M29W064FB70N3E [NUMONYX]

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory; 64兆位( 8兆比特×8或4兆位×16 ,网页,引导块) 3 V电源闪存
M29W064FB70N3E
型号: M29W064FB70N3E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
64兆位( 8兆比特×8或4兆位×16 ,网页,引导块) 3 V电源闪存

闪存 存储 内存集成电路 光电二极管
文件: 总69页 (文件大小:1265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W064FT  
M29W064FB  
64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block)  
3 V supply Flash memory  
Preliminary Data  
Features  
Supply voltage  
– V = 2.7 V to 3.6 V for program, erase,  
CC  
read  
– V =12 V for fast program (optional)  
PP  
Asynchronous random/page read  
– Page width: 4 words  
– Page access: 25 ns  
– Random access: 60, 70 ns  
Programming time  
TSOP48 (N)  
12 x 20 mm  
– 10 µs per byte/word typical  
– 4 words/8 bytes program  
135 memory blocks  
– 1 boot block and 7 parameter blocks,  
8 Kbytes each (top or bottom location)  
100,000 program/erase cycles per block  
Extended memory block  
– 127 main blocks, 64 Kbytes each  
Program/erase controller  
– Extra block used as security block or to  
store additional information  
– Embedded byte/word program algorithms  
Program/erase suspend and resume  
Low power consumption  
– Read from any block during program  
suspend  
– Standby and automatic standby  
– Read and program another block during  
erase suspend  
Electronic signature  
– Manufacturer code: 0020h  
Unlock Bypass Program command  
Automotive device grade 3  
– Faster production/batch programming  
Temperature: -40 to 125 °C  
V /WP pin for fast program and write protect  
– Automotive grade certified (AEC-Q100)  
PP  
®
Temporary block unprotection mode  
ECOPACK packages  
Common Flash interface  
– 64-bit security code  
Table 1.  
Device summary  
Root part number  
Device code  
M29W064FT  
M29W064FB  
22EDh  
22FDh  
March 2008  
Rev 2  
1/69  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.numonyx.com  
1
Contents  
M29W064FT, M29W064FB  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address inputs (A0-A21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data inputs/outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data inputs/outputs (DQ8-DQ14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data input/output or address input (DQ15A–1) . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VPP/write protect (VPP/WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset/block temporary unprotect (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.10 Ready/busy output (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.11 Byte/word organization select (BYTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.12  
2.13  
V
CC supply voltage (2.7 V to 3.6 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
V
3
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Bus read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Bus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Automatic standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Special bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.6.1  
3.6.2  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block protect and chip unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
Standard commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1.1  
4.1.2  
4.1.3  
Read/Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Auto Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/69  
M29W064FT, M29W064FB  
Contents  
4.1.4  
4.1.5  
4.1.6  
4.1.7  
4.1.8  
4.1.9  
Chip Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Program Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Program Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.1.10 Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Fast program commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.2.7  
4.2.8  
Double Byte Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Quadruple Byte Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Octuple Byte Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Double Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Quadruple Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Unlock Bypass command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Unlock Bypass Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Unlock Bypass Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.3  
Block Protection commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.3.1  
4.3.2  
4.3.3  
Enter Extended Block command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Exit Extended Block command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Block Protect and Chip Unprotect commands . . . . . . . . . . . . . . . . . . . . 25  
5
Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5.1  
5.2  
5.3  
5.4  
5.5  
Data polling bit (DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Toggle bit (DQ6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Error bit (DQ5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Erase timer bit (DQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Alternative toggle bit (DQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6
7
8
9
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Appendix A Block addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3/69  
Contents  
M29W064FT, M29W064FB  
Appendix B Common Flash interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Appendix C Extended memory block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
C.1  
C.2  
Factory locked extended block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Customer lockable extended block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Appendix D Block protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
D.1  
D.2  
Programmer technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
In-system technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
10  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
4/69  
M29W064FT, M29W064FB  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hardware protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 4.  
Bus operations, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
IL  
Table 5.  
Bus operations, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
IH  
Table 6.  
Table 7.  
Commands, 16-bit mode, BYTE = V  
Commands, 8-bit mode, BYTE = V  
IH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
IL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Table 8.  
Table 9.  
Program, erase times and program, erase endurance cycles . . . . . . . . . . . . . . . . . . . . . . 28  
Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Device capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Write AC characteristics, write enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Write AC characteristics, chip enable controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Reset/block temporary unprotect AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data . . . . 43  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Top boot block addresses, M29W064FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Bottom boot block addresses, M29W064FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Query structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
CFI query identification string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
CFI query system interface information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Device geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Primary algorithm-specific extended query table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Security code area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Extended block address and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Programmer technique bus operations, BYTE = V or V  
IH  
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
5/69  
List of figures  
M29W064FT, M29W064FB  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
TSOP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data polling flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Toggle flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Read mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Page read AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Write AC waveforms, write enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 10. Write AC waveforms, chip enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 11. Reset/block temporary unprotect AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 12. Accelerated program timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 13. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, top view package outline . . . . . 43  
Figure 14. Programmer equipment group protect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 15. Programmer equipment chip unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 16. In-system equipment group protect flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 17. In-system equipment chip unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6/69  
M29W064FT, M29W064FB  
Description  
1
Description  
The M29W064F is a 64 Mbit (8 Mbit x 8 or 4 Mbit x 16) non-volatile memory that can be  
read, erased and reprogrammed. These operations can be performed using a single low  
voltage (2.7 to 3.6 V) supply. On power-up the memory defaults to its read mode.  
The memory is divided into blocks that can be erased independently so it is possible to  
preserve valid data while old data is erased. Blocks can be protected in units of 256 Kbytes  
(generally groups of four 64 Kbyte blocks), to prevent accidental program or erase  
commands from modifying the memory. Program and erase commands are written to the  
command interface of the memory. An on-chip program/erase controller simplifies the  
process of programming or erasing the memory by taking care of all of the special  
operations that are required to update the memory contents. The end of a program or erase  
operation can be detected and any error conditions identified. The command set required to  
control the memory is consistent with JEDEC standards.  
The device features an asymmetrical blocked architecture. The device has an array of 135  
blocks:  
8 parameters blocks of 8 Kbytes each (or 4 Kwords each)  
127 main blocks of 64 Kbytes each (or 32 Kwords each)  
M29W064FT has the parameter blocks at the top of the memory address space while the  
M29W064FB locates the parameter blocks starting from the bottom.  
The M29W064F has an extra block, the extended block, of 128 words in x 16 mode or of  
256 bytes in x 8 mode that can be accessed using a dedicated command. The extended  
block can be protected and so is useful for storing security information. However the  
protection is not reversible, once protected the protection cannot be undone.  
Chip Enable, Output Enable and Write Enable signals control the bus operation of the  
memory. They allow simple connection to most microprocessors, often without additional  
logic.  
The V /WP signal is used to enable faster programming of the device, enabling multiple  
PP  
word/byte programming. If this signal is held at V , the boot block, and its adjacent  
SS  
parameter block, are protected from program and erase operations.  
The device supports asynchronous random read and page read from all blocks of the  
memory array.  
The memories are offered in TSOP48 (12 x 20 mm) package.  
