M36W832BE85ZA1T [NUMONYX]

Memory Circuit, 2MX16, CMOS, PBGA66, 12 X 8 MM, 0.80 MM PITCH, LFBGA-66;
M36W832BE85ZA1T
型号: M36W832BE85ZA1T
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Memory Circuit, 2MX16, CMOS, PBGA66, 12 X 8 MM, 0.80 MM PITCH, LFBGA-66

静态存储器 内存集成电路
文件: 总64页 (文件大小:897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M36W832TE  
M36W832BE  
32 Mbit (2Mb x16, Boot Block) Flash Memory  
and 8 Mbit (512Kb x16) SRAM, Multiple Memory Product  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Packages  
– V  
– V  
– V  
= 2.7V to 3.3V  
DDF  
DDS  
PPF  
= V  
= 2.7V to 3.3V  
DDQF  
= 12V for Fast Program (optional)  
ACCESS TIMES: 70ns and 85ns  
LOW POWER CONSUMPTION  
ELECTRONIC SIGNATURE  
FBGA  
– Manufacturer Code: 20h  
– Top Device Code, M36W832TE: 88BAh  
– Bottom Device Code, M36W832BE: 88BBh  
Stacked LFBGA66 (ZA)  
12 x 8mm  
FLASH MEMORY  
32 Mbit (2Mb x16) BOOT BLOCK  
– 8 x 4 KWord Parameter Blocks (Top or  
Bottom Location)  
PROGRAMMING TIME  
– 10µs typical  
– Double Word Programming Option  
– Quadruple Word Programming Option  
BLOCK LOCKING  
SRAM  
8 Mbit (512Kb x 16)  
ACCESS TIME: 70ns  
– All blocks locked at Power up  
– Any combination of blocks can be locked  
– WPF for Block Lock-Down  
AUTOMATIC STANDBY MODE  
PROGRAM and ERASE SUSPEND  
LOW V  
DATA RETENTION: 1.5V  
DDS  
POWER DOWN FEATURES USING TWO  
CHIP ENABLE INPUTS  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
COMMON FLASH INTERFACE  
SECURITY  
– 128 bit user programmable OTP cells  
– 64 bit unique device identifier  
May 2003  
1/64  
M36W832TE, M36W832BE  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 3. LFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Address Inputs (A19-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Write Enable (WF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Flash Reset (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SRAM Chip Enable (E1S, E2S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SRAM Output Enable (GS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SRAM Upper Byte Enable (UBS).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
V
V
V
V
Supply Voltage (2.7V to 3.3V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
DDF  
and V  
Supply Voltage (2.7V to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
DDQF  
DDS  
Program Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
PPF  
SSF  
and V  
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SSS  
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Flash Memory Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 5. Flash Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 6. Flash Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . 12  
SRAM Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 7. SRAM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Flash Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Automatic Standby.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Flash Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3. Flash Command Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2/64  
M36W832TE, M36W832BE  
Read Electronic Signature Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Double Word Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 4. Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 5. Flash Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 6. Flash Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 7. Flash Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 8. Flash Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . 20  
Flash Block Locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Lock-Down State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 10. Protection Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
V
Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PPF  
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reserved (Bit 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 11. Flash Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SRAM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 12. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3/64  
M36W832TE, M36W832BE  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 8. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 9. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 14. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 10. Flash Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 16. Flash Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 11. Flash Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 17. Flash Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 12. Flash Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 18. Flash Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 13. Flash Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 19. Flash Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 14. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V . . . . . . 36  
IL  
Figure 15. SRAM Read AC Waveforms, GS Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. SRAM Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 17. SRAM Write AC Waveforms, E1S or E2S Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 20. SRAM Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 18. SRAM Write AC Waveforms, WS Controlled, GS High during Write . . . . . . . . . . . . . . . 38  
Figure 19. SRAM Write AC Waveforms, WS Controlled with GS Low . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 20. SRAM Write Cycle Waveform, UBS and LBS Controlled GS Low, . . . . . . . . . . . . . . . . 39  
Table 21. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 21. SRAM Low V  
Figure 22. SRAM Low V  
Data Retention AC Waveforms, E1S Controlled . . . . . . . . . . . . . . . . 41  
Data Retention AC Waveforms, E2S Controlled . . . . . . . . . . . . . . . . 41  
Data Retention Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
DDS  
DDS  
DDS  
Table 22. SRAM Low V  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 23. Stacked LFBGA66 12x8mm, 8x8 array, 0.8mm pitch, Bottom View Package Outline. . 42  
Table 23. Stacked LFBGA66, 12x8mm, 8x8 ball array, 0.8mm pitch, Package Mechanical Data . 42  
Figure 24. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package) . 43  
Figure 25. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through package)44  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 25. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
APPENDIX A. FLASH MEMORY BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 26. Top Boot Block Addresses, M36W832TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 27. Bottom Boot Block Addresses, M36W832BE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 28. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 29. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 30. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4/64  
M36W832TE, M36W832BE  
Table 31. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 32. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 33. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
APPENDIX C. FLASH MEMORY FLOWCHARTS and PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . 53  
Figure 26. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 27. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 28. Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 29. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 56  
Figure 30. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 31. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 32. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 33. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 60  
APPENDIX D. FLASH MEMORY COMMAND INTERFACE and PROGRAM/ERASE CONTROLLER  
STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 34. Write State Machine Current/Next, sheet 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 35. Write State Machine Current/Next, sheet 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 36. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63  
5/64  
M36W832TE, M36W832BE  
SUMMARY DESCRIPTION  
The M36W832TE is a low voltage Multiple Memo-  
ry Product which combines two memory devices;  
a 32 Mbit boot block Flash memory and an 8 Mbit  
SRAM. Recommended operating conditions do  
not allow both the Flash and the SRAM to be ac-  
tive at the same time.  
The memory is offered in a Stacked LFBGA66  
(12x8mm, 0.8 mm pitch) package and is supplied  
with all the bits erased (set to ‘1’).  
Table 1. Signal Names  
Address Inputs common to the Flash  
and SRAM chips  
A0-A18  
A19-A20  
Address Inputs for Flash Chip only  
Data Input/Output  
DQ0-DQ15  
V
DDF  
Flash Power Supply  
V
Flash Power Supply for I/O Buffers  
DDQF  
Figure 2. Logic Diagram  
Flash Optional Supply Voltage for Fast  
Program & Erase  
V
PPF  
V
V
DDQF  
DDS  
V
V
V
Flash Ground  
SSF  
DDS  
SSS  
V
V
PPF  
DDF  
SRAM Power Supply  
SRAM Ground  
21  
16  
A0-A20  
DQ0-DQ15  
NC  
Not Connected Internally  
EF  
GF  
Flash control functions  
EF  
Chip Enable input  
WF  
GF  
Output Enable input  
Write Enable input  
Reset input  
RPF  
WPF  
WF  
RPF  
WPF  
M36W832TE  
M36W832BE  
E1S  
E2S  
GS  
Write Protect input  
SRAM control functions  
E1S, E2S  
GS  
Chip Enable inputs  
WS  
Output Enable input  
Write Enable input  
UBS  
LBS  
WS  
UBS  
Upper Byte Enable input  
Lower Byte Enable input  
LBS  
V
V
SSS  
SSF  
AI90161b  
6/64  
M36W832TE, M36W832BE  
Figure 3. LFBGA Connections (Top view through package)  
7/64  
M36W832TE, M36W832BE  
Signal Descriptions  
See Figure 2 Logic Diagram and Table 1,Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
of Chip Enable or a change of the address is re-  
quired to ensure valid data outputs.  
SRAM Chip Enable (E1S, E2S). The Chip En-  
able inputs activate the SRAM memory control  
logic, input buffers and decoders. E1S at V or  
IH  
Address Inputs (A0-A18). Addresses  
A0-A18  
E2S at V deselects the memory and reduces the  
IL  
are common inputs for the Flash and the SRAM  
components. The Address Inputs select the cells  
in the memory array to access during Bus Read  
operations. During Bus Write operations they con-  
trol the commands sent to the Command Interface  
of the internal state machine. The Flash memory is  
accessed through the Chip Enable (EF) and Write  
Enable (WF) signals, while the SRAM is accessed  
through two Chip Enable signals (E1S and E2S)  
and the Write Enable signal (WS).  
Address Inputs (A19-A20). Addresses A19-A20  
are inputs for the Flash component only. The  
Flash memory is accessed through the Chip En-  
able (EF) and Write Enable (WF) signals  
power consumption to the standby level. E1S and  
E2S can also be used to control writing to the  
SRAM memory array, while WS remains at V It  
IL.  
is not allowed to set EF at V E1S at V and E2S  
IL,  
IL  
at V at the same time.  
IH  
SRAM Write Enable (WS). The Write Enable in-  
put controls writing to the SRAM memory array.  
WS is active low.  
SRAM Output Enable (GS). The Output Enable  
gates the outputs through the data buffers during  
a read operation of the SRAM memory. GS is ac-  
tive low.  
SRAM Upper Byte Enable (UBS). The Upper  
Byte Enable enables the upper bytes for SRAM  
(DQ8-DQ15). UBS is active low.  
SRAM Lower Byte Enable (LBS). The Lower  
Byte Enable enables the lower bytes for SRAM  
(DQ0-DQ7). LBS is active low.  
Data Input/Output (DQ0-DQ15). The Data I/O  
outputs the data stored at the selected address  
during a Bus Read operation or inputs a command  
or the data to be programmed during a Write Bus  
operation.  
Flash Chip Enable (EF). The Chip Enable input  
activates the Flash memory control logic, input  
buffers, decoders and sense amplifiers. When  
V
Supply Voltage (2.7V to 3.3V). V  
pro-  
DDF  
DDF  
vides the power supply to the internal core of the  
Flash Memory device. It is the main power supply  
for all operations (Read, Program and Erase).  
V
V
memory I/O pins and V  
supply for the SRAM control pins. This allows all  
Outputs to be powered independently of the Flash  
core power supply, V  
V
Chip Enable is at V and Reset is at V the device  
IL  
IH  
is in active mode. When Chip Enable is at V the  
IH  
and V  
Supply Voltage (2.7V to 3.3V).  
DDS  
DDQF  
memory is deselected, the outputs are high imped-  
ance and the power consumption is reduced to the  
standby level.  
Flash Output Enable (GF). The Output Enable  
controls the data outputs during the Bus Read op-  
eration of the Flash memory.  
provides the power supply for the Flash  
DDQF  
provides the power  
DDS  
. V  
can be tied to  
DDF  
DDQF  
DDS  
Flash Write Enable (WF). The Write Enable  
controls the Bus Write operation of the Flash  
memory’s Command Interface. The data and ad-  
dress inputs are latched on the rising edge of Chip  
Enable, EF, or Write Enable, WF, whichever oc-  
curs first.  
V
Program Supply Voltage. V  
is both a  
PPF  
PPF  
control input and a power supply pin for the Flash  
memory. The two functions are selected by the  
voltage range applied to the pin. The Supply Volt-  
age V  
and the Program Supply Voltage V  
DDF  
PPF  
can be applied in any order.  
If V is kept in a low voltage range (0V to 3.6V)  
V
age lower than V  
against program or erase, while V  
ables these functions (see Table 15, DC Charac-  
teristics for the relevant values). V is only  
sampled at the beginning of a program or erase; a  
change in its value after the operation has started  
does not have any effect on Program or Erase,  
however for Double or Quadruple Word Program  
the results are uncertain.  
Flash Write Protect (WPF). Write Protect is an  
input that gives an additional hardware protection  
PPF  
is seen as a control input. In this case a volt-  
PPF  
for each block. When Write Protect is at V , the  
IL  
gives an absolute protection  
PPLK  
Lock-Down is enabled and the protection status of  
the block cannot be changed. When Write Protect  
> V  
en-  
PPF  
PP1  
is at V , the Lock-Down is disabled and the block  
IH  
PPF  
can be locked or unlocked. (refer to Table 6, Read  
Protection Register and Protection Register Lock).  
Flash Reset (RPF). The Reset input provides a  
hardware reset of the Flash memory. When Reset  
is at V , the memory is in reset mode: the outputs  
IL  
are high impedance and the current consumption  
is minimized. After Reset all blocks are in the  
If V  
is in the range 11.4V to 12.6V it acts as a  
PPF  
power supply pin. In this condition V  
stable until the Program/Erase algorithm is com-  
pleted (see Table 17 and 18).  
must be  
PPF  
Locked state. When Reset is at V , the device is  
IH  
in normal operation. Exiting reset mode the device  
enters read array mode, but a negative transition  
8/64  
M36W832TE, M36W832BE  
V
and V  
Ground. V  
and V are the  
SSS  
pacitor close to the pin. See Figure 9, AC  
Measurement Load Circuit. The PCB trace  
widths should be sufficient to carry the re-  
SSF  
SSS  
SSF  
ground reference for all voltage measurements in  
the Flash and SRAM chips, respectively.  
quired V  
program and erase currents.  
PPF  
Note: Each device in a system should have V  
D-  
, V  
DF DDQF  
and V  
decoupled with a 0.1µF ca-  
PPF  
FUNCTIONAL DESCRIPTION  
The Flash and SRAM components have separate  
power supplies and grounds and are distinguished  
by three chip enable inputs: EF for the Flash mem-  
ory and, E1S and E2S for the SRAM.  
Recommended operating conditions do not allow  
both the Flash and the SRAM to be in active mode  
at the same time. The most common example is  
simultaneous read operations on the Flash and  
the SRAM which would result in a data bus con-  
tention. Therefore it is recommended to put the  
SRAM in the high impedance state when reading  
the Flash and vice versa (see Table 2 Main Oper-  
ation Modes for details).  
