the W30 flash  
memory device.  
Appendix C provides ordering information for the Intel® Wireless Flash Memory (W30)  
device family.  
1.2  
Nomenclature  
Acronyms that describe product features or usage are defined here:  
APS - Automatic Power Savings  
BBA - Block Base Address  
CFI - Common Flash Interface  
CUI - Command User Interface  
DU - Do not Use  
EFP - Enhanced Factory Programming  
FDI - Flash Data Integrator  
NC - No Connect  
OTP - One-Time Programmable  
PBA - Partition Base Address  
RCR - Read Configuration Register  
RWE - Read-While-Erase  
RWW - Read-While-Write  
SCSP - Stacked Chip Scale Package  
SRD - Status Register Data  
VF BGA - Very-thin, Fine-pitch, Ball Grid Array  
WSM - Write State Machine  
June 2005  
8
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
1.3  
Conventions  
The following abbreviated terms and phrases are used throughout this document:  
1.8 V refers to the V operating voltage range of 1.7 V – 1.9 V (except where noted).  
CC  
3.0 V refers to the V  
operating voltage range of 2.2 V - 3.3 V.  
CCQ  
V = 12 V refers to 12 V ± 5%.  
PP  
When referring to registers, the term set means the bit is a logical 1, and cleared means the bit  
is a logical 0.  
The terms pin and signal are often used interchangeably to refer to the external signal  
connections on the package. (Ball is the term used for BGA).  
A word is 2 bytes, or 16 bits.  
Signal names are in all CAPS (for example, WAIT).  
Voltage applied to the signal is subscripted (for example, V ).  
PP  
Throughout this document, references are made to top, bottom, parameter, and partition. To clarify  
these references, the following conventions have been adopted:  
A block is a group of bits (or words) that erase simultaneously with one block erase  
instruction.  
A main block contains 32 Kwords.  
A parameter block contains 4 Kwords.  
The Block Base Address (BBA) is the first address of a block.  
A partition is a group of blocks that share erase and program circuitry and a common status  
register.  
The Partition Base Address (PBA) is the first address of a partition. For example, on a  
32-Mbit top-parameter flash device, partition number 5 has a PBA of 0x140000.  
The top partition is located at the highest physical flash device address. This partition can be  
a main partition or a parameter partition.  
The bottom partition is located at the lowest physical flash device address. This partition can  
be a main partition or a parameter partition.  
A main partition contains only main blocks.  
A parameter partition contains a mixture of main blocks and parameter blocks.  
A top parameter device (TPD) has the parameter partition at the top of the memory map with  
the parameter blocks at the top of that partition. This flash device type was formerly referred to  
as a top-boot flash device.  
A bottom parameter device (BPD) has the parameter partition at the bottom of the memory  
map with the parameter blocks at the bottom of that partition. This flash device type was  
formerly referred to as a bottom-boot block flash device.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
9
28F640W30, 28F320W30, 28F128W30  
2.0  
Functional Overview  
This section provides an overview of the W30 flash memory device features and architecture.  
2.1  
Overview  
The W30 flash memory device provides Read-While-Write (RWW) and Read-White-Erase (RWE)  
capability. This capability provides high-performance synchronous and asynchronous reads in  
package-compatible densities using a 16-bit data bus. Individually-erasable memory blocks are  
optimally sized for code and data storage. Eight 4-Kword parameter blocks are located in the  
parameter partition at either the top or bottom of the memory map. The rest of the memory array is  
grouped into 32-Kword main blocks.  
The memory architecture for the W30 flash memory device consists of multiple 4-Mbit partitions,  
the exact number depending on the flash device density. By dividing the memory array into  
partitions, program or erase operations can take place simultaneously during read operations. Burst  
reads can traverse partition boundaries, but user application code is responsible for ensuring that  
burst reads do not extend into a partition that is actively programming or erasing. Although each  
partition has burst-read, write, and erase capabilities, simultaneous operation is limited to write or  
erase in one partition while other partitions are in a read mode.  
Augmented erase-suspend functionality further enhances the RWW capabilities of the W30 flash  
memory device. An erase can be suspended to perform a program or read operation within any  
block, except a block that is erase-suspended. A program operation nested within a suspended  
erase can subsequently be suspended to read yet another memory location.  
After power-up or reset, the W30 flash memory device defaults to asynchronous read  
configuration. Writing to the flash memory device Read Configuration Register (RCR) enables  
synchronous burst-mode read operation. In synchronous mode, the CLK input increments an  
internal burst address generator. CLK also synchronizes the flash memory device with the host  
CPU and outputs data on every, or on every other, valid CLK cycle after an initial latency. A  
programmable WAIT output signals to the CPU when data from the flash memory device is ready.  
In addition to its improved architecture and interface, the W30 flash memory device incorporates  
Enhanced Factory Programming (EFP), a feature that enables fast programming and low-power  
designs. The EFP feature provides fast program performance, which can increase the  
manufacturing throughput of a factory.  
The W30 flash memory device supports read operations at 1.8 V and erase and program operations  
at 1.8 V or 12 V. With the 1.8-V option, VCC and VPP can be tied together for an ultra-low-power  
design. In addition to voltage flexibility, the dedicated VPP input provides extensive data  
protection when V < V  
.
PP  
PPLK  
A 128-bit protection register can implement new security techniques and data protection schemes:  
A combination of factory-programmed and user-OTP data cells provide unique flash device  
identification, help implement fraud or cloning prevention schemes, or help protect content.  
Zero-latency locking/unlocking on any memory block provides instant and complete  
protection for critical system code and data.  
An additional block lock-down capability provides hardware protection where software  
commands alone cannot change the block protection status.  
June 2005  
10  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
The flash device Command User Interface (CUI) links the system processor to the internal flash  
memory operation. A valid command sequence written to the CUI initiates the flash device Write  
State Machine (WSM) operation, which automatically executes the algorithms, timings, and  
verifications necessary to manage flash memory program and erase. An internal status register  
provides ready/busy indication results of the operation (success, fail, and so on).  
Three power-saving features– Automatic Power Savings (APS), standby, and RST#– can  
significantly reduce power consumption.  
The flash device automatically enters APS mode following read cycle completion.  
Standby mode begins when the system deselects the flash memory by de-asserting CE#.  
Driving RST# low produces power savings similar to standby mode. It also resets the part to  
read-array mode (important for system-level reset), clears internal status registers, and  
provides an additional level of flash device write protection.  
2.2  
Memory Map and Partitioning  
The W30 flash memory device is divided into 4-Mbit physical partitions. This partitioning allows  
simultaneous RWW or RWE operations, and enables users to segment code and data areas on  
4-Mbit boundaries. The flash memory array is asymmetrically blocked, which enables system code  
and data integration within a single flash device. Each block can be erased independently in block  
erase mode. Simultaneous program and erase operations are not allowed; only one partition at a  
time can be actively programming or erasing. See Table 1, “Bottom Parameter Memory Map” on  
page 12 and Table 2, “Top Parameter Memory Map” on page 13.  
The 32-Mbit flash device has eight partitions.  
The 64-Mbit flash device has 16 partitions.  
The 128-Mbit flash device has 32 partitions.  
Each flash device density contains one parameter partition and several main partitions. The 4-Mbit  
parameter partition contains eight 4-Kword parameter blocks and seven 32-Kword main blocks.  
Each 4-Mbit main partition contains eight 32-Kword blocks.  
The bulk of the flash memory array is divided into main blocks that can store code or data, and  
parameter blocks that allow storage of frequently updated small parameters that are normally  
stored in EEPROM. By using software techniques, the word-rewrite functionality of EEPROMs  
can be emulated.  
.
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
11  
28F640W30, 28F320W30, 28F128W30  
Table 1.  
Bottom Parameter Memory Map  
Size  
(KW)  
Blk #  
32 Mbit  
Blk #  
64 Mbit  
Blk #  
128 Mbit  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
262  
7F8000-7FFFFF  
135  
134  
71  
400000-407FFF  
3F8000-3FFFFF  
200000-207FFF  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
134  
71  
70  
39  
38  
31  
30  
23  
22  
3F8000-3FFFFF  
200000-207FFF  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
70  
39  
38  
31  
30  
23  
22  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
70  
39  
38  
31  
30  
23  
22  
32  
32  
15  
14  
040000-047FFF  
038000-03FFFF  
15  
14  
040000-047FFF  
038000-03FFFF  
15  
14  
040000-047FFF  
038000-03FFFF  
32  
4
8
7
008000-00FFFF  
007000-007FFF  
8
7
008000-00FFFF  
007000-007FFF  
8
7
008000-00FFFF  
007000-007FFF  
4
0
000000-000FFF  
0
000000-000FFF  
0
000000-000FFF  
June 2005  
12  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Table 2.  
Top Parameter Memory Map  
Size  
(KW)  
Blk #  
32 Mbit  
Blk #  
64 Mbit  
Blk #  
128 Mbit  
4
70  
1FF000-1FFFFF  
134  
3FF000-3FFFFF  
262  
7FF000-7FFFFF  
4
63  
62  
1F8000-1F8FFF  
1F0000-1F7FFF  
127  
126  
3F8000-3F8FFF  
3F0000-3F7FFF  
255  
254  
7F8000-7F8FFF  
7F0000-7F7FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
56  
55  
48  
47  
40  
39  
32  
31  
0
1C0000-1C7FFF  
1B8000-1BFFFF  
18000-187FFF  
178000-17FFFF  
140000-147FFF  
138000-13FFFF  
100000-107FFF  
0F8000-0FFFFF  
000000-007FFF  
120  
119  
112  
111  
104  
103  
96  
3C0000-3C7FFF  
3B8000-3BFFFF  
380000-387FFF  
378000-37FFFF  
340000-347FFF  
338000-33FFFF  
300000-307FFF  
2F8000-2FFFFF  
200000-207FFF  
1F8000-1FFFFF  
000000-007FFF  
248  
247  
240  
239  
232  
231  
224  
223  
192  
191  
128  
127  
0
7C0000-7C7FFF  
7B8000-7BFFFF  
780000-787FFF  
778000-77FFFF  
740000-747FFF  
738000-73FFFF  
700000-707FFF  
6F8000-6FFFFF  
600000-607FFF  
5F8000-5FFFFF  
400000-407FFF  
3F8000-3FFFFF  
000000-007FFF  
95  
64  
63  
0
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
13  
28F640W30, 28F320W30, 28F128W30  
3.0  
Package Information  
3.1  
W30 Flash Memory Device – 130 nm Lithography  
Figure 1.  
32 Mb, 64 Mb, and 128 Mb VF BGA Package Drawing  
Ball A1  
Corner  
Ball A1  
Corner  
D
S1  
1
2
3
4
5
6
7
8
S2  
8
7
6
5
4
3
2
1
A
A
B
B
C
D
E
F
C
D
E
F
E
e
G
G
b
Top View - Bump Side Down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Table 3. 2 Mb, 64 Mb, and 128 Mb VF BGA Package Specifications  
Millimeters  
Inches  
Nom  
Dimension  
Symbol  
Min  
Nom  
Max  
Min  
Max  
Package Height  
Ball Height  
A
A1  
A2  
b
-
-
1.000  
-
-
0.0394  
0.150  
-
-
-
-
0.0059  
-
-
-
-
Package Body Thickness  
0.665  
0.375  
7.700  
0.0262  
Ball (Lead) Width  
0.325  
7.600  
0.425 0.0128 0.0148 0.0167  
7.800 0.2992 0.3031 0.3071  
Package Body Width (32 Mb, 64 Mb)  
Package Body Width (128 Mb)  
Package Body Length (32 Mb, 64 Mb, 128 Mb)  
Pitch  
D
D
10.900 11.000 11.100 0.4291 0.4331 0.4370  
E
8.900  
9.000  
0.750  
56  
9.100 0.3504 0.3543 0.3583  
[e]  
N
-
-
-
-
-
-
0.0295  
-
Ball (Lead) Count  
-
-
56  
-
-
Seating Plane Coplanarity  
Y
-
0.100  
0.0039  
Corner to Ball A1 Distance Along D (32 Mb, 64 Mb)  
Corner to Ball A1 Distance Along D (128 Mb)  
S1  
S1  
1.125  
1.225  
1.325 0.0443 0.0482 0.0522  
2.775 2.2875 2.975 0.1093 0.1132 0.1171  
2.150 2.250 2.350 0.0846 0.0886 0.0925  
Corner to Ball A1 Distance Along E (32 Mb, 64 Mb,128  
Mb)  
S2  
June 2005  
14  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 2.  
32Mb, 64Mb and 128Mb QUAD+ Package Drawing  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
H
J
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
A
Top View - Ball Down  
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
Inches  
Nom  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Symbol  
A
A1  
A2  
b
D
E
e
N
Min  
Max Notes  
1.200  
Min  
Max  
0.0472  
0.200  
0.0079  
0.860  
0.375  
10.000  
8.000  
0.800  
88  
0.0339  
0.0148  
0.3937  
0.3150  
0.0315  
88  
0.325  
9.900  
7.900  
0.425  
10.100  
8.100  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
Y
S1  
S2  
0.100  
1.300  
0.700  
0.0039  
0.0512  
0.0276  
1.100  
0.500  
1.200  
0.600  
0.0433  
0.0197  
0.0472  
0.0236  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
15  
28F640W30, 28F320W30, 28F128W30  
3.2  
W30 Flash Memory Device – 180 nm Lithography  
Figure 3.  
64Mb µBGA* CSP Package Drawing and Dimensions  
Pin # 1  
Indicator  
Pin # 1  
Corner  
s
D
1
s
2
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
B
A
B
C
D
E
F
C
D
E
E
F
G
G
e
b
Top View - Silicon backside  
Com plete Ink M ark Not  
Bottom View - Bum p side Up  
A1  
A2  
A
Seati  
Y
Plan  
Side  
Millimeters  
Inches  
Symbol  
A
Min  
Nom  
Max  
Notes  
Min  
Nom  
Max  
Package Height  
0.850  
0.150  
0.612  
0.300  
7.600  
8.900  
1.000  
0.0335  
0.0059  
0.0241  
0.0118  
0.2992  
0.3503  
0.0394  
Ball Height  
A1  
A2  
b
Package Body Thickness  
Ball (Lead) Width  
0.712  
0.350  
7.700  
9.000  
0.750  
56  
0.812  
0.400  
7.800  
9.100  
0.0280  
0.0138  
0.3031  
0.3543  
0.0295  
56  
0.0320  
0.0157  
0.3071  
0.3583  
Package Body Width  
Package Body Length  
Pitch  
D
E
[e]  
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along D  
Corner to Ball A1 Distance Along E  
Y
0.100  
1.325  
2.350  
0.0039  
0.0522  
0.0925  
S1  
S2  
1.125  
2.150  
1.225  
2.250  
0.0443  
0.0846  
0.0482  
0.0886  
June 2005  
16  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 4.  
32Mb VF BGA Package Drawing  
Ball A1  
Corner  
Ball A1  
Corner  
D
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
A
B
C
E
D
E
F
D
E
F
e
G
G
b
Top View - Bump Side Down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Side View  
Note: Drawing not to scale  
Figure 5.  
128Mb VF BGA Package Drawing  
Ball A1  
Corner  
Ball A1  
Corner  
S1  
D
S2  
1
2
3
4
5
6
7
8
9
10  
10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
A
B
C
D
E
F
E
e
G
H
J
G
H
J
b
Top View - Bump Side  
Down  
Bottom View - Ball Side  
Up  
A1  
A2  
A
Seating  
Plane  
Y
Side View  
Note: Drawing not to scale  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
17  
28F640W30, 28F320W30, 28F128W30  
Table 4.  
32Mb and 128Mb VF BGA Package Dimensions  
Millimeters  
Nom  
Inches  
Nom  
Dimension  
Symbol  
Min  
Max  
Min  
Max  
Package Height  
Ball Height  
A
A1  
A2  
b
0.850  
0.150  
0.615  
0.325  
7.600  
8.900  
-
1.000  
-
0.0335  
0.0059  
-
-
0.0394  
-
-
Package Body Thickness  
0.665  
0.375  
7.700  
9.000  
0.715  
0.425  
7.800  
9.100  
0.0242 0.0262 0.0281  
0.0128 0.0148 0.0167  
0.2992 0.3031 0.3071  
0.3503 0.3543 0.3583  
Ball (Lead) Width  
Package Body Width 32Mb  
Package Body Length32Mb  
Package Body Width 128Mb  
Package Body Length 128Mb  
Pitch  
D
E
D
12.400 12.500 12.600 0.4882 0.4921 0.4961  
11.900 12.000 12.100 0.4685 0.4724 0.4764  
E
[e]  
N
-
-
0.750  
56  
-
-
-
-
-
0.0295  
-
Ball (Lead) Count 32Mb  
-
56  
60  
-
-
Ball (Lead) Count 128Mb  
N
-
60  
-
-
Seating Plane Coplanarity  
Y
-
-
0.100  
1.325  
2.350  
2.975  
0.0039  
Corner to Ball A1 Distance Along D 32Mb  
Corner to Ball A1 Distance Along E 32Mb  
Corner to Ball A1 Distance Along D 128Mb  
Corner to Ball A1 Distance Along E 128Mb  
S1  
S2  
S1  
S2  
1.125  
2.150  
2.775  
2.900  
1.225  
2.250  
2.875  
3.000  
0.0443 0.0482 0.0522  
0.0846 0.0886 0.0925  
0.1093 0.1132  
0.1171  
3.1000 0.1142  
0.1181 0.1220  
June 2005  
18  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
4.0  
Ballout and Signal Descriptions  
4.1  
Signal Ballout  
The W30 flash memory device is available in the 56-ball VF BGA and µBGA Chip Scale Package  
with 0.75 mm ball pitch, or the QUAD+ SCSP package. Figure 6 shows the VF BGA and µBGA  
package ballout. Figure 7 shows the QUAD+ package ballout.  
Figure 6.  
56-Ball VF BGA/ µBGA Ballout  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
A
B
C
D
E
F
A11  
A8  
A9  
VSS  
A20  
A21  
VCC  
CLK  
VPP  
A18  
A17  
A19  
A6  
A5  
A7  
A4  
A3  
A2  
A4  
A6  
A5  
A7  
A18  
A17  
A19  
VPP  
VCC  
CLK  
VSS  
A20  
A21  
A8  
A9  
A11  
A12  
A13  
B
A12  
A3  
A2  
RST#  
WE#  
RST#  
WE#  
C
A13  
A10  
A10  
ADV#  
ADV#  
D
A15  
A14 WAIT  
DQ15 DQ6  
A16  
DQ12  
DQ2  
WP#  
DQ1  
A22  
CE#  
A1  
A0  
A1  
A0  
A22  
CE#  
WP#  
DQ1  
DQ12  
DQ2  
A16  
WAIT A14  
DQ6 DQ15  
A15  
E
VCCQ  
DQ4  
DQ4  
VCCQ  
F
VSS  
DQ14 DQ13  
VSSQ DQ5  
DQ11 DQ10  
DQ9  
DQ0  
OE#  
OE#  
DQ0  
DQ9  
DQ10 DQ11  
DQ13 DQ14  
DQ5 VSSQ  
VSS  
DQ7  
G
G
DQ7  
VCC  
DQ3  
VCCQ DQ8  
VSSQ  
VSSQ  
DQ8 VCCQ  
DQ3  
VCC  
Top View - Ball Side Down  
Complete Ink Mark Not Shown  
Bottom View - Ball Side Up  
Notes:  
1.  
On lower density flash memory devices, the upper address balls can be treated as NC. (that is, on 32-Mbit density, A22  
and A21 are NC).  
2.  
See Appendix C, “Ordering Information” on page 103 for mechanical specifications for the package.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
19  
28F640W30, 28F320W30, 28F128W30  
Figure 7.  
88-Ball (80 Active Balls) QUAD+ Ballout  
1
2
3
4
5
6
7
8
DU  
DU  
DU  
DU  
A
B
C
D
E
F
A4  
A5  
A18  
R-LB#  
A17  
A7  
A19  
A23  
A24  
A25  
VSS  
VSS  
F1-VCC F2-VCC  
A21  
A22  
A9  
A11  
A12  
A13  
A15  
A16  
S-CS2  
CLK  
F-VPP,  
F-VPEN  
A3  
R-WE# P1-CS#  
A2  
F-WP# ADV#  
A20  
A8  
A10  
A14  
A1  
A6  
R-UB# F-RST# F-WE#  
G
A0  
D8  
D2  
D10  
D5  
D13  
WAIT F2-CE#  
H
J
R-OE#  
D0  
D1  
D9  
D3  
D12  
D4  
D14  
D6  
D7  
F2-OE#  
VCCQ  
S-CS1# F1-OE#  
D11  
D15  
K
L
P-Mode,  
P-CRE  
F1-CE# P2-CS# F3-CE# S-VCC P-VCC F2-VCC VCCQ  
VSS  
DU  
VSS  
DU  
VCCQ F1-VCC VSS  
VSS  
VSS  
DU  
VSS  
DU  
M
Top View - Ball Side Down  
Legend:  
SRAM/PSRAM specific  
Flash specific  
Global  
Notes:  
1.  
On lower density flash memory devices, the upper address balls can be treated as NC (that is, on 64-Mb  
density, A[25:23]are NC)  
2.  
See Appendix C, “Ordering Information” on page 103 for mechanical specifications for the package.  
June 2005  
20  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
4.2  
Signal Descriptions  
Table 5 describes the signals for the 56-ball VF BGA and µBGA Chip Scale Package.  
Table 6 describes the signals for the QUAD+ package ballout.  
Table 5.  
Signal Descriptions - µBGA Package & VF BGA Package (Sheet 1 of 2)  
Symbol  
A[22:0]  
Type  
Name and Function  
Input  
ADDRESS INPUTS: For memory addresses. 32 Mbit: A[20:0]; 64 Mbit: A[21:0]; 128 Mbit: A[22:0]  
DATA INPUTS/OUTPUTS:  
Inputs data and commands during write cycles.  
Outputs data during reads.  
Input/  
Output  
D[15:0]  
Data pins are High-Z when the flash device or its outputs are deselected. Data is internally latched  
during writes.  
ADDRESS VALID: ADV# indicates valid address presence on address inputs. During synchronous  
read operations, all addresses are latched on the rising edge of ADV#, or the next valid CLK edge with  
ADV# low, whichever occurs first.  
ADV#  
CE#  
Input  
Input  
Input  
Input  
Input  
CHIP ENABLE:  
Asserting CE# activates internal control logic, I/O buffers, decoders, and sense amps.  
De-asserting CE# deselects the flash device, places it in standby mode, and tri-states all outputs.  
CLOCK: CLK synchronizes the flash device to the system bus frequency during synchronous reads  
and increments an internal address generator. During synchronous read operations, addresses are  
latched on ADV#’s rising edge or CLK’s rising (or falling) edge, whichever occurs first.  
CLK  
OUTPUT ENABLE:  
OE#  
When asserted, OE# enables the flash device output data buffers during a read cycle.  
When OE# is deasserted, data outputs are placed in a high-impedance state.  
RESET: When low, RST# resets internal automation and inhibits write operations. This reset provides  
data protection during power transitions. De-asserting RST# enables normal operation and places the  
flash device in asynchronous read-array mode.  
RST#  
WAIT: The WAIT signal indicates valid data during synchronous read modes. It can be configured to be  
WAIT  
WE#  
WP#  
Output asserted-high or asserted-low, based on bit 10 of the Read Configuration Register. WAIT is tri-stated if  
CE# is deasserted. WAIT is not gated by OE#.  
WRITE ENABLE: WE# controls writes to the CUI and array. Addresses and data are latched on the  
rising edge of WE#.  
Input  
WRITE PROTECT: Disables/enables the lock-down function. When WP# is asserted, the lock-down  
Input  
mechanism is enabled and blocks marked lock-down cannot be unlocked through software. See  
Section 13.1, “Block Lock Operations” on page 73 for details on block locking.  
ERASE AND PROGRAM POWER: A valid voltage on this pin allows erasing or programming. Flash  
memory contents cannot be altered when VPP < VPPLK. Do not attempt block erase and program  
operations at invalid VPP voltages.  
Set VPP = VCC for in-system program and erase operations. To accommodate resistor or diode drops  
from the system supply, the VIH level of VPP can be as low as VPPL min. VPP must remain above VPPL  
min to perform in-system flash device modification. VPP can be 0 V during read operations.  
Power/  
Input  
VPP  
VCC  
VPPH can be applied to main blocks for 1000 cycles maximum and to parameter blocks for 2500 cycles.  
VPP can be connected to 12 V for a cumulative total not to exceed 80 hours. Extended use of this pin  
at 12 V might reduce block cycling capability.  
FLASH DEVICE POWER SUPPLY: Writes are inhibited at VCC < VLKO. Do not attempt flash device  
operations at invalid VCC voltages.  
Power  
VCCQ  
VSS  
Power  
Power  
OUTPUT POWER SUPPLY: Enables all outputs to be driven at VCCQ.  
GROUND: Pins for all internal flash device circuitry must be connected to system ground.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
21  
28F640W30, 28F320W30, 28F128W30  
Table 5.  
Signal Descriptions - µBGA Package & VF BGA Package (Sheet 2 of 2)  
Symbol  
Type  
Name and Function  
OUTPUT GROUND: Provides ground to all outputs which are driven by VCCQ. This signal can be tied  
directly to VSS.  
VSSQ  
Power  
DO NOT USE: Do not use this pin. Do not connect this pin to any power supplies, signals, or other  
pins; this pin must be floated.  
DU  
NC  
NO CONNECT: No internal connection; can be driven or floated.  
Table 6.  
Signal Descriptions - QUAD+ Package (Sheet 1 of 3)  
Symbol  
Type  
Description  
ADDRESS INPUTS: Inputs for all die addresses during read and write operations.  
128-Mbit Die : AMAX = A22  
64-Mbit Die : AMAX = A21  
32-Mbit Die : AMAX = A20  
A[MAX:MIN]  
Input  
A0 is the lowest-order 16-bit wide address.  
A[25:24] denote high-order addresses reserved for future flash device densities.  
DATA INPUTS/OUTPUTS:  
Inputs data and commands during write cycles.  
Outputs data during read cycles.  
Input/  
Output  
DQ[15:0]  
Data signals float when the flash device or its outputs are deselected. Data are internally latched  
during writes on the flash device.  
FLASH CHIP ENABLE: Low-true input.  
F[3:1]-CE# low selects the associated flash memory die.  
When asserted, flash memory internal control logic, input buffers, decoders, and sense amplifiers  
are active.  
When deasserted, the associated flash die is deselected, power is reduced to standby levels, and  
data and WAIT outputs are placed in high-Z state.  
F[3:1]-CE#  
Input  
F1-CE# selects or deselects flash die #1.  
F2-CE# selects or deselects flash die #2 and is RFU on combinations with only one flash die.  
F3-CE# selects or deselects flash die #3 and is RFU on stacked combinations with only one or two  
flash dies.  
SRAM CHIP SELECT: Low-true / High-true input (S-CS1# / S-CS2 respectively).  
When either/both SRAM Chip Select signals are asserted, SRAM internal control logic, input  
buffers, decoders, and sense amplifiers are active.  
S-CS1#  
S-CS2  
Input  
When either/both SRAM Chip Select signals are deasserted, the SRAM is deselected and its  
power is reduced to standby levels.  
S-CS1# and S-CS2 are available on stacked combinations with SRAM die and are RFU on stacked  
combinations without SRAM die.  
PSRAM CHIP SELECT: Low-true input.  