7/69  
Description  
M29W064FT, M29W064FB  
Figure 1.  
Logic diagram  
V
V
/WP  
CC PP  
22  
15  
A0-A21  
DQ0-DQ14  
W
E
DQ15A–1  
BYTE  
RB  
M29W064FT  
M29W064FB  
G
RP  
V
SS  
AI11250b  
Table 2.  
Signal names  
Name  
Description  
Direction  
A0-A21  
DQ0-DQ7  
DQ8-DQ14  
Address inputs  
Inputs  
I/O  
Data inputs/outputs  
Data inputs/outputs  
I/O  
DQ15A–1 (or DQ15) Data input/output or address input (or data input/output)  
I/O  
E
G
Chip Enable  
Input  
Input  
Input  
Input  
Output  
Input  
Supply  
Supply  
Output Enable  
W
Write Enable  
RP  
Reset/block temporary unprotect  
Ready/busy output  
RB  
BYTE  
VCC  
VPP/WP  
VSS  
NC  
Byte/word organization select  
Supply voltage  
Supply voltage for fast program (optional) or write protect  
Ground  
Not connected internally  
8/69  
M29W064FT, M29W064FB  
Figure 2. TSOP connections  
Description  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
A16  
BYTE  
V
SS  
DQ15A–1  
DQ7  
DQ14  
DQ6  
A8  
DQ13  
DQ5  
A19  
A20  
W
DQ12  
DQ4  
M29W064FT  
M29W064FB  
RP  
A21  
/WP  
RB  
A18  
A17  
A7  
12  
13  
37  
36  
V
CC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
V
PP  
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
24  
25  
A0  
AI11251b  
9/69  
Signal descriptions  
M29W064FT, M29W064FB  
2
Signal descriptions  
See Figure 1: Logic diagram, and Table 2: Signal names, for a brief overview of the signals  
connected to this device.  
2.1  
2.2  
2.3  
Address inputs (A0-A21)  
The address inputs select the cells in the memory array to access during bus read  
operations. During bus write operations they control the commands sent to the command  
interface of the program/erase controller.  
Data inputs/outputs (DQ0-DQ7)  
The data I/O outputs the data stored at the selected address during a bus read operation.  
During bus write operations they represent the commands sent to the command interface of  
the program/erase controller.  
Data inputs/outputs (DQ8-DQ14)  
The data I/O outputs the data stored at the selected address during a bus read operation  
when BYTE is High, V . When BYTE is Low, V , these pins are not used and are high  
IH  
IL  
impedance. During bus write operations the command register does not use these bits.  
When reading the status register these bits should be ignored.  
2.4  
Data input/output or address input (DQ15A–1)  
When BYTE is High, V , this pin behaves as a data input/output pin (as DQ8-DQ14). When  
IH  
BYTE is Low, V , this pin behaves as an address pin; DQ15A–1 Low will select the LSB of  
IL  
the addressed word, DQ15A–1 High will select the MSB. Throughout the text consider  
references to the Data input/output to include this pin when BYTE is High and references to  
the address inputs to include this pin when BYTE is Low except when stated explicitly  
otherwise.  
2.5  
2.6  
Chip Enable (E)  
The Chip Enable, E, activates the memory, allowing bus read and bus write operations to be  
performed. When Chip Enable is High, V , all other pins are ignored.  
IH  
Output Enable (G)  
The Output Enable, G, controls the bus read operation of the memory.  
10/69  
M29W064FT, M29W064FB  
Signal descriptions  
2.7  
2.8  
Write Enable (W)  
The Write Enable, W, controls the bus write operation of the memory’s command interface.  
VPP/write protect (VPP/WP)  
The V /write protect pin provides two functions. The V function allows the memory to  
PP  
PP  
use an external high voltage power supply to reduce the time required for unlock bypass  
program operations. The write protect function provides a hardware method of protecting  
the two outermost boot blocks. The V /write protect pin must not be left floating or  
PP  
unconnected.  
When V /write protect is Low, V , the memory protects the two outermost boot blocks;  
PP  
IL  
program and erase operations in this block are ignored while V /Write Protect is Low, even  
PP  
when RP is at V .  
ID  
When V /write protect is High, V , the memory reverts to the previous protection status of  
PP  
IH  
the two outermost boot blocks. Program and erase operations can now modify the data in  
the two outermost boot blocks unless the block is protected using block protection.  
Applying V  
to the V /WP pin will temporarily unprotect any block previously protected  
PP  
PPH  
(including the two outermost parameter blocks) using a high voltage block protection  
technique (in-system or programmer technique). See Table 3: Hardware protection for  
details.  
When V /write protect is raised to V the memory automatically enters the unlock bypass  
PP  
PP  
mode. When V /write protect returns to V or V normal operation resumes. During  
PP  
IH  
IL  
unlock bypass program operations the memory draws I from the pin to supply the  
PP  
programming circuits. See the description of the Unlock Bypass command in Section 4:  
Command interface. The transitions from V to V and from V to V must be slower  
IH  
PP  
PP  
IH  
than t  
, see Figure 12: Accelerated program timing waveforms.  
VHVPP  
Never raise V /Write Protect to V from any mode except read mode, otherwise the  
PP  
PP  
memory may be left in an indeterminate state.  
A 0.1 µF capacitor should be connected between the V /write protect pin and the V  
PP  
SS  
ground pin to decouple the current surges from the power supply. The PCB track widths  
must be sufficient to carry the currents required during unlock bypass program, I .  
PP  
Table 3.  
VPP/WP  
Hardware protection  
RP  
Function  
VIH  
VID  
VID  
2 outermost parameter blocks protected from program/erase operations  
All blocks temporarily unprotected except the 2 outermost blocks  
All blocks temporarily unprotected  
VIL  
VIH or VID  
VPPH  
VIH or VID All blocks temporarily unprotected  
11/69  
Signal descriptions  
M29W064FT, M29W064FB  
2.9  
Reset/block temporary unprotect (RP)  
The reset/block temporary unprotect pin can be used to apply a hardware reset to the  
memory or to temporarily unprotect all blocks that have been protected.  
Note that if V /WP is at V , then the two outermost boot blocks will remain protected even  
PP  
IL  
if RP is at V .  
ID  
A hardware reset is achieved by holding reset/block temporary unprotect Low, V , for at  
IL  
least t  
. After reset/block temporary unprotect goes High, V , the memory will be ready  
PLPX  
IH  
for bus read and bus write operations after t  
or t  
, whichever occurs last. See  
PHEL  
RHEL  
Section 2.10: Ready/busy output (RB), Table 17: Reset/block temporary unprotect AC  
characteristics and Figure 11: Reset/block temporary unprotect AC waveforms, for more  
details.  
Holding RP at V will temporarily unprotect the protected blocks in the memory. Program  
ID  
and erase operations on all blocks will be possible. The transition from V to V must be  
IH  
ID  
slower than t  
.
PHPHH  
2.10  
Ready/busy output (RB)  
The ready/busy pin is an open-drain output that can be used to identify when the device is  
performing a program or erase operation. During program or erase operations ready/busy is  
Low, V . Ready/busy is high-impedance during read mode, Auto select mode and erase  
OL  
suspend mode.  
After a hardware reset, bus read and bus write operations cannot begin until ready/busy  
becomes high-impedance. See Table 17: Reset/block temporary unprotect AC  
characteristics and Figure 11: Reset/block temporary unprotect AC waveforms, for more  
details.  
The use of an open-drain output allows the ready/busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
2.11  
Byte/word organization select (BYTE)  
The byte/word organization select pin is used to switch between the x 8 and x 16 bus modes  
of the memory. When byte/word organization select is Low, V , the memory is in x 8 mode,  
IL  
when it is High, V , the memory is in x 16 mode.  
IH  
12/69  
M29W064FT, M29W064FB  
Signal descriptions  
2.12  
VCC supply voltage (2.7 V to 3.6 V)  
V
provides the power supply for all operations (read, program and erase).  
CC  
The command interface is disabled when the V supply voltage is less than the lockout  
CC  
voltage, V  
. This prevents bus write operations from accidentally damaging the data  
LKO  
during power-up, power-down and power surges. If the program/erase controller is  
programming or erasing during this time then the operation aborts and the memory contents  
being altered will be invalid.  
A 0.1 µF capacitor should be connected between the V supply voltage pin and the V  
CC  
SS  
ground pin to decouple the current surges from the power supply. The PCB track widths  
must be sufficient to carry the currents required during program and erase operations, I  
.
CC3  
2.13  
VSS ground  
V
is the reference for all voltage measurements. The device features two V pins which  
SS  
SS  
must be both connected to the system ground.  
13/69  
Bus operations  
M29W064FT, M29W064FB  
3
Bus operations  
There are five standard bus operations that control the device. These are bus read, bus  
write, output disable, standby and automatic standby. See Table 4: Bus operations, BYTE =  
V and Table 5: Bus operations, BYTE = V , for a summary. Typically glitches of less than  
IL  
IH  
5 ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus  
operations.  
3.1  
3.2  
Bus read  
Bus read operations read from the memory cells, or specific registers in the command  
interface. A valid bus read operation involves setting the desired address on the address  
inputs, applying a Low signal, V , to Chip Enable and Output Enable and keeping Write  
Enable High, V . The data inputs/outputs will output the value, see Figure 7: Read mode  
AC waveforms, and Table 14: Read AC characteristics, for details of when the output  
IL  
IH  
becomes valid.  
Bus write  
Bus write operations write to the command interface. To speed up the read operation the  
memory array can be read in page mode where data is internally read and stored in a page  
buffer. The page has a size of 4 words and is addressed by the address inputs A0-A1.  
A valid bus write operation begins by setting the desired address on the address inputs. The  
address inputs are latched by the command interface on the falling edge of Chip Enable or  
Write Enable, whichever occurs last. The data inputs/outputs are latched by the command  
interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output  
Enable must remain High, V , during the whole bus write operation. See Figure 9: Write AC  
IH  
waveforms, write enable controlled, Figure 10: Write AC waveforms, chip enable controlled,  
and Table 15: Write AC characteristics, write enable controlled and Table 16: Write AC  
characteristics, chip enable controlled, for details of the timing requirements.  
3.3  
3.4  
Output disable  
The data inputs/outputs are in the high impedance state when Output Enable is High, V .  
IH  
Standby  
When Chip Enable is High, V , the memory enters standby mode and the data  
IH  
inputs/outputs pins are placed in the high-impedance state. To reduce the supply current to  
the standby supply current, I  
, Chip Enable should be held within V  
0.2 V. For the  
CC2  
CC  
standby current level see Table 13: DC characteristics.  
During program or erase operations the memory will continue to use the program/erase  
supply current, I , for program or erase operations until the operation completes.  
CC3  
14/69  
M29W064FT, M29W064FB  
