M58BW016FB8ZA3FT [NUMONYX]

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories; 16兆位( 512千位×32 ,引导块,爆) 3 V电源闪存
M58BW016FB8ZA3FT
型号: M58BW016FB8ZA3FT
厂家: NUMONYX B.V    NUMONYX B.V
描述:

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
16兆位( 512千位×32 ,引导块,爆) 3 V电源闪存

闪存
文件: 总70页 (文件大小:1354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58BW016DB M58BW016DT  
M58BW016FT M58BW016FB  
16 Mbit (512 Kbit x 32, boot block, burst)  
3 V supply Flash memories  
Features  
Supply voltage  
– V = 2.7 V to 3.6 V for program, erase  
DD  
and read  
– V  
= V  
= 2.4 V to 3.6 V for I/O  
DDQIN  
DDQ  
buffers  
– V = 12 V for fast program (optional)  
PP  
High performance  
– Access times: 70, 80 ns  
– 56 MHz effective zero wait-state burst read  
– Synchronous burst read  
PQFP80 (T)  
LBGA  
– Asynchronous page read  
Hardware block protection  
– WP pin for write protect of the 4 outermost  
parameter blocks and all main blocks  
– RP pin for write protect of all blocks  
Optimized for FDI drivers  
LBGA80 10 × 12 mm  
– Fast program / erase suspend latency  
time < 6 µs  
– Common Flash interface  
Memory blocks  
– 8 parameters blocks (top or bottom)  
– 31 main blocks  
Low power consumption  
– 5 µA typical deep power-down  
– 60 µA typical standby for M58BW016DT/B  
150 µA typical standby for M58BW016FT/B  
– Automatic standby after asynchronous read  
Electronic signature  
– Manufacturer code: 20h  
Top device code: 8836h  
– Bottom device code: 8835h  
100 K write/erase cycling + 20 years data  
retention (minimum)  
High reliability level with over 1 M write/erase  
cycling sustained  
®
ECOPACK packages available  
March 2008  
Rev 17  
1/70  
www.numonyx.com  
1
Contents  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Contents  
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1  
Block protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address inputs (A0-A18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data inputs/outputs (DQ0-DQ31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output Disable (GD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reset/Power-down (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Latch Enable (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Burst Clock (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.10 Burst Address Advance (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.11 Valid Data Ready (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.12 Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.13 Supply voltage (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.14 Output supply voltage (VDDQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.15 Input supply voltage (VDDQIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.16 Program/erase supply voltage (VPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.17 Ground (VSS and VSSQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.18 Don’t use (DU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.19 Not connected (NC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1  
Asynchronous bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
3.1.6  
Asynchronous bus read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Asynchronous latch controlled bus read . . . . . . . . . . . . . . . . . . . . . . . . 18  
Asynchronous page read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Asynchronous bus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Asynchronous latch controlled bus write . . . . . . . . . . . . . . . . . . . . . . . . 19  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Contents  
3.1.7  
3.1.8  
3.1.9  
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Automatic low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1.10 Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Synchronous bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.2  
3.3  
3.2.1  
3.2.2  
Synchronous burst read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Synchronous burst read suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Burst configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.3.7  
3.3.8  
Read select bit (M15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
X-Latency bits (M14-M11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Y-Latency bit (M9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Valid data ready bit (M8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Burst type bit (M7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Valid clock edge bit (M6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Wrap burst bit (M3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Burst length bit (M2-M0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Read Memory Array command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Read Electronic Signature command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Read Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Read Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Clear Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Program/Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Program/Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.10 Set Burst Configuration Register command . . . . . . . . . . . . . . . . . . . . . . . 32  
5
Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1  
5.2  
5.3  
5.4  
5.5  
Program/erase controller status (bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Erase suspend status (bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Erase status (bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Program status (bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
VPP status (bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3/70  
Contents  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
5.6  
5.7  
Program suspend status (bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Block protection status (bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6
7
8
9
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Appendix A Common Flash interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Appendix B Flowcharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
4/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
List of tables  
List of tables  
Table 1.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
M58BW016DT and M58BW016FT top boot block addresses . . . . . . . . . . . . . . . . . . . . . . 12  
M58BW016DB and M58BW016FB bottom boot block addresses . . . . . . . . . . . . . . . . . . . 13  
Asynchronous bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Asynchronous read electronic signature operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Synchronous burst read bus operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Burst configuration register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Burst type definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Program, erase times and program, erase endurance cycles . . . . . . . . . . . . . . . . . . . . . . 33  
Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Device capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Asynchronous bus read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Asynchronous latch controlled bus read AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . 42  
Asynchronous page read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Asynchronous write and latch controlled write AC characteristics . . . . . . . . . . . . . . . . . . . 46  
Synchronous burst read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Power supply AC and DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Reset, power-down and power-up AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
PQFP80 - 80 lead plastic quad flat pack, package mechanical data . . . . . . . . . . . . . . . . . 53  
LBGA80 10 × 12 mm - 8 × 10 active ball array, 1 mm pitch, package mechanical data . . 54  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Query structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
CFI - query address and data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
CFI - device voltage and timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Device geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Extended query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
5/70  
List of figures  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
PQFP connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
LBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Example burst configuration X-1-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Example burst configuration X-2-2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
AC measurement input/output waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Asynchronous bus read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Asynchronous latch controlled bus read AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 10. Asynchronous page read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 11. Asynchronous write AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 12. Asynchronous latch controlled write AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 13. Synchronous burst read (data valid from ‘n’ clock rising edge) . . . . . . . . . . . . . . . . . . . . . 47  
Figure 14. Synchronous burst read (data valid from ‘n’ clock rising edge) . . . . . . . . . . . . . . . . . . . . . 48  
Figure 15. Synchronous burst read - continuous - valid data ready output . . . . . . . . . . . . . . . . . . . . . 49  
Figure 16. Synchronous burst read - burst address advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 17. Reset, power-down and power-up AC waveforms - control pins low . . . . . . . . . . . . . . . . . 50  
Figure 18. Reset, power-down and power-up AC waveforms - control pins toggling . . . . . . . . . . . . . 50  
Figure 19. Power supply slope specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 20. PQFP80 - 80 lead plastic quad flat pack, package outline . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 21. LBGA80 10 × 12 mm - 8 × 10 active ball array, 1 mm pitch, package outline . . . . . . . . . . 54  
Figure 22. Program flowchart and pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 23. Program suspend & resume flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 24. Block erase flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 25. Erase suspend & resume flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 26. Power-up sequence followed by synchronous burst read . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 27. Command interface and program/erase controller flowchart (a). . . . . . . . . . . . . . . . . . . . . 64  
Figure 28. Command interface and program/erase controller flowchart (b). . . . . . . . . . . . . . . . . . . . . 65  
Figure 29. Command interface and program/erase controller flowchart (c). . . . . . . . . . . . . . . . . . . . . 66  
Figure 30. Command interface and program/erase controller flowchart (d). . . . . . . . . . . . . . . . . . . . . 67  
6/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Description  
1
Description  
The M58BW016DT, M58BW016DB, M58BW016FT and M58BW016FB are 16-Mbit non-  
volatile Flash memories that can be erased electrically at the block level and programmed  
in-system on a double-word basis using a 2.7 V to 3.6 V V supply for the circuit and a  
DD  
V
supply down to 2.4 V for the input and output buffers. Optionally a 12 V V supply  
DDQ  
PP  
can be used to provide fast program and erase for a limited time and number of  
program/erase cycles.  
The devices support asynchronous (latch controlled and page read) and synchronous bus  
operations. The synchronous burst read interface allows a high data transfer rate controlled  
by the burst clock, K, signal. It is capable of bursting fixed or unlimited lengths of data. The  
burst type, latency and length can be configured and can be easily adapted to a large  
variety of system clock frequencies and microprocessors. All writes are asynchronous. On  
power-up the memory defaults to read mode with an asynchronous bus.  
The devices have a boot block architecture with an array of 8 parameter blocks of 64 Kbits  
each and 31 main blocks of 512 Kbits each. In the M58BW016DT and M58BW016FT the  
parameter blocks are located at the top of the address space whereas in the M58BW016DB  
and M58BW016FB, they are located at the bottom.  
Program and erase commands are written to the command interface of the memory. An on-  
chip program/erase controller simplifies the process of programming or erasing the memory  
by taking care of all of the special operations that are required to update the memory  
contents. The end of a program or erase operation can be detected and any error conditions  
identified in the status register. The command set required to control the memory is  
consistent with JEDEC standards.  
Erase can be suspended in order to perform either read or program in any other block and  
