M58BW016DB70T3F [NUMONYX]

Flash, 512KX32, 70ns, PQFP80, PLASTIC, QFP-80;
M58BW016DB70T3F
型号: M58BW016DB70T3F
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 512KX32, 70ns, PQFP80, PLASTIC, QFP-80

文件: 总55页 (文件大小:894K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58BW016DB  
M58BW016DT  
16 Mbit (512Kb x32, Boot Block, Burst)  
3V Supply Flash Memories  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Packages  
VDD = 2.7V to 3.6V for Program, Erase  
and Read  
DDQ = VDDQIN = 2.4V to 3.6V for I/O  
V
Buffers  
VPP = 12V for fast Program (optional)  
HIGH PERFORMANCE  
Access Time: 70, 80ns  
56MHz Effective Zero Wait-State Burst  
Read  
PQFP80 (T)  
Synchronous Burst Reads  
Asynchronous Page Reads  
HARDWARE BLOCK PROTECTION  
WP pin for Write Protect of the 4  
Outermost Parameter Blocks and All Main  
Blocks  
RP pin for Write Protect of All Blocks  
OPTIMIZED for FDI DRIVERS  
Fast Program / Erase suspend latency  
time < 6µs  
Common Flash Interface  
MEMORY BLOCKS  
8 Parameters Blocks (Top or Bottom)  
31 Main Blocks  
LOW POWER CONSUMPTION  
5µA Typical Deep Power Down  
60µA Typical Standby  
Automatic Standby after Asynchronous  
Read  
ELECTRONIC SIGNATURE  
Manufacturer Code: 20h  
Top Device Code M58BW016DT: 8836h  
Bottom Device Code M58BW016DB:  
8835h  
March 2005  
1/55  
M58BW016DT, M58BW016DB  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. PQFP Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 2. Top Boot Block Addresses, M58BW016DT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 3. Bottom Boot Block Addresses, M58BW016DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Inputs/Outputs (DQ0-DQ31). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Disable (GD).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Burst Clock (K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Burst Address Advance (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Supply Voltage (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Supply Voltage (VDDQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input Supply Voltage (VDDQIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Program/Erase Supply Voltage (VPP).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Ground (VSS and VSSQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Don’t Use (DU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Not Connected (NC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Latch Controlled Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Asynchronous Latch Controlled Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Automatic Low Power.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/55  
M58BW016DT, M58BW016DB  
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4. Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 5. Asynchronous Read Electronic Signature Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Synchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 6. Synchronous Burst Read Bus Operations  
Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Select Bit (M15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
X-Latency Bits (M14-M11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Y-Latency Bit (M9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Valid Data Ready Bit (M8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Burst Type Bit (M7).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Valid Clock Edge Bit (M6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Wrap Burst Bit (M3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Burst Length Bit (M2-M0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 7. Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 8. Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 4. Example Burst Configuration X-1-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 5. Example Burst Configuration X-2-2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Set Burst Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 9. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 10. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 24  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Program Status Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
V
PP Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 11. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3/55  
M58BW016DT, M58BW016DB  
Table 12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 6. AC Measurement Input Output Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 7. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 14. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 8. Asynchronous Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 16. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 9. Asynchronous Latch Controlled Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . 31  
Table 17. Asynchronous Latch Controlled Bus Read AC Characteristics . . . . . . . . . . . . . . . . . . . . 31  
Figure 10.Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 18. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 11.Asynchronous Write AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 12.Asynchronous Latch Controlled Write AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics . . . . . . . . . . . . . . . 35  
Figure 13.Synchronous Burst Read (Data Valid from ’n’ Clock Rising Edge) . . . . . . . . . . . . . . . . . 36  
Table 20. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 14.Synchronous Burst Read (Data Valid from ’n’ Clock Rising Edge) . . . . . . . . . . . . . . . . . 37  
Figure 15.Synchronous Burst Read - Continuous - Valid Data Ready Output . . . . . . . . . . . . . . . . 38  
Figure 16.Synchronous Burst Read - Burst Address Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 17.Reset, Power-Down and Power-up AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 21. Reset, Power-Down and Power-up AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 39  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 18.PQFP80 - 80 lead Plastic Quad Flat Pack, Package Outline . . . . . . . . . . . . . . . . . . . . . 40  
Table 22. PQFP80 - 80 lead Plastic Quad Flat Pack, Package Mechanical Data. . . . . . . . . . . . . . 40  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 23. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
APPENDIX A.COMMON FLASH INTERFACE - CFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 24. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 25. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 26. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 27. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 28. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
APPENDIX B.FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 19.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 20.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 21.Block Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 22.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 23.Power-up Sequence to Burst the Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4/55  
M58BW016DT, M58BW016DB  
Figure 24.Command Interface and Program Erase Controller Flowchart (a) . . . . . . . . . . . . . . . . . 50  
Figure 25.Command Interface and Program Erase Controller Flowchart (b) . . . . . . . . . . . . . . . . . 51  
Figure 26.Command Interface and Program Erase Controller Flowchart (c) . . . . . . . . . . . . . . . . . 52  
Figure 27.Command Interface and Program Erase Controller Flowchart (d) . . . . . . . . . . . . . . . . . 53  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 29. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5/55  
M58BW016DT, M58BW016DB  
SUMMARY DESCRIPTION  
The M58BW016DT and M58BW016DB are  
16Mbit non-volatile Flash memories that can be  
erased electrically at the block level and pro-  
grammed in-system on a Double-Word basis us-  
ing a 2.7V to 3.6V VDD supply for the circuit and a  
VDDQ supply down to 2.4V for the Input and Output  
buffers. Optionally a 12V VPP supply can be used  
to provide fast program and erase for a limited  
time and number of program/erase cycles.  
The devices support Asynchronous (Latch Con-  
trolled and Page Read) and Synchronous Bus op-  
erations. The Synchronous Burst Read Interface  
allows a high data transfer rate controlled by the  
Burst Clock, K, signal. It is capable of bursting  
fixed or unlimited lengths of data. The burst type,  
latency and length are configurable and can be  
easily adapted to a large variety of system clock  
frequencies and microprocessors. All Writes are  
Asynchronous. On power-up the memory defaults  
to Read mode with an Asynchronous Bus.  
The devices have a boot block architecture with an  
array of 8 parameter block of 64Kb each and 31  
main blocks of 512Kb each. The parameter blocks  
can be located at the top of the address space,  
M58BW016DT or at the bottom, M58BW016DB.  
Program and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of  
programming or erasing the memory by taking  
care of all of the special operations that are re-  
quired to update the memory contents. The end of  
a Program or Erase operation can be detected and  
any error conditions identified in the Status Regis-  
ter. The command set required to control the  
memory is consistent with JEDEC standards.  
Erase can be suspended in order to perform either  
Read or Program in any other block and then re-  
sumed. Program can be suspended to Read data  
in any other block and then resumed. Each block  
can be programmed and erased over 100,000 cy-  
cles.  
All blocks are protected during power-up.  
The M58BW016DT and M58BW016DB feature  
two different levels of block protection to avoid un-  
wanted program/erase operations:  
The WP pin offers an hardware protection on  
two of the parameter blocks and all of the main  
blocks.  
All Program or Erase operations are blocked  
when Reset, RP, is held low. A Reset/Power-  
down mode is entered when the RP input is  
Low. In this mode the power consumption is  
lower than in the normal standby mode, the  
device is write protected and both the Status  
and the Burst Configuration Registers are  
cleared. A recovery time is required when the  
RP input goes High.  
The memory is offered in a PQFP80 (14 x 20mm)  
package. It is supplied with all the bits erased (set  
to ’1’).  
In addition to the standard version, the PQFP80  
package is also available in Lead-free version, in  
compliance with JEDEC Std J-STD-020B, the ST  
ECOPACK 7191395 Specification, and the RoHS  
(Restriction of Hazardous Substances) directive.  
In the present document, M58BW016DT and  
M58BW016DB will be referred to as M58BW016D.  
6/55  
M58BW016DT, M58BW016DB  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A18  
Address inputs  
DQ0-DQ7  
Data Input/Output, Command Input  
Data Input/Output, Burst Configuration  
Register  
DQ8-DQ15  
V
V
V
V
DD DDQ DDQIN  
PP  
DQ16-DQ31 Data Input/Output  
B
Burst Address Advance  
Chip Enable  
A0-A18  
E
DQ0-DQ31  
G
Output Enable  
K
L
K
Burst Clock  
L
Latch Enable  
E
R
Valid Data Ready (open drain output)  
Reset/Power-down  
Write Enable  
M58BW016DT  
M58BW016DB  
RP  
G
R
RP  
W
GD  
WP  
GD  
W
Output Disable  
Write Protect  
WP  
B
V
Supply Voltage  
DD  
V
DDQ  
Power Supply for Output Buffers  
Power Supply for Input Buffers only  
V
DDQIN  
PP  
Optional Supply Voltage for Fast  
Program and Fast Erase Operations  
V
V
V
SSQ  
SS  
AI11201  
V
V
Ground  
SS  
Input/Output Ground  
Not Connected Internally  
Don’t Use as Internally Connected  
SSQ  
NC  
DU  
7/55  
M58BW016DT, M58BW016DB  
Figure 3. PQFP Connections (Top view through package)  
DQ16  
DQ17  
DQ18  
DQ19  
1
DQ15  
DQ14  
DQ13  
DQ12  
64  
V
V
V
DDQ  
SSQ  
DDQ  
V
SSQ  
DQ20  
DQ11  
DQ10  
DQ9  
DQ8  
DQ7  
DQ6  
DQ5  
DQ4  
DQ21  
DQ22  
DQ23  
DQ24  
DQ25  
DQ26  
DQ27  
M58BW016DT  
M58BW016DB  
12  
53  
V
V
V
DDQ  
SSQ  
DDQ  
V
SSQ  
DQ28  
DQ3  
DQ2  
DQ1  
DQ0  
NC  
DQ29  
DQ30  
DQ31  
DU  
A0  
A18  
A17  
A16  
A1  
A2  
41  
24  
AI11202  
8/55  
M58BW016DT, M58BW016DB  
Block Protection  
#
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Size (Kbit)  
Address Range  
68000h-6BFFFh  
64000h-67FFFh  
60000h-63FFFh  
5C000h-5FFFFh  
58000h-5BFFFh  
54000h-57FFFh  
50000h-53FFFh  
4C000h-4FFFFh  
48000h-4BFFFh  
44000h-47FFFh  
40000h-43FFFh  
3C000h-3FFFFh  
38000h-3BFFFh  
34000h-37FFFh  
30000h-33FFFh  
2C000h-2FFFFh  
28000h-2BFFFh  
24000h-27FFFh  
20000h-23FFFh  
1C000h-1FFFFh  
18000h-1BFFFh  
14000h-17FFFh  
10000h-13FFFh  
0C000h-0FFFFh  
08000h-0BFFFh  
04000h-07FFFh  
00000h-03FFFh  
The M58BW016D feature two different levels of  
block protection.  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
Write Protect Pin, WP, - When WP is low, VIL,  
all the lockable parameter blocks (two upper  
(Top ) or lower (Bottom)) and all the main  
blocks are protected. When WP is high (VIH)  
all the lockable parameter blocks and all the  
main blocks are unprotected.  
Reset/Power-Down Pin, RP, - If the device is  
held in reset mode (RP at VIL), no program or  
erase operations can be performed on any  
block.  
After a device reset the first two kinds of block pro-  
tection (WP, RP) can be combined to give a flexi-  
ble block protection.  
Table 2. Top Boot Block Addresses,  
M58BW016DT  
#
Size (Kbit)  
64  
Address Range  
7F800h-7FFFFh  
7F000h-7F7FFh  
7E800h-7EFFFh  
7E000h-7E7FFh  
7D800h-7DFFFh  
7D000h-7D7FFh  
7C800h-7CFFFh  
7C000h-7C7FFh  
78000h-7BFFFh  
74000h-77FFFh  
70000h-73FFFh  
6C000h-6FFFFh  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
64  
64  
64  
8
64  
7
64  
6
64  
5
64  
4
512  
512  
512  
512  
3
2
1
0
9/55  
M58BW016DT, M58BW016DB  
Table 3. Bottom Boot Block Addresses,  
M58BW016DB  
#
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Size (Kbit)  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
64  
Address Range  
30000h-33FFFh  
2C000h-2FFFFh  
28000h-2BFFFh  
24000h-27FFFh  
20000h-23FFFh  
1C000h-1FFFFh  
18000h-1BFFFh  
14000h-17FFFh  
10000h-13FFFh  
0C000h-0FFFFh  
08000h-0BFFFh  
04000h-07FFFh  
03800h-03FFFh  
03000h-037FFh  
02800h-02FFFh  
02000h-027FFh  
01800h-01FFFh  
01000h-017FFh  
00800h-00FFFh  
00000h-007FFh  
#
Size (Kbit)  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
Address Range  
7C000h-7FFFFh  
78000h-7BFFFh  
74000h-77FFFh  
70000h-73FFFh  
6C000h-6FFFFh  
68000h-6BFFFh  
64000h-67FFFh  
60000h-63FFFh  
5C000h-5FFFFh  
58000h-5BFFFh  
54000h-57FFFh  
50000h-53FFFh  
4C000h-4FFFFh  
48000h-4BFFFh  
44000h-47FFFh  
40000h-43FFFh  
3C000h-3FFFFh  
38000h-3BFFFh  
34000h-37FFFh  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
8
7
6
64  
5
64  
4
64  
3
64  
2
64  
1
64  
0
64  
10/55  
M58BW016DT, M58BW016DB  
SIGNAL DESCRIPTIONS  
See Figure 2., Logic Diagram, and Table  
1., Signal Names, for a brief overview of the sig-  
nals connected to this device.  
Output Disable (GD). The Output Disable, GD,  
deactivates the data output buffers. When Output  
Disable, GD, is at VIH, the outputs are driven by  
the Output Enable. When Output Disable, GD, is  
at VIL, the outputs are high impedance indepen-  
dently of Output Enable. The Output Disable pin  
must be connected to an external pull-up resistor  
as there is no internal pull-up resistor to drive the  
pin.  
Address Inputs (A0-A18). The Address Inputs  
are used to select the cells to access in the mem-  
ory array during Bus Read operations either to  
read or to program data to. During Bus Write oper-  
ations they control the commands sent to the  
Command Interface of the internal state machine.  
Chip Enable must be low when selecting the ad-  
dresses.  
The address inputs are latched on the rising edge  
of Latch Enable L or Burst Clock K, whichever oc-  
curs first, in a read operation.The address inputs  
are latched on the rising edge of Chip Enable,  
Write Enable or Latch Enable, whichever occurs  
first in a Write operation. The address latch is  
transparent when Latch Enable is low, VIL. The ad-  
dress is internally latched in an Erase or Program  
operation.  
Write Enable (W). The Write Enable, W, input  
controls writing to the Command Interface, Input  
Address and Data latches. Both addresses and  
data can be latched on the rising edge of Write En-  
able (also see Latch Enable, L).  
Reset/Power-Down (RP). The  
Reset/Power-  
Down, RP, is used to apply a hardware reset to the  
memory. A hardware reset is achieved by holding  
Reset/Power-Down Low, VIL, for at least tPLPH  
.
Writing is inhibited to protect data, the Command  
Interface and the Program/Erase Controller are re-  
set. The Status Register information is cleared and  
power consumption is reduced to deep power-  
down level. The device acts as deselected, that is  
the data outputs are high impedance.  
Data Inputs/Outputs (DQ0-DQ31). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation, or are used  
to input the data during a program operation. Dur-  
ing Bus Write operations they represent the com-  
mands sent to the Command Interface of the  
internal state machine. When used to input data or  
Write commands they are latched on the rising  
edge of Write Enable or Chip Enable, whichever  
occurs first.  
When Chip Enable and Output Enable are both  
low, VIL, and Output Disable is at VIH, the data bus  
outputs data from the memory array, the Electron-  
ic Signature, the CFI Information or the contents of  
the Status Register. The data bus is high imped-  
ance when the device is deselected with Chip En-  
able at VIH, Output Enable at VIH, Output Disable  
at VIL or Reset/Power-Down at VIL. The Status  
Register content is output on DQ0-DQ7 and DQ8-  
DQ31 are at VIL.  
After Reset/Power-Down goes High, VIH, the  
memory will be ready for Bus Read operations af-  
ter a delay of tPHEL or Bus Write operations after  
tPHWL  
.
If Reset/Power-Down goes low, VIL, during a Block  
Erase, or a Program the operation is aborted, in a  
time of tPLRH maximum, and data is altered and  
may be corrupted.  
During Power-up power should be applied simulta-  
neously to VDD and VDDQ(IN) with RP held at VIL.  
When the supplies are stable RP is taken to VIH.  
Output Enable, G, Chip Enable, E, and Write En-  
able, W, should be held at VIH during power-up.  
In an application, it is recommended to associate  
Reset/Power-Down pin, RP, with the reset signal  
of the microprocessor. Otherwise, if a reset opera-  
tion occurs while the memory is performing an  
erase or program operation, the memory may out-  
put the Status Register information instead of be-  
ing initialized to the default Asynchronous  
Random Read.  
Chip Enable (E). The Chip Enable, E, input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. Chip Enable, E, at  
VIH deselects the memory and reduces the power  
consumption to the Standby level.  
See Table 21. and Figure 17., Reset, Power-  
Down and Power-up AC Waveform, for more de-  
tails.  
Output Enable (G). The Output Enable, G, gates  
the outputs through the data output buffers during  
a read operation, when Output Disable GD is at  
VIH. When Output Enable G is at VIH, the outputs  
are high impedance independently of Output Dis-  
able.  
Latch Enable (L). The Bus Interface can be con-  
figured to latch the Address Inputs on the rising  
edge of Latch Enable, L, for Asynchronous Latch  
Enable Controlled Read or Write or Synchronous  
Burst Read operations. In Synchronous Burst  
11/55  
M58BW016DT, M58BW016DB  
Read operations the address is latched on the ac-  
tive edge of the Clock when Latch Enable is Low,  
VIL. Once latched, the addresses may change  
without affecting the address used by the memory.  
When Latch Enable is Low, VIL, the latch is trans-  
parent. Latch Enable, L, can remain at VIL for  
Asynchronous Random Read and Write opera-  
tions.  
Write Protect (WP). The Write Protect, WP, pro-  
vides protection against program or erase opera-  
tions. When Write Protect, WP, is at VIL the first  
two (in the bottom configuration) or last two (in the  
top configuration) parameter blocks and all main  
blocks are locked. When Write Protect WP is at  
V
IH all the blocks can be programmed or erased, if  
no other protection is used.  
Burst Clock (K). The Burst Clock, K, is used to  
synchronize the memory with the external bus dur-  
ing Synchronous Burst Read operations. Bus sig-  
nals are latched on the active edge of the Clock.  
The Clock can be configured to have an active ris-  
ing or falling edge. In Synchronous Burst Read  
mode the address is latched on the first active  
clock edge when Latch Enable is low, VIL, or on  
the rising edge of Latch Enable, whichever occurs  
first.  
Supply Voltage (VDD). The Supply Voltage, VDD,  
is the core power supply. All internal circuits draw  
their current from the VDD pin, including the Pro-  
gram/Erase Controller.  
Output Supply Voltage (VDDQ). The Output Sup-  
ply Voltage, VDDQ, is the output buffer power supply  
for all operations (Read, Program and Erase) used  
for DQ0-DQ31 when used as outputs.  
Input Supply Voltage (VDDQIN). The Input Sup-  
ply Voltage, VDDIN, is the power supply for all input  
signal. Input signals are: K, B, L, W, GD, G, E, A0-  
A18 and D0-D31, when used as inputs.  
During Asynchronous bus operations the Clock is  
not used.  
Burst Address Advance (B). The Burst Address  
Advance, B, controls the advancing of the address  
by the internal address counter during Synchro-  
nous Burst Read operations.  
Burst Address Advance, B, is only sampled on the  
active clock edge of the Clock when the X-latency  
time has expired. If Burst Address Advance is  
Low, VIL, the internal address counter advances. If  
Burst Address Advance is High, VIH, the internal  
address counter does not change; the same data  
remains on the Data Inputs/Outputs and Burst Ad-  
dress Advance is not sampled until the Y-latency  
expires.  
Program/Erase Supply Voltage (VPP). The Pro-  
gram/Erase Supply Voltage, VPP, is used for pro-  
gram and erase operations. The memory normally  
executes program and erase operations at VPP1  
voltage levels. In a manufacturing environment,  
programming may be speeded up by applying a  
higher voltage level, VPPH, to the VPP pin.  
The voltage level VPPH may be applied for a total  
of 80 hours over a maximum of 1000 cycles.  
Stressing the device beyond these limits could  
damage the device.  
The Burst Address Advance, B, may be tied to VIL.  
Ground (VSS and VSSQ). The Ground VSS is the  
reference for the internal supply voltage VDD. The  
Ground VSSQ is the reference for the output and  
input supplies VDDQ, and VDDQIN. It is essential to  
connect VSS and VSSQ together.  
Note: A 0.1µF capacitor should be connected  
between the Supply Voltages, VDD, VDDQ and  
VDDIN and the Grounds, VSS and VSSQ to decou-  
ple the current surges from the power supply.  
The PCB track widths must be sufficient to car-  
ry the currents required during all operations  
of the parts, see Table 15., DC Characteristics,  
for maximum current supply requirements.  
Valid Data Ready (R). The Valid Data Ready  
output, R, is an open drain output that can be  
used, during Synchronous Burst Read operations,  
to identify if the memory is ready to output data or  
not. The Valid Data Ready output can be config-  
ured to be active on the clock edge of the invalid  
data read cycle or one cycle before. Valid Data  
Ready, at VIH, indicates that new data is or will be  
available. When Valid Data Ready is Low, VIL, the  
previous data outputs remain active.  
In all Asynchronous operations, Valid Data Ready  
is high-impedance. It may be tied to other compo-  
nents with the same Valid Data Ready signal to  
create a unique system Ready signal. The Valid  
Data Ready output has an internal pull-up resistor  
of around 1 Mpowered from VDDQ, designers  
should use an external pull-up resistor of the cor-  
rect value to meet the external timing require-  
ments for Valid Data Ready going to VIH.  
Don’t Use (DU). This pin should not be used as it  
is internally connected. Its voltage level can be be-  
tween VSS and VDDQ or leave it unconnected.  
Not Connected (NC). This pin is not physically  
connected to the device.  
12/55  
M58BW016DT, M58BW016DB  
BUS OPERATIONS  
Each bus operations that controls the memory is  
described in this section, see Tables 4, 5 and 6  
Bus Operations, for a summary. The bus operation  
is selected through the Burst Configuration Regis-  
ter; the bits in this register are described at the end  
of this section.  
VIL, to read the data on the Data Inputs/Outputs;  
see Figure 9., Asynchronous Latch Controlled Bus  
Read  
AC  
Waveforms,  
and  
Table  
17., Asynchronous Latch Controlled Bus Read AC  
Characteristics, for details on when the output be-  
comes valid.  
On Power-up or after a Hardware Reset the mem-  
ory defaults to Asynchronous Bus Read and Asyn-  
chronous Bus Write, no other bus operation can  
be performed until the Burst Control Register has  
been configured.  
The Electronic Signature, CFI or Status Register  
will be read in asynchronous mode regardless of  
the Burst Control Register settings.  
Note that, since the Latch Enable input is transpar-  
ent when set Low, VIL, Asynchronous Bus Read  
operations can be performed when the memory is  
configured for Asynchronous Latch Enable bus  
operations by holding Latch Enable Low, VIL  
throughout the bus operation.  
Asynchronous Page Read. Asynchronous  
Page Read operations are used to read from sev-  
eral addresses within the same memory page.  
Each memory page is 4 Double-Words and is ad-  
dressed by the address inputs A0 and A1.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect bus operations.  
Data is read internally and stored in the Page Buff-  
er. Valid bus operations are the same as Asyn-  
chronous Bus Read operations but with different  
timings. The first read operation within the page  
has identical timings, subsequent reads within the  
same page have much shorter access times. If the  
page changes then the normal, longer timings ap-  
ply again. Page Read does not support Latched  
Controlled Read.  
See Figure 10., Asynchronous Page Read AC  
Waveforms, and Table 18., Asynchronous Page  
Read AC Characteristics, for details on when the  
outputs become valid.  
Asynchronous Bus Operations  
For asynchronous bus operations refer to Table 4.  
together with the following text.  
Asynchronous Bus Read. Asynchronous Bus  
Read operations read from the memory cells, or  
specific registers (Electronic Signature, Status  
Register, CFI and Burst Configuration Register) in  
the Command Interface. A valid bus operation in-  
volves setting the desired address on the Address  
Inputs, applying a Low signal, VIL, to Chip Enable  
and Output Enable and keeping Write Enable and  
Output Disable High, VIH. The Data Inputs/Out-  
puts will output the value, see Figure  
8., Asynchronous Bus Read AC Waveforms, , and  
Table 16., Asynchronous Bus Read AC Charac-  
teristics., for details of when the output becomes  
valid.  
Asynchronous Bus Write. Asynchronous Bus  
Write operations write to the Command Interface  
in order to send commands to the memory or to  
latch addresses and input data to program. Bus  
Write operations are asynchronous, the clock, K,  
is don’t care during Bus Write operations.  
A valid Asynchronous Bus Write operation begins  
by setting the desired address on the Address In-  
puts, and setting Chip Enable, Write Enable and  
Latch Enable Low, VIL, and Output Enable High,  
VIH, or Output Disable Low, VIL. The Address In-  
puts are latched by the Command Interface on the  
rising edge of Chip Enable or Write Enable, which-  
ever occurs first. Commands and Input Data are  
latched on the rising edge of Chip Enable, E, or  
Write Enable, W, whichever occurs first. Output  
Enable must remain High, and Output Disable  
Low, during the whole Asynchronous Bus Write  
operation.  
Asynchronous Read is the default read mode  
which the device enters on power-up or on return  
from Reset/Power-Down.  
Asynchronous Latch Controlled Bus Read.  
Asynchronous Latch Controlled Bus Read opera-  
tions read from the memory cells or specific regis-  
ters in the Command Interface. The address is  
latched in the memory before the value is output  
on the data bus, allowing the address to change  
during the cycle without affecting the address that  
the memory uses.  
A valid bus operation involves setting the desired  
address on the Address Inputs, setting Chip En-  
able and Latch Enable Low, VIL and keeping Write  
Enable High, VIH; the address is latched on the ris-  
ing edge of Latch Enable. Once latched, the Ad-  
dress Inputs can change. Set Output Enable Low,  
See Figure 11., Asynchronous Write AC Wave-  
form, and Table 19., Asynchronous Write and  
Latch Controlled Write AC Characteristics, for de-  
tails of the timing requirements.  
13/55  
M58BW016DT, M58BW016DB  
Asynchronous Latch Controlled Bus Write.  
state regardless of Output Enable, Write Enable or  
Output Disable inputs.  
Asynchronous Latch Controlled Bus Write opera-  
tions write to the Command Interface in order to  
send commands to the memory or to latch ad-  
dresses and input data to program. Bus Write op-  
erations are asynchronous, the clock, K, is don’t  
care during Bus Write operations.  
A valid Asynchronous Latch Controlled Bus Write  
operation begins by setting the desired address on  
the Address Inputs and pulsing Latch Enable Low,  
VIL. The Address Inputs are latched by the Com-  
mand Interface on the rising edge of Latch Enable,  
Write Enable or Chip Enable, whichever occurs  
first. Commands and Input Data are latched on the  
rising edge of Chip Enable, E, or Write Enable, W,  
whichever occurs first. Output Enable must remain  
High, and Output Disable Low, during the whole  
Asynchronous Bus Write operation.  
Automatic Low Power. If there is no change in  
the state of the bus for a short period of time during  
Asynchronous Bus Read operations the memory  
enters Auto Low Power mode where the internal  
Supply Current is reduced to the Auto-Standby  
Supply Current. The Data Inputs/Outputs will still  
output data if a Bus Read operation is in progress.  
Automatic Low Power is only available in Asyn-  
chronous Read modes.  
Power-Down. The memory is in Power-down  
when Reset/Power-Down, RP, is at VIL. The pow-  
er consumption is reduced to the power-down lev-  
el and the outputs are high impedance,  
independent of the Chip Enable, E, Output Enable,  
G, Output Disable, GD, or Write Enable, W, inputs.  
See Figure 12., Asynchronous Latch Controlled  
Write  
AC  
Waveform,  
and  
Table  
Electronic Signature. . Two codes identifying  
the manufacturer and the device can be read from  
the memory allowing programming equipment or  
applications to automatically match their interface  
to the characteristics of the memory. The Electron-  
ic Signature is output by giving the Read Electron-  
ic Signature command. The manufacturer code is  
output when all the Address inputs are at VIL. The  
device code is output when A1 is at VIH and all the  
other address pins are at VIL (see Table  
5., Asynchronous Read Electronic Signature Op-  
eration). Issue a Read Memory Array command to  
return to Read mode.  
19., Asynchronous Write and Latch Controlled  
Write AC Characteristics, for details of the timing  
requirements.  
Output Disable. The data outputs are high im-  
pedance when the Output Enable, G, is at VIH or  
Output Disable, GD, is at VIL.  
Standby. When Chip Enable is High, VIH, and the  
Program/Erase Controller is idle, the memory en-  
ters Standby mode, the power consumption is re-  
duced to the standby level and the Data Inputs/  
Outputs pins are placed in the high impedance  
Table 4. Asynchronous Bus Operations  
Bus Operation  
Step  
E
G
GD  
W
RP  
L
A0-A18  
Address  
Address  
X
DQ0-DQ31  
Data Output  
High Z  
V
V
V
IH  
V
V
V
Asynchronous Bus Read  
IL  
IL  
IL  
IL  
IH  
IH  
IL  
IL  
V
V
V
V
IH  
V
V
V
V
V
Address Latch  
Read  
IH  
IL  
IH  
Asynchronous Latch  
Controlled Bus Read  
V
V
V
V
IH  
V
Data Output  
IL  
IL  
IH  
IH  
IH  
IH  
Asynchronous Page  
Read  
V
V
IH  
V
V
X
Address  
Data Output  
IL  
IH  
V
V
V
V
V
V
V
V
V
V
Asynchronous Bus Write  
X
Address  
Data Input  
High Z  
IL  
IL  
IL  
IL  
IL  
IH  
IL  
IH  
IL  
IL  
V
V
IH  
V
V
V
Address Latch  
Write  
Address  
IL  
IH  
IH  
IH  
IH  
Asynchronous Latch  
Controlled Bus Write  
V
V
V
V
X
X
X
X
X
X
Data Input  
High Z  
IL  
IH  
IH  
IH  
IH  
V
IH  
V
V
V
Output Disable, G  
Output Disable, GD  
Standby  
X
IH  
V
V
IL  
V
X
X
X
High Z  
IL  
IH  
V
X
X
X
X
High Z  
IH  
IH  
V
Reset/Power-Down  
Note: X = Don’t Care  
X
X
X
High Z  
IL  
14/55  
M58BW016DT, M58BW016DB  
Table 5. Asynchronous Read Electronic Signature Operation  
Code  
Device  
All  
E
G
GD  
W
A18-A0  
00000h  
00001h  
00001h  
DQ31-DQ0  
00000020h  
00008836h  
00008835h  
V
V
V
IH  
V
Manufacturer  
IL  
IL  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
V
V
V
V
V
IH  
V
V
M58BW016DT  
M58BW016DB  
Device  
V
IH  
Burst Configuration  
Register  
(1)  
V
IL  
V
IL  
V
IH  
V
IH  
00005h  
BCR  
Note: 1. BCR= Burst Configuration Register.  
Synchronous Bus Operations  
For synchronous bus operations refer to Table 6.  
together with the following text.  
When Valid Data Ready is Low on the active clock  
edge, no new data is available and the memory  
does not increment the internal address counter at  
the active clock edge even if Burst Address Ad-  
vance, B, is Low.  
Valid Data Ready may be configured (by bit M8 of  
Burst Configuration Register) to be valid immedi-  
ately at the valid clock edge or one data cycle be-  
fore the valid clock edge.  
Synchronous Burst Read will be suspended if  
Burst Address Advance, B, goes High, VIH.  
If Output Enable is at VIL and Output Disable is at  
VIH, the last data is still valid.  
Synchronous Burst Read. Synchronous Burst  
Read operations are used to read from the memo-  
ry at specific times synchronized to an external ref-  
erence clock. The burst type, length and latency  
can be configured. The different configurations for  
Synchronous Burst Read operations are de-  
scribed in the Burst Configuration Register sec-  
tion. Refer to Figures 4 and 5 for examples of  
synchronous burst operations.  
In continuous burst read, one burst read operation  
can access the entire memory sequentially by  
keeping the Burst Address Advance B at VIL for  
the appropriate number of clock cycles. At the end  
of the memory address space the burst read re-  
starts from the beginning at address 000000h.  
If Output Enable, G, is at VIH or Output Disable,  
GD, is at VIL, but the Burst Address Advance, B, is  
at VIL the internal Burst Address Counter is incre-  
mented at each Burst Clock K valid edge.  
The Synchronous Burst Read timing diagrams  
and AC Characteristics are described in the AC  
and DC Parameters section. See Figures 13, 14,  
15 and 16, and Table 20.  
A valid Synchronous Burst Read operation begins  
when the Burst Clock is active and Chip Enable  
and Latch Enable are Low, VIL. The burst start ad-  
dress is latched and loaded into the internal Burst  
Address Counter on the valid Burst Clock K edge  
(rising or falling depending on the value of M6) or  
on the rising edge of Latch Enable, whichever oc-  
curs first.  
After an initial memory latency time, the memory  
outputs data each clock cycle (or two clock cycles  
depending on the value of M9). The Burst Address  
Advance B input controls the memory burst output.  
The second burst output is on the next clock valid  
edge after the Burst Address Advance B has been  
pulled Low.  
Synchronous Burst Read Suspend. During  
a
Synchronous Burst Read operation it is possible to  
suspend the operation, freeing the data bus for  
other higher priority devices.  
A valid Synchronous Burst Read operation is sus-  
pended when both Output Enable and Burst Ad-  
dress Advance are High, VIH. The Burst Address  
Advance going High, VIH, stops the burst counter  
and the Output Enable going High, VIH, inhibits the  
data outputs. The Synchronous Burst Read oper-  
ation can be resumed by setting Output Enable  
Low.  
Valid Data Ready, R, monitors if the memory burst  
boundary is exceeded and the Burst Controller of  
the microprocessor needs to insert wait states.  
15/55  
M58BW016DT, M58BW016DB  
Table 6. Synchronous Burst Read Bus Operations  
A0-A18  
DQ0-DQ31  
(3)  
Bus Operation  
Step  
Address Latch  
E
G
GD  
RP  
L
B
K
V
V
IH  
V
V
X
T
X
Address Input  
Data Output  
High Z  
IL  
IL  
IL  
IL  
IL  
IH  
IL  
IH  
IH  
IH  
IH  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
IL  
Read  
T
X
T
T
X
X
IL  
IH  
IH  
V
V
Read Suspend  
Read Resume  
Burst Address Advance  
Read Abort, E  
Read Abort, RP  
X
IH  
IH  
IH  
Synchronous Burst  
Read  
V
V
V
V
IL  
V
IL  
Data Output  
High Z  
IL  
IH  
IH  
V
IH  
V
X
X
X
IH  
V
X
X
X
High Z  
IH  
IH  
V
X
X
X
X
High Z  
IL  
Note: 1. X = Don't Care, V or V  
.
IH  
IL  
2. M15 = 0, Bit M15 is in the Burst Configuration Register.  
3. T = transition, see M6 in the Burst Configuration Register for details on the active edge of K.  
16/55  
M58BW016DT, M58BW016DB  
Burst Configuration Register  
one clock cycle prior to invalid data being output  
on the bus.  
The Burst Configuration Register is used to config-  
ure the type of bus access that the memory will  
perform.  
Burst Type Bit (M7). The Burst Type bit is used  
to configure the sequence of addresses read as  
sequential or interleaved. When the Burst Type bit  
is ’0’ the memory outputs from interleaved ad-  
dresses; when the Burst Type bit is ’1’ the memory  
outputs from sequential addresses. See Table  
8., Burst Type Definition, for the sequence of ad-  
dresses output from a given starting address in  
each mode.  
The Burst Configuration Register is set through  
the Command Interface and will retain its informa-  
tion until it is re-configured, the device is reset, or  
the device goes into Reset/Power-Down mode.  
The Burst Configuration Register bits are de-  
scribed in Table 7. They specify the selection of  
the burst length, burst type, burst X and Y laten-  
cies and the Read operation. Refer to Figures 4  
and 5 for examples of synchronous burst configu-  
rations.  
Valid Clock Edge Bit (M6). The Valid Clock  
Edge bit, M6, is used to configure the active edge  
of the Clock, K, during Synchronous Burst Read  
operations. When the Valid Clock Edge bit is ’0’  
the falling edge of the Clock is the active edge;  
when the Valid Clock Edge bit is ’1’ the rising edge  
of the Clock is active.  
Read Select Bit (M15). The Read Select bit,  
M15, is used to switch between asynchronous and  
synchronous Bus Read operations. When the  
Read Select bit is set to ’1’, Bus Read operations  
are asynchronous; when the Read Select but is  
set to ’0’, Bus Read operations are synchronous.  
Wrap Burst Bit (M3). The burst reads can be  
confined inside the 4 or 8 Double-Word boundary  
(wrap) or overcome the boundary (no wrap). The  
Wrap Burst bit is used to select between wrap and  
no wrap. When the Wrap Burst bit is set to ‘0’ the  
burst read wraps; when it is set to ‘1’ the burst read  
does not wrap.  
On reset or power-up the Read Select bit is set  
to’1’ for asynchronous accesses.  
X-Latency Bits (M14-M11). The X-Latency bits  
are used during Synchronous Bus Read opera-  
tions to set the number of clock cycles between  
the address being latched and the first data be-  
coming available. For correct operation the X-La-  
tency bits can only assume the values in Table  
7., Burst Configuration Register. The X-Latency  
bits should also be selected in conjunction with Ta-  
ble 8., Burst Type Definition to ensure valid set-  
tings.  
Burst Length Bit (M2-M0). The Burst Length bits  
set the maximum number of Double-Words that  
can be output during a Synchronous Burst Read  
operation before the address wraps. Burst lengths  
of 4 or 8 are available for both the Sequential and  
Interleaved burst types, and a continuous burst is  
available for the Sequential type.  
Y-Latency Bit (M9). The Y-Latency bit is used  
during Synchronous Bus Read operations to set  
the number of clock cycles between consecutive  
reads. The Y-Latency value depends on both the  
X-Latency value and the setting in M9.  
Table 7., Burst Configuration Register gives the  
valid combinations of the Burst Length bits that the  
memory accepts; Table 8., Burst Type Definition,  
gives the sequence of addresses output from a  
given starting address for each length.  
When the Y-Latency is 1 the data changes each  
clock cycle; when the Y-Latency is 2 the data  
changes every second clock cycle. See Table  
7., Burst Configuration Register, and Table  
8., Burst Type Definition for valid combinations of  
the Y-Latency, the X-Latency and the Clock fre-  
quency.  
If either a Continuous or a No Wrap Burst Read  
has been initiated the device will output data syn-  
chronously. Depending on the starting address,  
the device activates the Valid Data Ready output  
to indicate that a delay is necessary before the  
data is output. If the starting address is aligned to  
an 8 Double Word boundary, the continuous burst  
mode will run without activating the Valid Data  
Ready output. If the starting address is not aligned  
to an 8 Double Word boundary, Valid Data Ready  
is activated to indicate that the device needs an in-  
ternal delay to read the successive words in the ar-  
ray.  
Valid Data Ready Bit (M8). The  
Valid  
Data  
Ready bit controls the timing of the Valid Data  
Ready output pin, R. When the Valid Data Ready  
bit is ’0’ the Valid Data Ready output pin is driven  
Low for the active clock edge when invalid data is  
output on the bus. When the Valid Data Ready bit  
is ’1’ the Valid Data Ready output pin is driven Low  
M10, M5 and M4 are reserved for future use.  
17/55  
M58BW016DT, M58BW016DB  
Table 7. Burst Configuration Register  
Bit  
Description  
Value  
Description  
0
1
Synchronous Burst Read  
M15  
M14  
Read Select  
Asynchronous Read (Default at power-on)  
Reserved  
Reserved  
001  
010  
(1)  
4, 4-1-1-1  
011  
100  
101  
110  
5, 5-1-1-1, 5-2-2-2  
6, 6-1-1-1, 6-2-2-2  
7, 7-1-1-1, 7-2-2-2  
8, 8-1-1-1, 8-2-2-2  
Reserved  
(2)  
M13-M11  
X-Latency  
M10  
M9  
0
1
0
1
0
1
0
1
One Burst Clock cycle  
Two Burst Clock cycles  
R valid Low during valid Burst Clock edge  
R valid Low one data cycle before valid Burst Clock edge  
Interleaved  
(3)  
Y-Latency  
M8  
M7  
Valid Data Ready  
Burst Type  
Sequential  
Falling Burst Clock edge  
Rising Burst Clock edge  
Reserved  
M6  
M5-M4  
M3  
Valid Clock Edge  
0
Wrap  
Wrapping  
1
No wrap  
001  
010  
111  
4 Double-Words  
M2-M0  
Burst Length  
8 Double-Words  
Continuous  
Note: 1. 4 - 2 - 2 - 2 is not allowed.  
2. X latencies can be calculated as: (t  
is the clock period).  
– t  
LLKH  
+ t  
) + t < (X -1) t (X is an integer number from 4 to 8 and t  
QVKH SYSTEM MARGIN K. K  
AVQV  
3. Y latencies can be calculated as: t  
+ t  
+ t < Y t  
QVKH K.  
KHQV  
SYSTEM MARGIN  
4. t  
is the time margin required for the calculation.  
SYSTEM MARGIN  
18/55  
M58BW016DT, M58BW016DB  
Table 8. Burst Type Definition  
Starting  
x4  
x4  
x8  
x8  
M 3 Addres  
Continuous  
Sequential Interleaved  
Sequential  
Interleaved  
s
0
1
2
3
4
5
6
7
8
0
1
2
3
0
0
0
0
0
0
0
0
0
1
1
1
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
0-1-2-3-4-5-6-7-8-9-10..  
1-2-3-4-5-6-7-8-9-10-11..  
2-3-4-5-6-7-8-9-10-11-12..  
3-4-5-6-7-8-9-10-11-12-13..  
4-5-6-7-8-9-10-11-2-13-14..  
5-6-7-8-9-10-11-12-13-14..  
6-7-8-9-10-11-12-13-14-15..  
7-8-9-10-11-12-13-14-15-16..  
8-9-10-11-12-13-14-15-16-17..  
0-1-2-3-4-5-6-7-8-9-10..  
1-0-3-2  
1-0-3-2-5-4-7-6  
2-3-0-1  
2-3-0-1-6-7-4-5  
3-2-1-0  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
1-2-3-4-5-6-7-8-9-10-11..  
2-3-4-5-6-7-8-9-10-11-12..  
3-4-5-6-7-8-9-10-11-12-13..  
4-5-6-7-8-9-10-  
11  
1
1
1
1
1
4
5
6
7
8
4-5-6-7  
5-6-7-8  
4-5-6-7-8-9-10-11-12-13-14..  
5-6-7-8-9-10-11-12-13-14..  
6-7-8-9-10-11-12-13-14-15..  
7-8-9-10-11-12-13-14-15-16..  
8-9-10-11-12-13-14-15-16-17..  
5-6-7-8-9-10-11-  
12  
6-7-8-9-10-11-  
12-13  
6-7-8-9  
7-8-9-10-11-12-  
13-14  
7-8-9-10  
8-9-10-11  
8-9-10-11-12-13-  
14-15  
19/55  
M58BW016DT, M58BW016DB  
Figure 4. Example Burst Configuration X-1-1-1  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
4-1-1-1  
5-1-1-1  
DQ  
VALID  
VALID  
VALID  
VALID  
DQ  
DQ  
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
6-1-1-1  
7-1-1-1  
8-1-1-1  
VALID  
VALID  
AI03841  
Figure 5. Example Burst Configuration X-2-2-2  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
5-2-2-2  
DQ  
DQ  
DQ  
NV  
VALID  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
NV  
6-2-2-2  
7-2-2-2  
8-2-2-2  
VALID  
NV=NOT VALID  
AI04406b  
20/55  
M58BW016DT, M58BW016DB  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. The Commands are summarized in Table  
9., Commands. Refer to Table 9. in conjunction  
with the text descriptions below.  
An interactive update of the Status Register bits is  
possible by toggling Output Enable or Output Dis-  
able. It is also possible during a Program or Erase  
operation, by disactivating the device with Chip  
Enable at VIH and then reactivating it with Chip En-  
able and Output Enable at VIL and Output Disable  
at VIH.  
Read Memory Array Command  
The content of the Status Register may also be  
read at the completion of a Program, Erase or  
Suspend operation. During a Block Erase or Pro-  
gram command, DQ7 indicates the Program/  
Erase Controller status. It is valid until the opera-  
tion is completed or suspended.  
See the section on the Status Register and Table  
11. for details on the definitions of the Status Reg-  
ister bits  
The Read Memory Array command returns the  
memory to Read mode. One Bus Write cycle is re-  
quired to issue the Read Memory Array command  
and return the memory to Read mode. Subse-  
quent read operations will output the addressed  
memory array data. Once the command is issued  
the memory remains in Read mode until another  
command is issued. From Read mode Bus Read  
commands will access the memory array.  
Clear Status Register Command  
Read Electronic Signature Command  
The Clear Status Register command can be used  
to reset bits 1, 3, 4 and 5 in the Status Register to  
‘0’. One Bus Write is required to issue the Clear  
Status Register command. Once the command is  
issued the memory returns to its previous mode,  
subsequent Bus Read operations continue to out-  
put the same data.  
The bits in the Status Register are sticky and do  
not automatically return to ‘0’ when a new Program  
or Erase command is issued. If any error occurs  
then it is essential to clear any error bits in the Sta-  
tus Register by issuing the Clear Status Register  
command before attempting a new Program,  
Erase or Resume command.  
The Read Electronic Signature command is used  
to read the Manufacturer Code, the Device Code  
or the Burst Configuration Register. One Bus Write  
cycle is required to issue the Read Electronic Sig-  
nature command. Once the command is issued  
subsequent Bus Read operations, depending on  
the address specified, read the Manufacturer  
Code, the Device Code or the Burst Configuration  
Register until another command is issued; see Ta-  
ble 5., Asynchronous Read Electronic Signature  
Operation.  
Read Query Command.  
The Read Query Command is used to read data  
from the Common Flash Interface (CFI) Memory  
Area. One Bus Write cycle is required to issue the  
Read Query Command. Once the command is is-  
sued subsequent Bus Read operations, depend-  
ing on the address specified, read from the  
Common Flash Interface Memory Area. See AP-  
PENDIX A., Tables 24, 25, 26, 27 and 28 for de-  
tails on the information contained in the Common  
Flash Interface (CFI) memory area.  
Block Erase Command  
The Block Erase command can be used to erase  
a block. It sets all of the bits in the block to ‘1’. All  
previous data in the block is lost. If the block is pro-  
tected then the Erase operation will abort, the data  
in the block will not be changed and the Status  
Register will output the error.  
Two Bus Write operations are required to issue the  
command; the first write cycle sets up the Block  
Erase command, the second write cycle confirms  
the Block erase command and latches the block  
address in the internal state machine and starts  
the Program/Erase Controller. The sequence is  
aborted if the Confirm command is not given and  
the device will output the Status Register Data with  
bits 4 and 5 set to '1'.  
Read Status Register Command  
The Read Status Register command is used to  
read the Status Register. One Bus Write cycle is  
required to issue the Read Status Register com-  
mand. Once the command is issued subsequent  
Bus Read operations read the Status Register un-  
til another command is issued.  
The Status Register information is present on the  
output data bus (DQ1-DQ7) when Chip Enable E  
and Output Enable G are at VIL and Output Dis-  
able is at VIH.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
definitions of the Status Register bits. During the  
Erase operation the memory will only accept the  
Read Status Register command and the Program/  
21/55  
M58BW016DT, M58BW016DB  
Erase Suspend command. All other commands  
will be ignored.  
The command can be executed using either VDD  
(for a normal erase operation) or VPP (for a fast  
erase operation). If VPP is in the VPPH range when  
the command is issued then a fast erase operation  
will be executed, otherwise the operation will use  
mand will only be accepted during a Program or  
Erase operation. It can be issued at any time dur-  
ing a program or erase operation. The command  
is ignored if the device is already in suspend  
mode.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Suspend command and pause the  
Program/Erase Controller. Once the command is  
issued it is necessary to poll the Program/Erase  
Controller Status bit (bit 7) to find out when the  
Program/Erase Controller has paused; no other  
commands will be accepted until the Program/  
Erase Controller has paused. After the Program/  
Erase Controller has paused, the memory will con-  
tinue to output the Status Register until another  
command is issued.  
V
DD. If VPP goes below the VPP Lockout Voltage,  
VPPLK, during a fast erase the operation aborts,  
the Status Register VPP Status bit is set to ‘1’ and  
the command must be re-issued.  
Typical Erase times are given in Table 10..  
See APPENDIX B., Figure 21., Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Erase command.  
During the polling period between issuing the Pro-  
gram/Erase Suspend command and the Program/  
Erase Controller pausing it is possible for the op-  
eration to complete. Once the Program/Erase  
Controller Status bit (bit 7) indicates that the Pro-  
gram/Erase Controller is no longer active, the Pro-  
gram Suspend Status bit (bit 2) or the Erase  
Suspend Status bit (bit 6) can be used to deter-  
mine if the operation has completed or is suspend-  
ed. For timing on the delay between issuing the  
Program/Erase Suspend command and the Pro-  
gram/Erase Controller pausing see Table 10..  
Program Command.  
The Program command is used to program the  
memory array. Two Bus Write operations are re-  
quired to issue the command; the first write cycle  
sets up the Program command, the second write  
cycle latches the address and data to be pro-  
grammed in the internal state machine and starts  
the Program/Erase Controller. A program opera-  
tion can be aborted by writing FFFFFFFFh to any  
address after the program set-up command has  
been given.  
During Program/Erase Suspend the Read Memo-  
ry Array, Read Status Register, Read Electronic  
Signature, Read Query and Program/Erase Re-  
sume commands will be accepted by the Com-  
mand Interface. Additionally, if the suspended  
operation was Erase then the Program and the  
Program Suspend commands will also be accept-  
ed. When a program operation is completed inside  
a Block Erase Suspend the Read Memory Array  
command must be issued to reset the device in  
Read mode, then the Erase Resume command  
can be issued to complete the whole sequence.  
Only the blocks not being erased may be read or  
programmed correctly.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
definitions of the Status Register bits. During the  
Program operation the memory will only accept  
the Read Status Register command and the Pro-  
gram/Erase Suspend command. All other com-  
mands will be ignored.  
If Reset/Power-down, RP, falls to VIL during pro-  
gramming the operation will be aborted.  
The command can be executed using either VDD  
(for a normal program operation) or VPP (for a fast  
program operation). If VPP is in the VPPH range  
when the command is issued then a fast program  
operation will be executed, otherwise the opera-  
tion will use VDD. If VPP goes below the VPP Lock-  
out Voltage, VPPLK, during a fast program the  
operation aborts and the Status Register VPP Sta-  
tus bit is set to ‘1’. As data integrity cannot be guar-  
anteed when the program operation is aborted, the  
memory block must be erased and repro-  
grammed.  
See APPENDIX B., Figure 20., Program Suspend  
& Resume Flowchart and Pseudo Code, and Fig-  
ure 22., Erase Suspend & Resume Flowchart and  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Suspend command.  
Program/Erase Resume Command  
The Program/Erase Resume command can be  
used to restart the Program/Erase Controller after  
a Program/Erase Suspend operation has paused  
it. One Bus Write cycle is required to issue the Pro-  
gram/Erase Resume command.  
See APPENDIX B., Figure 20., Program Suspend  
& Resume Flowchart and Pseudo Code, and Fig-  
ure 22., Erase Suspend & Resume Flowchart and  
See APPENDIX B., Figure 19., Program Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Program command.  
Program/Erase Suspend Command  
The Program/Erase Suspend command is used to  
pause a Program or Erase operation. The com-  
22/55  
M58BW016DT, M58BW016DB  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Resume command.  
Two Bus Write cycles are required to issue the Set  
Burst Configuration Register command. The first  
cycle writes the setup command and the address  
corresponding to the Set Burst Configuration Reg-  
ister content. The second cycle writes the Burst  
Configuration Register data and the confirm com-  
mand. Once the command is issued the memory  
returns to Read mode as if a Read Memory Array  
command had been issued.  
Set Burst Configuration Register Command.  
The Set Burst Configuration Register command is  
used to write a new value to the Burst Configura-  
tion Control Register which defines the burst  
length, type, X and Y latencies, Synchronous/  
Asynchronous Read mode and the valid Clock  
edge configuration.  
The value for the Burst Configuration Register is  
always presented on A0-A15. M0 is on A0, M1 on  
A1, etc.; the other address bits are ignored.  
Table 9. Commands  
Bus Operations  
Command  
1st Cycle  
2nd Cycle  
Addr. Data Op. Addr. Data Op. Addr. Data  
FFh Read RA RD  
3rd Cycle  
4th Cycle  
Op. Addr. Data Op.  
Read Memory Array  
2 Write  
2 Write  
X
X
Read Electronic Signature  
(Manufacturer Code)  
90h Read 00000h 20h  
90h Read 00001h IDh  
Read Electronic Signature  
(Device Code)  
2 Write  
2 Write  
X
X
Read Electronic Signature  
(Burst Configuration  
Register)  
90h Read 00005h BCRh  
Read Status Register  
Read Query  
2
Write  
X
X
X
X
70h Read  
X
SRDh  
QDh  
2 Write  
98h Read QAh  
Clear Status Register  
Block Erase  
1
2
Write  
Write  
50h  
20h Write BAh  
D0h  
PD  
40h  
Program  
2
Write  
X
Write  
PA  
10h  
B0h  
D0h  
Program/Erase Suspend  
Program/Erase Resume  
1
1
Write  
Write  
X
X
Set Burst Configuration  
Register  
2
Write  
X
60h Write BCRh 03h  
Note: 1. X Don’t Care; RA Read Address, RD Read Data, ID Device Code, SRD Status Register Data, PA Program Address; PD Program  
Data, QA Query Address, QD Query Data, BA Any address in the Block, BCR Burst Configuration Register value.  
23/55  
M58BW016DT, M58BW016DB  
Table 10. Program, Erase Times and Program Erase Endurance Cycles  
M58BW016D  
Parameters  
Unit  
Min  
Typ  
Max  
V
= V  
V
PP  
= 12V  
V
PP  
= V  
V
= 12V  
PP  
PP  
DD  
DD  
Parameter Block (64Kb) Program  
Main Block (512Kb) Program  
Parameter Block Erase  
0.030  
0.23  
0.8  
0.016  
0.060  
0.46  
1.8  
0.032  
s
0.13  
0.64  
0.9  
0.26  
1.5  
s
s
Main Block Erase  
1.5  
3
1.8  
s
Program Suspend Latency Time  
Erase Suspend Latency Time  
Program/Erase Cycles (per Block)  
3
10  
30  
µs  
10  
µs  
100,000  
cycles  
Note: T = –40 to 125°C, V = 2.7V to 3.6V, V  
= 2.4V to V  
DD  
A
DD  
DDQ  
24/55  
M58BW016DT, M58BW016DB  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program or Erase operation.  
The various bits in the Status Register convey in-  
formation and errors on the operation. They are  
output on DQ7-DQ0.  
To read the Status Register the Read Status Reg-  
ister command can be issued. The Status Register  
is automatically read after Program, Erase or Pro-  
gram/Erase Resume commands. The Status Reg-  
ister can be read from any address.  
The contents of the Status Register can be updat-  
ed during an erase or program operation by tog-  
gling the Output Enable or Output Disable pins or  
by dis-activating (Chip Enable, VIH) and then reac-  
tivating (Chip Enable and Output Enable, VIL, and  
Output Disable, VIH.) the device.  
The Status Register bits are summarized in Table  
11., Status Register Bits. Refer to Table 11. in  
conjunction with the following text descriptions.  
pleted its operation; when the bit is set to ‘1’, a Pro-  
gram/Erase Suspend command has been issued  
and the memory is waiting for a Program/Erase  
Resume command.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns to ‘0’.  
Erase Status (Bit 5)  
The Erase Status bit can be used to identify if the  
memory has failed to verify that the block has  
erased correctly. The Erase Status bit should be  
read once the Program/Erase Controller Status bit  
is High (Program/Erase Controller inactive).  
When the Erase Status bit is set to ‘0’, the memory  
has successfully verified that the block has erased  
correctly. When the Erase Status bit is set to ‘1’,  
the Program/Erase Controller has applied the  
maximum number of pulses to the block and still  
failed to verify that the block has erased correctly.  
Once set to ‘1’, the Erase Status bit can only be re-  
set to ‘0’ by a Clear Status Register command or a  
hardware reset. If set to ‘1’ it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program/Erase Controller Status (Bit 7)  
The Program/Erase Controller Status bit indicates  
whether the Program/Erase Controller is active or  
inactive. When the Program/Erase Controller Sta-  
tus bit is set to ‘0’, the Program/Erase Controller is  
active; when bit7 is set to ‘1’, the Program/Erase  
Controller is inactive.  
The Program/Erase Controller Status is set to ‘0’  
immediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is set to ‘1’.  
During Program and Erase operations the Pro-  
gram/Erase Controller Status bit can be polled to  
find the end of the operation. The other bits in the  
Status Register should not be tested until the Pro-  
gram/Erase Controller completes the operation  
and the bit is set to ‘1’.  
After the Program/Erase Controller completes its  
operation the Erase Status (bit5), Program Status  
bits should be tested for errors.  
Program Status Status (Bit 4)  
The Program Status Status bit is used to identify a  
Program failure. Bit4 should be read once the Pro-  
gram/Erase Controller Status bit is High (Program/  
Erase Controller inactive).  
When bit4 is set to ‘0’ the memory has successful-  
ly verified that the device has programmed cor-  
rectly. When bit4 is set to ‘1’ the device has failed  
to verify that the data has been programmed cor-  
rectly.  
Once set to 1’, the Program Status bit can only be  
reset to ‘0’ by a Clear Status Register command or  
a hardware reset. If set to ‘1’ it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
VPP Status (Bit 3)  
Erase Suspend Status (Bit 6)  
The VPP Status bit can be used to identify an in-  
valid voltage on the VPP pin during fast program  
and erase operations. The VPP pin is only sampled  
at the beginning of a program or erase operation.  
Indeterminate results can occur if VPP becomes in-  
valid during a fast Program or Erase operation.  
The Erase Suspend Status bit indicates that an  
Erase operation has been suspended and is wait-  
ing to be resumed. The Erase Suspend Status  
should only be considered valid when the Pro-  
gram/Erase Controller Status bit is set to ‘1’ (Pro-  
gram/Erase Controller inactive); after a Program/  
Erase Suspend command is issued the memory  
may still complete the operation rather than enter-  
ing the Suspend mode.  
When the VPP Status bit is set to ‘0’, the voltage on  
the VPP pin was sampled at a valid voltage; when  
the VPP Status bit is set to ‘1’, the VPP pin has a  
voltage that is below the VPP Lockout Voltage, VP-  
When the Erase Suspend Status bit is set to ‘0’,  
the Program/Erase Controller is active or has com-  
.
PLK  
25/55  
M58BW016DT, M58BW016DB  
Once set to ‘1’, the VPP Status bit can only be reset  
to ‘0’ by a Clear Status Register command or a  
hardware reset. If set to ‘1’ it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns to  
‘0’.  
Block Protection Status (Bit 1)  
The Block Protection Status bit can be used to  
identify if a Program or Erase operation has tried  
to modify the contents of a protected block.  
When the Block Protection Status bit is set to ‘0’,  
no Program or Erase operations have been at-  
tempted to protected blocks since the last Clear  
Status Register command or hardware reset;  
when the Block Protection Status bit is set to ‘1’, a  
Program or Erase operation has been attempted  
on a protected block.  
Once set to ‘1’, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set to ‘1’ it should be  
reset before a new Program or Erase command is  
issued, otherwise the new command will appear to  
fail.  
Program Suspend Status (Bit 2)  
The Program Suspend Status bit indicates that a  
Program operation has been suspended and is  
waiting to be resumed. The Program Suspend  
Status should only be considered valid when the  
Program/Erase Controller Status bit is set to ‘1’  
(Program/Erase Controller inactive); after a Pro-  
gram/Erase Suspend command is issued the  
memory may still complete the operation rather  
than entering the Suspend mode.  
When the Program Suspend Status bit is set to ‘0’,  
the Program/Erase Controller is active or has com-  
pleted its operation; when the bit is set to ‘1’, a Pro-  
gram/Erase Suspend command has been issued  
and the memory is waiting for a Program/Erase  
Resume command.  
All others bits are reserved.  
Table 11. Status Register Bits  
Bit  
Name  
Logic Level  
Definition  
7
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
Ready  
Program/Erase Controller Status  
Busy  
6
5
4
3
Suspended  
Erase Suspend Status  
Erase Status  
In Progress or Completed  
Erase Error  
Erase Success  
Program Error  
Program Status,  
Program Success  
V
V
Invalid, Abort  
OK  
PP  
V
Status  
PP  
PP  
2
Suspended  
Program Suspend Status  
In Progress or Completed  
Program/Erase on Protected Block,  
Abort  
’1’  
’0’  
Erase/Program in a Protected  
Block  
1
No Operations to Protected Sectors  
Other Bits reserved  
26/55  
M58BW016DT, M58BW016DB  
MAXIMUM RATING  
Stressing the device above the ratings listed in Ta-  
ble 12., Absolute Maximum Ratings, may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 12. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
–40  
–55  
Max  
125  
155  
(2)  
T
Temperature Under Bias  
°C  
°C  
°C  
BIAS  
T
Storage Temperature  
STG  
T
Lead Temperature During Soldering  
LEAD  
V
+0.6  
+0.6  
DDQ  
V
Input or Output Voltage  
–0.6  
V
IO  
V
DDQIN  
V
, V  
V
Supply Voltage  
–0.6  
–0.6  
4.2  
V
V
DD  
DDQ, DDQIN  
(1)  
V
PP  
Program Voltage  
13.5  
Note: 1. Cumulative time at a high voltage level of 13.5V should not exceed 80 hours on V pin.  
PP  
2. This parameter has been characterized for PQFP80 package only. It is compliant with the JEDEC Std J-STD-020B (for small body,  
Sn-Pb or Pb assembly), the ST ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Sub-  
stances (RoHS) 2002/95/EU.  
27/55  
M58BW016DT, M58BW016DB  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment  
Conditions  
summarized  
in  
Table  
13., Operating and AC Measurement Conditions.  
Designers should check that the operating condi-  
tions in their circuit match the measurement condi-  
tions when relying on the quoted parameters.  
Table 13. Operating and AC Measurement Conditions  
Parameter  
Value  
Units  
Min  
2.7  
Max  
Supply Voltage (V  
)
3.6  
V
V
DD  
Input/Output Supply Voltage (V  
)
V
2.4  
DDQ  
DD  
Grade 6  
Grade 3  
–40  
–40  
90  
°C  
°C  
pF  
ns  
ns  
V
Ambient Temperature (T )  
A
125  
Load Capacitance (C )  
60  
L
Clock Rise and Fall Times  
Input Rise and Fall Times  
Input Pulses Voltages  
4
4
0 to V  
DDQ  
V
DDQ  
/2  
Input and Output Timing Ref. Voltages  
V
Figure 6. AC Measurement Input Output  
Waveform  
Figure 7. AC Measurement Load Circuit  
1.3V  
V
DDQ  
V
1N914  
DDQIN  
V
/2  
/2  
DDQ  
V
DDQIN  
0V  
3.3kΩ  
AI04153  
DEVICE  
UNDER  
TEST  
OUT  
Note: V = V  
.
DD  
DDQ  
C
L
C
includes JIG capacitance  
L
AI04154  
Table 14. Device Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Typ  
6
Max  
8
Unit  
pF  
C
V
= 0V  
= 0V  
IN  
IN  
C
V
OUT  
8
12  
pF  
OUT  
Note: 1. T = 25°C, f = 1 MHz  
A
2. Sampled only, not 100% tested.  
28/55  
M58BW016DT, M58BW016DB  
Table 15. DC Characteristics  
Symbol  
Parameter  
Input Leakage Current  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
0VV V  
LI  
IN  
DDQ  
I
0VV  
V  
Output Leakage Current  
Supply Current (Random Read)  
±5  
µA  
LO  
OUT DDQ  
I
E = V , G = V , f  
= 6MHz  
20  
mA  
DD  
IL  
IH add  
E = V , G = V , f  
=
IL  
IH clock  
I
Supply Current (Burst Read)  
Supply Current (Standby)  
30  
60  
60  
60  
30  
mA  
µA  
µA  
µA  
mA  
DDB  
56MHz  
E = RP = V ± 0.2V  
DD  
I
DD1  
E = V ± 0.2V,  
SS  
Supply Current (Auto Low-Power)  
Supply Current (Reset/Power-down)  
RP = V ± 0.2V  
DD  
I
I
RP = V ± 0.2V  
DD2  
SS  
Supply Current (Program or Erase,  
Set Lock Bit, Erase Lock Bit)  
Program, Block Erase in  
progress  
DD3  
Supply Current  
(Erase/Program Suspend)  
I
E = V  
40  
µA  
DD4  
IH  
I
V
V
V  
V  
Program Current (Read or Standby)  
Program Current (Read or Standby)  
Program Current (Power-down)  
± 30  
± 30  
± 5  
µA  
µA  
µA  
µA  
mA  
µA  
mA  
V
PP  
PP  
PP  
PP1  
I
PP1  
PP2  
PP1  
I
I
RP = V  
IL  
Program Current (Program)  
Program in Progress  
V
PP  
= V  
= V  
= V  
= V  
200  
20  
PP1  
PPH  
PP1  
PPH  
PP3  
V
PP  
V
V
200  
20  
PP  
Program Current (Erase)  
Erase in Progress  
I
PP4  
PP  
V
V
0.2V  
DDQIN  
Input Low Voltage  
–0.5  
IL  
0.8V  
V +0.3  
DDQ  
Input High Voltage (for DQ lines)  
V
IH  
IH  
DDQIN  
DDQIN  
Input High Voltage (for Input only  
lines)  
V
V
0.8V  
3.6  
V
I
OL  
= 100µA  
Output Low Voltage  
0.1  
V
V
OL  
V
I
= –100µA  
V
–0.1  
Output High Voltage CMOS  
OH  
OH  
DDQ  
Program Voltage  
(Program or Erase operations)  
V
2.7  
11.4  
3.6  
12.6  
2.2  
V
V
V
V
PP1  
PPH  
LKO  
Program Voltage  
(Program or Erase operations)  
V
V
V
Supply Voltage (Erase and  
DD  
Program lockout)  
V
Supply Voltage (Erase and  
PP  
V
11.4  
PPLK  
Program lockout)  
29/55  
M58BW016DT, M58BW016DB  
Figure 8. Asynchronous Bus Read AC Waveforms  
tAVAV  
A0-A18  
VALID  
tAVQV  
tLLEL  
tEHLX  
L
tELQX  
tELQV  
tAXQX  
E
tGLQX  
tGLQV  
tEHQX  
tEHQZ  
G
GD  
tGHQX  
tGHQZ  
DQ0-DQ31  
OUTPUT  
See also Page Read  
AI04407C  
Table 16. Asynchronous Bus Read AC Characteristics.  
M58BW016D  
Symbol  
Parameter  
Test Condition  
Unit  
70  
70  
70  
0
80  
t
E = V , G = V  
IL  
Address Valid to Address Valid  
Min  
Max  
Min  
Min  
Min  
Max  
Max  
80  
80  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
IL  
IL  
IL  
t
E = V , G = V  
Address Valid to Output Valid  
AVQV  
IL  
t
E = V , G = V  
Address Transition to Output Transition  
Chip Enable High to Latch Enable Transition  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
AXQX  
IL  
t
0
0
EHLX  
t
G = V  
0
0
EHQX  
IL  
t
G = V  
20  
20  
80  
EHQZ  
IL  
(1)  
G = V  
70  
t
IL  
ELQV  
t
G = V  
Chip Enable Low to Output Transition  
Output Enable High to Output Transition  
Output Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable to Output Transition  
Latch Enable Low to Chip Enable Low  
Min  
Min  
Max  
Max  
Min  
Min  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ELQX  
IL  
t
E = V  
GHQX  
IL  
t
E = V  
15  
25  
0
15  
25  
0
GHQZ  
IL  
t
E = V  
GLQV  
IL  
t
E = V  
GLQX  
IL  
t
0
0
LLEL  
Note: 1. Output Enable G may be delayed up to t  
- t  
after the falling edge of Chip Enable E without increasing t  
.
ELQV GLQV  
ELQV  
30/55  
M58BW016DT, M58BW016DB  
Figure 9. Asynchronous Latch Controlled Bus Read AC Waveforms  
A0-A18  
VALID  
tAVLL  
tLHAX  
L
tLHLL  
tLLLH  
tELLL  
tEHLX  
E
tEHQX  
tEHQZ  
tGLQX  
tGLQV  
G
tLLQX  
tLLQV  
tGHQX  
GHQZ  
DQ0-DQ31  
OUTPUT  
See also Page Read  
AI03645  
Table 17. Asynchronous Latch Controlled Bus Read AC Characteristics  
M58BW016D  
70 80  
Symbol  
Parameter  
Test Condition  
E = V  
Unit  
t
Address Valid to Latch Enable Low  
Chip Enable High to Latch Enable Transition  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
IL  
t
0
0
0
0
EHLX  
t
G = V  
G = V  
EHQX  
IL  
IL  
t
20  
0
20  
0
EHQZ  
t
Chip Enable Low to Latch Enable Low  
Output Enable High to Output Transition  
Output Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
Latch Enable High to Address Transition  
Latch Enable High to Latch Enable Low  
Latch Enable Low to Latch Enable High  
Latch Enable Low to Output Valid  
ELLL  
t
E = V  
0
0
GHQX  
IL  
IL  
IL  
IL  
IL  
t
E = V  
E = V  
E = V  
E = V  
15  
25  
0
15  
25  
0
GHQZ  
t
GLQV  
t
GLQX  
t
5
5
LHAX  
t
10  
10  
70  
0
10  
10  
80  
0
LHLL  
t
E = V  
LLLH  
IL  
t
E = V , G = V  
LLQV  
IL  
IL  
IL  
t
E = V , G = V  
Latch Enable Low to Output Transition  
LLQX  
IL  
31/55  
M58BW016DT, M58BW016DB  
Figure 10. Asynchronous Page Read AC Waveforms  
A0-A1  
A0 and/or A1  
tAVQV1  
tAXQX  
OUTPUT + 1  
OUTPUT  
DQ0-DQ31  
AI03646  
Table 18. Asynchronous Page Read AC Characteristics  
M58BW016D  
Symbol  
Parameter  
Test Condition  
Unit  
70  
25  
6
80  
t
E = V , G = V  
Address Valid to Output Valid  
Max  
Min  
25  
6
ns  
ns  
AVQV1  
IL  
IL  
t
E = V , G = V  
Address Transition to Output Transition  
AXQX  
IL  
IL  
Note: For other timings see Table 16., Asynchronous Bus Read AC Characteristics..  
32/55  
M58BW016DT, M58BW016DB  
Figure 11. Asynchronous Write AC Waveform  
33/55  
M58BW016DT, M58BW016DB  
Figure 12. Asynchronous Latch Controlled Write AC Waveform  
34/55  
M58BW016DT, M58BW016DB  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics  
M58BW016D  
Symbol  
Parameter  
Test Condition  
Min  
Unit  
70  
0
80  
0
t
Address Valid to Latch Enable Low  
Address Valid to Write Enable High  
Data Input Valid to Write Enable High  
Chip Enable Low to Latch Enable Low  
Chip Enable Low to Write Enable Low  
Latch Enable High to Address Transition  
Latch Enable Low to Latch Enable High  
latch Enable Low to Write Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
t
E = V  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
50  
50  
0
50  
50  
0
AVWH  
IL  
IL  
t
E = V  
DVWH  
t
ELLL  
t
0
0
ELWL  
t
5
5
LHAX  
t
10  
50  
0
10  
50  
0
LLLH  
t
E = V  
LLWH  
IL  
t
Output Valid to V Low  
QVVPL  
PP  
t
V
PP  
High to Write Enable High  
0
0
VPHWH  
t
E = V  
E = V  
Write Enable High to Address Transition  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Write Enable High to Output Valid  
0
0
WHAX  
IL  
t
0
0
WHDX  
IL  
t
0
0
WHEH  
t
150  
175  
20  
60  
0
150  
175  
20  
60  
0
WHGL  
t
WHQV  
t
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Output Valid to Reset/Power-down Low  
WHWL  
t
E = V  
WLWH  
IL  
t
QVPL  
35/55  
M58BW016DT, M58BW016DB  
Figure 13. Synchronous Burst Read (Data Valid from ’n’ Clock Rising Edge)  
36/55  
M58BW016DT, M58BW016DB  
Table 20. Synchronous Burst Read AC Characteristics  
M58BW016D  
Symbol  
Parameter  
Test Condition  
E = V  
Unit  
70  
80  
t
Address Valid to Latch Enable Low  
Min  
Min  
0
0
ns  
ns  
AVLL  
IL  
E = V , G = V ,  
IL  
IL  
t
Burst Address Advance High to Valid Clock Edge  
8
8
8
8
BHKH  
L = V  
IH  
E = V , G = V ,  
IL  
IL  
t
Burst Address Advance Low to Valid Clock Edge  
Min  
ns  
BLKH  
L = V  
IH  
t
Chip Enable Low to Latch Enable low  
Output Enable Low to Output Valid  
Min  
Min  
Min  
Min  
Min  
0
25  
5
0
25  
5
ns  
ns  
ns  
ns  
ns  
ELLL  
t
E = V , L = V  
GLQV  
IL  
IH  
t
E = V  
Valid Clock Edge to Address Transition  
Valid Clock Edge to Latch Enable Low  
Valid Clock Edge to Latch Enable Transition  
KHAX  
IL  
t
E = V  
0
0
KHLL  
IL  
t
E = V  
0
0
KHLX  
IL  
E = V , G = V ,  
IL  
IL  
t
Valid Clock Edge to Output Transition  
Latch Enable Low to Valid Clock Edge  
Output Valid to Valid Clock Edge  
Min  
Min  
Min  
3
6
6
3
6
6
ns  
ns  
ns  
KHQX  
L = V  
IH  
t
E = V  
IL  
LLKH  
E = V , G = V ,  
IL  
IL  
(1)  
t
QVKH  
L = V  
IH  
E = V , G = V ,  
IL  
IL  
t
Valid Data Ready Low to Valid Clock Edge  
Valid Clock Edge to Output Valid  
Min  
6
6
ns  
ns  
RLKH  
L = V  
IH  
E = V , G = V ,  
IL  
IL  
t
Max  
11  
11  
KHQV  
L = V  
IH  
Note: 1. Data output should be read on the valid clock edge.  
2. For other timings see Table 16., Asynchronous Bus Read AC Characteristics..  
Figure 14. Synchronous Burst Read (Data Valid from ’n’ Clock Rising Edge)  
n
n+1  
n+2  
n+3  
n+4  
n+5  
K
tKHQV  
tQVKH  
DQ0-DQ31  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
tKHQX  
SETUP  
Burst Read  
Q0 to Q3  
Note: n depends on Burst X-Latency  
AI04408b  
Note: For set up signals and timings see Synchronous Burst Read.  
37/55  
M58BW016DT, M58BW016DB  
Figure 15. Synchronous Burst Read - Continuous - Valid Data Ready Output  
K
(1)  
Output  
R
V
V
V
V
V
tRLKH  
(2)  
AI03649  
Note: Valid Data Ready = Valid Low during valid clock edge  
1. V= Valid output.  
2. R is an open drain output with an internal pull up resistor of 1MΩ. The internal timing of R follows DQ. An external resistor, typically  
300kΩ. for a single memory on the R bus, should be used to give the data valid set up time required to recognize that valid data is  
available on the next valid clock edge.  
Figure 16. Synchronous Burst Read - Burst Address Advance  
K
ADD  
VALID  
L
ADD  
G
Q0  
Q1  
Q2  
tGLQV  
tBLKH  
tBHKH  
B
AI03650  
38/55  
M58BW016DT, M58BW016DB  
Figure 17. Reset, Power-Down and Power-up AC Waveform  
W, E, G  
tPHWL  
tPHEL  
tPHGL  
tPLRH  
R
tPHWL  
tPHEL  
tPHGL  
RP  
tVDHPH  
tPLPH  
Reset  
VDD, VDDQ  
Power-Up  
AI03849b  
Table 21. Reset, Power-Down and Power-up AC Characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
t
Reset/Power-down High to Chip Enable Low  
50  
ns  
PHEL  
(1)  
Reset/Power-down High to Output Valid  
130  
ns  
ns  
ns  
ns  
µs  
µs  
t
PHQV  
t
Reset/Power-down High to Write Enable Low  
Reset/Power-down High to Output Enable Low  
Reset/Power-down Low to Reset/Power-down High  
Reset/Power-down Low to Valid Data Ready High  
Supply Voltages High to Reset/Power-down High  
50  
50  
100  
2
PHWL  
t
PHGL  
t
PLPH  
PLRH  
t
30  
t
10  
VDHPH  
Note: 1. This time is t  
+ t  
or t  
+ t  
ELQV  
.
PHEL  
AVQV  
PHEL  
39/55  
M58BW016DT, M58BW016DB  
PACKAGE MECHANICAL  
Figure 18. PQFP80 - 80 lead Plastic Quad Flat Pack, Package Outline  
Ne  
A2  
N
1
e
b
Nd  
D2 D1  
D
E2  
E1  
E
A
c
CP  
L1  
A1  
α
L
QFP-B  
Note: Drawing is not to scale.  
Table 22. PQFP80 - 80 lead Plastic Quad Flat Pack, Package Mechanical Data  
millimeters  
Min  
inches  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
3.400  
0.1339  
0.250  
2.550  
0.300  
0.130  
22.950  
19.900  
0.0098  
0.1004  
0.0118  
0.0051  
0.9035  
0.7835  
2.800  
3.050  
0.450  
0.230  
23.450  
20.100  
0.1102  
0.1201  
0.0177  
0.0091  
0.9232  
0.7913  
c
D
23.200  
20.000  
18.400  
0.800  
0.9134  
0.7874  
0.7244  
0.0315  
0.6772  
0.5512  
0.4724  
0.0315  
0.0630  
D1  
D2  
e
E
17.200  
14.000  
12.000  
0.800  
16.950  
13.900  
17.450  
14.100  
0.6673  
0.5472  
0.6870  
0.5551  
E1  
E2  
L
0.650  
0.950  
0.0256  
0.0374  
L1  
α
1.600  
0°  
7°  
0°  
7°  
N
80  
80  
Nd  
Ne  
24  
24  
16  
16  
40/55  
M58BW016DT, M58BW016DB  
PART NUMBERING  
Table 23. Ordering Information Scheme  
Example:  
M58BW016D  
T
80  
T
3
F
T
Device Type  
M58  
Architecture  
B = Burst Mode  
Operating Voltage  
W = V = 2.7V to 3.6V; V  
= V  
=2.4 to V  
DDQIN DD  
DD  
DDQ  
Device Function  
016D = 16 Mbit (x32), Boot Block, Burst  
Array Matrix  
T = Top Boot  
B = Bottom Boot  
Speed  
70 = 70ns  
80 = 80ns  
Package  
T = PQFP80  
Temperature Range  
3 = –40 to 125 °C  
Version  
F = Silicon Version F  
Option  
T = Tape & Reel Packing  
F = Lead-free and RoHS Package, Tape & Reel Packing  
Note: Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
41/55  
M58BW016DT, M58BW016DB  
APPENDIX A. COMMON FLASH INTERFACE - CFI  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the CFI Query Command (RCFI) is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 24, 25,  
26, 27 and 28 show the addresses used to retrieve  
the data.  
Table 24. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Manufacturer Code  
01h  
Device Code  
10h  
CFI Query Identification String  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash memory layout  
1Bh  
27h  
System Interface Information  
Device Geometry Definition  
Additional information specific to the Primary  
Algorithm (optional)  
(1)  
Primary Algorithm-specific Extended Query Table  
Alternate Algorithm-specific Extended Query Table  
P(h)  
Additional information specific to the Alternate  
Algorithm (optional)  
(2)  
A(h)  
Note: 1. Offset 15h defines P which points to the Primary Algorithm Extended Query Address Table.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
Table 25. CFI - Query Address and Data Output  
Data  
Instruction  
Address A0-A18  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
51h  
52h  
59h  
"Q"  
"R"  
"Y"  
51h; "Q"  
Query ASCII String 52h; "R"  
59h; "Y"  
03h  
00h  
35h  
00h  
00h  
00h  
00h  
00h  
Primary Vendor:  
Command Set and Control Interface ID Code  
Primary algorithm extended Query Address Table: P(h)  
Alternate Vendor:  
Command Set and Control Interface ID Code  
Alternate Algorithm Extended Query address Table  
Note: 1. The x8 or Byte Address and the x16 or Word Address mode are not available.  
2. Query Data are always presented on DQ7-DQ0. DQ31-DQ8 are set to '0'.  
42/55  
M58BW016DT, M58BW016DB  
Table 26. CFI - Device Voltage and Timing Specification  
Data  
Description  
Address A0-A18  
(1)  
V
V
V
V
min, 2.7V  
max, 3.6V  
min  
1Bh  
1Ch  
1Dh  
1Eh  
DD  
DD  
PP  
PP  
27h  
36h  
B4h  
C6h  
00h  
00h  
(1)  
(2)  
(2)  
(3)  
(3)  
max  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
2 ms typical time-out for Word, DWord prog – Not Available  
n
2 ms, typical time-out for max buffer write – Not Available  
n
0Ah  
2 ms, typical time-out for Erase Block  
(3)  
(3)  
n
00h  
00h  
2 ms, typical time-out for chip erase – Not Available  
n
2 x typical for Word Dword time-out max – Not Available  
n
00h  
04h  
2 x typical for buffer write time-out max – Not Available  
n
2 x typical for individual block erase time-out maximum  
(3)  
n
00h  
2 x typical for chip erase max time-out – Not Available  
Note: 1. Bits are coded in Binary Code Decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.  
2. Bit7 to bit4 are coded in Hexadecimal and scaled in Volts while bit3 to bit0 are in Binary Code Decimal and scaled in 100mV.  
3. Not supported.  
Table 27. Device Geometry Definition  
Data  
Description  
Address A0-A18  
n
27h  
15h  
2 number of bytes memory size  
Device Interface Sync./Async.  
Organization Sync./Async.  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
03h  
00h  
00h  
00h  
02h  
1Eh  
00h  
00h  
01h  
07h  
00h  
20h  
00h  
n
Page size in bytes, 2  
Bit7-0 = number of Erase Block Regions in device  
Number (n-1) of blocks of identical size; n=31  
Erase Block region information x 256 bytes per  
Erase Block (64Kbytes)  
Number (n-1) of blocks of identical size; n=8  
Erase Block region information x 256 bytes per  
Erase Block (8Kbytes)  
43/55  
M58BW016DT, M58BW016DB  
Table 28. Extended Query information  
Address  
offset  
Address  
A18-A0  
Data (Hex)  
50h  
Description  
(P)h  
35h  
36h  
37h  
38h  
39h  
"P"  
"R"  
"Y"  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
52h  
49h  
Query ASCII string - Extended Table  
31h  
31h  
Major version number  
Minor version number  
Optional Feature: (1=yes, 0=no)  
bit0, Chip Erase Supported (0=no)  
bit1, Suspend Erase Supported (1=yes)  
bit2, Suspend Program Supported (1=yes)  
bit3, Lock/Unlock Supported (1=yes)  
bit4, Queue Erase Supported (0=no)  
Bit 31-5 reserved for future use  
(P+5)h  
3Ah  
86h  
(P+6)h  
(P+7)h  
(P+8)h  
3Bh  
3Ch  
3Dh  
01h  
00h  
00h  
Optional Features: Synchronous Read supported  
Function allowed after Suspend:  
(P+9)h  
3Eh  
01h  
Program allowed after Erase Suspend (1=yes)  
Bit 7-1 reserved for future use  
(1)  
(P+A)h  
3Fh  
Block Status Register Mask – Not Available  
00h  
Note: 1. Not supported.  
44/55  
M58BW016DT, M58BW016DB  
APPENDIX B. FLOW CHARTS  
Figure 19. Program Flowchart and Pseudo Code  
Start  
Program Command:  
– write 40h  
Write 40h  
– write Address & Data  
(memory enters read status  
state after the Program command)  
Write Address  
& Data  
Read Status  
Register  
do:  
– read status register  
(E or G must be toggled)  
NO  
b7 = 1  
while b7 = 0  
YES  
NO  
NO  
NO  
V
Invalid  
Error (1)  
If b3 = 1, V  
invalid error:  
– error handler  
PP  
PP  
b3 = 0  
YES  
Program  
Error (1)  
If b4 = 1, Program error:  
– error handler  
b4 = 0  
YES  
Program to Protect  
Block Error  
If b1 = 1, Program to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI03850b  
Note: 1. If an error is found, the Status Register must be cleared before further P/E operations.  
45/55  
M58BW016DT, M58BW016DB  
Figure 20. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 0  
If b2 = 0, Program completed  
b2 = 1  
YES  
Program Complete  
Read Memory Array Command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
Program Erase Resume Command:  
– write D0h  
to resume erasure  
– if the program operation completed  
then this is not necessary. The device  
returns to Read Array as normal  
(as if the Program/Erase Suspend  
command was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI00612b  
46/55  
M58BW016DT, M58BW016DB  
Figure 21. Block Erase Flowchart and Pseudo Code  
Start  
Erase Command:  
– write 20h  
Write 20h  
– write Block Address  
(A11-A18) & D0h  
(memory enters read status  
state after the Erase command)  
Write Block Address  
& D0h  
NO  
do:  
Read Status  
– read status register  
(E or G must be toggled)  
if Erase command given execute  
suspend erase loop  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
while b7 = 0  
YES  
NO  
YES  
NO  
NO  
V
Invalid  
If b3 = 1, V  
invalid error:  
– error handler  
PP  
Error (1)  
PP  
b3 = 0  
YES  
Command  
Sequence Error  
If b4, b5 = 1, Command Sequence error:  
– error handler  
b4 and b5  
= 1  
NO  
Erase  
Error (1)  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
YES  
Erase to Protected  
Block Error  
If b1 = 1, Erase to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI03851b  
Note: 1. If an error is found, the Status Register must be cleared before further P/E operations.  
47/55  
M58BW016DT, M58BW016DB  
Figure 22. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 0  
If b6 = 0, Erase completed  
b6 = 1  
YES  
Erase Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
or Program  
Program/Erase Resume command:  
– write D0h to resume the Erase  
operation  
– if the Erase operation completed  
then this is not necessary. The device  
returns to Read mode as normal  
(as if the Program/Erase suspend  
was not issued).  
Write D0h  
Write FFh  
Read Data  
Erase Continues  
AI00615b  
48/55  
M58BW016DT, M58BW016DB  
Figure 23. Power-up Sequence to Burst the Flash  
Power-up  
or Reset  
BCR bit 15 = '1'  
Asynchronous Read  
Write 60h command  
Set Burst Configuration Register Command:  
– write 60h  
– write 03h  
and BCR on A15-A0  
Write 03h with A15-A0  
BCR inputs  
BCR bit 15 = '0'  
Synchronous Read  
AI03834b  
49/55  
M58BW016DT, M58BW016DB  
Figure 24. Command Interface and Program Erase Controller Flowchart (a)  
WAIT FOR  
COMMAND  
WRITE  
READ  
ARRAY  
NO  
90h  
YES  
READ ELEC.  
SIGNATURE  
NO  
98h  
YES  
D
READ CFI  
NO  
70h  
YES  
READ  
STATUS  
NO  
20h  
YES  
ERASE  
SET-UP  
NO  
40h  
YES  
ERASE  
COMMAND  
ERROR  
NO  
NO  
PROGRAM  
SET-UP  
D0h  
50h  
E
YES  
YES  
A
CLEAR  
C
STATUS  
D
READ  
STATUS  
B
AI03835  
50/55  
M58BW016DT, M58BW016DB  
Figure 25. Command Interface and Program Erase Controller Flowchart (b)  
E
NO  
60h  
YES  
NO  
FFh  
YES  
SET BCR  
SET_UP  
NO  
03h  
YES  
D
AI03836b  
51/55  
M58BW016DT, M58BW016DB  
Figure 26. Command Interface and Program Erase Controller Flowchart (c)  
A
B
ERASE  
YES  
READY  
NO  
NO  
READ  
STATUS  
B0h  
YES  
ERASE  
SUSPEND  
YES  
READY  
NO  
NO  
ERASE  
SUSPENDED  
READ  
STATUS  
YES  
YES  
READ  
STATUS  
70h  
NO  
YES  
YES  
PROGRAM  
SET_UP  
40h  
NO  
C
NO  
READ  
STATUS  
READ  
ARRAY  
D0h  
AI03837  
52/55  
M58BW016DT, M58BW016DB  
Figure 27. Command Interface and Program Erase Controller Flowchart (d)  
C
B
PROGRAM  
YES  
READY  
NO  
NO  
READ  
STATUS  
B0h  
YES  
PROGRAM  
SUSPEND  
YES  
READY  
NO  
NO  
PROGRAM  
SUSPENDED  
READ  
STATUS  
YES  
YES  
READ  
STATUS  
70h  
NO  
NO  
YES  
READ  
STATUS  
READ  
ARRAY  
D0h  
AI03838  
53/55  
M58BW016DT, M58BW016DB  
REVISION HISTORY  
Table 29. Document Revision History  
Date  
Version  
-01  
Revision Details  
January-2001  
05-Jun-2001  
15-Jun-2001  
17-Jul-2001  
First Issue.  
-02  
Major rewrite and restructure.  
-03  
Nd and Ne values changed in PQFP80 Package Mechanical Table  
PQFP80 Package Outline Drawing and Mechanical Data Table updated  
-04  
tLEAD removed from Absolute Maximum Ratings ( Table 12.)  
80, 90 and 100ns Speed classes defined (Tables 16, 17, 18, 19 and 20 clarified  
accordingly)  
17-Dec-2001  
-05  
Figures 13, 14, 15 and 16 clarified  
Temperature range 3 and 6 added  
Tables 13, 14, 15, 21 and CFI Tables 25, 26, 27, 28 clarified  
Document status changed from Product Preview to Preliminary Data  
DC Characteristics I , I  
AC Bus Read Characteristics timing t  
and I  
clarified  
DD1  
PP PP1  
17-Jan-2002  
30-Aug-2002  
-06  
6.1  
clarified  
GHQZ  
Revision numbering modified: a minor revision will be indicated by incrementing the  
tenths digit, and a major revision, by incrementing the units digit of the previous  
version (e.g. revision version 06 becomes 6.0).  
References of V pin used for block protection purposes removed. Figure 8.  
PP  
modified.  
Datasheet status changed from Preliminary Data to full Datasheet.  
t
parameter modified in Table 19., Asynchronous Write and Latch Controlled  
4-Sep-2002  
7.0  
WLWH  
Write AC Characteristics.  
Revision History moved to end of document. V clarified in Program and Block  
PP  
Erase commands and Status Register, V Status bit. V  
added to DC  
PPLK  
13-May-2003  
16-Oct-2003  
7.1  
7.2  
PP  
Characteristics Table. Timing t  
modified.  
KHQV  
Silicon Version added to Ordering Information Scheme.  
Tuning Block Protection feature removed from the whole document and root part  
numbers M58BW016BT/B have been removed.  
Figures 19, 20, 21, 22, 23 and 25 updated.  
07-Mar-2005  
8.0  
LBGA80 package (ZA) removed.  
Lead-free option added.  
90 and 100ns access times removed and 70ns added.  
Temperature rage 6 removed from Table 23., Ordering Information Scheme.  
54/55  
M58BW016DT, M58BW016DB  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
55/55  

相关型号:

M58BW016DB70T3FF

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016DB70T3FT

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016DB70ZA3FF

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016DB70ZA3FT

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016DB7T3FF

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX

M58BW016DB7T3FT

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX

M58BW016DB7ZA3FF

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX

M58BW016DB7ZA3FT

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX

M58BW016DB80T3F

Flash, 512KX32, 80ns, PQFP80, PLASTIC, QFP-80
NUMONYX

M58BW016DB80T3FF

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016DB80T3FT

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016DB80T3T

16 Mbit 512Kb x32, Boot Block, Burst 3V Supply Flash Memories
STMICROELECTR