Bus operations  
3.5  
Automatic standby  
If CMOS levels (V  
0.2 V) are used to drive the bus and the bus is inactive for 300 ns or  
CC  
more the memory enters automatic standby where the internal supply current is reduced to  
the standby supply current, I  
operation is in progress.  
. The data inputs/outputs will still output data if a bus read  
CC2  
3.6  
Special bus operations  
Additional bus operations can be performed to read the electronic signature and also to  
apply and remove block protection. These bus operations are intended for use by  
programming equipment and are not usually used in applications. They require V to be  
ID  
applied to some pins.  
3.6.1  
3.6.2  
Electronic signature  
The memory has two codes, the manufacturer code and the device code, that can be read  
to identify the memory. These codes can be read by applying the signals listed in Table 4:  
Bus operations, BYTE = V and Table 5: Bus operations, BYTE = V .  
IL  
IH  
Block protect and chip unprotect  
Groups of blocks can be protected against accidental program or erase. The protection  
groups are shown in Appendix A: Block addresses, Table 20 and Table 21. The whole chip  
can be unprotected to allow the data inside the blocks to be changed.  
The V /write protect pin can be used to protect the two outermost boot blocks. When  
PP  
V
/write protect is at V the two outermost boot blocks are protected and remain  
PP  
IL  
protected regardless of the block protection status or the reset/block temporary unprotect  
pin status.  
Block protect and chip unprotect operations are described in Appendix D: Block protection.  
15/69  
Bus operations  
M29W064FT, M29W064FB  
Data inputs/outputs  
(1)  
Table 4.  
Bus operations, BYTE = V  
IL  
Address inputs  
DQ15A–1, A0-A21  
Operation  
E
G
W
DQ14-DQ8  
DQ7-DQ0  
Bus read  
VIL VIL VIH Cell address  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Data output  
Data input  
Hi-Z  
Bus write  
VIL VIH VIL Command address  
Output disable  
Standby  
X
VIH VIH  
X
X
VIH  
X
X
Hi-Z  
A0-A3 = VIL, A6 = VIL,  
A9 = VID, Others VIL or VIH  
Read manufacturer code VIL VIL VIH  
Hi-Z  
Hi-Z  
20h  
A0 = VIH, A1-A3 = VIL,  
VIL VIL VIH A6 = VIL, A9 = VID,  
EDh (M29W064FT)  
FDh (M29W064FB)  
Read device code  
Others VIL or VIH  
A0 -A1 = VIH, A2-A3 = VIL,  
VIL VIL VIH A6 = VIL, A9 = VID,  
80h (factory locked)  
Read extended memory  
block verify code  
Hi-Z  
Hi-Z  
00h (customer lockable)  
Others VIL or VIH  
A0, A2, A3, A6 = VIL,  
A1 = VIH, A9 = VID,  
A12-A21 = Block address,  
Others VIL or VIH  
01h (protected)  
Read block protection  
status  
VIL VIL VIH  
00h (unprotected)  
1. X = VIL or VIH  
.
(1)  
Bus operations, BYTE = V  
IH  
Table 5.  
Address inputs  
A0-A21  
Data inputs/outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
Bus read  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH Cell address  
VIL Command address  
Data output  
Data input  
Hi-Z  
Bus write  
Output disable  
Standby  
VIH  
X
X
X
VIH  
Hi-Z  
A0-A3 = VIL, A6 = VIL,  
A9 = VID, others VIL or VIH  
Read manufacturer code  
Read device code  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
0020h  
22EDh (M29W064FT)  
22FDh (M29W064FB)  
A0 = VIH, A1-A3= VIL, A6 = VIL,  
A9 = VID, Others VIL or VIH  
A0-A1 = VIH, A2-A3= VIL,  
VIH A6 = VIL, A9 = VID,  
others VIL or VIH  
80h (factory locked)  
Read extended memory  
block verify code  
VIL  
VIL  
00h (customer lockable)  
A0, A2, A3, A6 = VIL, A1 = VIH,  
A9 = VID,  
0001h (protected)  
Read block protection  
status  
VIL  
VIL  
VIH  
A12-A21 = Block address,  
0000h (unprotected)  
others VIL or VIH  
1. X = VIL or VIH  
.
16/69  
M29W064FT, M29W064FB  
Command interface  
4
Command interface  
All bus write operations to the memory are interpreted by the command interface.  
Commands consist of one or more sequential bus write operations. Failure to observe a  
valid sequence of bus write operations will result in the memory returning to read mode. The  
long command sequences are imposed to maximize data security.  
The address used for the commands changes depending on whether the memory is in 16-  
bit or 8-bit mode. See either Table 6, or Table 7, depending on the configuration that is being  
used, for a summary of the commands.  
4.1  
Standard commands  
4.1.1  
Read/Reset command  
The Read/Reset command returns the memory to its read mode. It also resets the errors in  
the status register. Either one or three bus write operations can be used to issue the  
Read/Reset command.  
The Read/Reset command can be issued, between bus write cycles before the start of a  
program or erase operation, to return the device to read mode. If the Read/Reset command  
is issued during the timeout of a block erase operation then the memory will take up to 10 µs  
to abort. During the abort period no valid data can be read from the memory. The  
Read/Reset command will not abort an erase operation when issued while in erase  
suspend.  
4.1.2  
Auto Select command  
The Auto Select command is used to read the manufacturer code, the device code, the  
block protection status and the extended memory block verify code. Three consecutive bus  
write operations are required to issue the Auto Select command. Once the Auto Select  
command is issued the memory remains in auto select mode until a Read/Reset command  
is issued. Read CFI Query and Read/Reset commands are accepted in auto select mode,  
all other commands are ignored.  
In auto select mode, the manufacturer code and the device code can be read by using a bus  
read operation with addresses and control signals set as shown in Table 4: Bus operations,  
BYTE = V and Table 5: Bus operations, BYTE = V , except for A9 that is ‘don’t care’.  
IL  
IH  
The block protection status of each block can be read using a bus read operation with  
addresses and control signals set as shown in Table 4: Bus operations, BYTE = V and  
IL  
Table 5: Bus operations, BYTE = V , except for A9 that is ‘don’t care’. If the addressed  
IH  
block is protected then 01h is output on data inputs/outputs DQ0-DQ7, otherwise 00h is  
output (in 8-bit mode).  
The protection status of the extended memory block, or extended memory block verify  
code, can be read using a bus read operation with addresses and control signals set as  
shown in Table 4: Bus operations, BYTE = V and Table 5: Bus operations, BYTE = V ,  
IL  
IH  
except for A9 that is ‘don’t care’. If the extended block is factory locked then 80h is output on  
data input/outputs DQ0-DQ7, otherwise 00h is output (8-bit mode).  
17/69  
Command interface  
M29W064FT, M29W064FB  
4.1.3  
Read CFI Query command  
The Read CFI Query command is used to read data from the common Flash interface (CFI)  
memory area. This command is valid when the device is in the read array mode, or when the  
device is in auto selected mode.  
One bus write cycle is required to issue the Read CFI Query command. Once the command  
is issued subsequent bus read operations read from the common Flash Interface memory  
area.  
The Read/Reset command must be issued to return the device to the previous mode (the  
read array mode or autoselected mode). A second Read/Reset command would be needed  
if the device is to be put in the read array mode from autoselected mode.  
See Appendix B: Common Flash interface (CFI), Tables 22, 23, 24, 25, 26 and 27 for details  
on the information contained in the common Flash interface (CFI) memory area.  
4.1.4  
Chip Erase command  
The Chip Erase command can be used to erase the entire chip. Six bus write operations are  
required to issue the Chip Erase command and start the program/erase controller.  
If any blocks are protected then these are ignored and all the other blocks are erased. If all  
of the blocks are protected the chip erase operation appears to start but will terminate within  
about 100 µs, leaving the data unchanged. No error condition is given when protected  
blocks are ignored.  
During the erase operation the memory will ignore all commands, including the Erase  
Suspend command. It is not possible to issue any command to abort the operation. Typical  
chip erase times are given in Table 8: Program, erase times and program, erase endurance  
cycles. All bus read operations during the chip erase operation will output the status register  
on the data inputs/outputs. See the section on the status register for more details.  
After the chip erase operation has completed the memory will return to the read mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
status register. A Read/Reset command must be issued to reset the error condition and  
return to read mode.  
The Chip Erase command sets all of the bits in unprotected blocks of the memory to ’1’. All  
previous data is lost.  
18/69  
M29W064FT, M29W064FB  
Command interface  
4.1.5  
Block Erase command  
The Block Erase command can be used to erase a list of one or more blocks. Six bus write  
operations are required to select the first block in the list. Each additional block in the list can  
be selected by repeating the sixth bus write operation using the address of the additional  
block. The block erase operation starts the program/erase controller about 50 µs after the  
last bus write operation. Once the program/erase controller starts it is not possible to select  
any more blocks. Each additional block must therefore be selected within 50 µs of the last  
block. The 50 µs timer restarts when an additional block is selected. The status register can  
be read after the sixth bus write operation. See the status register section for details on how  
to identify if the program/erase controller has started the block erase operation.  
If any selected blocks are protected then these are ignored and all the other selected blocks  
are erased. If all of the selected blocks are protected the block erase operation appears to  
start but will terminate within about 100 µs, leaving the data unchanged. No error condition  
is given when protected blocks are ignored.  
During the block erase operation the memory will ignore all commands except the Erase  
Suspend command. Typical block erase times are given in Table 8: Program, erase times  
and program, erase endurance cycles. All bus read operations during the block erase  
operation will output the status register on the data inputs/outputs. See the section on the  
status register for more details.  
After the block erase operation has completed the memory will return to the read mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
status register. A Read/Reset command must be issued to reset the error condition and  
return to read mode.  
The Block Erase command sets all of the bits in the unprotected selected blocks to ’1’. All  
previous data in the selected blocks is lost.  
4.1.6  
Erase Suspend command  
The Erase Suspend Command may be used to temporarily suspend a Block Erase  
operation and return the memory to read mode. The command requires one bus write  
operation.  
The program/erase controller will suspend within the erase suspend latency time of the  
Erase Suspend command being issued. Once the program/erase controller has stopped the  
memory will be set to read mode and the erase will be suspended. If the Erase Suspend  
command is issued during the period when the memory is waiting for an additional block  