Figure 4. Functional Block Diagram  
V
V
V
PPF  
DDQF  
DDF  
EF  
GF  
WF  
RPF  
Flash Memory  
32 Mbit (x16)  
WPF  
A19-A20  
A0-A18  
V
SSF  
V
DQ0-DQ15  
DDS  
E1S  
E2S  
GS  
SRAM  
8 Mbit (x16)  
WS  
UBS  
LBS  
V
SSS  
AI90163  
9/64  
M36W832TE, M36W832BE  
Table 2. Main Operation Modes  
Operation  
V
EF GF WF RPF WPF  
Mode  
E1S E2S WS GS UBS LBS DQ15-DQ8 DQ7-DQ0  
PPF  
V
V
V
V
V
Read  
Write  
X
X
Don’t care  
or  
SRAM must be disabled  
SRAM must be disabled  
Data Output  
Data Input  
IL  
IL  
IH  
IH  
V
DDF  
V
IH  
V
V
IH  
IL  
IL  
V
PPFH  
Block  
Locking  
V
V
V
V
V
IL  
X
X
Don’t care  
SRAM must be disabled  
X
IL  
IH  
Standby  
Reset  
X
X
X
X
X
X
Don’t care  
Don’t care  
Any SRAM mode is allowed  
Any SRAM mode is allowed  
Hi-Z  
Hi-Z  
IH  
IH  
V
X
IL  
Output  
Disable  
V
V
IH  
V
IH  
V
IH  
X
Don’t care  
Any SRAM mode is allowed  
Hi-Z  
IL  
X
X
V
V
V
V
V
V
V
V
V
V
V
Data out  
IH  
IH  
IH  
IL  
IL  
IL  
IL  
IL  
IL  
V
V
Read  
Write  
Flash must be disabled  
Flash must be disabled  
Hi-Z  
Data out  
Hi-Z  
IL  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
IH  
IH  
IH  
V
V
V
V
V
V
V
V
V
V
IL  
Data out  
IH  
V
V
V
V
V
V
X
Data in  
IL  
IL  
IL  
IL  
IL  
IL  
V
V
X
X
X
Hi-Z  
Data in  
Hi-Z  
IH  
V
IL  
Data in  
IH  
Standby/  
Power  
Down  
X
X
X
X
Hi-Z  
IH  
Any Flash mode is allowable  
V
IL  
V
IH  
V
IH  
X
X
X
Hi-Z  
V
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
IH  
Data  
Retention  
Any Flash mode is allowable  
Any Flash mode is allowable  
V
V
X
X
X
X
X
IL  
Output  
Disable  
V
V
IH  
V
IH  
Hi-Z  
IL  
IH  
Note: X = V or V , V = 12V ± 5%.  
PPFH  
IL  
IH  
10/64  
M36W832TE, M36W832BE  
Flash Memory Component  
against program or erase. All blocks are locked at  
Power Up.  
The Flash Memory is a 32 Mbit (2 Mbit x 16) device  
that can be erased electrically at block level and  
programmed in-system on a Word-by-Word basis.  
These operations can be performed using a single  
low voltage (2.7 to 3.6V) supply. V  
drive the I/O pin down to 1.65V. An optional 12V  
Each block can be erased separately. Erase can  
be suspended in order to perform either read or  
program in any other block and then resumed.  
Program can be suspended to read data in any  
other block and then resumed. Each block can be  
programmed and erased over 100,000 cycles.  
allows to  
DDQF  
V
power supply is provided to speed up cus-  
PPF  
tomer programming.  
The device includes a Protection Register to in-  
crease the protection of a system design. The Pro-  
tection Register is divided into two segments, the  
first is a 64 bit area which contains a unique device  
number written by ST, while the second is a 128 bit  
area, one-time-programmable by the user. The  
user programmable segment can be permanently  
protected. Figure 6, shows the Flash Security  
Block and Protection Register Memory Map.  
The device features an asymmetrical blocked ar-  
chitecture with an array of 71 blocks: 8 Parameter  
Blocks of 4 KWords and 63 Main Blocks of 32  
KWords. The M36W832TE has the Parameter  
Blocks at the top of the memory address space  
while the M36W832BE locates the Parameter  
Blocks starting from the bottom. The memory  
maps are shown in Figure 5, Block Addresses.  
The Flash Memory features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency, enabling in-  
stant code and data protection. All blocks have  
three levels of protection. They can be locked and  
locked-down individually preventing any acciden-  
tal programming or erasure. There is an additional  
hardware protection against program and erase.  
Program and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller takes care of the tim-  
ings necessary for program and erase operations.  
The end of a program or erase operation can be  
detected and any error conditions identified. The  
command set required to control the memory is  
consistent with JEDEC standards.  
When V  
V  
all blocks are protected  
PPF  
PPLK  
Figure 5. Flash Block Addresses  
Top Boot Block Addresses  
Bottom Boot Block Addresses  
1FFFFF  
4 KWords  
1FF000  
1FFFFF  
32 KWords  
1F8000  
1F7FFF  
32 KWords  
1F0000  
Total of 8  
4 KWord Blocks  
Total of 63  
32 KWord Blocks  
1F8FFF  
4 KWords  
1F8000  
1F7FFF  
32 KWords  
1F0000  
00FFFF  
32 KWords  
008000  
007FFF  
4 KWords  
007000  
Total of 63  
32 KWord Blocks  
Total of 8  
00FFFF  
4 KWord Blocks  
32 KWords  
008000  
007FFF  
000FFF  
4 KWords  
000000  
32 KWords  
000000  
AI90164  
Note: Also see Appendix A, Tables 26 and 27 for a full listing of the Flash Block Addresses.  
11/64  
M36W832TE, M36W832BE  
Figure 6. Flash Security Block and Protection Register Memory Map  
PROTECTION REGISTER  
8Ch  
User Programmable OTP  
85h  
84h  
Unique device number  
81h  
(1)  
Protection Register Lock  
2
1
0
80h  
AI90165b  
Note: 1. Bit 2 of the Protection Register Lock must not be programmed to 0.  
12/64  
M36W832TE, M36W832BE  
SRAM Component  
cess time of 70ns in all conditions. The memory  
operations can be performed using a single low  
voltage supply, 2.7V to 3.3V, which is the same as  
the Flash voltage supply.  
The SRAM is an 8 Mbit asynchronous random ac-  
cess memory which features a super low voltage  
operation and low current consumption with an ac-  
Figure 7. SRAM Block Diagram  
DATA IN DRIVERS  
A0-A10  
512Kb x 16  
RAM Array  
DQ0-DQ7  
2048 x 4096  
DQ8-DQ15  
COLUMN DECODER  
UBS  
WS  
E2S  
E1S  
A11-A18  
GS  
LBS  
E2S  
POWER-DOWN  
CIRCUIT  
E1S  
UBS  
LBS  
AI07964  
13/64  
M36W832TE, M36W832BE  
OPERATING MODES  
Flash Bus Operations  
There are six standard bus operations that control  
the device. These are Bus Read, Bus Write, Out-  
put Disable, Standby, Automatic Standby and Re-  
set. See Table 2, Main Operation Modes, for a  
summary.  
See Figures 11 and 12, Flash Write AC Wave-  
forms, and Tables 17 and 18, Write AC Character-  
istics, for details of the timing requirements.  
Output Disable. The data outputs are high im-  
pedance when the Output Enable is at V .  
IH  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect bus operations.  
Standby. Standby disables most of the internal  
circuitry allowing a substantial reduction of the cur-  
rent consumption. The memory is in stand-by  
Read. Read Bus operations are used to output  
the contents of the Memory Array, the Electronic  
Signature, the Status Register and the Common  
Flash Interface. Both Chip Enable and Output En-  
when Chip Enable is at V and the device is in  
IH  
read mode. The power consumption is reduced to  
the stand-by level and the outputs are set to high  
impedance, independently from the Output Enable  
or Write Enable inputs. If Chip Enable switches to  
able must be at V in order to perform a read op-  
IL  
eration. The Chip Enable input should be used to  
enable the device. Output Enable should be used  
to gate data onto the output. The data read de-  
pends on the previous command written to the  
memory (see Command Interface section). See  
Figure 10, Flash Read Mode AC Waveforms, and  
Table 16, Flash Read AC Characteristics, for de-  
tails of when the output becomes valid.  
V
during a program or erase operation, the de-  
IH  
vice enters Standby mode when finished.  
Automatic Standby. Automatic Standby pro-  
vides a low power consumption state during Read  
mode. Following a read operation, the device en-  
ters Automatic Standby after 150ns of bus inactiv-  
ity even if Chip Enable is Low, V , and the supply  
current is reduced to I  
IL  
. The data Inputs/Out-  
DD1  
Read mode is the default state of the device when  
exiting Reset or after power-up.  
puts will still output data if a bus Read operation is  
in progress.  
Write. Bus Write operations write Commands to  
the memory or latch Input Data to be programmed.  
A write operation is initiated when Chip Enable  
Reset. During Reset mode when Output Enable  
is Low, V , the memory is deselected and the out-  
IL  
puts are high impedance. The memory is in Reset  
and Write Enable are at V with Output Enable at  
mode when Reset is at V . The power consump-  
IL  
IL  
V . Commands, Input Data and Addresses are  
latched on the rising edge of Write Enable or Chip  
Enable, whichever occurs first.  
tion is reduced to the Standby level, independently  
from the Chip Enable, Output Enable or Write En-  
IH  
able inputs. If Reset is pulled to V  
during a Pro-  
SSF  
gram or Erase, this operation is aborted and the  
memory content is no longer valid.  
14/64  
M36W832TE, M36W832BE  
Flash Command Interface  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. An internal Program/Erase Controller han-  
dles all timings and verifies the correct execution  
of the Program and Erase commands. The Pro-  
gram/Erase Controller provides a Status Register  
whose output may be read at any time during, to  
monitor the progress of the operation, or the Pro-  
gram/Erase states. See Table 4, Command  
Codes, for a summary of the commands and see  
Appendix 31, Table 34, Write State Machine Cur-  
rent/Next, for a summary of the Command Inter-  
face.  
Read Memory Array Command. The  
Read  
command returns the memory to its Read mode.  
One Bus Write cycle is required to issue the Read  
Memory Array command and return the memory to  
Read mode. Subsequent read operations will read  
the addressed location and output the data. When  
a device Reset occurs, the memory defaults to  
Read mode.  
Read Status Register Command. The Status  
Register indicates when a program or erase oper-  
ation is complete and the success or failure of the  
operation itself. Issue a Read Status Register  
command to read the Status Register’s contents.  
Subsequent Bus Read operations read the Status  
Register at any address, until another command is  
issued. See Table 11, Status Register Bits, for de-  
tails on the definitions of the bits.  
The Command Interface is reset to Read mode  
when power is first applied, when exiting from Re-  
set or whenever V  
is lower than V  
. Com-  
LKO  
DDF  
mand sequences must be followed exactly. Any  
invalid combination of commands will reset the de-  
vice to Read mode. Refer to Table 3, Flash Com-  
mand Codes, in conjunction with the following text  
descriptions.  
The Read Status Register command may be is-  
sued at any time, even during a Program/Erase  
operation. Any Read attempt during a Program/  
Erase operation will automatically output the con-  
tent of the Status Register.  
Read Electronic Signature Command. The  
Read Electronic Signature command reads the  
Manufacturer and Device Codes and the Block  
Locking Status, or the Protection Register.  
The Read Electronic Signature command consists  
of one write cycle, a subsequent read will output  
the Manufacturer Code, the Device Code, the  
Block Lock and Lock-Down Status, or the Protec-  
tion and Lock Register. See Tables 5, 6 and 7 for  
the valid address.  
Table 3. Flash Command Codes  
Hex Code  
01h  
Command  
Block Lock confirm  
10h  
Program  
20h  
Erase  
2Fh  
Block Lock-Down confirm  
30h  
40h  
50h  
55h  
56h  
Double Word Program  
Program  
Read CFI Query Command. The Read Query  
Command is used to read data from the Common  
Flash Interface (CFI) Memory Area, allowing pro-  
gramming equipment or applications to automati-  
cally match their interface to the characteristics of  
the device. One Bus Write cycle is required to is-  
sue the Read Query Command. Once the com-  
mand is issued subsequent Bus Read operations  
read from the Common Flash Interface Memory  
Area. See Appendix B, Common Flash Interface,  
Tables 28, 29, 30, 31, 32 and 33 for details on the  
information contained in the Common Flash Inter-  
face memory area.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a block. It sets all the  
bits within the selected block to ’1’. All previous  
data in the block is lost. If the block is protected  
then the Erase operation will abort, the data in the  
block will not be changed and the Status Register  
will output the error.  
Clear Status Register  
Reserved  
Quadruple Word Program  
Block Lock, Block Unlock, Block Lock-  
Down  
60h  
70h  
90h  
98h  
B0h  
C0h  
Read Status Register  
Read Electronic Signature  
Read CFI Query  
Program/Erase Suspend  
Protection Register Program  
Program/Erase Resume, Block Unlock  
confirm  
D0h  
FFh  
Two Bus Write cycles are required to issue the  
command.  
Read Memory Array  
The first bus cycle sets up the Erase command.  
15/64  
M36W832TE, M36W832BE  
The second latches the block address in the  
internal state machine and starts the Program/  
Erase Controller.  
If the second bus cycle is not Write Erase Confirm  
(D0h), Status Register bits b4 and b5 are set and  
the command aborts.  