When asserted, PSRAM internal control logic, input buffers, decoders, and sense amplifiers are  
active.  
When deasserted, the PSRAM is deselected and its power is reduced to standby levels.  
P[2:1]-CS#  
Input  
P1-CS# selects PSRAM die #1 and is available only on stacked combinations with PSRAM die.  
This ball is an RFU on stacked combinations without PSRAM.  
P2-CS# selects PSRAM die #2 and is available only on stacked combinations with two PSRAM  
dies. This ball is an RFU on stacked combinations without PSRAM or with a single PSRAM.  
June 2005  
22  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Table 6.  
Signal Descriptions - QUAD+ Package (Sheet 2 of 3)  
Symbol  
Type  
Description  
FLASH OUTPUT ENABLE: Low-true input.  
Fx-OE# low enables the output buffers on the selected flash memory device.  
F[2:1]-OE# high disables the output buffers on the selected flash memory device, placing them in  
High-Z.  
F[2:1]-OE#  
Input  
F1-OE# controls the outputs of flash die #1.  
F2-OE# controls the outputs of flash die #2 and flash die #3. F2-OE# is available on stacked  
combinations with two or three flash die, and is RFU on stacked combinations with only one flash  
die.  
RAM OUTPUT ENABLE: Low-true input.  
R-OE# low enables the output buffers on the selected RAM.  
R-OE#  
Input  
R-OE# high disables the RAM output buffers, and places the selected RAM outputs in High-Z.  
R-OE# is available on stacked combinations with PSRAM or SRAM die, and is an RFU on flash-only  
stacked combinations.  
FLASH WRITE ENABLE: Low-true input.  
F-WE#  
R-WE#  
Input  
Input  
F-WE# controls writes to the selected flash die. Address and data are latched on the rising edge of  
F-WE#.  
RAM WRITE ENABLE: Low-true input.  
R-WE# controls writes to the selected RAM die.  
R-WE# is available on stacked combinations with PSRAM or SRAM die, and is an RFU on flash-only  
stacked combinations.  
CLOCK: Synchronizes the flash die with the system bus clock in synchronous read mode and  
increments the internal address generator.  
During synchronous read operations, addresses are latched on the rising edge of ADV#, or on the  
next valid CLK edge with ADV# low, whichever occurs first.  
CLK  
Input  
During asynchronous mode read operations, addresses are latched on the rising edge ADV#, or  
are continuously flow-through when ADV# is kept asserted.  
WAIT: Output signal.  
Indicates invalid data during synchronous array or non-array flash memory reads. Read Configuration  
Register bit 10 (RCR[10]) determines WAIT-asserted polarity (high or low). WAIT is High-Z if F-CE# is  
deasserted; WAIT is not gated by F-OE#.  
WAIT  
Output  
In synchronous array or non-array flash memory read modes, WAIT indicates invalid data when  
asserted and valid data when deasserted.  
In asynchronous flash memory page read, and all flash memory write modes, WAIT is asserted.  
FLASH WRITE PROTECT: Low-true input.  
F-WP# enables/disables the lock-down protection mechanism of the selected flash die.  
F-WP# low enables the lock-down mechanism where locked down blocks cannot be unlocked  
using software commands.  
F-WP#  
ADV#  
Input  
Input  
F-WP# high disables the lock-down mechanism, allowing locked down blocks to be unlocked  
using software commands.  
ADDRESS VALID: Low-true input.  
During synchronous flash memory read operations, addresses are latched on the rising edge of  
ADV#, or on the next valid CLK edge with ADV# low, whichever occurs first.  
During asynchronous flash memory read operations, addresses are latched on the rising edge of  
ADV#, or are continuously flow-through when ADV# is kept asserted.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
23  
28F640W30, 28F320W30, 28F128W30  
Table 6.  
Signal Descriptions - QUAD+ Package (Sheet 3 of 3)  
Symbol  
Type  
Description  
RAM UPPER / LOWER BYTE ENABLES: Low-true input.  
During RAM read and write cycles:  
R-UB#  
R-LB#  
R-UB# low enables the RAM high order bytes on D[15:8].  
R-LB# low enables the RAM low-order bytes on D[7:0].  
Input  
R-UB# and R-LB# are available on stacked combinations with PSRAM or SRAM die, and are RFU on  
flash-only stacked combinations.  
FLASH RESET: Low-true input.  
F-RST# low initializes flash device internal circuitry and disables flash device operations.  
F-RST# high enables flash device operation.  
F-RST#  
Input  
Input  
Exit from reset places the flash device in asynchronous read array mode.  
P-Mode (PSRAM Mode): Low-true input.  
P-Mode programs the Configuration Register, and enters/exits the Low Power Mode of the PSRAM  
die.  
P-Mode is available on stacked combinations with asynchronous-only PSRAM die.  
P-Mode,  
P-CRE  
P-CRE (PSRAM Configuration Register Enable): High-true input.  
P-CRE is high, write operations load the Refresh Control Register or Bus Control Register.  
P-CRE applies only on combinations with synchronous PSRAM die.  
P-Mode, P-CRE is an RFU on stacked combinations without PSRAM die.  
FLASH PROGRAM AND ERASE POWER: Valid F-VPP voltage on this ball enables flash memory  
device program/erase operations.  
F-VPP,  
Power  
Power  
Flash memory array contents cannot be altered when F-VPP(F-VPEN) < VPPLK (VPENLK). Do not  
attempt erase / program operations at invalid F-VPP (F-VPEN) voltages.  
F-VPEN  
F-VPEN (Erase/Program/Block Lock Enables) is not available for L18/L30 SCSP products.  
FLASH LOGIC POWER:  
F1-VCC supplies power to the core logic of flash die #1.  
F2-VCC supplies power to the core logic of flash die #2 and flash die #3.  
F[2:1]-VCC  
Write operations are inhibited when F-VCC < VLKO. Do not attempt flash device operations at invalid  
F-VCC voltages.  
F2-VCC is available on stacked combinations with two or three flash dies, and is an RFU on stacked  
combinations with only one flash die.  
SRAM POWER SUPPLY: Supplies power for SRAM operations.  
S-VCC  
P-VCC  
Power  
Power  
S-VCC is available on stacked combinations with SRAM die, and is RFU on stacked combinations  
without SRAM die.  
PSRAM POWER SUPPLY: Supplies power for PSRAM operations.  
P-VCC is available on stacked combinations with PSRAM die, and is RFU on stacked combinations  
without PSRAM die.  
VCCQ  
VSS  
Power  
Power  
FLASH DEVICE I/O POWER: Supply power for the flash device input and output buffers.  
FLASH DEVICE GROUND: Connect to system ground. Do not float any VSS connection.  
RESERVED for FUTURE USE: Reserved for future flash device functionality/ enhancements. Contact  
Intel regarding the use of balls designated RFU.  
RFU  
DU  
DO NOT USE: Do not connect to any other signal, or power supply; must be left floating.  
June 2005  
24  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Absolute Maximum Ratings  
Warning:  
Stressing the flash device beyond the Absolute Maximum Ratings in Table 7 might cause  
permanent damage. These are stress ratings only.  
Notice: This datasheet contains information on products in the design phase of development. The information  
here is subject to change without notice. Do not finalize a design with this information.  
Table 7.  
Absolute Maximum Ratings  
Parameter  
Maximum Rating  
–40 °C to +85 °C  
Note  
Temperature under Bias  
Storage Temperature  
–65 °C to +125 °C  
–0.5 V to +3.8 V  
–0.2 V to +14 V  
–0.2 V to +2.45 V  
–0.2 V to +3.8 V  
100 mA  
Voltage on Any Pin (except VCC, VCCQ, VPP  
)
VPP Voltage  
1,2,3  
VCC Voltage  
1
1
4
VCCQ Voltage  
Output Short Circuit Current  
Notes:  
1.  
All specified voltages are relative to VSS. Minimum DC voltage is –0.5 V on input/output  
pins and –0.2 V on VCC and VPP pins. During transitions, this level might undershoot to  
–2.0 V for periods < 20 ns. Maximum DC voltage on input/output pins is VCC +0.5 V which,  
during transitions, might overshoot to VCC +2.0 V for periods < 20 ns.  
2.  
3.  
Maximum DC voltage on VPP might overshoot to +14.0 V for periods < 20 ns.  
V
PP program voltage is normally VPPL. VPP can be 12 V ± 0.6 V for 1000 cycles on the main  
blocks and 2500 cycles on the parameter blocks during program/erase.  
4.  
Output shorted for no more than one second. No more than one output shorted at a time.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
25  
28F640W30, 28F320W30, 28F128W30  
5.2  
Operating Conditions  
Do not operate the W30 flash memory device beyond the Operating Conditions in Table 8.  
Extended exposure beyond these Operating Conditions might affect flash device reliability.  
Table 8.  
Extended Temperature Operation  
Symbol  
Parameter1  
Min  
Nom  
Max  
Unit  
Notes  
TA  
Operating Temperature  
–40  
1.7  
2.2  
0.90  
11.4  
-
25  
1.8  
3.0  
1.80  
12.0  
-
85  
1.90  
3.3  
°C  
-
VCC  
VCCQ  
VPPL  
VPPH  
tPPH  
VCC Supply Voltage  
3
3
2
2
2
I/O Supply Voltage  
V
VPP Voltage Supply (Logic Level)  
Factory Programming VPP  
1.95  
12.6  
80  
Maximum VPP Hours  
VPP = 12 V  
VPP < VCC  
Hours  
Main and Parameter  
Blocks  
100,000  
-
-
2
Block  
Erase  
Cycles  
Cycles  
Main Blocks  
V
PP = 12 V  
-
-
-
-
1000  
2500  
2
2
Parameter Blocks  
VPP = 12 V  
Notes:  
1.  
See Section 6.1, “DC Current Characteristics” on page 27 and Section 6.2, “DC Voltage  
Characteristics” on page 28 for specific voltage-range specifications.  
VPP is normally VPPL. VPP can be connected to 11.4 V–12.6 V for 1000 cycles on main  
blocks for extended temperatures and 2500 cycles on parameter blocks at extended  
temperature.  
2.  
3.  
4.  
Contact your Intel field representative for VCC/VCCQ operations down to 1.65 V.  
See the tables in Section 6.0, “Electrical Specifications” on page 27 and in Section 7.0, “AC  
Characteristics” on page 29 for operating characteristics  
June 2005  
26  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
6.0  
Electrical Specifications  
6.1  
DC Current Characteristics  
Table 9.  
Sym  
DC Current Characteristics (Sheet 1 of 2)  
VCCQ= 3.0 V  
Parameter (1)  
Note 32/64 Mbit  
128 Mbit  
Unit  
Test Conditions  
Typ Max Typ Max  
VCC = VCCMax  
ILI  
Input Load  
9
-
-
±2  
-
-
±2  
µA  
µA  
V
CCQ = VCCQMax  
VIN = VCCQ or GND  
V
V
CC = VCCMax  
CCQ = VCCQMax  
Output  
Leakage  
ILO  
DQ[15:0]  
±10  
±10  
VIN = VCCQ or GND  
180nm  
ICCS  
V
V
CC = VCCMax  
CCQ = VCCQMax  
6
8
6
21  
50  
21  
6
8
6
30  
70  
30  
VCC Standby  
10  
µA  
CE# = VCCQ  
RST# =VCCQ  
130 nm  
ICCS  
180nm  
ICCAPS  
VCC = VCCMax  
V
CCQ = VCCQMax  
APS  
11  
2
µA CE# = VSSQ  
RST# =VCCQ  
130nm  
ICCAPS  
8
4
50  
7
8
4
70  
10  
All other inputs =VCCQ or VSSQ  
Asynchronous  
Page Mode  
f=13 MHz  
mA 4 Word Read  
V
CC = VCCMax  
7
9
15  
16  
19  
7
9
15  
16  
19  
mA Burst length = 4  
mA Burst length = 8  
mA Burst length =16  
Average  
VCC  
Read  
CE# = VIL  
OE# = VIH  
Inputs = VIH or VIL  
ICCR  
Synchronous  
CLK = 40 MHz  
2
11  
11  
Burst length =  
mA  
12  
22  
12  
22  
Continuous  
VPP = VPPL, Program in Progress  
VPP = VPPH, Program in Progress  
VPP = VPPL, Block Erase in Progress  
PP = VPPH, Block Erase in Progress  
18  
8
40  
15  
40  
15  
21  
21  
18  
8
40  
15  
40  
15  
30  
30  
mA  
mA  
mA  
mA  
µA  
ICCW  
VCC Program  
3,4,5  
3,4,5  
18  
8
18  
8
ICCE  
VCC Block Erase  
V
CE# = VCC, Program Suspended  
CE# = VCC, Erase Suspended  
ICCWS  
ICCES  
VCC Program Suspend  
VCC Erase Suspend  
6
6
6
6
6
6
µA  
V
PP Standby  
IPPS  
VPP Program Suspend  
VPP Erase Suspend  
3
-
0.2  
2
5
0.2  
2
5
µA VPP < VCC  
(IPPWS,  
IPPES  
)
VPP < VCC  
IPPR  
VPP Read  
15  
15  
µA  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
27  
28F640W30, 28F320W30, 28F128W30  
Table 9.  
DC Current Characteristics (Sheet 2 of 2)  
VCCQ= 3.0 V  
Note 32/64 Mbit 128 Mbit  
Sym  
Parameter (1)  
Unit  
Test Conditions  
Typ Max Typ Max  
0.05 0.10 0.05 0.10  
V
PP = VPPL, Program in Progress  
IPPW  
VPP Program  
4
4
mA  
mA  
8
22  
0.05 0.10 0.05 0.10  
22 22  
16  
37  
VPP = VPPH, Program in Progress  
PP = VPPL, Erase in Progress  
VPP = VPPH, Erase in Progress  
V
IPPE  
VPP Erase  
8
8
Notes:  
1.  
2.  
All currents are RMS unless noted. Typical values at typical VCC, TA = +25°C.  
Automatic Power Savings (APS) reduces ICCR to approximately standby levels in static operation. See ICCRQ  
specification for details.  
3.  
4.  
5.  
6.  
Sampled, not 100% tested.  
V
V
CC read + program current is the sum of VCC read and VCC program currents.  
CC read + erase current is the sum of VCC read and VCC erase currents.  
I
I
CCES is specified with the flash device deselected. If the flash device is read while in erase suspend, the current is  
CCES plus ICCR  
.
7.  
8.  
9.  
10.  
VPP < VPPLK inhibits erase and program operations. Do not use VPPL and VPPH outside their valid ranges.  
IL can undershoot to –0.4V and VIH can overshoot to VCCQ+0.4V for durations of 20 ns or less.  
If VIN>VCC the input load current increases to 10 µA max.  
ICCS is the average current measured over any 5ms time interval 5 µs after a CE# de-assertion.  
V
11.  
Refer to section Section 8.2, “Automatic Power Savings (APS)” on page 45 for ICCAPS measurement details.  
6.2  
DC Voltage Characteristics  
Table 10.  
DC Voltage Characteristics  
VCCQ= 3.0 V  
32/64 Mbit 128 Mbit  
Min Max  
Sym  
Parameter (1)  
Note  
Unit  
Test Conditions  
Min  
Max  
VIL  
Input Low  
Input High  
Output Low  
8
-
0
0.4  
0
0.4  
V
V
VCCQ  
– 0.4  
VCCQ  
– 0.4  
VIH  
VCCQ  
VCCQ  
VOL  
VCC = VCCMin  
-
-
-
0.1  
-
-
0.1  
V
V
VCCQ = VCCQMin  
IOL = 100 µA  
VOH  
Output High  
VCC = VCCMin  
VCCQ  
– 0.1  
VCCQ  
– 0.1  
-
VCCQ = VCCQMin  
IOH = –100 µA  
VPPLK  
VLKO  
VPP Lock-Out  
VCC Lock  
7
-
-
0.4  
-
0.4  
V
V
V
1.0  
0.9  
-
-
1.0  
0.9  
-
-
VILKOQ VCCQ Lock  
-
Note: For all numbered note references in this table, refer to the notes in Table 9, “DC Current  
Characteristics” on page 27.  
June 2005  
28  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
7.0  
AC Characteristics  
7.1  
Read Operations - 130 nm Lithography  
Table 11.  
Read Operations - 130 nm Lithography (Sheet 1 of 2)  
32-Mbit  
64-Mbit  
128-Mbit  
-70  
#
Sym  
Parameter 1  
Units Notes  
-70  
-85  
Min Max Min Max Min Max  
Asynchronous Specifications  
R1  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
Read Cycle Time  
70  
-
-
70  
70  
30  
150  
-
85  
-
-
85  
85  
30  
150  
-
70  
-
-
70  
70  
30  
150  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
6
R2  
Address to Output Valid  
CE# Low to Output Valid  
OE# Low to Output Valid  
RST# High to Output Valid  
CE# Low to Output Low-Z  
OE# Low to Output Low-Z  
CE# High to Output High-Z  
OE# High to Output High-Z  
CE# (OE#) High to Output Low-Z  
CE# Pulse Width High  
R3  
-
-
-
6
R4  
-
-
-
3
R5  
-
-
-
-
R6  
0
0
-
0
0
-
0
0
-
4
R7  
-
-
-
3,4  
4
R8  
20  
14  
-
20  
14  
-
20  
14  
-
R9  
-
-
-
3,4  
3,4  
5
R10  
R11  
R12  
R13  
0
20  
-
0
20  
-
0
20  
-
tEHEL  
tELTV  
tEHTZ  
-
-
-
CE# Low to WAIT Valid  
CE# High to WAIT High-Z  
20  
25  
22  
25  
22  
25  
5
-
-
-
4,5  
Latching Specifications  
R101 tAVVH  
R102 tELVH  
R103 tVLQV  
R104 tVLVH  
R105 tVHVL  
R106 tVHAX  
R108 tAPA  
Address Setup to ADV# High  
10  
10  
-
-
-
10  
10  
-
-
12  
12  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
CE# Low to ADV# High  
ADV# Low to Output Valid  
ADV# Pulse Width Low  
70  
-
85  
-
70  
-
6
-
10  
10  
9
10  
10  
9
12  
12  
9
ADV# Pulse Width High  
Address Hold from ADV# High  
Page Address Access Time  
-
-
-
-
-
-
-
2
-
-
25  
-
25  
-
25  
Clock Specifications  
R200 fCLK  
R201 tCLK  
R202 tCH/L  
R203 tCHCL  
CLK Frequency  
-
25  
9.5  
-
40  
-
-
30  
9.5  
-
33  
-
-
25  
9.5  
-
40  
-
MHz  
ns  
-
-
-
-
CLK Period  
CLK High or Low Time  
CLK Fall or Rise Time  
-
-
-
ns  
3
5
5
ns  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
29  
28F640W30, 28F320W30, 28F128W30  
Table 11.  
Read Operations - 130 nm Lithography (Sheet 2 of 2)  
32-Mbit  
64-Mbit  
128-Mbit  
-70  
#
Sym  
Parameter 1  
Units Notes  
-70  
-85  
Min Max Min Max Min Max  
Synchronous Specifications  
R301 tAVCH  
R302 tVLCH  
R303 tELCH  
R304 tCHQV  
R305 tCHQX  
R306 tCHAX  
R307 tCHTV  
Notes:  
Address Valid Setup to CLK  
ADV# Low Setup to CLK  
CE# Low Setup to CLK  
CLK to Output Valid  
9
10  
9
-
-
9
10  
9
-
-
10  
10  
9
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
-
20  
-
-
22  
-
-
20  
-
-
Output Hold from CLK  
Address Hold from CLK  
CLK to WAIT Valid  
5
5
5
-
10  
-
-
10  
-
-
10  
-
-
2
-
20  
22  
22  
1.  
See Figure 22, “AC Input/Output Reference Waveform” on page 48 for timing measurements and maximum  
allowable input slew rate.  
2.  
Address hold in synchronous-burst mode is defined as tCHAX or tVHAX, whichever timing specification is  
satisfied first.  
3.  
4.  
5.  
6.  
OE# can be delayed by up to tELQV – tGLQV after the falling edge of CE# without impact to tELQV.  
Sampled, not 100% tested.  
Applies only to subsequent synchronous reads.  
During the initial access of a synchronous burst read, data from the first word might begin to be driven onto the  
data bus as early as the first clock edge after tAVQV  
.
7.2  
Read Operations - 180 nm Lithography  
Table 12.  
Read Operations - 180 nm Lithography (Sheet 1 of 2)  
32-Mbit  
64-Mbit  
128-Mbit  
-90  
#
Sym  
Parameter 1  
Units Notes  
-70  
-85  
Min Max Min Max Min Max  
Asynchronous Specifications  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
tAVAV  
Read Cycle Time  
70  
-
-
70  
70  
30  
150  
-
85  
-
-
85  
85  
30  
150  
-
90  
-
-
90  
90  
30  
150  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
6
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
Address to Output Valid  
CE# Low to Output Valid  
OE# Low to Output Valid  
RST# High to Output Valid  
CE# Low to Output Low-Z  
OE# Low to Output Low-Z  
CE# High to Output High-Z  
OE# High to Output High-Z  
-
-
-
6
-
-
-
3
-
-
-
-
0
0
-
0
0
-
0
0
-
4
-
-
-
3,4  
4
20  
14  
20  
14  
20  
14  
-
-
3,4  
June 2005  
30  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Table 12.  
Read Operations - 180 nm Lithography (Sheet 2 of 2)  
32-Mbit  
64-Mbit  
128-Mbit  
-90  
#
Sym  
Parameter 1  
Units Notes  
-70  
-85  
Min Max Min Max Min Max  
R10  
R11  
R12  
R13  
tOH  
CE# (OE#) High to Output Low-Z  
CE# Pulse Width High  
0
20  
-
-
0
20  
-
-
0
20  
-
-
ns  
ns  
ns  
ns  
3,4  
5
tEHEL  
tELTV  
tEHTZ  
-
-
-
CE# Low to WAIT Valid  
20  
25  
22  
25  
22  
25  
5
CE# High to WAIT High-Z  
-
-
-
4,5  
Latching Specifications  
R101 tAVVH  
R102 tELVH  
R103 tVLQV  
R104 tVLVH  
R105 tVHVL  
R106 tVHAX  
R108 tAPA  
Address Setup to ADV# High  
10  
10  
-
-
-
10  
10  
-
-
-
12  
12  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
CE# Low to ADV# High  
ADV# Low to Output Valid  
ADV# Pulse Width Low  
70  
-
85  
-
90  
-
6
-
10  
10  
9
10  
10  
9
12  
12  
9
ADV# Pulse Width High  
Address Hold from ADV# High  
Page Address Access Time  
-
-
-
-
-
-
-
2
-
-
25  
-
25  
-
30  
Clock Specifications  
R200 fCLK  
R201 tCLK  
R202 tCH/L  
R203 tCHCL  
CLK Frequency  
-
25  
9.5  
-
40  
-
-
33  
-
-
30  
9.5  
-
33  
-
MHz  
ns  
-
-
-
-
CLK Period  
30  
9.5  
CLK High or Low Time  
CLK Fall or Rise Time  
-
-
-
ns  
3
5
5
ns  
Synchronous Specifications  
R301 tAVCH  
R302 tVLCH  
R303 tELCH  
R304 tCHQV  
R305 tCHQX  
R306 tCHAX  
R307 tCHTV  
Notes:  
Address Valid Setup to CLK  
9
10  
9
-
-
9
10  
9
-
-
10  
10  
9
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
ADV# Low Setup to CLK  
CE# Low Setup to CLK  
CLK to Output Valid  
-
-
-
-
-
20  
-
-
22  
-
22  
-
-
Output Hold from CLK  
Address Hold from CLK  
CLK to WAIT Valid  
5
5
5
-
10  
-
-
10  
-
-
10  
-
-
2
-
20  
22  
22  
1.  
See Figure 22, “AC Input/Output Reference Waveform” on page 48 for timing measurements and maximum  
allowable input slew rate.  
2.  
Address hold in synchronous-burst mode is defined as tCHAX or tVHAX, whichever timing specification is  
satisfied first.  
3.  
4.  
5.  
6.  
OE# can be delayed by up to tELQV– tGLQV after the falling edge of CE# without impact to tELQV.  
Sampled, not 100% tested.  
Applies only to subsequent synchronous reads.  
During the initial access of a synchronous burst read, data from the first word might begin to be driven onto the  
data bus as early as the first clock edge after tAVQV  
.
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
31  
28F640W30, 28F320W30, 28F128W30  
Figure 8.  
Asynchronous Read Operation Waveform  
R1  
VIH  
VIL  
Valid  
Address  
Address [A]  
CE# [E]  
R2  
R3  
VIH  
VIL  
R8  
R9  
VIH  
VIL  
R4  
OE# [G]  
R7  
VIH  
VIL  
WE# [W]  
WAIT [T]  
VOH  
VOL  
High Z  
High Z  
Note 1  
VOH  
VOL  
High Z  
Valid  
Output  
Data [D/Q]  
RST# [P]  
R5  
R10  
VIH  
VIL  
Notes: .  
1.  
WAIT shown asserted (RCR[10]=0)  
2.  
ADV# assumed to be driven to VIL in this waveform  
June 2005  
32  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 9.  
Latched Asynchronous Read Operation Waveform  
R1  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
A[MAX:2] [A]  
A[1:0] [A]  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
R2  
R101  
R104  
R102  
R105  
VIH  
R106  
R103  
ADV# [V]  
CE# [E]  
VIL  
VIH  
VIL  
R3  
R6  
R4  
R8  
R9  
VIH  
VIL  
OE# [G]  
WE# [W]  
Data [Q]  
RST# [P]  
R7  
VIH  
VIL  
VOH  
VOL  
High Z  
Valid  
Output  
R5  
R10  
VIH  
VIL  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
33  
28F640W30, 28F320W30, 28F128W30  
Figure 10.  
Page-Mode Read Operation Waveform  
R1  
VIH  
VIL  
Valid  
Address  
A[MAX:2] [A]  
A[1:0] [A]  
R2  
VIH  
VIL  
Valid  
Valid  
Valid  
Valid  
Address  
Address  
Address  
Address  
R101  
R105  
VIH  
R106  
R103  
ADV# [V]  
CE# [E]  
OE# [G]  
VIL  
R104  
R102  
VIH  
VIL  
R3  
R6  
R4  
R8  
R9  
VIH  
VIL  
R7  
VIH  
WE# [W]  
WAIT [T]  
VIL  
VOH  
High Z  
High Z  
R108  
Note 1  
VOL  
VOH  
VOL  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Data [D/Q]  
RST# [P]  
R5  
R10  
VIH  
VIL  
Note:  
1.  
WAIT shown asserted (RCR[10] = 0).  
June 2005  
34  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 11.  
Single Synchronous Read-Array Operation Waveform  
R13  
R12  
Notes:  
1.  
Section 14.2, “First Access Latency Count (RCR[13:11])” on page 83 describes how to insert clock  
cycles during the initial access.  
2.  
3.  
WAIT (shown asserted; RCR[10]=0) can be configured to assert either during, or one data cycle before,  
valid data.  
In this waveform, an x-word burst is initiated to the main array and it is terminated by a CE# de-assertion  
after the first word in the burst. If this access had been done to Status, ID, or Query reads, the asserted  
(low) WAIT signal would have remained asserted (low) as long as CE# is asserted (low).  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
35  
28F640W30, 28F320W30, 28F128W30  
Figure 12.  
Synchronous 4-Word Burst Read Operation Waveform  
R11  
R13  
R12  
Notes:  
1.  
Section 14.2, “First Access Latency Count (RCR[13:11])” on page 83 describes how to insert clock  
cycles during the initial access.  
2.  
WAIT (shown asserted; RCR[10] = 0) can be configured to assert either during, or one data cycle  
before, valid data.  
June 2005  
36  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 13.  
WAIT Functionality for EOWL (End-of-Word Line) Condition Waveform  
R12  
Notes:  
1.  
Section 14.2, “First Access Latency Count (RCR[13:11])” on page 83 describes how to insert clock  
cycles during the initial access.  
2.  
WAIT (shown asserted; RCR[10]=0) can be configured to assert either during, or one data cycle before,  
valid data. (This example assumes a wait delay of two clocks.)  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
37  
28F640W30, 28F320W30, 28F128W30  
Figure 14.  
WAIT Signal in Synchronous Non-Read Array Operation Waveform  
R13  
R12  
Notes:  
1.  
Section 14.2, “First Access Latency Count (RCR[13:11])” on page 83 describes how to insert clock  
cycles during the initial access.  
2.  
WAIT shown asserted (RCR[10]=0).  
June 2005  
38  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 15.  
Burst Suspend  
R304  
R305  
R305  
R305  
CLK  
R1  
R2  
Address [A]  
R101  
R105  
R106  
ADV#  
CE# [E]  
OE# [G]  
R3  
R8  
R9  
R4  
R9  
R4  
R13  
R12  
WAIT [T]  
WE# [W]  
R7  
R6  
R304  
Q1  
R304  
Q2  
DATA [D/Q]  
Q0  
Q1  
Note:  
1.  
During Burst Suspend, the Clock signal can be held high or low.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
39  
28F640W30, 28F320W30, 28F128W30  
7.3  
AC Write Characteristics  
Table 13.  
AC Write Characteristics  
32-Mbit  
64-Mbit  
128-Mbit  
#
Sym  
Parameter 1,2  
Notes  
Unit  
-70  
-85 / -90  
Min  
Max  
Min  
Max  
W1  
W2  
t
PHWL (tPHEL  
)
RST# High Recovery to WE# (CE#) Low  
CE# (WE#) Setup to WE# (CE#) Low  
WE# (CE#) Write Pulse Width Low  
Data Setup to WE# (CE#) High  
Address Setup to WE# (CE#) High  
CE# (WE#) Hold from WE# (CE#) High  
Data Hold from WE# (CE#) High  
Address Hold from WE# (CE#) High  
WE# (CE#) Pulse Width High  
3
4
150  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
150  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tELWL (tWLEL  
tWLWH (tELEH  
tDVWH (tDVEH  
tAVWH (tAVEH  
tWHEH (tEHWH  
)
W3  
)
45  
45  
45  
0
60  
60  
60  
0
W4  
)
W5  
)
W6  
)
W7  
tWHDX (tEHDX  
tWHAX (tEHAX  
tWHWL (tEHEL  
tVPWH (tVPEH  
tQVVL  
)
0
0
W8  
)
0
0
W9  
)
)
5,6,7  
3
25  
200  
0
25  
200  