(before the program/erase controller starts) then the erase is suspended immediately and  
will start immediately when the Erase Resume command is issued. It is not possible to  
select any further blocks to erase after the erase resume.  
During erase suspend it is possible to read and program cells in blocks that are not being  
erased; both read and program operations behave as normal on these blocks. If any attempt  
is made to program in a protected block or in the suspended block then the Program  
command is ignored and the data remains unchanged. The status register is not read and  
no error condition is given. Reading from blocks that are being erased will output the status  
register.  
It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands  
during an erase suspend. The Read/Reset command must be issued to return the device to  
read array mode before the Resume command will be accepted.  
19/69  
Command interface  
M29W064FT, M29W064FB  
4.1.7  
Erase Resume command  
The Erase Resume command must be used to restart the program/erase controller after an  
erase suspend. The device must be in read array mode before the Resume command will  
be accepted. An erase can be suspended and resumed more than once.  
4.1.8  
Program Suspend command  
The Program Suspend command allows the system to interrupt a program operation so that  
data can be read from any block. When the Program Suspend command is issued during a  
program operation, the device suspends the program operation within the program suspend  
latency time (see Table 8: Program, erase times and program, erase endurance cycles for  
value) and updates the status register bits.  
After the program operation has been suspended, the system can read array data from any  
address. However, data read from program-suspended addresses is not valid.  
The Program Suspend command may also be issued during a program operation while an  
erase is suspended. In this case, data may be read from any addresses not in erase  
suspend or program suspend. if a read is needed from the extended block area (one-time  
program area), the user must use the proper command sequences to enter and exit this  
region.  
The system may also issue the Auto Select command sequence when the device is in the  
program suspend mode. The system can read as many auto select codes as required.  
When the device exits the auto select mode, the device reverts to the program suspend  
mode, and is ready for another valid operation. See Auto Select command sequence for  
more information.  
4.1.9  
Program Resume command  
After the Program Resume command is issued, the device reverts to programming. The  
controller can determine the status of the program operation using the DQ7 or DQ6 status  
bits, just as in the standard program operation. See write operation status for more  
information.  
The system must write the Program Resume command, to exit the program suspend mode  
and to continue the programming operation.  
Further issuing of the Resume command is ignored. Another Program Suspend command  
can be written after the device has resumed programming.  
20/69  
M29W064FT, M29W064FB  
Command interface  
4.1.10  
Program command  
The Program command can be used to program a value to one address in the memory array  
at a time. The command requires four bus write operations, the final write operation latches  
the address and data, and starts the program/erase controller.  
Programming can be suspended and then resumed by issuing a Program Suspend  
command and a Program Resume command, respectively (see Section 4.1.8: Program  
Suspend command and Section 4.1.9: Program Resume command).  
If the address falls in a protected block then the Program command is ignored, the data  
remains unchanged. The status register is never read and no error condition is given.  
During the program operation the memory will ignore all commands. It is not possible to  
issue any command to abort or pause the operation. Typical program times are given in  
Table 8: Program, erase times and program, erase endurance cycles. Bus read operations  
during the program operation will output the status register on the data inputs/outputs. See  
the section on the status register for more details.  
After the program operation has completed the memory will return to the read mode, unless  
an error has occurred. When an error occurs the memory will continue to output the status  
register. A Read/Reset command must be issued to reset the error condition and return to  
read mode.  
Note that the Program command cannot change a bit set to ’0’ back to ’1’. One of the erase  
commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.  
21/69  
Command interface  
M29W064FT, M29W064FB  
4.2  
Fast program commands  
There are four fast program commands available to improve the programming throughput,  
by writing several adjacent words or bytes in parallel. The Double, Quadruple and Octuple  
Byte Program commands are available for x 8 operations, while the Double, Quadruple  
Word Program commands are available for x 16 operations.  
Fast program commands can be suspended and then resumed by issuing a Program  
Suspend command and a Program Resume command, respectively (see Section 4.1.8:  
Program Suspend command and Section 4.1.9: Program Resume command).  
When V  
is applied to the V /write protect pin the memory automatically enters the fast  
PP  
PPH  
program mode. The user can then choose to issue any of the fast program commands. Care  
must be taken because applying a V  
protected block.  
to the V /WP pin will temporarily unprotect any  
PPH  
PP  
4.2.1  
4.2.2  
Double Byte Program command  
The Double Byte Program command is used to write a page of two adjacent bytes in  
parallel. The two bytes must differ only in DQ15A-1. Three bus write cycles are necessary to  
issue the Double Byte Program command.  
1. The first bus cycle sets up the Double Byte Program command  
2. The second bus cycle latches the address and the data of the first byte to be written  
3. The third bus cycle latches the address and the data of the second byte to be written.  
Quadruple Byte Program command  
The Quadruple Byte Program command is used to write a page of four adjacent bytes in  
parallel. The four bytes must differ only for addresses A0, DQ15A-1. Five bus write cycles  
are necessary to issue the Quadruple Byte Program command.  
1. The first bus cycle sets up the Quadruple Byte Program command  
2. The second bus cycle latches the Address and the data of the first byte to be written  
3. The third bus cycle latches the address and the data of the second byte to be written  
4. The fourth bus cycle latches the address and the data of the third byte to be written  
5. The fifth bus cycle latches the address and the data of the fourth byte to be written and  
starts the program/erase controller.  
22/69  
M29W064FT, M29W064FB  
Command interface  
4.2.3  
Octuple Byte Program command  
This is used to write eight adjacent bytes, in x 8 mode, simultaneously. The addresses of the  
eight bytes must differ only in A1, A0 and DQ15A-1.  
Nine bus write cycles are necessary to issue the command:  
1. The first bus cycle sets up the command  
2. The second bus cycle latches the address and the data of the first byte to be written  
3. The third bus cycle latches the address and the data of the second byte to be written  
4. The fourth bus cycle latches the address and the data of the third byte to be written  
5. The fifth bus cycle latches the address and the data of the fourth byte to be written  
6. The sixth bus cycle latches the address and the data of the fifth byte to be written  
7. The seventh bus cycle latches the address and the data of the sixth byte to be written  
8. The eighth bus cycle latches the address and the data of the seventh byte to be written.  
9. The ninth bus cycle latches the address and the data of the eighth byte to be written  
and starts the program/erase controller.  
4.2.4  
Double Word Program command  
The Double Word Program command is used to write a page of two adjacent words in  
parallel. The two words must differ only for the address A0.  
Three bus write cycles are necessary to issue the Double Word Program command:  
The first bus cycle sets up the Quadruple Word Program command.  
The second bus cycle latches the address and the data of the first word to be written  
The third bus cycle latches the address and the data of the second word to be written  
and starts the program/erase controller.  
After the program operation has completed the memory will return to the read mode, unless  
an error has occurred. When an error occurs bus read operations will continue to output the  
status register. A Read/Reset command must be issued to reset the error condition and  
return to read mode.  
Note that the fast program commands cannot change a bit set to ’0’ back to ’1’. One of the  
erase commands must be used to set all the bits in a block or in the whole memory from ’0’  
to ’1’.  
Typical program times are given in Table 8: Program, erase times and program, erase  
endurance cycles.  
23/69  
Command interface  
M29W064FT, M29W064FB  
4.2.5  
Quadruple Word Program command  
This is used to write a page of four adjacent words (or 8 adjacent bytes), in x 16 mode,  
simultaneously. The addresses of the four words must differ only in A1 and A0.  
Five bus write cycles are necessary to issue the command:  
The first bus cycle sets up the command  
The second bus cycle latches the address and the data of the first word to be written  
The third bus cycle latches the address and the data of the second word to be written  
The fourth bus cycle latches the address and the data of the third word to be written  
The fifth bus cycle latches the address and the data of the fourth word to be written and  
starts the program/erase controller.  
4.2.6  
Unlock Bypass command  
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program  
command to program the memory faster than with the standard program commands. When  
the cycle time to the device is long, considerable time saving can be made by using these  
commands. Three bus write operations are required to issue the Unlock Bypass command.  
Once the Unlock Bypass command has been issued the memory will only accept the Unlock  
Bypass Program command and the Unlock Bypass Reset command. The memory can be  
read as if in read mode.  
When V is applied to the V /write protect pin the memory automatically enters the  
PP  
PP  
unlock bypass mode and the Unlock Bypass Program command can be issued immediately.  
4.2.7  
Unlock Bypass Program command  
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program  
command to program the memory. When the cycle time to the device is long, considerable  
time saving can be made by using these commands. Three bus write operations are  
required to issue the Unlock Bypass command.  
Once the Unlock Bypass command has been issued the memory will only accept the Unlock  
Bypass Program command and the Unlock Bypass Reset command. The memory can be  
read as if in read mode.  
The memory offers accelerated program operations through the V /write protect pin. When  
PP  
the system asserts V on the V /write protect pin, the memory automatically enters the  
PP  
PP  
unlock bypass mode. The system may then write the two-cycle unlock bypass program  
command sequence. The memory uses the higher voltage on the V /write protect pin, to  
PP  
accelerate the unlock bypass program operation.  
Never raise V /write protect to V from any mode except read mode, otherwise the  
PP  
PP  
memory may be left in an indeterminate state.  
4.2.8  
Unlock Bypass Reset command  
The Unlock Bypass Reset command can be used to return to read/reset mode from Unlock  
bypass mode. Two bus write operations are required to issue the Unlock Bypass Reset  
command. Read/Reset command does not exit from unlock bypass mode.  
24/69  
M29W064FT, M29W064FB  
Command interface  
4.3  
Block Protection commands  
4.3.1  
Enter Extended Block command  
The device has an extra 256-byte block (extended block) that can only be accessed using  
the Enter Extended Block command. Three bus write cycles are required to issue the  
Extended Block command. Once the command has been issued the device enters extended  
block mode where all bus read or write operations to the boot block addresses access the  
extended block. The extended block (with the same address as the boot blocks) cannot be  
erased, and can be treated as one-time programmable (OTP) memory. In extended block  
mode the boot blocks are not accessible.  
To exit from the extended block mode the Exit Extended Block command must be issued.  
The extended block can be protected, however once protected the protection cannot be  
undone.  
4.3.2  
4.3.3  
Exit Extended Block command  
The Exit Extended Block command is used to exit from the extended block mode and return  
the device to read mode. Four bus write operations are required to issue the command.  
Block Protect and Chip Unprotect commands  
Groups of blocks can be protected against accidental program or erase. The Protection  
groups are shown in Appendix A: Block addresses, Table 20: Top boot block addresses,  
M29W064FT and Table 21: Bottom boot block addresses, M29W064FB. The whole chip can  
be unprotected to allow the data inside the blocks to be changed.  
Block protect and chip unprotect operations are described in Appendix D: Block protection.  
25/69  
Command interface  
M29W064FT, M29W064FB  
(1)  
Table 6.  
Commands, 16-bit mode, BYTE = V  
IH  
Bus write operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
50  
Read/Reset  
555  
555  
555  
555  
2AA  
2AA  
2AA  
55  
55  
55  
X
F0  
90  
A0  
Auto Select  
555  
555  
Program  
PA  
PD  
Double Word Program  
PA0 PD0 PA1 PD1  
PA0 PD0 PA1 PD1 PA2 PD2 PA3 PD3  
Quadruple Word  
Program  
5
3
2
555  
555  
X
56  
AA  
A0  
Unlock Bypass  
2AA  
PA  
55  
555  
20  
Unlock Bypass  
Program  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
X
00  
55  
55  
555  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
BA  
10  
30  
Block Erase  
6+ 555  
Program/Erase  
Suspend  
1
1
X
X
B0  
30  
Program/Erase  
Resume  
Read CFI Query  
1
3
4
55  
98  
AA  
AA  
Enter Extended Block  
Exit Extended Block  
555  
555  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
X
00  
1. X don’t care, PA program address, PD program data, BA any address in the block. All values in the table are in  
hexadecimal. The command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14  
and DQ15 are don’t care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
26/69  
M29W064FT, M29W064FB  
Command interface  
Table 7.  
Commands, 8-bit mode, BYTE = V  
IL  
Bus write operations(1)  
4th 5th 6th  
Add Data Add Data Add Data Add Data Add Data Add Data Add Data Add Data Add Data  
F0  
3 AAA AA 555 55  
Command  
1st  
2nd  
3rd  
7th  
8th  
9th  
1
X
Read/Reset  
X
F0  
Auto Select  
Program  
3 AAA AA 555 55 AAA 90  
4 AAA AA 555 55 AAA A0 PA PD  
Double Byte  
Program  
3 AAA 50 PA0 PD0 PA1 PD1  
Quadruple  
Byte Program  
5 AAA 56 PA0 PD0 PA1 PD1 PA2 PD2 PA3 PD3  
Octuple Byte  
Program  
9 AAA 8B PA0 PD0 PA1 PD1 PA2 PD2 PA3 PD3 PA4 PD4 PA5 PD5 PA6 PD6 PA7 PD7  
Unlock Bypass 3 AAA AA 555 55 AAA 20  
Unlock Bypass  
2
X
A0 PA PD  
Program  
Unlock Bypass  
Reset  
2
X
90  
X
00  
Chip Erase  
Block Erase  
6 AAA AA 555 55 AAA 80 AAA AA 555 55 AAA 10  
6+ AAA AA 555 55 AAA 80 AAA AA 555 55 BA 30  
Program/Erase  
Suspend  
1
1
1
X
X
B0  
30  
Program/Erase  
Resume  
Read CFI  
Query  
AA 98  
Enter  
Extended  
Block  
3 AAA AA 555 55 AAA 88  
4 AAA AA 555 55 AAA 90  
Exit Extended  
Block  
X
00  
1. X don’t care, PA program address, PD program data, BA any address in the block. All values in the table are in  
hexadecimal. The command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14  
and DQ15 are don’t care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.  
27/69  
Command interface  
M29W064FT, M29W064FB  
Table 8.  
Program, erase times and program, erase endurance cycles  
Parameter  
Min  
Typ(1)(2)  
Max(2)  
Unit  
Chip Erase  
80  
400(3)  
6(4)  
s
s
Block Erase (64 Kbytes)  
0.8  
Erase Suspend latency time  
50(4)  
200(3)  
200(3)  
200(3)  
200(3)  
400(3)  
200(3)  
100(3)  
50(3)  
4
µs  
µs  
µs  
µs  
µs  
s
Program (byte or word)  
10  
10  
10  
10  
80  
40  
20  
10  
Double Byte  
Double Word /Quadruple Byte Program  
Quadruple Word / Octuple Byte Program  
Chip Program (byte by byte)  
Chip Program (word by word)  
Chip Program (Double Word/Quadruple Byte Program)  
Chip Program (Quadruple Word/Octuple Byte Program)  
Program Suspend latency time  
Program/Erase cycles (per block)  
Data retention  
s
s
s
µs  
cycles  
years  
100,000  
20  
1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and VCC after 100,000 program/erase cycles.  
4. Maximum value measured at worst case conditions for both temperature and VCC  
.
28/69  
M29W064FT, M29W064FB  
Status register  
5
Status register  
Bus read operations from any address always read the status register during program and  
erase operations. It is also read during erase suspend when an address within a block being  
erased is accessed.  
The bits in the status register are summarized in Table 9: Status register bits.  
5.1  
Data polling bit (DQ7)  
The data polling bit can be used to identify whether the program/erase controller has  
successfully completed its operation or if it has responded to an erase suspend. The data  
polling bit is output on DQ7 when the status register is read.  
During program operations the data polling bit outputs the complement of the bit being  
programmed to DQ7. After successful completion of the program operation the memory  
returns to read mode and bus read operations from the address just programmed output  
DQ7, not its complement.  
During erase operations the data polling bit outputs ’0’, the complement of the erased state  
of DQ7. After successful completion of the erase operation the memory returns to read  
mode.  
In erase suspend mode the data polling bit will output a ’1’ during a bus read operation  
within a block being erased. The data polling bit will change from a ’0’ to a ’1’ when the  
program/erase controller has suspended the erase operation.  
Figure 3: Data polling flowchart, gives an example of how to use the data polling bit. A valid  
address is the address being programmed or an address within the block being erased.  
5.2  
Toggle bit (DQ6)  
The toggle bit can be used to identify whether the program/erase controller has successfully  
completed its operation or if it has responded to an erase suspend. The toggle bit is output  
on DQ6 when the status register is read.  
During program and erase operations the toggle bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive bus read operations at any address. After successful completion of the operation  
the memory returns to read mode.  
During erase suspend mode the toggle bit will output when addressing a cell within a block  
being erased. The toggle bit will stop toggling when the program/erase controller has  
suspended the erase operation.  
Figure 4: Toggle flowchart, gives an example of how to use the toggle bit.  
29/69  
Status register  
M29W064FT, M29W064FB  
5.3  
Error bit (DQ5)  
The error bit can be used to identify errors detected by the program/erase controller. The  
error bit is set to ’1’ when a program, block erase or chip erase operation fails to write the  
correct data to the memory. If the error bit is set a Read/Reset command must be issued  
before other commands are issued. The error bit is output on DQ5 when the status register  
is read.  
Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to  
do so will set DQ5 to ‘1’. A bus read operation to that address will show the bit is still ‘0’. One  
of the erase commands must be used to set all the bits in a block or in the whole memory  
from ’0’ to ’1’.  
5.4  
5.5  
Erase timer bit (DQ3)  
The erase timer bit can be used to identify the start of program/erase controller operation  
during a Block Erase command. Once the program/erase controller starts erasing the erase  
timer bit is set to ’1’. Before the program/erase controller starts the erase timer bit is set to ’0’  
and additional blocks to be erased may be written to the command interface. The erase  
timer bit is output on DQ3 when the status register is read.  
Alternative toggle bit (DQ2)  
The alternative toggle bit can be used to monitor the program/erase controller during erase  
operations. The alternative toggle bit is output on DQ2 when the status register is read.  
During chip erase and block erase operations the toggle bit changes from ’0’ to ’1’ to ’0’,  
etc., with successive bus read operations from addresses within the blocks being erased. A  
protected block is treated the same as a block not being erased. Once the operation  
completes the memory returns to read mode.  
During erase suspend the alternative toggle bit changes from ’0’ to ’1’ to ’0’, etc. with  
successive bus read operations from addresses within the blocks being erased. Bus read  
operations to addresses within blocks not being erased will output the memory cell data as if  
in read mode.  
After an erase operation that causes the error bit to be set the alternative toggle bit can be  
used to identify which block or blocks have caused the error. The alternative toggle bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive bus read operations from addresses within  
blocks that have not erased correctly. The alternative toggle bit does not change if the  
addressed block has erased correctly.  
30/69  
M29W064FT, M29W064FB  
Status register  
(1)  
Table 9.  
Status register bits  
Operation  
Address  
DQ7  
DQ6  
DQ5 DQ3  
DQ2  
RB  
Program  
Any address  
DQ7  
Toggle  
0
0
0
Program during erase  
suspend  
Any address  
DQ7  
Toggle  
0
Program error  
Chip erase  
Any address  
Any address  
DQ7  
Toggle  
Toggle  
1
0
0
0
0
0
0
1
0
0
1
1
Hi-Z  
0
0
0
0
0
0
1
Toggle  
Erasing block  
Toggle  
Toggle  
0
Block erase before  
timeout  
Non-erasing block  
Erasing block  
Toggle  
No Toggle  
Toggle  
0
Toggle  
0
Block erase  
Erase suspend  
Erase error  
Non-erasing block  
Erasing block  
Toggle  
No Toggle  
Toggle  
0
No Toggle  
Hi-Z  
Hi-Z  
Non-erasing block  
Good block address  
Faulty block address  
Data read as normal  
0
0
Toggle  
Toggle  
1
1
1
1
No Toggle Hi-Z  
Toggle  
Hi-Z  
1. Unspecified data bits should be ignored.  
Figure 3.  
Data polling flowchart  
START  
READ DQ5 & DQ7  
at VALID ADDRESS  
DQ7  
=
YES  
DATA  
NO  
NO  
DQ5  
= 1  
YES  
READ DQ7  
at VALID ADDRESS  
DQ7  
=
YES  
DATA  
NO  
FAIL  
PASS  
AI90194  
31/69  
Status register  
Figure 4.  
M29W064FT, M29W064FB  
Toggle flowchart  
START  
READ DQ6  
READ  
DQ5 & DQ6  
DQ6  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
YES  
READ DQ6  
TWICE  
DQ6  
=
NO  
TOGGLE  
YES  
FAIL  
PASS  
AI90195B  
32/69  
M29W064FT, M29W064FB  
Maximum rating  
6
Maximum rating  
Stressing the device above the rating listed in Table 10: Absolute maximum ratings may  
cause permanent damage to the device. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability. These are stress ratings only and  
operation of the device at these or any other conditions above those indicated in the  
operating sections of this specification is not implied. Refer also to the Numonyx SURE  
Program and other relevant quality documents.  
Table 10. Absolute maximum ratings  
Symbol  
Parameter  
Temperature under bias  
Min  
Max  
Unit  
TBIAS  
TSTG  
VIO  
–50  
–65  
125  
150  
°C  
°C  
V
Storage temperature  
Input or output voltage(1)(2)  
Supply voltage  
–0.6  
–0.6  
–0.6  
–0.6  
VCC + 0.6  
4
VCC  
VID  
V
Identification voltage  
Program voltage  
13.5  
V
(3)  
VPP  
13.5  
V
1. Minimum voltage may undershoot to –2 V during transition and for less than 20 ns during transitions.  
2. Maximum voltage may overshoot to VCC +2 V during transition and for less than 20 ns during transitions.  
3. VPP must not remain at 12 V for more than a total of 80 hrs.  
33/69  
DC and AC parameters  
M29W064FT, M29W064FB  
7
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristic tables that  
follow are derived from tests performed under the measurement conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 11. Operating and AC measurement conditions  
M29W064FT, M29W064FB  
Parameter  
Unit  
Min  
Max  
VCC supply voltage  
2.7  
3.6  
85  
V
°C  
pF  
ns  
V
Ambient operating temperature  
Load capacitance (CL)  
–40  
30  
Input rise and fall times  
10  
Input pulse voltages  
0 to VCC  
VCC/2  
Input and output timing ref. voltages  
V
Figure 5.  
AC measurement I/O waveform  
V
CC  
V
/2  
CC  
0 V  
AI05557  
Figure 6.  
AC measurement load circuit  
V
V
V
CC  
PP  
CC  
25kΩ  
DEVICE  
UNDER  
TEST  
25kΩ  
C
L
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI05558  
34/69  
M29W064FT, M29W064FB  
DC and AC parameters  
Table 12. Device capacitance  
Symbol  
Parameter  
Test condition  
Min  
Max  
Unit  
CIN  
Input capacitance  
VIN = 0 V  
6
pF  
pF  
COUT  
Output capacitance  
VOUT = 0 V  
12  
1. Sampled only, not 100% tested.  
Table 13. DC characteristics  
Symbol  
Parameter  
Test condition  
Min  
Max  
Unit  
ILI  
Input leakage current  
Output leakage current  
0 V VIN VCC  
1
1
µA  
µA  
ILO  
0 V VOUT VCC  
E = VIL, G = VIH,  
f = 6 MHz  
ICC1  
Supply current (read)  
10  
100  
20  
mA  
µA  
E = VCC 0.2 V,  
RP = VCC 0.2 V  
ICC2  
Supply current (standby)  
V
PP/WP =  
mA  
Supply current  
(program/erase)  
Program/erase  
controller active  
VIL or VIH  
ICC3  
VPP/WP = VPP  
20  
mA  
V
VIL  
VIH  
Input low voltage  
Input high voltage  
–0.5  
0.8  
0.7VCC VCC + 0.3  
V
Voltage for VPP/WP  
program acceleration  
VPP  
IPP  
V
CC = 2.7 V 10%  
11.5  
12.5  
V
Current for VPP/WP  
program acceleration  
VCC = 2.7 V 10%  
15  
mA  
VOL  
VOH  
VID  
Output low voltage  
Output high voltage  
Identification voltage  
IOL = 1.8 mA  
0.45  
V
V
V
IOH = –100 µA  
VCC–0.4  
11.5  
12.5  
2.3  
Program/erase lockout  
supply voltage  
(1)  
VLKO  
1.8  
V
1. Sampled only, not 100% tested.  
35/69  
DC and AC parameters  
M29W064FT, M29W064FB  
Figure 7.  
Read mode AC waveforms  
tAVAV  
VALID  
A0-A20/  
A–1  
tAVQV  
tAXQX  
E
tELQV  
tELQX  
tEHQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
DQ0-DQ7/  
DQ8-DQ15  
VALID  
tBHQV  
BYTE  
tELBL/tELBH  
tBLQZ  
AI05559  
Figure 8.  
Page read AC waveforms  
A2-A21  
A0-A1  
VALID ADDRESS  
VALID  
VALID  
tAVQV  
VALID  
VALID  
E
tELQV  
tEHQX  
tEHQZ  
G
tGHQX  
tGHQZ  
tGLQV  
tAVQV1  
VALID  
DATA  
DQ0-DQ15  
VALID DATA  
VALID DATA  
VALID DATA  
AI11553  
36/69  
M29W064FT, M29W064FB  
DC and AC parameters  
M29W064FT,  
Table 14. Read AC characteristics  
M29W064FB  
Symbol  
Alt  
Parameter  
Test condition  
Unit  
60  
70  
E = VIL,  
G = VIL  
tAVAV  
tAVQV  
tAVQV1  
tRC Address Valid to Next Address Valid  
tACC Address Valid to Output Valid  
Min  
60  
70  
ns  
ns  
ns  
E = VIL,  
G = VIL  
Max  
Max  
60  
25  
70  
25  
E = VIL,  
G = VIL  
tPAGE Address Valid to Output Valid (Page)  
(1)  
tELQX  
tLZ  
Chip Enable Low to Output Transition  
G = VIL  
G = VIL  
E = VIL  
E = VIL  
G = VIL  
E = VIL  
Min  
Max  
Min  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
tELQV  
tCE Chip Enable Low to Output Valid  
tOLZ Output Enable Low to Output Transition  
tOE Output Enable Low to Output Valid  
tHZ Chip Enable High to Output Hi-Z  
tDF Output Enable High to Output Hi-Z  
60  
0
70  
0
(1)  
tGLQX  
tGLQV  
Max  
Max  
Max  
25  
25  
25  
25  
25  
25  
(1)  
tEHQZ  
(1)  
tGHQZ  
tEHQX  
tGHQX  
tAXQX  
Chip Enable, Output Enable or Address  
Transition to Output Transition  
tOH  
Min  
0
5
0
5
ns  
ns  
tELBL  
tELBH  
tBLQZ  
tBHQV  
tELFL  
Chip Enable to BYTE Low or High  
tELFH  
Max  
tFLQZ BYTE Low to Output Hi-Z  
tFHQV BYTE High to Output Valid  
Max  
Max  
25  
30  
25  
30  
ns  
ns  
1. Sampled only, not 100% tested.  
37/69  
DC and AC parameters  
Figure 9. Write AC waveforms, write enable controlled  
M29W064FT, M29W064FB  
tAVAV  
VALID  
A0-A20/  
A–1  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
W
tGHWL  
tWLWH  
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHEL  
RB  
tWHRL  
AI05560  
38/69  
M29W064FT, M29W064FB  
DC and AC parameters  
M29W064FT,  
Table 15. Write AC characteristics, write enable controlled  
M29W064FB  
Symbol  
Alt  
Parameter  
Unit  
60  
70  
tAVAV  
tELWL  
tWC  
tCS  
tWP  
tDS  
tDH  
tCH  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
60  
0
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tWLWH  
tDVWH  
tWHDX  
tWHEH  
tWHWL  
tAVWL  
tWLAX  
tGHWL  
tWHGL  
45  
45  
0
45  
45  
0
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
0
0
tWPH Write Enable High to Write Enable Low  
30  
0
30  
0
tAS  
tAH  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
45  
0
45  
0
tOEH Write Enable High to Output Enable Low  
tBUSY Program/Erase Valid to RB Low  
tVCS VCC High to Chip Enable Low  
0
0
(1)  
tWHRL  
30  
50  
30  
50  
tVCHEL  
1. Sampled only, not 100% tested.  
39/69  
DC and AC parameters  
M29W064FT, M29W064FB  
Figure 10. Write AC waveforms, chip enable controlled  
tAVAV  
A0-A20/  
VALID  
A–1  
tELAX  
tAVEL  
tEHWH  
W
tWLEL  
tEHGL  
G
tGHEL  
tELEH  
E
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHWL  
RB  
tEHRL  
AI05561  
40/69  
M29W064FT, M29W064FB  
DC and AC parameters  
Table 16. Write AC characteristics, chip enable controlled  
M29W064FT, M29W064FB  
Symbol  
Alt  
Parameter  
Unit  
60  
70  
tAVAV  
tWLEL  
tELEH  
tDVEH  
tEHDX  
tEHWH  
tEHEL  
tAVEL  
tELAX  
tGHEL  
tEHGL  
tWC Address Valid to Next Address Valid  
tWS Write Enable Low to Chip Enable Low  
tCP Chip Enable Low to Chip Enable High  
tDS Input Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
60  
0
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
45  
45  
0
45  
45  
0
tDH Chip Enable High to Input Transition  
tWH Chip Enable High to Write Enable High  
tCPH Chip Enable High to Chip Enable Low  
0
0
30  
0
30  
0
tAS  
Address Valid to Chip Enable Low  
tAH Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
45  
0
45  
0
tOEH Chip Enable High to Output Enable Low  
tBUSY Program/Erase Valid to RB Low  
tVCS VCC High to Write Enable Low  
0
0
(1)  
tEHRL  
30  
50  
30  
50  
tVCHWL  
1. Sampled only, not 100% tested.  
Figure 11. Reset/block temporary unprotect AC waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPHPHH  
tPLPX  
RP  
tPLYH  
AI02931B  
41/69  
DC and AC parameters  
M29W064FT, M29W064FB  
Figure 12. Accelerated program timing waveforms  
V
PP  
V
/WP  
PP  
V
or V  
IH  
IL  
tVHVPP  
tVHVPP  
AI05563  
Table 17. Reset/block temporary unprotect AC characteristics  
M29W064FT,  
Unit  
Symbol  
Alt  
Parameter  
M29W064FB  
(1)  
tPHWL  
RP High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
tPHEL  
tRH  
Min  
50  
0
ns  
ns  
(1)  
tPHGL  
(1)  
tRHWL  
RB High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
(1)  
tRHEL  
tRB  
Min  
(1)  
tRHGL  
tPLPX  
tPLYH  
tRP  
RP pulse width  
Min  
Max  
Min  
Min  
500  
50  
ns  
µs  
ns  
ns  
tREADY RP Low to read mode  
(1)  
tPHPHH  
tVIDR  
RP rise time to VID  
500  
250  
(1)  
tVHVPP  
VPP rise and fall time  
1. Sampled only, not 100% tested.  
42/69  
M29W064FT, M29W064FB  
Package mechanical  
8
Package mechanical  
®
In order to meet environmental requirements, Numonyx offers these devices in ECOPACK  
packages. ECOPACK packages are lead-free. The category of second level interconnect is  
marked on the package and on the inner box label, in compliance with JEDEC Standard  
JESD97. The maximum ratings related to soldering conditions are also marked on the inner  
box label.  
Figure 13. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, top view package  
outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 18. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package  
mechanical data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
B
1.20  
0.15  
1.05  
0.27  
0.21  
0.10  
12.10  
20.20  
18.50  
0.047  
0.006  
0.041  
0.011  
0.008  
0.004  
0.476  
0.795  
0.728  
0.10  
1.00  
0.22  
0.05  
0.95  
0.17  
0.10  
0.004  
0.039  
0.009  
0.002  
0.037  
0.007  
0.004  
C
CP  
D1  
E
12.00  
20.00  
18.40  
0.50  
0.60  
0.80  
3°  
11.90  
19.80  
18.30  
0.472  
0.787  
0.724  
0.020  
0.024  
0.031  
3°  
0.468  
0.779  
0.720  
E1  
e
L
0.50  
0.70  
0.020  
0.028  
L1  
α
0°  
5°  
0°  
5°  
43/69  
Ordering information  
M29W064FT, M29W064FB  
9
Ordering information  
Table 19. Ordering information scheme  
Example:  
M29W064FB  
70  
N
3
F
Device type  
M29  
Operating voltage  
W = VCC = 2.7 to 3.6 V  
Device function  
064F = 64 Mbit (x 8 / x 16), boot block  
Array matrix  
T = Top boot  
B = Bottom boot  
Speed  
60 = 60 ns  
70 = 70 ns  
Package  
N = TSOP48: 12 x 20 mm  
Temperature range  
3 = automotive grade certified(1), 40 to 125 °C  
Option  
E = ECOPACK package, standard packing  
F = ECOPACK package, tape & reel packing  
1. Qualified and characterized according to AEC Q100 & Q003 or equivalent, advanced screening according  
to AEC Q001 & Q002 or equivalent.  
Note:  
This product is also available with the extended block factory locked. For further details and  
ordering information contact your nearest Numonyx sales office.  
Devices are shipped from the factory with the memory content bits erased to ‘1’. For a list of  
available options (speed, package, etc.) or for further information on any aspect of this  
device, please contact your nearest Numonyx sales office.  
44/69  
M29W064FT, M29W064FB  
Block addresses  
Appendix A  
Block addresses  
Table 20. Top boot block addresses, M29W064FT  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
(x 16)  
0
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh(1)  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
000000h–007FFFh(1)  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
1
Protection group  
2
3
4
5
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
45/69  
Block addresses  
M29W064FT, M29W064FB  
(x 16)  
Table 20. Top boot block addresses, M29W064FT (continued)  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
46/69  
M29W064FT, M29W064FB  
Block addresses  
(x 16)  
Table 20. Top boot block addresses, M29W064FT (continued)  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
4D0000h–4DFFFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
5A0000h–5AFFFFh  
5B0000h–5BFFFFh  
5C0000h–5CFFFFh  
5D0000h–5DFFFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
47/69  
Block addresses  
M29W064FT, M29W064FB  
(x 16)  
Table 20. Top boot block addresses, M29W064FT (continued)  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
96  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
6B0000h–6BFFFFh  
6C0000h–6CFFFFh  
6D0000h–6DFFFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
790000h–79FFFFh  
7A0000h–7AFFFFh  
7B0000h–7BFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
97  
Protection group  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
48/69  
M29W064FT, M29W064FB  
Block addresses  
(x 16)  
Table 20. Top boot block addresses, M29W064FT (continued)  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
64/32  
64/32  
64/32  
8/4  
7C0000h–7CFFFFh  
7D0000h–7DFFFFh  
7E0000h–7EFFFFh  
7F0000h–7F1FFFh  
7F2000h–7F3FFFh  
7F4000h–7F5FFFh  
7F6000h–7F7FFFh  
7F8000h–7F9FFFh  
7FA000h–7FBFFFh  
7FC000h–7FDFFFh  
7FE000h–7FFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
8/4  
8/4  
Protection group  
8/4  
8/4  
8/4  
8/4  
8/4  
1. Used as the extended block addresses in extended block mode.  
49/69  
Block addresses  
M29W064FT, M29W064FB  
(x 16)  
Table 21. Bottom boot block addresses, M29W064FB  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
0
8/4  
000000h-001FFFh(1)  
002000h-003FFFh  
004000h-005FFFh  
006000h-007FFFh  
008000h-009FFFh  
00A000h-00BFFFh  
00C000h-00DFFFh  
00E000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
000000h–000FFFh(1)  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
1
8/4  
2
8/4  
3
8/4  
4
8/4  
5
8/4  
Protection group  
6
8/4  
7
8/4  
8
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
50/69  
M29W064FT, M29W064FB  
Block addresses  
(x 16)  
Table 21. Bottom boot block addresses, M29W064FB (continued)  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
51/69  
Block addresses  
M29W064FT, M29W064FB  
(x 16)  
Table 21. Bottom boot block addresses, M29W064FB (continued)  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
400000h-40FFFFh  
410000h-41FFFFh  
420000h-42FFFFh  
430000h-43FFFFh  
440000h-44FFFFh  
450000h-45FFFFh  
460000h-46FFFFh  
470000h-47FFFFh  
480000h-48FFFFh  
490000h-49FFFFh  
4A0000h-4AFFFFh  
4B0000h-4BFFFFh  
4C0000h-4CFFFFh  
4D0000h-4DFFFFh  
4E0000h-4EFFFFh  
4F0000h-4FFFFFh  
500000h-50FFFFh  
510000h-51FFFFh  
520000h-52FFFFh  
530000h-53FFFFh  
540000h-54FFFFh  
550000h-55FFFFh  
560000h-56FFFFh  
570000h-57FFFFh  
580000h-58FFFFh  
590000h-59FFFFh  
5A0000h-5AFFFFh  
5B0000h-5BFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
52/69  
M29W064FT, M29W064FB  
Block addresses  
(x 16)  
Table 21. Bottom boot block addresses, M29W064FB (continued)  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
99  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
5C0000h-5CFFFFh  
5D0000h-5DFFFFh  
5E0000h-5EFFFFh  
5F0000h-5FFFFFh  
600000h-60FFFFh  
610000h-61FFFFh  
620000h-62FFFFh  
630000h-63FFFFh  
640000h-64FFFFh  
650000h-65FFFFh  
660000h-66FFFFh  
670000h-67FFFFh  
680000h-68FFFFh  
690000h-69FFFFh  
6A0000h-6AFFFFh  
6B0000h-6BFFFFh  
6C0000h-6CFFFFh  
6D0000h-6DFFFFh  
6E0000h-6EFFFFh  
6F0000h-6FFFFFh  
700000h-70FFFFh  
710000h-71FFFFh  
720000h-72FFFFh  
730000h-73FFFFh  
740000h-74FFFFh  
750000h-75FFFFh  
760000h-76FFFFh  
770000h-77FFFFh  
780000h-78FFFFh  
790000h-79FFFFh  
7A0000h-7AFFFFh  
7B0000h-7BFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
53/69  
Block addresses  
M29W064FT, M29W064FB  
(x 16)  
Table 21. Bottom boot block addresses, M29W064FB (continued)  
Block  
Kbytes/Kwords  
Protection block group  
(x 8)  
131  
132  
133  
134  
64/32  
64/32  
64/32  
64/32  
7C0000h-7CFFFFh  
7D0000h-7DFFFFh  
7E0000h-7EFFFFh  
7F0000h-7FFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
Protection group  
1. Used as the extended block addresses in extended block mode.  
54/69  
M29W064FT, M29W064FB  
Common Flash interface (CFI)  
Appendix B  
Common Flash interface (CFI)  
The common Flash interface is a JEDEC approved, standardized data structure that can be  
read from the Flash memory device. It allows a system software to query the device to  
determine various electrical and timing parameters, density information and functions  
supported by the memory. The system can interface easily with the device, enabling the  
software to upgrade itself when necessary.  
When the CFI Query command is issued the device enters CFI query mode and the data  
structure is read from the memory. Tables 22, 23, 24, 25, 26, and 27, show the addresses  
used to retrieve the data.  
The CFI data structure also contains a security area where a 64-bit unique security number  
is written (see Table 27: Security code area). This area can be accessed only in read mode  
by the final user. It is impossible to change the security number after it has been written by  
Numonyx.  
(1)  
Table 22. Query structure overview  
Address  
Sub-section name  
Description  
x 16  
x 8  
10h  
1Bh  
27h  
20h CFI query identification string  
36h System interface information  
4Eh Device geometry definition  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Primary algorithm-specific extended  
query table  
Additional information specific to the  
primary algorithm (optional)  
40h  
61h  
80h  
C2h Security code area  
64-bit unique device number  
1. Query data are always presented on the lowest order data outputs.  
55/69  
Common Flash interface (CFI)  
M29W064FT, M29W064FB  
(1)  
Table 23. CFI query identification string  
Address  
Data  
Description  
Value  
x 16  
x 8  
10h  
11h  
12h  
13h  
14h  
20h 0051h  
‘Q’  
‘R’  
‘Y’  
22h 0052h Query unique ASCII string ‘QRY’  
24h 0059h  
26h 0002h  
Primary algorithm command set and control interface ID code  
16-bit ID code defining a specific algorithm  
AMD  
compatible  
28h 0000h  
15h 2Ah 0040h  
16h 2Ch 0000h  
17h 2Eh 0000h  
Address for primary algorithm extended query table (see  
Table 26)  
P = 40h  
NA  
Alternate vendor command set and control interface ID code  
second vendor - specified algorithm supported  
18h  
19h  
30h 0000h  
32h 0000h  
Address for alternate algorithm extended query table  
NA  
1Ah 34h 0000h  
1. Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
Table 24. CFI query system interface information  
Address  
Data  
Description  
Value  
2.7 V  
x 16 x 8  
VCC logic supply minimum program/erase voltage  
1Bh 36h 0027h bit 7 to 4BCD value in volts  
bit 3 to 0BCD value in 100 mV  
VCC logic supply maximum program/erase voltage  
1Ch 38h 0036h bit 7 to 4BCD value in volts  
bit 3 to 0BCD value in 100 mV  
3.6 V  
VPP [programming] supply minimum program/erase voltage  
1Dh 3Ah 00B5h bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
11.5 V  
12.5 V  
VPP [programming] supply maximum program/erase voltage  
1Eh 3Ch 00C5h bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
1Fh 3Eh 0004h Typical timeout per single byte/word program = 2n µs  
20h 40h 0000h Typical timeout for minimum size write buffer program = 2n µs  
21h 42h 000Ah Typical timeout per individual block erase = 2n ms  
22h 44h 0000h Typical timeout for full chip erase = 2n ms  
16 µs  
NA  
1 s  
NA  
23h 46h 0004h Maximum timeout for byte/word program = 2n times typical  
24h 48h 0000h Maximum timeout for write buffer program = 2n times typical  
25h 4Ah 0003h Maximum timeout per individual block erase = 2n times typical  
26h 4Ch 0000h Maximum timeout for chip erase = 2n times typical  
256 µs  
NA  
8 s  
NA  
56/69  
M29W064FT, M29W064FB  
Common Flash interface (CFI)  
(1)  
Table 25. Device geometry definition  
Address  
Data  
Description  
Value  
x 16  
x 8  
27h  
4Eh  
0017h Device size = 2n in number of bytes  
8 Mbytes  
28h  
29h  
50h  
52h  
0002h  
x 8, x 16  
Async.  
Flash device interface code description  
0000h  
2Ah  
2Bh  
54h  
56h  
0004h  
Maximum number of bytes in multi-byte program or page = 2n 16 bytes  
0000h  
Number of erase block regions. It specifies the number of  
regions containing contiguous erase blocks of the same size.  
2Ch  
58h  
0002h  
2
2Dh  
2Eh  
5Ah  
5Ch  
0007h Region 1 information  
8
0000h Number of erase blocks of identical size = 0007h+1  
2Fh  
30h  
5Eh  
60h  
0020h Region 1 information  
8 Kbytes  
127  
0000h Block size in region 1 = 0020h * 256 byte  
31h  
32h  
62h  
64h  
007Eh Region 2 information  
0000h Number of erase blocks of identical size= 007Eh+1  
33h  
34h  
66h  
68h  
0000h Region 2 information  
64 Kbytes  
0001h Block size in region 2 = 0100h * 256 byte  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h Region 3 information  
0000h Number of erase blocks of identical size=007Fh+1  
0000h Region 3 information  
0
0
0000h Block size in region 3 = 0000h * 256 bytes  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h Region 4 information  
0000h Number of erase blocks of identical size=007Fh+1  
0000h Region 4 information  
0
0
0000h Block size in region 4 = 0000h * 256 bytes  
1. For bottom boot devices, erase block region 1 is located from address 000000h to 007FFFh and erase  
block region 2 from address 008000h to 3FFFFFh.  
For top boot devices, erase block region 1 is located from address 000000h to 3F7FFFh and erase block  
region 2 from address 3F8000h to 3FFFFFh.  
57/69  
Common Flash interface (CFI)  
M29W064FT, M29W064FB  
Table 26. Primary algorithm-specific extended query table  
Address  
Data  
Description  
Value  
x 16  
x 8  
40h  
41h  
42h  
43h  
44h  
80h 0050h  
82h 0052h  
84h 0049h  
‘P’  
Primary algorithm extended query table unique ASCII string  
‘PRI’  
‘R’  
‘I’  
86h 0031h Major version number, ASCII  
88h 0033h Minor version number, ASCII  
‘1’  
‘3’  
Address sensitive unlock (bits 1 to 0)  
8Ah 0000h 00h = required, 01h = not required  
Silicon revision number (bits 7 to 2)  
45h  
Yes  
Erase suspend  
8Ch 0002h  
46h  
47h  
48h  
49h  
2
4
00h = not supported, 01h = read only, 02 = read and write  
Block protection  
8Eh 0004h  
90h 0001h  
92h 0004h  
00h = not supported, x = number of blocks per protection group  
Temporary block unprotect  
Yes  
04  
00h = not supported, 01h = supported  
Block protect /unprotect  
04 = M29W064F  
4Ah  
4Bh  
94h 0000h Simultaneous operations, 00h = not supported  
96h 0000h Burst mode: 00h = not supported, 01h = supported  
No  
No  
Page mode: 00h = not supported, 01h = 4 page word, 02h = 8  
4Ch  
98h 0001h  
page word  
Yes  
VPP supply minimum program/erase voltage  
4Dh  
9Ah 00B5h bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
11.5 V  
VPP supply maximum program/erase voltage  
4Eh  
4Fh  
50h  
9Ch 00C5h bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
12.5 V  
Top/bottom boot block flag  
0002h  
9Eh  
02h = bottom boot device  
03h = top boot device  
0003h  
Program suspend  
A0h 0001h 00h = not supported  
01h = supported  
Supported  
58/69  
M29W064FT, M29W064FB  
Common Flash interface (CFI)  
Description  
Table 27. Security code area  
Address  
Data  
x 16  
x 8  
61h  
62h  
63h  
64h  
C3h, C2h  
C5h, C4h  
C7h, C6h  
C9h, C8h  
XXXX  
XXXX  
XXXX  
XXXX  
64 bit: unique device number  
59/69  
Extended memory block  
M29W064FT, M29W064FB  
Appendix C  
Extended memory block  
The M29W064F has an extra block, the extended block, that can be accessed using a  
dedicated command.  
This extended block is 128 words in x 16 mode and 256 bytes in x 8 mode. It is used as a  
security block to provide a permanent security identification number) or to store additional  
information.  
The extended block is either factory locked or customer lockable, its status is indicated by bit  
DQ7. This bit is permanently set to either ‘1’ or ‘0’ at the factory and cannot be changed.  
When set to ‘1’, it indicates that the device is factory locked and the extended block is  
protected. When set to ‘0’, it indicates that the device is customer lockable and the extended  
block is unprotected. Bit DQ7 being permanently locked to either ‘1’ or ‘0’ is another security  
feature which ensures that a customer lockable device cannot be used instead of a factory  
locked one.  
Bit DQ7 is the most significant bit in the extended block verify code and a specific procedure  
must be followed to read it. See ‘extended memory block verify code’ in Table 4: Bus  
operations, BYTE = V and Table 5: Bus operations, BYTE = V , for details of how to read  
IL  
IH  
bit DQ7.  
The extended block can only be accessed when the device is in extended block mode. For  
details of how the extended block mode is entered and exited, refer to the Section 4.3.1:  
Enter Extended Block command and Section 4.3.2: Exit Extended Block command, and to  
Table 6 and Table 7: Commands, 8-bit mode, BYTE = V .  
IL  
C.1  
C.2  
Factory locked extended block  
In devices where the extended block is factory locked, the security identification number is  
written to the extended block address space (see Table 28: Extended block address and  
data) in the factory. The DQ7 bit is set to ‘1’ and the extended block cannot be unprotected.  
Customer lockable extended block  
A device where the extended block is customer lockable is delivered with the DQ7 bit set to  
‘0’ and the extended block unprotected. It is up to the customer to program and protect the  
extended block but care must be taken because the protection of the extended block is not  
reversible.  
There are two ways of protecting the extended block:  
Issue the Enter Extended Block command to place the device in extended block mode,  
then use the in-system technique with RP either at V or at V (refer to Appendix D,  
IH  
ID  
Section D.2: In-system technique and to the corresponding flowcharts, Figure 16 and  
Figure 17, for a detailed explanation of the technique)  
Issue the Enter Extended Block command to place the device in extended block mode,  
then use the programmer technique (refer to Appendix D, Section D.1: Programmer  
technique and to the corresponding flowcharts, Figure 14 and Figure 15, for a detailed  
explanation of the technique).  
Once the extended block is programmed and protected, the Exit Extended Block command  
must be issued to exit the extended block mode and return the device to read mode.  
60/69  
M29W064FT, M29W064FB  
Extended memory block  
Table 28. Extended block address and data  
Address  
Data  
x 8  
000000h-00007Fh 000000h-00003Fh Security identification number  
000080h-0000FFh 000040h-00007Fh Unavailable  
x 16  
Factory locked  
Customer lockable  
Determined by customer  
61/69  
Block protection  
M29W064FT, M29W064FB  
Appendix D  
Block protection  
Block protection can be used to prevent any operation from modifying the data stored in the  
memory. The blocks are protected in groups, refer to Appendix A: Block addresses, Table 20  
and Table 21 for details of the protection groups. Once protected, program and erase  
operations within the protected group fail to change the data.  
There are three techniques that can be used to control block protection, these are the  
programmer technique, the in-system technique and temporary unprotection. Temporary  
unprotection is controlled by the reset/block temporary unprotection pin, RP; this is  
described in the Section 2: Signal descriptions.  
D.1  
Programmer technique  
The programmer technique uses high (V ) voltage levels on some of the bus pins. These  
ID  
cannot be achieved using a standard microprocessor bus, therefore the technique is  
recommended only for use in programming equipment.  
To protect a group of blocks follow the flowchart in Figure 14: Programmer equipment group  
protect flowchart. To unprotect the whole chip it is necessary to protect all of the groups first,  
then all groups can be unprotected at the same time. To unprotect the chip follow Figure 15:  
Programmer equipment chip unprotect flowchart. Table 29: Programmer technique bus  
operations, BYTE = V or V , gives a summary of each operation.  
IH  
IL  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not abort the procedure before  
reaching the end. Chip unprotect can take several seconds and a user message should be  
provided to show that the operation is progressing.  
D.2  
In-system technique  
The in-system technique requires a high voltage level on the reset/blocks temporary  
unprotect pin, RP. This can be achieved without violating the maximum ratings of the  
components on the microprocessor bus, therefore this technique is suitable for use after the  
memory has been fitted to the system.  
To protect a group of blocks follow the flowchart in Figure 16: In-system equipment group  
protect flowchart. To unprotect the whole chip it is necessary to protect all of the groups first,  
then all the groups can be unprotected at the same time. To unprotect the chip follow  
Figure 17: In-system equipment chip unprotect flowchart.  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not allow the microprocessor to  
service interrupts that will upset the timing and do not abort the procedure before reaching  
the end. Chip unprotect can take several seconds and a user message should be provided  
to show that the operation is progressing.  
Note:  
RP can be either at V or at V when using the in-system technique to protect the extended  
IH ID  
block.  
62/69  
M29W064FT, M29W064FB  
Block protection  
Table 29. Programmer technique bus operations, BYTE = V or V  
IH  
IL  
Address inputs  
Data inputs/outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
A0-A21  
A9 = VID, A12-A21 = block address,  
others = X  
Block (group)  
protect(1)  
VIL VID VIL pulse  
VID VID VIL pulse  
X
A9 = VID, A12 = VIH, A15 = VIH  
others = X  
Chip unprotect  
X
A0, A2, A3 = VIL, A1 = VIH, A6 = VIL,  
A9 = VID, A12-A21 = block address  
Pass = XX01h  
Retry = XX00h  
Block (group)  
protection verify  
VIL VIL  
VIH  
others = X  
A0, A2, A3 = VIL, A1 = VIH, A6 = VIH,  
A9 = VID, A12-A21 = block address  
Retry = XX01h  
Pass = XX00h  
Block (group)  
unprotection verify  
VIL VIL  
VIH  
others = X  
1. Block protection groups are shown in Appendix A, tables 20 and 21.  
63/69  
Block protection  
M29W064FT, M29W064FB  
Figure 14. Programmer equipment group protect flowchart  
START  
ADDRESS = GROUP ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4µs  
W = V  
IL  
Wait 100µs  
W = V  
IH  
E, G = V  
IH  
,
A0, A2, A3 = V , A1 =V  
,
IL  
IH  
A6 =V A9 = VID, Others = X  
IL,  
E = V  
IL  
Wait 4µs  
G = V  
IL  
Wait 60ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
IH  
E, G = V  
IH  
YES  
PASS  
A9 = V  
IH  
E, G = V  
IH  
AI11555  
FAIL  
1. Block protection groups are shown in Appendix A, tables 20 and 21.  
64/69  
M29W064FT, M29W064FB  
Figure 15. Programmer equipment chip unprotect flowchart  
Block protection  
START  
PROTECT ALL GROUPS  
n = 0  
CURRENT GROUP = 0  
(1)  
A6, A12, A15 = V  
IH  
E, G, A9 = V  
ID  
Wait 4µs  
W = V  
IL  
Wait 10ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT GROUP ADDRESS  
A0, A2, A3 = V , A1 =V  
,
IL  
IH  
A9 = VID, Others = X  
A6 =V  
IH,  
E = V  
IL  
Wait 4µs  
G = V  
IL  
INCREMENT  
CURRENT GROUP  
Wait 60ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
GROUP  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
A9 = V  
E, G = V  
IH  
IH  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI11556b  
1. Block protection groups are shown in Appendix A, tables 20 and 21.  
65/69  
Block protection  
Figure 16. In-system equipment group protect flowchart  
M29W064FT, M29W064FB  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = GROUP ADDRESS  
A0, A2, A3, A6 = V , A1 = V  
IL  
IH  
WRITE 60h  
ADDRESS = GROUP ADDRESS  
A0, A2, A3, A6 = V , A1 = V  
IL  
Wait 100µs  
WRITE 40h  
IH  
ADDRESS = GROUP ADDRESS  
A0, A2, A3, A6 = V , A1 = V  
IL  
IH  
Wait 4µs  
READ DATA  
ADDRESS = GROUP ADDRESS  
A0, A2, A3, A6 = V , A1 = V  
IL  
IH  
DATA  
NO  
=
01h  
YES  
RP = V  
++n  
= 25  
NO  
IH  
YES  
RP = V  
ISSUE READ/RESET  
COMMAND  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI11563  
1. Block protection groups are shown in Appendix A, tables 20 and 21.  
2. RP can be either at VIH or at VID when using the in-system technique to protect the extended block.  
66/69  
M29W064FT, M29W064FB  
Figure 17. In-system equipment chip unprotect flowchart  
Block protection  
START  
PROTECT ALL GROUPS  
n = 0  
CURRENT GROUP = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0, A2, A3, A6 = V , A1 = V  
IL  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0, A2, A3 = V , A1, A6 = V  
IL  
Wait 10ms  
WRITE 40h  
ADDRESS = CURRENT GROUP ADDRESS  
A0, A2, A3 = V , A1, A6 = V  
IL  
IH  
Wait 4µs  
INCREMENT  
CURRENT GROUP  
READ DATA  
ADDRESS = CURRENT GROUP ADDRESS  
A0, A2, A3 = V , A1, A6 = V  
IL  
IH  
DATA  
=
00h  
NO  
YES  
++n  
= 1000  
NO  
NO  
LAST  
GROUP  
YES  
YES  
RP = V  
IH  
RP = V  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI11564  
1. Block protection groups are shown in Appendix A, tables 20 and 21.  
67/69  
Revision history  
M29W064FT, M29W064FB  
10  
Revision history  
Table 30. Document revision history  
Date  
Revision  
Changes  
18-Mar-2008  
27-Mar-2008  
1
2
Initial release.  
Applied Numonyx branding.  
68/69  
M29W064FT, M29W064FB  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
69/69  

相关型号:

M29W064FB70N3F

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
NUMONYX

M29W064FB90N3E

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
NUMONYX

M29W064FB90N3F

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
NUMONYX

M29W064FT

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
NUMONYX

M29W064FT70N3E

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
NUMONYX

M29W064FT70N3F

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
NUMONYX

M29W064FT90N3E

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
NUMONYX

M29W064FT90N3F

64 Mbit (8 Mbit x 8 or 4 Mbit x 16, page, boot block) 3 V supply Flash memory
NUMONYX

M29W102

1 Mbit 64Kb x16, Boot Block Low Voltage Single Supply Flash Memory
STMICROELECTR

M29W102BB

1 Mbit 64Kb x16, Boot Block Low Voltage Single Supply Flash Memory
STMICROELECTR

M29W102BB45XN6

IC,EEPROM,NOR FLASH,64KX16,CMOS,TSSOP,40PIN,PLASTIC
STMICROELECTR

M29W102BB50N1

64KX16 FLASH 3V PROM, 50ns, PDSO40, 10 X 14 MM, PLASTIC, TSOP-40
STMICROELECTR