Read operations output the Status Register con-  
tent after the programming has started. Program-  
ming aborts if Reset goes to V . As data integrity  
IL  
cannot be guaranteed when the program opera-  
tion is aborted, the block containing the memory  
location must be erased and reprogrammed.  
See Appendix C, Figure 27, Double Word Pro-  
gram Flowchart and Pseudo Code, for the flow-  
chart for using the Double Word Program  
command.  
Quadruple Word Program Command. This  
feature is offered to improve the programming  
throughput, writing a page of four adjacent words  
in parallel.The four words must differ only for the  
addresses A0 and A1. Programming should not be  
Erase aborts if Reset turns to V . As data integrity  
cannot be guaranteed when the Erase operation is  
aborted, the block must be erased again.  
IL  
During Erase operations the memory will accept  
the Read Status Register command and the Pro-  
gram/Erase Suspend command, all other com-  
mands will be ignored. Typical Erase times are  
given in Table 8, Flash Program, Erase Times and  
Program/Erase Endurance Cycles.  
See Appendix C, Figure 30, Erase Flowchart and  
Pseudo Code, for a suggested flowchart for using  
the Erase command.  
attempted when VPPF is not at V  
.
PPH  
Five bus write cycles are necessary to issue the  
Quadruple Word Program command.  
The first bus cycle sets up the Quadruple Word  
Program Command.  
The second bus cycle latches the Address and  
Program Command. The memory array can be  
programmed word-by-word. Two bus write cycles  
are required to issue the Program Command.  
the Data of the first word to be written.  
The first bus cycle sets up the Program  
command.  
The third bus cycle latches the Address and the  
Data of the second word to be written.  
The fourth bus cycle latches the Address and  
The second latches the Address and the Data to  
be written and starts the Program/Erase  
Controller.  
the Data of the third word to be written.  
During Program operations the memory will ac-  
cept the Read Status Register command and the  
Program/Erase Suspend command. Typical Pro-  
gram times are given in Table 8, Flash Program,  
Erase Times and Program/Erase Endurance Cy-  
cles.  
The fifth bus cycle latches the Address and the  
Data of the fourth word to be written and starts  
the Program/Erase Controller.  
Read operations output the Status Register con-  
tent after the programming has started. Program-  
ming aborts if Reset goes to V . As data integrity  
IL  
Programming aborts if Reset goes to V . As data  
cannot be guaranteed when the program opera-  
tion is aborted, the block containing the memory  
location must be erased and reprogrammed.  
See Appendix C, Figure 28, Quadruple Word Pro-  
gram Flowchart and Pseudo Code, for the flow-  
chart for using the Quadruple Word Program  
command.  
IL  
integrity cannot be guaranteed when the program  
operation is aborted, the block containing the  
memory location must be erased and repro-  
grammed.  
See Appendix C, Figure 26, Program Flowchart  
and Pseudo Code, for the flowchart for using the  
Program command.  
Clear Status Register Command. The  
Clear  
Double Word Program Command. This feature  
is offered to improve the programming throughput,  
writing a page of two adjacent words in paral-  
lel.The two words must differ only for the address  
A0. Programming should not be attempted when  
Status Register command can be used to reset  
bits 1, 3, 4 and 5 in the Status Register to ‘0’. One  
bus write cycle is required to issue the Clear Sta-  
tus Register command.  
The bits in the Status Register do not automatical-  
ly return to ‘0’ when a new Program or Erase com-  
mand is issued. The error bits in the Status  
Register should be cleared before attempting a  
new Program or Erase command.  
V
is not at V  
.
PPF  
PPH  
Three bus write cycles are necessary to issue the  
Double Word Program command.  
The first bus cycle sets up the Double Word  
Program Command.  
The second bus cycle latches the Address and  
Program/Erase Suspend Command. The Pro-  
gram/Erase Suspend command is used to pause  
a Program or Erase operation. One bus write cycle  
is required to issue the Program/Erase command  
and pause the Program/Erase controller.  
During Program/Erase Suspend the Command In-  
terface will accept the Program/Erase Resume,  
the Data of the first word to be written.  
The third bus cycle latches the Address and the  
Data of the second word to be written and starts  
the Program/Erase Controller.  
16/64  
M36W832TE, M36W832BE  
Read Array, Read Status Register, Read Electron-  
ic Signature and Read CFI Query commands. Ad-  
ditionally, if the suspend operation was Erase then  
the Program, Double Word Program, Quadruple  
Word Program, Block Lock, Block Lock-Down or  
Protection Program commands will also be ac-  
cepted. The block being erased may be protected  
by issuing the Block Protect, Block Lock or Protec-  
tion Program commands. When the Program/  
Erase Resume command is issued the operation  
will complete. Only the blocks not being erased  
may be read or programmed correctly.  
Register error. The protection of the Protection  
Register is not reversible.  
The Protection Register Program cannot be sus-  
pended.  
Block Lock Command. The Block Lock com-  
mand is used to lock a block and prevent Program  
or Erase operations from changing the data in it.  
All blocks are locked at power-up or reset.  
Two Bus Write cycles are required to issue the  
Block Lock command.  
The first bus cycle sets up the Block Lock  
command.  
During a Program/Erase Suspend, the device can  
be placed in a pseudo-standby mode by taking  
The second Bus Write cycle latches the block  
Chip Enable to V . Program/Erase is aborted if  
address.  
IH  
Reset turns to V .  
IL  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table. 10 shows the protection status after issuing  
a Block Lock command.  
The Block Lock bits are volatile, once set they re-  
main set until a hardware reset or power-down/  
power-up. They are cleared by a Blocks Unlock  
command. Refer to the section, Block Locking, for  
a detailed explanation.  
Block Unlock Command. The Blocks Unlock  
command is used to unlock a block, allowing the  
block to be programmed or erased. Two Bus Write  
cycles are required to issue the Blocks Unlock  
command.  
See Appendix C, Figure 29, Program or Double  
Word Program Suspend & Resume Flowchart and  
Pseudo Code, and Figure 31, Erase Suspend &  
Resume Flowchart and Pseudo Code for flow-  
charts for using the Program/Erase Suspend com-  
mand.  
Program/Erase Resume Command. The Pro-  
gram/Erase Resume command can be used to re-  
start the Program/Erase Controller after  
a
Program/Erase Suspend operation has paused it.  
One Bus Write cycle is required to issue the com-  
mand. Once the command is issued subsequent  
Bus Read operations read the Status Register.  
See Appendix C, Figure 29, Program or Double  
Word Program Suspend & Resume Flowchart and  
Pseudo Code, and Figure 31, Erase Suspend &  
Resume Flowchart and Pseudo Code for flow-  
charts for using the Program/Erase Resume com-  
mand.  
Protection Register Program Command. The  
Protection Register Program command is used to  
Program the 128 bit user One-Time-Programma-  
ble (OTP) segment of the Protection Register. The  
segment is programmed 16 bits at a time. When  
shipped all bits in the segment are set to ‘1’. The  
user can only program the bits to ‘0’.  
The first bus cycle sets up the Block Unlock  
command.  
The second Bus Write cycle latches the block  
address.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table. 10 shows the protection status after issuing  
a Block Unlock command. Refer to the “Flash  
Block Locking” section, for a detailed explanation.  
Block Lock-Down Command. A locked block  
cannot be Programmed or Erased, or have its pro-  
tection status changed when WPF is low, V .  
IL  
When WPF is high, V the Lock-Down function is  
IH,  
Two write cycles are required to issue the Protec-  
tion Register Program command.  
The first bus cycle sets up the Protection  
disabled and the locked blocks can be individually  
unlocked by the Block Unlock command.  
Two Bus Write cycles are required to issue the  
Block Lock-Down command.  
Register Program command.  
The second latches the Address and the Data to  
be written to the Protection Register and starts  
the Program/Erase Controller.  
Read operations output the Status Register con-  
tent after the programming has started.  
The first bus cycle sets up the Block Lock  
command.  
The second Bus Write cycle latches the block  
address.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Locked-Down blocks revert to the locked (and not  
locked-down) state when the device is reset on  
power-down. Table. 10 shows the protection sta-  
tus after issuing a Block Lock-Down command.  
The segment can be protected by programming bit  
1 of the Protection Lock Register (see Figure 6,  
Flash Security Block and Protection Register  
Memory Map). Attempting to program a previously  
protected Protection Register will result in a Status  
17/64  
M36W832TE, M36W832BE  
Refer to the “Flash Block Locking” section for a de-  
tailed explanation.  
Table 4. Flash Commands  
Bus Write Operations  
3rd Cycle  
Commands  
1st Cycle  
2nd Cycle  
4th Cycle  
5th Cycle  
Op. Add Data Op. Add Data Op. Add Data Op. Add Data Op. Add Data  
Read Memory  
Array  
1+ Write  
1+ Write  
X
X
X
FFh  
RA  
X
RD  
SRD  
IDh  
Read  
Read Status  
Register  
70h Read  
90h Read  
Read Electronic  
Signature  
(2)  
1+ Write  
1+ Write  
SA  
Read CFI Query  
Erase  
X
X
98h Read QA  
20h Write BA  
40h  
QD  
2
Write  
D0h  
Program  
2
Write  
X
or  
Write PA  
PD  
10h  
Double Word  
3
5
Write  
Write  
X
X
30h Write PA1 PD1 Write PA2 PD2  
(3)  
Program  
Quadruple Word  
(6)  
Write PA1 PD1 Write PA2 PD2 Write PA3 PD3 Write PA4 PD4  
56h  
(4)  
Program  
Clear Status  
Register  
1
1
1
Write  
Write  
Write  
X
X
X
50h  
Program/Erase  
Suspend  
B0h  
D0h  
Program/Erase  
Resume  
Block Lock  
2
2
2
Write  
Write  
Write  
X
X
X
60h Write BA  
60h Write  
01h  
D0h  
2Fh  
Block Unlock  
Block Lock-Down  
BA  
60h Write BA  
Protection  
Register Program  
2
Write  
X
C0h Write  
PRD  
PRA  
Note: X = Don’t Care.  
1. The signature addresses are listed in Tables 5, 6 and 7.  
2. Addr 1 and Addr 2 must be consecutive Addresses differing only for A0.  
3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0.  
4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.  
5. 55h is reserved.  
6. To be characterized.  
18/64  
M36W832TE, M36W832BE  
Table 5. Flash Read Electronic Signature  
Code  
Device  
EF GF WF A0 A1 A2-A7  
A8-A11  
A12-A20 DQ0-DQ7 DQ8-DQ15  
Manufacture  
Code  
V
IL  
V
V
IH  
V
IL  
V
IL  
V
0
Don’t Care  
20h  
00h  
IL  
IL  
V
V
V
V
V
V
V
V
V
V
V
M36W832TE  
M36W832BE  
0
0
Don’t Care  
Don’t Care  
BAh  
BBh  
88h  
88h  
IL  
IL  
IL  
IH  
IH  
IH  
IL  
IL  
IL  
Device  
Code  
V
IL  
IH  
IL  
Note: RPF = V  
.
IH  
Table 6. Flash Read Block Lock Signature  
Block Status  
Locked Block  
EF  
GF WF A0  
A1 A2-A7  
A8-A20  
A12-A20  
DQ0 DQ1 DQ2-DQ15  
V
IL  
V
V
V
V
V
0
0
Don’t Care Block Address  
Don’t Care Block Address  
1
0
0
0
00h  
00h  
IL  
IL  
IH  
IH  
IL  
IL  
IH  
IH  
V
IL  
V
V
V
Unlocked Block  
Locked-Down  
Block  
(1)  
V
IL  
V
V
IH  
V
IL  
V
IH  
0
Don’t Care Block Address  
1
00h  
IL  
X
Note: 1. A Locked Block can be protected "DQ0 = 1" or unprotected "DQ0 = 0"; see Block Locking section.  
Table 7. Flash Read Protection Register and Lock Register  
Word  
EF GF WF A0-A7  
A8-A20  
DQ0  
DQ1  
DQ2  
Don’t Care  
DQ3-DQ7 DQ8-DQ15  
OTP Prot.  
data  
Don’t  
V
IL  
V
V
IH  
Lock  
80h Don’t Care Don’t Care  
Don’t Care  
Care  
IL  
See note (1)  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
V
V
V
V
V
V
V
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
Unique ID 0  
Unique ID 1  
Unique ID 2  
Unique ID 3  
OTP 0  
81h Don’t Care  
82h Don’t Care  
83h Don’t Care  
84h Don’t Care  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
ID data  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
ID data  
ID data  
ID data  
ID data  
ID data  
85h Don’t Care OTP data  
86h Don’t Care OTP data  
87h Don’t Care OTP data  
88h Don’t Care OTP data  
OTP data  
OTP data  
OTP data  
OTP data  
OTP data OTP data OTP data  
OTP data OTP data OTP data  
OTP data OTP data OTP data  
OTP data OTP data OTP data  
OTP 1  
OTP 2  
OTP 3  
19/64  
M36W832TE, M36W832BE  
Table 8. Flash Program, Erase Times and Program/Erase Endurance Cycles  
Flash Device  
Parameter  
Test Conditions  
Unit  
Min  
Typ  
10  
Max  
200  
200  
200  
5
V
PPF  
= V  
DDF  
Word Program  
µs  
V
V
V
= 12V ±5%  
= 12V ±5%  
= 12V ±5%  
= V  
Double Word Program  
10  
µs  
PPF  
PPF  
PPF  
V
Quadruple Word Program  
10  
µs  
(1)  
(1)  
s
0.16/0.08  
0.32  
Main Block Program  
Parameter Block Program  
Main Block Erase  
5
s
PPF  
DDF  
V
= 12V ±5%  
4
s
PPF  
0.02/0.01  
V
= V  
0.04  
1
4
s
PPF  
DDF  
V
V
V
= 12V ±5%  
10  
10  
10  
10  
s
PPF  
PPF  
= V  
V
1
s
DD DDF  
= 12V ±5%  
= V  
0.4  
0.4  
s
s
PPF  
Parameter Block Erase  
V
PPF  
DDF  
Program/Erase Cycles (per Block)  
100,000  
cycles  
Note: 1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commands  
respectively.  