then resumed. Program can be suspended to read data in any other block and then  
resumed. Each block can be programmed and erased over 100,000 cycles.  
All blocks are protected during power-up.  
The M58BW016DT, M58BW016DB, M58BW016FT and M58BW016FB feature two different  
levels of block protection to avoid unwanted program/erase operations:  
The WP pin offers an hardware protection on two of the parameter blocks and all of the  
main blocks  
All program or erase operations are blocked when Reset, RP, is held Low. A  
reset/power-down mode is entered when the RP input is Low. In this mode the power  
consumption is lower than in the normal standby mode, the device is write protected  
and both the status and the burst configuration registers are cleared. A recovery time is  
required when the RP input goes High.  
The memory is offered in a PQFP80 (14 x 20 mm) and LBGA80 (10 × 12 mm) package.  
The memories are supplied with all the bits erased (set to ’1’).  
In the present document, M58BW016DT, M58BW016DB, M58BW016FT and  
M58BW016FB will be referred to as M58BW016 unless otherwise specified.  
7/70  
Description  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Logic diagram  
Figure 1.  
V
V
V
V
DD DDQ DDQIN PP  
DQ0-DQ31  
A0-A18  
K
L
E
M58BW016DT  
M58BW016DB  
M58BW016FT  
M58BW016FB  
RP  
G
R
GD  
W
WP  
B
V
V
SSQ  
SS  
AI11201b  
8/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Description  
Table 1.  
Signal names  
Signal  
Description  
Direction  
A0-A18  
Address inputs  
Inputs  
I/O  
DQ0-DQ7  
Data input/output, command input  
Data input/output, Burst Configuration Register  
Data input/output  
DQ8-DQ15  
I/O  
DQ16-DQ31  
I/O  
B
E
Burst Address Advance  
Chip Enable  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Supply  
Supply  
Supply  
G
Output Enable  
K
Burst Clock  
L
Latch Enable  
R
Valid Data Ready (open drain output)  
Reset/Power-down  
RP  
W
Write Enable  
GD  
WP  
VDD  
VDDQ  
VDDQIN  
Output Disable  
Write Protect  
Supply voltage  
Power supply for output buffers  
Power supply for input buffers only  
Optional supply voltage for fast program and fast  
erase operations  
VPP  
Supply  
VSS  
VSSQ  
NC  
Ground  
Input/output ground  
Not connected internally  
Don’t use as internally connected  
DU  
9/70  
Description  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
PQFP connections (top view through package)  
Figure 2.  
DQ16  
DQ17  
DQ18  
DQ19  
1
DQ15  
DQ14  
DQ13  
DQ12  
64  
V
V
V
DDQ  
SSQ  
DDQ  
V
SSQ  
DQ20  
DQ11  
DQ10  
DQ9  
DQ8  
DQ7  
DQ6  
DQ5  
DQ4  
DQ21  
DQ22  
DQ23  
DQ24  
DQ25  
DQ26  
DQ27  
M58BW016DT  
M58BW016DB  
M58BW016FT  
M58BW016FB  
12  
53  
V
V
V
DDQ  
SSQ  
DDQ  
V
SSQ  
DQ28  
DQ3  
DQ2  
DQ1  
DQ0  
NC  
DQ29  
DQ30  
DQ31  
DU  
A0  
A18  
A17  
A16  
A1  
A2  
41  
24  
AI11202b  
10/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Description  
Figure 3.  
LBGA connections (top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
H
I
A15  
A14  
V
V
V
A6  
A3  
A2  
DD  
PP  
SS  
A16  
A17  
DQ3  
A13  
A18  
A12  
A11  
NC  
A9  
A10  
NC  
A8  
NC  
A5  
A7  
A4  
NC  
A1  
A0  
DQ0  
DQ4  
DQ7  
DQ8  
DQ12  
DQ14  
RP  
NC  
DQ31  
DQ28  
DQ25  
DQ21  
DQ19  
G
DQ30  
DQ26  
DQ24  
DQ23  
DQ18  
R
DQ29  
V
DQ2  
DQ6  
DQ10  
DQ11  
L
DQ1  
DQ5  
DQ9  
WP  
B
DQ27  
NC  
V
DDQ  
DDQ  
V
V
SSQ  
SSQ  
V
DQ22  
DQ17  
E
V
DDQ  
DDQ  
DQ13  
DQ15  
DQ20  
DQ16  
NC  
J
V
K
V
V
W
GD  
DDQIN  
SS  
DD  
AI04151C  
1.1  
Block protection  
The M58BW016 feature two different levels of block protection.  
Write protect pin, WP - When WP is Low, V , all the lockable parameter blocks (two  
IL  
upper (top) or lower (bottom)) and all the main blocks are protected. When WP is High  
(V ) all the lockable parameter blocks and all the main blocks are unprotected  
IH  
Reset/power-down pin, RP - If the device is held in reset mode (RP at V ), no  
IL  
program or erase operations can be performed on any block.  
After a device reset the first two kinds of block protection (WP, RP) can be combined to give  
a flexible block protection.  
11/70  
Description  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
M58BW016DT and M58BW016FT top boot block addresses  
Table 2.  
#
Size (Kbit)  
Address range  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
64  
7F800h-7FFFFh  
7F000h-7F7FFh  
7E800h-7EFFFh  
7E000h-7E7FFh  
7D800h-7DFFFh  
7D000h-7D7FFh  
7C800h-7CFFFh  
7C000h-7C7FFh  
78000h-7BFFFh  
74000h-77FFFh  
70000h-73FFFh  
6C000h-6FFFFh  
68000h-6BFFFh  
64000h-67FFFh  
60000h-63FFFh  
5C000h-5FFFFh  
58000h-5BFFFh  
54000h-57FFFh  
50000h-53FFFh  
4C000h-4FFFFh  
48000h-4BFFFh  
44000h-47FFFh  
40000h-43FFFh  
3C000h-3FFFFh  
38000h-3BFFFh  
34000h-37FFFh  
30000h-33FFFh  
2C000h-2FFFFh  
28000h-2BFFFh  
24000h-27FFFh  
20000h-23FFFh  
1C000h-1FFFFh  
18000h-1BFFFh  
14000h-17FFFh  
10000h-13FFFh  
0C000h-0FFFFh  
08000h-0BFFFh  
04000h-07FFFh  
00000h-03FFFh  
64  
64  
64  
64  
64  
64  
64  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
8
7
6
5
4
3
2
1
0
12/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Description  
Table 3.  
#
M58BW016DB and M58BW016FB bottom boot block addresses  
Size (Kbit)  
Address range  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
64  
7C000h-7FFFFh  
78000h-7BFFFh  
74000h-77FFFh  
70000h-73FFFh  
6C000h-6FFFFh  
68000h-6BFFFh  
64000h-67FFFh  
60000h-63FFFh  
5C000h-5FFFFh  
58000h-5BFFFh  
54000h-57FFFh  
50000h-53FFFh  
4C000h-4FFFFh  
48000h-4BFFFh  
44000h-47FFFh  
40000h-43FFFh  
3C000h-3FFFFh  
38000h-3BFFFh  
34000h-37FFFh  
30000h-33FFFh  
2C000h-2FFFFh  
28000h-2BFFFh  
24000h-27FFFh  
20000h-23FFFh  
1C000h-1FFFFh  
18000h-1BFFFh  
14000h-17FFFh  
10000h-13FFFh  
0C000h-0FFFFh  
08000h-0BFFFh  
04000h-07FFFh  
03800h-03FFFh  
03000h-037FFh  
02800h-02FFFh  
02000h-027FFh  
01800h-01FFFh  
01000h-017FFh  
00800h-00FFFh  
00000h-007FFh  
8
7
6
64  
5
64  
4
64  
3
64  
2
64  
1
64  
0
64  
13/70  
Signal descriptions  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
2
Signal descriptions  
See Figure 1: Logic diagram, and Table 1: Signal names for a brief overview of the signals  
connected to this device.  
2.1  
Address inputs (A0-A18)  
The address inputs are used to select the cells to access in the memory array during bus  
operations either to read or to program data. During bus write operations they control the  
commands sent to the command interface of the program/erase controller. Chip Enable  
must be Low when selecting the addresses.  
The address inputs are latched on the rising edge of Latch Enable L or Burst Clock K,  
whichever occurs first, in a read operation.The address inputs are latched on the rising edge  
of Chip Enable, Write Enable or Latch Enable, whichever occurs first in a write operation.  
The address latch is transparent when Latch Enable is Low, V . The address is internally  
IL  
latched in an erase or program operation.  
2.2  
Data inputs/outputs (DQ0-DQ31)  
The data inputs/outputs output the data stored at the selected address during a bus read  
operation, or are used to input the data during a program operation. During bus write  
operations they represent the commands sent to the command interface of the  
program/erase controller. When used to input data or write commands they are latched on  
the rising edge of Write Enable or Chip Enable, whichever occurs first.  
When Chip Enable and Output Enable are both Low, V , and Output Disable is at V the  
IL  
IH,  
data bus outputs data from the memory array, the electronic signature, the CFI information  
or the contents of the status register. The data bus is high impedance when the device is  
deselected with Chip Enable at V , Output Enable at V , Output Disable at V or  
IH  
IH  
IL  
Reset/Power-down at V . The status register content is output on DQ0-DQ7 and DQ8-  
IL  
DQ31 are at V .  
IL  
2.3  
2.4  
Chip Enable (E)  
The Chip Enable, E, input activates the memory control logic, input buffers, decoders and  
sense amplifiers. Chip Enable, E, at V deselects the memory and reduces the power  
consumption to the standby level.  
IH  
Output Enable (G)  
The Output Enable, G, gates the outputs through the data output buffers during a read  
operation, when Output Disable GD is at V . When Output Enable G is at V , the outputs  
IH  
IH  
are high impedance independently of Output Disable.  
14/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Signal descriptions  
2.5  
Output Disable (GD)  
The Output Disable, GD, deactivates the data output buffers. When Output Disable, GD, is at  
V , the outputs are driven by the Output Enable. When Output Disable, GD, is at V , the  
IH  
IL  
outputs are high impedance independently of Output Enable. The Output Disable pin must  
be connected to an external pull-up resistor as there is no internal pull-up resistor to drive  
the pin.  
2.6  
2.7  
Write Enable (W)  
The Write Enable, W, input controls writing to the command interface, Address inputs and  
Data latches. Both addresses and data can be latched on the rising edge of Write Enable  
(also see Latch Enable, L).  
Reset/Power-down (RP)  
The Reset/Power-down, RP, is used to apply a hardware reset to the memory. A hardware  
reset is achieved by holding Reset/Power-down Low, V , for at least t  
. Writing is  
IL  
PLPH  
inhibited to protect data, the command interface and the program/erase controller are reset.  
The status register information is cleared and power consumption is reduced to deep power-  
down level. The device acts as deselected, that is the data outputs are high impedance.  
After Reset/Power-down goes High, V , the memory will be ready for bus read operations  
IH  
after a delay of t  
or bus write operations after t  
.
PHEL  
PHWL  
If Reset/Power-down goes Low, V , during a Block Erase, or a Program the operation is  
IL  
aborted, in a time of t  
maximum, and data is altered and may be corrupted.  
PLRH  
During power-up power should be applied simultaneously to V and V  
with RP held  
DDQ(IN)  
DD  
at V . When the supplies are stable RP is taken to V . Output Enable, G, Chip Enable, E,  
IL  
IH  
and Write Enable, W, should be held at V during power-up.  
IH  
In an application, it is recommended to associate reset/power-down pin, RP, with the reset  
signal of the microprocessor. Otherwise, if a reset operation occurs while the memory is  
performing an erase or program operation, the memory may output the status register  
information instead of being initialized to the default asynchronous random read.  
See Table 22: Reset, power-down and power-up AC characteristics and Figure 17: Reset,  
power-down and power-up AC waveforms - control pins low, for more details.  
2.8  
Latch Enable (L)  
The bus interface can be configured to latch the address inputs on the rising edge of Latch  
Enable, L, for asynchronous latch enable controlled read or write or synchronous burst read  
operations. In synchronous burst read operations the address is latched on the active edge  
of the Clock when Latch Enable is Low, V . Once latched, the addresses may change  
IL  
without affecting the address used by the memory. When Latch Enable is Low, V , the latch  
IL  
is transparent. Latch Enable, L, can remain at V for asynchronous random read and write  
IL  
operations.  
15/70  
Signal descriptions  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
2.9  
Burst Clock (K)  
The Burst Clock, K, is used to synchronize the memory with the external bus during  
synchronous burst read operations. Bus signals are latched on the active edge of the Clock.  
The Clock can be configured to have an active rising or falling edge. In synchronous burst  
read mode the address is latched on the first active clock edge when Latch Enable is Low,  
V , or on the rising edge of Latch Enable, whichever occurs first.  
IL  
During asynchronous bus operations the Clock is not used.  
2.10  
Burst Address Advance (B)  
The Burst Address Advance, B, controls the advancing of the address by the internal  
address counter during synchronous burst read operations.  
Burst Address Advance, B, is only sampled on the active clock edge of the Clock when the  
X-latency time has expired. If Burst Address Advance is Low, V , the internal address  
IL  
counter advances. If Burst Address Advance is High, V , the internal address counter does  
IH  
not change; the same data remains on the data inputs/outputs and Burst Address Advance  
is not sampled until the Y-latency expires.  
The Burst Address Advance, B, may be tied to V .  
IL  
2.11  
Valid Data Ready (R)  
The Valid Data Ready output, R, is an open drain output that can be used, during  
synchronous burst read operations, to identify if the memory is ready to output data or not.  
The Valid Data Ready output can be configured to be active on the clock edge of the invalid  
data read cycle or one cycle before. Valid Data Ready, at V , indicates that new data is or  
IH  
