M50LPW80K5G [NUMONYX]

1MX8 FLASH 3V PROM, 11ns, PQCC32, ROHS COMPLIANT, PLASTIC, LCC-32;
M50LPW80K5G
型号: M50LPW80K5G
厂家: NUMONYX B.V    NUMONYX B.V
描述:

1MX8 FLASH 3V PROM, 11ns, PQCC32, ROHS COMPLIANT, PLASTIC, LCC-32

可编程只读存储器 内存集成电路
文件: 总44页 (文件大小:692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M50LPW080  
8 Mbit (1M x8, Uniform Block)  
3V Supply Low Pin Count Flash Memory  
NOT FOR NEW DESIGN  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Packages  
VCC = 3.0 to 3.6V for Program, Erase and  
Read Operations  
VPP = 12V for Fast Program and Fast  
Erase (optional)  
TWO INTERFACES  
Low Pin Count (LPC) Standard Interface  
for embedded operation with PC  
Chipsets.  
Address/Address Multiplexed (A/A Mux)  
Interface for programming equipment  
compatibility.  
PLCC32 (K)  
LOW PIN COUNT (LPC) HARDWARE  
INTERFACE MODE  
5 Signal Communication Interface  
supporting Read and Write Operations  
Hardware Write Protect Pins for Block  
Protection  
Register Based Read and Write  
Protection  
5 Additional General Purpose Inputs for  
platform design flexibility  
Synchronized with 33MHz PCI clock  
PROGRAMMING TIME  
TSOP40 (N)  
10 x 20mm  
10µs typical  
Quadruple Byte Programming Option  
16 UNIFORM 64 Kbyte MEMORY BLOCKS  
PROGRAM/ERASE CONTROLLER  
Embedded Byte Program and Block/Chip  
Erase algorithms  
Status Register Bits  
PROGRAM and ERASE SUSPEND  
Read other Blocks during Program/Erase  
Suspend  
Program other Blocks during Erase  
Suspend  
FOR USE in PC BIOS APPLICATIONS  
ELECTRONIC SIGNATURE  
Manufacturer Code: 20h  
Device Code: 2Fh  
July 2005  
1/44  
This is information on a product still in production but not recommended for new designs.  
M50LPW080  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram (LPC Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. Logic Diagram (A/A Mux Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names (LPC Interface). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 2. Signal Names (A/A Mux Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 4. PLCC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 3. Memory Identification Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Low Pin Count (LPC) Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input/Output Communications (LAD0-LAD3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input Communication Frame (LFRAME). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Identification Inputs (ID0-ID1).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
General Purpose Inputs (GPI0-GPI4).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Interface Configuration (IC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Interface Reset (RP).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
CPU Reset (INIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Clock (CLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Top Block Lock (TBL).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Reserved for Future Use (RFU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 4. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address/Address Multiplexed (A/A Mux) Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Inputs (A0-A10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Row/Column Address Select (RC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Supply Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
V
CC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VPP Optional Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
V
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Low Pin Count (LPC) Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Abort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2/44  
M50LPW080  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Address/Address Multiplexed (A/A Mux) Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 5. A/A Mux Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 6. Manufacturer and Device Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 7. LPC Bus Read Field Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 6. LPC Bus Read Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 8. LPC Bus Write Field Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 7. LPC Bus Write Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 9. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Quadruple Byte Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 10. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
V
PP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 11. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
LOW PIN COUNT (LPC) INTERFACE CONFIGURATION REGISTERS. . . . . . . . . . . . . . . . . . . . . . . 21  
Table 12. Low Pin Count Register Configuration Map (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Lock Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Write Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Lock Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3/44  
M50LPW080  
General Purpose Input Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 13. Lock Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 14. General Purpose Input Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PROGRAM AND ERASE TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 15. Program and Erase Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 16. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 17. Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 18. LPC Interface AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 19. A/A Mux Interface AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 8. LPC Interface AC Testing Input Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 9. A/A Mux Interface AC Testing Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 20. Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 21. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 10.LPC Interface Clock Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 22. LPC Interface Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 11.LPC Interface AC Signal Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 23. LPC Interface AC Signal Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 12.Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 24. Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 13.A/A Mux Interface Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 25. A/A Mux Interface Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 14.A/A Mux Interface Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 26. A/A Mux Interface Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 15.PLCC32 – 32 pin Rectangular Plastic Leaded Chip Carrier, Package Outline . . . . . . . . 33  
Table 27. PLCC32 – 32 pin Rectangular Plastic Leaded Chip Carrier, Package Mechanical Data 34  
Figure 16.TSOP40 – 40 lead Plastic Thin Small Outline, 10x20 mm, Package Outline . . . . . . . . . 35  
Table 28. TSOP40 – 40 lead Plastic Thin Small Outline, 10x20 mm, Package Mechanical Data. . 35  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 29. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
FLOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 17.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 18.Quadruple Byte Program Flowchart and Pseudo Code (A/A Mux Interface Only) . . . . . 38  
Figure 19.Program Suspend and Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 39  
Figure 20.Chip Erase Flowchart and Pseudo Code (A/A Mux Interface Only) . . . . . . . . . . . . . . . . 40  
Figure 21.Block Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 22.Erase Suspend and Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 42  
4/44  
M50LPW080  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 30. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
5/44  
M50LPW080  
SUMMARY DESCRIPTION  
The M50LPW080 is a 8 Mbit (1Mb x8) non-volatile  
memory that can be read, erased and repro-  
grammed. These operations can be performed us-  
ing a single low voltage (3.0 to 3.6V) supply. For  
fast programming and fast erasing in production  
lines an optional 12V power supply can be used to  
reduce the programming and the erasing times.  
The memory is divided into blocks that can be  
erased independently so it is possible to preserve  
valid data while old data is erased. Blocks can be  
protected individually to prevent accidental Pro-  
gram or Erase commands from modifying the  
memory. Program and Erase commands are writ-  
ten to the Command Interface of the memory. An  
on-chip Program/Erase Controller simplifies the  
process of programming or erasing the memory by  
taking care of all of the special operations that are  
required to update the memory contents. The end  
of a program or erase operation can be detected  
and any error conditions identified. The command  
set required to control the memory is consistent  
with JEDEC standards.  
Two different bus interfaces are supported by the  
memory. The primary interface is the Low Pin  
Count (or LPC) Standard Interface. This has been  
designed to remove the need for the ISA bus in  
current PC Chipsets; the M50LPW080 acts as the  
PC BIOS on the Low Pin Count bus for these PC  
Chipsets.  
The secondary interface, the Address/Address  
Multiplexed (or A/A Mux) Interface, is designed to  
be compatible with current Flash Programmers for  
production line programming prior to fitting to a PC  
Motherboard.  
The memory is offered in TSOP40 (10 x 20mm)  
and PLCC32 packages and it is supplied with all  
the bits erased (set to ’1’).  
6/44  
M50LPW080  
Figure 2. Logic Diagram (LPC Interface)  
Table 1. Signal Names (LPC Interface)  
LAD0-LAD3  
LFRAME  
ID0-ID1  
GPI0-GPI4  
IC  
Input/Output Communications  
Input Communication Frame  
Identification Inputs  
General Purpose Inputs  
Interface Configuration  
Interface Reset  
V
V
CC PP  
2
5
4
LAD0-  
LAD3  
ID0-ID1  
RP  
GPI0-  
GPI4  
WP  
INIT  
CPU Reset  
CLK  
Clock  
LFRAME  
CLK  
IC  
TBL  
M50LPW080  
TBL  
Top Block Lock  
WP  
Write Protect  
Reserved for Future Use. Leave  
disconnected  
RFU  
RP  
V
Supply Voltage  
CC  
INIT  
Optional Supply Voltage for Fast  
Erase Operations  
V
V
PP  
SS  
Ground  
V
SS  
AI04426  
NC  
Not Connected Internally  
Table 2. Signal Names (A/A Mux Interface)  
IC  
Interface Configuration  
Address Inputs  
Figure 3. Logic Diagram (A/A Mux Interface)  
A0-A10  
DQ0-DQ7  
Data Inputs/Outputs  
Output Enable  
G
V
V
CC PP  
W
Write Enable  
11  
8
RC  
RB  
RP  
Row/Column Address Select  
Ready/Busy Output  
Interface Reset  
DQ0-DQ7  
A0-A10  
RC  
IC  
V
Supply Voltage  
CC  
M50LPW080  
Optional Supply Voltage for Fast  
Program and Fast Erase Operations  
RB  
V
V
PP  
SS  
G
Ground  
W
NC  
Not Connected Internally  
RP  
V
SS  
AI04427  
7/44  
M50LPW080  
Figure 4. PLCC Connections  
A/A Mux  
A/A Mux  
1 32  
M50LPW080  
17  
A7  
A6  
GPI1  
GPI0  
WP  
IC (V )  
IL  
NC  
IC (V  
)
IH  
NC  
A5  
NC  
NC  
A4  
TBL  
ID1  
V
V
V
V
SS  
CC  
SS  
CC  
A3  
9
25  
A2  
ID0  
INIT  
G
A1  
RFU  
RFU  
LAD0  
LFRAME  
RFU  
W
A0  
RB  
DQ7  
DQ0  
RFU  
A/A Mux  
A/A Mux  
AI05465  
8/44  
M50LPW080  
Figure 5. TSOP Connections  
NC  
NC  
1
40  
V
V
V
V
SS  
SS  
CC  
IC (V  
)
IC (V )  
IL  
IH  
CC  
NC  
NC  
NC  
NC  
A10  
NC  
RC  
NC  
LFRAME W  
NC  
INIT  
RFU  
RFU  
RFU  
RFU  
RFU  
G
NC  
RB  
NC  
DQ7  
DQ6  
DQ5  
DQ4  
GPI4  
NC  
CLK  
V
V
10  
11  
31  
30  
V
V
V
V
V
V
CC  
CC  
CC  
SS  
SS  
CC  
SS  
SS  
M50LPW080  
V
V
PP  
RP  
PP  
RP  
NC  
NC  
NC  
A9  
A8  
A7  
A6  
A5  
A4  
LAD3  
LAD2  
LAD1  
LAD0  
RFU  
RFU  
ID0  
DQ3  
DQ2  
DQ1  
DQ0  
A0  
NC  
GPI3  
GPI2  
GPI1  
GPI0  
WP  
A1  
A2  
TBL  
20  
21  
ID1  
A3  
AI04428  
Table 3. Memory Identification Input Configuration  
Memory Number  
ID1  
ID0  
A21  
A20  
1
V
V
or floating  
or floating  
V
or floating  
1 (Boot)  
1
1
0
0
IL  
IL  
IL  
V
2
3
4
0
IL  
IH  
V
IH  
V
or floating  
1
V
IH  
V
IH  
0
9/44  
M50LPW080  
SIGNAL DESCRIPTIONS  
There are two different bus interfaces available on  
this part. The active interface is selected before  
power-up or during Reset using the Interface Con-  
figuration Pin, IC.  
The signals for each interface are discussed in the  
Low Pin Count (LPC) Signal Descriptions section  
and the Address/Address Multiplexed (A/A Mux)  
Signal Descriptions section below. The supply sig-  
nals are discussed in the Supply Signal Descrip-  
tions section below.  
(LPC) or the Address/Address Multiplexed (A/A  
Mux) Interface is used. The chosen interface must  
be selected before power-up or during a Reset  
and, thereafter, cannot be changed. The state of  
the Interface Configuration, IC, should not be  
changed during operation.  
To select the Low Pin Count (LPC) Interface the  
Interface Configuration pin should be left to float or  
driven Low, VIL; to select the Address/Address  
Multiplexed (A/A Mux) Interface the pin should be  
driven High, VIH. An internal pull-down resistor is  
included with a value of RIL; there will be a leakage  
current of ILI2 through each pin when pulled to VIH;  
see Table 21..  
Interface Reset (RP). The Interface Reset (RP)  
input is used to reset the memory. When Interface  
Reset (RP) is set Low, VIL, the memory is in Reset  
mode: the outputs are put to high impedance and  
the current consumption is minimized. When RP is  
set High, VIH, the memory is in normal operation.  
After exiting Reset mode, the memory enters  
Read mode.  
CPU Reset (INIT). The CPU Reset, INIT, pin is  
used to Reset the memory when the CPU is reset.  
It behaves identically to Interface Reset, RP, and  
the internal Reset line is the logical OR (electrical  
AND) of RP and INIT.  
Clock (CLK). The Clock, CLK, input is used to  
clock the signals in and out of the Input/Output  
Communication Pins, LAD0-LAD3. The Clock  
conforms to the PCI specification.  
Top Block Lock (TBL). The Top Block Lock in-  
put is used to prevent the Top Block (Block 15)  
from being changed. When Top Block Lock, TBL,  
is set Low, VIL, Program and Block Erase opera-  
tions in the Top Block have no effect, regardless of  
the state of the Lock Register. When Top Block  
Lock, TBL, is set High, VIH, the protection of the  
Block is determined by the Lock Register. The  
state of Top Block Lock, TBL, does not affect the  
protection of the Main Blocks (Blocks 0 to 14).  
Top Block Lock, TBL, must be set prior to a Pro-  
gram or Block Erase operation is initiated and  
must not be changed until the operation completes  
or unpredictable results may occur. Care should  
be taken to avoid unpredictable behavior by  
changing TBL during Program or Erase Suspend.  
Write Protect (WP). The Write Protect input is  
used to prevent the Main Blocks (Blocks 0 to 14)  
from being changed. When Write Protect, WP, is  
set Low, VIL, Program and Block Erase operations  
in the Main Blocks have no effect, regardless of  
the state of the Lock Register. When Write Protect,  
WP, is set High, VIH, the protection of the Block is  
determined by the Lock Register. The state of  
Low Pin Count (LPC) Signal Descriptions  
For the Low Pin Count (LPC) Interface see Figure  
2. and Table 1..  
Input/Output Communications (LAD0-LAD3).  
All Input and Output Communication with the  
memory take place on these pins. Addresses and  
Data for Bus Read and Bus Write operations are  
encoded on these pins.  
Input Communication Frame (LFRAME). The  
Input Communication Frame (LFRAME) signals  
the start of a bus operation. When Input Commu-  
nication Frame is Low, VIL, on the rising edge of  
the Clock a new bus operation is initiated. If Input  
Communication Frame is Low, VIL, during a bus  
operation then the operation is aborted. When In-  
put Communication Frame is High, VIH, the cur-  
rent bus operation is proceeding or the bus is idle.  
Identification Inputs (ID0-ID1). The Identification  
Inputs (ID0-ID1) allow to address up to 4 memo-  
ries on a bus. The value on addresses A20-A21 is  
compared to the hardware strapping on the ID0-  
ID1 pins to select which memory is being ad-  
dressed. For an address bit to be ‘1’ the corre-  
spondent ID pin can be left floating or driven Low,  
VIL; an internal pull-down resistor is included with  
a value of RIL. For an address bit to be ‘0’ the cor-  
respondent ID pin must be driven High, VIH; there  
will be a leakage current of ILI2 through each pin  
when pulled to VIH (see Table 21.).  
By convention the boot memory must have ID0-  
ID1 pins left floating or driven Low, VIL and a ‘11’  
value on A20-A21 and all additional memories  
take sequential ID0-ID1 configuration, as shown in  
Table 3..  
General Purpose Inputs (GPI0-GPI4). The Gener-  
al Purpose Inputs can be used as digital inputs for  
the CPU to read. The General Purpose Input Reg-  
ister holds the values on these pins. The pins must  
have stable data from before the start of the cycle  
that reads the General Purpose Input Register un-  
til after the cycle is complete. These pins must not  
be left to float, they should be driven Low, VIL, or  
High, VIH.  
Interface Configuration (IC). The Interface Con-  
figuration input selects whether the Low Pin Count  
10/44  
M50LPW080  
Write Protect, WP, does not affect the protection of  
the Top Block (Block 15).  
Output Enable (G). The Output Enable, G, con-  
trols the Bus Read operation of the memory.  
Write Protect, WP, must be set prior to a Program  
or Block Erase operation is initiated and must not  
be changed until the operation completes or un-  
predictable results may occur. Care should be tak-  
en to avoid unpredictable behavior by changing  
WP during Program or Erase Suspend.  
Reserved for Future Use (RFU). These pins do  
not have assigned functions in this revision of the  
part. They must be left disconnected.  
Write Enable (W). The Write Enable, W, controls  
the Bus Write operation of the memory’s Com-  
mand Interface.  
Row/Column Address Select (RC). The Row/  
Column Address Select input selects whether the  
Address Inputs should be latched into the Row Ad-  
dress bits (A0-A10) or the Column Address bits  
(A11-A19). The Row Address bits are latched on  
the falling edge of RC whereas the Column Ad-  
dress bits are latched on the rising edge.  
Ready/Busy Output (RB). The Ready/Busy pin  
gives the status of the memory’s Program/Erase  
Controller. When Ready/Busy is Low, VOL, the  
memory is busy with a Program or Erase operation  
and it will not accept any additional Program or  
Erase command except the Program/Erase Sus-  
Table 4. Block Addresses  
Size  
(Kbytes)  
Block  
Number  
Address Range  
Block Type  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
F0000h-FFFFFh  
E0000h-EFFFFh  
D0000h-DFFFFh  
C0000h-CFFFFh  
B0000h-BFFFFh  
A0000h-AFFFFh  
90000h-9FFFFh  
80000h-8FFFFh  
70000h-7FFFFh  
60000h-6FFFFh  
50000h-5FFFFh  
40000h-4FFFFh  
30000h-3FFFFh  
20000h-2FFFFh  
10000h-1FFFFh  
00000h-0FFFFh  
15  
14  
13  
12  
11  
10  
9
Top Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
Main Block  
pend command. When Ready/Busy is High, VOH  
,
the memory is ready for any Read, Program or  
Erase operation.  
Supply Signal Descriptions  
The Supply Signals are the same for both interfac-  
es.  
V
CC Supply Voltage. The VCC Supply Voltage  
supplies the power for all operations (Read, Pro-  
gram, Erase etc.).  
8
7
The Command Interface is disabled when the VCC  
Supply Voltage is less than the Lockout Voltage,  
6
VLKO. This prevents Bus Write operations from ac-  
cidentally damaging the data during power up,  
power down and power surges. If the Program/  
Erase Controller is programming or erasing during  
this time then the operation aborts and the memo-  
ry contents being altered will be invalid. After VCC  
becomes valid the Command Interface is reset to  
Read mode.  
A 0.1µF capacitor should be connected between  
the VCC Supply Voltage pins and the VSS Ground  
pin to decouple the current surges from the power  
supply. Both VCC Supply Voltage pins must be  
connected to the power supply. The PCB track  
widths must be sufficient to carry the currents re-  
quired during program and erase operations.  
5
4
3
2
1
0
Address/Address Multiplexed (A/A Mux)  
Signal Descriptions  
For the Address/Address Multiplexed (A/A Mux)  
Interface see Figure 3. and Table 2..  
Address Inputs (A0-A10). The Address Inputs  
are used to set the Row Address bits (A0-A10) and  
the Column Address bits (A11-A19). They are  
latched during any bus operation by the Row/Col-  
umn Address Select input, RC.  
Data Inputs/Outputs (DQ0-DQ7). The Data In-  
puts/Outputs hold the data that is written to or read  
from the memory. They output the data stored at  
the selected address during a Bus Read opera-  
tion. During Bus Write operations they represent  
the commands sent to the Command Interface of  
the internal state machine. The Data Inputs/Out-  
puts, DQ0-DQ7, are latched during a Bus Write  
operation.  
VPP Optional Supply Voltage. The VPP Optional  
Supply Voltage pin is used to select the Fast Pro-  
gram (see the Quadruple Byte Program Command  
description) and Fast Erase options of the memory  
and to protect the memory. When VPP < VPPLK  
Program and Erase operations cannot be per-  
formed and an error is reported in the Status Reg-  
ister if an attempt to change the memory contents  
is made. When VPP = VCC Program and Erase op-  
erations take place as normal. When VPP = VPPH  
Fast Program (if a Quadruple Byte Program Com-  
mand is performed) and Fast Erase operations are  
11/44  
M50LPW080  
used. Any other voltage input to VPP will result in  
undefined behavior and should not be used.  
VSS Ground. VSS is the reference for all the volt-  
age measurements.  
VPP should not be set to VPPH for more than 80  
hours during the life of the memory.  
BUS OPERATIONS  
The two interfaces have similar bus operations but  
the signals and timings are completely different.  
The Low Pin Count (LPC) Interface is the usual in-  
terface and all of the functionality of the part is  
available through this interface. Only a subset of  
functions are available through the Address/Ad-  
dress Multiplexed (A/A Mux) Interface.  
Follow the section Low Pin Count (LPC) Bus Op-  
erations below and the section Address/Address  
Multiplexed (A/A Mux) Interface Bus Operations  
below for a description of the bus operations on  
each interface.  
On the following Clock cycles the Host will send  
the Cycle Type + Dir, Address, other control bits,  
Data0-Data3 and Data4-Data7 on LAD0-LAD3.  
The memory outputs Sync data until the wait-  
states have elapsed.  
See Table 8. and Figure 7. for a description of the  
Field definitions for each clock cycle of the trans-  
fer. See Table 23. and Figure 11. for details on the  
timings of the signals.  
Bus Abort. The Bus Abort operation can be used  
to immediately abort the current bus operation. A  
Bus Abort occurs when LFRAME is driven Low,  
VIL, during the bus operation; the memory will tri-  
state the Input/Output Communication pins,  
LAD0-LAD3.  
Note that, during a Bus Write operation, the Com-  
mand Interface starts executing the command as  
soon as the data is fully received; a Bus Abort dur-  
ing the final TAR cycles is not guaranteed to abort  
the command; the bus, however, will be released  
immediately.  
Low Pin Count (LPC) Bus Operations  
The Low Pin Count (LPC) Interface consists of  
four data signals (LAD0-LAD3), one control line  
(LFRAME) and a clock (CLK). In addition protec-  
tion against accidental or malicious data corrup-  
tion can be achieved using two further signals  
(TBL and WP). Finally two reset signals (RP and  
INIT) are available to put the memory into a known  
state.  
The data signals, control signal and clock are de-  
signed to be compatible with PCI electrical specifi-  
cations. The interface operates with clock speeds  
up to 33MHz.  
Standby. When LFRAME is High, VIH, the mem-  
ory is put into Standby mode where LAD0-LAD3  
are put into a high-impedance state and the Sup-  
ply Current is reduced to the Standby level, ICC1  
.
The following operations can be performed using  
the appropriate bus cycles: Bus Read, Bus Write,  
Standby, Reset and Block Protection.  
Reset. During Reset mode all internal circuits are  
switched off, the memory is deselected and the  
outputs are put in high-impedance. The memory is  
in Reset mode when Interface Reset, RP, or CPU  
Reset, INIT, is Low, VIL. RP or INIT must be held  
Low, VIL, for tPLPH. The memory resets to Read  
mode upon return from Reset mode and the Lock  
Registers return to their default states regardless  
of their state before Reset (see Table 13.). If RP or  
INIT goes Low, VIL, during a Program or Erase op-  
eration, the operation is aborted and the memory  
cells affected no longer contain valid data; the  
memory can take up to tPLRH to abort a Program  
or Erase operation.  
Bus Read. Bus Read operations read from the  
memory cells, specific registers in the Command  
Interface or Low Pin Count Registers. A valid Bus  
Read operation starts when Input Communication  
Frame, LFRAME, is Low, VIL, as Clock rises and  
the correct Start cycle is on LAD0-LAD3. On the  
following clock cycles the Host will send the Cycle  
Type + Dir, Address and other control bits on  
LAD0-LAD3. The memory responds by outputting  
Sync data until the wait-states have elapsed fol-  
lowed by Data0-Data3 and Data4-Data7.  
Block Protection. Block Protection can be  
forced using the signals Top Block Lock, TBL, and  
Write Protect, WP, regardless of the state of the  
Lock Registers.  
See Table 7. and Figure 6. for a description of the  
Field definitions for each clock cycle of the trans-  
fer. See Table 23. and Figure 11. for details on the  
timings of the signals.  
Address/Address Multiplexed (A/A Mux) Bus  
Operations  
The Address/Address Multiplexed (A/A Mux) Inter-  
face has a more traditional style interface. The sig-  
nals consist of a multiplexed address signals (A0-  
Bus Write. Bus Write operations write to the  
Command Interface or Low Pin Count Registers. A  
valid Bus Write operation starts when Input Com-  
munication Frame, LFRAME, is Low, VIL, as Clock  
rises and the correct Start cycle is on LAD0-LAD3.  
12/44  
M50LPW080  
A10), data signals, (DQ0-DQ7) and three control  
signals (RC, G, W). An additional signal, RP, can  
be used to reset the memory.  
Outputs will output the value, see Figure 13. and  
Table 25. for details of when the output becomes  
valid.  
The Address/Address Multiplexed (A/A Mux) Inter-  
face is included for use by Flash Programming  
equipment for faster factory programming. Only a  
subset of the features available to the Low Pin  
Count (LPC) Interface are available; these include  
all the Commands but exclude the Security fea-  
tures and other registers.  
The following operations can be performed using  
the appropriate bus cycles: Bus Read, Bus Write,  
Output Disable and Reset.  
Bus Write. Bus Write operations write to the  
Command Interface. A valid Bus Write operation  
begins by latching the Row Address and Column  
Address signals into the memory using the Ad-  
dress Inputs, A0-A10, and the Row/Column Ad-  
dress Select RC. The data should be set up on the  
Data Inputs/Outputs; Output Enable, G, and Inter-  
face Reset, RP, must be High, VIH and Write En-  
able, W, must be Low, VIL. The Data Inputs/  
Outputs are latched on the rising edge of Write En-  
able, W. See Figure 14. and Table 26. for details  
of the timing requirements.  
When the Address/Address Multiplexed (A/A Mux)  
Interface is selected all the blocks are unprotect-  
ed. It is not possible to protect any blocks through  
this interface.  
Output Disable. The data outputs are high-im-  
pedance when the Output Enable, G, is at VIH.  
Reset. During Reset mode all internal circuits are  
switched off, the memory is deselected and the  
outputs are put in high-impedance. The memory is  
in Reset mode when RP is Low, VIL. RP must be  
held Low, VIL for tPLPH. If RP is goes Low, VIL, dur-  
ing a Program or Erase operation, the operation is  
aborted and the memory cells affected no longer  
contain valid data; the memory can take up to tPL-  
RH to abort a Program or Erase operation.  
Bus Read. Bus Read operations are used to out-  
put the contents of the Memory Array, the Elec-  
tronic Signature and the Status Register. A valid  
Bus Read operation begins by latching the Row  
Address and Column Address signals into the  
memory using the Address Inputs, A0-A10, and  
the Row/Column Address Select RC. Then Write  
Enable (W) and Interface Reset (RP) must be  
High, VIH, and Output Enable, G, Low, VIL, in order  
to perform a Bus Read operation. The Data Inputs/  
Table 5. A/A Mux Bus Operations  
V
Operation  
Bus Read  
G
W
RP  
DQ7-DQ0  
Data Output  
Data Input  
Hi-Z  
PP  
V
V
V
IH  
Don't Care  
V or V  
CC  
IL  
IH  
IH  
IH  
V
V
V
V
V
IH  
Bus Write  
Output Disable  
Reset  
IL  
PPH  
V
IH  
Don't Care  
Don't Care  
IH  
V
IL  
or V  
V
or V  
V
IL  
Hi-Z  
IH  
IL  
IH  
Table 6. Manufacturer and Device Codes  
Operation  
Manufacturer Code  
Device Code  
G
W
RP  
A19-A1  
A0  
DQ7-DQ0  
20h  
V
IL  
V
V
IH  
V
V
IL  
IH  
IH  
IL  
IL  
V
IL  
V
V
IH  
V
V
2Fh  
IH  
13/44  
M50LPW080  
Table 7. LPC Bus Read Field Definitions  
Clock  
Cycle  
Number Count  
Clock  
Cycle  
LAD0-  
LAD3  
Memory  
I/O  
Field  
Description  
On the rising edge of CLK with LFRAME Low, the contents  
of LAD0-LAD3 must be 0000b to indicate the start of a  
LPC cycle.  
1
2
1
1
START  
0000b  
010Xb  
I
I
Indicates the type of cycle. Bits 3:2 must be 01b. Bit 1  
indicates the direction of transfer: 0b for read. Bit 0 is don’t  
care (X).  
CYCTYPE  
+ DIR  
A 32-bit address phase is transferred starting with the most  
significant nibble first. A23-A31 must be set to 1. A22 = 1  
for Array, A22 = 0 for registers access. For A20-A21  
values, see Table 3..  
3-10  
8
ADDR  
XXXX  
1111b  
I
The host drives LAD0-LAD3 to 1111b to indicate a  
turnaround cycle.  
11  
12  
1
1
TAR  
TAR  
I
1111b  
(float)  
The LPC Flash Memory takes control of LAD0-LAD3  
during this cycle.  
O
The LPC Flash Memory drives LAD0-LAD3 to 0101b  
(short wait-sync) for two clock cycles, indicating that the  
data is not yet available. Two wait-states are always  
included.  
13-14  
15  
2
1
WSYNC  
RSYNC  
0101b  
0000b  
O
O
The LPC Flash Memory drives LAD0-LAD3 to 0000b,  
indicating that data will be available during the next clock  
cycle.  
Data transfer is two CLK cycles, starting with the least  
significant nibble.  
16-17  
18  
2
1
1
DATA  
TAR  
TAR  
XXXX  
1111b  
O
O
The LPC Flash Memory drives LAD0-LAD3 to 1111b to  
indicate a turnaround cycle.  
1111b  
(float)  
The LPC Flash Memory floats its outputs, the host takes  
control of LAD0-LAD3.  
19  
N/A  
Figure 6. LPC Bus Read Waveforms  
CLK  
LFRAME  
CYCTYPE  
+ DIR  
LAD0-LAD3  
START  
1
ADDR  
8
TAR  
2
SYNC  
3
DATA  
2
TAR  
2
Number of  
clock cycles  
1
AI04429  
14/44  
M50LPW080  
Table 8. LPC Bus Write Field Definitions  
Clock  
Cycle  
Number Count  
Clock  
Cycle  
LAD0-  
LAD3  
Memory  
I/O  
Field  
Description  
On the rising edge of CLK with LFRAME Low, the contents  
of LAD0-LAD3 must be 0000b to indicate the start of a LPC  
cycle.  
1
2
1
1
START  
0000b  
011Xb  
I
I
CYCTY  
PE +  
DIR  
Indicates the type of cycle. Bits 3:2 must be 01b. Bit 1  
indicates the direction of transfer: 1b for write. Bit 0 is don’t  
care (X).  
A 32-bit address phase is transferred starting with the most  
significant nibble first. A23-A31 must be set to 1. A22 = 1 for  
Array, A22 = 0 for registers access. For A20-A21 values, see  
Table 3..  
3-10  
8
ADDR  
XXXX  
I
Data transfer is two cycles, starting with the least significant  
nibble.  
11-12  
13  
2
1
1
1
1
1
DATA  
TAR  
XXXX  
1111b  
I
I
The host drives LAD0-LAD3 to 1111b to indicate a  
turnaround cycle.  
1111b  
(float)  
The LPC Flash Memory takes control of LAD0-LAD3 during  
this cycle.  
14  
TAR  
O
The LPC Flash Memory drives LAD0-LAD3 to 0000b,  
indicating it has received data or a command.  
15  
SYNC  
TAR  
0000b  
1111b  
O
The LPC Flash Memory drives LAD0-LAD3 to 1111b,  
indicating a turnaround cycle.  
16  
O
1111b  
(float)  
The LPC Flash Memory floats its outputs and the host takes  
control of LAD0-LAD3.  
17  
TAR  
N/A  
Figure 7. LPC Bus Write Waveforms  
CLK  
LFRAME  
CYCTYPE  
+ DIR  
LAD0-LAD3  
START  
1
ADDR  
8
DATA  
2
TAR  
2
SYNC  
1
TAR  
2
Number of  
clock cycles  
1
AI04430  
15/44  
M50LPW080  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations.  
After power-up or a Reset operation the memory  
enters Read mode.  
in the internal state machine and starts the Pro-  
gram/Erase Controller. Once the command is is-  
sued subsequent Bus Read operations read the  
Status Register. See the section on the Status  
Register for details on the definitions of the Status  
Register bits.  
If the address falls in a protected block then the  
Program operation will abort, the data in the mem-  
ory array will not be changed and the Status Reg-  
ister will output the error.  
During the Program operation the memory will  
only accept the Read Status Register command  
and the Program/Erase Suspend command. All  
other commands will be ignored. Typical Program  
times are given in Table 15..  
Note that the Program command cannot change a  
bit set at ‘0’ back to ‘1’ and attempting to do so will  
not cause any modification on its value. One of the  
Erase commands must be used to set all of the  
bits in the block to ‘1’.  
See Figure 17. for a suggested flowchart on using  
the Program command.  
The commands are summarized in Table 10.. The  
following text descriptions should be read in con-  
junction with Table 10..  
Read Memory Array Command. The  
Read  
Memory Array command returns the memory to its  
Read mode where it behaves like a ROM or  
EPROM. One Bus Write cycle is required to issue  
the Read Memory Array command and return the  
memory to Read mode. Once the command is is-  
sued the memory remains in Read mode until an-  
other command is issued. From Read mode Bus  
Read operations will access the memory array.  
While the Program/Erase Controller is executing a  
Program or Erase operation the memory will not  
accept the Read Memory Array command until the  
operation completes.  
Read Status Register Command. The  
Read  
Quadruple Byte Program Command. The Qua-  
druple Byte Program Command can be only used  
in A/A Mux mode to program four adjacent bytes  
in the memory array at a time. The four bytes must  
differ only for the addresses A0 and A10. Pro-  
gramming should not be attempted when VPP is  
not at VPPH. The operation can also be executed if  
VPP is below VPPH, but result could be uncertain.  
Five Bus Write operations are required to issue the  
command. The second, the third and the fourth  
Bus Write cycle latches respectively the address  
and data of the first, the second and the third byte  
in the internal state machine. The fifth Bus Write  
cycle latches the address and data of the fourth  
byte in the internal state machine and starts the  
Program/Erase Controller. Once the command is  
issued subsequent Bus Read operations read the  
Status Register. See the section on the Status  
Register for details on the definitions of the Status  
Register bits.  
During the Quadruple Byte Program operation the  
memory will only accept the Read Status register  
command and the Program/Erase Suspend com-  
mand. All other commands will be ignored. Typical  
Quadruple Byte Program times are given in Table  
15..  
Note that the Quadruple Byte Program command  
cannot change a bit set to ‘0’ back to ‘1’ and at-  
tempting to do so will not cause any modification  
on its value. One of the Erase commands must be  
used to set all of the bits in the block to ‘1’.  
Status Register command is used to read the Sta-  
tus Register. One Bus Write cycle is required to is-  
sue the Read Status Register command. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register until another com-  
mand is issued. See the section on the Status  
Register for details on the definitions of the Status  
Register bits.  
Read Electronic Signature Command. The Read  
Electronic Signature command is used to read the  
Manufacturer Code and the Device Code. One  
Bus Write cycle is required to issue the Read Elec-  
tronic Signature command. Once the command is  
issued subsequent Bus Read operations read the  
Manufacturer Code or the Device Code until an-  
other command is issued.  
After the Read Electronic Signature Command is  
issued the Manufacturer Code and Device Code  
can be read using Bus Read operations using the  
addresses in Table 9..  
Table 9. Read Electronic Signature  
Code  
Manufacturer Code  
Device Code  
Address  
00000h  
00001h  
Data  
20h  
2Fh  
Program Command. The Program command  
can be used to program a value to one address in  
the memory array at a time. Two Bus Write opera-  
tions are required to issue the command; the sec-  
ond Bus Write cycle latches the address and data  
See Figure 18. for a suggested flowchart on using  
the Quadruple Byte Program command.  
16/44  
M50LPW080  
Chip Erase Command. The Chip Erase Com-  
mand can be only used in A/A Mux mode to erase  
the entire chip at a time. Erasing should not be at-  
tempted when VPP is not at VPPH. The operation  
can also be executed if VPP is below VPPH, but re-  
sult could be uncertain. Two Bus Write operations  
are required to issue the command and start the  
Program/Erase Controller. Once the command is  
issued subsequent Bus Read operations read the  
Status Register. See the section on the Status  
Register for details on the definitions of the Status  
Register bits. During the Chip Erase operation the  
memory will only accept the Read Status Register  
command. All other commands will be ignored.  
Typical Chip Erase times are given in Table 15..  
The Chip Erase command sets all of the bits in the  
memory to ‘1’. See Figure 20. for a suggested  
flowchart on using the Chip Erase command.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a block. Two Bus Write  
operations are required to issue the command; the  
second Bus Write cycle latches the block address  
in the internal state machine and starts the Pro-  
gram/Erase Controller. Once the command is is-  
sued subsequent Bus Read operations read the  
Status Register. See the section on the Status  
Register for details on the definitions of the Status  
Register bits.  
If the block is protected then the Block Erase oper-  
ation will abort, the data in the block will not be  
changed and the Status Register will output the er-  
ror.  
During the Block Erase operation the memory will  
only accept the Read Status Register command  
and the Program/Erase Suspend command. All  
other commands will be ignored. Typical Block  
Erase times are given in Table 15..  
The Block Erase command sets all of the bits in  
the block to ‘1’. All previous data in the block is  
lost.  
See Figure 21. for a suggested flowchart on using  
the Block Erase command.  
The bits in the Status Register are sticky and do  
not automatically return to ‘0’ when a new Program  
or Erase command is issued. If an error occurs  
then it is essential to clear any error bits in the Sta-  
tus Register by issuing the Clear Status Register  
command before attempting a new Program or  
Erase command.  
Program/Erase Suspend Command. The Pro-  
gram/Erase Suspend command can be used to  
pause a Program or Block Erase operation. One  
Bus Write cycle is required to issue the Program/  
Erase Suspend command and pause the Pro-  
gram/Erase Controller. Once the command is is-  
sued it is necessary to poll the Program/Erase  
Controller Status bit to find out when the Program/  
Erase Controller has paused; no other commands  
will be accepted until the Program/Erase Control-  
ler has paused. After the Program/Erase Control-  
ler has paused, the memory will continue to output  
the Status Register until another command is is-  
sued.  
During the polling period between issuing the Pro-  
gram/Erase Suspend command and the Program/  
Erase Controller pausing it is possible for the op-  
eration to complete. Once Program/Erase Control-  
ler Status bit indicates that the Program/Erase  
Controller is no longer active, the Program Sus-  
pend Status bit or the Erase Suspend Status bit  
can be used to determine if the operation has com-  
pleted or is suspended. For timing on the delay be-  
tween issuing the Program/Erase Suspend  
command and the Program/Erase Controller  
pausing see Table 15..  
During Program/Erase Suspend the Read Memo-  
ry Array, Read Status Register, Read Electronic  
Signature and Program/Erase Resume com-  
mands will be accepted by the Command Inter-  
face. Additionally, if the suspended operation was  
Block Erase then the Program command will also  
be accepted; only the blocks not being erased may  
be read or programmed correctly.  
See Figure 19. and Figure 22. for suggested flow-  
charts on using the Program/Erase Suspend com-  
mand.  
Clear Status Register Command. The  
Clear  
Status Register command can be used to reset  
bits 1, 3, 4 and 5 in the Status Register to ‘0’. One  
Bus Write is required to issue the Clear Status  
Register command. Once the command is issued  
the memory returns to its previous mode, subse-  
quent Bus Read operations continue to output the  
same data.  
Program/Erase Resume Command. The Pro-  
gram/Erase Resume command can be used to re-  
start the Program/Erase Controller after  
a
Program/Erase Suspend has paused it. One Bus  
Write cycle is required to issue the Program/Erase  
Resume command. Once the command is issued  
subsequent Bus Read operations read the Status  
Register.  
17/44  
M50LPW080  
Table 10. Commands  
Bus Write Operations  
3rd  
Command  
1st  
2nd  
4th  
5th  
Addr Data Addr Data Addr Data Addr Data Addr Data  
Read Memory Array  
Read Status Register  
1
1
1
1
2
2
5
2
2
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
FFh  
70h  
90h  
98h  
40h  
10h  
30h  
80h  
20h  
50h  
B0h  
D0h  
00h  
01h  
60h  
2Fh  
C0h  
Read Electronic Signature  
Program  
PA  
PA  
PD  
PD  
A
A
2
A
A
4
Quadruple Byte Program  
Chip Erase  
PD  
PD  
PD  
PD  
1
3
X
10h  
D0h  
Block Erase  
BA  
Clear Status Register  
Program/Erase Suspend  
Program/Erase Resume  
Invalid/Reserved  
Note: X Don’t Care, PA Program Address, PD Program Data, A  
Consecutive Addresses, BA Any address in the Block.  
1,2,3,4  
Read Memory Array. After a Read Memory Array command, read the memory as normal until another command is issued.  
Read Status Register. After a Read Status Register command, read the Status Register as normal until another command is issued.  
Read Electronic Signature. After a Read Electronic Signature command, read Manufacturer Code, Device Code until another com-  
mand is issued.  
Block Erase, Program. After these commands read the Status Register until the command completes and another command is is-  
sued.  
Quadruple Byte Program. This command is only valid in A/A Mux mode. Addresses A , A , A and A must be consecutive addresses  
1
2
3
4
differing only for address bit A0 and A10. After this command read the Status Register until the command completes and another com-  
mand is issued.  
Chip Erase. This command is only valid in A/A Mux mode. After this command read the Status Register until the command completes  
and another command is issued.  
Clear Status Register. After the Clear Status Register command bits 1, 3, 4 and 5 in the Status Register are reset to ‘0’.  
Program/Erase Suspend. After the Program/Erase Suspend command has been accepted, issue Read Memory Array, Read Status  
Register, Program (during Erase suspend) and Program/Erase resume commands.  
Program/Erase Resume. After the Program/Erase Resume command the suspended Program/Erase operation resumes, read the  
Status Register until the Program/Erase Controller Do not use Invalid or Reserved commands not use Invalid or Reserved commands.  
18/44  
M50LPW080  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program or Erase operation.  
Different bits in the Status Register convey differ-  
ent information and errors on the operation.  
and still failed to verify that the block(s) has erased  
correctly. The Erase Status bit should be read  
once the Program/Erase Controller Status bit is ‘1’  
(Program/Erase Controller inactive).  
To read the Status Register the Read Status Reg-  
ister command can be issued. The Status Register  
is automatically read after Program, Erase and  
Program/Erase Resume commands are issued.  
The Status Register can be read from any ad-  
dress.  
When the Erase Status bit is ‘0’ the memory has  
successfully verified that the block(s) has erased  
correctly; when the Erase Status bit is ‘1’ the Pro-  
gram/Erase Controller has applied the maximum  
number of pulses to the block(s) and still failed to  
verify that the block(s) has erased correctly.  
The Status Register bits are summarized in Table  
11.. The following text descriptions should be read  
in conjunction with Table 11..  
Program/Erase Controller Status (Bit 7). The Pro-  
gram/Erase Controller Status bit indicates whether  
the Program/Erase Controller is active or inactive.  
When the Program/Erase Controller Status bit is  
‘0’, the Program/Erase Controller is active; when  
the bit is ‘1’, the Program/Erase Controller is inac-  
tive.  
The Program/Erase Controller Status is ‘0’ imme-  
diately after a Program/Erase Suspend command  
is issued until the Program/Erase Controller paus-  
es. After the Program/Erase Controller pauses the  
bit is ‘1’.  
During Program and Erase operation the Pro-  
gram/Erase Controller Status bit can be polled to  
find the end of the operation. The other bits in the  
Status Register should not be tested until the Pro-  
gram/Erase Controller completes the operation  
and the bit is ‘1’.  
After the Program/Erase Controller completes its  
operation the Erase Status, Program Status, VPP  
Status and Block Protection Status bits should be  
tested for errors.  
Erase Suspend Status (Bit 6). The Erase Sus-  
pend Status bit indicates that a Block Erase oper-  
ation has been suspended and is waiting to be  
resumed. The Erase Suspend Status should only  
be considered valid when the Program/Erase  
Controller Status bit is ‘1’ (Program/Erase Control-  
ler inactive); after a Program/Erase Suspend com-  
mand is issued the memory may still complete the  
operation rather than entering the Suspend mode.  
When the Erase Suspend Status bit is ‘0’ the Pro-  
gram/Erase Controller is active or has completed  
its operation; when the bit is ‘1’ a Program/Erase  
Suspend command has been issued and the  
memory is waiting for a Program/Erase Resume  
command.  
Once the Erase Status bit is set to ‘1’ it can only be  
reset to ‘0’ by a Clear Status Register command or  
a hardware reset. If it is set to ‘1’ it should be reset  
before a new Program or Erase command is is-  
sued, otherwise the new command will appear to  
fail.  
Program Status (Bit 4). The Program Status bit  
can be used to identify if the memory has applied  
the maximum number of program pulses to the  
byte and still failed to verify that the byte has pro-  
grammed correctly. The Program Status bit should  
be read once the Program/Erase Controller Status  
bit is ‘1’ (Program/Erase Controller inactive).  
When the Program Status bit is ‘0’ the memory has  
successfully verified that the byte has pro-  
grammed correctly; when the Program Status bit is  
‘1’ the Program/Erase Controller has applied the  
maximum number of pulses to the byte and still  
failed to verify that the byte has programmed cor-  
rectly.  
Once the Program Status bit is set to ‘1’ it can only  
be reset to ‘0’ by a Clear Status Register com-  
mand or a hardware reset. If it is set to ‘1’ it should  
be reset before a new Program or Erase command  
is issued, otherwise the new command will appear  
to fail.  
VPP Status (Bit 3). The VPP Status bit can be  
used to identify an invalid voltage on the VPP pin  
during Program and Erase operations. The VPP  
pin is only sampled at the beginning of a Program  
or Erase operation. Indeterminate results can oc-  
cur if VPP becomes invalid during a Program or  
Erase operation.  
When the VPP Status bit is ‘0’ the voltage on the  
VPP pin was sampled at a valid voltage; when the  
VPP Status bit is ‘1’ the VPP pin has a voltage that  
is below the VPP Lockout Voltage, VPPLK, the  
memory is protected; Program and Erase opera-  
tion cannot be performed.  
Once the VPP Status bit set to ‘1’ it can only be re-  
set to ‘0’ by a Clear Status Register command or a  
hardware reset. If it is set to ‘1’ it should be reset  
before a new Program or Erase command is is-  
sued, otherwise the new command will appear to  
fail.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns to ‘0’.  
Erase Status (Bit 5). The Erase Status bit can be  
used to identify if the memory has applied the  
maximum number of erase pulses to the block(s)  
19/44  
M50LPW080  
Program Suspend Status (Bit 2). The Program  
Suspend Status bit indicates that a Program oper-  
ation has been suspended and is waiting to be re-  
sumed. The Program Suspend Status should only  
be considered valid when the Program/Erase  
Controller Status bit is ‘1’ (Program/Erase Control-  
ler inactive); after a Program/Erase Suspend com-  
mand is issued the memory may still complete the  
operation rather than entering the Suspend mode.  
gram or Block Erase operation has tried to modify  
the contents of a protected block. When the Block  
Protection Status bit is to ‘0’ no Program or Block  
Erase operations have been attempted to protect-  
ed blocks since the last Clear Status Register  
command or hardware reset; when the Block Pro-  
tection Status bit is ‘1’ a Program or Block Erase  
operation has been attempted on a protected  
block.  
When the Program Suspend Status bit is ‘0’ the  
Program/Erase Controller is active or has complet-  
ed its operation; when the bit is ‘1’ a Program/  
Erase Suspend command has been issued and  
the memory is waiting for a Program/Erase Re-  
sume command.  
Once it is set to ‘1’ the Block Protection Status bit  
can only be reset to ‘0’ by a Clear Status Register  
command or a hardware reset. If it is set to ‘1’ it  
should be reset before a new Program or Block  
Erase command is issued, otherwise the new  
command will appear to fail.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns to  
‘0’.  
Using the A/A Mux Interface the Block Protection  
Status bit is always ‘0’.  
Reserved (Bit 0). Bit 0 of the Status Register is  
Block Protection Status (Bit 1). The Block Pro-  
tection Status bit can be used to identify if the Pro-  
reserved. Its value should be masked.  
Table 11. Status Register Bits  
Operation  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1  
(1)  
Program active  
‘0’  
‘1  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
X
X
X
X
X
X
(1)  
(1)  
(1)  
(1)  
(1)  
Program suspended  
Program completed successfully  
‘1’  
‘1’  
‘1’  
Program failure due to V Error  
PP  
Program failure due to Block Protection (LPC Interface only)  
Program failure due to cell failure  
Erase active  
‘1’  
‘0’  
‘1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
Block Erase suspended  
Erase completed successfully  
‘1’  
‘0’  
‘0’  
Erase failure due to V Error  
PP  
Block Erase failure due to Block Protection (LPC Interface  
only)  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
Erase failure due to failed cell(s)  
Note: 1. For Program operations during Erase Suspend Bit 6 is ‘1’, otherwise Bit 6 is ‘0’.  
20/44  
M50LPW080  
LOW PIN COUNT (LPC) INTERFACE CONFIGURATION REGISTERS  
When the Low Pin Count Interface is selected sev-  
eral additional registers can be accessed. These  
registers control the protection status of the Blocks  
and read the General Purpose Input pins. See Ta-  
ble 12. for an example of the Register Configura-  
tion map, valid for the boot memory, i.e. ID0-ID1  
floating or driven LOW, VIL and A20-A21 set to ‘1’.  
Table 12. Low Pin Count Register Configuration Map (1)  
Default  
Value  
Memory  
Address  
Mnemonic  
Register Name  
Access  
T_BLOCK_LK  
Top Block Lock Register (Block 15)  
FFBF0002h  
FFBE0002h  
FFBD0002h  
FFBC0002h  
FFBB0002h  
FFBA0002h  
FFB90002h  
FFB80002h  
FFB70002h  
FFB60002h  
FFB50002h  
FFB40002h  
FFB30002h  
FFB20002h  
FFB10002h  
FFB00002h  
FFBC0100h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
01h  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
T_MINUS01_LK Top Block [-1] Lock Register (Block 14)  
T_MINUS02_LK Top Block [-2] Lock Register (Block 13)  
T_MINUS03_LK Top Block [-3] Lock Register (Block 12)  
T_MINUS04_LK Top Block [-4] Lock Register (Block 11)  
T_MINUS05_LK Top Block [-5] Lock Register (Block 10)  
T_MINUS06_LK Top Block [-6] Lock Register (Block 9)  
T_MINUS07_LK Top Block [-7] Lock Register (Block 8)  
T_MINUS08_LK Top Block [-8] Lock Register (Block 7)  
T_MINUS09_LK Top Block [-9] Lock Register (Block 6)  
T_MINUS10_LK Top Block [-10] Lock Register (Block 5)  
T_MINUS11_LK Top Block [-11] Lock Register (Block 4)  
T_MINUS12_LK Top Block [-12] Lock Register (Block 3)  
T_MINUS13_LK Top Block [-13] Lock Register (Block 2)  
T_MINUS14_LK Top Block [-14] Lock Register (Block 1)  
T_MINUS15_LK Top Block [-15] Lock Register (Block 0)  
GPI_REG  
General Purpose Input Register  
Note: 1. This map is referred to the boot memory (ID0-ID1 floating or driven, L , V and A20-A21 set to ‘1’).  
OW  
IL  
Lock Registers  
through the Lock Register and may be modified  
unless write protected through some other means.  
The Lock Registers control the protection status of  
the Blocks. Each Block has its own Lock Register.  
Three bits within each Lock Register control the  
protection of each block, the Write Lock Bit, the  
Read Lock Bit and the Lock Down Bit.  
The Lock Registers can be read and written,  
though care should be taken when writing as, once  
the Lock Down Bit is set, ‘1’, further modifications  
to the Lock Register cannot be made until cleared,  
to ‘0’, by a reset or power-up.  
When VPP is less than VPPLK all blocks are pro-  
tected and cannot be modified, regardless of the  
state of the Write Lock Bit. If Top Block Lock, TBL,  
is Low, VIL, then the Top Block (Block 15) is write  
protected and cannot be modified. Similarly, if  
Write Protect, WP, is Low, VIL, then the Main  
Blocks (Blocks 0 to 14) are write protected and  
cannot be modified.  
After power-up or reset the Write Lock Bit is al-  
ways set to ‘1’ (write protected).  
See Table 13. for details on the bit definitions of  
the Lock Registers.  
Read Lock. The Read Lock bit determines  
whether the contents of the Block can be read  
(from Read mode). When the Read Lock Bit is set,  
‘1’, the block is read protected; any operation that  
attempts to read the contents of the block will read  
00h instead. When the Read Lock Bit is reset, ‘0’,  
read operations in the Block return the data pro-  
grammed into the block as expected.  
Write Lock. The Write Lock Bit determines  
whether the contents of the Block can be modified  
(using the Program or Block Erase Command).  
When the Write Lock Bit is set, ‘1’, the block is  
write protected; any operations that attempt to  
change the data in the block will fail and the Status  
Register will report the error. When the Write Lock  
Bit is reset, ‘0’, the block is not write protected  
After power-up or reset the Read Lock Bit is al-  
ways reset to ‘0’ (not read protected).  
21/44  
M50LPW080  
Lock Down. The Lock Down Bit provides a  
mechanism for protecting software data from sim-  
ple hacking and malicious attack. When the Lock  
Down Bit is set, ‘1’, further modification to the  
Write Lock, Read Lock and Lock Down Bits cannot  
be performed. A reset or power-up is required be-  
fore changes to these bits can be made. When the  
Lock Down Bit is reset, ‘0’, the Write Lock, Read  
Lock and Lock Down Bits can be changed.  
General Purpose Input Register  
The General Purpose Input Register holds the  
state of the General Purpose Input pins, GPI0-  
GPI4. When this register is read, the state of these  
pins is returned. This register is read-only and writ-  
ing to it has no effect.  
The signals on the General Purpose Input pins  
should remain constant throughout the whole Bus  
Read cycle in order to guarantee that the correct  
data is read.  
Table 13. Lock Register Bit Definitions  
Bit  
Bit Name  
Value  
Function  
7-3  
Reserved  
‘1’  
‘0’  
Bus Read operations in this Block always return 00h.  
2
1
Read-Lock  
Bus read operations in this Block return the Memory Array contents. (Default  
value).  
Changes to the Read-Lock bit and the Write-Lock bit cannot be performed. Once a  
‘1’ is written to the Lock-Down bit it cannot be cleared to ‘0’; the bit is always reset  
to ‘0’ following a Reset (using RP or INIT) or after power-up.  
‘1’  
Lock-Down  
Write-Lock  
Read-Lock and Write-Lock can be changed by writing new values to them. (Default  
value).  
‘0’  
‘1’  
‘0’  
Program and Block Erase operations in this Block will set an error in the Status  
Register. The memory contents will not be changed. (Default value).  
0
Program and Block Erase operations in this Block are executed and will modify the  
Block contents.  
Note: Applies to Top Block Lock Register (T_BLOCK_LK) and Top Block [-1] Lock Register (T_MINUS01_LK) to Top Block [-15] Lock Reg-  
ister (T_MINUS15_LK).  
Table 14. General Purpose Input Register Definition  
Bit  
Bit Name  
Value  
Function  
7-5  
Reserved  
Input Pin GPI4 is at V  
Input Pin GPI4 is at V  
Input Pin GPI3 is at V  
Input Pin GPI3 is at V  
Input Pin GPI2 is at V  
Input Pin GPI2 is at V  
Input Pin GPI1 is at V  
Input Pin GPI1 is at V  
Input Pin GPI0 is at V  
Input Pin GPI0 is at V  
‘1’  
‘0’  
‘1’  
‘0’  
‘1’  
‘0’  
‘1’  
‘0’  
‘1’  
‘0’  
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
4
3
2
1
0
GPI4  
GPI3  
GPI2  
GPI1  
GPI0  
Note: Applies to the General Purpose Input Register (GPI_REG).  
22/44  
M50LPW080  
PROGRAM AND ERASE TIMES  
The Program and Erase times are shown in Table  
15..  
Table 15. Program and Erase Times  
(1)  
Parameter  
Interface  
Test Condition  
Min  
Max  
200  
200  
Unit  
µs  
Typ  
10  
Byte Program  
V
V
V
= 12V ± 5%  
= 12V ± 5%  
= 12V ± 5%  
= V  
Quadruple Byte Program  
Chip Erase  
A/A Mux  
A/A Mux  
A/A Mux  
10  
9
µs  
PP  
PP  
PP  
sec  
sec  
sec  
sec  
sec  
µs  
(2)  
5
5
0.1  
Block Program  
V
0.4  
0.75  
1
PP  
CC  
V
= 12V ± 5%  
= V  
8
PP  
Block Erase  
V
10  
5
PP  
CC  
(3)  
Program/Erase Suspend to Program pause  
(3)  
30  
µs  
Program/Erase Suspend to Block Erase pause  
Note: 1. T = 25°C, V = 3.3V  
A
CC  
2. This time is obtained executing the Quadruple Byte Program Command.  
3. Sampled only, not 100% tested.  
23/44  
M50LPW080  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 16. Absolute Maximum Ratings  
Symbol  
TSTG  
Parameter  
Min.  
Max.  
Unit  
°C  
Storage Temperature  
–65  
150  
1
TLEAD  
Lead Temperature during Soldering  
°C  
See note  
2
V
+ 0.6  
VIO  
–0.60  
–0.60  
–0.6  
V
V
V
V
CC  
Input or Output range  
VCC  
Supply Voltage  
4
V
Program Voltage  
13  
PP  
3
VESD  
–2000  
2000  
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK 7191395 specification, and  
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU  
2. Minimum voltage may undershoot to –2V for less than 20ns during transitions. Maximum voltage may overshoot to V + 2V for  
CC  
less than 20ns during transitions.  
3. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )  
24/44  
M50LPW080  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 17., Table 18.  
and Table 19. Designers should check that the op-  
erating conditions in their circuit match the operat-  
ing conditions when relying on the quoted  
parameters.  
Table 17. Operating Conditions  
Symbol  
Parameter  
Min  
3.0  
0
Max  
3.6  
70  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature (Device Grade 1)  
Ambient Operating Temperature (Device Grade 5)  
°C  
°C  
T
A
–20  
85  
Table 18. LPC Interface AC Measurement Conditions  
Parameter  
Value  
Unit  
Load Capacitance (C )  
10  
pF  
ns  
V
L
Input Rise and Fall Times  
1.4  
0.2 V and 0.6 V  
Input Pulse Voltages  
CC  
CC  
0.4 V  
Input and Output Timing Ref. Voltages  
V
CC  
Table 19. A/A Mux Interface AC Measurement Conditions  
Parameter  
Value  
30  
Unit  
pF  
ns  
V
Load Capacitance (C )  
L
Input Rise and Fall Times  
10  
Input Pulse Voltages  
0 to 3  
1.5  
Input and Output Timing Ref. Voltages  
V
Figure 8. LPC Interface AC Testing Input Output Waveforms  
0.6 V  
CC  
0.4 V  
CC  
0.2 V  
CC  
Input and Output AC Testing Waveform  
I
< I  
I
> I  
I
< I  
O LO  
O
LO  
O
LO  
Output AC Tri-state Testing Waveform  
AI03404  
25/44  
M50LPW080  
Figure 9. A/A Mux Interface AC Testing Input Output Waveform  
3V  
0V  
1.5V  
AI01417  
Table 20. Impedance  
(3)  
Symbol  
Parameter  
Input Capacitance  
Clock Capacitance  
Min  
Max  
13  
Unit  
pF  
Test Condition  
(1)  
V
= 0V  
= 0V  
C
IN  
IN  
IN  
(1)  
V
3
12  
pF  
C
L
CLK  
Recommended Pin  
Inductance  
(2)  
20  
nH  
PIN  
Note: 1. Sampled only, not 100% tested.  
2. See PCI Specification.  
3. TA = 25°C, f = 1MHz.  
26/44  
M50LPW080  
Table 21. DC Characteristics  
Symbol  
Parameter  
Interface  
LPC  
Test Condition  
Min  
Max  
Unit  
V
0.5 V  
V
V
+ 0.5  
CC  
CC  
V
IH  
Input High Voltage  
0.7 V  
+ 0.3  
A/A Mux  
LPC  
V
CC  
CC  
0.3 V  
–0.5  
-0.5  
1.35  
–0.5  
V
CC  
V
IL  
Input Low Voltage  
A/A Mux  
LPC  
0.8  
+ 0.5  
V
V (INIT)  
IH  
V
CC  
INIT Input High Voltage  
INIT Input Low Voltage  
Input Leakage Current  
V
V (INIT)  
IL  
0.2 V  
CC  
LPC  
V
(2)  
0V V V  
CC  
±10  
200  
µA  
µA  
I
LI  
IN  
IC, IDx Input Leakage  
Current  
I
IC, ID0, ID1 = V  
CC  
LI2  
IC, IDx Input Pull Low  
Resistor  
R
20  
100  
kΩ  
IL  
0.9 V  
LPC  
A/A Mux  
LPC  
I
I
= –500µA  
V
V
CC  
OH  
V
Output High Voltage  
OH  
V
– 0.4  
= –100µA  
= 1.5mA  
= 1.8mA  
CC  
OH  
I
OL  
0.1 V  
V
CC  
V
I
Output Low Voltage  
OL  
I
OL  
A/A Mux  
0.45  
±10  
3.6  
V
0V V  
V  
CC  
Output Leakage Current  
µA  
V
LO  
OUT  
V
V
V
PP  
Voltage  
3
PP1  
V
PP  
Voltage (Fast  
11.4  
12.6  
V
PPH  
(1)  
Program/Fast Erase)  
V
Lockout Voltage  
Lockout Voltage  
1.5  
1.8  
V
V
V
PP  
CC  
PPLK  
(1)  
V
2.3  
V
LKO  
LFRAME = 0.9 V , V = V  
CC  
CC  
PP  
I
All other inputs 0.9 V to 0.1 V  
CC  
Supply Current (Standby)  
Supply Current (Standby)  
LPC  
LPC  
LPC  
100  
µA  
mA  
mA  
CC1  
CC  
V
= 3.6V, f(CLK) = 33MHz  
CC  
LFRAME = 0.1 V , V = V  
CC  
PP  
CC  
I
All other inputs 0.9 V to 0.1 V  
CC  
10  
60  
CC2  
CC  
V
= 3.6V, f(CLK) = 33MHz  
CC  
V
= V max, V = V  
Supply Current  
(Any internal operation  
active)  
CC  
CC  
PP  
CC  
f(CLK) = 33MHz  
= 0mA  
I
I
CC3  
CC4  
I
OUT  
G = V , f = 6MHz  
Supply Current (Read)  
A/A Mux  
A/A Mux  
20  
20  
mA  
mA  
IH  
Supply Current  
(Program/Erase)  
(1)  
Program/Erase Controller Active  
I
I
CC5  
V
Supply Current  
PP  
I
V
V
> V  
400  
µA  
PP  
PP  
CC  
(Read/Standby)  
= V  
40  
15  
mA  
mA  
PP  
CC  
V
PP  
Supply Current  
(1)  
PP1  
(Program/Erase active)  
V
= 12V ± 5%  
PP  
Note: 1. Sampled only, not 100% tested.  
2. Input leakage currents include High-Z output leakage for all bi-directional buffers with tri-state outputs.  
27/44  
M50LPW080  
Figure 10. LPC Interface Clock Waveform  
tCYC  
tHIGH  
tLOW  
0.6 V  
CC  
0.5 V  
CC  
0.4 V  
,
CC p-to-p  
0.4 V  
CC  
(minimum)  
0.3 V  
CC  
0.2 V  
CC  
AI03403  
Table 22. LPC Interface Clock Characteristics  
Symbol  
Parameter  
Test Condition  
Value  
Unit  
(1)  
t
Min  
30  
ns  
CYC  
CLK Cycle Time  
t
CLK High Time  
CLK Low Time  
Min  
Min  
Min  
Max  
11  
11  
1
ns  
ns  
HIGH  
t
LOW  
V/ns  
V/ns  
CLK Slew Rate  
peak to peak  
4
Note: 1. Devices on the PCI Bus must work with any clock frequency between DC and 33MHz. Below 16MHz devices may be guaranteed  
by design rather than tested. Refer to PCI Specification.  
28/44  
M50LPW080  
Figure 11. LPC Interface AC Signal Timing Waveforms  
CLK  
tCHQV  
tCHQZ  
tCHQX  
tDVCH  
tCHDX  
VALID  
LAD0-LAD3  
VALID OUTPUT DATA  
FLOAT OUTPUT DATA  
VALID INPUT DATA  
AI04431  
Table 23. LPC Interface AC Signal Timing Characteristics  
PCI  
Symbol  
Parameter  
Test Condition  
Value  
Unit  
Symbol  
Min  
2
ns  
ns  
t
t
val  
CLK to Data Out  
CHQV  
Max  
11  
CLK to Active  
(Float to Active Delay)  
(1)  
t
Min  
Max  
Min  
2
28  
7
ns  
ns  
ns  
t
on  
CHQX  
CLK to Inactive  
(Active to Float Delay)  
t
t
CHQZ  
off  
t
t
AVCH  
(2)  
t
su  
Input Set-up Time  
DVCH  
t
t
CHAX  
(2)  
t
Min  
0
ns  
h
Input Hold Time  
CHDX  
Note: 1. The timing measurements for Active/Float transitions are defined when the current through the pin equals the leakage current spec-  
ification.  
2. Applies to all inputs except CLK.  
29/44  
M50LPW080  
Figure 12. Reset AC Waveforms  
RP, INIT  
tPHWL, tPHGL, tPHFL  
tPLPH  
W, G, LFRAME  
RB  
tPLRH  
AI04432  
Table 24. Reset AC Characteristics  
Symbol  
Parameter  
Test Condition  
Value  
Unit  
ns  
t
RP or INIT Reset Pulse Width  
Min  
Max  
Max  
100  
100  
30  
PLPH  
Program/Erase Inactive  
Program/Erase Active  
ns  
t
RP or INIT Low to Reset  
PLRH  
µs  
(1)  
Rising edge only  
Min  
Min  
50  
30  
mV/ns  
RP or INIT Slew Rate  
t
RP or INIT High to LFRAME Low  
LPC Interface only  
µs  
PHFL  
t
t
RP High to Write Enable or Output  
Enable Low  
PHWL  
A/A Mux Interface only  
Min  
50  
µs  
PHGL  
Note: 1. See Chapter 4 of the PCI Specification.  
30/44  
M50LPW080  
Figure 13. A/A Mux Interface Read AC Waveforms  
tAVAV  
A0-A10  
ROW ADDR VALID COLUMN ADDR VALID  
NEXT ADDR VALID  
tAVCL  
tAVCH  
tCLAX  
tCHAX  
RC  
G
tCHQV  
tGLQV  
tGLQX  
tGHQZ  
tGHQX  
VALID  
DQ0-DQ7  
W
tPHAV  
RP  
AI03406  
Table 25. A/A Mux Interface Read AC Characteristics  
Symbol  
Parameter  
Read Cycle Time  
Test Condition  
Value  
250  
Unit  
ns  
t
Min  
Min  
Min  
Min  
Min  
AVAV  
t
Row Address Valid to RC Low  
50  
50  
50  
50  
ns  
AVCL  
t
RC Low to Row Address Transition  
Column Address Valid to RC high  
RC High to Column Address Transition  
ns  
CLAX  
t
ns  
AVCH  
t
ns  
CHAX  
(1)  
RC High to Output Valid  
Max  
150  
ns  
t
CHQV  
(1)  
Output Enable Low to Output Valid  
RP High to Row Address Valid  
Max  
Min  
Min  
Max  
Min  
50  
1
ns  
µs  
ns  
ns  
ns  
t
GLQV  
t
PHAV  
GLQX  
t
t
Output Enable Low to Output Transition  
Output Enable High to Output Hi-Z  
Output Hold from Output Enable High  
0
50  
0
GHQZ  
GHQX  
t
Note: 1. G may be delayed up to t  
– t  
GLQV  
after the rising edge of RC without impact on t  
.
CHQV  
CHQV  
31/44  
M50LPW080  
Figure 14. A/A Mux Interface Write AC Waveforms  
Write erase or  
program setup  
Write erase confirm or Automated erase  
valid address and data or program delay  
Read Status  
Register Data  
Ready to write  
another command  
A0-A10  
RC  
R1  
C1  
R2  
C2  
tCLAX  
tAVCH  
tAVCL  
tCHAX  
tWHWL  
tWLWH  
tCHWH  
W
G
tVPHWH  
tWHGL  
tWHRL  
RB  
tQVVPL  
V
PP  
tDVWH  
tWHDX  
DQ0-DQ7  
D
D
VALID SRD  
IN1  
IN2  
AI04194  
Table 26. A/A Mux Interface Write AC Characteristics  
Symbol  
Parameter  
Test Condition  
Value  
100  
50  
Unit  
t
Write Enable Low to Write Enable High  
Data Valid to Write Enable High  
Write Enable High to Data Transition  
Row Address Valid to RC Low  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WLWH  
t
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
DVWH  
t
5
WHDX  
t
50  
AVCL  
t
RC Low to Row Address Transition  
Column Address Valid to RC High  
RC High to Column Address Transition  
Write Enable High to Write Enable Low  
RC High to Write Enable High  
50  
CLAX  
t
50  
AVCH  
t
50  
CHAX  
t
100  
50  
WHWL  
t
CHWH  
(1)  
V
PP  
High to Write Enable High  
100  
t
VPHWH  
t
Write Enable High to Output Enable Low  
Write Enable High to RB Low  
Min  
Min  
30  
0
ns  
ns  
WHGL  
t
WHRL  
(1,2)  
QVVPL  
Output Valid, RB High to V Low  
Min  
0
ns  
t
PP  
Note: 1. Sampled only, not 100% tested.  
2. Applicable if V is seen as a logic input (V < 3.6V).  
PP  
PP  
32/44  
M50LPW080  
PACKAGE MECHANICAL  
Figure 15. PLCC32 – 32 pin Rectangular Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
E2  
E3  
E1 E  
F
B
0.51 (.020)  
E2  
1.14 (.045)  
D3  
A
R
CP  
D2  
D2  
PLCC-A  
Note: Drawing is not to scale.  
33/44  
M50LPW080  
Table 27. PLCC32 – 32 pin Rectangular Plastic Leaded Chip Carrier, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
3.56  
2.41  
Typ  
Max  
0.140  
0.095  
A
A1  
A2  
B
3.18  
0.125  
0.060  
0.015  
0.013  
0.026  
1.53  
0.38  
0.33  
0.53  
0.81  
0.10  
12.57  
11.51  
5.66  
0.021  
0.032  
0.004  
0.495  
0.453  
0.223  
B1  
CP  
D
0.66  
12.32  
11.35  
4.78  
0.485  
0.447  
0.188  
D1  
D2  
D3  
E
7.62  
0.300  
14.86  
13.89  
6.05  
15.11  
14.05  
6.93  
0.585  
0.547  
0.238  
0.595  
0.553  
0.273  
E1  
E2  
E3  
e
10.16  
1.27  
0.400  
0.050  
F
0.00  
0.13  
0.000  
0.005  
R
0.89  
0.035  
N
32  
32  
34/44  
M50LPW080  
Figure 16. TSOP40 – 40 lead Plastic Thin Small Outline, 10x20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Note: Drawing is not to scale.  
A1  
α
L
Table 28. TSOP40 – 40 lead Plastic Thin Small Outline, 10x20 mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.150  
1.050  
0.270  
0.210  
0.100  
20.200  
18.500  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0039  
0.7953  
0.7283  
A
A1  
A2  
B
0.050  
0.950  
0.170  
0.100  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D
19.800  
18.300  
0.7795  
0.7205  
D1  
e
0.500  
0.0197  
E
9.900  
0.500  
0°  
10.100  
0.700  
5°  
0.3898  
0.0197  
0°  
0.3976  
0.0276  
5°  
L
α
N
40  
40  
35/44  
M50LPW080  
PART NUMBERING  
Table 29. Ordering Information Scheme  
Example:  
M50LPW080  
K
1
T
G
Device Type  
M50 =  
Architecture  
LP = Low Pin Count Interface  
Operating Voltage  
W = 3.0 to 3.6V  
Device Function  
080 = 8 Mbit (1Mx8), Uniform Block  
Package  
K = PLCC32  
N = TSOP40: 10 x 20 mm  
Device Grade  
5 = Temperature range –20 to 85 °C.  
Device tested with standard test flow  
1 = Temperature range 0 to 70 °C.  
Device tested with standard test flow  
Option  
blank = Standard Packing  
T = Tape and Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
G = Lead-Free, RoHS compliant, Sb O -free and TBBA-free  
2
3
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,  
please contact your nearest ST Sales Office.  
36/44  
M50LPW080  
FLOWCHARTS AND PSEUDO CODES  
Figure 17. Program Flowchart and Pseudo Code  
Start  
Program command:  
– write 40h or 10h  
Write 40h or 10h  
– write Address & Data  
(memory enters read status state after  
the Program command)  
Write Address  
& Data  
do:  
NO  
Read Status  
–read Status Register if Program/Erase  
Suspend command given execute  
suspend program loop  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
YES  
while b7 = 1  
NO  
NO  
NO  
V
Invalid  
If b3 = 1, V  
invalid error:  
PP  
PP  
– error handler  
b3 = 0  
YES  
Error (1, 2)  
Program  
If b4 = 1, Program error:  
– error handler  
b4 = 0  
YES  
Error (1, 2)  
LPC  
Interface  
Only  
Program to Protected  
Block Error (1, 2)  
If b1 = 1, Program to protected block error:  
– error handler  
b1 = 0  
YES  
End  
AI04433  
Note: 1. A Status check of b1 (Protected Block), b3 (V invalid) and b4 (Program Error) can be made after each Program operation by  
PP  
following the correct command sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
37/44  
M50LPW080  
Figure 18. Quadruple Byte Program Flowchart and Pseudo Code (A/A Mux Interface Only)  
Start  
Write 30h  
Write Address 1  
& Data 1 (3)  
Quadruple Byte Program command:  
– write 30h  
– write Address 1 & Data 1 (3)  
– write Address 2 & Data 2 (3)  
– write Address 3 & Data 3 (3)  
Write Address 2  
& Data 2 (3)  
– write Address 4 & Data 4 (3)  
(memory enters read status state after  
the Quadruple Byte Program command)  
Write Address 3  
& Data 3 (3)  
Write Address 4  
& Data 4 (3)  
do:  
NO  
– read Status Register if Program/Erase  
Suspend command given execute  
suspend program loop  
Read Status  
Register  
Suspend  
YES  
NO  
NO  
NO  
Suspend  
Loop  
b7 = 1  
YES  
while b7 = 1  
V
Invalid  
Error (1, 2)  
If b3 = 1, V  
invalid error:  
– error handler  
PP  
PP  
b3 = 0  
YES  
Program  
Error (1, 2)  
If b4 = 1, Program error:  
– error handler  
b4 = 0  
YES  
End  
AI03982  
Note: 1. A Status check of b3 (V invalid) and b4 (Program Error) can be made after each Program operation by following the correct com-  
PP  
mand sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Address 1, Address 2, Address 3 and Address 4 must be consecutive addresses differing only for address bits A0 and A10.  
38/44  
M50LPW080  
Figure 19. Program Suspend and Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend command:  
– write B0h  
– write 70h  
Write 70h  
do:  
– read Status Register  
Read Status  
Register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
b2 = 1  
YES  
Program Complete  
If b2 = 0 Program completed  
Write a read  
Command  
Read data from  
another address  
Program/Erase Resume command:  
– write D0h to resume the program  
– if the Program operation completed  
then this is not necessary.  
The device returns to Read as  
normal (as if the Program/Erase  
suspend was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI03408  
39/44  
M50LPW080  
Figure 20. Chip Erase Flowchart and Pseudo Code (A/A Mux Interface Only)  
Start  
Chip Erase command:  
Write 80h  
– write 80h  
– write 10h  
(memory enters read Status Register after  
the Chip Erase command)  
Write 10h  
do:  
– read Status Register  
Read Status  
Register  
NO  
b7 = 1  
YES  
while b7 = 1  
NO  
NO  
NO  
V
Invalid  
If b3 = 1, V  
– error handler  
invalid error:  
PP  
Error (1)  
PP  
b3 = 0  
YES  
Command  
Sequence Error (1)  
If b4, b5 = 1, Command sequence error:  
– error handler  
b4, b5 = 0  
YES  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
Erase Error (1)  
YES  
End  
AI04195  
Note: If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
40/44  
M50LPW080  
Figure 21. Block Erase Flowchart and Pseudo Code  
Start  
Block Erase command:  
– write 20h  
Write 20h  
– write Block Address & D0h  
(memory enters read Status Register after  
the Block Erase command)  
Write Block Address  
& D0h  
do:  
– read Status Register  
– if Program/Erase Suspend command  
given execute suspend erase loop  
NO  
Read Status  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
while b7 = 1  
YES  
NO  
NO  
NO  
NO  
V
Invalid  
If b3 = 1, V  
invalid error:  
– error handler  
PP  
Error (1)  
PP  
b3 = 0  
YES  
Command  
Sequence Error (1)  
If b4, b5 = 1, Command sequence error:  
– error handler  
b4, b5 = 0  
YES  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
YES  
Erase Error (1)  
LPC  
Interface  
Only  
Erase to Protected  
Block Error (1)  
If b1 = 1, Erase to protected block error:  
– error handler  
b1 = 0  
YES  
End  
AI04434  
Note: If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
41/44  
M50LPW080  
Figure 22. Erase Suspend and Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read Status Register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
b6 = 1  
YES  
Erase Complete  
If b6 = 0, Erase completed  
Read data from  
another block  
or  
Program  
Program/Erase Resume command:  
– write D0h to resume erase  
– if the Erase operation completed  
then this is not necessary.  
The device returns to Read as  
normal (as if the Program/Erase  
suspend was not issued).  
Write D0h  
Write FFh  
Read Data  
Erase Continues  
AI03410  
42/44  
M50LPW080  
REVISION HISTORY  
Table 30. Revision History  
Date  
Version  
Revision Details  
April 2001  
-01  
First Issue  
Clock Cycle Number 2 changed (Table 7. and Table 8.)  
Low Pin Count Register Configuration Map (Table 12.) clarification  
22-June-2001  
03-Sep-2001  
24-Oct-2001  
12-Mar-2002  
-02  
-03  
-04  
-05  
PLCC32 package added  
Note 2 changed under Table 4.  
Document Status changed from Product Preview to Preliminary Data  
V
Optional Supply Voltage section clarified  
PP  
RFU pins must be left disconnected  
Specification of PLCC32 package mechanical data revised  
Revision numbering modified. Document reformatted.  
Temperature Range ordering information replaced by Device Grade, Standard  
packing option added and Plating Technology added. T parameter added to  
02-Aug-2004  
07-Jul-2005  
8.0  
9.0  
LEAD  
Absolute Maximum Ratings and T  
parameter removed.  
BIAS  
Inch values corrected in TSOP40 package mechanical data.  
Datasheet Status updated to NOT FOR NEW DESIGN.  
43/44  
M50LPW080  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
44/44  

相关型号:

M50LPW80K5T

1MX8 FLASH 3V PROM, 11ns, PQCC32, PLASTIC, LCC-32
NUMONYX

M50LPW80K5TG

Flash, 1MX8, 11ns, PQCC32, ROHS COMPLIANT, PLASTIC, LCC-32
NUMONYX

M50LPW80N1G

Flash, 1MX8, 11ns, PDSO40, 10 X 20 MM, ROHS COMPLIANT, PLASTIC, TSOP-40
NUMONYX

M50LPW80N1TG

Flash, 1MX8, 11ns, PDSO40, 10 X 20 MM, ROHS COMPLIANT, PLASTIC, TSOP-40
NUMONYX

M50LPW80N5

Flash, 1MX8, 11ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
NUMONYX

M50LPW80N5G

Flash, 1MX8, 11ns, PDSO40, 10 X 20 MM, ROHS COMPLIANT, PLASTIC, TSOP-40
NUMONYX

M50LPW80N5T

Flash, 1MX8, 11ns, PDSO40, 10 X 20 MM, PLASTIC, TSOP-40
NUMONYX

M50R1051

Multilayer Ceramic Capacitors
ETC

M50R105K1

Ceramic Capacitor, Multilayer, Ceramic, 100V, 10% +Tol, 10% -Tol, X7R, 1uF, 5020,
VISHAY

M50R105K1-F

Ceramic Capacitor, Ceramic, 100V, X7R, -/+15ppm/Cel TC, 1uF, 5025
CDE

M50R105K1-FTA

Ceramic Capacitor, Multilayer, Ceramic, 100V, 10% +Tol, 10% -Tol, X7R, 15% TC, 1uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
CDE

M50R105K1-FTR

Ceramic Capacitor, Multilayer, Ceramic, 100V, 10% +Tol, 10% -Tol, X7R, 15% TC, 1uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
CDE