20/64  
M36W832TE, M36W832BE  
Flash Block Locking  
propriate software commands. A locked block can  
be unlocked by issuing the Unlock command.  
The Flash Memory features an instant, individual  
block locking scheme that allows any block to be  
locked or unlocked with no latency. This locking  
scheme has three levels of protection.  
Lock-Down State. Blocks that are Locked-Down  
(state (0,1,x))are protected from program and  
erase operations (as for Locked blocks) but their  
protection status cannot be changed using soft-  
ware commands alone. A Locked or Unlocked  
block can be Locked-Down by issuing the Lock-  
Down command. Locked-Down blocks revert to  
the Locked state when the device is reset or pow-  
ered-down.  
Lock/Unlock - this first level allows software-  
only control of block locking.  
Lock-Down - this second level requires  
hardware interaction before locking can be  
changed.  
The Lock-Down function is dependent on the WPF  
V  
PPF  
V  
- the third level offers a complete  
PPLK  
input pin. When WPF=0 (V ), the blocks in the  
IL  
hardware protection against program and erase  
on all blocks.  
Lock-Down state (0,1,x) are protected from pro-  
gram, erase and protection status changes. When  
WPF=1 (V ) the Lock-Down function is disabled  
IH  
The protection status of each block can be set to  
Locked, Unlocked, and Lock-Down. Table 10, de-  
fines all of the possible protection states (WPF,  
DQ1, DQ0), and Appendix C, Figure 32, shows a  
flowchart for the locking operations.  
(1,1,1) and Locked-Down blocks can be individu-  
ally unlocked to the (1,1,0) state by issuing the  
software command, where they can be erased and  
programmed. These blocks can then be relocked  
(1,1,1) and unlocked (1,1,0) as desired while WPF  
remains high. When WPF is low , blocks that were  
previously Locked-Down return to the Lock-Down  
state (0,1,x) regardless of any changes made  
while WPF was high. Device reset or power-down  
resets all blocks , including those in Lock-Down, to  
the Locked state.  
Reading a Block’s Lock Status. The lock status  
of every block can be read in the Read Electronic  
Signature mode of the device. To enter this mode  
write 90h to the device. Subsequent reads at the  
address specified in Table 6, will output the protec-  
tion status of that block. The lock status is repre-  
sented by DQ0 and DQ1. DQ0 indicates the Block  
Lock/Unlock status and is set by the Lock com-  
mand and cleared by the Unlock command. It is  
also automatically set when entering Lock-Down.  
DQ1 indicates the Lock-Down status and is set by  
the Lock-Down command. It cannot be cleared by  
software, only by a hardware reset or power-down.  
Locking Operations During Erase Suspend.  
Changes to block lock status can be performed  
during an erase suspend by using the standard  
locking command sequences to unlock, lock or  
lock-down a block. This is useful in the case when  
another block needs to be updated while an erase  
operation is in progress.  
To change block locking during an erase opera-  
tion, first write the Erase Suspend command, then  
check the status register until it indicates that the  
erase operation has been suspended. Next write  
the desired Lock command sequence to a block  
and the lock status will be changed. After complet-  
ing any desired lock, read, or program operations,  
resume the erase operation with the Erase Re-  
sume command.  
If a block is locked or locked-down during an erase  
suspend of the same block, the locking status bits  
will be changed immediately, but when the erase  
is resumed, the erase operation will complete.  
Locking operations cannot be performed during a  
program suspend. Refer to Appendix D, Com-  
mand Interface and Program/Erase Controller  
State, for detailed information on which com-  
mands are valid during erase suspend.  
The following sections explain the operation of the  
locking system.  
Locked State. The default status of all blocks on  
power-up or after a hardware reset is Locked  
(states (0,0,1) or (1,0,1)). Locked blocks are fully  
protected from any program or erase. Any pro-  
gram or erase operations attempted on a locked  
block will return an error in the Status Register.  
The Status of a Locked block can be changed to  
Unlocked or Lock-Down using the appropriate  
software commands. An Unlocked block can be  
Locked by issuing the Lock command.  
Unlocked State. Unlocked blocks (states (0,0,0),  
(1,0,0) (1,1,0)), can be programmed or erased. All  
unlocked blocks return to the Locked state after a  
hardware reset or when the device is powered-  
down. The status of an unlocked block can be  
changed to Locked or Locked-Down using the ap-  
21/64  
M36W832TE, M36W832BE  
Table 9. Block Lock Status  
Item  
Address  
Data  
Block Lock Configuration  
LOCK  
Block is Unlocked  
Block is Locked  
DQ0=0  
DQ0=1  
DQ1=1  
xx002  
Block is Locked-Down  
Table 10. Protection Status  
Current  
(1)  
Next Lock Status  
(1)  
Lock Status  
(WPF, DQ1, DQ0)  
(WPF, DQ1, DQ0)  
After  
Block Lock  
Command  
After  
Block Unlock  
Command  
After Block  
Lock-Down  
Command  
Program/Erase  
After  
WPF transition  
Current State  
Allowed  
1,0,0  
yes  
no  
1,0,1  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
0,0,1  
1,0,0  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
0,0,0  
1,1,1  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,1,1  
0,0,0  
0,0,1  
0,1,1  
0,1,1  
1,0,0  
1,0,1  
(2)  
1,0,1  
1,1,0  
1,1,1  
0,0,0  
yes  
no  
yes  
no  
(2)  
0,0,1  
(3)  
0,1,1  
no  
0,1,1  
0,1,1  
0,1,1  
1,1,1 or 1,1,0  
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read  
in the Read Electronic Signature command with A1 = V and A0 = V .  
IH  
IL  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WPF status.  
3. A WPF transition to V on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
IH  
22/64  
M36W832TE, M36W832BE  
Flash Status Register  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
The Status Register provides information on the  
current or previous Program or Erase operation.  
The various bits convey information and errors on  
the operation. To read the Status register the  
Read Status Register command can be issued, re-  
fer to Read Status Register Command section. To  
output the contents, the Status Register is latched  
on the falling edge of the Chip Enable or Output  
Enable signals, and can be read until Chip Enable  
or Output Enable returns to V . Either Chip En-  
able or Output Enable must be toggled to update  
the latched data.  
Bus Read operations from any address always  
read the Status Register during Program and  
Erase operations.  
Erase Status (Bit 5). The Erase Status bit can be  
used to identify if the memory has failed to verify  
that the block has erased correctly. When the  
Erase Status bit is High (set to ‘1’), the Program/  
Erase Controller has applied the maximum num-  
ber of pulses to the block and still failed to verify  
that the block has erased correctly. The Erase Sta-  
tus bit should be read once the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive).  
Once set High, the Erase Status bit can only be re-  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status (Bit 4). The Program Status bit  
is used to identify a Program failure. When the  
Program Status bit is High (set to ‘1’), the Pro-  
gram/Erase Controller has applied the maximum  
number of pulses to the byte and still failed to ver-  
ify that it has programmed correctly. The Program  
Status bit should be read once the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive).  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new command is issued, otherwise the new  
command will appear to fail.  
IH  
The bits in the Status Register are summarized in  
Table 11, Status Register Bits. Refer to Table 11  
in conjunction with the following text descriptions.  
Program/Erase Controller Status (Bit 7). The Pro-  
gram/Erase Controller Status bit indicates whether  
the Program/Erase Controller is active or inactive.  
When the Program/Erase Controller Status bit is  
Low (set to ‘0’), the Program/Erase Controller is  
active; when the bit is High (set to ‘1’), the Pro-  
gram/Erase Controller is inactive, and the device  
is ready to process a new command.  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High .  
V
Status (Bit 3). The V  
Status bit can be  
PPF  
PPF  
used to identify an invalid voltage on the V  
during Program and Erase operations. The V  
pin is only sampled at the beginning of a Program  
or Erase operation. Indeterminate results can oc-  
pin  
PPF  
PPF  
During Program, Erase, operations the Program/  
Erase Controller Status bit can be polled to find the  
end of the operation. Other bits in the Status Reg-  
ister should not be tested until the Program/Erase  
Controller completes the operation and the bit is  
High.  
cur if V  
becomes invalid during an operation.  
PPF  
When the V  
Status bit is Low (set to ‘0’), the  
PPF  
voltage on the V  
voltage; when the V  
PPF  
‘1’), the V  
pin has a voltage that is below the  
PPF  
V
Lockout Voltage, V  
PPF  
tected and Program and Erase operations cannot  
be performed.  
Once set High, the V  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Suspend Status (Bit 2). The Program  
Suspend Status bit indicates that a Program oper-  
ation has been suspended. When the Program  
Suspend Status bit is High (set to ‘1’), a Program/  
Erase Suspend command has been issued and  
the memory is waiting for a Program/Erase Re-  
sume command. The Program Suspend Status  
should only be considered valid when the Pro-  
The Erase Suspend Status should only be consid-  
ered valid when the Program/Erase Controller Sta-  
tus bit is High (Program/Erase Controller inactive).  
Bit 7 is set within 30µs of the Program/Erase Sus-  
pend command being issued therefore the memo-  
ry may still complete the operation rather than  
entering the Suspend mode.  
23/64  
M36W832TE, M36W832BE  
gram/Erase Controller Status bit is High (Program/  
Erase Controller inactive). Bit 2 is set within 5µs of  
the Program/Erase Suspend command being is-  
sued therefore the memory may still complete the  
operation rather than entering the Suspend mode.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
Block Protection Status (Bit 1). The Block Pro-  
tection Status bit can be used to identify if a Pro-  
gram or Erase operation has tried to modify the  
contents of a locked block.  
When the Block Protection Status bit is High (set  
to ‘1’), a Program or Erase operation has been at-  
tempted on a locked block.  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new command is issued, otherwise  
the new command will appear to fail.  
Reserved (Bit 0). Bit 0 of the Status Register is  
reserved. Its value must be masked.  
Note: Refer to Appendix C, Flowcharts and  
Pseudo Codes, for using the Status Register.  
Table 11. Flash Status Register Bits  
Bit  
Name  
Logic Level  
Definition  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
Ready  
7
P/E.C. Status  
Busy  
Suspended  
6
5
4
Erase Suspend Status  
Erase Status  
In progress or Completed  
Erase Error  
Erase Success  
Program Error  
Program Status  
Program Success  
V
V
Invalid, Abort  
OK  
PPF  
PPF  
V
PPF  
Status  
3
2
’0’  
’1’  
’0’  
’1’  
’0’  
Suspended  
Program Suspend Status  
In Progress or Completed  
Program/Erase on protected Block, Abort  
No operation to protected blocks  
1
0
Block Protection Status  
Reserved  
Note: Logic level ’1’ is High, ’0’ is Low.  
24/64  
M36W832TE, M36W832BE  
SRAM Operations  
A Write operation is initiated when E1S is at V ,  
IL  
E2S is at V and WS is at V . The data is latched  
IH  
IL  
There are five standard operations that control the  
SRAM component. These are Bus Read, Bus  
Write, Standby/Power-down, Data Retention and  
Output Disable. A summary is shown in Table 2,  
Main Operation Modes  
Read. Read operations are used to output the  
contents of the SRAM Array.  
o the falling edge of E1S, the rising edge of E2S or  
the falling edge of WS, whichever occurs last. The  
Write cycle is terminated on the rising edge of  
E1S, the rising edge of WS or the falling edge of  
E2S, whichever occurs first.  
If the Output is enabled (E1S=V , E2S=V and  
IL  
IH  
GS=V ), then WS will return the outputs to high  
IL  
The SRAM is in Byte Read mode whenever Write  
impedance within t  
of its falling edge. Care  
WLQZ  
Enable, WS, is at V , Output Enable, GS, is at V ,  
IH  
IL  
must be taken to avoid bus contention in this type  
of operation. The Data input must be valid for t  
Chip Enable, E1S, is at V , Chip Enable, E2S, is  
IL  
D-  
at V , and UBS or LBS is at V .  
IH  
IL  
before the rising edge of Write Enable, for  
VWH  
t
The SRAM is in Word Read mode whenever Write  
Enable, WS, is at V , Output Enable, GS, is at V ,  
before the rising edge of E1S or for t  
DVE1H  
DVE2L  
IH  
IL  
IL  
before the falling edge of E2S, whichever occurs  
first, and remain valid for t , t or t  
Byte Enable inputs UBS and LBS are both at V  
and the two Chip Enable inputs, E1S, and E2S are  
Don’t Care.  
WHDX E1HAX  
E2LAX  
(see Table 21, Figure 17, 18, 19 and 20).  
Standby/Power-Down. The SRAM component  
has a chip enabled power-down feature which in-  
vokes an automatic standby mode (see Table 20  
and Figure 16). The SRAM is in Standby mode  
whenever either Chip Enable is deasserted, E1S  
Valid data will be available on the output pins after  
a time of t  
after the last stable address. If the  
AVQV  
Chip Enable or Output Enable access times are  
not met, data access will be measured from the  
limiting parameter (t  
, t  
, or t  
) rath-  
E1LQV E2HQV  
GLQV  
at V or E2S at V .  
IH  
IL  
er than the address. Data out may be indetermi-  
Data Retention. The SRAM data retention per-  
formance as V goes down to V are de-  
nate at t , t and t , but data lines  
E1LQX E2HQX  
GLQX  
DDS  
DR  
will always be valid at t  
14 and 15).  
Write. Write operations are used to write data to  
the SRAM. The SRAM is in Write mode whenever  
WS and E1S are at V , and E2S is at V . Either  
the Chip Enable inputs, E1S and E2S, or the Write  
Enable input, WS, must be deasserted during ad-  
dress transitions for subsequent write cycles.  
(see Table 20, Figures  
AVQV  
scribed in Table 22, Figures 21 and 22, SRAM  
Low V Data Retention AC Waveforms, E1S  
DDS  
Controlled and SRAM Low V  
Data Retention  
DDS  
AC Waveforms, E2S Controlled, respectively.  
Output Disable. The data outputs are high im-  
IL  
IH  
pedance when the Output Enable, GS, is at V  
IH  
with Write Enable, WS, at V .  
IH  
25/64  
M36W832TE, M36W832BE  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 12. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
–40  
–40  
–55  
–0.5  
–0.6  
–0.6  
–0.5  
Max  
85  
(1)  
T
°C  
°C  
°C  
V
A
Ambient Operating Temperature  
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage  
Flash Supply Voltage  
Program Voltage  
T
125  
150  
BIAS  
T
STG  
V
IO  
V
+0.5  
DDQF  
V
, V  
4.1  
13  
V
DDF DDQF  
V
PPF  
V
V
SRAM Supply Voltage  
3.6  
V
DDS  
Note: 1. Depends on range.  
26/64  
M36W832TE, M36W832BE  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in Table 13,  
Operating and AC Measurement Conditions. De-  
signers should check that the operating conditions  
in their circuit match the measurement conditions  
when relying on the quoted parameters.  
The operating and AC measurement parameters  
given below (see Table 13, Operating and AC  
Measurement Conditions) are those of the stand-  
alone Flash and SRAM devices and some differ  
from those of the stacked product.  
Table 13. Operating and AC Measurement Conditions  
SRAM  
70  
Flash Memory  
70 / 85  
Parameter  
Units  
Min  
Max  
Min  
2.7  
2.7  
Max  
3.6  
3.6  
V
V
V
Supply Voltage  
V
V
DDF  
Supply Voltage  
DDQF  
Supply Voltage  
2.7  
– 40  
3.3  
85  
V
DDS  
Ambient Operating Temperature  
– 40  
85  
°C  
pF  
ns  
V
Load Capacitance (C )  
50  
50  
L
Input Rise and Fall Times  
3.3  
5
0 to V  
0 to V  
DDQF  
Input Pulse Voltages  
DDQF  
V
/2  
DDQF  
V
/2  
DDQF  
Input and Output Timing Ref. Voltages  
V
Figure 8. AC Measurement I/O Waveform  
Figure 9. AC Measurement Load Circuit  
V
DDQF  
V
DDQ  
V
/2  
DDQ  
V
DDQF  
V
0V  
DDF  
25k  
AI90166  
DEVICE  
UNDER  
TEST  
Note: V  
means V  
= V  
DDQF DDS  
DDQ  
C
L
25kΩ  
0.1µF  
0.1µF  
C
includes JIG capacitance  
AI90167  
L
Table 14. Device Capacitance  
Symbol  
Parameter  
Test Condition  
Max  
12  
Unit  
C
IN  
V
IN  
= 0V, f=1 MHz  
= 0V, f=1 MHz  
Input Capacitance  
Output Capacitance  
pF  
pF  
C
OUT  
V
OUT  
16  
Note: Sampled only, not 100% tested.  
27/64  
M36W832TE, M36W832BE  
Table 15. DC Characteristics  
Symbol  
Parameter  
Device  
Test Condition  
Min  
Typ  
Max  
±2  
Unit  
µA  
Flash &  
SRAM  
I
0V V V  
Input Leakage Current  
LI  
IN  
DDQF  
0V V  
0V V  
V  
Flash  
±10  
±1  
µA  
OUT  
DDQF,  
DDQF,  
I
Output Leakage Current  
LO  
V  
OUT  
SRAM  
µA  
SRAM Outputs Hi-Z  
EF = V ± 0.2V  
DDQF  
Flash  
15  
8
50  
µA  
V
= V  
max  
DDQF  
DDF  
E1S V  
– 0.3V  
DDS  
or E2S 0.3V  
V – 0.3V or V 0.3V  
DDS  
V
IN  
IN  
25  
µA  
f = f  
(Address and Data  
inputs only)  
max  
I
V
DD  
Standby Current  
DDS  
SRAM  
f = 0 (GS, WS, UBS and LBS)  
E1S V – 0.3V  
DDS  
or E2S 0.3V  
V – 0.3V or V 0.3V  
DDS  
8
25  
µA  
V
IN  
IN  
f = 0, V  
= V  
max  
DDS  
DDS  
Supply Current  
(Reset)  
I
RPF = V  
± 0.2V  
Flash  
15  
7
50  
15  
µA  
DDD  
SSF  
V
OUT  
= 0mA  
, CMOS levels  
f = f  
= 1/t  
mA  
max  
AVAV  
V
DDS  
= V  
max  
DDS  
I
Supply Current  
SRAM  
DD  
I
= 0 mA, f = 1MHz, CMOS  
Levels  
OUT  
1
9
2
mA  
mA  
mA  
mA  
mA  
mA  
Supply Current  
(Read)  
I
I
EF = V , GF = V f = 5 MHz  
IL IH,  
Flash  
Flash  
18  
10  
20  
20  
20  
DDR  
Program in progress  
= 12V ± 5%  
5
V
PPF  
Supply Current  
(Program)  
DDW  
Program in progress  
= V  
10  
5
V
PPF  
DDF  
Erase in progress  
= 12V ± 5%  
V
PPF  
Supply Current  
(Erase)  
I
Flash  
Flash  
DDE  
Erase in progress  
10  
V
= V  
PPF  
DDF  
Supply Current  
(Program/Erase  
Suspend)  
EF = V  
Erase suspended  
± 0.2V,  
DDQF  
I
15  
50  
µA  
DDES  
I
V
V
> V  
400  
5
µA  
µA  
PP  
PPF  
DDF  
DDF  
Program Current  
(Read or Standby)  
Flash  
Flash  
I
V  
1
1
PP1  
PPF  
Program Current  
(Reset)  
I
RPF = V  
± 0.2V  
5
10  
5
µA  
mA  
µA  
PP2  
SSF  
Program in progress  
= 12V ± 5%  
1
1
V
PPF  
Program Current  
(Program)  
I
Flash  
PPW  
Program in progress  
= V  
V
PPF  
DDF  
28/64  
M36W832TE, M36W832BE  
Symbol  
Parameter  
Device  
Test Condition  
Min  
Typ  
Max  
Unit  
Erase in progress  
3
10  
mA  
V
= 12V ± 5%  
PPF  
Program Current  
(Erase)  
I
Flash  
PPE  
Erase in progress  
= V  
1
5
µA  
V
V
PPF  
DDF  
Flash &  
SRAM  
V
V
V
= V  
2.7V  
2.7V  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.3  
0.8  
IL  
DDQF  
DDQF  
DDS  
0.7V  
V
Flash &  
SRAM  
DD  
DDQF  
+0.4  
V
= V  
V
IH  
DDS  
QF  
V
V
= V  
= V min  
DDS DD  
Flash &  
SRAM  
DDQF  
V
0.1  
V
OL  
I
OL  
= 100µA  
= V  
= V min  
DD  
Flash &  
SRAM  
DDQF  
DDS  
V
2.4  
V
OH  
I
= –100µA  
OH  
Program Voltage  
(Program or Erase  
operations)  
V
Flash  
Flash  
Flash  
Flash  
1.65  
3.6  
12.6  
1
V
V
V
V
PPL  
Program Voltage  
(Program or Erase  
operations)  
V
PPH  
11.4  
Program Voltage  
(Program and Erase  
lock-out)  
V
PPLK  
V
DDF  
Supply Voltage  
V
2
(Program and Erase  
lock-out)  
LKO  
29/64  
M36W832TE, M36W832BE  
Figure 10. Flash Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A20  
tAVQV  
tAXQX  
EF  
tELQV  
tELQX  
tEHQX  
tEHQZ  
GF  
tGLQV  
tGHQX  
tGHQZ  
tGLQX  
DQ0-DQ15  
VALID  
ADDR. VALID  
CHIP ENABLE  
OUTPUTS  
ENABLED  
DATA VALID  
STANDBY  
AI90168b  
Table 16. Flash Read AC Characteristics  
Flash Device  
Symbol  
Alt  
Parameter  
Unit  
70  
70  
70  
85  
85  
85  
t
t
Address Valid to Next Address Valid  
Address Valid to Output Valid  
Min  
ns  
ns  
ns  
AVAV  
RC  
t
t
ACC  
Max  
Min  
Min  
Max  
Max  
Min  
Min  
Max  
AVQV  
(1)  
t
Address Transition to Output Transition  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
0
0
0
0
t
OH  
AXQX  
(1)  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
OH  
EHQX  
(1)  
t
20  
70  
0
20  
85  
0
t
HZ  
EHQZ  
(2)  
(1)  
(1)  
(1)  
(2)  
(1)  
t
Chip Enable Low to Output Valid  
t
t
CE  
ELQV  
ELQX  
t
Chip Enable Low to Output Transition  
Output Enable High to Output Transition  
Output Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
LZ  
t
0
0
t
t
OH  
GHQX  
GHQZ  
t
20  
20  
0
20  
20  
0
DF  
t
Max  
Min  
t
t
OE  
GLQV  
GLQX  
t
OLZ  
Note: 1. Sampled only, not 100% tested.  
2. GF may be delayed by up to t  
- t  
after the falling edge of EF without increasing t  
.
ELQV  
ELQV GLQV  
30/64  
M36W832TE, M36W832BE  
Figure 11. Flash Write AC Waveforms, Write Enable Controlled  
31/64  
M36W832TE, M36W832BE  
Table 17. Flash Write AC Characteristics, Write Enable Controlled  
Flash Device  
Symbol  
Alt  
Parameter  
Unit  
70  
70  
45  
45  
0
85  
85  
45  
45  
0
t
t
WC  
Write Cycle Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
t
Address Valid to Write Enable High  
Data Valid to Write Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Output Valid  
AVWH  
AS  
DS  
CS  
t
t
t
DVWH  
t
ELWL  
t
70  
85  
ELQV  
(1,2)  
Output Valid to V  
Low  
0
0
0
0
t
PPF  
QVVPL  
t
Output Valid to Write Protect Low  
V High to Write Enable High  
PPF  
QVWPL  
(1)  
t
200  
0
200  
0
t
VPS  
VPHWH  
t
t
t
t
Write Enable High to Address Transition  
Write Enable High to Data Transition  
Write Enable High to Chip Enable High  
Write Enable High to Chip Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Write Protect High to Write Enable High  
WHAX  
WHDX  
WHEH  
AH  
DH  
CH  
t
t
0
0
0
0
t
25  
20  
25  
45  
45  
25  
20  
25  
45  
45  
WHEL  
t
WHGL  
WHWL  
t
t
WPH  
t
t
WLWH  
WP  
t
WPHWH  
Note: 1. Sampled only, not 100% tested.  
2. Applicable if V is seen as a logic input (V  
< 3.6V).  
PPF  
PPF  
32/64  
M36W832TE, M36W832BE  
Figure 12. Flash Write AC Waveforms, Chip Enable Controlled  
33/64  
M36W832TE, M36W832BE  
Table 18. Flash Write AC Characteristics, Chip Enable Controlled  
Flash Device  
Symbol  
Alt  
Parameter  
Unit  
70  
85  
85  
45  
45  
0
t
t
WC  
Write Cycle Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
70  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
t
Address Valid to Chip Enable High  
Data Valid to Chip Enable High  
AVEH  
AS  
DS  
AH  
DH  
t
t
t
t
DVEH  
t
Chip Enable High to Address Transition  
Chip Enable High to Data Transition  
Chip Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Chip Enable Low to Chip Enable High  
Chip Enable Low to Output Valid  
EHAX  
t
0
0
EHDX  
t
t
CPH  
25  
25  
0
25  
25  
0
EHEL  
t
EHGL  
t
t
WH  
EHWH  
t
t
CP  
45  
70  
45  
85  
ELEH  
t
ELQV  
(1,2)  
Output Valid to V  
Low  
Min  
Min  
Min  
Min  
Min  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
t
PPF  
QVVPL  
t
Data Valid to Write Protect Low  
V High to Chip Enable High  
PPF  
QVWPL  
(1)  
t
200  
0
200  
0
t
VPS  
VPHEH  
t
t
CS  
Write Enable Low to Chip Enable Low  
Write Protect High to Chip Enable High  
WLEL  
t
45  
45  
WPHEH  
Note: 1. Sampled only, not 100% tested.  
2. Applicable if V is seen as a logic input (V  
< 3.6V).  
PPF  
PPF  
34/64  
M36W832TE, M36W832BE  
Figure 13. Flash Power-Up and Reset AC Waveforms  
WF,EF,GF  
tPHWL  
tPHWL  
tPHEL  
tPHGL  
tPHEL  
tPHGL  
RPF  
tVDHPH  
tPLPH  
VDDF, VDDQF  
Power-Up  
Reset  
AI90171  
Table 19. Flash Power-Up and Reset AC Characteristics  
Flash Device  
Symbol  
Parameter  
Test Condition  
Unit  
70  
85  
During  
Program and  
Erase  
t
t
t
PHWL  
Min  
50  
50  
µs  
Reset High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
PHEL  
PHGL  
others  
Min  
Min  
30  
30  
ns  
ns  
(1,2)  
(3)  
Reset Low to Reset High  
100  
100  
t
PLPH  
Supply Voltages High to Reset High  
Min  
50  
50  
µs  
t
VDHPH  
Note: 1. The device Reset is possible but not guaranteed if t  
2. Sampled only, not 100% tested.  
< 100ns.  
PLPH  
3. It is important to assert RPF in order to allow proper CPU initialization during power up or reset.  
35/64  
M36W832TE, M36W832BE  
Figure 14. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V  
IL  
tAVAV  
A0-A18  
VALID  
tAVQV  
tAXQX  
DQ0-DQ15  
DATA VALID  
DATA VALID  
AI90180  
Note: E1S = Low, E2S = High, GS = Low, WS = High.  
Figure 15. SRAM Read AC Waveforms, GS Controlled  
tAVAV  
A0-A18  
E1S  
VALID  
tE1LQV  
tE1HQZ  
tE2LQZ  
tE1LQX  
tE2HQV  
E2S  
tE2HQX  
tGLQV  
tGHQZ  
GS  
tGLQX  
DQ0-DQ15  
DATA VALID  
tPU  
tPD  
50%  
50%  
V
DDS  
AI07965  
Note: Write Enable (WS) = High. Address Valid prior to or at the same time as E1S goes Low and E2S goes High.  
Figure 16. SRAM Standby AC Waveforms  
E1S  
E2S  
tPU  
tPD  
I
DD  
50%  
I
DDS  
AI07985  
36/64  
M36W832TE, M36W832BE  
Table 20. SRAM Read AC Characteristics  
SRAM  
Unit  
Symbol  
Alt  
Parameter  
Min  
Max  
t
t
Read Cycle Time  
70  
ns  
ns  
ns  
AVAV  
RC  
t
t
ACC  
Address Valid to Output Valid  
70  
AVQV  
t
t
OH  
Address Transition to Output Transition  
10  
AXQX  
t
t
E1HQZ  
t
t
Chip Enable 1 High to Output Hi-Z  
25  
70  
ns  
ns  
ns  
CHZ1  
E2LQZ  
t
t
E1LQV  
E2HQV  
Chip Enable 1 Low or Chip Enable 2 High to Output Valid  
Chip Enable 1 Low to Output Transition  
ACS1  
t
E1LQX  
t
10  
CLZ1  
t
E2HQX  
t
t
OHZ  
Output Enable High to Output Hi-Z  
25  
35  
ns  
ns  
ns  
ns  
GHQZ  
t
t
Output Enable Low to Output Valid  
GLQV  
OE  
t
t
OLZ  
Output Enable Low to Output Transition  
Chip Enable 1 High or Chip Enable 2 Low to Power Down  
5
0
GLQX  
(1)  
70  
t
t
PD  
(1)  
Chip Enable 1 Low or Chip Enable 2 High to Power Up  
ns  
PU  
Note: 1. Sampled only. Not 100% tested.  
Figure 17. SRAM Write AC Waveforms, E1 or E2S Controlled  
S
tAVAV  
ADDRESS VALID  
A0-A18  
tAVE1H  
tAVE2L  
tAVE1L  
tAVE2H  
tE1LE1H  
tE1HAX  
E1S  
E2S  
tE2HE2L  
tE2LAX  
tWLE1H  
tWLE2L  
WS  
tDVE1H  
tDVE2L  
tE1HDZ  
tE2LDZ  
DQ0-DQ15  
INPUT VALID  
AI07966  
Note: 1. DQ0-DQ15 are high impedance if GS = V  
.
IH  
2. If E1S or E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance.  
37/64  
M36W832TE, M36W832BE  
Figure 18. SRAM Write AC Waveforms, WS Controlled, GS High during Write  
tAVAV  
A0-A18  
VALID  
tAVWH  
tE1LWH  
tE2HWH  
tWHAX  
E1S  
E2S  
tAVWL  
tWLWH  
WS  
GS  
tGHQZ  
tDVWH  
INPUT VALID  
tWHDZ  
Note 2  
DQ0-DQ15  
AI07967  
Note: 1. DQ0-DQ15 are high impedance if GS = V  
.
IH  
2. If E1S or E2s and WS are deasserted at the same time, DQ0-DQ15 remain high impedance.  
Figure 19. SRAM Write AC Waveforms, WS Controlled with GS Low  
tAVAV  
A0-A18  
VALID  
tAVWH  
tE1LWH  
tE2HWH  
tWHAX  
E1S  
E2S  
tAVWL  
tWLWH  
WS  
tWHQX  
tWHDZ  
tWLQZ  
Note 3  
tDVWH  
INPUT VALID  
DQ0-DQ15  
AI07968  
Note: 1. If E1S, E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance.  
2. The minimum write cycle time (t ) is the sum of t and t  
.
DVWH  
AVAV  
WLQZ  
3. During this period, the I/O pins are in output mode and input signals should not be applied.  
38/64  
M36W832TE, M36W832BE  
Figure 20. SRAM Write Cycle Waveform, UBS and LBS Controlled GS Low,  
tAVAV  
VALID  
A0-A18  
tAVBH  
E1S  
E2S  
tBLBH  
tBHAX  
UBS, LBS  
tAVWL  
WS  
tBHQX  
tBHDZ  
tWLQZ  
Note 1  
tDVBH  
INPUT VALID  
DQ0-DQ15  
AI07969  
Note: 1. During this period, the I/O pins are in output mode and input signals should not be applied.  
39/64  
M36W832TE, M36W832BE  
Table 21. SRAM Write AC Characteristics  
SRAM  
Symbol  
Alt  
Parameter  
Unit  
Min  
Max  
t
t
WC  
Write Cycle Time  
70  
ns  
AVAV  
t
,
AVE1L  
t
t
,
t
AS  
Address Valid to Beginning of Write  
0
ns  
ns  
AVE2H  
AVWL,  
t
t
,
AVE1H  
Address Valid to Chip Enable 1 Low or Chip Enable 2  
High  
t
60  
AVE2L  
AW  
t
AVBH  
t
t
t
Address Valid to Write Enable High  
UBS, LBS Low to UBS, LBS High  
60  
60  
ns  
ns  
AVWH  
AW  
t
BLBH  
BW  
t
t
t
,
,
DVE1H  
t
DVE2L  
t
t
Input Valid to End of Write  
30  
0
ns  
ns  
DW  
t
DVWH  
t
DVBH  
,
,
E1HAX  
t
E2LAX  
End of Write to Address Change  
WR  
t
WHAX  
t
BHAX  
,
E1HDZ  
t
t
t
,
E2LDZ  
t
Address Transition to End of Write  
Chip Enable 1 Low to End of Write  
0
ns  
ns  
HD  
WHDZ  
BHDZ  
t
E1LE1H,  
t
60  
60  
CW1  
t
E1LWH  
t
E2HE2L,  
t
Chip Enable 2 High to End of Write  
Output Enable High to Output Hi-Z  
Write Enable High to Input Transition  
Write Enable Low to Output Hi-Z  
ns  
ns  
ns  
ns  
CW2  
t
E2HWH  
t
t
25  
20  
GHQZ  
GHZ  
t
t
WHQX  
t
10  
50  
DH  
BHQX  
t
t
WLQZ  
WHZ  
t
WLWH  
t
t
Write Enable Pulse Width  
ns  
WLE1H  
WP  
t
WLE2L  
40/64  
M36W832TE, M36W832BE  
Figure 21. SRAM Low V  
Data Retention AC Waveforms, E1S Controlled  
DDS  
DATA RETENTION MODE  
V
DDS  
V
V
DDS (min)  
DDS (min)  
>
V
1.5V  
DR  
tCDR  
tR  
E1S  
>
<
0.3V and E2S 0.3V  
E1S  
V
-
DDS  
>
or E2S  
V
-0.3V  
DDS  
AI07970  
Figure 22. SRAM Low V  
Data Retention AC Waveforms, E2S Controlled  
DDS  
DATA RETENTION MODE  
V
DDS  
V
V
DDS (min)  
DDS (min)  
>
V
1.5V  
DR  
tCDR  
tR  
<
E2S 0.3V  
E2S  
AI07982  
Table 22. SRAM Low V  
Data Retention Characteristic  
DDS  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max Unit  
V
DDS  
= 1.5V, E1S V – 0.3V,  
DDS  
I
V
IN  
V  
– 0.3V or V 0.3V  
DDS IN  
Supply Current (Data Retention)  
4
20  
µA  
DDDR  
No input may exceed V  
+ 0.3V  
DDS  
V
Supply Voltage (Data Retention)  
Chip Disable to Power Down  
Operation Recovery Time  
1.5  
0
3.3  
V
DR  
t
ns  
ns  
CDR  
t
R
70  
Note: 1. Sampled only. Not 100% tested.  
41/64  
M36W832TE, M36W832BE  
PACKAGE MECHANICAL  
Figure 23. Stacked LFBGA66 12x8mm, 8x8 array, 0.8mm pitch, Bottom View Package Outline  
D
D2  
D1  
SE  
b
E
E1  
BALL "A1"  
e
ddd  
FE  
FD  
SD  
e
A
A2  
A1  
BGA-Z12  
Note: Drawing is not to scale.  
Table 23. Stacked LFBGA66, 12x8mm, 8x8 ball array, 0.8mm pitch, Package Mechanical Data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.400  
0.0551  
0.300  
0.0118  
1.100  
0.0433  
0.400  
12.000  
5.600  
8.800  
0.300  
0.500  
0.0157  
0.4724  
0.2205  
0.3465  
0.0118  
0.0197  
D
D1  
D2  
ddd  
E
0.100  
0.0039  
8.000  
5.600  
0.800  
1.600  
1.200  
0.400  
0.400  
0.3150  
0.2205  
0.0315  
0.0630  
0.0472  
0.0157  
0.0157  
E1  
e
FD  
FE  
SD  
SE  
42/64  
M36W832TE, M36W832BE  
Figure 24. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package)  
43/64  
M36W832TE, M36W832BE  
Figure 25. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through package)  
44/64  
M36W832TE, M36W832BE  
PART NUMBERING  
Table 24. Ordering Information Scheme  
Example:  
M36 W 8 32T E  
70 ZA  
6
T
Device Type  
M36 = MMP (Flash + SRAM)  
Operating Voltage  
W = V  
= 2.7V to 3.3V, V  
= V  
= 2.7V to 3.3V  
DDQF  
DDF  
DDS  
SRAM Chip Size & Organization  
8 = 8 Mbit (512Kb x 16 bit)  
Flash Chip Size & Organization  
32T = 32 Mbit (x16), Boot Block, Top configuration  
32B = 32 Mbit (x16), Boot Block, Bottom configuration  
SRAM Component  
E = 8Mb, 0.16µm, 70ns, 3.0V  
Speed  
70 = 70ns  
85 = 85ns  
Package  
ZA = LFBGA66: 12x8mm, 0.8mm pitch  
Temperature Range  
1 = 0 to 70°C  
6 = –40 to 85°C  
Option  
T = Tape & Reel packing  
S = Special Tape  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
Table 25. Daisy Chain Ordering Scheme  
Example:  
M36W832TE  
-ZA T  
Device Type  
M36W832TE  
Daisy Chain  
-ZA = LFBGA66: 12x8mm, 0.8mm pitch  
Option  
T = Tape & Reel Packing  
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,  
please contact the STMicroelectronics Sales Office nearest to you.  
45/64  
M36W832TE, M36W832BE  
APPENDIX A. FLASH MEMORY BLOCK ADDRESS TABLES  
Table 26. Top Boot Block Addresses,  
M36W832TE  
34  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F00000-F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
35  
Size  
(KWord)  
#
Address Range  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
0
4
1FF000-1FFFFF  
1FE000-1FEFFF  
1FD000-1FDFFF  
1FC000-1FCFFF  
1FB000-1FBFFF  
1FA000-1FAFFF  
1F9000-1F9FFF  
1F8000-1F8FFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
46/64  
M36W832TE, M36W832BE  
Table 27. Bottom Boot Block Addresses,  
M36W832BE  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
Size  
#
Address Range  
(KWord)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
47/64  
M36W832TE, M36W832BE  
APPENDIX B. COMMON FLASH INTERFACE (CFI)  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
structure is read from the memory. Tables 28, 29,  
30, 31, 32 and 33 show the addresses used to re-  
trieve the data.  
The CFI data structure also contains a security  
area where a 64 bit unique security number is writ-  
ten (see Table 33, Security Code area). This area  
can be accessed only in Read mode by the final  
user. It is impossible to change the security num-  
ber after it has been written by ST. Issue a Read  
command to return to Read mode.  
When the CFI Query Command (RCFI) is issued  
the device enters CFI Query mode and the data  
Table 28. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Reserved  
10h  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
1Bh  
27h  
Additional information specific to the Primary  
Algorithm (optional)  
P
A
Primary Algorithm-specific Extended Query table  
Alternate Algorithm-specific Extended Query table  
Additional information specific to the Alternate  
Algorithm (optional)  
Note: Query data are always presented on the lowest order data outputs.  
Table 29. CFI Query Identification String  
Offset  
Data  
Description  
Value  
00h  
0020h  
Manufacturer Code  
Device Code  
ST  
88BAh  
88BBh  
Top  
Bottom  
01h  
02h-0Fh  
10h  
reserved Reserved  
0051h  
"Q"  
"R"  
"Y"  
11h  
0052h  
0059h  
0003h  
0000h  
0035h  
0000h  
0000h  
0000h  
0000h  
0000h  
Query Unique ASCII String "QRY"  
12h  
13h  
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code  
defining a specific algorithm  
Intel  
compatible  
14h  
15h  
Address for Primary Algorithm extended Query table (see Table 31)  
P = 35h  
NA  
16h  
17h  
Alternate Vendor Command Set and Control Interface ID Code second vendor -  
specified algorithm supported (0000h means none exists)  
18h  
19h  
Address for Alternate Algorithm extended Query table  
(0000h means none exists)  
NA  
1Ah  
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
48/64  
M36W832TE, M36W832BE  
Table 30. CFI Query System Interface Information  
Offset  
Data  
Description  
Value  
V
DDF  
V
DDF  
V
PPF  
V
PPF  
Logic Supply Minimum Program/Erase or Write voltage  
1Bh  
0027h  
2.7V  
3.6V  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 mV  
Logic Supply Maximum Program/Erase or Write voltage  
1Ch  
1Dh  
1Eh  
0036h  
00B4h  
00C6h  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 mV  
[Programming] Supply Minimum Program/Erase voltage  
11.4V  
12.6V  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 mV  
[Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 mV  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h  
0004h  
000Ah  
0000h  
0005h  
0005h  
0003h  
0000h  
16µs  
16µs  
1s  
Typical time-out per single word program = 2 µs  
n
Typical time-out for Double/ Quadruple Word Program = 2 µs  
n
Typical time-out per individual block erase = 2 ms  
n
NA  
Typical time-out for full chip erase = 2 ms  
n
512µs  
512µs  
8s  
Maximum time-out for word program = 2 times typical  
n
Maximum time-out for Double/ Quadruple Word Program = 2 times typical  
n
Maximum time-out per individual block erase = 2 times typical  
n
NA  
Maximum time-out for chip erase = 2 times typical  
49/64  
M36W832TE, M36W832BE  
Table 31. Device Geometry Definition  
Offset Word  
Data  
Description  
Value  
Mode  
n
27h  
0016h  
4 MByte  
Device Size = 2 in number of bytes  
28h  
29h  
0001h  
0000h  
x16  
Async.  
Flash Device Interface Code description  
2Ah  
2Bh  
0003h  
0000h  
n
8
2
Maximum number of bytes in multi-byte program or page = 2  
Number of Erase Block Regions within the device.  
It specifies the number of regions within the device containing contiguous  
Erase Blocks of the same size.  
2Ch  
0002h  
2Dh  
2Eh  
003Eh  
0000h  
Region 1 Information  
Number of identical-size erase block = 003Eh+1  
63  
64 KByte  
8
2Fh  
30h  
0000h  
0001h  
Region 1 Information  
Block size in Region 1 = 0100h * 256 byte  
31h  
32h  
0007h  
0000h  
Region 2 Information  
Number of identical-size erase block = 0007h+1  
33h  
34h  
0020h  
0000h  
Region 2 Information  
Block size in Region 2 = 0020h * 256 byte  
8 KByte  
8
2Dh  
2Eh  
0007h  
0000h  
Region 1 Information  
Number of identical-size erase block = 0007h+1  
2Fh  
30h  
0020h  
0000h  
Region 1 Information  
Block size in Region 1 = 0020h * 256 byte  
8 KByte  
63  
31h  
32h  
003Eh  
0000h  
Region 2 Information  
Number of identical-size erase block = 003Eh=1  
33h  
34h  
0000h  
0001h  
Region 2 Information  
Block size in Region 2 = 0100h * 256 byte  
64 KByte  
50/64  
M36W832TE, M36W832BE  
Table 32. Primary Algorithm-Specific Extended Query Table  
Offset  
Data  
Description  
Value  
(1)  
P = 35h  
(P+0)h = 35h  
(P+1)h = 36h  
(P+2)h = 37h  
(P+3)h = 38h  
(P+4)h = 39h  
(P+5)h = 3Ah  
(P+6)h = 3Bh  
(P+7)h = 3Ch  
(P+8)h = 3Dh  
0050h  
0052h  
0049h  
0031h  
0030h  
0066h  
0000h  
0000h  
0000h  
"P"  
Primary Algorithm extended Query table unique ASCII string “PRI”  
"R"  
"I"  
Major version number, ASCII  
Minor version number, ASCII  
"1"  
"0"  
Extended Query table contents for Primary Algorithm. Address (P+5)h  
contains less significant byte.  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
bit 8  
Chip Erase supported  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
Suspend Erase supported  
Suspend Program supported  
Legacy Lock/Unlock supported  
Queued Erase supported  
No  
Yes  
Yes  
No  
Instant individual block locking supported (1 = Yes, 0 = No)  
No  
Protection bits supported  
Page mode read supported  
Synchronous read supported  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
Yes  
Yes  
No  
bit 31 to 9 Reserved; undefined bits are ‘0’  
No  
(P+9)h = 3Eh  
0001h  
Supported Functions after Suspend  
Read Array, Read Status Register and CFI Query are always supported  
during Erase or Program operation  
bit 0  
bit 7 to 1  
Program supported after Erase Suspend (1 = Yes, 0 = No)  
Reserved; undefined bits are ‘0’  
Yes  
(P+A)h = 3Fh  
(P+B)h = 40h  
0003h  
0000h  
Block Lock Status  
Defines which bits in the Block Status Register section of the Query are  
implemented.  
Address (P+A)h contains less significant byte  
bit 0 Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No)  
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)  
bit 15 to 2 Reserved for future use; undefined bits are ‘0’  
Yes  
Yes  
(P+C)h = 41h  
(P+D)h = 42h  
(P+E)h = 43h  
0030h  
00C0h  
0001h  
V
V
Logic Supply Optimum Program/Erase voltage (highest performance)  
3V  
12V  
01  
DDF  
bit 7 to 4  
HEX value in volts  
bit 3 to 0  
BCD value in 100 mV  
Supply Optimum Program/Erase voltage  
PPF  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 mV  
Number of Protection register fields in JEDEC ID space.  
"00h," indicates that 256 protection bytes are available  
(P+F)h = 44h  
(P+10)h = 45h  
(P+11)h = 46h  
(P+12)h = 47h  
0080h  
0000h  
0003h  
0003h  
Protection Field 1: Protection Description  
80h  
00h  
This field describes user-available. One Time Programmable (OTP)  
Protection register bytes. Some are pre-programmed with device unique  
serial numbers. Others are user programmable. Bits 0–15 point to the  
Protection register Lock byte, the section’s first byte.  
8 Byte  
8 Byte  
The following bytes are factory pre-programmed and user-programmable.  
bit 0 to 7  
Lock/bytes JEDEC-plane physical low address  
bit 8 to 15  
Lock/bytes JEDEC-plane physical high address  
n
bit 16 to 23 "n" such that 2 = factory pre-programmed bytes  
n
bit 24 to 31 "n" such that 2 = user programmable bytes  
(P+13)h = 48h  
Reserved  
Note: 1. See Table 29, offset 15 for P pointer definition.  
51/64  
M36W832TE, M36W832BE  
Table 33. Security Code Area  
Offset  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
Data  
00XX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
Description  
Protection Register Lock  
64 bits: unique device number  
128 bits: User Programmable OTP  
52/64  
M36W832TE, M36W832BE  
APPENDIX C. FLASH MEMORY FLOWCHARTS AND PSEUDO CODES  
Figure 26. Program Flowchart and Pseudo Code  
Start  
program_command (addressToProgram, dataToProgram) {:  
writeToFlash (any_address, 0x40) ;  
Write 40h or 10h  
/*or writeToFlash (any_address, 0x10) ; */  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register  
status_register=readFlash (any_address) ;  
/* EF or GF must be toggled*/  
NO  
b7 = 1  
} while (status_register.b7== 0) ;  
YES  
NO  
NO  
NO  
V
Invalid  
if (status_register.b3==1) /*V  
error_handler ( ) ;  
invalid error */  
PPF  
PPF  
b3 = 0  
YES  
Error (1, 2)  
Program  
if (status_register.b4==1) /*program error */  
error_handler ( ) ;  
b4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.b1==1) /*program to protect block error */  
error_handler ( ) ;  
b1 = 0  
YES  
End  
}
AI90174b  
Note: 1. Status check of b1 (Protected Block), b3 (V  
a sequence.  
Invalid) and b4 (Program Error) can be made after each program operation or after  
PPF  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
53/64  
M36W832TE, M36W832BE  
Figure 27. Double Word Program Flowchart and Pseudo Code  
Start  
Write 30h  
double_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2)  
{
writeToFlash (any_address, 0x30) ;  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 1  
& Data 1 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
/*Memory enters read status state after  
the Program command*/  
Write Address 2  
& Data 2 (3)  
do {  
status_register=readFlash (any_address) ;  
/* EF or GF must be toggled*/  
Read Status  
Register  
NO  
NO  
NO  
NO  
b7 = 1  
YES  
} while (status_register.b7== 0) ;  
V
Invalid  
if (status_register.b3==1) /*V  
error_handler ( ) ;  
invalid error */  
PPF  
PPF  
b3 = 0  
YES  
Error (1, 2)  
if (status_register.b4==1) /*program error */  
error_handler ( ) ;  
Program  
b4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.b1==1) /*program to protect block error */  
error_handler ( ) ;  
b1 = 0  
YES  
End  
}
AI90175b  
Note: 1. Status check of b1 (Protected Block), b3 (V  
a sequence.  
Invalid) and b4 (Program Error) can be made after each program operation or after  
PPF  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.  
54/64  
M36W832TE, M36W832BE  
Figure 28. Quadruple Word Program Flowchart and Pseudo Code  
Start  
quadruple_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2,  
addressToProgram3, dataToProgram3,  
addressToProgram4, dataToProgram4)  
{
Write 56h  
Write Address 1  
& Data 1 (3)  
writeToFlash (any_address, 0x56) ;  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 2  
& Data 2 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
writeToFlash (addressToProgram3, dataToProgram3) ;  
/*see note (3) */  
Write Address 3  
& Data 3 (3)  
writeToFlash (addressToProgram4, dataToProgram4) ;  
/*see note (3) */  
Write Address 4  
& Data 4 (3)  
/*Memory enters read status state after  
the Program command*/  
do {  
status_register=readFlash (any_address) ;  
/* EF or GF must be toggled*/  
Read Status  
Register  
NO  
NO  
NO  
NO  
b7 = 1  
YES  
} while (status_register.b7== 0) ;  
V
Invalid  
if (status_register.b3==1) /*V  
error_handler ( ) ;  
invalid error */  
PPF  
PPF  
b3 = 0  
YES  
Error (1, 2)  
if (status_register.b4==1) /*program error */  
error_handler ( ) ;  
Program  
b4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.b1==1) /*program to protect block error */  
error_handler ( ) ;  
b1 = 0  
YES  
End  
}
AI07950  
Note: 1. Status check of b1 (Protected Block), b3 (V  
a sequence.  
Invalid) and b4 (Program Error) can be made after each program operation or after  
PPF  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.  
55/64  
M36W832TE, M36W832BE  
Figure 29. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
program_suspend_command ( ) {  
writeToFlash (any_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (any_address, 0x70) ;  
/* read status register to check if  
program has already completed */  
do {  
status_register=readFlash (any_address) ;  
/* EF or GF must be toggled*/  
Read Status  
Register  
NO  
NO  
b7 = 1  
YES  
} while (status_register.b7== 0) ;  
b2 = 1  
YES  
Program Complete  
if (status_register.b2==0) /*program completed */  
{ writeToFlash (any_address, 0xFF) ;  
read_data ( ) ; /*read data from another block*/  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Write FFh  
}
Read data from  
another address  
else  
{ writeToFlash (any_address, 0xFF) ;  
read_data ( ); /*read data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume program*/  
Write D0h  
Write FFh  
Read Data  
}
}
Program Continues  
AI90176b  
56/64  
M36W832TE, M36W832BE  
Figure 30. Erase Flowchart and Pseudo Code  
Start  
erase_command ( blockToErase ) {  
writeToFlash (any_address, 0x20) ;  
Write 20h  
writeToFlash (blockToErase, 0xD0) ;  
/* only A12-A20 are significannt */  
/* Memory enters read status state after  
the Erase Command */  
Write Block  
Address & D0h  
do {  
Read Status  
Register  
status_register=readFlash (any_address) ;  
/* EF or GF must be toggled*/  
NO  
b7 = 1  
} while (status_register.b7== 0) ;  
YES  
NO  
YES  
NO  
NO  
V
Invalid  
if (status_register.b3==1) /*V  
error_handler ( ) ;  
invalid error */  
PPF  
Error (1)  
PPF  
b3 = 0  
YES  
if ( (status_register.b4==1) && (status_register.b5==1) )  
/* command sequence error */  
Command  
Sequence Error (1)  
b4, b5 = 1  
NO  
error_handler ( ) ;  
if ( (status_register.b5==1) )  
/* erase error */  
b5 = 0  
YES  
Erase Error (1)  
error_handler ( ) ;  
Erase to Protected  
Block Error (1)  
if (status_register.b1==1) /*program to protect block error */  
error_handler ( ) ;  
b1 = 0  
YES  
End  
}
AI90177b  
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.  
57/64  
M36W832TE, M36W832BE  
Figure 31. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
erase_suspend_command ( ) {  
Write B0h  
Write 70h  
writeToFlash (any_address, 0xB0) ;  
writeToFlash (any_address, 0x70) ;  
/* read status register to check if  
erase has already completed */  
do {  
Read Status  
Register  
status_register=readFlash (any_address) ;  
/* EF or GF must be toggled*/  
NO  
NO  
} while (status_register.b7== 0) ;  
b7 = 1  
YES  
if (status_register.b6==0) /*erase completed */  
{ writeToFlash (any_address, 0xFF) ;  
b6 = 1  
YES  
Erase Complete  
read_data ( ) ;  
/*read data from another block*/  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Write FFh  
Read data from  
another block  
or  
Program/Protection Program  
or  
Block Protect/Unprotect/Lock  
}
else  
{ writeToFlash (any_address, 0xFF) ;  
read_program_data ( );  
Write D0h  
Write FFh  
Read Data  
/*read or program data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume erase*/  
}
}
Erase Continues  
AI90178b  
58/64  
M36W832TE, M36W832BE  
Figure 32. Locking Operations Flowchart and Pseudo Code  
Start  
locking_operation_command (address, lock_operation) {  
writeToFlash (any_address, 0x60) ; /*configuration setup*/  
Write 60h  
if (lock_operation==PROTECT) /*to protect the block*/  
writeToFlash (address, 0x01) ;  
else if (lock_operation==UNPROTECT) /*to unprotect the block*/  
writeToFlash (address, 0xD0) ;  
Write  
01h, D0h or 2Fh  
else if (lock_operation==LOCK) /*to lock the block*/  
writeToFlash (address, 0x2F) ;  
writeToFlash (any_address, 0x90) ;  
Write 90h  
Read Status  
Register  
if (readFlash (address) ! = locking_state_expected)  
error_handler () ;  
NO  
Locking  
change  
/*Check the locking state (see Read Block Signature table )*/  
confirmed?  
YES  
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/  
Write FFh  
}
End  
AI90179  
59/64  
M36W832TE, M36W832BE  
Figure 33. Protection Register Program Flowchart and Pseudo Code  
Start  
protection_register_program_command (addressToProgram, dataToProgram) {:  
Write C0h  
writeToFlash (any_address, 0xC0) ;  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register  
status_register=readFlash (any_address) ;  
/* EF or GF must be toggled*/  
NO  
b7 = 1  
YES  
} while (status_register.b7== 0) ;  
NO  
V
Invalid  
if (status_register.b3==1) /*V  
invalid error */  
PPF  
PPF  
b3 = 0  
YES  
Error (1, 2)  
error_handler ( ) ;  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.b4==1) /*program error */  
error_handler ( ) ;  
b4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.b1==1) /*program to protect block error */  
error_handler ( ) ;  
b1 = 0  
YES  
End  
}
AI07951  
Note: 1. Status check of b1 (Protected Block), b3 (V  
a sequence.  
Invalid) and b4 (Program Error) can be made after each program operation or after  
PPF  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
60/64  
M36W832TE, M36W832BE  
APPENDIX D. FLASH MEMORY COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER  
STATE  
Table 34. Write State Machine Current/Next, sheet 1 of 2  
Command Input (and Next State)  
Data  
When  
Read  
Current  
State  
SR  
bit 7  
Read  
Array  
(FFh)  
Program  
Setup  
(10/40h)  
Erase  
Setup  
(20h)  
Erase  
Confirm  
(D0h)  
Prog/Ers  
Suspend  
(B0h)  
Prog/Ers  
Resume  
(D0h)  
Read  
Status  
(70h)  
Clear  
Status  
(50h)  
Read Array  
“1”  
“1”  
Array  
Read Array Prog.Setup Ers. Setup  
Read Array  
Read Sts. Read Array  
Read  
Status  
Program  
Setup  
Erase  
Setup  
Read  
Status  
Read Array  
Read Array  
Read Array  
Read Array  
Read Array  
Status  
Read  
Elect.Sg.  
Electronic  
Signature  
Program  
Setup  
Erase  
Setup  
Read  
“1”  
“1”  
“1”  
“1”  
“1”  
“1”  
“0”  
“1”  
Read Array  
Read Array  
Read Array  
Status  
Read CFI  
Query  
Program  
Setup  
Erase  
Setup  
Read  
CFI  
Read Array  
Status  
Lock  
(complete)  
Lock Cmd  
Error  
Lock  
(complete)  
Lock Setup  
Status  
Status  
Status  
Status  
Status  
Lock Command Error  
Program  
Lock Command Error  
Lock Cmd  
Error  
Erase  
Setup  
Read  
Read Array  
Read Array  
Read Array  
Read Array  
Status  
Setup  
Lock  
(complete)  
Program  
Setup  
Erase  
Setup  
Read  
Read Array  
Read Array  
Read Array  
Status  
Prot. Prog.  
Setup  
Protection Register Program  
Protection Register Program continue  
Prot. Prog.  
(continue)  
Prot. Prog.  
(complete)  
Program  
Setup  
Erase  
Setup  
Read  
Status  
Status  
Status  
Read Array  
Program  
Read Array  
Status  
Prog. Setup “1”  
Program  
“0”  
Prog. Sus  
Read Sts  
Program (continue)  
Program (continue)  
(continue)  
Prog. Sus  
“1”  
Prog. Sus  
Read Array  
Program Suspend to  
Read Array  
Program  
Prog. Sus  
Program  
Prog. Sus Prog. Sus  
Read Sts Read Array  
Status  
Array  
Status  
(continue) Read Array (continue)  
Program Prog. Sus Program  
(continue) Read Array (continue)  
Prog. Sus  
“1”  
Prog. Sus  
Read Array  
Program Suspend to  
Read Array  
Prog. Sus Prog. Sus  
Read Sts Read Array  
Read Array  
Prog. Sus  
Read  
Elect.Sg.  
Electronic Prog. Sus  
Signature Read Array  
Program Suspend to  
Read Array  
Program  
Prog. Sus  
Program  
Prog. Sus Prog. Sus  
Read Sts Read Array  
“1”  
(continue) Read Array (continue)  
Prog. Sus  
Read CFI  
Prog. Sus  
CFI  
Program Suspend to  
Read Array  
Program  
Prog. Sus  
Program  
Prog. Sus Prog. Sus  
Read Sts Read Array  
“1”  
“1”  
“1”  
“1”  
“0”  
“1”  
“1”  
Read Array  
(continue) Read Array (continue)  
Program  
(complete)  
Program  
Setup  
Erase  
Setup  
Read  
Status  
Status  
Status  
Status  
Status  
Array  
Read Array  
Read Array  
Read Array  
Status  
Erase  
Setup  
Erase  
Erase  
Erase  
Erase Command Error  
Erase Command Error  
(continue) CmdError (continue)  
Erase  
Cmd.Error  
Program  
Setup  
Erase  
Setup  
Read  
Read Array  
Read Array  
Read Array  
Status  
Erase  
(continue)  
Erase Sus  
Read Sts  
Erase (continue)  
Erase (continue)  
Erase Sus  
Read Sts  
Erase Sus  
Read Array  
Program  
Erase Sus  
Erase  
Erase Sus  
Erase  
Erase Sus Erase Sus  
Read Sts Read Array  
Setup  
Read Array (continue) Read Array (continue)  
Erase Sus  
Read Array  
Erase Sus  
Read Array  
Program  
Setup  
Erase Sus Erase Erase Sus Erase  
Read Array (continue) Read Array (continue)  
Erase Sus Erase Sus  
Read Sts Read Array  
Erase Sus  
Read  
Elect.Sg.  
Electronic Erase Sus  
Signature Read Array  
Program  
Setup  
Erase Sus  
Erase  
Erase Sus  
Erase  
Erase Sus Erase Sus  
Read Sts Read Array  
“1”  
Read Array (continue) Read Array (continue)  
Erase Sus  
Read CFI  
Erase Sus  
CFI  
Program  
Setup  
Erase Sus  
Erase  
Erase Sus  
Erase  
Erase Sus Erase Sus  
Read Sts Read Array  
“1”  
“1”  
Read Array  
Read Array (continue) Read Array (continue)  
Erase  
(complete)  
Program  
Setup  
Erase  
Read  
Status  
Read Array  
Read Array  
Setup  
Read Array  
Status  
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend.  
61/64  
M36W832TE, M36W832BE  
Table 35. Write State Machine Current/Next, sheet 2 of 2  
Command Input (and Next State)  
Read CFI  
Query  
(98h)  
Unlock  
Confirm  
(D0h)  
Current State  
Read Elect.Sg.  
(90h)  
Lock Setup  
(60h)  
Prot. Prog.  
Setup (C0h)  
Lock Confirm  
(01h)  
Lock Down  
Confirm (2Fh)  
Prot. Prog.  
Setup  
Read Array  
Read Elect.Sg. Read CFI Query  
Read Elect.Sg. Read CFI Query  
Lock Setup  
Lock Setup  
Lock Setup  
Lock Setup  
Read Array  
Read Array  
Read Array  
Prot. Prog.  
Setup  
Read Status  
Prot. Prog.  
Setup  
Read Elect.Sg. Read Elect.Sg. Read CFI Query  
Read CFI Query Read Elect.Sg. Read CFI Query  
Prot. Prog.  
Setup  
Read Array  
Lock (complete)  
Read Array  
Lock Setup  
Lock Command Error  
Prot. Prog.  
Setup  
Lock Cmd Error Read Elect.Sg. Read CFI Query  
Lock Setup  
Lock Setup  
Prot. Prog.  
Setup  
Lock (complete) Read Elect.Sg. Read CFI Query  
Read Array  
Prot. Prog.  
Setup  
Protection Register Program  
Prot. Prog.  
(continue)  
Protection Register Program (continue)  
Prot. Prog.  
Prot. Prog.  
Lock Setup  
Read Elect.Sg. Read CFI Query  
(complete)  
Read Array  
Setup  
Prog. Setup  
Program  
Program  
(continue)  
Program (continue)  
Prog. Suspend Prog. Suspend Prog. Suspend  
Program  
(continue)  
Program Suspend Read Array  
Program Suspend Read Array  
Program Suspend Read Array  
Program Suspend Read Array  
Read Status  
Prog. Suspend Prog. Suspend Prog. Suspend  
Read Array Read Elect.Sg. Read CFI Query  
Read Elect.Sg. Read CFI Query  
Program  
(continue)  
Prog. Suspend Prog. Suspend Prog. Suspend  
Read Elect.Sg. Read Elect.Sg. Read CFI Query  
Program  
(continue)  
Prog. Suspend Prog. Suspend Prog. Suspend  
Program  
(continue)  
Read CFI  
Read Elect.Sg. Read CFI Query  
Program  
(complete)  
Prot. Prog.  
Lock Setup  
Read Elect.Sg. Read CFIQuery  
Read Array  
Read Array  
Setup  
Erase  
(continue)  
Erase Setup  
Erase Command Error  
Erase  
Cmd.Error  
Prot. Prog.  
Lock Setup  
Read Elect.Sg. Read CFI Query  
Setup  
Erase (continue)  
Erase (continue)  
Erase Suspend Erase Suspend Erase Suspend  
Read Ststus Read Elect.Sg. Read CFI Query  
Erase  
(continue)  
Lock Setup  
Lock Setup  
Lock Setup  
Lock Setup  
Lock Setup  
Erase Suspend Read Array  
Erase Suspend Read Array  
Erase Suspend Erase Suspend Erase Suspend  
Read Array Read Elect.Sg. Read CFI Query  
Erase  
(continue)  
Erase Suspend Erase Suspend Erase Suspend  
Read Elect.Sg. Read Elect.Sg. Read CFI Query  
Erase  
(continue)  
Erase Suspend Read Array  
Erase Suspend Read Array  
Erase Suspend Erase Suspend Erase Suspend  
Read CFI Query Read Elect.Sg. Read CFI Query  
Erase  
(continue)  
Erase  
Prot. Prog.  
Setup  
Read Elect.Sg. Read CFI Query  
(complete)  
Read Array  
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.  
62/64  
M36W832TE, M36W832BE  
REVISION HISTORY  
Table 36. Document Revision History  
Date  
Version  
Revision Details  
16-Jul-2002  
1.0  
First Issue  
Revision History moved to end of document. Flash and SRAM components updated.  
Table 2, Main Operation Modes, modified.  
Flash Device: “Quadruple Word Program Command” added, “Double Word Program  
Command” clarified, V  
Maximum changed to 3.6V, Corrections to Table 8, Flash  
DDQF  
Program, Erase Times and Program/Erase Endurance Cycles, Table 15, DC  
Characteristicss Table and to CFI Tables 30 and 31. Security block removed.  
Command Codes Table added, DQ0, DQ2, DQ3-DQ7 and DQ8-DQ15 parameters  
modified for Lock in Table 7, Flash Read Protection Register and Lock Register.  
70ns Speed Class added. 100ns Speed Class removed.  
29-Nov-2002  
2.0  
SRAM device: “Data Retention” on Page 25 and SRAM read and write AC  
characteristics (Figures 14, 15, 16, 17, 18, 19, 20, 21 and 22) modified. Figure 7,  
SRAM Block Diagram, added.  
Document promoted to full Datasheet status. Minor corrections to SRAM Block  
Diagram. Input Rise and Fall Time for 70ns speed class modified in Operating and AC  
Measurement Conditions Table. LFBGA Connections and Daisy Chain pin numbers  
modified.  
24-Mar-2003  
26-May-2003  
3.0  
3.1  
Special tape option added to ordering information scheme  
63/64  
M36W832TE, M36W832BE  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
64/64  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY