M29W641DU70ZA6 [NUMONYX]

暂无描述;
M29W641DU70ZA6
型号: M29W641DU70ZA6
厂家: NUMONYX B.V    NUMONYX B.V
描述:

暂无描述

文件: 总42页 (文件大小:641K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W641DH, M29W641DL  
M29W641DU  
64 Mbit (4Mb x16, Uniform Block)  
3V Supply Flash Memory  
PRODUCT PREVIEW  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Packages  
– V = 2.7V to 3.6V Core Power Supply  
CC  
– V  
= 1.8V to 3.6V for Input/Output  
CCQ  
– V =12 V for Fast Program (optional)  
PP  
ACCESS TIME: 70, 90, 100 and 120ns  
PROGRAMMING TIME  
– 10 µs typical  
– Double Word Program option  
128 UNIFORM, 32-KWord MEMORY BLOCKS  
PROGRAM/ERASE CONTROLLER  
– Embedded Program and Erase algorithms  
ERASE SUSPEND and RESUME MODES  
TSOP48 (N)  
12 x 20mm  
– Read and Program another Block during  
Erase Suspend  
UNLOCK BYPASS PROGRAM COMMAND  
– Faster Production/Batch Programming  
WRITE PROTECT OPTIONS  
FBGA  
– M29W641DH: WP Pin for Write Protection of  
Highest Address Block  
– M29W641DL: WP Pin for Write Protection of  
Lowest Address Block  
TFBGA63 (ZA)  
7 x 11mm  
– M29W641DU: No Write Protection  
TEMPORARY BLOCK UNPROTECTION  
MODE  
COMMON FLASH INTERFACE  
EXTENDED MEMORY BLOCK  
– Extra block used as security block or to store  
additional information  
LOW POWER CONSUMPTION  
– Standby and Automatic Standby  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 0020h  
– Device Code M29W641D: 22C7h  
April 2003  
1/42  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
M29W641DH, M29W641DL, M29W641DU  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4. TFGBA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data Inputs/Outputs (DQ8-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Reset/Block Temporary Unprotect (RP).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
V
V
V
V
(V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
PP  
PP  
Supply Voltage (2.7V to 3.6V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
CC  
Supply Voltage (1.8V to 3.6V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
CCQ  
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SS  
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Special Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Protect and Chip Unprotect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Protect and Chip Unprotect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Read/Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Unlock Bypass Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Unlock Bypass Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Chip Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2/42  
M29W641DH, M29W641DL, M29W641DU  
Enter Extended Block Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Exit Extended Block Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 14  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 5. Data Polling Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 6. Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 7. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 8. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 10. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 11. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 11. Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 12. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12. Reset/Block Temporary Unprotect AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 13. Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 13. Accelerated Program Timing Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 14. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . 25  
Table 14. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 25  
Figure 15. TFBGA63 - 7x11mm, 6x8 active ball array, 0.8mm pitch, Bottom view package outline 26  
Table 15. TFBGA63 - 7x11mm, 6x8 active ball array, 0.8mm pitch, Package Mechanical Data . . 26  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 16. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
APPENDIX A. BLOCK ADDRESSES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 17. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3/42  
M29W641DH, M29W641DL, M29W641DU  
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 18. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 19. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 20. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 21. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 22. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 23. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
APPENDIX C. EXTENDED MEMORY BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Factory Locked Extended Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Customer Lockable Extended Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 24. Extended Block Address and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
APPENDIX D. BLOCK PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 25. Programmer Technique Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. Programmer Equipment Group Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 17. Programmer Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18. In-System Equipment Group Protect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 19. In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 26. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 41  
4/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 2. Logic Diagram  
SUMMARY DESCRIPTION  
The M29W641D is a 64 Mbit (4Mb x16) non-vola-  
tile memory that can be read, erased and repro-  
grammed. These operations can be performed  
using a single, low voltage, 2.7V to 3.6V V sup-  
CC  
V
V
V
PP  
CC  
CCQ  
ply for the circuitry and a 1.8V to 3.6V V  
supply  
CCQ  
for the Input/Output pins. An optional 12 V V  
PP  
power supply is provided to speed up customer  
programming.  
22  
16  
On power-up the memory defaults to its Read  
mode where it can be read in the same way as a  
ROM or EPROM.  
The highest address block of the M29W641DH or  
the lowest address block of the M29W641DL can  
be protected from accidental programming or era-  
A0-A21  
DQ0-DQ15  
W
E
M29W641D  
G
sure using the WP pin (if WP = V ). The  
IL  
M29W641DU does not feature the WP pin.  
RB  
RP  
WP  
Each block can be erased independently so it is  
possible to preserve valid data while old data is  
erased. The blocks can be protected to prevent  
accidental Program or Erase commands from  
modifying the memory. Program and Erase com-  
mands are written to the Command Interface of  
the memory. An on-chip Program/Erase Controller  
simplifies the process of programming or erasing  
the memory by taking care of all of the special op-  
erations that are required to update the memory  
contents. The end of a program or erase operation  
can be detected and any error conditions identi-  
fied. The command set required to control the  
memory is consistent with JEDEC standards.  
V
SS  
AI06697b  
Table 1. Signal Names  
A0-A21  
Address Inputs  
The M29W641D has an extra block, the Extended  
Block, (of 32 KWords) that can be accessed using  
a dedicated command. The Extended Block can  
be protected and so is useful for storing security  
information. However the protection is not revers-  
ible, once protected the protection cannot be un-  
done.  
Chip Enable, Output Enable and Write Enable sig-  
nals control the bus operation of the memory.  
They allow simple connection to most micropro-  
cessors, often without additional logic.  
DQ0-DQ7  
Data Inputs/Outputs  
Data Inputs/Outputs  
DQ8-  
DQ15  
E
Chip Enable  
Output Enable  
Write Enable  
G
W
Reset/Block Temporary Unprotect  
(M29W641DH and M29W641DL only)  
The memory is offered in a 48-pin TSOP package  
(M29W641DL and M29W641DH) or in a 63-ball TF-  
BGA package (M29W641DU). All devices are deliv-  
ered with all the bits erased (set to 1).  
RP  
Ready/Busy Output (M29W641DU  
only)  
RB  
Write Protect  
WP  
V
CC  
Supply Voltage  
V
CCQ  
Supply Voltage for Input/Output  
Supply Voltage for Fast Program  
(optional)  
V
V
PP  
Ground  
SS  
5/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 3. TSOP Connections  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
A16  
V
V
CCQ  
SS  
DQ15  
DQ7  
DQ14  
DQ6  
A8  
DQ13  
DQ5  
A21  
A20  
W
DQ12  
DQ4  
RP  
12  
13  
37  
36  
V
CC  
M29W641D  
V
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
PP  
WP  
A19  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
24  
25  
A0  
AI06698  
6/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 4. TFGBA Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
NC  
NC  
NC  
NC  
(1)  
NC  
NC  
NC  
RB  
W
RP  
A21  
A3  
A4  
A7  
A17  
A6  
A9  
A8  
A13  
A12  
A14  
A15  
A16  
C
D
V
PP  
E
F
A2  
A1  
A0  
E
A18  
A10  
A5  
A20  
A19  
A11  
DQ2  
DQ5  
G
H
J
DQ0  
DQ8  
DQ9  
DQ1  
DQ7  
DQ14  
DQ13  
DQ6  
V
DQ10  
DQ11  
DQ3  
DQ12  
CCQ  
G
V
DQ15  
CC  
K
L
V
DQ4  
V
SS  
SS  
(1)  
(1)  
(1)  
(1)  
(1)  
NC  
NC  
NC  
NC  
(1)  
(1)  
(1)  
M
NC  
NC  
NC  
NC  
AI06879  
Note: 1. Balls are shorted together via the substrate but not connected to the die.  
7/42  
M29W641DH, M29W641DL, M29W641DU  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram, and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
comes high-impedance. See Table 13 and Figure  
12, Reset/Block Temporary Unprotect AC Charac-  
teristics.  
Address Inputs (A0-A21). The Address Inputs  
select the cells in the memory array to access dur-  
ing Bus Read operations. During Bus Write opera-  
tions they control the commands sent to the  
Command Interface of the Program/Erase Con-  
troller.  
Data Inputs/Outputs (DQ0-DQ7). The Data I/O  
outputs the data stored at the selected address  
during a Bus Read operation. During Bus Write  
operations they represent the commands sent to  
the Command Interface of the Program/Erase  
Controller.  
The use of an open-drain output allows the Ready/  
Busy pins from several memories to be connected  
to a single pull-up resistor. A Low will then indicate  
that one, or more, of the memories is busy.  
Reset/Block Temporary Unprotect (RP). The  
Reset/Block Temporary Unprotect pin can be  
used to apply a Hardware Reset to the memory or  
to temporarily unprotect all Blocks that have been  
protected.  
Note that if Write Protect (WP) is at V , then one  
IL  
of the two outermost blocks will remain protected  
even if RP is at V .  
ID  
Data Inputs/Outputs (DQ8-DQ15). The Data I/O  
outputs the data stored at the selected address  
during a Bus Read operation. During Bus Write  
operations the Command Register does not use  
these bits. When reading the Status Register  
these bits should be ignored.  
A Hardware Reset is achieved by holding Reset/  
Block Temporary Unprotect Low, V , for at least  
IL  
t
. After Reset/Block Temporary Unprotect  
PLPX  
goes High, V , the memory will be ready for Bus  
IH  
Read and Bus Write operations after t  
or  
PHEL  
t
, whichever occurs last. See Table 13 and  
RHEL  
Chip Enable (E). The Chip Enable, E, activates  
the memory, allowing Bus Read and Bus Write op-  
erations to be performed. When Chip Enable is  
Figure 12, Reset/Block Temporary Unprotect AC  
Characteristics, for more details.  
Holding RP at V will temporarily unprotect the  
ID  
High, V , all other pins are ignored.  
IH  
protected Blocks in the memory. Program and  
Erase operations on all blocks will be possible.  
Output Enable (G). The Output Enable, G, con-  
trols the Bus Read operation of the memory.  
The transition from V to V must be slower than  
IH ID  
t
.
PHPHH  
Write Enable (W). The Write Enable, W, controls  
the Bus Write operation of the memory’s Com-  
mand Interface.  
Write Protect (WP). The Write Protect pin is  
available in the M29W641DH and M29W641DL  
only. It provides a hardware method of protecting  
the highest address block for the M29W641DH  
and the lowest address block for the  
M29W641DL. The Write Protect pin must not be  
left floating or unconnected.  
V
(V ). When the V  
pin is raised to V  
PP PPH  
PP  
PP  
the memory automatically enters the Unlock By-  
pass mode. When the pin is returned to V or V  
IH  
IL  
normal operation resumes. During Unlock Bypass  
Program operations the memory draws I from  
PP  
the pin to supply the programming circuits. See the  
description of the Unlock Bypass command in the  
Command Interface section. The transitions from  
V
than t  
to V  
VHVPP  
and from V  
, see Figure 13.  
to V must be slower  
IH  
PP  
PP IH  
When Write Protect is Low, V , the memory pro-  
IL  
Never raise the pin to V from any mode except  
PP  
tects either the highest or lowest address block;  
Program and Erase operations in this block are ig-  
nored while Write Protect is Low.  
Read mode, otherwise the memory may be left in  
an indeterminate state.  
V
Supply Voltage (2.7V to 3.6V). V  
pro-  
CC  
CC  
When Write Protect is High, V , the memory re-  
IH  
vides the power supply for all operations (Read,  
Program and Erase).  
The Command Interface is disabled when the V  
verts to the previous protection status for this  
block. Program and Erase operations can now  
modify the data in this block unless the block is  
protected using Block Protection.  
Ready/Busy Output (RB). The Ready/Busy pin  
is an open-drain output that can be used to identify  
when the device is performing a Program or Erase  
operation. During Program or Erase operations  
CC  
Supply Voltage is less than the Lockout Voltage,  
. This prevents Bus Write operations from ac-  
V
LKO  
cidentally damaging the data during power up,  
power down and power surges. If the Program/  
Erase Controller is programming or erasing during  
this time then the operation aborts and the memo-  
ry contents being altered will be invalid.  
Ready/Busy is Low, V . Ready/Busy is high-im-  
OL  
pedance during Read mode, Auto Select mode  
and Erase Suspend mode.  
V
Supply Voltage (1.8V to 3.6V). V  
pro-  
CCQ  
CCQ  
vides the power supply to the I/O pins and enables  
all Outputs to be powered independently of V  
After a Hardware Reset, Bus Read and Bus Write  
operations cannot begin until Ready/Busy be-  
.
CC  
8/42  
M29W641DH, M29W641DL, M29W641DU  
V
can be tied to V  
or can use a separate  
0.1µF ceramic capacitor close to the pin for  
current surge protection (high frequency, in-  
herently low inductance capacitors should be  
as close as possible to the device). See Figure  
8, AC Measurement Load Circuit. The PCB  
trace widths should be sufficient to carry the  
CCQ  
CC  
supply.  
V
Ground. V is the reference for all voltage  
SS  
SS  
measurements. The device features two V pins  
SS  
which must be both connected to the system  
ground.  
Note: Each device in a system should have  
required V program and erase currents. See  
PP  
Table 9, DC Characteristics.  
V
, V  
and V decoupled from V with a  
CCQ PP SS  
CC  
Table 2. Bus Operations  
Address Inputs  
A0-A21  
Data Inputs/Outputs  
DQ15-DQ0  
Operation  
Bus Read  
E
G
W
V
V
V
IH  
Cell Address  
Data Output  
Data Input  
Hi-Z  
IL  
IL  
IL  
IH  
IH  
V
V
V
V
V
Bus Write  
Command Address  
IL  
Output Disable  
Standby  
X
X
IH  
V
IH  
X
X
X
Hi-Z  
A0 = V , A1 = V , A9 = V ,  
Read Manufacturer  
Code  
IL  
IL  
ID  
V
V
V
V
0020h  
22C7h  
IL  
IL  
IL  
IL  
IH  
IH  
Others V or V  
IL  
IH  
A0 = V , A1 = V , A9 = V ,  
IH  
IL  
ID  
V
V
Read Device Code  
Others V or V  
IL  
IH  
98h (factory locked, WP protects  
highest address block)  
18h (not factory locked, WP  
protects highest address  
block)  
A0 = V , A1 = V , A6 = V ,  
Extended Memory  
Block Verify Code  
IH  
IH  
IL  
V
IL  
V
V
IH  
IL  
A9 = V , Others V or V  
IH  
ID  
IL  
88h (factory locked, WP protects  
lowest block)  
08h (not factory locked, WP  
protects lowest block)  
Note: X = V or V  
.
IH  
IL  
9/42  
M29W641DH, M29W641DL, M29W641DU  
BUS OPERATIONS  
There are five standard bus operations that control  
the device. These are Bus Read, Bus Write, Out-  
put Disable, Standby and Automatic Standby. See  
Table 2, Bus Operations, for a summary. Typically  
glitches of less than 5ns on Chip Enable or Write  
Enable are ignored by the memory and do not af-  
fect bus operations.  
be held within V ± 0.2V. For the Standby current  
level see Table 9, DC Characteristics.  
During program or erase operations the memory  
will continue to use the Program/Erase Supply  
CC  
Current, I  
, for Program or Erase operations un-  
CC3  
til the operation completes.  
Automatic Standby. If CMOS levels (V ± 0.2V)  
CC  
Bus Read. Bus Read operations read from the  
memory cells, or specific registers in the Com-  
mand Interface. A valid Bus Read operation in-  
volves setting the desired address on the Address  
are used to drive the bus and the bus is inactive for  
300ns or more the memory enters Automatic  
Standby where the internal Supply Current is re-  
duced to the Standby Supply Current, I  
. The  
CC2  
Inputs, applying a Low signal, V , to Chip Enable  
IL  
Data Inputs/Outputs will still output data if a Bus  
Read operation is in progress.  
Special Bus Operations  
Additional bus operations can be performed to  
read the Electronic Signature and also to apply  
and remove Block Protection. These bus opera-  
tions are intended for use by programming equip-  
ment and are not usually used in applications.  
and Output Enable and keeping Write Enable  
High, V . The Data Inputs/Outputs will output the  
IH  
value, see Figure 9, Read Mode AC Waveforms,  
and Table 10, Read AC Characteristics, for details  
of when the output becomes valid.  
Bus Write. Bus Write operations write to the  
Command Interface. A valid Bus Write operation  
begins by setting the desired address on the Ad-  
dress Inputs. The Address Inputs are latched by  
the Command Interface on the falling edge of Chip  
Enable or Write Enable, whichever occurs last.  
The Data Inputs/Outputs are latched by the Com-  
mand Interface on the rising edge of Chip Enable  
or Write Enable, whichever occurs first. Output En-  
They require V to be applied to some pins.  
ID  
Electronic Signature. The memory has two  
codes, the manufacturer code and the device  
code, that can be read to identify the memory.  
These codes can be read by applying the signals  
listed in Table 2, Bus Operations.  
able must remain High, V , during the whole Bus  
Block Protect and Chip Unprotect. Groups  
of  
IH  
Write operation. See Figure 10 and Figure 11,  
Write AC Waveforms, and Table 11 and Table 12,  
Write AC Characteristics, for details of the timing  
requirements.  
Output Disable. The Data Inputs/Outputs are in  
the high impedance state when Output Enable is  
blocks can be protected against accidental Pro-  
gram or Erase. The whole chip can be unprotected  
to allow the data inside the blocks to be changed.  
Write Protect (WP) can be used to protect one of  
the outermost blocks. When Write Protect (WP) is  
at V one of the two outermost blocks is protect-  
IL  
High, V .  
ed and remains protected regardless of the Block  
Protection Status or the Reset/Block Temporary  
Unprotect pin status. For the M29W641DH, it is  
the highest addressed block that can be protect-  
ed. For the M29W641DL, it is the lowest.  
IH  
Standby. When Chip Enable is High, V , the  
IH  
memory enters Standby mode and the Data In-  
puts/Outputs pins are placed in the high-imped-  
ance state. To reduce the Supply Current to the  
Standby Supply Current, I  
, Chip Enable should  
Block Protect and Chip Unprotect operations are  
described in Appendix D.  
CC2  
10/42  
M29W641DH, M29W641DL, M29W641DU  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. Failure to observe a valid sequence of Bus  
Write operations will result in the memory return-  
ing to Read mode. The long command sequences  
are imposed to maximize data security.  
vice is in the Read Array mode, or when the device  
is in Autoselected mode.  
One Bus Write cycle is required to issue the Read  
CFI Query Command. Once the command is is-  
sued subsequent Bus Read operations read from  
the Common Flash Interface Memory Area.  
The Read/Reset command must be issued to re-  
turn the device to the previous mode (the Read Ar-  
ray mode or Autoselected mode). A second Read/  
Reset command would be needed if the device is  
to be put in the Read Array mode from Autoselect-  
ed mode.  
See Table 3 for a summary of the commands.  
Read/Reset Command  
The Read/Reset command returns the memory to  
its Read mode where it behaves like a ROM or  
EPROM. It also resets the errors in the Status  
Register. Either one or three Bus Write operations  
can be used to issue the Read/Reset command.  
The Read/Reset command can be issued, be-  
tween Bus Write cycles before the start of a pro-  
gram or erase operation, to return the device to  
read mode. If the Read/Reset command is issued  
during the timeout of a Block erase operation then  
the memory will take up to 10µs to abort. During  
the abort period no valid data can be read from the  
memory. The Read/Reset command will not abort  
an Erase operation when issued while in Erase  
Suspend.  
See Appendix B, Table 18 to Table 23 for details  
on the information contained in the Common Flash  
Interface (CFI) memory area.  
Program Command  
The Program command can be used to program a  
value to one address in the memory array at a  
time. The command requires four Bus Write oper-  
ations, the final write operation latches the ad-  
dress and data, and starts the Program/Erase  
Controller.  
If the address falls in a protected block then the  
Program command is ignored, the data remains  
unchanged. The Status Register is never read and  
no error condition is given.  
Auto Select Command  
The Auto Select command is used to read the  
Manufacturer Code, the Device Code, the Block  
Protection Status and the Extended Memory Block  
Verify Code. Three consecutive Bus Write opera-  
tions are required to issue the Auto Select com-  
mand. Once the Auto Select command is issued  
the memory remains in Auto Select mode until a  
Read/Reset command is issued. Read CFI Query  
and Read/Reset commands are accepted in Auto  
Select mode, all other commands are ignored.  
During the program operation the memory will ig-  
nore all commands. It is not possible to issue any  
command to abort or pause the operation. Typical  
program times are given in Table 4. Bus Read op-  
erations during the program operation will output  
the Status Register on the Data Inputs/Outputs.  
See the section on the Status Register for more  
details.  
After the program operation has completed the  
memory will return to the Read mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
In Auto Select mode the Manufacturer Code can  
be read using a Bus Read operation with A0 = V  
IL  
and A1 = V . The other address bits may be set to  
IL  
either V or V . The Manufacturer Code for ST-  
IL  
IH  
Microelectronics is 0020h.  
The Device Code can be read using a Bus Read  
Note that the Program command cannot change a  
bit set at ’0’ back to ’1’. One of the Erase Com-  
mands must be used to set all the bits in a block or  
in the whole memory from ’0’ to ’1’.  
operation with A0 = V and A1 = V . The other  
IH  
IL  
address bits may be set to either V or V . The  
IL  
IH  
Device Code for the M29W641D is 22C7h.  
The Block Protection Status of each block can be  
Fast Program Commands  
read using a Bus Read operation with A0 = V ,  
IL  
There is a Fast Program command available to im-  
prove the programming throughput, by writing sev-  
eral adjacent words or bytes in parallel: the Double  
Word Program command.  
Double Word Program Command. The Double  
Word Program command is used to write a page  
of two adjacent words in parallel. The two words  
must differ only for the address A0.  
A1 = V , and A12-A21 specifying the address of  
IH  
the block. The other address bits may be set to ei-  
ther V or V . If the addressed block is protected  
IL  
IH  
then 01h is output on Data Inputs/Outputs DQ0-  
DQ7, otherwise 00h is output.  
Read CFI Query Command  
The Read CFI Query Command is used to read  
data from the Common Flash Interface (CFI)  
Memory Area. This command is valid when the de-  
Three bus write cycles are necessary to issue the  
Double Word Program command.  
11/42  
M29W641DH, M29W641DL, M29W641DU  
The first bus cycle sets up the Double Word  
dress and data, and starts the Program/Erase  
Controller.  
Program Command.  
The second bus cycle latches the Address and  
A Program operation initiated by issuing the Un-  
lock Bypass Program command is identical to a  
Program operation initiated by issuing the Pro-  
gram command. It cannot be aborted and a Bus  
Read operation will output the Status Register.  
See the Program Command paragraph for further  
details.  
the Data of the first word to be written.  
The third bus cycle latches the Address and the  
Data of the second word to be written and starts  
the Program/Erase Controller.  
Only one bank can be programmed at any one  
time. The other bank must be in Read mode or  
Erase Suspend.  
Unlock Bypass Reset Command  
The Unlock Bypass Reset command can be used  
to return to Read/Reset mode from Unlock Bypass  
Mode. Two Bus Write operations are required to  
issue the Unlock Bypass Reset command. Read/  
Reset command does not exit from Unlock Bypass  
Mode.  
Programming should not be attempted when V  
PP  
is not at V  
.
PPH  
After programming has started, Bus Read opera-  
tions in the Bank being programmed output the  
Status Register content, while Bus Read opera-  
tions to the other Bank output the contents of the  
memory array.  
After the program operation has completed the  
memory will return to the Read mode, unless an  
error has occurred. When an error occurs Bus  
Read operations to the Bank where the command  
was issued will continue to output the Status Reg-  
ister. A Read/Reset command must be issued to  
reset the error condition and return to Read mode.  
Note that the Fast Program commands cannot  
change a bit set at ’0’ back to ’1’. One of the Erase  
Commands must be used to set all the bits in a  
block or in the whole memory from ’0’ to ’1’.  
Typical Program times are given in Table 4, Pro-  
gram, Erase Times and Program, Erase Endur-  
ance Cycles.  
Chip Erase Command  
The Chip Erase command can be used to erase  
the entire chip. Six Bus Write operations are re-  
quired to issue the Chip Erase Command and start  
the Program/Erase Controller.  
If any blocks are protected then these are ignored  
and all the other blocks are erased. If all of the  
blocks are protected the Chip Erase operation ap-  
pears to start but will terminate within about 100µs,  
leaving the data unchanged. No error condition is  
given when protected blocks are ignored.  
During the erase operation the memory will ignore  
all commands, including the Erase Suspend com-  
mand. It is not possible to issue any command to  
abort the operation. Typical chip erase times are  
given in Table 4. All Bus Read operations during  
the Chip Erase operation will output the Status  
Register on the Data Inputs/Outputs. See the sec-  
tion on the Status Register for more details.  
After the Chip Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read Mode.  
Unlock Bypass Command  
The Unlock Bypass command is used in conjunc-  
tion with the Unlock Bypass Program command to  
program the memory faster than with the standard  
program commands. When the cycle time to the  
device is long (as with some EPROM program-  
mers) considerable time saving can be made by  
using these commands. Three Bus Write opera-  
tions are required to issue the Unlock Bypass  
command.  
Once the Unlock Bypass command has been is-  
sued the memory enters Unlock Bypass mode.  
When in this mode the memory can be read as if  
in Read mode.  
The Chip Erase Command sets all of the bits in un-  
protected blocks of the memory to ’1’. All previous  
data is lost.  
Block Erase Command  
The Block Erase command can be used to erase  
a list of one or more blocks. Six Bus Write opera-  
tions are required to select the first block in the list.  