0
W10  
W11  
W12  
W13  
W14  
VPP Setup to WE# (CE#) High  
VPP Hold from Valid SRD  
3,8  
3,8  
3
tQVBL  
WP# Hold from Valid SRD  
0
0
tBHWH (tBHEH  
tWHGL (tEHGL  
)
WP# Setup to WE# (CE#) High  
Write Recovery before Read  
200  
0
200  
0
)
-
tAVQV  
+ 40  
tAVQV  
+ 50  
W16  
tWHQV  
WE# High to Valid Data  
3,6,10  
-
-
ns  
W18  
W19  
tWHAV  
tWHCV  
tWHVH  
WE# High to Address Valid  
WE# High to CLK Valid  
WE# High to ADV# High  
3,9,10  
3,10  
0
-
-
-
0
-
-
-
ns  
ns  
ns  
20  
20  
20  
20  
W20  
3,10  
Notes:  
1.  
2.  
3.  
4.  
Write timing characteristics during erase suspend are the same as during write-only operations.  
A write operation can be terminated with either CE# or WE#.  
Sampled, not 100% tested.  
Write pulse width low (tWLWH or tELEH) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
(whichever occurs first). Hence, tWLWH = tELEH = tWLEH = tELWH  
Write pulse width high (tWHWL or tEHEL) is defined from CE# or WE# high (whichever is first) to CE# or WE# low  
(whichever is last). Hence, tWHWL = tEHEL = tWHEL = tEHWL  
.
5.  
6.  
.
System designers must take this into account, and can insert a software No-Op instruction to delay the first read after  
issuing a command.  
7.  
For commands other than resume commands.  
8.  
9.  
10.  
V
PP must be held at VPPL or VPPH until block erase or program success is determined.  
Applicable during asynchronous reads following a write.  
WHCH/L OR tWHVH must be met when transitioning from a write cycle to a synchronous burst read. tWHCH/L and tWHVH  
t
both refer to the address latching event (either the rising/falling clock edge or the rising ADV# edge, whichever occurs  
first).  
June 2005  
40  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 16.  
Write Operations Waveform  
VIH  
CLK [C]  
VIL  
W19  
Note 1  
Note 2  
W5  
Note 3  
Note 4  
W18  
Note 5  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
Address [A]  
R101  
R105  
VIH  
R106  
W8  
ADV# [V]  
VIL  
R104  
W2  
W20  
VIH  
VIL  
Note 6  
CE# (WE#) [E(W)]  
OE# [G]  
W6  
VIH  
VIL  
W3  
W14  
W9  
VIH  
VIL  
Note 6  
WE# (CE#) [W(E)]  
Data [Q]  
W1  
W7  
W16  
VIH  
VIL  
Valid  
SRD  
Data In  
Data In  
W4  
VIH  
VIL  
RST# [P]  
W12  
W11  
W13  
W10  
VIH  
VIL  
WP# [B]  
VPPH  
VPPLK  
VIL  
VPP [V]  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
V
CC power-up and standby.  
Write Program or Erase Setup command.  
Write valid address and data (for program) or Erase Confirm command.  
Automated program/erase delay.  
Read status register data (SRD) to determine program/erase operation completion.  
OE# and CE# must be asserted and WE# must be deasserted for read operations.  
CLK is ignored (but can be kept active/toggling).  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
41  
28F640W30, 28F320W30, 28F128W30  
Figure 17.  
Asynchronous Read to Write Operation Waveform  
R1  
R2  
W5  
W8  
Address [A]  
CE# [E}  
R3  
R8  
R4  
R9  
OE# [G]  
W3  
W2  
W6  
WE# [W]  
R7  
R6  
W7  
R10  
W4  
Data [D/Q]  
RST# [P]  
Q
D
R5  
Figure 18.  
Asynchronous Write to Read Operation  
W5  
W8  
R1  
Address [A]  
W2  
W6  
R10  
CE# [E}  
W3  
W18  
WE# [W]  
W14  
OE# [G]  
R4  
R2  
R3  
W7  
R9  
W4  
R8  
Data [D/Q]  
RST# [P]  
D
Q
W1  
June 2005  
42  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 19.  
Synchronous Read to Write Operation  
Latency Count  
R301  
R302  
R306  
CLK[C]  
R2  
W5  
R101  
W18  
Address [A]  
R105  
R106  
R102  
R104  
W20  
ADV# [V]  
R303  
R3  
R11  
W6  
CE# [E]  
R4  
R8  
OE# [G]  
W15  
W19  
W9  
W3  
W2  
W8  
WE#  
R12  
R307  
R304  
WAIT [T]  
R13  
R7  
R305  
W7  
Data [D/Q]  
Q
D
D
Figure 20.  
Synchronous Write To Read Operation  
Latency Count  
R2  
R302  
R301  
CLK  
W5  
W8  
R306  
Address [A]  
ADV#  
W20  
R106  
R104  
W6  
R303  
W2  
R11  
CE# [E}  
W18  
W19  
W3  
WE# [W]  
OE# [G]  
WAIT [T]  
R4  
R12  
R307  
W7  
R304  
R304  
R305  
W4  
R3  
Data [D/Q]  
RST# [P]  
D
Q
Q
W1  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
43  
28F640W30, 28F320W30, 28F128W30  
7.4  
Erase and Program Times  
Table 14.  
Erase and Program Times  
VPPL  
VPPH  
Operation  
Symbol  
Parameter  
Description1  
Notes  
Unit  
Typ  
Max  
Typ  
Max  
Erasing and Suspending  
W500  
Erase Time  
tERS/PB  
tERS/MB  
tSUSP/P  
tSUSP/E  
4-Kword Parameter Block  
32-Kword Main Block  
Program Suspend  
2,3  
2,3  
2
0.3  
0.7  
5
2.5  
4
0.25  
0.4  
5
2.5  
4
s
W501  
s
W600  
10  
20  
10  
20  
µs  
µs  
Suspend  
Latency  
W601  
Erase Suspend  
2
5
5
Programming  
W200  
tPROG/W  
tPROG/PB  
tPROG/MB  
Single Word  
2
12  
0.05  
0.4  
150  
.23  
1.8  
8
130  
0.07  
0.6  
µs  
s
Program  
Time  
W201  
4-Kword Parameter Block  
32-Kword Main Block  
2,3  
2,3  
0.03  
0.24  
W202  
s
Enhanced Factory Programming5  
W400  
W401  
W402  
W403  
W404  
W405  
tEFP/W  
Single Word  
4
2,3  
2,3  
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
3.5  
15  
16  
-
µs  
ms  
ms  
µs  
Program  
tEFP/PB  
tEFP/MB  
tEFP/SETUP  
tEFP/TRAN  
tEFP/VERIFY  
4-Kword Parameter Block  
32-Kword Main Block  
EFP Setup  
120  
-
-
5
Operation  
Latency  
Program to Verify Transition  
Verify  
-
2.7  
1.7  
5.6  
130  
µs  
-
µs  
Notes:  
1.  
Unless noted otherwise, all parameters are measured at TA = +25 °C and nominal voltages, and are sampled, not 100%  
tested.  
2.  
3.  
4.  
Excludes external system-level overhead.  
Exact results might vary based on system overhead.  
W400-Typ is the calculated delay for a single programming pulse. W400-Max includes the delay when programming  
within a new word-line.  
5.  
Some EFP performance degradation might occur if block cycling exceeds 10.  
June 2005  
44  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
8.0  
Power and Reset Specifications  
Intel® Wireless Flash Memory (W30) devices have a layered approach to power savings that can  
significantly reduce overall system power consumption.  
The APS feature reduces power consumption when the flash device is selected but idle.  
If CE# is deasserted, the memory enters its standby mode, where current consumption is even  
lower.  
Asserting RST# provides current savings similar to standby mode.  
The combination of these features can minimize memory power consumption, and therefore,  
overall system power consumption.  
8.1  
8.2  
Active Power  
With CE# at V and RST# at V , the flash device is in the active mode. Refer to Section 6.1, “DC  
IL  
IH  
Current Characteristics” on page 27, for I values. When the flash device is in active state, it  
consumes the most power from the system. Minimizing flash device active current therefore  
reduces system power consumption, especially in battery-powered applications.  
CC  
Automatic Power Savings (APS)  
Automatic Power Saving (APS) provides low power operation during a read active state. I  
is  
CCAPS  
the average current measured over any 5 ms time interval, 5 µs after CE# is deasserted. During  
APS, average current is measured over the same time interval 5 µs after the following events:  
There is no internal read, program or erase activity.  
CE# is asserted.  
The address lines are quiescent, and at V or V .  
IL  
IH  
OE# can be driven during APS.  
8.3  
Standby Power  
When CE# is deasserted, the flash device is deselected and placed in standby, substantially  
reducing power consumption. In standby, the data outputs are placed in High-Z, independent of the  
level placed on OE#. Standby current, I , is the average current measured over any 5 ms time  
CCS  
interval, 5 µs after CE# is deasserted. During standby, average current is measured over the same  
time interval 5 µs after CE# is deasserted.  
When the flash device is deselected (while CE# is deasserted) during a program or erase operation,  
it continues to consume active power until the program or erase operation completes.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
45  
28F640W30, 28F320W30, 28F128W30  
8.4  
Power-Up/Down Characteristics  
The flash device is protected against accidental block erasure or programming during power  
transitions. Power supply sequencing is not required if V and V are connected together; so it  
CC  
PP  
does not matter whether V or V powers-up first. If V is not connected to the system supply,  
PP  
CC  
PP  
then V must attain V  
before applying V  
and V . Do not drive flash device inputs  
CC  
CCMIN  
CCQ PP  
before supply voltage = V  
Power supply transitions can occur only when RST# is low.  
CCQMIN.  
8.4.1  
System Reset and RST#  
The use of RST# during system reset is important with automated program/erase flash devices,  
because the system expects to read from the flash memory when it comes out of reset. If a CPU  
reset occurs without a flash memory reset, the CPU is not properly initialized, because the flash  
memory might be providing status information instead of array data.  
Note:  
To allow proper CPU/flash device initialization at system reset, connect RST# to the system CPU  
RESET# signal.  
System designers must guard against spurious writes when VCC voltages are above V  
.
LKO  
Because both WE# and CE# must be low for a command write, driving either signal to V inhibits  
IH  
writes to the flash device. The CUI architecture provides additional protection, because memory  
contents can be altered only after successful completion of the two-step command sequences.  
The flash device is also disabled until RST# is brought to V , regardless of its control input states.  
IH  
By holding the flash device in reset (RST# connected to system PowerGood) during power-up/  
down, invalid bus conditions during power-up can be masked, providing yet another level of  
memory protection.  
8.4.2  
VCC, VPP, and RST# Transitions  
The CUI latches commands issued by system software, and is not altered by VPP or CE#  
transitions or WSM actions. Read-array mode is the power-up default state after the flash device  
exits from reset mode or after VCC transitions above V  
(Lockout voltage).  
LKO  
After completing program or block erase operations (even after VPP transitions below V  
), the  
PPLK  
Read Array command must reset the CUI to read-array mode if flash memory array access is  
desired.  
8.5  
Power Supply Decoupling  
When the flash device is accessed, many internal conditions change. Circuits are enabled to charge  
pumps and switch voltages. This internal activity produces transient noise.  
To minimize the effect of this transient noise, device decoupling capacitors are required. Transient  
current magnitudes depend on the flash device output capacitive and inductive loading. Two-line  
control and proper decoupling capacitor selection suppresses these transient voltage peaks.  
Note:  
Each flash device must have a 0.1 µF ceramic capacitor connected between each power (VCC,  
VCCQ, VPP) and ground (VSS, VSSQ) signal. High-frequency, inherently low-inductance  
,
capacitors must be as close as possible to the package signals.  
June 2005  
46  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
8.6  
Reset Specifications  
Table 15.  
Reset Specifications  
#
Symbol  
Parameter1  
Notes  
Min  
Max  
Unit  
P1  
tPLPH  
RST# Low to Reset during Read  
RST# Low to Reset during Block Erase  
RST# Low to Reset during Program  
VCC Power Valid to Reset  
1, 2, 3, 4  
1, 3, 4, 5  
1, 3, 4, 5  
1,3,4,5,6  
100  
-
ns  
µs  
µs  
µs  
-
-
20  
10  
-
P2  
tPLRH  
tVCCPH  
P3  
60  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
These specifications are valid for all product versions (packages and speeds).  
The flash device might reset if tPLPH< tPLPHMin, but this is not guaranteed.  
Not applicable if RST# is tied to VCC.  
Sampled, but not 100% tested.  
If RST# is tied to VCC, the flash device is not ready until tVCCPH occurs after when VCC > VCCMin.  
If RST# is tied to any supply/signal with VCCQ voltage levels, the RST# input voltage must not exceed VCC until VCC  
VCCMin.  
>
Figure 21.  
Reset Operations Waveforms  
P1  
P2  
P2  
P3  
R5  
VIH  
VIL  
(
A) Reset during  
read mode  
RST# [P]  
RST# [P]  
RST# [P]  
VCC  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
47  
28F640W30, 28F320W30, 28F128W30  
8.7  
AC I/O Test Conditions  
Figure 22.  
AC Input/Output Reference Waveform  
VCCQ  
Test Points  
Input  
VCCQ/2  
VCCQ/2  
Output  
0V  
Note: Input timing begins, and output timing ends, at VCCQ/2. Input rise and fall times (10% to 90%) < 5 ns.  
Worst case speed conditions are when VCC = VCCMin.  
Figure 23.  
Transient Equivalent Testing Load Circuit  
VCCQ  
R1  
Device  
Under Test  
Out  
CL  
R2  
Note: See Table 16 for component values.  
Table 16.  
Test Configuration Component Values for Worst Case Speed Conditions  
Test Configuration  
CCQMin Standard Test  
CL (pF)  
R1 (k)  
R1 (k)  
V
30  
25  
25  
Note: CL includes jig capacitance.  
Figure 24.  
Clock Input AC Waveform  
R201  
VIH  
CLK [C]  
VIL  
R202  
R203  
June 2005  
48  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
8.8  
Flash Device Capacitance  
T = +25 °C, f = 1 MHz  
A
Symbol  
CIN  
Parameter§  
Typ  
Max  
Unit  
Condition  
Input Capacitance  
Output Capacitance  
CE# Input Capacitance  
6
8
8
pF  
pF  
pF  
VIN = 0.0 V  
VOUT = 0.0 V  
VIN = 0.0 V  
COUT  
CCE  
12  
12  
10  
§Sampled, not 100% tested.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
49  
28F640W30, 28F320W30, 28F128W30  
9.0  
Flash Device Operations  
This chapter provides an overview of flash device operations. The W30 flash memory device  
family includes an on-chip Write State Machine (WSM) to manage block erase and program  
algorithms. The WSM Command User Interface (CUI) allows minimal processor overhead with  
RAM-like interface timings.  
9.1  
Bus Operations  
Table 17.  
Bus Operations Summary  
Bus Operation  
RST#  
CLK  
ADV#  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0] Notes  
Asynchronous  
Synchronous  
Burst Suspend  
VIH  
VIH  
VIH  
VIH  
VIH  
VIH  
VIL  
X
L
L
L
L
L
L
L
H
X
L
L
H
H
H
L
Asserted  
Driven  
Output  
Output  
Output  
Input  
-
1
Read  
Write  
Running  
Halted  
X
L
H
H
H
X
X
Active  
-
X
X
X
X
Asserted  
Asserted  
High-Z  
2
Output Disable  
Standby  
X
X
X
H
X
X
High-Z  
High-Z  
High-Z  
3
3
Reset  
High-Z  
3,4  
Notes:  
1.  
2.  
3.  
4.  
WAIT is valid only during synchronous array-read operations.  
Refer to the Table 19, “Bus Cycle Definitions” on page 55 for valid DQ[15:0] during a write operation.  
X = Don’t Care (H or L).  
RST# must be at VSS ± 0.2 V to meet the maximum specified power-down current.  
9.1.1  
Read  
The W30 flash memory device has several read configurations:  
Asynchronous page mode read.  
Synchronous burst mode read — outputs four, eight, sixteen, or continuous words, from main  
blocks and parameter blocks.  
Several read modes are available in each partition:  
Read-array mode: read accesses return flash memory array data from the addressed  
locations.  
Read identifier mode: reads return manufacturer and device identifier data, block lock status,  
and protection register data. Identifier information can be accessed starting at a 4-Mbit  
partition base addresses; the flash memory array is not accessible in read identifier mode.  
Read query mode: reads return the flash device CFI data. CFI information can be accessed  
starting at a 4-Mbit partition base addresses; the flash memory array is not accessible in read  
query mode.  
Read status register mode: reads return status register data from the addressed partition. The  
array data for that partition is not accessible. A system processor can check the status register  
to determine the state of an addressed partition, or to monitor program and erase progress.  
June 2005  
50  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
All partitions support the synchronous burst mode that internally sequences addresses with respect  
to the input CLK to select and supply data to the outputs.  
Identifier codes, query data, and status register read operations execute as single-synchronous or  
asynchronous read cycles. WAIT is asserted during these reads.  
Access to the modes listed above is independent of V . An appropriate CUI command places the  
PP  
flash device in a read mode. At initial power-up or after reset, the flash device defaults to  
asynchronous read-array mode.  
Asserting CE# enables flash device read operations. The flash device internally decodes upper  
address inputs to determine which partition is accessed.  
Asserting ADV# opens the internal address latches.  
Asserting OE# activates the outputs, and gates the selected data onto the I/O bus.  
In asynchronous mode, the address is latched when ADV# is deasserted (when the flash device  
is configured to use ADV#).  
In synchronous mode, the address is latched by either the rising edge of ADV# or the rising (or  
falling) CLK edge while ADV# remains asserted, whichever occurs first.  
WE# and RST# must be deasserted during read operations.  
Note:  
If only asynchronous reads are to be performed in your system, CLK must be tied to a valid V  
level, the WAIT signal can be floated, and ADV# must be tied to ground.  
IH  
9.1.2  
Burst Suspend  
The Burst Suspend feature allows the system to temporarily suspend a synchronous burst operation  
if the system needs to use the flash device address and data bus for other purposes. Burst accesses  
can be suspended during the initial latency (before data is received) or after the flash device has  
output data. When a burst access is suspended, internal array sensing continues and any previously  
latched internal data is retained.  
Burst Suspend occurs when CE# is asserted, the current address has been latched (either ADV#  
rising edge or valid CLK edge), CLK is halted, and OE# is deasserted. CLK can be halted when it  
is at V or V . To resume the burst access, OE# is reasserted and CLK is restarted. Subsequent  
IH  
IL  
CLK edges resume the burst sequence where it left off.  
Within the flash device, CE# gates the WAIT signal. Therefore, during Burst Suspend, WAIT  
remains asserted and does not revert to a high-impedance state when OE# is deasserted. This WAIT  
state can cause contention with another flash device attempting to control the system READY  
signal during a Burst Suspend. System using the Burst Suspend feature must not connect the flash  
device WAIT signal directly to the system READY signal.  
Refer to Figure 15, “Burst Suspend” on page 39.  
9.1.3  
Standby  
De-asserting CE# deselects the flash device and places it in standby mode, substantially reducing  
flash device power consumption. In standby mode, outputs are placed in a high-impedance state  
independent of OE#. If deselected during a program or erase algorithm, the flash device consumes  
active power until the program or erase operation completes.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
51  
28F640W30, 28F320W30, 28F128W30  
9.1.4  
Reset  
The flash device enters a reset mode when RST# is asserted. In reset mode, internal circuitry is  
turned off and outputs are placed in a high-impedance state.  
After returning from reset, a time t  
is required until outputs are valid, and a delay (t  
) is  
PHQV  
PHWV  
required before a write sequence can be initiated. After this wake-up interval, normal operation is  
restored. The flash device defaults to read-array mode, the status register is set to 80h, and the Read  
Configuration Register defaults to asynchronous page-mode reads.  
If RST# is asserted during an erase or program operation, the operation aborts and the memory  
contents at the aborted block or address are invalid. See Figure 21, “Reset Operations Waveforms”  
on page 47 for detailed information regarding reset timings.  
As on any automated device, RST# must be asserted during system reset. When the system comes  
out of reset, the processor expects to read from the flash memory array. Automated flash memory  
devices provide status information when read during program or erase operations. If a CPU reset  
occurs with no flash memory reset, the CPU might not be properly initialized, because the flash  
memory device might be providing status information instead of array data. 1.8 Volt Intel Flash  
memory devices allow proper CPU initialization following a system reset through the use of the  
RST# input. In this application, RST# is controlled by the same CPU reset signal, RESET#.  
9.1.5  
Write  
A write occurs when CE# and WE# are asserted and OE# is deasserted. Flash memory control  
commands are written to the CUI using standard microprocessor write timings. Proper use of the  
ADV# input is needed for proper latching of the addresses. Refer to Section 7.3, “AC Write  
Characteristics” on page 40 for details. The address and data are latched on the rising edge of WE#.  
Write operations are asynchronous; CLK is ignored (but can be kept active/toggling).  
The CUI does not occupy an addressable memory location within any partition. The system  
processor must access it at the correct address range, depending on the kind of command executed.  
Programming or erasing can occur in only one partition at a time. Other partitions must be in one of  
the read modes or erase suspend mode.  
Table 18, “Command Codes and Descriptions” on page 53 shows the available commands.  
Appendix A, “Write State Machine” on page 90 provides information about moving between  
different operating modes using CUI commands.  
9.2  
Flash Device Commands  
The flash device on-chip WSM manages erase and program algorithms. This local CPU (WSM)  
controls the flash device in-system read, program, and erase operations. Bus cycles to or from the  
flash memory device conform to standard microprocessor bus cycles. The RST#, CE#, OE#, WE#,  
and ADV# control signals dictate data flow into and out of the flash device. WAIT informs the  
CPU of valid data during burst reads. Table 17, “Bus Operations Summary” on page 50  
summarizes bus operations.  
To select flash device operations, write specific commands into the flash device CUI. Table 18,  
“Command Codes and Descriptions” on page 53 lists all possible command codes and  
descriptions. Table 19, “Bus Cycle Definitions” on page 55 lists command definitions. Because  
commands are partition-specific, you must issue write commands within the target address range.  
June 2005  
52  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Table 18.  
Command Codes and Descriptions (Sheet 1 of 2)  
Flash Device  
Command  
Operation  
Code  
Description  
FFh  
70h  
Read Array  
Places the selected partition in read-array mode.  
Read Status  
Register  
Places the selected partition in status register read mode. The partition enters this  
mode after a Program or Erase command is issued to it.  
Places the selected partition in read identifier mode. Flash device reads from  
Read Identifier partition addresses output the manufacturer/device codes, configuration register  
data, block lock status, or protection register data on D[15:0].  
90h  
98h  
Read  
Places the addressed partition in read query mode. Flash device reads from the  
Read Query  
partition addresses output the CFI information on D[7:0].  
The WSM can set the block lock (SR[1]), VPP (SR[3]), program (SR[4]), and  
Clear Status  
Register  
erase (SR[5]) status bits of the status register, but WSM cannot clear these bits.  
SR[5:3,1] can be cleared only by a flash device reset or through the Clear Status  
Register command.  
50h  
40h  
The first cycle of this preferred program command prepares the CUI for a  
program operation.  
Word Program  
Setup  
The second cycle latches the address and data, and executes the WSM  
program algorithm at this location.  
Status register updates occur when CE# or OE# is toggled. After programming,  
use a Read Array command to read the array data.  
Alternate  
Setup  
10h  
30h  
Equivalent to a Program Setup command (40h).  
Program  
This program command activates EFP mode.  
The first write cycle sets up the command.  
EFP Setup  
If the second cycle is an EFP Confirm command (D0h), subsequent writes  
provide program data.  
All other commands are ignored after EFP mode begins.  
If the first command was EFP Setup (30h), the CUI latches the address and data,  
and prepares the flash device for EFP mode.  
D0h  
20h  
EFP Confirm  
Erase Setup  
This command prepares the CUI for Block Erase. The flash device erases the  
block that the Erase Confirm command addresses. If the next command is not  
Erase Confirm, the CUI sets status register bits SR[5:4] to indicate a command  
sequence error, and places the partition in the read status register mode.  
Erase  
If the first command was Erase Setup (20h), the CUI latches the address and  
data, and erases the block indicated by the erase confirm cycle address. During  
D0h  
Erase Confirm program or erase, the partition responds only to Read Status Register, Program  
Suspend, and Erase Suspend commands. CE# or OE# toggle updates the status  
register data.  
This command, issued at any flash device address, suspends the currently  
executing program or erase operation. Status register data indicates that the  
operation was successfully suspended if SR[2] (program suspend) or SR[6]  
(erase suspend) and SR[7] are set. The WSM remains in the suspended state  
Program  
Suspend or  
Erase  
Suspend  
B0h  
D0h  
Suspend  
regardless of the control signal states (except RST#).  
Suspend  
Resume  
This command, issued at any flash device address, resumes the suspended  
program or erase operation.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
53  
28F640W30, 28F320W30, 28F128W30  
Table 18.  
Command Codes and Descriptions (Sheet 2 of 2)  
Flash Device  
Command  
Operation  
Code  
Description  
This command prepares the CUI lock configuration. If the next command is not  
Lock Block, Unlock Block, or Lock-Down, the CUI sets SR[5:4] to indicate a  
command sequence error.  
60h  
01h  
D0h  
2Fh  
Lock Setup  
Lock Block  
Unlock Block  
Lock-Down  
If the previous command was Lock Setup (60h), the CUI locks the addressed  
block.  
Block Locking  
If the previous command was Lock Setup (60h), the CUI latches the address and  
unlocks the addressed block. If previously locked-down, the operation has no  
effect.  
If the previous command was Lock Setup (60h), the CUI latches the address and  
locks-down the addressed block.  
This command prepares the CUI for a protection register program operation. The  
second cycle latches address and data, and starts the WSM protection register  
program or lock algorithm. Toggling CE# or OE# updates the flash device status  
register data. To read array data after programming, issue a Read Array  
command.  
Protection  
Program  
Setup  
Protection  
C0h  
This command prepares the CUI for flash device configuration. If Set  
Configuration Register is not the next command, the CUI sets SR[5:4] to indicate  
a command sequence error.  
Configuration  
Setup  
60h  
03h  
Configuration  
Set  
Configuration  
Register  
If the previous command was Configuration Setup (60h), the CUI latches the  
address and writes the data from A[15:0] into the configuration register.  
Subsequent read operations access the array data.  
Note: Do not use unassigned commands. Intel reserves the right to redefine these codes for future functions.  
June 2005  
54  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Table 19.  
Bus Cycle Definitions  
First Bus Cycle  
Second Bus Cycle  
Bus  
Operation  
Command  
Cycles  
Oper  
Addr1  
Data2,3  
Oper  
Addr1  
Data2,3  
Read  
Address  
Array  
Data  
Read Array/Reset  
> 1  
Write  
PnA  
FFh  
Read  
Read Identifier  
> 2  
> 2  
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
PnA  
PnA  
PnA  
XX  
90h  
98h  
Read  
Read  
Read  
PBA+IA  
PBA+QA  
PnA  
IC  
Read  
Read Query  
QD  
Read Status Register  
Clear Status Register  
Block Erase  
70h  
SRD  
1
50h  
2
BA  
20h  
Write  
Write  
Write  
BA  
WA  
WA  
D0h  
WD  
D0h  
Word Program  
2
WA  
WA  
XX  
40h/10h  
30h  
Program  
and  
Erase  
EFP  
>2  
1
Program/Erase Suspend  
Program/Erase Resume  
Lock Block  
B0h  
D0h  
60h  
1
XX  
2
BA  
Write  
Write  
Write  
Write  
Write  
BA  
BA  
BA  
PA  
01h  
D0h  
Lock  
Unlock Block  
2
BA  
60h  
Lock-Down Block  
Protection Program  
Lock Protection Program  
2
BA  
60h  
2Fh  
2
PA  
C0h  
C0h  
PD  
Protection  
2
LPA  
LPA  
FFFDh  
Set Configuration  
Register  
Configuration  
2
Write  
CD  
60h  
Write  
CD  
03h  
Notes:  
1.  
First-cycle command addresses must be the same as the target address of the operation. Examples:  
—The first-cycle address for the Read Identifier command must be the same as the Identification code address (IA).  
—The first-cycle address for the Word Program command must be the same as the word address (WA) to be  
programmed.  
—The first-cycle address for the Erase/Program Suspend command must be the same as the address within the block  
to be suspended.  
XX  
IA  
BA  
= Any valid address within the flash device.  
= Identification code address.  
= Block Address. Any address within a specific block.  
LPA = The Lock Protection Address is obtained from the CFI (through the Read Query command). The W30 flash  
memory device family LPA is at 0080h.  
PA  
= User programmable 4-word protection address.  
PnA = Any address within a specific partition.  
PBA = Partition Base Address. The first address of a particular partition.  
QA  
WA  
= Query code address.  
= Word address of memory location to be written.  
2.  
3.  
SRD = Status register data.  
WD  
IC  
PD  
QD  
CD  
= Data to be written at location WA.  
= Identifier code data.  
= User programmable 4-word protection data.  
= Query code data on D[7:0].  
= Configuration register code data presented on flash device addresses A[15:0]. A[MAX:16] address bits can  
select any partition. See Table 27, “Read Configuration Register Definitions” on page 81 for configuration  
register bits descriptions.  
Do not use commands other than those shown above. Other commands are reserved by Intel for future flash device  
implementations.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
55  
28F640W30, 28F320W30, 28F128W30  
9.3  
Command Sequencing  
When issuing a 2-cycle write sequence to the flash device, a read operation can occur between the  
two write cycles. The setup phase of a 2-cycle write sequence places the addressed partition into  
read-status mode, so if the same partition is read before the second confirm write cycle is issued,  
status register data is returned. Reads from other partitions, however, can return actual array data, if  
the addressed partition is already in read-array mode. Figure 25 and Figure 26 illustrate these two  
conditions.  
Figure 25.  
Normal Write and Read Cycles  
Address [A]  
WE# [W]  
OE# [G]  
Partition A  
Partition A  
Partition A  
Data [Q]  
20h  
Block Erase Setup  
D0h  
Block Erase Conf irm  
FFh  
Read Array  
Figure 26.  
Interleaving a 2-Cycle Write Sequence with an Array Read  
Address [A]  
WE# [W]  
OE# [G]  
Partition B  
Partition A  
Partition B  
Partition A  
Data [Q]  
FFh  
Read Array  
20h  
Erase Setup  
Array Data  
Bus Read  
D0h  
Erase Confirm  
By contrast, a write bus cycle must not interrupt a 2-cycle write sequence. Such an interruption  
causes a command sequence error to appear in the status register. Figure 27 illustrates a command  
sequence error.  
Figure 27.  
Improper Command Sequencing  
Address [A]  
WE# [W]  
Partition X  
Partition Y  
Partition X  
Partition X  
OE# [G]  
Data [D/Q]  
20h  
FFh  
D0h  
SR Data  
June 2005  
56  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
10.0  
Read Operations  
10.1  
Read Array  
The Read Array command places (or resets) the partition in read-array mode and is used to read  
data from the flash memory array. Upon initial flash device power-up, or after reset (RST#  
transitions from V to V ), all partitions default to asynchronous read-array mode.  
IL  
IH  
To read array data from the flash device:  
1. Write the Read Array command (FFh) to the CUI and specify the desired word address.  
1. Read from that address.  
Note:  
If a partition is already in read-array mode, you do not need to issue the Read Array command to  
read from that partition.  
If the Read Array command is written to a partition that is erasing or programming, the flash device  
presents invalid data on the bus until the program or erase operation completes.  
After the program or erase finishes in that partition, valid array data can then be read. If an Erase  
Suspend or Program Suspend command suspends the WSM, a subsequent Read Array command  
places the addressed partition in read-array mode.  
The Read Array command functions independently of V .  
PP  
10.2  
Read Device ID  
The read identifier mode outputs the manufacturer/device identifier, block lock status, protection  
register codes, and configuration register data. The identifier information is contained within a  
separate memory space on the flash device, and can be accessed along the 4-Mbit partition address  
range supplied by the Read Identifier command (90h) address. Reads from addresses in Table 20  
retrieve ID information. Issuing a Read Identifier command to a partition that is programming or  
erasing places the outputs of that partition in read ID mode while the partition continues to program  
or erase in the background.  
Table 20.  
Flash Device Identification Codes (Sheet 1 of 2)  
Address1  
Item  
Data  
Description  
Base  
Offset  
Manufacturer ID  
Partition  
00h  
0089h  
8852h  
8853h  
8854h  
8855h  
8856h  
8857h  
Intel  
32-Mbit TPD  
32-Mbit BPD  
64-Mbit TPD  
64-Mbit BPD  
128-Mbit TPD  
128-Mbit BPD  
Device ID  
Partition  
01h  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
57  
28F640W30, 28F320W30, 28F128W30  
Table 20.  
Flash Device Identification Codes (Sheet 2 of 2)  
Address1  
Item  
Data  
Description  
Base  
Offset  
D0 = 0  
D0 = 1  
Block is unlocked  
Block Lock Status(2)  
Block  
Block  
02h  
Block is locked  
D1 = 0  
Block is not locked-down  
Block is locked down  
Block Lock-Down Status(2)  
02h  
D1 = 1  
Configuration Register  
Partition  
Partition  
05h  
80h  
Register Data  
Lock Data  
Protection Register Lock Status  
Multiple reads required to read  
Register Data the entire 128-bit Protection  
Register.  
Protection Register  
Partition  
81h - 88h  
Notes:  
1.  
The address is constructed from a base address plus an offset. For example, to read the Block Lock  
Status for block number 38 in a BPD, set the address to the BBA (0F8000h) plus the offset (02h),  
which in this example is 0F8002h. Then examine bit 0 of the data to determine whether the block is  
locked.  
2.  
See Section 13.1.4, “Block Lock Status” on page 75 for valid lock status.  
10.3  
Read Query (CFI)  
The W30 flash memory device contains a separate CFI query database that acts as an on-chip  
datasheet. To access the CFI information within the W30 flash memory device, issue the Read  
Query command and supply a specific address.  
The address is constructed from the base address of a partition plus a particular offset  
corresponding to the desired CFI field.  
Appendix B, “Common Flash Interface” on page 93 shows accessible CFI fields and their address  
offsets. Issuing the Read Query command to a partition that is programming or erasing puts that  
partition in read query mode while the partition continues to program or erase in the background.  
10.4  
Read Status Register  
The flash device status register displays program and erase operation status. The status of a  
partition can be read after writing the Read Status Register command to any location within the  
address range of that partition. Read-status mode is the default read mode following a Program,  
Erase, or Lock Block command sequence. Subsequent single reads from that partition return the  
partition status until another valid command is written.  
The read-status mode supports single synchronous and single asynchronous reads only; it does not  
support burst reads.  
The first falling edge of OE# or CE# latches and updates Status Register data. The operation does  
not affect the modes of other partitions. Because the Status Register is 8 bits wide, only DQ [7:0]  
contain valid status register data; DQ [15:8] contain zeros. See Table 21, “Status Register  
Definitions” on page 59 and Table 22, “Status Register Descriptions” on page 59.  
June 2005  
58  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Each 4-Mbit partition contains its own status register. Bits SR[6:0] are unique to each partition, but  
SR[7], the Device WSM Status (DWS) bit, pertains to the entire flash memory device. SR[7]  
provides the program and erase status of the entire flash device. By contrast, the Partition WSM  
Status (PWS) bit, SR[0], provides program and erase status of the addressed partition only. Status  
register bits SR[6:1] present information about partition-specific program, erase, suspend, V , and  
PP  
block-lock states. Table 23, “Status Register Device WSM and Partition Write Status Description”  
on page 60 describes the DWS (SR[7]) and PWS (SR[0]) combinations.  
Table 21.  
Status Register Definitions  
DWS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
DPS  
1
PWS  
0
Table 22.  
Status Register Descriptions  
Bit  
Name  
State  
Description  
SR[7] indicates erase or program completion in  
the flash device.  
DWS  
0 = Device WSM is Busy  
1 = Device WSM is Ready  
7
SR[6:1] are invalid while SR[7] = 0.  
Device WSM Status  
See Table 23 for valid SR[7] and SR[0] combinations.  
After issuing an Erase Suspend command, the WSM  
halts and sets SR[7] and SR[6]. SR[6] remains set until  
the flash device receives an Erase Resume command.  
ESS  
0 = Erase in progress/completed  
6
Erase Suspend Status 1 = Erase suspended  
SR[5] is set if an attempted erase failed.  
ES  
0 = Erase successful  
1 = Erase error  
5
4
A Command Sequence Error is indicated when  
SR[7,5:4] are set.  
Erase Status  
PS  
0 = Program successful  
1 = Program error  
SR[4] is set if the WSM failed to program a word.  
Program Status  
The WSM indicates the VPP level after program or  
erase completes.  
VPPS  
0 = VPP OK  
3
VPP Status  
1 = VPP low detect, operation aborted  
SR[3] does not provide continuous VPP feedback and  
is not guaranteed when VPPVPPL/VPPH  
PSS  
After receiving a Program Suspend command, the  
WSM halts execution and sets SR[7] and SR[2]. These  
bits remain set until a Resume command is received.  
0 = Program in progress/completed  
1 = Program suspended  
2
1
Program Suspend  
Status  
0 = Unlocked  
If an erase or program operation is attempted to a  
locked block (if WP# = VIL), the WSM sets SR[1] and  
aborts the operation.  
DPS  
1 = Aborted erase/program attempt on  
a locked block  
Device Protect Status  
The addressed partition is erasing or programming. In  
EFP mode, SR[0] indicates that a data-stream word  
has finished programming or verifying, depending on  
the particular EFP phase.  
0 = This partition is busy, but only if  
SR[7]=0  
PWS  
0
Partition Write Status 1 = Another partition is busy, but only if  
SR[7]=0  
See Table 23 for valid SR[7] and SR[0] combinations.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
59  
28F640W30, 28F320W30, 28F128W30  
Table 23.  
Status Register Device WSM and Partition Write Status Description  
DWS  
(SR[7])  
PWS  
(SR[0])  
Description  
The addressed partition is performing a program/erase operation.  
0
0
0
1
EFP: the flash device has finished programming or verifying data, or is ready for data.  
A partition other than the one currently addressed is performing a program/erase operation.  
EFP: the flash device is either programming or verifying data.  
No program/erase operation is in progress in any partition. Erase and Program suspend bits (SR[6,2])  
indicate whether other partitions are suspended.  
1
1
0
1
EFP: the flash device has exited EFP mode.  
Does not occur in standard program or erase modes.  
EFP: this combination does not occur.  
10.5  
Clear Status Register  
The Clear Status Register command clears the status register and leaves all partition output states  
unchanged. The WSM can set all status register bits and clear bits SR[7:6,2,0]. Because bits  
SR[5,4,3,1] indicate various error conditions, they can be cleared only by the Clear Status Register  
command. By allowing system software to reset these bits, several operations (such as  
cumulatively programming several addresses or erasing multiple blocks in sequence) can be  
performed before reading the status register to determine whether an error occurred.  
If an error is detected, the Status Register must be cleared before beginning another command or  
sequence. Flash device reset (RST# = V ) also clears the status register. This command functions  
IL  
independently of V .  
PP  
June 2005  
60  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
11.0  
Program Operations  
11.1  
Word Program  
When the Word Program command is issued, the WSM executes a sequence of internally timed  
events to program a word at the desired address, and to verify that the bits are sufficiently  
programmed. Programming the flash memory array changes specifically addressed bits to 0; 1 bits  
do not change the memory cell contents.  
Programming can occur in only one partition at a time. All other partitions must be in either a read  
mode or erase suspend mode. Only one partition can be in erase suspend mode at a time.  
To examine the status register can be examined for program progress, read any address within the  
partition that is busy programming. However, while most status register bits are partition-specific,  
the Device WSM Status bit, SR[7], is device-specific. That is, if the status register is read from any  
other partition, SR[7] indicates the program status of the entire flash memory device. This status bit  
permits the system CPU to monitor the program progress while reading the status of other  
partitions.  
CE# or OE# toggle (during polling) updates the status register. Several commands can be issued to  
a partition that is programming: Read Status Register, Program Suspend, Read Identifier, and Read  
Query. The Read Array command can also be issued, but the read data is indeterminate.  
After programming completes, three status register bits can signify various possible error  
conditions:  
SR[4] indicates a program failure if set.  
If SR[3] is set, the WSM could not execute the Word Program command, because V was  
PP  
outside the acceptable limits.  
If SR[1] is set, the program was aborted, because the WSM attempted to program a locked  
block.  
After the status register data is examined, clear it using the Clear Status Register command before  
issuing a new command. The partition remains in status register mode until another command is  
written to that partition. Any command can be issued after the status register indicates program  
completion.  
If CE# is deasserted while the flash device is programming, the flash devices do not enter standby  
mode until the program operation completes.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
61  
28F640W30, 28F320W30, 28F128W30  
Figure 28.  
Word Program Flowchart  
WORD PROGRAM PROCEDURE  
Bus  
Start  
Command  
Operation  
Comments  
Program Data = 40h  
Write  
Write  
Read  
Setup  
Data  
Addr = Location to program (WA)  
Write 40h,  
Word Address  
Data = Data to program (WD)  
Addr = Location to program (WA)  
Write Data  
Word Address  
Read SRD  
Toggle CE# or OE# to update SRD  
Suspend  
Program  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM ready  
0 = WSM busy  
Standby  
No  
Yes  
Suspend  
Program  
0
SR[7] =  
1
Repeat for subsequent programming operations.  
Full status register check can be done after each program or  
after a sequence of program operations.  
Full Program  
Status Check  
(if desired)  
Program  
Complete  
FULL PROGRAM STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]  
1 = VPP error  
Standby  
Standby  
VPP Range  
Error  
1
1
1
SR[3] =  
0
Check SR[4]  
1 = Data program error  
Check SR[1]  
Program  
Error  
SR[4] =  
0
Standby  
1 = Attempted program to locked block  
Program aborted  
SR[3] MUST be cleared before the WSM will allow further  
program attempts  
Device  
Protect Error  
SR[1] =  
0
Only the Clear Staus Register command clears SR[4:3,1].  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
Program  
Successful  
June 2005  
62  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
11.2  
Factory Programming  
The standard factory programming mode uses the same commands and algorithm as the Word  
Program mode (40h/10h). When V is at V , program and erase currents are drawn through  
PP  
PPL  
VCC. If VPP is driven by a logic signal, V  
must remain above the V Min value to perform  
PPL  
PPL  
in-system flash memory modifications. When VPP is connected to a 12 V power supply, the flash  
device draws program and erase current directly from VPP, which eliminates the need for an  
external switching transistor to control the V voltage.  
PP  
Figure 37, “Examples of VPP Power Supply Configurations” on page 80 shows examples of flash  
device power supply usage in various configurations.  
The 12-V V mode enhances programming performance during the short time period typically  
PP  
found in manufacturing processes. However, this mode is not intended for extended use.12 V can  
be applied to V during program and erase operations as specified in Section 5.2, “Operating  
PP  
Conditions” on page 26. VPP can be connected to 12 V for a total of t  
hours maximum.  
PPH  
Stressing the flash device beyond these limits might cause permanent damage.  
11.3  
Enhanced Factory Program (EFP)  
EFP substantially improves flash device programming performance through a number of  
enhancements to the conventional 12-Volt word program algorithm. The more efficient WSM  
algorithm in EFP eliminates the traditional overhead delays of the conventional word program  
mode in both the host programming system and the flash device. Changes to the conventional word  
programming flowchart and internal WSM routine were developed because of today's beat-rate-  
sensitive manufacturing environments; a balance between programming speed and cycling  
performance was attained.  
The host programmer writes data to the flash device and checks the Status Register to determine  
when the data has completed programming. This modification cuts write bus cycles approximately  
in half.  
Following each internal program pulse, the WSM increments the flash device address to the  
next physical location.  
Programming equipment can then sequentially stream program data throughout an entire block  
without having to setup and present each new address.  
In combination, these enhancements reduce much of the host programmer overhead, enabling more  
of a data streaming approach to flash device programming.  
EFP further speeds up programming by performing internal code verification. With this feature,  
PROM programmers can rely on the flash device to verify that it has been programmed properly.  
From the flash device side, EFP streamlines internal overhead by eliminating the delays previously  
associated with switching voltages between programming and verify levels at each memory-word  
location.  
EFP consists of four phases: setup, program, verify, and exit. Refer to Figure 29, “Enhanced  
Factory Program Flowchart” on page 66 for a detailed graphical representation of how to  
implement EFP.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
63  
28F640W30, 28F320W30, 28F128W30  
11.3.1  
EFP Requirements and Considerations  
Table 24.  
EFP Requirements and Considerations  
EFP Requirements  
EFP Considerations  
Ambient temperature: TA = 25 °C ±5 °C Block cycling below 100 erase cycles 1  
VCC within specified operating range  
VPP within specified VPPH range  
Target block unlocked  
RWW not supported2  
EFP programs one block at a time  
EFP cannot be suspended  
1.  
Recommended for optimum performance. Some degradation in  
performance might occur if this limit is exceeded, but the internal  
algorithm will continue to work properly.  
2.  
Code or data cannot be read from another partition during EFP.  
11.3.2  
Setup  
After receiving the EFP Setup (30h) and EFP Confirm (D0h) command sequence, SR[7] transitions  
from a 1 to a 0, indicating that the WSM is busy with EFP algorithm startup. A delay before  
checking SR[7] is required to allow the WSM time to perform all of its setups and checks (V  
PP  
level and block lock status). If an error is detected, status register bits SR[4], SR[3], and/or SR[1]  
are set, and the EFP operation terminates.  
Note:  
After the EFP Setup and Confirm command sequence, reads from the flash device automatically  
output status register data. Do not issue the Read Status Register command, because this command  
is interpreted as data to program at WA .  
0
11.3.3  
Program  
After setup completion, the host programming system must check SR[0] to determine the  
data-stream ready status (SR[0]=0). Each subsequent write after this check is a program-data write  
to the flash memory array. Each cell within the memory word to be programmed to 0 receives one  
WSM pulse; additional pulses, if required, occur in the verify phase.  
SR[0]=1 indicates that the WSM is busy applying the program pulse.  
The host programmer must poll the flash device status register for the program done state after  
each data-stream write.  
SR[0]=0 indicates that the appropriate cell(s) within the accessed memory location have  
received their single WSM program pulse, and that the flash device is ready for the next word.  
Although the host can check full status for errors at any time, this check is necessary only on a  
block basis, after EFP exit.  
Addresses must remain within the target block. Supplying an address outside of the target block  
immediately terminates the program phase; the WSM then enters the EFP verify phase.  
June 2005  
64  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
The address can either remain constant or increment. The flash device compares the incoming  
address to the address stored from the setup phase (WA ).  
0
If the addresses match, the WSM programs the new data word at the next sequential memory  
location.  
If the addresses differ, the WSM jumps to the new address location.  
The program phase concludes when the host programming system writes to a different block  
address. The data supplied must be FFFFh. Upon program phase completion, the flash device  
enters the EFP verify phase.  
11.3.4  
Verify  
A high percentage of the flash memory bits program on the first WSM pulse. However, EFP  
internal verification identifies cells that do not completely program on their first attempt, and  
applies additional pulses as required.  
The verify phase is identical in flow to the program phase, except that instead of programming  
incoming data, the WSM compares the verify-stream data to the data that was previously  
programmed into the block.  
If the data compares correctly, the host programmer proceeds to the next word.  
If the data does not match, the host waits while the WSM applies one or more additional  
pulses.  
The host programmer must reset its initial verify-word address to the same starting location  
supplied during the program phase. It then reissues each data word in the same order as during the  
program phase. Like programming, the host can write each subsequent data word to WA or it can  
0
increment through the block addresses.  
The verification phase concludes when the interfacing programmer writes to a different block  
address. The data supplied must be FFFFh. Upon completion of the verify phase, the flash device  
enters the EFP exit phase.  
11.3.5  
Exit  
SR[7]=1 indicates that the flash device has returned to normal operating conditions. Perform a full  
status check at this time, to verify that the entire block programmed successfully. After EFP exit,  
any valid CUI command can be issued.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
65  
28F640W30, 28F320W30, 28F128W30  
Figure 29.  
Enhanced Factory Program Flowchart  
ENHANCED FACTORY PROGRAMMING PROCEDURE  
EFP Setup  
EFP Program  
EFP Verify  
EFP Exit  
Read  
Status Register  
Read  
Status Register  
Read  
Status Register  
Start  
VPP = 12V  
Unlock Block  
SR[0]=1=N  
SR[0]=1=N  
SR[7]=0=N  
Data Stream  
Ready?  
Verify Stream  
Ready?  
EFP  
Exited?  
SR[0] =0=Y  
SR[0] =0=Y  
SR[7]=1=Y  
Write 30h  
Address = WA 0  
Write Data  
Address = WA 0  
Write Data  
Address = WA 0  
Full Status Check  
Procedure  
Write D0h  
Address = WA 0  
Read  
Status Register  
Read  
Status Register  
Operation  
Complete  
EFP setup time  
Program  
Done?  
Verify  
Done?  
Read  
Status Register  
SR[0]=0=Y  
SR[0]=0=Y  
N
N
Last  
Data?  
Last  
Data?  
EFP Setup  
Done?  
Y
Y
SR[7]=1=N  
Check VPP & Lock  
errors (SR[3,1])  
Write FFFFh  
Write FFFFh  
Address BBA  
Address  
BBA  
Exit  
EFP Setup  
EFP Program  
EFP Verify  
Bus  
State  
Bus  
State  
Bus  
State  
Comments  
Comments  
Comments  
Read  
Status Register  
Check SR[0]  
Read  
Status Register  
Verify Check SR[0]  
Unlock VPP = 12V  
Block Unlock block  
Write  
Data  
Standby Stream 0 = Ready for data  
Ready? 1 = Not ready for data  
Standby Stream 0 = Ready for verify  
Ready? 1 = Not ready for verify  
EFP  
Data = 30h  
Write  
Write  
Setup Address = WA 0  
EFP Data = D0h  
Confirm Address = WA 0  
Write  
Data = Data to program  
Address = WA 0  
Write  
Data = Word to verify  
Address = WA 0  
(note 1)  
(note 2)  
Read  
Status Register  
Read  
Status Register  
Standby  
Read  
EFP setup time  
Check SR[0]  
0 = Program done  
1 = Program not done  
Check SR[0]  
0 = Verify done  
1 = Verify not done  
Program  
Done?  
Standby  
(note 3) Done?  
Verify  
Status Register  
Standby  
EFP  
Check SR[7]  
Standby  
Setup 0 = EFP ready  
Done? 1 = EFP not ready  
Last  
Device automatically  
Last  
Device automatically  
Standby  
Standby  
Data? increments address.  
Data? increments address.  
If SR[7] = 1:  
Error  
Exit Data = FFFFh  
Write Program Address not within same  
Phase BBA  
Exit Data = FFFFh  
Verify Address not within same  
Phase BBA  
Check SR[3,1]  
Standby Condition  
Check  
Write  
SR[3] = 1 = V PP error  
SR[1] = 1 = locked block  
EFP Exit  
1. WA0 = first Word Address to be programmed within the target block. The BBA (Block Base  
Address) must remain constant throughout the program phase data stream; WA can be held  
constant at the first address location, or it can be written to sequence up through the addresses  
within the block. Writing to a BBA not equal to that of the block currently being written to  
terminates the EFP program phase, and instructs the device to enter the EFP verify phase.  
2. For proper verification to occur , the verify data stream must be presented to the device in the  
same sequence as that of the program phase data stream. Writing to a BBA not equal to  
Read  
Status Register  
Check SR[7]  
EFP  
Standby  
0 = Exit not finished  
Exited?  
1 = Exit completed  
Repeat for subsequent operations.  
WA  
After EFP exit, a Full Status Check can  
determine if any program error occurred.  
terminates the EFP verify phase, and instructs the device to exit EFP  
.
3. Bits that did not fully program with the single WSM pulse of the EFP program phase receive  
additional program-pulse attempts during the EFP verify phase. The device will report any  
program failure by setting SR[4]=1; this check can be performed during the full status check after  
EFP has been exited for that block, and will indicate any error within the entire data stream.  
See the Full Status Check procedure in the  
Word Program flowchart.  
June 2005  
66  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
12.0  
Program and Erase Operations  
12.1  
Program/Erase Suspend and Resume  
The Program Suspend and Erase Suspend commands halt an in-progress program or erase  
operation. The command can be issued at any flash device address. The partition corresponding to  
the address of the command remains in its previous state. A suspend command allows data to be  
accessed from memory locations other than the location being programmed or the block being  
erased.  
A program operation can be suspended only to perform a read operation.  
An erase operation can be suspended to perform either a program or a read operation within  
any block, except the block that is erase suspended.  
A program command nested within a suspended erase can subsequently be suspended to read  
yet another location.  
Once a program or erase process starts, the Suspend command requests that the WSM suspends the  
program or erase sequence at predetermined points in the algorithm. The partition that is actually  
suspended continues to output status register data after the Suspend command is written. An  
operation is suspended when status bits SR[7] and SR[6] and/or SR[2] are set.  
To read data from blocks within the partition (other than an erase-suspended block), write a Read  
Array command. Block erase cannot resume until the program operations initiated during erase  
suspend are complete.  
Read Array, Read Status Register, Read Identifier (ID), Read Query, and Program Resume are  
valid commands during Program or Erase Suspend.  
Additionally, Clear Status Register, Program, Program Suspend, Erase Resume, Lock Block,  
Unlock Block, and Lock-Down Block are valid commands during erase suspend.  
To read data from a block in a partition that is not programming or erasing, the operation does not  
need to be suspended.  
If the other partition is already in read array, ID, or Query mode, issuing a valid address returns  
corresponding data.  
If the other partition is not in a read mode, one of the read commands must be issued to the  
partition before data can be read.  
During a suspend, CE# = V places the flash device in standby state, which reduces active current.  
IH  
V
must remain at its program level and WP# must remain unchanged while in suspend mode.  
PP  
A resume command instructs the WSM to continue programming or erasing, and clears status  
register bits SR[2] (or SR[6]) and SR[7]. The Resume command can be written to any partition.  
When read at the partition that is programming or erasing, the flash device outputs data  
corresponding to the last mode for that partition. If the status register error bits are set, the status  
register can be cleared before issuing the next instruction. RST# must remain at V . See Figure  
IH  
30, “Program Suspend / Resume Flowchart” on page 68, and Figure 31, “Erase Suspend / Resume  
Flowchart” on page 69.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
67  
28F640W30, 28F320W30, 28F128W30  
If a suspended partition was placed in Read Array, Read Status Register, Read Identifier (ID), or  
Read Query during the suspend, the flash device remains in that mode, and outputs data  
corresponding to that mode after the program or erase operation resumes.  
After resuming a suspended operation, issue the read command appropriate to the read operation.  
To read status after resuming a suspended operation, issue a Read Status Register command (70h)  
to return the suspended partition to status mode.  
Figure 30.  
Program Suspend / Resume Flowchart  
PROGRAM SUSPEND / RESUME PROCEDURE  
Bus  
Start  
Command  
Comments  
Operation  
Data = B0h  
Addr = Any address within programming  
partition  
Program  
Suspend  
Write  
Write B0h  
Any Address  
Read  
Data = 70h  
Write  
Read  
Status Addr = Any address in same partition  
Write 70h  
Same Partition  
Read SRD  
Toggle CE# or OE# to update SRD  
Addr = Any address in same partition  
Read Status  
Register  
Check SR[7]  
Standby  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR[7] =  
1
Check SR[2]  
1 = Program suspended  
0 = Program completed  
Program  
Completed  
SR[2] =  
1
Data = FFh  
Addr = Any device address (except word  
being programmed)  
Read  
Array  
Write  
Read  
Write  
Write FFh  
Susp Partition  
Read array data from block other than  
the one being programmed  
Read Array  
Data  
Program Data = D0h  
Resume Addr = any device address  
If the suspended partition was placed in Read Array mode:  
Done  
No  
Reading  
Return partition to status mode:  
Read  
Write  
Data = 70h  
Yes  
Status  
Addr = address within same partition  
Write D0h  
Write FFh  
Any Address  
Pgm'd Partition  
Program  
Resumed  
Read Array  
Data  
Write 70h  
Same Partition  
June 2005  
68  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 31.  
Erase Suspend / Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Erase Data = B0h  
Suspend Addr = Any address  
Write  
Write  
Write B0h  
Any Address  
Read Data = 70h  
Status Addr = Any address in same partition  
Write 70h  
Same Partition  
Read SRD  
Read  
Toggle CE# or OE# to update SRD  
Addr = Any address in same partition  
Read Status  
Register  
Check SR[7]  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR[7] =  
1
Check SR[6]  
1 = Erase suspended  
0 = Erase completed  
Standby  
Write  
Erase  
Completed  
SR[6] =  
1
Data = FFh or 40h  
Read Array  
Addr = Any device address (except  
or Program  
block being erased)  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
Read  
Program  
Read or  
Program?  
Read Array  
Data  
Program  
Loop  
Erase Data = D0h  
Resume Addr = Any address  
No  
Write  
If the suspended partition was placed in  
Read Array mode or a Program Loop:  
Done?  
Yes  
Return partition to status mode:  
Data = 70h  
Status  
Read  
Write  
Write D0h  
Any Address  
Write FFh  
Erased Partition  
Addr = Address within same partition  
Read Array  
Data  
Erase Resumed  
Write 70h  
Same Partition  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
69  
28F640W30, 28F320W30, 28F128W30  
12.2  
Block Erase  
The 2-cycle block erase command sequence, consisting of Erase Setup (20h) and Erase Confirm  
(D0h), initiates one block erase at the addressed block. Only one partition can be in an erase mode  
at a time; other partitions must be in a read mode. The Erase Confirm command internally latches  
the address of the block to erase. Erase forces all bits within the block to 1.  
SR[7] is cleared while the erase executes.  
After writing the Erase Confirm command, the selected partition is placed in read status register  
mode. Reads performed to that partition return the current status data. The address given during the  
Erase Confirm command does not need to be the same address used in the Erase Setup command.  
For example, if the Erase Confirm command is given to partition B, then the selected block in  
partition B is erased, even if the Erase Setup command was to partition A.  
The 2-cycle erase sequence cannot be interrupted with a bus write operation. For example, to  
execute properly, an Erase Setup command must be immediately followed by the Erase Confirm  
command. If a different command is issued between the setup and confirm commands, the  
following occurs:  
The partition is placed in read-status mode.  
The status register signals a command sequence error.  
All subsequent erase commands to that partition are ignored until the status register is cleared.  
To detect block erase completion, the CPU analyzes SR[7] of that partition. If an error bit  
(SR[5,3,1]) was flagged, the status register can be cleared by issuing the Clear Status Register  
command before attempting the next operation. The partition remains in read-status mode until  
another command is written to its CUI. Any CUI instruction can follow after erasing completes.  
The CUI can be set to read-array mode to prevent inadvertent status register reads.  
June 2005  
70  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 32.  
Block Erase Flowchart  
BLOCK ERASE PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Block  
Erase  
Setup  
Data = 20h  
Addr = Block to be erased (BA)  
Write  
Write  
Read  
Write 20h  
Block Address  
Erase  
Data = D0h  
Confirm Addr = Block to be erased (BA)  
Write D0h and  
Block Address  
Read SRD  
Toggle CE# or OE# to update SRD  
Suspend  
Erase  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM ready  
0 = WSM busy  
Standby  
No  
Suspend  
Erase  
0
Yes  
SR[7] =  
1
Repeat for subsequent block erasures.  
Full status register check can be done after each block erase  
or after a sequence of block erasures.  
Full Erase  
Status Check  
(if desired)  
Block Erase  
Complete  
FULL ERASE STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]  
1 = VPP error  
Standby  
Standby  
Standby  
VPP Range  
Error  
1
1
1
1
SR[3] =  
0
Check SR[5:4]  
Both 1 = Command sequence error  
Command  
Sequence Error  
Check SR[5]  
1 = Block erase error  
SR[5:4] =  
0
Check SR[1]  
Standby  
1 = Attempted erase of locked block  
Erase aborted  
Block Erase  
Error  
SR[5] =  
0
SR[3,1] must be cleared before the WSM will allow further  
erase attempts.  
Erase of  
Locked Block  
Aborted  
SR[1] =  
0
Only the Clear Status Register command clears SR[5:3,1].  
If an error is detected, clear the Status register before  
attempting an erase retry or other error recovery.  
Block Erase  
Successful  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
71  
28F640W30, 28F320W30, 28F128W30  
12.3  
Read-While-Write and Read-While-Erase  
The Intel® Wireless Flash Memory (W30) supports flexible multi-partition dual-operation  
architecture. By dividing the flash memory into many separate partitions, the flash device can read  
from one partition while programing (Read-While-Write) or erasing (Read-While-Eras) in another  
partition. Both of these features greatly enhance data storage performance.  
The W30 flash memory device does not support simultaneous program and erase operations.  
Attempting to perform operations such as these results in a command sequence error. Only one  
partition can be programming or erasing while another partition is reading. However, one partition  
can be in erase suspend mode while a second partition is performing a program operation, and yet  
another partition is executing a read command. Table 18, “Command Codes and Descriptions” on  
page 53 describes the command codes available for all functions.  
June 2005  
72  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
13.0  
Security Modes  
The W30 flash memory device offers both hardware and software security features to protect the  
flash memory data.  
To use the software security feature, execute the Lock Block command.  
To use the hardware security feature, execute the Lock-Down Block command and assert the  
WP# signal.  
Refer to Figure 33, “Block Locking State Diagram” on page 74 for a state diagram of the flash  
device security features. Also see Figure 34, “Locking Operations Flowchart” on page 77.  
13.1  
Block Lock Operations  
Individual instant block locking protects code and data by allowing any block to be locked or  
unlocked with no latency. This locking scheme offers two levels of protection:  
Software-only control of block locking (useful for frequently changed data blocks).  
Hardware interaction before locking can be changed (protects infrequently changed code  
blocks).  
The following sections discuss the locking system operation. The term state [abc] specifies locking  
states, such as state [001]. In this syntax:  
a = WP# value.  
b = block lock-down status bit D1.  
c = Block Lock status register bit D0.  
Figure 33, “Block Locking State Diagram” on page 74 defines possible locking states.  
The following summarizes the locking functionality.  
All blocks power-up in a locked state.  
Unlock commands can unlock these blocks, and lock commands can lock them again.  
The Lock-Down command locks a block and prevents it from being unlocked when WP# is  
asserted.  
— Locked-down blocks can be unlocked or locked with commands as long as WP# is  
deasserted.  
— When WP# is asserted, previously locked-down blocks return to lock-down.  
— The lock-down status bit clears only when the flash device is reset or powered-down.  
Block lock registers are not affected by the V level. These registers can be modified and read  
PP  
even if V < V  
.
PP  
PPLK  
The locking status of each block can be set to locked, unlocked, and lock-down, as described in the  
following sections. See Figure 34, “Locking Operations Flowchart” on page 77.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
73  
28F640W30, 28F320W30, 28F128W30  
Figure 33.  
Block Locking State Diagram  
Locked-  
Down  
Hardware  
Locked  
4,5  
5
Power-Up/Reset  
Locked  
[011]  
[X01]  
[011]  
WP# Hardware Control  
Software  
Locked  
Unlocked  
Unlocked  
[X00]  
[111]  
[110 ]  
Software Block Lock (0x60/0x01) or Software Block Unlock (0x60/0xD0)  
Software Block Lock-Down (0x60/0x2F)  
WP# hardware control  
Notes:  
1. [a,b,c] represents [WP#, D1, D0]. X = Don’t Care.  
2. D1 indicates block Lock-down status.  
- D1 = 0, Lock-down has not been issued to this block .  
- D1 = 1, Lock-down has been issued to this block .  
3. D0 indicates block lock status.  
- D0 = 0, block is unlocked.  
- D0 = 1, block is locked.  
4. Locked-down = Hardware + Software locked.  
5. [011] states should be tracked by system software to determine difference between  
Hardware Locked and Locked -Down states.  
B5070  
13.1.1  
13.1.2  
Lock  
All blocks default to locked (state [x01]) after initial power-up or reset. Locked blocks are fully  
protected from alteration. Attempted program or erase operations to a locked block return an error  
in SR[1].  
To lock unlocked blocks, use the Lock Block command sequence.  
To change the status of a locked block to unlocked or lock-down, use the appropriate software  
commands.  
Unlock  
Unlocked blocks (states [x00] and [110]) can be programmed or erased. All unlocked blocks return  
to the locked state when the flash device is reset or powered-down.  
To change the status of an unlocked block to the locked or locked-down state, use the  
appropriate software commands.  
To unlock a locked block, write the Unlock Block command sequence if the block is not  
locked-down.  
June 2005  
74  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
13.1.3  
Lock-Down  
Locked-down blocks (state [011]) offer an additional level of write protection beyond the  
protection of a regular locked block. If a block is locked-down, the software cannot change the  
state of the block if WP# is asserted.  
To lock-down a locked or unlocked block, write the Lock-Down Block command sequence.  
If a block was set to locked-down, then later changed to unlocked, issue the Lock-down  
command before asserting WP#, to put that block back in the locked-down state.  
When WP# is deasserted, locked-down blocks change to the locked state, and can then be  
unlocked using the Unlock Block command.  
13.1.4  
Block Lock Status  
The lock status of every block can be read in read identifier mode.  
To enter this mode, issue the Read Identifier command to the flash device.  
Note:  
Subsequent reads at BBA + 02h output the lock status of that block. For example, to read the block  
lock status of block 10, the address sent to the flash device must be 50002h (for a top-parameter  
device).  
The lowest two data bits of the read data, DQ1 and DQ0, represent the lock status.  
DQ0 indicates the block lock status. This bit is set using the Lock Block command and cleared  
using the Block Unlock command. It is also set when entering the lock-down state.  
DQ1 indicates lock-down status and is set using the Lock-Down command.  
The lock-down status bit cannot be cleared by software–only by a flash device reset or  
power-down. See Table 25.  
Table 25.  
Write Protection Truth Table  
VPP  
WP#  
RST#  
Write Protection  
Device is inaccessible  
X
VIL  
X
X
X
VIL  
VIH  
VIH  
VIH  
Word program and block erase are prohibited  
All lock-down blocks are locked  
VIL  
VIH  
X
All lock-down blocks can be unlocked  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
75  
28F640W30, 28F320W30, 28F128W30  
13.1.5  
Lock During Erase Suspend  
Block lock configurations can be performed during an erase suspend operation, using the standard  
locking command sequences to unlock, lock, or lock-down a block. This feature is useful when  
another block requires immediate updating.  
To change block locking during an erase operation:  
1. Write the Erase Suspend command.  
2. Check SR[6] to determine that the erase operation has suspended.  
3. Write the desired lock command sequence to a block.  
The lock status changes.  
4. After completing lock, unlock, read, or program operations, resume the erase operation with  
the Erase Resume command (D0h).  
If a block is locked or locked-down during a suspended erase of the same block, the locking status  
bits change immediately. When the erase operation resumes, it completes normally.  
Locking operations cannot occur during program suspend. Appendix A, “Write State Machine” on  
page 90 shows valid commands during erase suspend.  
13.1.6  
Status Register Error Checking  
Using nested locking or program command sequences during erase suspend can introduce  
ambiguity into status register results.  
Because locking changes require 2-cycle command sequences—for example, 60h followed by 01h  
to lock a block—following the Configuration Setup command (60h) with an invalid command  
produces a command sequence error (SR[5:4]=11b).  
If a Lock Block command error occurs during erase suspend, the flash device sets SR[4] and SR[5]  
to 1 even after the erase resumes. When erase is complete, possible errors during the erase cannot  
be detected from the status register, because of the previous locking command error. A similar  
situation occurs if a program operation error is nested within an erase suspend.  
13.1.7  
WP# Lock-Down Control  
The Write Protect signal, WP#, adds an additional layer of block security. WP# affects only blocks  
that previously had the Lock-Down command written to them.  
After the lock-down status bit is set for a block, asserting WP# forces that block into the  
lock-down state [011] and prevents it from being unlocked.  
After WP# is deasserted, the state of the block reverts to locked [111]. Software commands  
can then unlock the block (for erase or program operations) and subsequently re-lock it.  
Only flash device reset or power-down can clear the lock-down status bit and render WP#  
ineffective.  
June 2005  
76  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Figure 34.  
Locking Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Start  
Bus  
Operation  
Command  
Comments  
Write 60h  
Block Address  
Lock  
Setup  
Data = 60h  
Addr = Block to lock/unlock/lock-down (BA)  
Write  
Write  
Write 01,D0,2Fh  
Block Address  
Lock,  
Unlock, or  
Lockdown  
Data = 01h (Lock block)  
D0h (Unlock block)  
2Fh (Lockdown block)  
Confirm Addr = Block to lock/unlock/lock-down (BA)  
Write 90h  
BBA + 02h  
Write  
Read ID Data = 90h  
(Optional)  
Plane  
Addr = BBA + 02h  
Read Block Lock  
Status  
Read  
(Optional)  
Block Lock Block Lock status data  
Status Addr = BBA + 02h  
Locking  
Change?  
No  
Confirm locking change on DQ[1:0].  
(See Block Locking State Transitions Table  
for valid combinations.)  
Standby  
(Optional)  
Yes  
Read  
Array  
Data = FFh  
Addr = Any address in same partition  
Write  
Write FFh  
Partition Address  
Lock Change  
Complete  
13.2  
Protection Register  
The W30 flash memory device includes a 128-bit Protection Register. This protection register is  
used to increase system security and for identification purposes. The protection register value can  
match the flash device to the system CPU or ASIC to prevent flash device substitution.  
The lower 64 bits within the protection register are programmed by Intel with a unique number  
in each flash device.  
The upper 64 OTP bits within the protection register are left for the customer to program.  
Once programmed, the customer segment can be locked to prevent further programming.  
Note:  
The individual bits of the user segment of the protection register are OTP, not the register in total.  
The user can program each OTP bit individually, one at a time, if desired. However, after the  
protection register is locked, the entire user segment is locked and no more user bits can be  
programmed.  
The protection register shares some of the same internal flash device resources as the parameter  
partition. Therefore, RWW is allowed only between the protection register and the main partitions.  
Table 26 describes the operations allowed in the protection register, parameter partition, and main  
partition during RWW and RWE.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
77  
28F640W30, 28F320W30, 28F128W30  
Table 26.  
Simultaneous Operations Allowed with the Protection Register  
Parameter  
Partition  
Array Data  
Protection  
Register  
Main  
Partitions  
Description  
While programming or erasing in a main partition, the protection register can be  
read from any other partition. Reading the parameter partition data is not  
allowed if the protection register is being read from addresses within the  
parameter partition.  
See  
Description  
Read  
Write/Erase  
While programming or erasing in a main partition, read operations are allowed  
Write/Erase in the parameter partition. Accessing the protection registers from parameter  
partition addresses is not allowed.  
See  
Description  
Read  
Read  
While programming or erasing in a main partition, read operations are allowed  
in the parameter partition. Accessing the protection registers is allowed, but  
only in a partition that is different from the partition being programmed or  
erased, and also different from the parameter partition.  
Read  
Write  
Write/Erase  
While programming the protection register, reads are allowed only in the other  
main partitions. Access to the parameter partition is not allowed, because  
programming of the protection register can occur only in the parameter  
No Access  
Allowed  
Read  
partition, so that the parameter partition exists in status mode.  
While programming or erasing the parameter partition, reads of the protection  
registers are not allowed in any partition. Reads in other main partitions are  
supported.  
No Access  
Allowed  
Write/Erase  
Read  
13.2.1  
Reading the Protection Register  
Writing the Read Identifier command allows the protection register data to be read 16 bits at a time  
from addresses shown in Table 20, “Flash Device Identification Codes” on page 57. The protection  
register is read from the Read Identifier command, and can be read in any partition.Writing the  
Read Array command returns the flash device to read-array mode.  
13.2.2  
Programing the Protection Register  
Issue the Protection Program command only at the parameter partition followed by the data to be  
programmed at the specified location. This command programs the upper 64 bits of the protection  
register 16 bits at a time. Table 20, “Flash Device Identification Codes” on page 57 shows  
allowable addresses. See also Figure 35, “Protection Register Programming Flowchart” on  
page 79. Issuing a Protection Program command outside the address space of the register results in  
a status register error (SR[4]=1).  
13.2.3  
Locking the Protection Register  
PR-LK.0 is programmed to 0 by Intel to protect the unique flash device number.  
PR-LK.1 can be programmed by the user to lock the user portion (upper 64 bits) of the  
protection register (See Figure 36, “Protection Register Locking). This bit is set using the  
Protection Program command to program a value of FFFDh into PR-LK.  
After PR-LK register bits are programmed (locked), the stored values in the protection register  
cannot be changed. Protection Program commands written to a locked section result in a status  
register error (SR[4]=1, SR[5]=1).  
June 2005  
78  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
.
Figure 35.  
Protection Register Programming Flowchart  
PROTECTION REGISTER PROGRAMMINGPROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Protection  
Program  
Setup  
Data = C0h  
Addr = Protection address  
Write  
Write  
Read  
Write C0h  
Addr=Prot addr  
Protection Data = Data to program  
Program Addr = Protection address  
Write Protect.  
Register  
Address / Data  
Read SRD  
Toggle CE# or OE# to update SRD  
Read Status  
Register  
Check SR[7]  
1 = WSM Ready  
0 = WSM Busy  
Standby  
No  
SR[7] = 1?  
Yes  
Protection Program operations addresses must be within the  
protection register address space. Addresses outside this  
space will return an error.  
Repeat for subsequent programming operations.  
Full Status  
Check  
(if desired)  
Full status register check can be done after each program or  
after a sequence of program operations.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Bus  
Operation  
Read SRD  
SR[4:3] =  
Command  
Comments  
SR[1] SR[3] SR[4]  
Standby  
Standby  
Standby  
0
0
1
0
1
1
VPP Error  
1,1  
1,0  
1,1  
VPP Range Error  
Protection register  
program error  
1
0
1
Register locked;  
SR[4,1] =  
SR[4,1] =  
Programming Error  
Operation aborted  
SR[3] MUST be cleared before the WSM will allow further  
program attempts.  
Locked-Register  
Program Aborted  
Only the Clear Staus Register command clears SR[4:3,1].  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
Program  
Successful  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
79  
28F640W30, 28F320W30, 28F128W30  
Figure 36.  
Protection Register Locking  
0x88  
User-Programmable  
0x85  
0x84  
Intel Factory-Programmed  
PR Lock Register 0  
0x81  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x80  
13.3  
VPP Protection  
The Intel® Wireless Flash Memory (W30) provides in-system program and erase at V . For  
PPL  
factory programming, the W30 flash memory device also includes a low-cost, backward-  
compatible 12 V programming feature.(See “Factory Programming” on page 63.) The EFP feature  
can also be used to greatly improve factory program performance, as explained in Section 11.3,  
“Enhanced Factory Program (EFP)” on page 63.  
In addition to flexible block locking, holding the V programming voltage low can provide  
PP  
hardware write protection of all flash-device blocks. If V is below V  
, program or erase  
PP  
PPLK  
operations result in an error displayed in SR[3]. (See Figure 37.)  
Figure 37.  
Examples of VPP Power Supply Configurations  
System supply  
12 V supply  
System supply  
Prot# (logic signal)  
VCC  
VPP  
VCC  
VPP  
10K  
12 V fast programming  
Absolute write protection with VPP VPPLK  
Low-voltage programming  
Absolute write protection via logic signal  
System supply  
VCC  
System supply  
VCC  
(Note 1)  
VPP  
VPP  
12 V supply  
Low voltage and 12 V fast programming  
Low-voltage programming  
Note: If the VCC supply can sink adequate current, you can use an appropriately valued resistor.  
June 2005  
80  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
14.0  
Set Read Configuration Register  
The Set Read Configuration Register (RCR) command sets the burst order, frequency  
configuration, burst length, and other parameters.  
A two-bus cycle command sequence initiates this operation. The read configuration register data is  
placed on the lower 16 bits of the address bus (A[15:0]) during both bus cycles.  
1. The Set Read Configuration Register command is written, along with the configuration data  
(on the address bus).  
2. A second write confirms the operation and again presents the read configuration register data  
on the address bus.  
3. The read configuration register data is latched on the rising edge of ADV#, CE#, or WE#  
(whichever occurs first).  
This command functions independently of the applied V voltage. After executing this command,  
PP  
the flash device returns to read-array mode.  
To examine the contents of the read configuration register, write the Read Identifier command and  
then read location 05h. (See Table 27 and Table 28.)  
Table 27.  
Read Configuration Register Definitions  
Data  
Output  
Config  
WAIT  
Confi  
g
Clock  
Confi  
g
Read  
Mode  
First Access Latency  
Count  
WAIT  
Polarity  
Burst  
Seq  
Res’  
d
Res’  
d
Burst  
Wrap  
Res’d  
Burst Length  
RM  
15  
R
LC2  
13  
LC1  
12  
LC0  
11  
WP  
10  
DOC  
9
WC  
8
BS  
7
CC  
6
R
5
R
4
BW  
3
BL2 BL1 BL0  
14  
2
1
0
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
81  
28F640W30, 28F320W30, 28F128W30  
Table 28.  
Read Configuration Register Descriptions  
Bit  
Name  
Description1  
Notes  
RM  
0 = Synchronous Burst Reads Enabled  
15  
14  
2,6  
5
1 = Asynchronous Reads Enabled (Default)  
Reserved  
Read Mode  
R
LC[2:0]  
001 = Reserved  
010 = Code 2  
011 = Code 3  
100 = Code 4  
101 = Code 5  
111 = Reserved (Default)  
13-11  
6
First Access Latency  
Count  
WP  
0 = WAIT signal is asserted low  
1 = WAIT signal is asserted high (Default)  
10  
9
3
6
6
WAIT Signal Polarity  
DOC  
0 = Hold Data for One Clock  
1 = Hold Data for Two Clock (Default)  
Data Output Configuration  
WC  
0 = WAIT Asserted During Delay  
1 = WAIT Asserted One Data Cycle before Delay (Default)  
8
WAIT Configuration  
BS  
7
1 = Linear Burst Order (Default)  
Burst Sequence  
CC  
0 = Burst Starts and Data Output on Falling Clock Edge  
1 = Burst Starts and Data Output on Rising Clock Edge (Default)  
6
Clock  
Configuration  
5
4
R
R
Reserved  
Reserved  
5
5
BW  
0 = Wrap bursts within burst length set by CR[2:0]  
1 = Don’t wrap accesses within burst length set by CR[2:0].(Default)  
3
Burst Wrap  
001 = 4-Word Burst  
010 = 8-Word Burst  
BL[2:0]  
2-0  
4
011 = 16-Word Burst (Available on the 130 nm lithography)  
111 = Continuous Burst (Default)  
Burst Length  
Notes:  
1.  
2.  
Undocumented combinations of bits are reserved by Intel for future implementations.  
Synchronous and page read mode configurations affect reads from main blocks and parameter blocks. Status Register  
and configuration reads support single read cycles. RCR[15]=1 disables the configuration set by RCR[14:0].  
Data is not ready when WAIT is asserted.  
Set the synchronous burst length. In asynchronous page mode, the burst length equals four words.  
Set all reserved Read Configuration Register bits to zero.  
3.  
4.  
5.  
6.  
Setting the Read Configuration Register for synchronous burst-mode with a latency count of 2 (RCR[13:11] = 010), data  
hold for 2 clocks (RCR[9] = 1), and WAIT asserted one data cycle before delay (RCR[8] =1) is not supported.  
June 2005  
82  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
14.1  
Read Mode (RCR[15])  
All partitions support two high-performance read configurations:  
synchronous burst mode  
asynchronous page mode (default)  
RCR[15] sets the read configuration to one of these modes.  
Status register, query, and identifier modes support only asynchronous and single-synchronous read  
operations.  
14.2  
First Access Latency Count (RCR[13:11])  
The First Access Latency Count (RCR[13:11]) configuration tells the flash device how many  
clocks must elapse from ADV# de-assertion (V ) before driving the first data word onto its data  
IH  
pins. The input clock frequency determines this value. See Table 27, “Read Configuration Register  
Definitions” on page 81 for latency values.  
Figure 38 shows data output latency from ADV# assertion for different latencies. Refer to Section  
14.2.1, “Latency Count Settings” on page 84 for Latency Code Settings.  
Figure 38.  
First Access Latency Configuration  
CLK [C]  
Valid  
Address  
Address [A]  
ADV# [V]  
Code 2  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
D[15:0] [Q]  
D[15:0] [Q]  
D[15:0] [Q]  
Code 3  
Code 4  
Code 5  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Note: Other First Access Latency Configuration settings are reserved.  
)
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
83  
Figure 39.  
Word Boundary  
Word 0 - 3  
Word 4 - 7  
Word 8 - B  
Word C - F  
0
1 2 3 4 5 6 7 8 9 A B C D E F  
16 Word Boundary  
4 Word Boundary  
Note: The 16-word boundary is the end of the flash device sense word-line.  
14.2.1  
Latency Count Settings  
Table 29.  
Latency Count Settings  
tAVQV/tCHQV (90ns/22ns)  
Unit  
tAVQV/tCHQV (85ns/22ns)  
tAVQV/tCHQV (70ns/20ns)  
Latency Count  
2
3, 4, 5  
< 33  
2, 3, 4, 5  
< 40  
2
3, 4, 5  
< 33  
Settings  
Frequency  
< 31  
< 29  
MHz  
Figure 40.  
Data Output with LC Setting at Code 3  
tADD-DELAY  
tDATA  
2rd  
CLK (C)  
CE# (E)  
0st  
1nd  
3th  
4th  
ADV# (V)  
AMAX-0 (A)  
Valid Address  
High Z  
Code 3  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
R103  
28F640W30, 28F320W30, 28F128W30  
14.3  
14.4  
WAIT Signal Polarity (RCR[10])  
If the WT bit is cleared (RCR[10]=0), then WAIT is configured to be asserted low. A 0 on the  
WAIT signal indicates that data is not ready and the data bus contains invalid data.  
Conversely, if RCR[10] is set, then WAIT is asserted high.  
In either case, if WAIT is deasserted, then data is ready and valid. WAIT is asserted during  
asynchronous page mode reads.  
WAIT Signal Function  
The WAIT signal indicates data valid when the flash device is operating in synchronous mode  
(RCR[15]=0), and when addressing a partition that is currently in read-array mode. The WAIT  
signal is deasserted only when data is valid on the bus.  
When the flash device is operating in synchronous non-read-array mode, such as read status,  
read ID, or read query, WAIT is set to an asserted state, as determined by RCR[10]. See Figure  
14, “WAIT Signal in Synchronous Non-Read Array Operation Waveform” on page 38.  
When the flash device is operating in asynchronous page mode or asynchronous single word  
read mode, WAIT is set to an asserted state, as determined by RCR[10]. See Figure 10, “Page-  
Mode Read Operation Waveform” on page 34, and Figure 8, “Asynchronous Read Operation  
Waveform” on page 32.  
From a system perspective, the WAIT signal is in the asserted state (based on RCR[10]) when the  
flash device is operating in synchronous non-read-array mode (such as Read ID, Read Query, or  
Read Status), or if the flash device is operating in asynchronous mode (RCR[15]=1). In these cases,  
the system software must ignore (mask) the WAIT signal, because WAIT does not convey any  
useful information about the validity of what is appearing on the data bus.  
CONDITION  
WAIT  
CE# = VIH  
CE# = VIL  
Tri-State  
Active  
OE#  
No-Effect  
Active  
Synchronous Array Read  
Synchronous Non-Array Read  
All Asynchronous Read and all Write  
Asserted  
Asserted  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
85  
28F640W30, 28F320W30, 28F128W30  
14.5  
Data Hold (RCR[9])  
The Data Output Configuration (DOC) bit (RCR[9]) determines whether a data word remains valid  
on the data bus for one or two clock cycles. The minimum data set-up time on the processor, and  
the flash memory clock-to-data output delay, determine whether one or two clocks are needed.  
A DOC set at 1-clock data hold corresponds to a 1-clock data cycle.  
A DOC set at 2-clock data hold corresponds to a 2-clock data cycle.  
The setting of this configuration bit depends on the system and CPU characteristics. For  
clarification, see Figure 41. The following is a method for determining this configuration setting.  
To set the flash device at 1-clock data hold for subsequent reads, the following condition must be  
satisfied:  
t
t
(ns) < One CLK Period (ns)  
CHQV (ns) + DATA  
As an example, use a clock frequency of 54 MHz and a clock period of 25 ns. Assume the data  
output hold time is one clock. Apply this data to the formula above for the subsequent reads:  
20 ns + 4 ns 25 ns  
This equation is satisfied, and data output is available and valid at every clock period. If t  
is  
DATA  
long, hold for two cycles. During page-mode reads, the initial access time can be determined using  
the formula:  
t
t
(ns) + t  
(ns)  
ADD-DELAY (ns) DATA  
AVQV  
Subsequent reads in page mode are defined by:  
(ns) (minimum time)  
t
t
APA (ns) + DATA  
Figure 41.  
Data Output Configuration with WAIT Signal Delay  
CLK [C]  
WAIT (CR.8 = 1)  
Note 1  
Note 1  
tCHQV  
WAIT (CR.8 = 0)  
1 CLK  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 [Q]  
Data Hold  
WAIT (CR.8 = 0)  
tCHTL/H  
Note 1  
Note 1  
tCHQV  
WAIT (CR.8 = 1)  
2 CLK  
Valid  
Output  
Valid  
Output  
DQ15-0 [Q]  
Data Hold  
Note: WAIT shown asserted high (RCR[10]=1).  
June 2005  
86  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
14.6  
WAIT Delay (RCR[8])  
The WAIT configuration bit (RCR[8]) controls WAIT signal delay behavior for all synchronous  
read-array modes. This bit setting depends on the system and CPU characteristics. The WAIT can  
be asserted either during, or one data cycle before, a valid output.  
In synchronous linear read array (no-wrap mode RCR[3]=1) of 4-word, 8-word, 16-word, or  
continuous-word burst mode, an output delay might occur when a burst sequence crosses its first  
flash device-row boundary (16-word boundary).  
If the burst start address is 4-word boundary aligned, the delay does not occur.  
If the start address is misaligned to a 4-word boundary, the delay occurs once per burst-mode  
read sequence. The WAIT signal informs the system of this delay.  
14.7  
Burst Sequence (RCR[7])  
The burst sequence specifies the synchronous-burst mode data order (see Table 30, “Sequence and  
Burst Length” on page 88). When operating in a linear burst mode, either 4-word, 8-word, or  
16-word burst length with the burst wrap bit (RCR[3]) set, or in continuous burst mode, the flash  
device might incur an output delay when the burst sequence crosses the first 16-word boundary.  
(See Figure 39, “Word Boundary” on page 84 for word boundary description.)  
Whether this delay occurs depends on the starting address.  
If the starting address is aligned to a 4-word boundary, there is no delay.  
If the starting address is the end of a 4-word boundary, the output delay is one clock cycle less  
than the First Access Latency Count; this is the worst-case delay.  
The delay takes place only once, and only if the burst sequence crosses a 16-word boundary. The  
WAIT pin informs the system of this delay. For timing diagrams of WAIT functionality, see these  
figures:  
Figure 11, “Single Synchronous Read-Array Operation Waveform” on page 35  
Figure 12, “Synchronous 4-Word Burst Read Operation Waveform” on page 36  
Figure 13, “WAIT Functionality for EOWL (End-of-Word Line) Condition Waveform” on  
page 37  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
87  
28F640W30, 28F320W30, 28F128W30  
Table 30.  
Sequence and Burst Length  
Burst Addressing Sequence (Decimal)  
Start  
Addr.  
(Dec)  
4-Word Burst  
CR[2:0]=001b  
8-Word Burst  
CR[2:0]=010b  
16-Word Burst1  
CR[2:0]=011b  
Continuous Burst  
CR[2:0]=111b  
Linear  
Linear  
Linear  
Linear  
0
1
2
3
4
5
6
7
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
0-1-2...14-15  
1-2-3...14-15-0  
2-3-4...15-0-1  
3-4-5...15-0-1-2  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
6-7-8-9-10-11-12-...  
7-8-9-10-11-12-13...  
4-5-6-7-0-1-2-3 4-5-6...15-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
5-6-7...15-0-1...4  
6-7-8...15-0-1...5  
7-8-9...15-0-1...6  
14  
15  
0
14-15-0-1...13  
15-0-1-2-3...14  
0-1-2...14-15  
1-2-3...15-16  
2-3-4...16-17  
3-4-5...17-18  
14-15-16-17-18-19-20-...  
15-16-17-18-19-...  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
1
2
3
4-5-6-7-8-9-10-  
11  
4
5
6
7
4-5-6...18-19  
5-6-7...19-20  
6-7-8...20-21  
7-8-9...21-22  
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
6-7-8-9-10-11-12-...  
7-8-9-10-11-12-13...  
5-6-7-8-9-10-11-  
12  
6-7-8-9-10-11-  
12-13  
7-8-9-10-11-12-  
13-14  
14  
15  
14-15...28-29  
15-16...29-30  
14-15-16-17-18-19-20-...  
15-16-17-18-19-20-21-...  
Note: Available on the 130 nm lithography.  
14.8  
Clock Edge (RCR[6])  
Configuring the valid clock edge enables a flexible memory interface to a wide range of burst  
CPUs. Clock configuration sets the flash device to start a burst cycle, output data, and assert WAIT  
on the rising or falling edge of the clock.  
June 2005  
88  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
14.9  
Burst Wrap (RCR[3])  
The burst wrap bit determines whether 4-word, 8-word, or 16-word burst accesses wrap within the  
burst-length boundary, or they cross word-length boundaries to perform linear accesses.  
No-wrap mode (RCR[3]=1) enables WAIT to hold off the system processor, as it does in the  
continuous burst mode, until valid data is available.  
In no-wrap mode (RCR[3]=0), the flash device operates similarly to continuous linear burst mode,  
but consumes less power during 4-word, 8-word, or 16-word bursts.  
For example, if RCR[3]=0 (wrap mode) and RCR[2:0] = 1h (4-word burst), possible linear burst  
sequences are 0-1-2-3, 1-2-3-0, 2-3-0-1, 3-0-1-2.  
If RCR[3]=1 (no-wrap mode) and RCR[2:0] = 1h (4-word burst length), then possible linear burst  
sequences are 0-1-2-3, 1-2-3-4, 2-3-4-5, and 3-4-5-6. RCR[3]=1 not only enables limited non-  
aligned sequential bursts, but also reduces power by minimizing the number of internal read  
operations.  
Setting RCR[2:0] bits for continuous linear burst mode (7h) also achieves the above 4-word burst  
sequences. However, significantly more power might be consumed. The 1-2-3-4 sequence, for  
example, consumes power during the initial access, again during the internal pipeline lookup as the  
processor reads word 2, and possibly again, depending on system timing, near the end of the  
sequence as the flash device pipelines the next 4-word sequence. RCR[3]=1 while in 4-word burst  
mode (no-wrap mode) reduces this excess power consumption.  
14.10  
Burst Length (RCR[2:0])  
The burst length is the number of words the flash device outputs in a synchronous read access.  
4-word, 8-word, 16-word, and continuous-word are supported.  
In 4-word, 8-word, or 16-word burst configuration, the burst wrap bit (RCR[3]) determines  
whether burst accesses wrap within word-length boundaries, or they cross word-length boundaries  
to perform a linear access.  
After an address is specified, the flash device outputs data until it reaches the end of its burstable  
address space. Continuous burst accesses are linear only (burst wrap bit RCR[3] is ignored during  
continuous burst) and do not wrap within word-length boundaries (see Table 30, “Sequence and  
Burst Length” on page 88).  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
89  
28F640W30, 28F320W30, 28F128W30  
Appendix A Write State Machine  
Table 31 shows the command state transitions, based on incoming commands. Only one partition  
can be actively programming or erasing at a time.  
Table 31.  
Next State Table (Sheet 1 of 2)  
Chip Next State after Command Input  
Enhanced BE Confirm,  
Factory P/E Resume,  
Clear  
Status  
Register(6)  
Program/  
Erase  
Suspend  
Read  
Array(3)  
Program  
Setup(4,5)  
Erase  
Setup(4,5)  
Read  
Status  
Read  
ID/Query  
Current Chip  
State(8)  
Pgm  
ULB  
Confirm(9)  
Setup(4)  
(FFH)  
(10H/40H)  
(20H)  
(30H)  
(D0H)  
(B0H)  
(70H)  
(50H)  
(90H, 98H)  
Program  
Setup  
Erase  
Setup  
EFP  
Setup  
Ready  
Ready  
Ready  
Lock/CR Setup  
OTP  
Ready (Lock Error)  
Ready  
Ready (Lock Error)  
Setup  
Busy  
OTP Busy  
Setup  
Busy  
Program Busy  
Program  
Erase  
Program Busy  
Pgm Susp  
Program Busy  
Suspend  
Setup  
Busy  
Program Suspend  
Ready (Error)  
Pgm Busy  
Program Suspend  
Ready (Error)  
Erase Busy  
Erase Busy  
Erase Susp  
Erase Busy  
Pgm in  
Erase  
Susp Setup  
Erase  
Suspend  
Suspend  
Erase Suspend  
Erase Busy  
Erase Suspend  
Setup  
Busy  
Program in Erase Suspend Busy  
Pgm Susp in  
Erase Susp  
Program in  
Erase Suspend  
Program in Erase Suspend Busy  
Program in Erase Suspend Busy  
Pgm in Erase  
Susp Busy  
Suspend  
Program Suspend in Erase Suspend  
Program Suspend in Erase Suspend  
Lock/CR Setup in Erase  
Suspend  
Erase Suspend  
(Lock Error)  
Erase Suspend (Lock Error)  
Ready (Error)  
Erase Susp  
Setup  
EFP Busy  
Ready (Error)  
Enhanced  
Factory  
EFP Busy(7)  
Verify Busy(7)  
EFP Busy  
EFP Verify  
Program  
Output Next State after Command Input  
Pgm Setup,  
Erase Setup,  
OTP Setup,  
Pgm in Erase Susp Setup,  
EFP Setup,  
Status  
EFP Busy,  
Verify Busy  
Lock/CR Setup,  
Lock/CR Setup in Erase Susp  
Status  
OTP Busy  
Status  
Ready,  
Pgm Busy,  
Pgm Suspend,  
Erase Busy,  
Erase Suspend,  
Pgm In Erase Susp Busy,  
Pgm Susp In Erase Susp  
Output  
does not  
change  
Array(3)  
Status  
Output does not change  
Status  
ID/Query  
June 2005  
90  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Table 31.  
Next State Table (Sheet 2 of 2)  
Chip Next State after Command Input  
Lock,  
Unlock,  
Lock-down,  
CR setup(5)  
Lock-  
Down  
Block  
Confirm(9)  
Enhanced  
Fact Pgm  
Exit (blk add  
<> WA0)  
Lock  
Block  
Confirm(9)  
Illegal  
commands or  
EFP data(2)  
OTP  
Setup(5)  
Write CR  
Confirm(9)  
WSM  
Operation  
Completes  
Current Chip  
State(8)  
(60H)  
(C0H)  
(01H)  
(2FH)  
(03H)  
Ready  
Ready  
(XXXXH)  
(other codes)  
Lock/CR  
Setup  
OTP  
Setup  
Ready  
N/A  
Lock/CR Setup  
OTP  
Ready (Lock Error)  
Ready  
Ready  
Ready (Lock Error)  
Setup  
Busy  
OTP Busy  
Ready  
N/A  
Setup  
Busy  
Program Busy  
Program Busy  
Program Suspend  
Ready (Error)  
Program  
Erase  
Ready  
Suspend  
Setup  
Busy  
N/A  
Erase Busy  
Erase Busy  
Ready  
Lock/CR  
Setup in  
Erase Susp  
Suspend  
Erase Suspend  
N/A  
Setup  
Busy  
Program in Erase Suspend Busy  
Program in Erase Suspend Busy  
Erase  
Suspend  
Program in  
Erase Suspend  
Suspend  
Program Suspend in Erase Suspend  
Lock/CR Setup in Erase  
Suspend  
Erase Suspend  
(Lock Error)  
Erase Susp Erase Susp Erase Susp Erase Suspend (Lock Error)  
N/A  
Setup  
Ready (Error)  
EFP Verify  
Enhanced  
Factory  
Program  
EFP Busy(7)  
Verify Busy(7)  
EFP Busy(7)  
EFP Verify(7)  
EFP Busy  
EFP Verify  
Ready  
Ready  
Output Next State after Command Input  
Pgm Setup,  
Erase Setup,  
OTP Setup,  
Pgm in Erase Susp Setup,  
EFP Setup,  
Status  
EFP Busy,  
Verify Busy  
Lock/CR Setup,  
Lock/CR Setup in Erase Susp  
Status  
Array  
Status  
Output does  
not change  
OTP Busy  
Ready,  
Pgm Busy,  
Output does  
not change  
Pgm Suspend,  
Erase Busy,  
Status  
Output does not change  
Array  
Erase Suspend,  
Pgm In Erase Susp Busy,  
Pgm Susp In Erase Susp  
Notes:  
1.  
The output state shows the type of data that appears at the outputs if the partition address is the same as the command  
address.  
— A partition can be placed in Read Array, Read Status or Read ID/CFI, depending on the command issued.  
— Each partition stays in its last output state (Array, ID/CFI or Status) until a new command changes it. The next WSM  
state does not depend on the output state of the partition.  
— For example, if the partition #1 output state is Read Array and the partition #4 output state is Read Status, every read  
from partition #4 (without issuing a new command) outputs the Status register.  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
91  
28F640W30, 28F320W30, 28F128W30  
2.  
3.  
Illegal commands are any commands not defined in the command set.  
All partitions default to Read Array mode at power-up. A Read Array command issued to a busy partition results in  
undetermined data when a partition address is read.  
4.  
Both cycles of two-cycle commands must be issued to the same partition address. If the two cycles are issued to different  
partitions, the address used for the second write cycle determines the active partition. Both partitions output status  
information when read.  
5.  
6.  
If the WSM is active, both cycles of a two-cycle command are ignored. This feature differs from previous Intel flash  
memory devices.  
The Clear Status command clears status register error bits, except when the WSM is running (Pgm Busy, Erase Busy, Pgm  
Busy In Erase Suspend, OTP Busy, EFP modes) or suspended (Erase Suspend, Pgm Suspend, Pgm Suspend In Erase  
Suspend).  
7.  
EFP writes are allowed only when status register bit SR.0 = 0. EFP is busy if the Block Address = the address at the EFP  
Confirm command. Any other commands are treated as data.  
8.  
9.  
The current state is the state of the WSM, not the state of the partition.  
Confirm commands (Lock Block, Unlock Block, Lock-down Block, Configuration Register) perform the operation and then  
move to the Ready State.  
10.  
In Erase suspend mode, the only valid two-cycle commands are Program Word, Lock/Unlock/Lockdown Block, and CR  
Write. Both cycles of other two-cycle commands (Program OTP & confirm, EFP Setup & confirm, Erase setup & confirm)  
are ignored. In Program suspend or Program suspend in Erase suspend, both cycles of all two-cycle commands are  
ignored.  
June 2005  
92  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Appendix B Common Flash Interface  
This appendix defines the data structure or database returned by the Common Flash Interface  
(CFI) Query command. System software parses this structure to gain critical information, such as  
block size, density, x8/x16, and electrical specifications.  
Once this information has been obtained, the software can determine which command sets to use to  
enable flash device writes, enable block erases, and otherwise control the flash device. The Query  
is part of an overall specification for multiple command set and control interface descriptions,  
which is called the Common Flash Interface, or CFI.  
B.1  
Query Structure Output  
The Query database allows system software to obtain information for controlling the flash device.  
This section describes the flash device CFI-compliant interface that allows access to Query data.  
Query data are presented on the lowest-order data outputs (DQ0-7) only. The numerical offset  
value is the address relative to the maximum bus width that the flash device supports. On the W30  
family of flash memory devices, the Query table device starting address is a 10h, which is a word  
address for x16 flash devices.  
For a word-wide (x16) flash device, the first two Query-structure bytes, ASCII Q and R, appear on  
the low byte at word addresses 10h and 11h.  
This CFI-compliant flash device outputs 00h data on upper bytes.  
The flash device outputs ASCII Q in the low byte (DQ ) and 00h in the high byte (DQ ).  
0-7  
8-15  
At Query addresses containing two or more bytes of information, the least significant data byte is  
presented at the lower address, and the most significant data byte is presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal notation, so the h  
suffix has been dropped. In addition, because the upper byte of word-wide flash devices is always  
00h, the leading 00 has been dropped from the table notation, and only the lower byte value is  
shown. Any x16 flash device outputs can be assumed to have 00h on the upper byte in this mode.  
Table 32.  
Summary of Query Structure Output as a Function of the Flash Device and Mode  
Hex  
Offset  
Hex  
Code Value  
ASCII  
Device  
00010:  
00011:  
00012:  
51  
52  
59  
Q
R
Y
Device Addresses  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
93  
28F640W30, 28F320W30, 28F128W30  
Table 33. Example of Query Structure Output of x16- and x8 Flash Devices  
Word Addressing:  
Hex Code  
Byte Addressing:  
Hex Code  
Offset  
A —A  
Value  
Offset  
Value  
D
—D  
A —A  
D —D  
7 0  
X
0
15  
0
X
0
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
0051  
0052  
0059  
“Q”  
“R”  
“Y”  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
51  
52  
Q
R
Y
59  
P IDLO  
P IDHI  
PLO  
PrVendor  
ID #  
P IDLO  
P IDLO  
P IDHI  
...  
PrVendor  
ID #  
PrVendor  
TblAdr  
AltVendor  
ID #  
ID #  
PHI  
...  
A IDLO  
A IDHI  
...  
...  
B.2  
Query Structure Overview  
The Query command causes the flash device to display the Common Flash Interface (CFI) Query  
structure or database. Table 34 summarizes the structure sub-sections and address locations.  
Table 34.  
Query Structure  
Description(1)  
Manufacturer Code  
Device Code  
Offset  
00000h  
Sub-Section Name  
00001h  
(BA+2)h(2)  
Block Status register  
Block-specific information  
00004-Fh Reserved  
Reserved for vendor-specific information  
Command set ID and vendor data offset  
Device timing & voltage information  
Flash device layout  
00010h  
0001Bh  
00027h  
CFI query identification string  
System interface information  
Device geometry definition  
Vendor-defined additional information specific  
to the Primary Vendor Algorithm  
P(3)  
Primary Intel-specific Extended Query Table  
Notes:  
1.  
2.  
3.  
Refer to the Section B.1, “Query Structure Output” on page 93 and offset 28h, for the detailed definition  
of the offset address as a function of the flash device bus width and mode.  
BA = Block Address beginning location (for example, 08000h is the block 1’beginning location when the  
block size is 32K-word).  
Offset 15 defines P, which points to the Primary Intel-specific Extended Query Table.  
June 2005  
94  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
B.3  
Block Status Register  
The Block Status Register indicates whether an erase operation completed successfully, a given  
block is locked, or a given block can be accessed for flash memory program/erase operations.  
Block Erase Status (BSR.1) allows system software to determine the success of the last block erase  
operation. Use BSR.1 just after power-up to verify that the VCC supply was not accidentally  
removed during an erase operation.  
Table 35.  
Block Status Register  
Offset  
Length  
Description  
Block Lock Status Register  
BSR.0 Block lock status  
0 = Unlocked  
Add.  
Value  
(BA+2)h(1)  
1
BA+2 --00 or --01  
BA+2 (bit 0): 0 or 1  
1 = Locked  
BSR.1 Block lock-down status  
0 = Not locked down  
1 = Locked down  
BA+2 (bit 1): 0 or 1  
BA+2 (bit 2–7): 0  
BSR 2–7: Reserved for future use  
Notes:  
1.  
BA = Block Address beginning location (for example, 08000h is the block 1 beginning location when the  
block size is 32K-word).  
B.4  
CFI Query Identification String  
The Identification String verifies that the component supports the Common Flash Interface  
specification. It also indicates the specification version and supported vendor-specified command  
set(s).  
.
Table 36.  
CFI Identification  
Hex  
Code  
Offset Length  
Description  
Add.  
Value  
10:  
11:  
12:  
--51  
--52  
--59  
Q
R
Y
10h  
3
Query-unique ASCII string ”QRY”  
Primary vendor command set and control interface ID code.  
16-bit ID code for vendor-specified algorithms  
13:  
14:  
--03  
--00  
13h  
15h  
17h  
19h  
2
2
2
2
15:  
16:  
--39  
--00  
Extended Query Table primary algorithm address  
Alternate vendor command set and control interface ID code.  
0000h means no second vendor-specified algorithm exists  
17:  
18:  
--00  
--00  
Secondary algorithm Extended Query Table address.  
0000h means none exists  
19:  
1A:  
--00  
--00  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
95  
28F640W30, 28F320W30, 28F128W30  
Table 37.  
System Interface Information  
Hex  
Offset  
Length  
Description  
CC logic supply minimum program/erase voltage  
Add. Code Value  
1Bh  
1
1
1
1
V
1B:  
1C:  
1D:  
1E:  
--17 1.7V  
--19 1.9V  
--B4 11.4V  
--C6 12.6V  
--04 16µs  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
VCC logic supply maximum program/erase voltage  
1Ch  
1Dh  
1Eh  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
VPP [programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
VPP [programming] supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
“n” such that typical single word program time-out = 2n µ-sec  
“n” such that typical max. buffer write time-out = 2n µ-sec  
“n” such that typical block erase time-out = 2n m-sec  
“n” such that typical full chip erase time-out = 2n m-sec  
“n” such that maximum word program time-out = 2n times typical  
“n” such that maximum buffer write time-out = 2n times typical  
“n” such that maximum block erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--00  
--0A  
--00  
NA  
1s  
NA  
--04 256µs  
--00  
--03  
--00  
NA  
8s  
NA  
June 2005  
96  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
B.5  
Flash Device Geometry Definition  
Table 38.  
Flash Device Geometry Definition  
Offset  
27h  
Length  
Description  
Code  
See table below  
1
“n” such that device size = 2n in number of bytes  
Flash device interface code assignment:  
27:  
28:  
"n" such that n+1 specifies the bit field that represents the flash  
device width capabilities as described in the table:  
7
6
5
4
3
x64  
11  
2
x32  
10  
1
x16  
9
0
x8  
8
28h  
2
15  
14  
13  
12  
--01  
x16  
0
29:  
2A:  
2B:  
2C:  
--00  
--00  
--00  
2
1
“n” such that maximum number of bytes in write buffer = 2n  
2Ah  
2Ch  
Number of erase block regions (x) within device:  
1. x = 0 means no erase blocking; the device erases in bulk  
2. x specifies the number of device regions with one or  
more contiguous same-size erase blocks.  
See table below  
3. Symmetrically blocked partitions have one blocking region  
Erase Block Region 1 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
2Dh  
31h  
35h  
4
4
4
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
See table below  
See table below  
See table below  
Erase Block Region 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Reserved for future erase block region information  
32 Mbit  
64 Mbit  
128 Mbit  
–B  
Address  
–B  
–T  
–B  
–T  
–T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
--16  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--3E  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--16  
--01  
--00  
--00  
--00  
--02  
--3E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--7E  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--7E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--FE  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--00  
--00  
--02  
--FE  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
97  
28F640W30, 28F320W30, 28F128W30  
B.6  
Intel-Specific Extended Query Table  
Table 39.  
Primary Vendor-Specific Extended Query  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Add. Code Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
3
Primary extended query table  
Unique ASCII string “PRI“  
39:  
3A:  
3B:  
3C:  
3D:  
3E:  
3F:  
40:  
41:  
--50  
--52  
--49  
--31  
--33  
--E6  
--03  
--00  
--00  
"P"  
"R"  
"I"  
"1"  
"3"  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 10–31 are reserved; undefined bits are “0.” If bit 31 is  
“1” then another 31 bit field of Optional features follows at  
the end of the bit–30 field.  
bit 0 Chip erase supported  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 7 Pagemode read supported  
bit 8 Synchronous read supported  
bit 0 = 0  
No  
Yes  
Yes  
No  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 1  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
bit 9 Simultaneous operations supported  
Supported functions after suspend: read Array, Status, Query  
Other supported operations are:  
(P+9)h  
1
2
42:  
--01  
bits 1–7 reserved; undefined bits are “0”  
bit 0 Program supported after erase suspend  
Block status register mask  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Down Bit Status active  
VCC logic supply highest performance program/erase voltage  
bit 0 = 1  
Yes  
(P+A)h  
(P+B)h  
43:  
44:  
--03  
--00  
bit 0 = 1  
bit 1 = 1  
Yes  
Yes  
(P+C)h  
(P+D)h  
1
1
45:  
--18 1.8V  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
VPP optimum program/erase supply voltage  
46:  
--C0 12.0V  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
June 2005  
98  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Table 40.  
Protection Register Information  
Offset(1)  
P = 39h  
Hex  
Code  
Length Description (Optional flash device features and commands)  
Add.  
Value  
Number of Protection register fields in JEDEC ID space.  
(P+E)h  
1
47:  
48:  
--01  
1
00h indicates that 256 protection fields are available  
(P+F)h  
4
Protection Field 1: Protection Description  
--80  
--00  
--03  
--03  
80h  
(P+10)h  
(P+11)h  
(P+12)h  
This field describes user-available One Time Programmable (OTP) 49:  
Protection register bytes.  
00h  
4A:  
8 byte  
8 byte  
Some bytes are pre-programmed with flash device-unique  
serial numbers.  
4B:  
Other bytes are user programmable.  
Bits 0-15 point to the Protection register Lock byte, the first byte in  
the section. The following bytes are factory pre-programmed and  
user-programmable.  
bits 0--7 = Lock/bytes Jedec-plane physical low address  
bits 8--15 = Lock/bytes Jedec-plane physical high address  
bits 16--23 = n such that 2n = factory pre-programmed bytes  
bits 24--31 =n such that 2n = user programmable bytes  
Table 41.  
Burst Read Information for Non-Multiplexed Flash Device  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Add. Code Value  
(P+13)h  
1
Page Mode Read capability  
4C:  
--03 8 byte  
bits 0–7 = “n” such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device word width to  
determine page-mode data output width. 00h indicates no  
read page buffer.  
Number of synchronous mode read configuration fields that  
follow. 00h indicates no burst capability.  
Synchronous mode read capability configuration 1  
Bits 3–7 = Reserved  
(P+14)h  
(P+15)h  
1
1
4D:  
4E:  
--04  
--01  
4
4
bits 0–2 “n” such that 2n+1 HEX value represents the  
maximum number of continuous synchronous reads when  
the device is configured for its maximum word width. A value  
of 07h indicates that the device is capable of continuous  
linear bursts that will output data until the internal burst  
counter reaches the end of the device’s burstable address  
space. This field’s 3-bit value can be written directly to the  
Read Configuration Register bits 0–2 if the device is  
configured for its maximum word width. See offset 28h for  
word width to determine the burst data output width.  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
(P+16)h  
(P+17)h  
(P+18)h  
1
1
1
4F:  
50:  
51:  
--02  
--03  
--07 Cont  
8
16  
Table 42.  
Partition and Erase-Block Region Information  
Offset(1)  
P = 39h  
See table below  
Address  
Description  
Bot  
Top  
Bottom  
Top  
(Optional flash features and commands)  
Len  
(P+19)h (P+19)h Number of device hardware-partition regions within the device.  
x = 0: a single hardware partition device (no fields follow).  
x specifies the number of device partition regions containing  
one or more contiguous erase block regions.  
1
52:  
52:  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
99  
28F640W30, 28F320W30, 28F128W30  
Table 43.  
Partition Region 1 Information  
Offset(1)  
P = 39h  
See table below  
Address  
Description  
Bot  
Top  
Bottom  
Top  
(P+1A)h (P+1A)h  
(P+1B)h (P+1B)h  
(Optional flash features and commands)  
Number of identical partitions within the partition region  
Len  
2
53:  
54:  
55:  
53:  
54:  
55:  
(P+1C)h (P+1C)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
1
1
bits 4–7 = number of simultaneous Erase operations  
(P+1D)h (P+1D)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+1E)h (P+1E)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+1F)h (P+1F)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
56:  
57:  
58:  
56:  
57:  
58:  
1
1
(P+20)h (P+20)h Partition Region 1 Erase Block Type 1 Information  
4
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
(P+21)h (P+21)h  
(P+22)h (P+22)h  
(P+23)h (P+23)h  
(P+24)h (P+24)h  
(P+25)h (P+25)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 1 (Erase Block Type 1)  
Minimum block erase cycles x 1000  
2
1
(P+26)h (P+26)h Partition 1 (erase block Type 1) bits per cell; internal ECC  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+27)h (P+27)h Partition 1 (erase block Type 1) page mode and synchronous  
mode capabilities defined in Table 10.  
1
4
60:  
60:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+28)h  
(P+29)h  
(P+2A)h  
(P+2B)h  
(P+2C)h  
(P+2D)h  
(P+2E)h  
Partition Region 1 Erase Block Type 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(bottom parameter device only)  
Partition 1 (Erase block Type 2)  
Minimum block erase cycles x 1000  
61:  
62:  
63:  
64:  
65:  
66:  
67:  
2
1
Partition 1 (Erase block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+2F)h  
Partition 1 (Erase block Type 2) pagemode and synchronous  
mode capabilities defined in Table 10  
1
68:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
June 2005  
100  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Table 44.  
Partition Region 2 Information  
Offset(1)  
P = 39h  
See table below  
Address  
Description  
Bot  
Top  
Bottom  
Top  
(Optional flash features and commands)  
Len  
(P+30)h (P+28)h Number of identical partitions within the partition region  
(P+31)h (P+29)h  
(P+32)h (P+2A)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
2
69:  
6A:  
6B:  
61:  
62:  
63:  
1
1
1
1
(P+33)h (P+2B)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+34)h (P+2C)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+35)h (P+2D)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
6C:  
6D:  
6E:  
64:  
65:  
66:  
(P+36)h (P+2E)h Partition Region 2 Erase Block Type 1 Information  
4
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
67:  
68:  
69:  
6A:  
6B:  
6C:  
6D:  
(P+37)h (P+2F)h  
(P+38)h (P+30)h  
(P+39)h (P+31)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(P+3A)h (P+32)h Partition 2 (Erase block Type 1)  
(P+3B)h (P+33)h Minimum block erase cycles x 1000  
(P+3C)h (P+34)h Partition 2 (Erase block Type 1) bits per cell  
bits 0–3 = bits per cell in erase region  
2
1
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+3D)h (P+35)h Partition 2 (erase block Type 1) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
4
76:  
6E:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+36)h Partition Region 2 Erase Block Type 2 Information  
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
(P+37)h  
(P+38)h  
(P+39)h  
(P+3A)h  
(P+3B)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 2 (Erase Block Type 2)  
Minimum block erase cycles x 1000  
2
1
(P+3C)h Partition 2 (Erase Block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserved for future use  
(P+3D)h Partition 2 (Erase block Type 2) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
76:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+3E)h (P+3E)h Features Space definitions (Reserved for future use)  
(P+3F)h (P+3F)h Reserved for future use  
TBD  
Resv'd 78:  
77:  
77:  
78:  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
101  
28F640W30, 28F320W30, 28F128W30  
Table 45.  
Partition and Erase-Block Region Information  
Address  
32 Mbit  
64Mbit  
128Mbit  
–B  
–T  
–B  
–T  
–B  
–T  
52:  
53:  
54:  
55:  
56:  
57:  
58:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
60:  
61:  
62:  
63:  
64:  
65:  
66:  
67:  
68:  
69:  
6A:  
6B:  
6C:  
6D:  
6E:  
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
76:  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--1F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--1F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
Notes:  
1.  
2.  
The P variable is a pointer which is defined at CFI offset 15h.  
TPD - Top parameter device.  
BPD - Bottom parameter device.  
3.  
4.  
Partition: Each partition is 4 Mb in size. It can contain main blocks OR a combination of both main and  
parameter blocks.  
Partition Region: Symmetrical partitions form a partition region.  
— Partition region A. contains all partitions that are made up of main blocks only.  
— Partition region B. contains the partition that is made up of the parameter and the main blocks.  
June 2005  
102  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  
28F640W30, 28F320W30, 28F128W30  
Appendix C Ordering Information  
Figure 42.  
VF BGA Ordering Information  
G E 2 8 F 6 4 0 W 3 0 T D 7 0  
Access Speed(ns)  
(70,85)  
Package:  
GE = VF BGA, Leaded  
PH = VF BGA, Pb-Free  
Process Identifie:r  
D = 0. 13µm  
Product Line Designato:r  
For all Intel Flash Products  
Parameter Location:  
T = Top Parameter  
B = Bottom Parameter  
Device Density:  
320 = 32Mbit  
640 = 64Mbit  
128 = 128Mbit  
Product Family:  
W30 = Inte®l Wireless Flash  
Memory with3 Volt I/O  
Figure 43.  
SCSP Ordering Information  
P F 4 8 F 2 0 0 0 W 0 Z B Q 0  
Device Details:  
0 = Initial Version  
Package:  
RD = SCSP, Leaded  
PF = SCSP, Pb- Free  
Ballout Indicator:  
Q = QUAD+  
Product Line:  
48 F = Flash Only  
Parameter Location:  
T = Top Parameter  
B = Bottom Parameter  
Flash Density:  
0 = No die  
1 = 32 Mbit  
2 = 64 Mbit  
3 = 128 Mbit  
Voltage:  
Z = 3 V olt I/ O  
Product Family Designato:r  
W = Intel ®  
Wireless Flash Memory  
Datasheet  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
June 2005  
103  
28F640W30, 28F320W30, 28F128W30  
Table 46.  
W30 Flash Memory Family: Available Product Ordering Information  
I/O  
Voltage  
(V)  
Package  
Size (mm)  
Ballout  
Name  
Ballout  
Type  
Flash Density  
Part Number  
GE28F320W30BD70  
GE28F320W30TD70  
GE28F320W30BD85  
GE28F320W30TD85  
Leaded  
9x7.7x1.0 VF BGA  
32 Mbit  
PH28F320W30BD70  
PH28F320W30TD70  
Lead Free  
Lead Free  
Leaded  
PF48F1000W0ZBQ0  
PF48F1000W0ZTQ0  
10x8x1.2  
SCSP  
GE28F640W30BD70  
GE28F640W30TD70  
3.0  
9x7.7x1.0 VF BGA  
PH28F640W30BD70  
PH28F640W30TD70  
64 Mbit  
Lead Free  
Lead Free  
Leaded  
PF48F2000W0ZBQ0  
PF48F2000W0ZTQ0  
10x8x1.2  
9x11x1.0  
10x8x1.2  
SCSP  
VF BGA  
SCSP  
GE28F128W30BD70  
GE28F128W30TD70  
128 Mbit  
RD48F3000W0ZBQ0  
RD48F3000W0ZTQ0  
Leaded  
June 2005  
104  
Intel® Wireless Flash Memory (W30)  
Order Number: 290702, Revision: 011  
Datasheet  

相关型号:

GE28F320W30TD85

Flash, 2MX16, 85ns, PBGA56, 0.75 MM PITCH, VFBGA-56
NUMONYX

GE28F640B3BC80

Flash, 4MX16, 80ns, PBGA48, VFBGA-48
NUMONYX

GE28F640B3TC80

Flash, 4MX16, 80ns, PBGA48, VFBGA-48
INTEL

GE28F640C3BA70

Advanced+ Boot Block Flash Memory (C3)
INTEL

GE28F640C3BC100

Flash, 4MX16, 100ns, PBGA48, CSP, VFBGA-48
INTEL

GE28F640C3BC70

Advanced+ Boot Block Flash Memory (C3)
INTEL

GE28F640C3BC80

Advanced+ Boot Block Flash Memory (C3)
INTEL

GE28F640C3BD70

Advanced+ Boot Block Flash Memory (C3)
INTEL

GE28F640C3TA70

Advanced+ Boot Block Flash Memory (C3)
INTEL

GE28F640C3TC100

Flash, 4MX16, 100ns, PBGA48, CSP, VFBGA-48
INTEL

GE28F640C3TC70

Advanced+ Boot Block Flash Memory (C3)
INTEL

GE28F640C3TC80

Advanced+ Boot Block Flash Memory (C3)
INTEL