will be available. When Valid Data Ready is Low, V , the previous data outputs remain  
IL  
active.  
In all asynchronous operations, Valid Data Ready is high impedance. It may be tied to other  
components with the same Valid Data Ready signal to create a unique system Ready  
signal. The Valid Data Ready output has an internal pull-up resistor of around 1 MΩpowered  
from V  
, designers should use an external pull-up resistor of the correct value to meet the  
DDQ  
external timing requirements for Valid Data Ready going to V .  
IH  
2.12  
Write Protect (WP)  
The Write Protect, WP, provides protection against program or erase operations. When  
Write Protect, WP, is at V the first two (in the bottom configuration) or last two (in the top  
IL  
configuration) parameter blocks and all main blocks are locked. When Write Protect WP is at  
V
all the blocks can be programmed or erased, if no other protection is used.  
IH  
2.13  
Supply voltage (VDD)  
The supply voltage, V , is the core power supply. All internal circuits draw their current from  
DD  
the V pin, including the program/erase controller.  
DD  
16/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Signal descriptions  
2.14  
2.15  
2.16  
Output supply voltage (VDDQ)  
The output supply voltage, V  
, is the output buffer power supply for all operations (read,  
DDQ  
program and erase) used for DQ0-DQ31 when used as outputs.  
Input supply voltage (VDDQIN  
)
The input supply voltage, V  
, is the power supply for all input signal. Input signals are: K, B,  
DDIN  
L, W, GD, G, E, A0-A18 and DQ0-DQ31, when used as inputs.  
Program/erase supply voltage (VPP)  
The program/erase supply voltage, V , is used for program and erase operations. The  
PP  
memory normally executes program and erase operations at V  
voltage levels. In a  
PP1  
manufacturing environment, programming may be speeded up by applying a higher voltage  
level, V , to the V pin.  
PPH  
PP  
The voltage level V  
may be applied for a total of 80 hours over a maximum of 1000  
PPH  
cycles. Stressing the device beyond these limits could damage the device.  
2.17  
Ground (VSS and VSSQ)  
The ground V is the reference for the internal supply voltage V . The ground V is the  
SSQ  
SS  
DD  
reference for the output and input supplies V  
and V  
. It is essential to connect V  
DDQ,  
DDQIN SS  
and V  
together.  
SSQ  
Note:  
A 0.1 µF capacitor should be connected between the supply voltages, V , V  
and V  
DD DDQ DDIN  
and the grounds, V and V  
to decouple the current surges from the power supply. The  
SS  
SSQ  
PCB track widths must be sufficient to carry the currents required during all operations of  
the parts, see Table 15: DC characteristics, for maximum current supply requirements.  
2.18  
2.19  
Don’t use (DU)  
This pin should not be used as it is internally connected. Its voltage level can be between  
V
and V  
or leave it unconnected.  
SS  
DDQ  
Not connected (NC)  
This pin is not physically connected to the device.  
17/70  
Bus operations  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
3
Bus operations  
Each bus operation that controls the memory is described in this section, see Table 4,  
Table 5 and Table 6 Bus operations, for a summary. The bus operation is selected through  
the burst configuration register; the bits in this register are described at the end of this  
section.  
On power-up or after a hardware reset the memory defaults to asynchronous bus read and  
asynchronous bus write, no other bus operation can be performed until the burst control  
register has been configured.  
The electronic signature, CFI or status register will be read in asynchronous mode  
regardless of the burst control register settings.  
Typically glitches of less than 5 ns on Chip Enable or Write Enable are ignored by the  
memory and do not affect bus operations.  
3.1  
Asynchronous bus operations  
For asynchronous bus operations refer to Table 4 together with the following text.  
3.1.1  
Asynchronous bus read  
Asynchronous bus read operations read from the memory cells, or specific registers  
(electronic signature, status register, CFI and burst configuration register) in the command  
interface. A valid bus operation involves setting the desired address on the address inputs,  
applying a Low signal, V , to Chip Enable and Output Enable and keeping Write Enable and  
IL  
Output Disable High, V . The data inputs/outputs will output the value, see Figure 8:  
IH  
Asynchronous bus read AC waveforms, and Table 16: Asynchronous bus read AC  
characteristics, for details of when the output becomes valid.  
Asynchronous read is the default read mode which the device enters on power-up or on  
return from reset/power-down.  
3.1.2  
Asynchronous latch controlled bus read  
Asynchronous latch controlled bus read operations read from the memory cells or specific  
registers in the command interface. The address is latched in the memory before the value  
is output on the data bus, allowing the address to change during the cycle without affecting  
the address that the memory uses.  
A valid bus operation involves setting the desired address on the address inputs, setting  
Chip Enable and Latch Enable Low, V and keeping Write Enable High, V ; the address is  
IL  
IH  
latched on the rising edge of Latch Enable. Once latched, the address inputs can change.  
Set Output Enable Low, V , to read the data on the data inputs/outputs; see Figure 9:  
IL  
Asynchronous latch controlled bus read AC waveforms, and Table 17: Asynchronous latch  
controlled bus read AC characteristics, for details on when the output becomes valid.  
Note that, since the Latch Enable input is transparent when set Low, V , asynchronous bus  
IL  
read operations can be performed when the memory is configured for asynchronous latch  
enable bus operations by holding Latch Enable Low, V throughout the bus operation.  
IL  
18/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Bus operations  
3.1.3  
Asynchronous page read  
Asynchronous page read operations are used to read from several addresses within the  
same memory page. Each memory page is 4 double-words and is addressed by the  
address inputs A0 and A1.  
Data is read internally and stored in the page buffer. Valid bus operations are the same as  
asynchronous bus read operations but with different timings. The first read operation within  
the page has identical timings, subsequent reads within the same page have much shorter  
access times. If the page changes then the normal, longer timings apply again. Page read  
does not support latched controlled read.  
See Figure 10: Asynchronous page read AC waveforms, and Table 18: Asynchronous page  
read AC characteristics, for details on when the outputs become valid.  
3.1.4  
Asynchronous bus write  
Asynchronous bus write operations write to the command interface to send commands to  
the memory or to latch addresses and input data to program. Bus write operations are  
asynchronous, the clock, K, is don’t care during bus write operations.  
A valid asynchronous bus write operation begins by setting the desired address on the  
address inputs, and setting Chip Enable, Write Enable and Latch Enable Low, V , and  
IL  
Output Enable High, V , or Output Disable Low, V . The address inputs are latched by the  
IH  
IL  
command interface on the rising edge of Chip Enable or Write Enable, whichever occurs  
first. Commands and input data are latched on the rising edge of Chip Enable, E, or Write  
Enable, W, whichever occurs first. Output Enable must remain High, and Output Disable  
Low, during the whole asynchronous bus write operation.  
See Figure 11: Asynchronous write AC waveforms, and Table 19: Asynchronous write and  
latch controlled write AC characteristics, for details of the timing requirements.  
3.1.5  
Asynchronous latch controlled bus write  
Asynchronous latch controlled bus write operations write to the command interface to send  
commands to the memory or to latch addresses and input data to program. Bus write  
operations are asynchronous, the clock, K, is don’t care during bus write operations.  
A valid asynchronous latch controlled bus write operation begins by setting the desired  
address on the address inputs and pulsing Latch Enable Low, V . The address inputs are  
IL  
latched by the command interface on the rising edge of Latch Enable, Write Enable or Chip  
Enable, whichever occurs first. Commands and input data are latched on the rising edge of  
Chip Enable, E, or Write Enable, W, whichever occurs first. Output Enable must remain  
High, and Output Disable Low, during the whole asynchronous bus write operation.  
See Figure 12: Asynchronous latch controlled write AC waveforms, and Table 19:  
Asynchronous write and latch controlled write AC characteristics, for details of the timing  
requirements.  
3.1.6  
Output Disable  
The data outputs are high impedance when the Output Enable, G, is at V or Output  
IH  
Disable, GD, is at V .  
IL  
19/70  
Bus operations  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
3.1.7  
Standby mode  
When Chip Enable is High, V , and the Program/Erase controller is idle, the memory enters  
IH  
Standby mode, the power consumption is reduced to the standby level and the Data  
inputs/outputs pins are placed in the high impedance state regardless of Output Enable,  
Write Enable or Output Disable inputs.  
3.1.8  
Automatic low power mode  
If there is no change in the state of the bus for a short period of time during asynchronous  
bus read operations the memory enters auto low power mode where the internal supply  
current is reduced to the auto-standby supply current. The data inputs/outputs will still  
output data if a bus read operation is in progress.  
Automatic low power is only available in asynchronous read modes.  
3.1.9  
Power-down mode  
The memory is in power-down when Reset/Power-down, RP, is at V . The power  
IL  
consumption is reduced to the power-down level and the outputs are high impedance,  
independent of the Chip Enable, E, Output Enable, G, Output Disable, GD, or Write Enable,  
W, inputs.  
3.1.10  
Electronic signature  
Two codes identifying the manufacturer and the device can be read from the memory  
allowing programming equipment or applications to automatically match their interface to  
the characteristics of the memory. The electronic signature is output by giving the Read  
Electronic Signature command. The manufacturer code is output when all the address  
inputs are at V . The device code is output when A1 is at V and all the other address pins  
IL  
IH  
are at V (see Table 5: Asynchronous read electronic signature operation). Issue a Read  
IL  
Memory Array command to return to read mode.  
(1)  
Table 4.  
Asynchronous bus operations  
Step  
Bus operation  
E
G
GD  
W
RP  
L
A0-A18 DQ0-DQ31  
Asynchronous bus read  
VIL VIL VIH VIH VIH VIL Address Data output  
Address Latch VIL VIH VIH VIL VIH VIL Address  
Read VIL VIL VIH VIH VIH VIH  
VIL VIL VIH VIH VIH  
VIL VIH VIL VIH VIL Address Data input  
Address Latch VIL VIL VIH VIH VIH VIL Address  
High-Z  
Asynchronous latch  
controlled bus read  
X
Data output  
Asynchronous page read  
Asynchronous bus write  
X
Address Data output  
X
High-Z  
Data input  
High-Z  
Asynchronous latch  
controlled bus write  
Write  
VIL VIH  
X
VIL VIH VIH  
X
X
X
X
X
Output Enable, G  
Output Disable, GD  
Standby  
VIL VIH VIH VIH VIH  
VIL VIL VIL VIH VIH  
X
X
X
X
High-Z  
VIH  
X
X
X
X
X
X
X
VIH  
VIL  
High-Z  
Reset/power-down  
1. X = don’t care.  
High-Z  
20/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Bus operations  
Table 5.  
Code  
Asynchronous read electronic signature operation  
Device  
E
G
GD  
W
A18-A0 DQ31-DQ0  
Manufacturer  
Device  
All  
VIL  
VIL  
VIH  
VIH  
00000h 00000020h  
M58BW016DT  
M58BW016FT  
VIL  
VIL  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
VIH  
VIH  
VIH  
VIH  
00001h 00008836h  
00001h 00008835h  
M58BW016DB  
M58BW016FB  
Burst configuration  
register  
00005h  
BCR(1)  
1. BCR = Burst configuration register.  
3.2  
Synchronous bus operations  
For synchronous bus operations refer to Table 6 together with the following text.  
3.2.1  
Synchronous burst read  
Synchronous burst read operations are used to read from the memory at specific times  
synchronized to an external reference clock.  
In the M58BW016FT and M58BW016FB only, once the memory is configured in burst  
mode, it is mandatory to have an active clock signal since the switching of the output buffer  
data bus is synchronized to the active edge of the clock. In the absence of clock, no data is  
output.  
Caution:  
The M58BW016DT and M58BW016DB are not concerned by the paragraph above.  
The burst type, length and latency can be configured. The different configurations for  
synchronous burst read operations are described in Section 3.3: Burst configuration  
register. Refer to Figure 4 and Figure 5 for examples of synchronous burst operations.  
In continuous burst read, one burst read operation can access the entire memory  
sequentially by keeping the Burst Address Advance B at V for the appropriate number of  
IL  
clock cycles. At the end of the memory address space the burst read restarts from the  
beginning at address 000000h.  
A valid synchronous burst read operation begins when the Burst Clock is active and Chip  
Enable and Latch Enable are Low, V . The burst start address is latched and loaded into  
IL  
the internal burst address counter on the valid Burst Clock K edge (rising or falling  
depending on the value of M6) or on the rising edge of Latch Enable, whichever occurs first.  
After an initial memory latency time, the memory outputs data each clock cycle (or two clock  
cycles depending on the value of M9). The Burst Address Advance B input controls the  
memory burst output. The second burst output is on the next clock valid edge after the Burst  
Address Advance B has been pulled Low.  
Valid Data Ready, R, monitors if the memory burst boundary is exceeded and the burst  
controller of the microprocessor needs to insert wait states. When Valid Data Ready is Low  
on the active clock edge, no new data is available and the memory does not increment the  
internal address counter at the active clock edge even if Burst Address Advance, B, is Low.  
21/70  
Bus operations  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Valid Data Ready may be configured (by bit M8 of burst configuration register) to be valid  
immediately at the valid clock edge or one data cycle before the valid clock edge.  
Synchronous burst read will be suspended if Burst Address Advance, B, goes High, V .  
IH  
If Output Enable is at V and Output Disable is at V , the last data is still valid.  
IL  
IH  
If Output Enable, G, is at V or Output Disable, GD, is at V , but the Burst Address  
IH  
IL  
Advance, B, is at V the internal Burst Address counter is incremented at each Burst Clock  
IL  
K valid edge.  
The synchronous burst read timing diagrams and AC characteristics are described in the AC  
and DC parameters section. See Figure 13, Figure 14, Figure 15 and Figure 16, and  
Table 20.  
3.2.2  
Synchronous burst read suspend  
During a synchronous burst read operation it is possible to suspend the operation, freeing  
the data bus for other higher priority devices.  
A valid synchronous burst read operation is suspended when both Output Enable and Burst  
Address Advance are High, V . The Burst Address Advance going High, V , stops the  
IH  
IH  
burst counter and the Output Enable going High, V , inhibits the data outputs. The  
IH  
synchronous burst read operation can be resumed by setting Output Enable Low.  
(1)(2)  
Table 6.  
Synchronous burst read bus operations  
A0-A18  
DQ0-DQ31  
Bus operation  
Step  
E
G
GD RP K(3)  
L
B
Address Latch  
Read  
VIL VIH  
VIL VIL VIH VIH  
VIL VIH VIH  
VIL VIL VIH VIH  
X
VIH  
T
T
X
T
VIL  
X
Address input  
Data output  
High-Z  
VIH VIL  
VIH VIH  
VIH VIL  
Read Suspend  
Read Resume  
X
Synchronous  
burst read  
Data output  
Burst Address  
Advance  
VIL VIH  
X
VIH  
T
VIH VIL  
High-Z  
Read Abort, E  
VIH  
X
X
X
X
X
VIH  
VIL  
X
X
X
X
X
X
High-Z  
High-Z  
Read Abort, RP  
1. X = don't care, VIL or VIH  
2. M15 = 0, bit M15 is in the burst configuration register.  
3. T = transition, see M6 in the burst configuration register for details on the active edge of K.  
.
22/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Bus operations  
3.3  
Burst configuration register  
The burst configuration register is used to configure the type of bus access that the memory  
will perform.  
The burst configuration register is set through the command interface and will retain its  
information until it is re-configured, the device is reset, or the device goes into reset/power-  
down mode. The burst configuration register bits are described in Table 7. They specify the  
selection of the burst length, burst type, burst X and Y latencies and the read operation.  
Refer to Figure 4 and Figure 5 for examples of synchronous burst configurations.  
3.3.1  
3.3.2  
Read select bit (M15)  
The read select bit, M15, is used to switch between asynchronous and synchronous bus  
read operations. When the read select bit is set to ’1’, bus read operations are  
asynchronous; when the read select bit is set to ’0’, bus read operations are synchronous.  
On reset or power-up the read select bit is set to’1’ for asynchronous accesses.  
X-Latency bits (M14-M11)  
The X-Latency bits are used during synchronous bus read operations to set the number of  
clock cycles between the address being latched and the first data becoming available. For  
correct operation the X-Latency bits can only assume the values in Table 7: Burst  
configuration register. The X-Latency bits should also be selected in conjunction with  
Table 8: Burst type definition to ensure valid settings.  
3.3.3  
Y-Latency bit (M9)  
The Y-Latency bit is used during synchronous bus read operations to set the number of  
clock cycles between consecutive reads. The Y-Latency value depends on both the X-  
Latency value and the setting in M9.  
When the Y-Latency is ‘1’ the data changes each clock cycle; when the Y-Latency is ‘2’ the  
data changes every second clock cycle. See Table 7: Burst configuration register, and  
Table 8: Burst type definition for valid combinations of the Y-Latency, the X-Latency and the  
clock frequency.  
3.3.4  
3.3.5  
Valid data ready bit (M8)  
The valid data ready bit controls the timing of the valid data ready output pin, R. When the  
valid data ready bit is ’0’ the valid data ready output pin is driven Low for the active clock  
edge when invalid data is output on the bus. When the valid data ready bit is ’1’ the valid  
data ready output pin is driven Low one clock cycle prior to invalid data being output on the  
bus.  
Burst type bit (M7)  
The burst type bit is used to configure the sequence of addresses read as sequential or  
interleaved. When the burst type bit is ’0’ the memory outputs from interleaved addresses;  
when the burst type bit is ’1’ the memory outputs from sequential addresses. See Table 8:  
Burst type definition, for the sequence of addresses output from a given starting address in  
each mode.  
23/70  
Bus operations  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
3.3.6  
3.3.7  
3.3.8  
Valid clock edge bit (M6)  
The valid clock edge bit, M6, is used to configure the active edge of the Clock, K, during  
synchronous burst read operations. When the valid clock edge bit is ’0’ the falling edge of  
the clock is the active edge; when the valid clock edge bit is ’1’ the rising edge of the clock is  
active.  
Wrap burst bit (M3)  
The burst reads can be confined inside the 4 or 8 double-word boundary (wrap) or  
overcome the boundary (no wrap). The wrap burst bit is used to select between wrap and no  
wrap. When the wrap burst bit is set to ‘0’ the burst read wraps; when it is set to ‘1’ the burst  
read does not wrap.  
Burst length bit (M2-M0)  
The burst length bits set the maximum number of double-words that can be output during a  
synchronous burst read operation before the address wraps. Burst lengths of 4 or 8 are  
available for both the sequential and interleaved burst types, and a continuous burst is  
available for the sequential type.  
Table 7: Burst configuration register gives the valid combinations of the burst length bits that  
the memory accepts; Table 8: Burst type definition, gives the sequence of addresses output  
from a given starting address for each length.  
If either a continuous or a no wrap burst read has been initiated the device will output data  
synchronously. Depending on the starting address, the device activates the valid data ready  
output to indicate that a delay is necessary before the data is output. If the starting address  
is aligned to an 8 double-word boundary, the continuous burst mode will run without  
activating the valid data ready output. If the starting address is not aligned to an 8 double-  
word boundary, valid data ready is activated to indicate that the device needs an internal  
delay to read the successive words in the array.  
M10, M5 and M4 are reserved for future use.  
24/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Bus operations  
Table 7.  
Bit  
Burst configuration register  
Description  
Value  
Description  
Synchronous burst read  
0
M15  
M14  
Read select  
1
Asynchronous read (default at power-on)  
Reserved (default value)  
Reserved (default value)  
Reserved  
4, 4-1-1-1(2)  
5(3), 5-1-1-1, 5-2-2-2  
6(3), 6-1-1-1, 6-2-2-2  
0
000  
001  
010  
011  
100  
101  
110  
111  
0
M13-M11  
X-Latency(1)  
7
8
(3), 7-1-1-1, 7-2-2-2  
(3), 8-1-1-1, 8-2-2-2  
Reserved  
M10  
M9  
Reserved (default value)  
One burst clock cycle (default value)  
Two burst clock cycles  
0
Y-Latency(4)  
1
R valid Low during valid burst clock edge (default  
value)  
0
M8  
Valid data ready  
1
0
R valid Low 1 data cycle before valid burst clock edge  
Interleaved (default value)  
Sequential  
M7  
M6  
Burst type  
1
0
Falling burst clock edge (default value)  
Rising burst clock edge  
Reserved (default value)  
Reserved  
Valid clock edge  
1
00  
01  
10  
11  
0
M5-M4  
M3  
Reserved  
Reserved  
Wrap (default value)  
No wrap  
Wrapping  
1
000  
001  
010  
011  
100  
101  
110  
111  
Reserved (default value)  
4 double-words  
8 double-words  
Reserved  
M2-M0  
Burst length  
Reserved  
Reserved  
Reserved  
Continuous  
1. X latencies can be calculated as: (tAVQV – tLLKH + tQVKH) + tSYSTEM MARGIN < (X -1) tK. (X is an integer  
number from 4 to 8, tK is the clock period and tSYSTEM MARGIN is the time margin required for the  
calculation).  
2. This feature is available for the M58BW016F version up to the full operative frequency of 56 MHz, and for  
the M58BW016D version only if the operative frequency is below 45 MHz.  
3. The M58BW016F version has a maximum operative frequency of 66 MHz, fully factory tested.  
4. Y latencies can be calculated as: tKHQV + tSYSTEM MARGIN + tQVKH < Y tK.  
25/70  
Bus operations  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Table 8.  
Burst type definition  
Starting x 4 x 4  
address sequential interleaved  
x 8  
sequential  
x 8  
interleaved  
M 3  
Continuous  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
0-1-2-3-4-5-6-7-8-9-10..  
1-2-3-4-5-6-7-8-9-10-11..  
2-3-4-5-6-7-8-9-10-11-12..  
3-4-5-6-7-8-9-10-11-12-13..  
4-5-6-7-8-9-10-11-2-13-14..  
5-6-7-8-9-10-11-12-13-14..  
1-0-3-2  
2-3-0-1  
3-2-1-0  
6-7-4-5-2-3-0-1 6-7-8-9-10-11-12-13-14-15..  
7-6-5-4-3-2-1-0 7-8-9-10-11-12-13-14-15-16..  
8-9-10-11-12-13-14-15-16-17..  
0-1-2-3-4-5-6-7-8-9-10..  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
4-5-6-7  
5-6-7-8  
6-7-8-9  
7-8-9-10  
8-9-10-11  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-14  
8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11..  
2-3-4-5-6-7-8-9-10-11-12..  
3-4-5-6-7-8-9-10-11-12-13..  
4-5-6-7-8-9-10-11-12-13-14..  
5-6-7-8-9-10-11-12-13-14..  
6-7-8-9-10-11-12-13-14-15..  
7-8-9-10-11-12-13-14-15-16..  
8-9-10-11-12-13-14-15-16-17..  
26/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Bus operations  
Figure 4.  
Example burst configuration X-1-1-1  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
4-1-1-1  
5-1-1-1  
DQ  
VALID  
VALID  
VALID  
VALID  
DQ  
DQ  
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
6-1-1-1  
7-1-1-1  
8-1-1-1  
VALID  
VALID  
AI03841  
Figure 5.  
Example burst configuration X-2-2-2  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
5-2-2-2  
DQ  
DQ  
DQ  
NV  
VALID  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
NV  
6-2-2-2  
7-2-2-2  
8-2-2-2  
VALID  
NV=NOT VALID  
AI04406b  
27/70  
Command interface  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
4
Command interface  
All bus write operations to the memory are interpreted by the command interface.  
Commands consist of one or more sequential bus write operations. The commands are  
summarized in Table 9: Commands. Refer to Table 9 in conjunction with the text  
descriptions below.  
4.1  
4.2  
Read Memory Array command  
The Read Memory Array command returns the memory to read mode. One bus write cycle  
is required to issue the Read Memory Array command and return the memory to read mode.  
Subsequent read operations will output the addressed memory array data. Once the  
command is issued the memory remains in read mode until another command is issued.  
From read mode bus read commands will access the memory array.  
Read Electronic Signature command  
The Read Electronic Signature command is used to read the manufacturer code, the device  
code or the burst configuration register. One bus write cycle is required to issue the Read  
Electronic Signature command. Once the command is issued subsequent bus read  
operations, depending on the address specified, read the manufacturer code, the device  
code or the burst configuration register until another command is issued; see Table 5:  
Asynchronous read electronic signature operation.  
4.3  
Read Query command  
The Read Query command is used to read data from the common Flash interface (CFI)  
memory area. One bus write cycle is required to issue the Read Query command. Once the  
command is issued subsequent bus read operations, depending on the address specified,  
read from the common Flash interface memory area. See Appendix A: Common Flash  
interface (CFI), Table 26, Table 27, Table 28, Table 29 and Table 30 for details on the  
information contained in the common Flash interface (CFI) memory area.  
28/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Command interface  
4.4  
Read Status Register command  
The Read Status Register command is used to read the status register. One bus write cycle  
is required to issue the Read Status Register command. Once the command is issued  
subsequent bus read operations read the status register until another command is issued.  
The status register information is present on the output data bus (DQ1-DQ7) when Chip  
Enable E and Output Enable G are at V and Output Disable is at V .  
IL  
IH  
An interactive update of the status register bits is possible by toggling Output Enable or  
Output Disable. It is also possible during a program or erase operation, by deactivating the  
device with Chip Enable at V and then reactivating it with Chip Enable and Output Enable  
IH  
at V and Output Disable at V .  
IL  
IH  
The content of the status register may also be read at the completion of a program, erase or  
suspend operation. During a Block Erase or Program command, DQ7 indicates the  
program/erase controller status. It is valid until the operation is completed or suspended.  
See the section on the status register and Table 11 for details on the definitions of the status  
register bits.  
4.5  
Clear Status Register command  
The Clear Status Register command can be used to reset bits 1, 3, 4 and 5 in the status  
register to ‘0’. One bus write is required to issue the Clear Status Register command. Once  
the command is issued the memory returns to its previous mode, subsequent bus read  
operations continue to output the same data.  
The bits in the status register are sticky and do not automatically return to ‘0’ when a new  
Program or Erase command is issued. If any error occurs then it is essential to clear any  
error bits in the status register by issuing the Clear Status Register command before  
attempting a new Program, Erase or Resume command.  
29/70  
Command interface  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
4.6  
Block Erase command  
The Block Erase command can be used to erase a block. It sets all of the bits in the block to  
‘1’. All previous data in the block is lost. If the block is protected then the erase operation will  
abort, the data in the block will not be changed and the status register will output the error.  
Two bus write operations are required to issue the command; the first write cycle sets up the  
Block Erase command, the second write cycle confirms the Block Erase command and  
latches the block address in the program/erase controller and starts it. The sequence is  
aborted if the Confirm command is not given and the device will output the status register  
data with bits 4 and 5 set to '1'.  
Once the command is issued subsequent bus read operations read the status register. See  
the section on the status register for details on the definitions of the status register bits.  
During the erase operation the memory will only accept the Read Status Register command  
and the Program/Erase Suspend command. All other commands will be ignored. The  
command can be executed using either V (for a normal erase operation) or V (for a fast  
DD  
PP  
erase operation). If V is in the V  
range when the command is issued then a fast erase  
PP  
PPH  
operation will be executed, otherwise the operation will use V . If V goes below the V  
DD  
PP  
PP  
lockout voltage, V  
, during a fast erase the operation aborts, the status register V  
PPLK  
PP  
status bit is set to ‘1’ and the command must be re-issued.  
Typical erase times are given in Table 10.  
See Appendix B: Flowcharts, Figure 24: Block erase flowchart and pseudocode, for a  
suggested flowchart on using the Block Erase command.  
4.7  
Program command  
The Program command is used to program the memory array. Two bus write operations are  
required to issue the command; the first write cycle sets up the Program command, the  
second write cycle latches the address and data to be programmed in the program/erase  
controller and starts it. A program operation can be aborted by writing FFFFFFFFh to any  
address after the program set-up command has been given.  
Once the command is issued subsequent bus read operations read the status register. See  
the section on the status register for details on the definitions of the status register bits.  
During the program operation the memory will only accept the Read Status Register  
command and the Program/Erase Suspend command. All other commands will be ignored.  
If Reset/Power-down, RP, falls to V during programming the operation will be aborted.  
IL  
The command can be executed using either V (for a normal program operation) or V  
DD  
PP  
(for a fast program operation). If V is in the V  
range when the command is issued then  
PP  
PPH  
a fast program operation will be executed, otherwise the operation will use V . If V goes  
DD  
PP  
below the V lockout voltage, V  
, during a fast program the operation aborts and the  
PP  
PPLK  
status register V status bit is set to ‘1’. As data integrity cannot be guaranteed when the  
PP  
program operation is aborted, the memory block must be erased and reprogrammed.  
See Appendix B: Flowcharts on page 59, Figure 22: Program flowchart and pseudocode, for  
a suggested flowchart on using the Program command.  
30/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Command interface  
4.8  
Program/Erase Suspend command  
The Program/Erase Suspend command is used to pause a program or erase operation. The  
command will only be accepted during a program or erase operation. It can be issued at any  
time during a program or erase operation. The command is ignored if the device is already  
in suspend mode.  
One bus write cycle is required to issue the Program/Erase Suspend command and pause  
the program/erase controller. Once the command is issued it is necessary to poll the  
program/erase controller status bit (bit 7) to find out when the program/erase controller has  
paused; no other commands will be accepted until the program/erase controller has paused.  
After the program/erase controller has paused, the memory will continue to output the status  
register until another command is issued.  
During the polling period between issuing the Program/Erase Suspend command and the  
program/erase controller pausing it is possible for the operation to complete. Once the  
program/erase controller status bit (bit 7) indicates that the program/erase controller is no  
longer active, the program suspend status bit (bit 2) or the erase suspend status bit (bit 6)  
can be used to determine if the operation has completed or is suspended. For timing on the  
delay between issuing the Program/Erase Suspend command and the program/erase  
controller pausing see Table 10.  
During Program/Erase Suspend the Read Memory Array, Read Status Register, Read  
Electronic Signature, Read Query and Program/Erase Resume commands will be accepted  
by the command interface. Additionally, if the suspended operation was erase then the  
Program and the Program Suspend commands will also be accepted. When a program  
operation is completed inside a Block Erase Suspend the Read Memory Array command  
must be issued to reset the device in read mode, then the Erase Resume command can be  
issued to complete the whole sequence. Only the blocks not being erased may be read or  
programmed correctly.  
See Appendix B: Flowcharts, Figure 23: Program suspend & resume flowchart and  
pseudocode, and Figure 25: Erase suspend & resume flowchart and pseudocode, for  
suggested flowcharts on using the Program/Erase Suspend command.  
4.9  
Program/Erase Resume command  
The Program/Erase Resume command can be used to restart the program/erase controller  
after a program/erase suspend operation has paused it. One bus write cycle is required to  
issue the Program/Erase Resume command.  
See Appendix B: Flowcharts, Figure 23: Program suspend & resume flowchart and  
pseudocode, and Figure 25: Erase suspend & resume flowchart and pseudocode, for  
suggested flowcharts on using the Program/Erase Resume command.  
31/70  
Command interface  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
4.10  
Set Burst Configuration Register command  
The Set Burst Configuration Register command is used to write a new value to the burst  
configuration control register which defines the burst length, type, X and Y latencies,  
synchronous/asynchronous read mode and the valid clock edge configuration.  
Two bus write cycles are required to issue the Set Burst Configuration Register command.  
The first cycle writes the setup command and the address corresponding to the set burst  
configuration register content. The second cycle writes the burst configuration register data  
and the confirm command. Once the command is issued the memory returns to read mode  
as if a Read Memory Array command had been issued.  
The value for the burst configuration register is always presented on A0-A15. M0 is on A0,  
M1 on A1, etc.; the other address bits are ignored.  
(1)  
Table 9.  
Commands  
Bus operations  
Command  
1st cycle  
2nd cycle  
Op.  
Addr.  
Data  
Op.  
Addr.  
Data  
Read Memory Array  
2  
2  
Write  
X
FFh  
Read  
RA  
RD  
Read Electronic Signature  
(manufacturer code)  
Write  
Write  
Write  
X
X
X
90h  
90h  
90h  
Read  
Read  
Read  
00000h  
00001h  
00005h  
20h  
IDh  
Read Electronic Signature  
(device code)  
2  
2  
Read Electronic Signature  
(burst configuration register)  
BCRh  
Read Status Register  
Read Query  
2
2  
1
Write  
Write  
Write  
Write  
X
X
X
X
70h  
98h  
50h  
20h  
Read  
Read  
X
SRDh  
QDh  
QAh  
Clear Status Register  
Block Erase  
2
Write  
Write  
BAh  
PA  
D0h  
PD  
40h  
10h  
Program  
2
Write  
X
Program/Erase Suspend  
Program/Erase Resume  
1
1
2
Write  
Write  
Write  
X
X
X
B0h  
D0h  
60h  
Set Burst Configuration Register  
Write  
BCRh  
03h  
1. X = Don’t care; RA = Read Address, RD = Read Data, ID = Device Code, SRD = Status Register Data, PA  
= Program Address; PD = Program Data, QA = Query Address, QD = Query Data, BA = Any address in the  
Block, BCR = Burst Configuration Register value.  
32/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Command interface  
(1)  
Table 10. Program, erase times and program, erase endurance cycles  
M58BW016  
Parameters  
Typ  
Max  
Unit  
Min  
VPP = VDD VPP = 12 V VPP = VDD VPP = 12 V  
Parameter Block (64 Kbits)  
Program  
0.030  
0.23  
0.016  
0.13  
0.060  
0.46  
0.032  
0.26  
s
s
Main Block (512 Kbits)  
Program  
Parameter Block Erase  
Main Block Erase  
0.8  
1.5  
0.64  
0.9  
1.8  
3
1.5  
1.8  
s
s
Program Suspend Latency  
time  
3
10  
30  
µs  
µs  
Erase Suspend Latency time  
10  
Program/Erase cycles (per  
block)  
100,000  
cycles  
1. TA = –40 to 125 °C, VDD = 2.7 V to 3.6 V, VDDQ = 2.4 V to VDD  
.
33/70  
Status register  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
5
Status register  
The Status register provides information on the current or previous program or erase  
operation. The various bits in the status register convey information and errors on the  
operation. They are output on DQ7-DQ0.  
To read the status register the Read Status Register command can be issued. The status  
register is automatically read after Program, Erase or Program/Erase Resume commands.  
The status register can be read from any address.  
The contents of the status register can be updated during an erase or program operation by  
toggling the Output Enable or Output Disable pins or by deactivating (Chip Enable, V ) and  
IH  
then reactivating (Chip Enable and Output Enable, V , and Output Disable, V .) the device.  
IL  
IH  
The status register bits are summarized in Table 11: Status register bits. Refer to Table 11 in  
conjunction with the following text descriptions.  
5.1  
Program/erase controller status (bit 7)  
The Program/erase controller status bit indicates whether the program/erase controller is  
active or inactive. When the program/erase controller status bit is set to ‘0’, the  
program/erase controller is active; when bit7 is set to ‘1’, the program/erase controller is  
inactive.  
The program/erase controller status is set to ‘0’ immediately after a Program/Erase Suspend  
command is issued until the program/erase controller pauses. After the program/erase  
controller pauses the bit is set to ‘1’.  
During program and erase operations the program/erase controller status bit can be polled  
to find the end of the operation. The other bits in the status register should not be tested until  
the program/erase controller completes the operation and the bit is set to ‘1’.  
After the program/erase controller completes its operation the erase status (bit5), program  
status bits should be tested for errors.  
5.2  
Erase suspend status (bit 6)  
The erase suspend status bit indicates that an erase operation has been suspended and is  
waiting to be resumed. The erase suspend status should only be considered valid when the  
program/erase controller status bit is set to ‘1’ (program/erase controller inactive); after a  
Program/Erase Suspend command is issued the memory may still complete the operation  
rather than entering the suspend mode.  
When the erase suspend status bit is set to ‘0’, the program/erase controller is active or has  
completed its operation; when the bit is set to ‘1’, a Program/Erase Suspend command has  
been issued and the memory is waiting for a Program/Erase Resume command.  
When a Program/Erase Resume command is issued the erase suspend status bit returns to  
‘0’.  
34/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Status register  
5.3  
Erase status (bit 5)  
The erase status bit can be used to identify if the memory has failed to verify that the block  
has erased correctly. The erase status bit should be read once the program/erase controller  
status bit is High (program/erase controller inactive).  
When the erase status bit is set to ‘0’, the memory has successfully verified that the block  
has erased correctly. When the erase status bit is set to ‘1’, the program/erase controller has  
applied the maximum number of pulses to the block and still failed to verify that the block  
has erased correctly.  
Once set to ‘1’, the erase status bit can only be reset to ‘0’ by a Clear Status Register  
command or a hardware reset. If set to ‘1’ it should be reset before a new Program or Erase  
command is issued, otherwise the new command will appear to fail.  
5.4  
Program status (bit 4)  
The program status bit is used to identify a program failure. Bit4 should be read once the  
program/erase controller status bit is High (program/erase controller inactive).  
When bit4 is set to ‘0’ the memory has successfully verified that the device has programmed  
correctly. When bit4 is set to ‘1’ the device has failed to verify that the data has been  
programmed correctly.  
Once set to 1’, the program status bit can only be reset to ‘0’ by a Clear Status Register  
command or a hardware reset. If set to ‘1’ it should be reset before a new Program or Erase  
command is issued, otherwise the new command will appear to fail.  
5.5  
VPP status (bit 3)  
The V status bit can be used to identify an invalid voltage on the V pin during fast  
PP  
PP  
program and erase operations. The V pin is only sampled at the beginning of a program  
PP  
or erase operation. Indeterminate results can occur if V becomes invalid during a fast  
PP  
program or erase operation.  
When the V status bit is set to ‘0’, the voltage on the V pin was sampled at a valid  
PP  
PP  
voltage; when the V status bit is set to ‘1’, the V pin has a voltage that is below the V  
PP  
PP  
PP  
lockout voltage, V  
.
PPLK  
Once set to ‘1’, the V status bit can only be reset to ‘0’ by a Clear Status Register  
PP  
command or a hardware reset. If set to ‘1’ it should be reset before a new Program or Erase  
command is issued, otherwise the new command will appear to fail.  
35/70  
Status register  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
5.6  
Program suspend status (bit 2)  
The program suspend status bit indicates that a program operation has been suspended  
and is waiting to be resumed. The program suspend status should only be considered valid  
when the program/erase controller status bit is set to ‘1’ (program/erase controller inactive);  
after a Program/Erase Suspend command is issued the memory may still complete the  
operation rather than entering the suspend mode.  
When the program suspend status bit is set to ‘0’, the program/erase controller is active or  
has completed its operation; when the bit is set to ‘1’, a Program/Erase Suspend command  
has been issued and the memory is waiting for a Program/Erase Resume command.  
When a Program/Erase Resume command is issued the program suspend status bit returns  
to ‘0’.  
5.7  
Block protection status (bit 1)  
The block protection status bit can be used to identify if a program or erase operation has  
tried to modify the contents of a protected block.  
When the block protection status bit is set to ‘0’, no program or erase operations have been  
attempted to protected blocks since the last Clear Status Register command or hardware  
reset; when the block protection status bit is set to ‘1’, a program or erase operation has  
been attempted on a protected block.  
Once set to ‘1’, the block protection status bit can only be reset Low by a Clear Status  
Register command or a hardware reset. If set to ‘1’ it should be reset before a new Program  
or Erase command is issued, otherwise the new command will appear to fail.  
All others bits are reserved.  
Table 11. Status register bits  
Bit  
Name  
Logic level  
Definition  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
Ready  
Program/erase controller  
status  
7
Busy  
Suspended  
6
5
4
3
2
1
Erase suspend status  
Erase status  
In progress or completed  
Erase error  
Erase success  
Program error  
Program status,  
Program success  
VPP invalid, abort  
VPP status  
VPP OK  
Suspended  
Program suspend status  
In progress or completed  
Program/erase on protected block, abort  
No operations to protected sectors  
Erase/program in a protected  
block  
Other bits reserved  
36/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Maximum ratings  
6
Maximum ratings  
Stressing the device above the ratings listed in Table 12: Absolute maximum ratings, may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the Numonyx SURE Program  
and other relevant quality documents.  
Table 12. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature under bias  
Storage temperature  
–40  
–55  
125  
155  
°C  
°C  
VDDQ + 0.6  
VIO  
Input or output voltage  
–0.6  
V
VDDQIN + 0.6  
V
DD, VDDQ, VDDQIN Supply voltage  
–0.6  
–0.6  
4.2  
V
V
VPP Program voltage  
13.5(1)  
1. Cumulative time at a high voltage level of 13.5 V should not exceed 80 hours on VPP pin.  
37/70  
DC and AC parameters  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
7
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics tables that  
follow, are derived from tests performed under the measurement conditions summarized in  
Table 13: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the measurement conditions when relying on the  
quoted parameters.  
Table 13. Operating and AC measurement conditions  
Value  
Parameter  
Units  
Min  
Max  
Supply voltage (VDD  
)
2.7  
2.4  
3.6  
VDD  
90  
V
V
Input/output supply voltage (VDDQ  
)
Grade 6  
Grade 3  
–40  
–40  
°C  
°C  
pF  
ns  
ns  
V
Ambient temperature (TA)  
125  
Load capacitance (CL)  
Clock rise and fall times  
Input rise and fall times  
Input pulses voltages  
30  
4
4
0 to VDDQ  
VDDQ/2  
Input and output timing ref. voltages  
V
Figure 6.  
AC measurement input/output waveform  
V
DDQ  
V
DDQIN  
V
/2  
/2  
DDQ  
V
DDQIN  
0 V  
AI04153  
1. VDD = VDDQ  
.
38/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 7. AC measurement load circuit  
DC and AC parameters  
1.3 V  
1N914  
3.3 kΩ  
DEVICE  
UNDER  
TEST  
OUT  
C
L
C
includes JIG capacitance  
L
AI04154  
(1)(2)  
Table 14. Device capacitance  
Symbol  
Parameter  
Test condition  
Typ  
Max  
Unit  
CIN  
Input capacitance  
VIN = 0 V  
6
8
8
pF  
pF  
COUT  
Output capacitance  
VOUT = 0 V  
12  
1. TA = 25 °C, f = 1 MHz.  
2. Sampled only, not 100% tested.  
39/70  
DC and AC parameters  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Table 15. DC characteristics  
Symbol  
Parameter  
Test condition  
Min  
Max  
Unit  
ILI  
Input Leakage current  
Output Leakage current  
0 VVIN VDDQ  
0 VVOUT VDDQ  
1
5
µA  
µA  
ILO  
M58BW016DT/B  
M58BW016FT/B  
20  
25  
E = VIL,G = VIH,  
fadd = 6 MHz  
IDD  
Supply current (Random Read)  
Supply current (Power-up)  
mA  
mA  
mA  
applies only to  
M58BW016FT/B  
(1)  
IDDP-UP  
E = VIH  
20  
30  
M58BW016DT/B  
M58BW016FT/B  
M58BW016DT/B  
M58BW016FT/B  
M58BW016DT/B  
M58BW016FT/B  
E = VIL,G = VIH,  
f
clock = 40 MHz  
IDDB  
Supply current (Burst Read)  
Supply current (Standby)  
30  
40  
mA  
mA  
µA  
E = VIL,G = VIH,  
fclock = 56 MHz  
60  
E = RP = VDD  
0.2 V  
150  
µA  
IDD1  
E = VSS 0.2 V,  
RP = VDD 0.2 V  
Supply current (Auto Low-Power)  
Supply current (Reset/Power-down)  
60  
60  
30  
µA  
µA  
IDD2  
IDD3  
RP = VSS 0.2 V  
Supply current (Program or Erase,  
Set Lock bit, Erase Lock bit)  
Program, Block Erase in progress  
mA  
M58BW016DT/B  
E = VIH  
40  
150  
30  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
mA  
V
Supply current  
(Erase/Program Suspend)  
IDD4  
M58BW016FT/B  
IPP  
IPP1  
IPP2  
Program current (Read or Standby)  
Program current (Read or Standby)  
Program current (Power-down)  
VPP VPP1  
VPP VPP1  
RP = VIL  
30  
5
VPP = VPP1  
VPP = VPPH  
VPP = VPP1  
200  
20  
Program current (Program)  
Program in progress  
IPP3  
200  
20  
Program current (Erase) Erase in  
progress  
IPP4  
VPP = VPPH  
VIL  
Input Low voltage  
–0.5  
0.2VDDQIN  
VIH  
Input High voltage (for DQ lines)  
0.8VDDQIN VDDQ+0.3  
V
Input High voltage (for input only  
lines)  
VIH  
0.8VDDQIN  
3.6  
0.1  
V
VOL  
VOH  
Output Low voltage  
IOL = 100 µA  
V
V
Output High voltage CMOS  
IOH = –100 µA  
VDDQ–0.1  
2.7  
Program voltage  
(program or erase operations)  
VPP1  
VPPH  
VLKO  
VPPLK  
3.6  
12.6  
2.2  
V
V
V
V
Program voltage  
(program or erase operations)  
11.4  
VDD supply voltage (erase and  
program lockout)  
VPP supply voltage (erase and  
program lockout)  
11.4  
1. IDDP-UP is defined only during the power-up phase of the M58BW016FT/B, from the moment current is applied with RP Low  
to the moment when the supply voltage has become stable and RP is brought to High.  
40/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
DC and AC parameters  
Figure 8.  
Asynchronous bus read AC waveforms  
tAVAV  
VALID  
A0-A18  
tAVQV  
tEHLX  
tLLEL  
L
tELQX  
tELQV  
tAXQX  
E
tGLQX  
tGLQV  
tEHQX  
tEHQZ  
G
GD  
tGHQX  
tGHQZ  
DQ0-DQ31  
OUTPUT  
See also Page Read  
AI04407C  
.
Table 16. Asynchronous bus read AC characteristics  
M58BW016  
Symbol  
Parameter  
Test condition  
Unit  
70  
80  
tAVAV Address Valid to Address Valid  
E = VIL, G = VIL Min  
70  
80  
80  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVQV Address Valid to Output Valid  
E = VIL, G = VIL Max 70  
tAXQX Address Transition to Output Transition  
tEHLX Chip Enable High to Latch Enable Transition  
tEHQX Chip Enable High to Output Transition  
E = VIL, G = VIL Min  
Min  
0
0
0
0
G = VIL  
G = VIL  
G = VIL  
G = VIL  
E = VIL  
E = VIL  
E = VIL  
E = VIL  
Min  
0
tEHQZ Chip Enable High to Output Hi-Z  
Max 20  
Max 70  
20  
80  
0
(1)  
tELQV  
Chip Enable Low to Output Valid  
tELQX Chip Enable Low to Output Transition  
tGHQX Output Enable High to Output Transition  
tGHQZ Output Enable High to Output Hi-Z  
tGLQV Output Enable Low to Output Valid  
tGLQX Output Enable to Output Transition  
tLLEL Latch Enable Low to Chip Enable Low  
Min  
Min  
0
0
0
Max 15  
Max 25  
15  
25  
0
Min  
Min  
0
0
0
1. Output Enable G may be delayed up to tELQV - tGLQV after the falling edge of Chip Enable E without  
increasing tELQV  
.
41/70  
DC and AC parameters  
Figure 9.  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Asynchronous latch controlled bus read AC waveforms  
A0-A18  
VALID  
tAVLL  
tLHAX  
L
tLHLL  
tLLLH  
tELLL  
tEHLX  
E
tEHQX  
tEHQZ  
tGLQX  
tGLQV  
G
tLLQX  
tLLQV  
tGHQX  
GHQZ  
DQ0-DQ31  
OUTPUT  
See also Page Read  
AI03645  
Table 17. Asynchronous latch controlled bus read AC characteristics  
M58BW016  
Symbol  
Parameter  
Test condition  
Unit  
70  
80  
tAVLL Address Valid to Latch Enable Low  
tEHLX Chip Enable High to Latch Enable Transition  
tEHQX Chip Enable High to Output Transition  
tEHQZ Chip Enable High to Output Hi-Z  
E = VIL  
Min  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min  
Min  
Max  
Min  
Min  
Max  
Max  
Min  
Min  
Min  
Min  
G = VIL  
G = VIL  
0
0
20  
0
20  
0
tELLL Chip Enable Low to Latch Enable Low  
tGHQX Output Enable High to Output Transition  
tGHQZ Output Enable High to Output Hi-Z  
tGLQV Output Enable Low to Output Valid  
tGLQX Output Enable Low to Output Transition  
tLHAX Latch Enable High to Address Transition  
tLHLL Latch Enable High to Latch Enable Low  
tLLLH Latch Enable Low to Latch Enable High  
tLLQV Latch Enable Low to Output Valid  
E = VIL  
E = VIL  
E = VIL  
E = VIL  
E = VIL  
0
0
15  
25  
0
15  
25  
0
5
5
10  
10  
70  
0
10  
10  
80  
0
E = VIL  
E = VIL, G = VIL Max  
E = VIL, G = VIL Min  
tLLQX Latch Enable Low to Output Transition  
42/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 10. Asynchronous page read AC waveforms  
DC and AC parameters  
A0-A1  
A0 and/or A1  
tAVQV1  
tAXQX  
OUTPUT + 1  
OUTPUT  
DQ0-DQ31  
AI03646  
(1)  
Table 18. Asynchronous page read AC characteristics  
M58BW016  
Symbol Parameter Test condition  
Unit  
70  
E = VIL, G = VIL Max 25  
E = VIL, G = VIL Min  
80  
tAVQV1 Address Valid to Output Valid  
25  
6
ns  
ns  
tAXQX Address Transition to Output Transition  
6
1. For other timings see Table 16: Asynchronous bus read AC characteristics.  
43/70  
DC and AC parameters  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 11. Asynchronous write AC waveforms  
44/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
DC and AC parameters  
Figure 12. Asynchronous latch controlled write AC waveforms  
45/70  
DC and AC parameters  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Table 19. Asynchronous write and latch controlled write AC characteristics  
M58BW016  
Symbol  
Parameter  
Test condition  
Unit  
70  
80  
tAVLL Address Valid to Latch Enable Low  
tAVWH Address Valid to Write Enable High  
tDVWH Data Input Valid to Write Enable High  
tELLL Chip Enable Low to Latch Enable Low  
tELWL Chip Enable Low to Write Enable Low  
tLHAX Latch Enable High to Address Transition  
tLLLH Latch Enable Low to Latch Enable High  
tLLWH latch Enable Low to Write Enable High  
tQVVPL Output Valid to VPP Low  
Min  
0
50  
50  
0
0
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
E = VIL  
E = VIL  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
0
0
5
5
10  
50  
0
10  
50  
0
E = VIL  
tVPHWH VPP High to Write Enable High  
0
0
tWHAX Write Enable High to Address Transition  
tWHDX Write Enable High to Input Transition  
tWHEH Write Enable High to Chip Enable High  
tWHGL Write Enable High to Output Enable Low  
tWHQV Write Enable High to Output Valid  
tWHWL Write Enable High to Write Enable Low  
tWLWH Write Enable Low to Write Enable High  
tQVPL Output Valid to Reset/Power-down Low  
E = VIL  
E = VIL  
0
0
0
0
0
0
150  
175  
20  
60  
0
150  
175  
20  
60  
0
E = VIL  
46/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
DC and AC parameters  
Figure 13. Synchronous burst read (data valid from ‘n’ clock rising edge)  
1. The M58BW016F first data output is synchronized with the clock’s active edge, while the M58BW016D first  
data output is not synchronized with the clock’s active edge.  
2. In the M58BW016F devices the right access time depends on the clock frequency.  
3. For further details, please refer to the section 3.2 Clock signal in burst mode in the application note  
AN2461.  
47/70  
DC and AC parameters  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
(1)  
Table 20. Synchronous burst read AC characteristics  
M58BW016  
Symbol  
Parameter  
Test condition  
Unit  
70  
80  
tAVLL Address Valid to Latch Enable Low  
E = VIL  
Min  
0
0
ns  
ns  
Burst Address Advance High to Valid  
Clock Edge  
tBHKH  
E = VIL, G = VIL, L = VIH Min  
8
8
8
Burst Address Advance Low to Valid  
Clock Edge  
tBLKH  
E = VIL, G = VIL, L = VIH Min  
Min  
8
0
ns  
tELLL Chip Enable Low to Latch Enable Low  
tGLQV Output Enable Low to Output Valid  
0
ns  
ns  
E = VIL, L = VIH  
E = VIL  
Min 25  
25  
Valid Clock Edge to Address  
Transition  
tKHAX  
Min  
Min  
Min  
5
0
0
5
0
0
ns  
ns  
ns  
tKHLL Valid Clock Edge to Latch Enable Low  
E = VIL  
Valid Clock Edge to Latch Enable  
Transition  
tKHLX  
E = VIL  
E = VIL, M58BW016DT/B Min  
3
2
3
2
ns  
ns  
tKHQX Valid Clock Edge to Output Transition G = VIL,  
L = VIH  
M58BW016FT/B Min  
M58BW016DT/B Min  
M58BW016FT/B Min  
6
5
6
6
5
6
ns  
ns  
ns  
tLLKH Latch Enable Low to Valid Clock Edge E = VIL  
(2)  
tQVKH  
Output Valid to Valid Clock Edge  
E = VIL, G = VIL, L = VIH Min  
E = VIL, G = VIL, L = VIH Min  
Valid Data Ready Low to Valid Clock  
Edge  
tRLKH  
6
6
ns  
ns  
tKHQV Valid Clock Edge to Output Valid  
E = VIL, G = VIL, L = VIH Max 11  
11  
1. For other timings see Table 16: Asynchronous bus read AC characteristics.  
2. Data output should be read on the valid clock edge.  
Figure 14. Synchronous burst read (data valid from ‘n’ clock rising edge)  
n
n+1  
n+2  
n+3  
n+4  
n+5  
K
tKHQV  
tQVKH  
DQ0-DQ31  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
tKHQX  
SETUP  
Burst Read  
Q0 to Q3  
Note: n depends on Burst X-Latency  
AI04408b  
1. For set up signals and timings see synchronous burst read.  
48/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
DC and AC parameters  
Figure 15. Synchronous burst read - continuous - valid data ready output  
K
(1)  
Output  
R
V
V
V
V
V
tRLKH  
(2)  
AI03649  
1. Valid Data Ready = Valid Low during valid clock edge.  
2. V= Valid output.  
3. R is an open drain output with an internal pull up resistor of 1 MΩ. The internal timing of R follows DQ. An external resistor,  
typically 300 kΩ. for a single memory on the R bus, should be used to give the data valid set up time required to recognize  
that valid data is available on the next valid clock edge.  
Figure 16. Synchronous burst read - burst address advance  
K
ADD  
VALID  
L
ADD  
G
Q0  
Q1  
Q2  
tGLQV  
tBLKH  
tBHKH  
B
AI03650  
49/70  
DC and AC parameters  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 17. Reset, power-down and power-up AC waveforms - control pins low  
W, G, E  
L
tPHLL  
tPHWL  
tPHEL  
tPHGL  
tPLRZ  
Hi-Z  
Hi-Z  
R
tPHWL  
tPHEL  
tPHGL  
tPHRH  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-up  
Reset  
AI14240  
Figure 18. Reset, power-down and power-up AC waveforms - control pins toggling  
tWLRH  
tGLRH  
tELRH  
tLLRH  
W, G, E  
L
tPHLL  
tPHWL  
tPHEL  
tPHGL  
tPLRZ  
Hi-Z  
Hi-Z  
R
tPHRH  
tPHRH  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-up  
Reset  
AI14241  
50/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
DC and AC parameters  
Figure 19. Power supply slope specification  
Voltage  
VDHH  
VDH  
Time  
tVDH  
AI14230b  
1. Please refer to the application note AN2601.  
Table 21. Power supply AC and DC characteristics  
Symbol  
Description  
Minimum value of power supply  
Min  
Max  
Unit  
VDH  
VDHH  
tVDH  
2.7  
V
V
Maximum value of power supply  
3.6  
Time required from power supply to reach the VDH value  
300  
50000  
µs  
Table 22. Reset, power-down and power-up AC characteristics  
Symbol Parameter  
tPHEL Reset/Power-down High to Chip Enable Low  
Min Max Unit  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
tPHLL  
Reset/Power-down High to Latch Enable Low  
Reset/Power-down High to Output Valid  
(1)  
tPHQV  
95  
95  
tPHWL Reset/Power-down High to Write Enable Low  
tPHGL Reset/Power-down High to Output Enable Low  
50  
50  
tPLPH Reset/Power-down Low to Reset/Power-down High  
100  
(1)  
tPHRH  
Reset/Power-down High to Valid Data Ready High  
M58BW016DT/B  
M58BW016FT/B  
Reset/Power-down Low to Data Ready High Impedance  
10  
50  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
tVDHPH Supply voltages High to Reset/Power-down High  
tPLRZ  
80  
80  
80  
80  
80  
tWLRH Write Enable Low to Data Ready High Impedance  
tGLRH Output Enable Low to Data Ready High Impedance  
tELRH Chip Enable Low to Data Ready High Impedance  
tLLRH Latch Enable Low to Data Ready High Impedance  
1. This time is tPHEL + tAVQV or tPHEL + tELQV  
.
51/70  
Package mechanical  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
8
Package mechanical  
®
In order to meet environmental requirements, Numonyx offers these devices in ECOPACK  
®
packages. ECOPACK packages are lead-free. The category of second level interconnect is  
marked on the package and on the inner box label, in compliance with JEDEC Standard  
JESD97. The maximum ratings related to soldering conditions are also marked on the inner  
box label.  
Figure 20. PQFP80 - 80 lead plastic quad flat pack, package outline  
Ne  
A2  
N
1
e
Nd  
D2 D1  
D
b
E2  
E1  
E
A
c
CP  
L1  
A1  
α
L
QFP-B  
1. Drawing is not to scale.  
52/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Package mechanical  
Table 23. PQFP80 - 80 lead plastic quad flat pack, package mechanical data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
3.40  
0.134  
0.25  
2.55  
0.30  
0.13  
22.95  
19.90  
0.010  
0.100  
0.012  
0.005  
0.903  
0.783  
2.80  
3.05  
0.45  
0.23  
23.45  
20.10  
0.110  
0.120  
0.018  
0.009  
0.923  
0.791  
c
D
23.20  
20.00  
18.40  
0.80  
0.913  
0.787  
0.724  
0.031  
0.677  
0.551  
0.472  
0.031  
0.063  
D1  
D2  
e
E
17.20  
14.00  
12.00  
0.80  
16.95  
13.90  
17.45  
14.10  
0.667  
0.547  
0.687  
0.555  
E1  
E2  
L
0.65  
0.95  
0.026  
0.037  
L1  
a
1.60  
0°  
7°  
0°  
7°  
N
80  
80  
Nd  
Ne  
24  
24  
16  
16  
53/70  
Package mechanical  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 21. LBGA80 10 × 12 mm - 8 × 10 active ball array, 1 mm pitch, package outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1 BALL "A1"  
ddd  
e
e
b
A
A2  
A1  
JE_ME  
1. Drawing is not to scale.  
Table 24. LBGA80 10 × 12 mm - 8 × 10 active ball array, 1 mm pitch, package  
mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.063  
0.40  
0.016  
1.05  
0.041  
0.60  
10.00  
7.00  
0.024  
0.394  
0.276  
D
D1  
ddd  
E
0.006  
0.15  
12.00  
9.00  
0.472  
0.354  
E1  
e
1.00  
0.039  
FD  
FE  
SD  
SE  
1.50  
1.50  
0.059  
0.059  
0.50  
0.50  
0.020  
0.020  
54/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Ordering information  
9
Ordering information  
Table 25. Ordering information scheme  
Example:  
M58 BW016D  
T
8
T
3
F T  
Device type  
M58  
Architecture  
B = Burst mode  
Operating voltage  
W = VDD = 2.7 V to 3.6 V; VDDQ = VDDQIN = 2.4 to VDD  
Device function  
016D = 16-Mbit (x 32), boot block, burst, 0.15 µm  
016F = 16-Mbit (x 32), boot block, burst, 0.11 µm  
Array matrix  
T = Top boot  
B = Bottom boot  
Speed  
7 = 70 ns  
8 = 80 ns (only available in the M58BW016D devices)  
Package  
T = PQFP80  
ZA = LBGA 10 × 12 mm  
Temperature range  
3 = automotive grade certified(1), –40 to 125 °C  
Version  
F = silicon version F (only available in the M58BW016D devices)  
Option  
T = Tape and reel packing  
F = ECOPACK package, tape and reel packing  
1. Qualified & characterized according to AEC Q100 & Q003 or equivalent, advanced screening according to  
AEC Q001 & Q002 or equivalent.  
Note:  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact the Numonyx Sales Office nearest to you.  
55/70  
Common Flash interface (CFI)  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Appendix A  
Common Flash interface (CFI)  
The common Flash interface is a JEDEC approved, standardized data structure that can be  
read from the Flash memory device. It allows a system software to query the device to  
determine various electrical and timing parameters, density information and functions  
supported by the memory. The system can interface easily with the device, enabling the  
software to upgrade itself when necessary.  
When the CFI Query command (RCFI) is issued the device enters CFI query mode and the  
data structure is read from the memory. Table 26, Table 27, Table 28, Table 29 and Table 30  
show the addresses used to retrieve the data.  
Table 26. Query structure overview  
Offset  
Sub-section name  
Description  
Manufacturer code  
00h  
01h  
10h  
1Bh  
27h  
Device code  
CFI Query identification string  
System interface information  
Device geometry definition  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash memory layout  
Primary algorithm-specific extended query Additional information specific to the primary  
table algorithm (optional)  
P(h)(1)  
A(h)(2)  
Alternate algorithm-specific extended query Additional information specific to the  
table alternate algorithm (optional)  
1. Offset 15h defines P which points to the primary algorithm extended query address table.  
2. Offset 19h defines A which points to the alternate algorithm extended query address table.  
(1)(2)  
Table 27. CFI - query address and data output  
Address A0-A18  
Data  
Instruction  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
51h  
52h  
59h  
"Q"  
"R"  
"Y"  
51h;Q’  
Query ASCII String 52h;R’  
59h; ‘Y’  
03h  
00h  
35h  
00h  
00h  
00h  
00h  
00h  
Primary vendor:  
Command set and control interface ID code  
Primary algorithm extended query address table:  
P(h)  
Alternate vendor:  
Command Set and Control interface ID code  
Alternate algorithm extended query address table  
1. The x 8 or byte address and the x 16 or word address mode are not available.  
2. Query data are always presented on DQ7-DQ0. DQ31-DQ8 are set to '0'.  
56/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Common Flash interface (CFI)  
Table 28. CFI - device voltage and timing specification  
Address A0-A18  
Data  
Description  
1Bh  
1Ch  
1Dh  
1Eh  
27h (1) VDD min, 2.7 V  
36h(1)  
B4h(2)  
VDD max, 3.6 V  
VPP min  
C6h(2) VPP max  
1Fh  
04h  
00h  
2n ms typical time-out for Word, DWord prog – not available  
2n ms, typical time-out for max buffer write – not available  
2n ms, typical time-out for Erase Block  
20h  
21h  
0Ah  
22h  
00h  
2n ms, typical time-out for chip erase – not available  
23h-24h  
25h  
Reserved  
04h  
2n x typical for individual block erase time-out maximum  
2n x typical for chip erase max time-out – not available  
26h  
00h  
1. Bits are coded in binary code decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.  
2. Bit7 to bit4 are coded in hexadecimal and scaled in Volts while bit3 to bit0 are in binary code decimal and  
scaled in 100 mV.  
Table 29. Device geometry definition  
Address A0-A18  
Data  
Description  
2n number of bytes memory size  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
15h  
03h  
00h  
00h  
00h  
02h  
1Eh  
00h  
00h  
01h  
07h  
00h  
20h  
00h  
Device interface sync./async.  
Organization sync./async.  
Page size in bytes, 2n  
Bit7-0 = number of erase block regions in device  
Number (n-1) of blocks of identical size; n=31  
Erase block region information x 256 bytes per erase block  
(64 Kbytes)  
Number (n-1) of blocks of identical size; n=8  
Erase block region information x 256 bytes per erase block  
(8 Kbytes)  
57/70  
Common Flash interface (CFI)  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Table 30. Extended query information  
Address Address  
Data (Hex)  
Description  
offset  
A18-A0  
(P)h  
35h  
36h  
37h  
38h  
39h  
50h  
52h  
49h  
"P"  
"R"  
"Y"  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
Query ASCII string - extended table  
31h  
31h  
Major version number  
Minor version number  
Optional feature: (1=yes, 0=no)  
bit0, Chip Erase supported (0=no)  
bit1, Suspend Erase supported (1=yes)  
bit2, Suspend Program supported (1=yes)  
bit3, Lock/Unlock supported (1=yes)  
bit4, Queue Erase supported (0=no)  
bit 31-5 reserved for future use  
(P+5)h  
3Ah  
86h  
(P+6)h  
(P+7)h  
(P+8)h  
3Bh  
3Ch  
3Dh  
01h  
00h  
00h  
Optional features: synchronous read supported  
Function allowed after suspend:  
(P+9)h  
(P+A)h  
3Eh  
3Fh  
01h  
Program allowed after Erase Suspend (1=yes)  
Bit 7-1 reserved for future use  
Reserved  
58/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Flowcharts  
Appendix B  
Flowcharts  
Figure 22. Program flowchart and pseudocode  
Start  
Program Command:  
– write 40h  
Write 40h  
– write Address & Data  
(memory enters read status  
state after the Program command)  
Write Address  
& Data  
Read Status  
Register  
do:  
– read status register  
(E or G must be toggled)  
NO  
b7 = 1  
while b7 = 0  
YES  
NO  
NO  
NO  
V
Invalid  
Error (1)  
If b3 = 1, V  
invalid error:  
– error handler  
PP  
PP  
b3 = 0  
YES  
Program  
Error (1)  
If b4 = 1, Program error:  
– error handler  
b4 = 0  
YES  
Program to Protect  
Block Error  
If b1 = 1, Program to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI03850b  
1. If an error is found, the status register must be cleared before further program/erase operations.  
59/70  
Flowcharts  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 23. Program suspend & resume flowchart and pseudocode  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 0  
If b2 = 0, Program completed  
b2 = 1  
YES  
Program Complete  
Read Memory Array Command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
Program Erase Resume Command:  
– write D0h  
to resume erasure  
– if the program operation completed  
then this is not necessary. The device  
returns to Read Array as normal  
(as if the Program/Erase Suspend  
command was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI00612b  
60/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Flowcharts  
Figure 24. Block erase flowchart and pseudocode  
Start  
Erase Command:  
– write 20h  
Write 20h  
– write Block Address  
(A11-A18) & D0h  
(memory enters read status  
state after the Erase command)  
Write Block Address  
& D0h  
NO  
do:  
Read Status  
– read status register  
(E or G must be toggled)  
if Erase command given execute  
suspend erase loop  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
while b7 = 0  
YES  
NO  
YES  
NO  
NO  
V
Invalid  
If b3 = 1, V  
invalid error:  
– error handler  
PP  
Error (1)  
PP  
b3 = 0  
YES  
Command  
Sequence Error  
If b4, b5 = 1, Command Sequence error:  
– error handler  
b4 and b5  
= 1  
NO  
Erase  
Error (1)  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
YES  
Erase to Protected  
Block Error  
If b1 = 1, Erase to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI03851b  
1. If an error is found, the status register must be cleared before further program/erase operations.  
61/70  
Flowcharts  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 25. Erase suspend & resume flowchart and pseudocode  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 0  
If b6 = 0, Erase completed  
b6 = 1  
YES  
Erase Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
or Program  
Program/Erase Resume command:  
– write D0h to resume the Erase  
operation  
– if the Erase operation completed  
then this is not necessary. The device  
returns to Read mode as normal  
(as if the Program/Erase suspend  
was not issued).  
Write D0h  
Write FFh  
Read Data  
Erase Continues  
AI00615b  
62/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Flowcharts  
Figure 26. Power-up sequence followed by synchronous burst read  
Power-up  
or Reset  
BCR bit 15 = '1'  
Asynchronous Read  
Set Burst Configuration Register Command:  
– write 60h  
Write 60h command  
– write 03h  
and BCR on A15-A0  
Write 03h with A15-A0  
BCR inputs  
BCR bit 15 = '0'  
Synchronous Read  
AI03834b  
63/70  
Flowcharts  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 27. Command interface and program/erase controller flowchart (a)  
WAIT FOR  
COMMAND  
WRITE  
READ  
ARRAY  
NO  
90h  
YES  
READ ELEC.  
SIGNATURE  
NO  
98h  
YES  
D
READ CFI  
NO  
70h  
YES  
READ  
STATUS  
NO  
20h  
YES  
ERASE  
SET-UP  
NO  
40h  
YES  
ERASE  
COMMAND  
ERROR  
NO  
NO  
PROGRAM  
SET-UP  
D0h  
50h  
E
YES  
YES  
A
CLEAR  
STATUS  
C
D
READ  
STATUS  
B
AI03835  
64/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Flowcharts  
Figure 28. Command interface and program/erase controller flowchart (b)  
E
NO  
60h  
YES  
NO  
FFh  
SET BCR  
SET_UP  
YES  
NO  
03h  
YES  
D
AI03836b  
65/70  
Flowcharts  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Figure 29. Command interface and program/erase controller flowchart (c)  
A
B
ERASE  
YES  
READY  
NO  
NO  
READ  
STATUS  
B0h  
YES  
ERASE  
SUSPEND  
YES  
READY  
NO  
NO  
ERASE  
SUSPENDED  
READ  
STATUS  
YES  
YES  
READ  
STATUS  
70h  
NO  
YES  
YES  
PROGRAM  
SET_UP  
40h  
NO  
C
NO  
READ  
STATUS  
READ  
ARRAY  
D0h  
AI03837  
66/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Flowcharts  
Figure 30. Command interface and program/erase controller flowchart (d)  
C
B
PROGRAM  
YES  
READY  
NO  
NO  
READ  
STATUS  
B0h  
YES  
PROGRAM  
SUSPEND  
YES  
READY  
NO  
NO  
PROGRAM  
SUSPENDED  
READ  
STATUS  
YES  
YES  
READ  
STATUS  
70h  
NO  
NO  
YES  
READ  
STATUS  
READ  
ARRAY  
D0h  
AI03838  
67/70  
Revision history  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
10  
Revision history  
Table 31. Document revision history  
Date  
Version  
Changes  
January-2001  
05-Jun-2001  
15-Jun-2001  
17-Jul-2001  
01  
02  
03  
04  
First Issue.  
Major rewrite and restructure.  
Nd and Ne values changed in PQFP80 package mechanical table.  
PQFP80 package outline drawing and mechanical data table updated.  
tLEAD removed from absolute maximum ratings (Table 12).  
80, 90 and 100 ns speed classes defined (Table 16, Table 17, Table 18,  
Table 19 and Table 20 clarified accordingly).  
Figure 13, Figure 14, Figure 15 and Figure 16 clarified.  
Temperature range 3 and 6 added.  
17-Dec-2001  
05  
Table 13, Table 14, Table 15, Table 22 and CFI Table 27, Table 28,  
Table 29, Table 30 clarified.  
Document status changed from Product Preview to Preliminary Data.  
DC characteristics IPP, IPP1 and IDD1 clarified.  
AC Bus Read characteristics timing tGHQZ clarified.  
17-Jan-2002  
30-Aug-2002  
06  
Revision numbering modified: a minor revision will be indicated by  
incrementing the tenths digit, and a major revision, by incrementing the  
units digit of the previous version (e.g. revision version 06 becomes 6.0).  
6.1  
References of VPP pin used for block protection purposes removed.  
Figure 8 modified.  
Datasheet status changed from Preliminary Data to full Datasheet.  
4-Sep-2002  
7.0  
tWLWH parameter modified in Table 19: Asynchronous write and latch  
controlled write AC characteristics.  
Revision history moved to end of document. VPP clarified in Program  
and Block Erase commands and Status Register, VPP Status bit. VPPLK  
added to DC characteristics table. Timing tKHQV modified.  
13-May-2003  
16-Oct-2003  
7.1  
7.2  
Silicon Version added to Ordering Information Scheme.  
Tuning block protection feature removed from the whole document and  
root part numbers M58BW016BT/B have been removed.  
Figure 22, Figure 23, Figure 24, Figure 25, Figure 26 and Figure 28  
updated.  
03-Mar-2005  
8
LBGA80 package (ZA) removed. Lead-free option added.  
90 and 100 ns access times removed and 70 ns added.  
Temperature rage 6 removed from Table 25: Ordering information  
scheme.  
Load capacitance updated in Table 13: Operating and AC measurement  
conditions.  
06-Sep-2005  
3-Mar-2006  
16-Jun-2006  
9
Updated Table 25: Ordering information scheme on page 55 and  
Disclaimer information. Converted document to new template.  
10  
11  
M58BW016FT and M58BW016FB part numbers added. Small text  
changes.  
68/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Table 31. Document revision history (continued)  
Revision history  
Date  
Version  
Changes  
LBGA80 package added (see Figure 21 and Table 24).  
M58BW016FT and M58BW016FB behavior in Burst mode specified  
under Section 3.2.1: Synchronous burst read.  
IDDB, IDD1 and IDD4 current values specified for M58BW016FT and  
M58BW016FB in Table 15: DC characteristics, IDD5 added.  
09-Nov-2006  
12  
tVDHPH specified for M58BW016FT and M58BW016FB in Table 22:  
Reset, power-down and power-up AC characteristics.  
tKHQX specified for M58BW016FT and M58BW016FB in Table 20:  
Synchronous burst read AC characteristics.  
23h-24h reserved in Table 28: CFI - device voltage and timing  
specification. 3Fh reserved in Table 30: Extended query information.  
I
DD current specified for M58BW016DT/B and M58BW016FT/B in  
24-Nov-2006  
05-Oct-2007  
13  
14  
Table 15: DC characteristics.  
Table 7: Burst configuration register and Table 22: Reset, power-down  
and power-up AC characteristics updated.  
Modified values for tLLKH in Table 20: Synchronous burst read AC  
characteristics.  
Figure 17: Reset, power-down and power-up AC waveforms - control  
pins low updated and Figure 18: Reset, power-down and power-up AC  
waveforms - control pins toggling added.  
Small text changes.  
Added: Figure 19: Power supply slope specification and Table 21: Power  
supply AC and DC characteristics.  
16-Jan-2008  
15  
Changed mechanical data of the LBGA package and the description for  
the 010 value of M13 M11 bits in Table 7: Burst configuration register.  
Minor text changes.  
Added: information on data retention and reliability level on page 1, note  
3 below Table 7: Burst configuration register, and note 1, 2, 3 below  
Figure 13: Synchronous burst read (data valid from ‘n’ clock rising edge).  
Modified: note 2 below Table 7: Burst configuration register and  
Table 25: Ordering information scheme.  
12-Mar-2008  
26-Mar-2008  
16  
17  
Minor text changes.  
Applied Numonyx branding.  
69/70  
M58BW016DT, M58BW016DB, M58BW016FT, M58BW016FB  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
70/70  

相关型号:

M58BW016FT

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016FT

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX

M58BW016FT

16 Mbit (512 Kbit x 32, boot block, burst)
MICRON

M58BW016FT70T3FF

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016FT70T3FT

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016FT70ZA3FF

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016FT70ZA3FT

16 Mbit (512 Kb x 32, boot block, burst) 3 V supply Flash memories
STMICROELECTR

M58BW016FT7T3FF

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX

M58BW016FT7T3FT

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX

M58BW016FT7ZA3F

Flash, 512KX32, 70ns, PBGA80, 10 X 12 MM, 1 MM PITCH, LEAD FREE, LBGA-80
NUMONYX

M58BW016FT7ZA3FF

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX

M58BW016FT7ZA3FT

16 Mbit (512 Kbit x 32, boot block, burst) 3 V supply Flash memories
NUMONYX