Each additional block in the list can be selected by  
repeating the sixth Bus Write operation using the  
address of the additional block. The Block Erase  
operation starts the Program/Erase Controller  
about 50µs after the last Bus Write operation.  
Once the Program/Erase Controller starts it is not  
possible to select any more blocks. Each addition-  
al block must therefore be selected within 50µs of  
When V  
is applied to the V pin the memory  
PP  
PPH  
automatically enters the Unlock Bypass mode and  
the Unlock Bypass Program command can be is-  
sued immediately.  
Unlock Bypass Program Command  
The Unlock Bypass Program command can be  
used to program one address in the memory array  
at a time. The command requires two Bus Write  
operations, the final write operation latches the ad-  
12/42  
M29W641DH, M29W641DL, M29W641DU  
the lowest address block. The 50µs timer restarts  
when an additional block is selected. The Status  
Register can be read after the sixth Bus Write op-  
eration. See the Status Register section for details  
on how to identify if the Program/Erase Controller  
has started the Block Erase operation.  
If any selected blocks are protected then these are  
ignored and all the other selected blocks are  
erased. If all of the selected blocks are protected  
the Block Erase operation appears to start but will  
terminate within about 100µs, leaving the data un-  
changed. No error condition is given when protect-  
ed blocks are ignored.  
During the Block Erase operation the memory will  
ignore all commands except the Erase Suspend  
command. Typical block erase times are given in  
Table 4. All Bus Read operations during the Block  
Erase operation will output the Status Register on  
the Data Inputs/Outputs. See the section on the  
Status Register for more details.  
block then the Program command is ignored and  
the data remains unchanged. The Status Register  
is not read and no error condition is given. Read-  
ing from blocks that are being erased will output  
the Status Register.  
It is also possible to issue the Auto Select, Read  
CFI Query and Unlock Bypass commands during  
an Erase Suspend. The Read/Reset command  
must be issued to return the device to Read Array  
mode before the Resume command will be ac-  
cepted.  
Erase Resume Command  
The Erase Resume command must be used to re-  
start the Program/Erase Controller after an Erase  
Suspend. The device must be in Read Array mode  
before the Resume command will be accepted. An  
erase can be suspended and resumed more than  
once.  
Enter Extended Block Command  
The device has an extra 32 KWord block (Extend-  
ed Block) that can only be accessed using the En-  
ter Extended Block command. Three Bus write  
cycles are required to issue the Extended Block  
command. Once the command has been issued  
the device enters Extended Block mode where all  
Bus Read or Write operations to the Boot Block  
addresses access the Extended Block. The Ex-  
tended Block (with the same address as the Boot  
Blocks) cannot be erased, and can be treated as  
one-time programmable (OTP) memory. In Ex-  
tended Block mode the Boot Blocks are not acces-  
sible.  
After the Block Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
The Block Erase Command sets all of the bits in  
the unprotected selected blocks to ’1’. All previous  
data in the selected blocks is lost.  
Erase Suspend Command  
The Erase Suspend Command may be used to  
temporarily suspend a Block Erase operation and  
return the memory to Read mode. The command  
requires one Bus Write operation.  
To exit from the Extended Block mode the Exit Ex-  
tended Block command must be issued.  
The Program/Erase Controller will suspend within  
the Erase Suspend Latency time of the Erase Sus-  
pend Command being issued. Once the Program/  
Erase Controller has stopped the memory will be  
set to Read mode and the Erase will be suspend-  
ed. If the Erase Suspend command is issued dur-  
ing the period when the memory is waiting for an  
additional block (before the Program/Erase Con-  
troller starts) then the Erase is suspended immedi-  
ately and will start immediately when the Erase  
Resume Command is issued. It is not possible to  
select any further blocks to erase after the Erase  
Resume.  
The Extended Block can be protected, however  
once protected the protection cannot be undone.  
Exit Extended Block Command  
The Exit Extended Block command is used to exit  
from the Extended Block mode and return the de-  
vice to Read mode. Four Bus Write operations are  
required to issue the command.  
Block Protect and Chip Unprotect Commands  
Groups of blocks can be protected against acci-  
dental Program or Erase. The whole chip can be  
unprotected to allow the data inside the blocks to  
be changed.  
During Erase Suspend it is possible to Read and  
Program cells in blocks that are not being erased;  
both Read and Program operations behave as  
normal on these blocks. If any attempt is made to  
program in a protected block or in the suspended  
Block Protect and Chip Unprotect operations are  
described in Appendix D.  
13/42  
M29W641DH, M29W641DL, M29W641DU  
Table 3. Commands  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
3
X
F0  
AA  
AA  
AA  
50  
Read/Reset  
555  
555  
555  
555  
555  
2AA  
2AA  
2AA  
55  
55  
55  
X
F0  
90  
Auto Select  
555  
555  
PA1  
555  
Program  
A0  
PA  
PD  
Double Word Program  
Unlock Bypass  
PA0 PD0  
PD1  
20  
AA  
2AA  
PA  
55  
Unlock Bypass  
Program  
2
X
A0  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
B0  
30  
X
00  
55  
55  
555  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
BA  
10  
30  
Block Erase  
6+ 555  
Erase Suspend  
Erase Resume  
1
1
1
3
4
X
X
Read CFI Query  
Enter Extended Block  
Exit Extended Block  
55  
98  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
X
00  
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal.  
Table 4. Program, Erase Times and Program, Erase Endurance Cycles  
(1, 2)  
(2)  
Parameter  
Min  
Unit  
Typ  
80  
Max  
(3)  
Chip Erase  
s
s
400  
(4)  
Block Erase (32 KWords)  
0.8  
6
(4)  
Erase Suspend Latency Time  
Program (Word)  
µs  
µs  
µs  
s
50  
(3)  
(3)  
(3)  
(3)  
10  
10  
40  
20  
200  
200  
200  
100  
Double Word Program  
Chip Program (Word by Word)  
Chip Program (Double Word)  
Program/Erase Cycles (per Block)  
Data Retention  
s
100,000  
20  
cycles  
years  
Note: 1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and V after 100,00 program/erase cycles.  
CC  
4. Maximum value measured at worst case conditions for both temperature and V  
.
CC  
14/42  
M29W641DH, M29W641DL, M29W641DU  
STATUS REGISTER  
Bus Read operations from any address always  
read the Status Register during Program and  
Erase operations. It is also read during Erase Sus-  
pend when an address within a block being erased  
is accessed.  
The bits in the Status Register are summarized in  
Table 5, Status Register Bits.  
Data Polling Bit (DQ7). The Data Polling Bit can  
be used to identify whether the Program/Erase  
Controller has successfully completed its opera-  
tion or if it has responded to an Erase Suspend.  
The Data Polling Bit is output on DQ7 when the  
Status Register is read.  
During Program operations the Data Polling Bit  
outputs the complement of the bit being pro-  
grammed to DQ7. After successful completion of  
the Program operation the memory returns to  
Read mode and Bus Read operations from the ad-  
dress just programmed output DQ7, not its com-  
plement.  
During Erase operations the Data Polling Bit out-  
puts ’0’, the complement of the erased state of  
DQ7. After successful completion of the Erase op-  
eration the memory returns to Read Mode.  
In Erase Suspend mode the Data Polling Bit will  
output a ’1’ during a Bus Read operation within a  
block being erased. The Data Polling Bit will  
change from a ’0’ to a ’1’ when the Program/Erase  
Controller has suspended the Erase operation.  
Error Bit (DQ5). The Error Bit can be used to  
identify errors detected by the Program/Erase  
Controller. The Error Bit is set to ’1’ when a Pro-  
gram, Block Erase or Chip Erase operation fails to  
write the correct data to the memory. If the Error  
Bit is set a Read/Reset command must be issued  
before other commands are issued. The Error bit  
is output on DQ5 when the Status Register is read.  
Note that the Program command cannot change a  
bit set to ’0’ back to ’1’ and attempting to do so will  
set DQ5 to ‘1’. A Bus Read operation to that ad-  
dress will show the bit is still ‘0’. One of the Erase  
commands must be used to set all the bits in a  
block or in the whole memory from ’0’ to ’1’.  
Erase Timer Bit (DQ3). The Erase Timer Bit can  
be used to identify the start of Program/Erase  
Controller operation during a Block Erase com-  
mand. Once the Program/Erase Controller starts  
erasing the Erase Timer Bit is set to ’1’. Before the  
Program/Erase Controller starts the Erase Timer  
Bit is set to ’0’ and additional blocks to be erased  
may be written to the Command Interface. The  
Erase Timer Bit is output on DQ3 when the Status  
Register is read.  
Alternative Toggle Bit (DQ2). The Alternative  
Toggle Bit can be used to monitor the Program/  
Erase controller during Erase operations. The Al-  
ternative Toggle Bit is output on DQ2 when the  
Status Register is read.  
During Chip Erase and Block Erase operations the  
Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive Bus Read operations from addresses  
within the blocks being erased. A protected block  
is treated the same as a block not being erased.  
Once the operation completes the memory returns  
to Read mode.  
During Erase Suspend the Alternative Toggle Bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive  
Bus Read operations from addresses within the  
blocks being erased. Bus Read operations to ad-  
dresses within blocks not being erased will output  
the memory cell data as if in Read mode.  
After an Erase operation that causes the Error Bit  
to be set the Alternative Toggle Bit can be used to  
identify which block or blocks have caused the er-  
ror. The Alternative Toggle Bit changes from ’0’ to  
’1’ to ’0’, etc. with successive Bus Read Opera-  
tions from addresses within blocks that have not  
erased correctly. The Alternative Toggle Bit does  
not change if the addressed block has erased cor-  
rectly.  
Figure 5, Data Polling Flowchart, gives an exam-  
ple of how to use the Data Polling Bit. A Valid Ad-  
dress is the address being programmed or an  
address within the block being erased.  
Toggle Bit (DQ6). The Toggle Bit can be used to  
identify whether the Program/Erase Controller has  
successfully completed its operation or if it has re-  
sponded to an Erase Suspend. The Toggle Bit is  
output on DQ6 when the Status Register is read.  
During Program and Erase operations the Toggle  
Bit changes from ’0’ to ’1’ to ’0’, etc., with succes-  
sive Bus Read operations at any address. After  
successful completion of the operation the memo-  
ry returns to Read mode.  
During Erase Suspend mode the Toggle Bit will  
output when addressing a cell within a block being  
erased. The Toggle Bit will stop toggling when the  
Program/Erase Controller has suspended the  
Erase operation.  
Figure 6, Data Toggle Flowchart, gives an exam-  
ple of how to use the Data Toggle Bit.  
15/42  
M29W641DH, M29W641DL, M29W641DU  
Table 5. Status Register Bits  
(1)  
Operation  
Address  
DQ7  
DQ7  
DQ7  
DQ7  
0
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Program  
Any Address  
Any Address  
Any Address  
Any Address  
Erasing Block  
Toggle  
Toggle  
Toggle  
Toggle  
Toggle  
0
0
1
0
0
1
0
0
0
0
0
0
Program During Erase Suspend  
Program Error  
Chip Erase  
Toggle  
Toggle  
0
Block Erase before timeout  
Block Erase  
No  
Toggle  
Non-Erasing Block  
Erasing Block  
0
0
0
Toggle  
Toggle  
Toggle  
0
0
0
0
1
1
0
0
0
Toggle  
No  
Toggle  
Non-Erasing Block  
No  
Toggle  
Erasing Block  
1
0
Toggle  
1
1
0
0
Erase Suspend  
Erase Error  
Non-Erasing Block  
Good Block Address  
Faulty Block Address  
Data read as normal  
No  
Toggle  
0
0
Toggle  
Toggle  
1
1
1
1
Toggle  
Note: 1. Only the M29W641DU device is concerned.  
2. Unspecified data bits should be ignored.  
16/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 6. Data Toggle Flowchart  
Figure 5. Data Polling Flowchart  
START  
START  
READ DQ6  
READ DQ5 & DQ7  
at VALID ADDRESS  
READ  
DQ5 & DQ6  
DQ7  
=
DATA  
YES  
DQ6  
NO  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
NO  
DQ5  
YES  
= 1  
YES  
READ DQ7  
at VALID ADDRESS  
READ DQ6  
TWICE  
DQ7  
=
DATA  
YES  
DQ6  
=
NO  
NO  
FAIL  
TOGGLE  
YES  
FAIL  
PASS  
PASS  
AI90194  
AI90195B  
17/42  
M29W641DH, M29W641DL, M29W641DU  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods may affect device reliability. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 6. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
T
Temperature Under Bias  
–50  
125  
°C  
BIAS  
T
–65  
150  
°C  
STG  
Storage Temperature  
(1,2)  
V
–0.6  
–0.6  
–0.6  
–0.6  
4
V
V
V
V
CCQ  
Input/Output Supply Voltage  
Supply Voltage  
V
4
CC  
V
Identification Voltage  
13.5  
13.5  
ID  
(3)  
Program Voltage  
V
PP  
Note: 1. Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions.  
2. Maximum voltage may overshoot to V +2V during transition and for less than 20ns during transitions.  
CC  
3. V must not remain at 12V for more than a total of 80hrs.  
PP  
18/42  
M29W641DH, M29W641DL, M29W641DU  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 7. Operating and AC Measurement Conditions  
M29W641D  
Parameter  
70  
90  
100  
120  
Unit  
Min  
3.0  
Max  
3.6  
3.6  
85  
Min  
2.7  
Max  
3.6  
3.6  
85  
Min  
3.0  
Max  
3.6  
Min  
2.7  
Max  
3.6  
V
Supply Voltage  
V
V
CC  
V
Supply Voltage  
3.0  
2.7  
1.65  
–40  
1.95  
85  
1.65  
–40  
1.95  
85  
CCQ  
Ambient Operating Temperature  
–40  
–40  
°C  
pF  
ns  
V
Load Capacitance (C )  
30  
30  
30  
30  
L
Input Rise and Fall Times  
Input Pulse Voltages  
10  
10  
10  
10  
0 to V  
0 to V  
0 to V  
0 to V  
CCQ  
CCQ  
CCQ  
CCQ  
Input and Output Timing Ref.  
Voltages  
V
/2  
CCQ  
V
/2  
CCQ  
V
CCQ  
/2  
V
CCQ  
/2  
V
Figure 7. AC Measurement I/O Waveform  
Figure 8. AC Measurement Load Circuit  
V
V
V
V
CCQ  
PP  
CCQ  
CC  
V
CCQ  
25k  
25kΩ  
V
/2  
CCQ  
0V  
DEVICE  
UNDER  
TEST  
AI05557b  
0.1µF  
0.1µF 0.1µF  
C
L
C
includes JIG capacitance  
L
AI05558b  
Table 8. Device Capacitance  
Symbol  
Parameter  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
IN  
C
OUT  
V
OUT  
12  
pF  
Note: Sampled only, not 100% tested.  
19/42  
M29W641DH, M29W641DL, M29W641DU  
Table 9. DC Characteristics  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
0V V V  
LI  
IN  
CCQ  
I
LO  
0V V  
V  
OUT CCQ  
±1  
µA  
E = V , G = V ,  
IL  
IH  
Supply Current (Read)  
10  
100  
20  
mA  
µA  
I
I
CC1  
CC2  
f = 6 MHz  
E = V ±0.2V,  
CC  
Supply Current (Standby)  
RP = V ±0.2V  
CC  
V
V
pin =  
PP  
mA  
mA  
or V  
IL  
IH  
Supply Current (Program/  
Erase)  
Program/Erase  
Controller active  
I
CC3  
V
pin =  
PP  
20  
V
PPH  
V
V
V  
V  
0.8  
Input Low Voltage  
–0.5  
V
V
IL  
CCQ  
CC  
V
IH  
V
CCQ  
0.7V  
V
+ 0.3  
Input High Voltage  
CC  
CCQ  
CCQ  
Voltage for V  
Acceleration  
Program  
PP  
V
V
V
= 3.0V ±10%  
= 3.0V ±10%  
11.5  
12.5  
V
PPH  
CC  
CC  
Current for V  
Acceleration  
Program  
PP  
I
15  
mA  
PP  
V
I
= 4.0mA, V = V  
OL CC CCmin  
Output Low Voltage  
Output High Voltage  
Identification Voltage  
0.45  
V
V
V
V
OL  
I
I
= –2.0mA, V = V  
0.85V  
CCQ  
OH  
CC  
CCmin  
(1)  
V
OH  
V
– 0.4  
= –100µA, V = V  
CCQ  
OH  
CC  
CCmin  
V
11.5  
1.8  
12.5  
2.3  
ID  
Program/Erase Lockout Supply  
Voltage  
(1)  
V
V
LKO  
Note: 1. Sampled only, not 100% tested.  
20/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 9. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A21  
tAVQV  
tAXQX  
E
tELQV  
tELQX  
tEHQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
DQ0-DQ7/  
DQ8-DQ15  
VALID  
AI06699  
Table 10. Read AC Characteristics  
M29W641D  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
70  
90  
100  
120  
E = V ,  
IL  
t
t
Address Valid to Next Address Valid  
Address Valid to Output Valid  
Min  
70  
90  
100  
120  
ns  
ns  
AVAV  
RC  
G = V  
IL  
E = V ,  
IL  
t
t
ACC  
Max  
70  
90  
100  
120  
AVQV  
G = V  
G = V  
G = V  
E = V  
IL  
IL  
IL  
(1)  
t
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Min  
Max  
Min  
0
0
0
100  
0
0
120  
0
ns  
ns  
ns  
ns  
ns  
ns  
t
t
LZ  
ELQX  
t
t
70  
0
90  
0
ELQV  
CE  
(1)  
t
OLZ  
IL  
IL  
GLQX  
t
t
E = V  
Max  
Max  
Max  
30  
25  
25  
35  
30  
30  
35  
30  
30  
50  
30  
30  
GLQV  
OE  
(1)  
(1)  
t
G = V  
t
HZ  
IL  
IL  
EHQZ  
t
E = V  
t
DF  
GHQZ  
t
t
t
EHQX  
Chip Enable, Output Enable or Address  
Transition to Output Transition  
t
Min  
0
0
0
0
ns  
GHQX  
OH  
AXQX  
Note: 1. Sampled only, not 100% tested.  
21/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 10. Write AC Waveforms, Write Enable Controlled  
tAVAV  
A0-A21  
VALID  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
tGHWL  
tWLWH  
W
tWHWL  
tDVWH  
VALID  
tWHDX  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHEL  
RB  
tWHRL  
AI06800b  
Note: 1. RB concerns the M29W461DU only.  
Table 11. Write AC Characteristics, Write Enable Controlled  
M29W641D  
Symbol  
Alt  
Parameter  
Unit  
70  
70  
0
90  
90  
0
100  
100  
0
120  
120  
0
t
t
WC  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
AVAV  
t
t
CS  
ELWL  
t
t
WP  
35  
45  
0
35  
45  
0
35  
45  
0
50  
50  
0
WLWH  
t
t
DVWH  
DS  
DH  
CH  
t
t
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
WHDX  
t
t
0
0
0
0
WHEH  
t
t
WPH  
30  
0
30  
0
30  
0
30  
0
WHWL  
t
t
AVWL  
AS  
t
t
45  
0
45  
0
45  
0
50  
0
WLAX  
AH  
t
GHWL  
t
t
OEH  
0
0
0
0
WHGL  
(1)  
t
90  
50  
90  
50  
90  
50  
90  
50  
t
BUSY  
WHRL  
t
t
V
CC  
High to Chip Enable Low  
VCHEL  
VCS  
Note: 1. This timing concerns the M29W461DU only.  
22/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 11. Write AC Waveforms, Chip Enable Controlled  
tAVAV  
VALID  
A0-A21  
tELAX  
tAVEL  
tEHWH  
W
G
E
tWLEL  
tEHGL  
tGHEL  
tELEH  
tEHEL  
tDVEH  
VALID  
tEHDX  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHWL  
RB  
tEHRL  
AI06801b  
Note: 1. RB concerns the M29W461DU only.  
Table 12. Write AC Characteristics, Chip Enable Controlled  
M29W641D  
Symbol  
Alt  
Parameter  
Unit  
70  
70  
0
90  
90  
0
100  
100  
0
120  
120  
0
t
t
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
WC  
t
t
WLEL  
WS  
t
t
45  
45  
0
45  
45  
0
45  
45  
0
50  
50  
0
ELEH  
CP  
DS  
DH  
t
t
DVEH  
t
t
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
EHDX  
t
t
WH  
0
0
0
0
EHWH  
t
t
30  
0
30  
0
30  
0
30  
0
EHEL  
CPH  
t
t
AVEL  
AS  
t
t
45  
0
45  
0
45  
0
50  
0
ELAX  
AH  
t
GHEL  
t
t
0
0
0
0
EHGL  
OEH  
(1)  
t
90  
50  
90  
50  
90  
50  
90  
50  
t
BUSY  
EHRL  
t
t
V
CC  
High to Write Enable Low  
Min  
µs  
VCHWL  
VCS  
Note: 1. This timing concerns the M29W461DU only.  
23/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 12. Reset/Block Temporary Unprotect AC Waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPHPHH  
tPLPX  
RP  
tPLYH  
AI06802b  
Note: 1. RB concerns the M29W461DU only.  
Table 13. Reset/Block Temporary Unprotect AC Characteristics  
M29W641D  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
100  
120  
(1)  
t
PHWL  
RP High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
t
t
Min  
Min  
50  
50  
50  
50  
ns  
PHEL  
RH  
(1)  
t
PHGL  
(1, 2)  
t
RHWL  
RB High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
(1, 2)  
(1, 2)  
t
0
0
0
0
ns  
t
RB  
RHEL  
t
RHGL  
t
t
READY  
RP Low to Read Mode  
Max  
Min  
Min  
50  
50  
50  
50  
µs  
ns  
ns  
PLYH  
t
t
RP Pulse Width  
500  
500  
500  
500  
500  
500  
500  
500  
PLPX  
RP  
(1)  
(1)  
t
RP Rise Time to V  
t
VIDR  
ID  
PHPHH  
V
PP  
Rise and Fall Time  
Min  
250  
250  
250  
250  
ns  
t
VHVPP  
Note: 1. Sampled only, not 100% tested.  
2. These timings concern the M29W461DU only.  
Figure 13. Accelerated Program Timing Waveforms  
V
PP  
V
Pin  
PP  
V
or V  
IH  
IL  
tVHVPP  
tVHVPP  
AI06806  
24/42  
M29W641DH, M29W641DL, M29W641DU  
PACKAGE MECHANICAL  
Figure 14. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
A1  
α
L
Note: Drawing is not to scale.  
Table 14. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.150  
1.050  
0.270  
0.210  
0.100  
20.200  
18.500  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0039  
0.7953  
0.7283  
A
A1  
A2  
B
0.100  
1.000  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D
19.800  
18.300  
0.7795  
0.7205  
D1  
e
0.500  
0.0197  
E
11.900  
0.500  
0
12.100  
0.700  
5
0.4685  
0.0197  
0
0.4764  
0.0276  
5
L
alfa  
N
48  
48  
25/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 15. TFBGA63 - 7x11mm, 6x8 active ball array, 0.8mm pitch, Bottom view package outline  
D
D1  
SD  
FD  
e
ddd  
SE  
E
E1  
BALL "A1"  
FE  
e
b
A
A2  
A1  
BGA-Z33  
Note: Drawing is not to scale.  
Table 15. TFBGA63 - 7x11mm, 6x8 active ball array, 0.8mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.250  
0.0098  
0.900  
0.0354  
0.350  
0.450  
0.0138  
0.0177  
D
7.000  
5.600  
6.900  
7.100  
0.2756  
0.2205  
0.2717  
0.2795  
D1  
ddd  
E
0.100  
0.0039  
11.000  
8.800  
0.800  
0.700  
1.100  
0.400  
0.400  
10.900  
11.100  
0.4331  
0.3465  
0.0315  
0.0276  
0.0433  
0.0157  
0.0157  
0.4291  
0.4370  
E1  
e
FD  
FE  
SD  
SE  
26/42  
M29W641DH, M29W641DL, M29W641DU  
PART NUMBERING  
Table 16. Ordering Information Scheme  
Example:  
M29W641DL  
70  
N
1
T
Device Type  
M29  
Operating Voltage  
W = V = 2.7 to 3.6V  
CC  
Device Function  
641DH = 64 Mbit (x16), Uniform Block, Write Protection on highest  
address Block  
641DL = 64 Mbit (x16), Uniform Block, Write Protection on Lowest  
Address Block  
641DU = 64 Mbit (x16), Uniform Block, No Write Protection  
Speed  
70 = 70ns  
90 = 90ns  
10 = 100ns  
12 = 120ns  
Package  
N = TSOP48: 12 x 20 mm (M29W641DH and M29W641DL only)  
ZA = TFBGA63: 7 x 11mm, 0.80mm pitch (M29W641DU only)  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
T = Tape & Reel Packing  
E = Lead-free Package, Standard Packing  
F = Lead-free Package, Tape & Reel Packing  
Note: This product is also available with the Extended Block factory locked. For further details and ordering  
information contact your nearest ST sales office.  
Devices are shipped from the factory with the memory content bits erased to 1. For a list of available op-  
tions (Speed, Package, etc.) or for further information on any aspect of this device, please contact your  
nearest ST Sales Office.  
27/42  
M29W641DH, M29W641DL, M29W641DU  
APPENDIX A. BLOCK ADDRESSES  
Table 17. Block Addresses  
Block  
0
KWords  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Protection Block Group  
Address Range  
(1)  
000000h–007FFFh  
1
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
Protection Group  
2
3
4
5
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
28/42  
M29W641DH, M29W641DL, M29W641DU  
Block  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
KWords  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Protection Block Group  
Address Range  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
29/42  
M29W641DH, M29W641DL, M29W641DU  
Block  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
KWords  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Protection Block Group  
Address Range  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
30/42  
M29W641DH, M29W641DL, M29W641DU  
Block  
104  
105  
106  
107  
108  
109  
110  
111  
KWords  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Protection Block Group  
Address Range  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
Protection Group  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
32  
3F8000h–3FFFFFh  
Note: 1. Used as the Extended Block Addresses in Extended Block mode.  
31/42  
M29W641DH, M29W641DL, M29W641DU  
APPENDIX B. COMMON FLASH INTERFACE (CFI)  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the CFI Query Command is issued the de-  
vice enters CFI Query mode and the data structure  
is read from the memory. Table 18 to Table 23  
show the addresses used to retrieve the data.  
The CFI data structure also contains a security  
area where a 64 bit unique security number is writ-  
ten (see Table 23, Security Code Area). This area  
can be accessed only in Read mode by the final  
user. It is impossible to change the security num-  
ber after it has been written by ST.  
Table 18. Query Structure Overview  
Address  
10h  
Sub-section Name  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Description  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
1Bh  
27h  
Primary Algorithm-specific Extended  
Query table  
Additional information specific to the Primary  
Algorithm (optional)  
40h  
61h  
Security Code Area  
64 bit unique device number  
Note: Query data are always presented on the lowest order data outputs.  
Table 19. CFI Query Identification String  
Address  
10h  
Data  
Description  
Value  
“Q”  
0051h  
0052h  
0059h  
0002h  
0000h  
0040h  
0000h  
0000h  
0000h  
0000h  
0000h  
11h  
Query Unique ASCII String "QRY"  
"R"  
12h  
"Y"  
13h  
Primary Algorithm Command Set and Control Interface ID code 16 bit  
ID code defining a specific algorithm  
AMD  
Compatible  
14h  
15h  
Address for Primary Algorithm extended Query table (see Table 22)  
P = 40h  
NA  
16h  
17h  
Alternate Vendor Command Set and Control Interface ID Code second  
vendor - specified algorithm supported  
18h  
19h  
Address for Alternate Algorithm extended Query table  
NA  
1Ah  
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
32/42  
M29W641DH, M29W641DL, M29W641DU  
Table 20. CFI Query System Interface Information  
Address  
Data  
Description  
Value  
V
V
V
V
Logic Supply Minimum Program/Erase voltage  
CC  
1Bh  
0027h  
2.7V  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 mV  
Logic Supply Maximum Program/Erase voltage  
CC  
1Ch  
1Dh  
1Eh  
0036h  
00B5h  
00C5h  
3.6V  
11.5V  
12.5V  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 mV  
[Programming] Supply Minimum Program/Erase voltage  
PP  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 mV  
[Programming] Supply Maximum Program/Erase voltage  
PP  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 mV  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h  
0000h  
000Ah  
0000h  
0004h  
0000h  
0003h  
0000h  
16µs  
NA  
Typical timeout per single word program = 2 µs  
n
Typical timeout for minimum size write buffer program = 2 µs  
n
1s  
Typical timeout per individual block erase = 2 ms  
n
NA  
Typical timeout for full chip erase = 2 ms  
n
256 µs  
NA  
Maximum timeout for word program = 2 times typical  
n
Maximum timeout for write buffer program = 2 times typical  
n
8 s  
Maximum timeout per individual block erase = 2 times typical  
n
NA  
Maximum timeout for chip erase = 2 times typical  
Table 21. Device Geometry Definition  
Address  
Data  
Description  
Value  
n
27h  
0017h  
8 MByte  
Device Size = 2 in number of bytes  
28h  
29h  
0001h  
0000h  
x16  
Async.  
Flash Device Interface Code description  
2Ah  
2Bh  
0000h  
0000h  
n
NA  
1
Maximum number of bytes in multi-byte program or page = 2  
Number of Erase Block Regions. It specifies the number of  
2Ch  
0001h  
regions containing contiguous Erase Blocks of the same size.  
2Dh  
2Eh  
007Fh  
0000h  
Region 1 Information  
Number of identical size erase block = 007Fh+1  
128  
2Fh  
30h  
0000h  
0001h  
Region 1 Information  
Block size in Region 1 = 0100h * 256 byte  
64 KByte  
33/42  
M29W641DH, M29W641DL, M29W641DU  
Table 22. Primary Algorithm-Specific Extended Query Table  
Address  
40h  
Data  
Description  
Value  
"P"  
"R"  
"I"  
0050h  
0052h  
0049h  
0031h  
0030h  
0000h  
41h  
Primary Algorithm extended Query table unique ASCII string “PRI”  
42h  
43h  
Major version number, ASCII  
Minor version number, ASCII  
"1"  
44h  
"0"  
45h  
Address Sensitive Unlock (bits 1 to 0)  
00 = required, 01= not required  
Yes  
Silicon Revision Number (bits 7 to 2)  
46h  
47h  
48h  
49h  
0002h  
0004h  
0001h  
0004h  
Erase Suspend  
00 = not supported, 01 = Read only, 02 = Read and Write  
2
4
Block Protection  
00 = not supported, x = number of blocks per protection group  
Temporary Block Unprotect  
00 = not supported, 01 = supported  
Yes  
4
Block Protect /Unprotect  
04 = M29W400B  
4Ah  
4Bh  
4Ch  
4Dh  
0000h  
0000h  
0000h  
00B5h  
Simultaneous Operations, 00 = not supported  
No  
No  
Burst Mode, 00 = not supported, 01 = supported  
Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word  
No  
V
PP  
Supply Minimum Program/Erase voltage  
11.5V  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
4Eh  
00C5h  
V
PP  
Supply Maximum Program/Erase voltage  
12.5V  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
Table 23. Security Code Area  
Address  
61h  
Data  
XXXX  
XXXX  
XXXX  
XXXX  
Description  
62h  
64 bit: unique device number  
63h  
64h  
34/42  
M29W641DH, M29W641DL, M29W641DU  
Factory Locked Extended Block  
In devices where the Extended Block is factory  
locked, the Security Identification Number is writ-  
ten to the Extended Block address space (see Ta-  
ble 24, Extended Block Address and Data) in the  
factory. The DQ7 bit is set to ‘1’ and the Extended  
Block cannot be unprotected.  
APPENDIX C. EXTENDED MEMORY BLOCK  
The M29W641D has an extra block, the Extended  
Block, that can be accessed using a dedicated  
command.  
This Extended Block is 32 KWords. It is used as a  
security block (to provide a permanent security  
identification number) or to store additional infor-  
mation.  
The Extended Block is either Factory Locked or  
Customer Lockable, its status is indicated by bit  
DQ7. This bit is permanently set to either ‘1’ or ‘0’  
at the factory and cannot be changed. When set to  
‘1’, it indicates that the device is factory locked and  
the Extended Block is protected. When set to ‘0’, it  
indicates that the device is customer lockable and  
the Extended Block is unprotected. Bit DQ7 being  
permanently locked to either ‘1’ or ‘0’ is another  
security feature which ensures that a customer  
lockable device cannot be used instead of a facto-  
ry locked one.  
Bit DQ7 is the most significant bit in the Extended  
Block Verify Code and a specific procedure must  
be followed to read it. See “Extended Memory  
Block Verify Code” in Table 2, Bus Operations, for  
details of how to read bit DQ7.  
Customer Lockable Extended Block  
A device where the Extended Block is customer  
lockable is delivered with the DQ7 bit set to ‘0’ and  
the Extended Block unprotected. It is up to the  
customer to program and protect the Extended  
Block but care must be taken because the protec-  
tion of the Extended Block is not reversible.  
There are two ways of protecting the Extended  
Block:  
Issue the Enter Extended Block command to  
place the device in Extended Block mode, then  
use the In-System Technique (refer to Appendix  
D, In-System Technique and to the  
corresponding flowcharts, Figures 18 and 19,  
for a detailed explanation of the technique).  
Issue the Enter Extended Block command to  
place the device in Extended Block mode, then  
use the Programmer Technique (refer to  
The Extended Block can only be accessed when  
the device is in Extended Block mode. For details  
of how the Extended Block mode is entered and  
exited, refer to the Enter Extended Block Com-  
mand and Exit Extended Block Command para-  
graphs, and to Table 3, “Commands”.  
Appendix D, Programmer Technique and to the  
corresponding flowcharts, Figures 16 and 17,  
for a detailed explanation of the technique).  
Once the Extended Block is programmed and pro-  
tected, the Exit Extended Block command must be  
issued to exit the Extended Block mode and return  
the device to Read mode.  
Table 24. Extended Block Address and Data  
(1)  
Data  
Address  
Device  
x16  
Factory Locked  
Security Identification Number  
Unavailable  
Customer Lockable  
000000h-000007h  
M29W641D  
Determined by Customer  
000008h-007FFFh  
Note: 1. See Table 17, Block Addresses.  
35/42  
M29W641DH, M29W641DL, M29W641DU  
APPENDIX D. BLOCK PROTECTION  
Block protection can be used to prevent any oper-  
ation from modifying the data stored in the memo-  
ry. Once protected, Program and Erase  
operations within the protected group fail to  
change the data.  
specified, it is followed as closely as possible. Do  
not abort the procedure before reaching the end.  
Chip Unprotect can take several seconds and a  
user message should be provided to show that the  
operation is progressing.  
There are three techniques that can be used to  
control Block Protection, these are the Program-  
mer technique, the In-System technique and Tem-  
porary Unprotection. Temporary Unprotection is  
controlled by the Reset/Block Temporary Unpro-  
tection pin, RP; this is described in the Signal De-  
scriptions section.  
In-System Technique  
The In-System technique requires a high voltage  
level on the Reset/Blocks Temporary Unprotect  
pin, RP. This can be achieved without violating the  
maximum ratings of the components on the micro-  
processor bus, therefore this technique is suitable  
for use after the memory has been fitted to the sys-  
tem.  
Programmer Technique  
The Programmer technique uses high (V ) volt-  
To protect a group of blocks follow the flowchart in  
Figure 18, In-System Equipment Group Protect  
Flowchart. To unprotect the whole chip it is neces-  
sary to protect all of the groups first, then all the  
groups can be unprotected at the same time. To  
unprotect the chip follow Figure 19, In-System  
Equipment Chip Unprotect Flowchart.  
The timing on these flowcharts is critical. Care  
should be taken to ensure that, where a pause is  
specified, it is followed as closely as possible. Do  
not allow the microprocessor to service interrupts  
that will upset the timing and do not abort the pro-  
cedure before reaching the end. Chip Unprotect  
can take several seconds and a user message  
should be provided to show that the operation is  
progressing.  
ID  
age levels on some of the bus pins. These cannot  
be achieved using a standard microprocessor bus,  
therefore the technique is recommended only for  
use in Programming Equipment.  
To protect a group of blocks follow the flowchart in  
Figure 16, Programmer Equipment Group Protect  
Flowchart. To unprotect the whole chip it is neces-  
sary to protect all of the groups first, then all  
groups can be unprotected at the same time. To  
unprotect the chip follow Figure 17, Programmer  
Equipment Chip Unprotect Flowchart. Table 25,  
Programmer Technique Bus Operations, gives a  
summary of each operation.  
The timing on these flowcharts is critical. Care  
should be taken to ensure that, where a pause is  
Table 25. Programmer Technique Bus Operations  
Address Inputs  
A0-A21  
Data Inputs/Outputs  
DQ15-DQ0  
Operation  
E
G
W
Block (Group)  
A9 = V , A12-A21 Block Address  
ID  
V
V
V
V
Pulse  
Pulse  
X
X
IL  
ID  
ID  
IL  
IL  
(1)  
Others = X  
Protect  
A9 = V , A12 = V , A15 = V  
ID  
IH  
IH  
V
ID  
V
Chip Unprotect  
Others = X  
A0 = V , A1 = V , A6 = V , A9 = V ,  
IL  
IH  
IL  
ID  
Block (Group)  
Protection Verify  
Pass = XX01h  
Retry = XX00h  
V
V
V
V
A12-A21 Block Address  
Others = X  
IL  
IL  
IL  
IL  
IH  
IH  
A0 = V , A1 = V , A6 = V , A9 = V ,  
IL  
IH  
IH  
ID  
Block (Group)  
Unprotection Verify  
Retry = XX01h  
Pass = XX00h  
V
V
A12-A21 Block Address  
Others = X  
Note: 1. Block Protection Groups are shown in Appendix A, Tables 17.  
36/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 16. Programmer Equipment Group Protect Flowchart  
START  
ADDRESS = GROUP ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4µs  
W = V  
IL  
Wait 100µs  
W = V  
IH  
E, G = V  
,
IH  
A0, A6 = V  
A1 = V  
,
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
Wait 60ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
IH  
E, G = V  
IH  
YES  
PASS  
A9 = V  
E, G = V  
IH  
IH  
AI05574  
FAIL  
37/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 17. Programmer Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL GROUPS  
n = 0  
CURRENT GROUP = 0  
(1)  
A6, A12, A15 = V  
IH  
E, G, A9 = V  
ID  
Wait 4µs  
W = V  
IL  
Wait 10ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT GROUP ADDRESS  
A0 = V , A1, A6 = V  
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
INCREMENT  
CURRENT GROUP  
Wait 60ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
GROUP  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
A9 = V  
E, G = V  
IH  
IH  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI05575  
38/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 18. In-System Equipment Group Protect Flowchart  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
WRITE 60h  
ADDRESS = GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 100µs  
WRITE 40h  
IL  
ADDRESS = GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 4µs  
READ DATA  
ADDRESS = GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
DATA  
NO  
=
01h  
YES  
RP = V  
++n  
= 25  
NO  
IH  
YES  
RP = V  
ISSUE READ/RESET  
COMMAND  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI05576  
39/42  
M29W641DH, M29W641DL, M29W641DU  
Figure 19. In-System Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL GROUPS  
n = 0  
CURRENT GROUP = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 10ms  
WRITE 40h  
ADDRESS = CURRENT GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 4µs  
INCREMENT  
CURRENT GROUP  
READ DATA  
ADDRESS = CURRENT GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
DATA  
NO  
YES  
=
00h  
++n  
= 1000  
NO  
NO  
LAST  
GROUP  
YES  
RP = V  
YES  
RP = V  
IH  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI05577  
40/42  
M29W641DH, M29W641DL, M29W641DU  
REVISION HISTORY  
Table 26. Document Revision History  
Date  
Version  
Revision Details  
30-Apr-2002  
-01  
Document released  
When in Extended Block mode, the block at the boot block address can be used as OTP.  
Data Toggle Flow chart corrected. Double Word Program Time (typ) changed to 20s.  
Revision numbering modified: a minor revision will be indicated by incrementing the digit  
after the dot, and a major revision, by incrementing the digit before the dot (revision  
version 01 equals 1.0).  
05-Sep-2002  
1.1  
New Part Numbers added. 100ns and 120ns Speed Classes added. TFBGA63 package  
added. V removed from and V  
added to Table 6, Absolute Maximum Ratings. V  
IO  
CCQ  
CCQ  
added to Table 7, Operating and AC Measurement Conditions. Ready/Busy pin  
(TFBGA63 package) added to the signals (concerns M29W641DU only).  
Figure 7, AC Measurement I/O Waveform, and Figure 8, AC Measurement Load Circuit,  
modified. Unlock Bypass Commands clarified and V description specified in SIGNAL  
CCQ  
DESCRIPTIONS section. Test Conditions modified for I , I , V , V , V and V  
OH  
LI LO IL  
IH OL  
parameters in Table 9, DC Characteristics, and V , V , V and V parameters  
IL  
IH OL  
OH  
corrected. t  
, t  
, t  
, t  
parameters modified for 90ns speed class in Table  
WLWH DVWH WLAX WHRL  
11, Write AC Characteristics, Write Enable Controlled. t  
, t  
, t  
and t  
ELEH DVEH ELAX EHRL  
parameters modified for 90ns speed class in Table 12, Write AC Characteristics, Chip  
8-Apr-2003  
2.0  
Enable Controlled. t  
parameter added to Table 13, Reset/Block Temporary Unprotect  
PLYH  
AC Characteristics.  
Data and Value modified for address 2Dh, and Data modified for address 30h in Table 21,  
Device Geometry Definition. Description modified at address offset 4Eh in Table 22.  
Data Retention and Erase Suspend Latency Time parameters added to Table 6, Program,  
Erase Times and Program, Erase Endurance Cycles, and Typical after 100k W/E Cycles  
column removed. I (Identification) current removed from Table 9, DC Characteristics.  
ID  
Lead-free package options E and F added to Table 16, Ordering Information Scheme.  
Appendix C, EXTENDED MEMORY BLOCK, added. V pin connection to ground  
SS  
clarified. Auto Select Command is used to read the Extended Memory Block. Note added  
to Table 16, Ordering Information Scheme.  
41/42  
M29W641DH, M29W641DL, M29W641DU  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics group of companies  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -  
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
www.st.com  
42/42  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY