M58WR016KL70ZA6U [NUMONYX]

16-, 32- and 64-Mbit (x 16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories; 16位, 32位和64兆位( ×16 ,复用I / O ,多银行,突发) 1.8 V电源闪存
M58WR016KL70ZA6U
型号: M58WR016KL70ZA6U
厂家: NUMONYX B.V    NUMONYX B.V
描述:

16-, 32- and 64-Mbit (x 16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
16位, 32位和64兆位( ×16 ,复用I / O ,多银行,突发) 1.8 V电源闪存

闪存 存储 内存集成电路
文件: 总123页 (文件大小:2337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58WR016KU M58WR016KL M58WR032KU  
M58WR032KL M58WR064KU M58WR064KL  
16-, 32- and 64-Mbit (x 16, Mux I/O, Multiple Bank, Burst)  
1.8 V supply Flash memories  
Features  
Supply voltage  
– V = 1.7 V to 2 V for Program, Erase and  
DD  
FBGA  
Read  
– V  
= 1.7 V to 2 V for I/O buffers  
DDQ  
– V = 9 V for fast Program  
PP  
Multiplexed address/data  
VFBGA44 (ZA)  
7.5 × 5 mm  
Synchronous / Asynchronous Read  
– Synchronous Burst Read mode: 86 MHz  
– Random Access: 60 ns, 70 ns  
Synchronous Burst Read Suspend  
Electronic signature  
Programming time  
– Manufacturer Code: 20h  
– 10 µs by Word typical for Factory Program  
– Double/Quadruple Word Program option  
– Enhanced Factory Program options  
Top Device Code,  
M58WR016KU: 8823h  
M58WR032KU: 8828h  
M58WR064KU: 88C0h  
– Bottom Device Code,  
M58WR016KL: 8824h  
M58WR032KL: 8829h  
M58WR064KL: 88C1h  
Memory blocks  
– Multiple Bank memory array: 4 Mbit Banks  
– Parameter Blocks (top or bottom location)  
Dual operations  
– Program Erase in one Bank while Read in  
others  
ECOPACK® packages available  
– No delay between Read and Write  
operations  
Block locking  
– All blocks locked at Power up  
– Any combination of blocks can be locked  
– WP for Block Lock-Down  
Security  
– 128 bit user programmable OTP cells  
– 64 bit unique device number  
Common Flash Interface (CFI)  
100,000 program/erase cycles per block  
December 2007  
Rev 2  
1/123  
www.numonyx.com  
1
Contents  
M58WRxxxKU, M58WRxxxKL  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address inputs (ADQ0-ADQ15, A16-Amax) . . . . . . . . . . . . . . . . . . . . . . . 17  
Data input/output (ADQ0-ADQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Reset/Power-Down (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Latch Enable (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Clock (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.10 Wait (WAIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.11 Bus Invert (BINV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.12  
2.13  
V
DD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DDQ supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
V
2.14 VPP Program supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.15  
2.16  
V
SS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SSQ ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
V
3
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Address Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reset/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4
5
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Command interface - Standard commands . . . . . . . . . . . . . . . . . . . . . 23  
5.1  
Read Array command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/123  
M58WRxxxKU, M58WRxxxKL  
Contents  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Read Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Electronic Signature command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Clear Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Program/Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Program/Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.10 Protection Register Program command . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.11 Set Configuration Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.12 Block Lock command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.13 Block Unlock command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.14 Block Lock-Down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6
Command interface - Factory program commands . . . . . . . . . . . . . . . 31  
6.1  
6.2  
6.3  
Double Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Quadruple Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Enhanced Factory Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Program Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Verify Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.4  
Quadruple Enhanced Factory Program command . . . . . . . . . . . . . . . . . . 35  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Load Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Program and Verify Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Program/Erase Controller Status bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . 38  
Erase Suspend Status bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Erase Status bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Program Status bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
VPP Status bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Program Suspend Status bit (SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3/123  
Contents  
M58WRxxxKU, M58WRxxxKL  
7.7  
7.8  
Block Protection Status bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Bank Write/Multiple Word Program Status bit (SR0) . . . . . . . . . . . . . . . . 40  
8
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Read Select bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Bus Invert Configuration (CR14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
X-Latency bits (CR13-CR11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Wait Polarity bit (CR10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Data Output Configuration bit (CR9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Wait Configuration bit (CR8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Burst Type bit (CR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Valid Clock Edge bit (CR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Power-Down bit (CR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.10 Wrap Burst bit (CR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.11 Burst length bits (CR2-CR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9
Read modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
9.1  
9.2  
Asynchronous Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Synchronous Burst Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
9.2.1  
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
9.3  
Single Synchronous Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10  
11  
Dual operations and multiple bank architecture . . . . . . . . . . . . . . . . . 54  
Block locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.1 Reading a block’s lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.2 Locked state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.3 Unlocked state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.4 Lock-Down state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
11.5 Locking operations during Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . 57  
12  
13  
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 59  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4/123  
M58WRxxxKU, M58WRxxxKL  
Contents  
14  
15  
16  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Appendix A Block address tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Appendix B Common Flash Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Appendix C Flowcharts and pseudocodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
16.1 Enhanced Factory Program pseudocode . . . . . . . . . . . . . . . . . . . . . . . . 114  
16.2 Quadruple enhanced factory program pseudocode . . . . . . . . . . . . . . . . 116  
Appendix D Command interface state tables. . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
5/123  
List of tables  
M58WRxxxKU, M58WRxxxKL  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
M58WR016KU/L bank architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
M58WR032KU/L bank architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
M58WR064KU/L bank architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Standard commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electronic signature codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Factory Program commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Status Register bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
X-latency settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Burst type definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Dual operations allowed in other banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Dual operations allowed in same bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Dual operation limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Program, erase times and endurance cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Operating and ac measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DC characteristics - currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
DC characteristics - voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Asynchronous Read ac characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Synchronous Read ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Write ac characteristics, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Write ac characteristics, Chip Enable controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Reset and Power-up ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
VFBGA44 7.5 × 5 mm, 10 × 4 ball array, 0.50 mm pitch, package mechanical data . . . . . 77  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Top boot block addresses, M58WR016KU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Bottom boot block addresses, M58WR016KL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Top boot block addresses, M58WR032KU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Bottom boot block addresses, M58WR032KL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Top boot block addresses, M58WR064KU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Bottom boot block addresses, M58WR064KL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Query structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
CFI query identification string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
CFI query system interface information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Device geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Primary algorithm-specific extended query table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Protection Register information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Burst Read Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Bank and Erase block region information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Bank and Erase block region 1 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Bank and Erase block region 2 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Command interface states - modify table, next state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Command interface states - Modify table, next output . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
6/123  
M58WRxxxKU, M58WRxxxKL  
List of tables  
Table 49.  
Table 50.  
Table 51.  
Command interface states - Lock table, next state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Command interface states - Lock table, next output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
7/123  
List of figures  
M58WRxxxKU, M58WRxxxKL  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VFBGA44 connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
M58WR016KU/L memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
M58WR032KU/L memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
M58WR064KU/L memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Register memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
X-latency and data output configuration example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Wait configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 10. AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 11. Asynchronous random access read ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 12. Synchronous Burst Read ac waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 13. Single Synchronous Read ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 14. Synchronous Burst Read Suspend ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 15. Clock input ac waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 16. Write ac waveforms, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 17. Write ac waveforms, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 18. Reset and Power-up ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 19. VFBGA44 7.5 × 5 mm, 10 × 4 ball array, 0.50 mm pitch, bottom view package outline . . 76  
Figure 20. Program flowchart and pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 21. Double Word Program flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 22. Quadruple Word Program flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 23. Program Suspend & Resume flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 24. Block Erase flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 25. Erase Suspend & Resume flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 26. Locking operations flowchart and pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 27. Protection Register Program flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 28. Enhanced Factory Program flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 29. Quadruple enhanced factory program flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
8/123  
M58WRxxxKU, M58WRxxxKL  
Description  
1
Description  
The M58WR016KU/L, M58WR032KU/L and M58WR064KU/L are 16-Mbit (1 Mbit × 16), 32-  
Mbit (2 Mbit × 16) and 64-Mbit (4 Mbit × 16) non-volatile Flash memories, respectively. In the  
rest of the document, they will be referred to as M58WRxxxKU/L unless otherwise specified.  
The M58WRxxxKU/L may be erased electrically at block level and programmed in-system  
on a Word-by-Word basis using a 1.7 V to 2 V V supply for the circuitry and a 1.7 V to 2 V  
DD  
V
supply for the Input/Output pins. An optional 9 V V power supply is provided to  
DDQ  
PP  
speed up customer programming.  
The first sixteen address lines are multiplexed with the Data Input/Output signals on the  
multiplexed address/data bus ADQ0-ADQ15. The remaining address lines, A16-Amax, are  
the Most Significant Bit addresses.  
The device features an asymmetrical block architecture:  
the M58WR016KU/L have an array of 39 blocks, and are divided into 4 Mbit banks.  
There are 3 banks each containing 8 main blocks of 32 Kwords, and one parameter  
bank containing 8 parameter blocks of 4 Kwords and 7 main blocks of 32 Kwords.  
the M58WR032KU/L have an array of 71 blocks, and are divided into 4 Mbit banks.  
There are 7 banks each containing 8 main blocks of 32 Kwords, and one parameter  
bank containing 8 parameter blocks of 4 Kwords and 7 main blocks of 32 Kwords.  
the M58WR064KU/L have an array of 135 blocks, and are divided into 4 Mbit banks.  
There are 15 banks each containing 8 main blocks of 32 Kwords, and one parameter  
bank containing 8 parameter blocks of 4 Kwords and 7 main blocks of 32 Kwords.  
The Multiple Bank Architecture allows Dual Operations, while programming or erasing in  
one bank, Read operations are possible in other banks. Only one bank at a time is allowed  
to be in Program or Erase mode. It is possible to perform burst reads that cross bank  
boundaries. The bank architectures are summarized in Tables 2, 3 and 4, and the memory  
maps are shown in Figures 3, 4 and 5. The Parameter Blocks are located at the top of the  
memory address space for the M58WR016KU, M58WR032KU and M58WR064KU, and at  
the bottom for the M58WR016KL, M58WR032KL and M58WR064KL.  
Each block can be erased separately. Erase can be suspended, in order to perform program  
in any other block, and then resumed. Program can be suspended to read data in any other  
block and then resumed. Each block can be programmed and erased over 100,000 cycles  
using the supply voltage V . There are two Enhanced Factory programming commands  
DD  
available to speed up programming.  
Program and Erase commands are written to the Command Interface of the memory. An  
internal Program/Erase Controller takes care of the timings necessary for program and  
erase operations. The end of a program or erase operation can be detected and any error  
conditions identified in the Status Register. The command set required to control the  
memory is consistent with JEDEC standards.  
The device supports synchronous burst read and asynchronous read from all blocks of the  
memory array; at power-up the device is configured for asynchronous read. In synchronous  
burst mode, data is output on each clock cycle at frequencies of up to 86 MHz. The  
synchronous burst read operation can be suspended and resumed.  
9/123  
Description  
M58WRxxxKU, M58WRxxxKL  
The device features an Automatic Standby mode. When the bus is inactive during  
Asynchronous Read operations, the device automatically switches to the Automatic Standby  
mode. In this condition the power consumption is reduced to the standby value I  
outputs are still driven.  
and the  
DD4  
The M58WRxxxKU/L features an instant, individual block locking scheme that allows any  
block to be locked or unlocked with no latency, enabling instant code and data protection. All  
blocks have three levels of protection. They can be locked and locked-down individually  
preventing any accidental programming or erasure. There is an additional hardware  
protection against program and erase. When V V  
all blocks are protected against  
PP  
PPLK  
program or erase. All blocks are locked at Power- Up.  
The device includes a Protection Register to increase the protection of a system’s design.  
The Protection Register is divided into two segments: a 64 bit segment containing a unique  
device number written by Numonyx, and a 128 bit segment One-Time-Programmable (OTP)  
by the user. The user programmable segment can be permanently protected. Figure 6,  
shows the Protection Register memory map.  
The memory is available in a VFBGA44 7.5 × 5 mm, 10 × 4 active ball array, 0.5 mm pitch  
package. It is supplied with all the bits erased (set to ’1’).  
10/123  
M58WRxxxKU, M58WRxxxKL  
Figure 1. Logic diagram  
Description  
V
V
V
DD DDQ PP  
16  
(1)  
A16-Amax  
ADQ0-ADQ15  
W
E
M58WR016KU  
M58WR016KL  
M58WR032KU  
M58WR032KL  
M58WR064KU  
M58WR064KL  
WAIT  
BINV  
G
RP  
WP  
L
K
V
V
SSQ  
SS  
AI13519  
1. Amax is equal to A19 in the M58WR016KU/L, to A20 in the M58WR032KU/L, and to A21 in the  
M58WR064KU/L.  
Table 1.  
Signal names  
Name  
Description  
Direction  
Inputs  
A16-Amax(1)  
Address inputs  
ADQ0-ADQ15  
Data input/outputs or Address inputs, Command inputs  
I/O  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
I/O  
E
Chip Enable  
G
Output Enable  
W
Write Enable  
RP  
Reset/Power-Down  
WP  
K
Write Protect  
Clock  
L
Latch Enable  
WAIT  
BINV  
VDD  
VDDQ  
VPP  
VSS  
VSSQ  
NC  
Wait  
Bus Invert  
Supply voltage  
Supply voltage for input/output buffers  
Optional supply voltage for Fast Program & Erase  
Ground  
Ground input/output supply  
Not connected internally  
1. Amax is equal to A19 in the M58WR016KU/L, to A20 in the M58WR032KU/L, and to A21 in the M58WR064KU/L.  
11/123  
Description  
M58WRxxxKU, M58WRxxxKL  
VFBGA44 connections (top view through package)  
Figure 2.  
12/123  
M58WRxxxKU, M58WRxxxKL  
Description  
Table 2.  
M58WR016KU/L bank architecture  
Number  
Bank Size  
Parameter Blocks  
Main Blocks  
Parameter Bank  
Bank 1  
4 Mbit  
4 Mbit  
4 Mbit  
4 Mbit  
8 blocks of 4 Kword  
7 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
-
-
-
Bank 2  
Bank 3  
Table 3.  
Number  
Parameter Bank  
M58WR032KU/L bank architecture  
Bank Size  
Parameter Blocks  
Main Blocks  
4 Mbit  
4 Mbit  
4 Mbit  
4 Mbit  
8 blocks of 4 Kword  
7 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
Bank 1  
Bank 2  
Bank 3  
-
-
-
Bank 6  
Bank 7  
4 Mbit  
4 Mbit  
-
-
8 blocks of 32 Kword  
8 blocks of 32 Kword  
Table 4.  
Number  
Parameter Bank  
M58WR064KU/L bank architecture  
Bank Size  
Parameter Blocks  
Main Blocks  
4 Mbit  
4 Mbit  
4 Mbit  
4 Mbit  
8 blocks of 4 Kword  
7 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
Bank 1  
Bank 2  
Bank 3  
-
-
-
Bank 14  
Bank 15  
4 Mbit  
4 Mbit  
-
-
8 blocks of 32 Kword  
8 blocks of 32 Kword  
13/123  
Description  
M58WRxxxKU, M58WRxxxKL  
Figure 3.  
M58WR016KU/L memory map  
M58WR016KU - Top Boot Block  
M58WR016KL - Bottom Boot Block  
Address lines ADQ0-ADQ15 and A16-A19  
Address lines ADQ0-ADQ15 and A16-A19  
00000h  
07FFFh  
00000h  
32 KWord  
4 KWord  
00FFFh  
8 Main  
8 Parameter  
Blocks  
Blocks  
Bank 3  
Bank 2  
Bank 1  
38000h  
32 KWord  
3FFFFh  
07000h  
4KWord  
07FFFh  
Parameter  
Bank  
40000h  
47FFFh  
08000h  
0FFFFh  
32 KWord  
32 KWord  
8 Main  
Blocks  
7 Main  
Blocks  
78000h  
32 KWord  
7FFFFh  
38000h  
32 KWord  
3FFFFh  
80000h  
87FFFh  
40000h  
47FFFh  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 1  
Bank 2  
B8000h  
32 KWord  
BFFFFh  
78000h  
32 KWord  
7FFFFh  
C0000h  
C7FFFh  
80000h  
87FFFh  
32 KWord  
32 KWord  
7 Main  
Blocks  
8 Main  
Blocks  
F0000h  
32 KWord  
F7FFFh  
F8000h  
4 KWord  
F8FFFh  
B8000h  
32 KWord  
BFFFFh  
Parameter  
Bank  
C0000h  
32 KWord  
C7FFFh  
8 Parameter  
Blocks  
8 Main  
Blocks  
Bank 3  
FF000h  
FFFFFh  
F8000h  
32 KWord  
FFFFFh  
4 KWord  
AI13521  
14/123  
M58WRxxxKU, M58WRxxxKL  
Description  
Figure 4.  
M58WR032KU/L memory map  
M58WR032KU - Top Boot Block  
M58WR032KL - Bottom Boot Block  
Address lines A20-A16 and ADQ15-ADQ0  
Address lines A20-A16 and ADQ15-ADQ0  
000000h  
007FFFh  
000000h  
4 KWord  
000FFFh  
32 KWord  
8 Main  
8 Parameter  
Blocks  
Blocks  
Bank 7  
038000h  
32 KWord  
03FFFFh  
007000h  
007FFFh  
008000h  
00FFFFh  
4KWord  
Parameter  
Bank  
32 KWord  
7 Main  
Blocks  
038000h  
03FFFFh  
040000h  
047FFFh  
32 KWord  
32 KWord  
100000h  
32 KWord  
107FFFh  
8 Main  
8 Main  
Blocks  
Bank 3  
Bank 2  
Bank 1  
Blocks  
Bank 1  
Bank 2  
Bank 3  
138000h  
32 KWord  
13FFFFh  
078000h  
07FFFFh  
080000h  
087FFFh  
32 KWord  
32 KWord  
140000h  
147FFFh  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
178000h  
32 KWord  
17FFFFh  
0B8000h  
0BFFFFh  
0C0000h  
0C7FFFh  
32 KWord  
32 KWord  
180000h  
187FFFh  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
1B8000h  
32 KWord  
1BFFFFh  
0F8000h  
0FFFFFh  
32 KWord  
1C0000h  
32 KWord  
1C7FFFh  
7 Main  
Blocks  
1F0000h  
32 KWord  
1F7FFFh  
1F8000h  
4 KWord  
1F8FFFh  
Parameter  
Bank  
1C0000h  
1C7FFFh  
32 KWord  
32 KWord  
8 Parameter  
Blocks  
8 Main  
Blocks  
Bank 7  
1FF000h  
1FFFFFh  
1F8000h  
1FFFFFh  
4 KWord  
AI10158  
15/123  
Description  
M58WRxxxKU, M58WRxxxKL  
Figure 5.  
M58WR064KU/L memory map  
M58WR064KU - Top Boot Block  
M58WR064KL - Bottom Boot Block  
Address lines A21-A16 and ADQ15-ADQ0  
Address lines A21-A16 and ADQ15-ADQ0  
000000h  
007FFFh  
000000h  
4 KWord  
32 KWord  
000FFFh  
8 Main  
8 Parameter  
Blocks  
Blocks  
Bank 15  
038000h  
03FFFFh  
007000h  
4KWord  
007FFFh  
32 KWord  
Parameter  
Bank  
008000h  
00FFFFh  
32 KWord  
7 Main  
Blocks  
038000h  
32 KWord  
03FFFFh  
300000h  
307FFFh  
040000h  
047FFFh  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 3  
Bank 2  
Bank 1  
Bank 1  
Bank 2  
Bank 3  
338000h  
33FFFFh  
340000h  
347FFFh  
078000h  
32 KWord  
07FFFFh  
32 KWord  
32 KWord  
080000h  
087FFFh  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
378000h  
37FFFFh  
380000h  
387FFFh  
0B8000h  
32 KWord  
0BFFFFh  
32 KWord  
32 KWord  
0C0000h  
32 KWord  
8 Main  
Blocks  
0C7FFFh  
8 Main  
Blocks  
3B8000h  
3BFFFFh  
3C0000h  
3C7FFFh  
0F8000h  
32 KWord  
0FFFFFh  
32 KWord  
32 KWord  
7 Main  
Blocks  
3F0000h  
3F7FFFh  
3F8000h  
3F8FFFh  
32 KWord  
4 KWord  
Parameter  
Bank  
3C0000h  
32 KWord  
3C7FFFh  
8 Main  
8 Parameter  
Blocks  
Blocks  
Bank 15  
3FF000h  
3FFFFFh  
3F8000h  
32 KWord  
3FFFFFh  
4 KWord  
AI13456  
16/123  
M58WRxxxKU, M58WRxxxKL  
Signal descriptions  
2
Signal descriptions  
See Figure 1: Logic diagram and Table 1: Signal names, for a brief overview of the signals  
connected to this device.  
2.1  
Address inputs (ADQ0-ADQ15, A16-Amax)  
Amax is equal to A19 in the M58WR016KU/L, to A20 in the M58WR032KU/L, and to A21 in  
the M58WR064KU/L.  
The Address Inputs select the cells in the memory array to access during Bus Read  
operations. During Bus Write operations they control the commands sent to the Command  
Interface of the Program/Erase Controller.  
2.2  
2.3  
Data input/output (ADQ0-ADQ15)  
The Data I/O outputs the data stored at the selected address during a Bus Read operation  
or inputs a command or the data to be programmed during a Bus Write operation.  
Chip Enable (E)  
The Chip Enable input activates the memory control logic, input buffers, decoders and  
sense amplifiers. When Chip Enable is at V and Reset is at V the device is in active  
IL  
IH  
mode. When Chip Enable is at V the memory is deselected, the outputs are high  
IH  
impedance and the power consumption is reduced to the standby level.  
2.4  
2.5  
Output Enable (G)  
The Output Enable controls data outputs during the Bus Read operation of the memory.  
Write Enable (W)  
The Write Enable controls the Bus Write operation of the memory’s Command Interface.  
The data is latched on the rising edge of Chip Enable or Write Enable whichever occurs first.  
2.6  
Write Protect (WP)  
Write Protect is an input that gives an additional hardware protection for each block. When  
Write Protect is at V , the Lock-Down is enabled and the protection status of the Locked-  
IL  
Down blocks cannot be changed. When Write Protect is at V , the Lock-Down is disabled  
IH  
and the Locked-Down blocks can be locked or unlocked. (refer to Table 17: Lock status).  
17/123  
Signal descriptions  
M58WRxxxKU, M58WRxxxKL  
2.7  
Reset/Power-Down (RP)  
The Reset/Power-Down input provides a hardware reset of the memory, and/or power-down  
functions, depending on the settings in the Configuration Register. When Reset/Power-  
Down is at V , the memory is in reset mode: the outputs are high impedance and the  
IL  
current consumption is reduced to the Standby Supply Current I  
, or to the Reset/Power-  
DD3  
Down Supply Current I  
if the Power-Down function is enabled. Refer to Table 22: DC  
DD2  
characteristics - currents, for the value of I  
and I  
. After reset all blocks are in the  
DD2  
DD3  
Locked state and the bits of the Configuration Register are reset except for Power-Down bit  
CR5. When Reset/Power-Down is at V , the device is in normal operation. Exiting reset  
IH  
mode the device enters Asynchronous Read mode, but a negative transition of Chip Enable  
or Latch Enable is required to ensure valid data outputs.  
2.8  
2.9  
Latch Enable (L)  
Latch Enable latches the ADQ0-ADQ15 and A16-Amax address bits on its rising edge. The  
address latch is transparent when Latch Enable is at V and it is inhibited when Latch  
IL  
Enable is at V .  
IH  
Clock (K)  
The clock input synchronizes the memory to the microcontroller during synchronous read  
operations; the address is latched on a Clock edge (rising or falling, according to the  
configuration settings) when Latch Enable is at V . Clock is don't care during asynchronous  
IL  
read and in write operations.  
2.10  
2.11  
Wait (WAIT)  
Wait is an output signal used during synchronous read to indicate whether the data on the  
output bus are valid. This output is high impedance when Chip Enable is at V or Reset is  
IH  
at V . It can be configured to be active during the wait cycle or one clock cycle in advance.  
IL  
The WAIT signal is forced deasserted when Output Enable is at V .  
IH  
Bus Invert (BINV)  
Bus invert is an input/output signal used to reduce the amount of power required to switch  
the external address/data bus. Power is saved by inverting the data on ADQ0-ADQ15 each  
time the inversion results in a reduced number of pin transitions. Data is inverted when BINV  
is at V (i.e. if the data is AAAAh and BINV is at V , AAAAh becomes 5555h). BINV is high  
IH  
IH  
impedance when Chip Enable or Output Enable is at V or when Reset/Power Down is at  
IH  
V .  
IL  
2.12  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (Read, Program and Erase).  
18/123  
M58WRxxxKU, M58WRxxxKL  
Signal descriptions  
2.13  
VDDQ supply voltage  
V
provides the power supply to the I/O pins and enables all Outputs to be powered  
DDQ  
independently from V . V  
can be tied to V or can use a separate supply.  
DD DDQ  
DD  
2.14  
VPP Program supply voltage  
V
is both a control input and a power supply pin. The two functions are selected by the  
PP  
voltage range applied to the pin.  
If V is kept in a low voltage range (0 V to V  
) V is seen as a control input. In this case  
PP  
DDQ  
PP  
a voltage lower than V  
gives an absolute protection against program or erase, while  
PPLK  
V
in the V  
range enables these functions (see Tables 22 and 23, DC Characteristics  
PP  
PP1  
for the relevant values). V is only sampled at the beginning of a program or erase; a  
PP  
change in its value after the operation has started does not have any effect and program or  
erase operations continue.  
If V is in the range of V  
it acts as a power supply pin. In this condition V must be  
PP  
PP  
PPH  
stable until the Program/Erase algorithm is completed.  
2.15  
2.16  
VSS ground  
V
ground is the reference for the core supply. It must be connected to the system ground.  
SS  
VSSQ ground  
V
ground is the reference for the input/output circuitry driven by V  
. V  
must be  
SSQ  
SSQ  
DDQ  
connected to V  
.
SS  
Note: Each device in a system should have V , V  
and V decoupled with a 0.1 µF  
PP  
DD DDQ  
ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors  
should be as close as possible to the package). See Figure 10: AC measurement load  
circuit. The PCB track widths should be sufficient to carry the required V program and  
PP  
erase currents.  
19/123  
Bus operations  
M58WRxxxKU, M58WRxxxKL  
3
Bus operations  
There are six standard bus operations that control the device. These are Bus Read, Bus  
Write, Address Latch, Output Disable, Standby and Reset. See Table 5: Bus operations, for  
a summary.  
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the  
memory and do not affect Bus Write operations.  
3.1  
Bus Read  
Bus Read operations are used to output the contents of the Memory Array, the Electronic  
Signature, the Status Register and the Common Flash Interface. Both Chip Enable and  
Output Enable must be at V in order to perform a read operation. The Chip Enable input  
IL  
should be used to enable the device. Output Enable should be used to gate data onto the  
output. The data read depends on the previous command written to the memory (see  
Command Interface section). See Figures 11, 12 and 13 Read AC Waveforms, and Tables  
24 and 25 Read AC Characteristics, for details of when the output becomes valid.  
3.2  
Bus Write  
Bus Write operations write Commands to the memory or latch Input Data to be  
programmed. A bus write operation is initiated when Chip Enable and Write Enable are at  
V with Output Enable at V . Commands and Input Data are latched on the rising edge of  
IL  
IH  
Write Enable or Chip Enable, whichever occurs first. The addresses must also be latched  
prior to the write operation by toggling Latch Enable (when Chip Enable is at V ). The Latch  
IL  
Enable must be tied to V during the bus write operation.  
IH  
See Figures 16 and 17, Write AC Waveforms, and Tables 26 and 27, Write AC  
Characteristics, for details of the timing requirements.  
3.3  
3.4  
Address Latch  
Address latch operations input valid addresses. Both Chip enable and Latch Enable must be  
at V during address latch operations. The addresses are latched on the rising edge of  
IL  
Latch Enable.  
Output Disable  
The outputs are high impedance when the Output Enable is at V .  
IH  
20/123  
M58WRxxxKU, M58WRxxxKL  
Bus operations  
3.5  
Standby  
Standby disables most of the internal circuitry allowing a substantial reduction of the current  
consumption. The memory is in standby when Chip Enable and Reset are at V . The power  
IH  
consumption is reduced to the standby level and the outputs are set to high impedance,  
independently from the Output Enable or Write Enable inputs. If Chip Enable switches to V  
during a program or erase operation, the device enters Standby mode when finished.  
IH  
3.6  
Reset/Power-Down  
During reset mode the memory is deselected and the outputs are high impedance. The  
memory is in reset mode when Reset/Power-Down is at V . The power consumption is  
IL  
reduced to the Standby level, or to the Reset/Power-Down level if the Power-Down function  
is enabled, independently of the Chip Enable, Output Enable or Write Enable inputs. If  
Reset/Power-Down is pulled to V during a Program or Erase, this operation is aborted  
SS  
and the memory content is no longer valid.  
Table 5.  
Bus operations  
Operation  
E
G
W
L
RP  
WAIT(1)  
ADQ15-ADQ0  
Bus Read  
VIL  
VIL  
VIL  
VIL  
VIH  
VIL  
VIH  
VIH  
VIH  
X(2)  
VIH  
VIL  
x
VIH  
VIH  
VIL  
VIH  
X
VIH  
VIH  
VIH  
VIH  
VIH  
Data Output  
Data Input  
Address Input  
Hi-Z  
Bus Write  
Address Latch  
Output Disable  
Standby  
VIH  
X
Hi-Z  
Hi-Z  
Hi-Z  
Reset/Power-  
Down  
X
X
X
X
VIL  
Hi-Z  
1. WAIT signal polarity is configured using the Set Configuration Register command.  
2. X = Don't care.  
21/123  
Command interface  
M58WRxxxKU, M58WRxxxKL  
4
Command interface  
All Bus Write operations to the memory are interpreted by the Command Interface.  
Commands consist of one or more sequential Bus Write operations. An internal  
Program/Erase Controller handles all timings and verifies the correct execution of the  
Program and Erase commands. The Program/Erase Controller provides a Status Register  
whose output may be read at any time to monitor the progress or the result of the operation.  
The Command Interface is reset to read mode when power is first applied, when exiting from  
Reset or whenever V is lower than V  
. Command sequences must be followed exactly.  
DD  
LKO  
Any invalid combination of commands will be ignored.  
Refer to Table 6: Command codes, and Appendix D, Tables 47, 48, 49 and 50, Command  
Interface States - Modify and Lock Tables, for a summary of the Command Interface.  
The Command Interface is split into two types of commands: Standard commands and  
Factory Program commands. The following sections explain in detail how to perform each  
command.  
Table 6.  
Hex Code  
Command codes  
Command  
01h  
03h  
10h  
20h  
2Fh  
30h  
35h  
40h  
50h  
56h  
Block Lock Confirm  
Set Configuration Register Confirm  
Alternative Program Setup  
Block Erase Setup  
Block Lock-Down Confirm  
Enhanced Factory Program Setup  
Double Word Program Setup  
Program Setup  
Clear Status Register  
Quadruple Word Program Setup  
Block Lock Setup, Block Unlock Setup, Block Lock Down Setup and Set  
Configuration Register Setup  
60h  
70h  
75h  
90h  
98h  
B0h  
C0h  
Read Status Register  
Quadruple Enhanced Factory Program Setup  
Read Electronic Signature  
Read CFI Query  
Program/Erase Suspend  
Protection Register Program  
Program/Erase Resume, Block Erase Confirm, Block Unlock Confirm or Enhanced  
Factory Program Confirm  
D0h  
FFh  
Read Array  
22/123  
M58WRxxxKU, M58WRxxxKL  
Command interface - Standard commands  
5
Command interface - Standard commands  
The following commands are the basic commands used to read, write to and configure the  
device. Refer to Table 7: Standard commands, in conjunction with the following text  
descriptions.  
5.1  
Read Array command  
The Read Array command returns the addressed bank to Read Array mode. One Bus Write  
cycle is required to issue the Read Array command and return the addressed bank to Read  
Array mode. Subsequent read operations will read the addressed location and output the  
data. A Read Array command can be issued in one bank while programming or erasing in  
another bank. However if a Read Array command is issued to a bank currently executing a  
Program or Erase operation the command will be executed but the output data is not  
guaranteed.  
5.2  
Read Status Register command  
The Status Register indicates when a Program or Erase operation is complete and the  
success or failure of operation itself. Issue a Read Status Register command to read the  
Status Register content. The Read Status Register command can be issued at any time,  
even during Program or Erase operations.  
The following read operations output the content of the Status Register of the addressed  
bank. The Status Register is latched on the falling edge of E or G signals, and can be read  
until E or G returns to V . Either E or G must be toggled to update the latched data. See  
IH  
Table 10 for the description of the Status Register Bits. This mode supports asynchronous  
or single synchronous reads only.  
5.3  
Read Electronic Signature command  
The Read Electronic Signature command reads the Manufacturer and Device Codes, the  
Block Locking Status, the Protection Register, and the Configuration Register.  
The Read Electronic Signature command consists of one write cycle to an address within  
one of the banks. A subsequent Read operation in the same bank will output the  
Manufacturer Code, the Device Code, the protection Status of the blocks in the targeted  
bank, the Protection Register, or the Configuration Register (see Table 8).  
The Read Electronic Signature command can be issued at any time, even during program or  
erase operations, except during Protection Register Program operations. Dual operations  
between the Parameter bank and the Electronic Signature location are not allowed (see  
Table 16: Dual operation limitations for details).  
If a Read Electronic Signature command is issued in a bank that is executing a Program or  
Erase operation the bank will go into Read Electronic Signature mode, subsequent Bus  
Read cycles will output the Electronic Signature data and the Program/Erase controller will  
continue to program or erase in the background. This mode supports asynchronous or  
single synchronous reads only, it does not support synchronous burst reads.  
23/123  
Command interface - Standard commands  
M58WRxxxKU, M58WRxxxKL  
5.4  
Read CFI Query command  
The Read CFI Query command is used to read data from the Common Flash Interface  
(CFI). The Read CFI Query Command consists of one Bus Write cycle, to an address within  
one of the banks. Once the command is issued subsequent Bus Read operations in the  
same bank read from the Common Flash Interface.  
If a Read CFI Query command is issued in a bank that is executing a Program or Erase  
operation the bank will go into Read CFI Query mode, subsequent Bus Read cycles will  
output the CFI data and the Program/Erase controller will continue to Program or Erase in  
the background. This mode supports asynchronous or single synchronous reads only, it  
does not support synchronous burst reads.  
The status of the other banks is not affected by the command (see Table 14). After issuing a  
Read CFI Query command, a Read Array command should be issued to the addressed  
bank to return the bank to Read Array mode. Dual operations between the  
Parameter Bank and the CFI memory space are not allowed (see Table 16: Dual operation  
limitations).  
See Appendix B: Common Flash Interface, Tables 37, 38, 39, 40, 41, 42, 43, 44, 45 and 46  
for details on the information contained in the Common Flash Interface memory area.  
5.5  
Clear Status Register command  
The Clear Status Register command can be used to reset (set to ‘0’) error bits SR1, SR3,  
SR4 and SR5 in the Status Register. One bus write cycle is required to issue the Clear  
Status Register command. After the Clear Status Register command the bank returns to  
read mode.  
The error bits in the Status Register do not automatically return to ‘0’ when a new command  
is issued. The error bits in the Status Register should be cleared before attempting a new  
Program or Erase command.  
24/123  
M58WRxxxKU, M58WRxxxKL  
Command interface - Standard commands  
5.6  
Block Erase command  
The Block Erase command can be used to erase a block. It sets all the bits within the  
selected block to ’1’. All previous data in the block is lost. If the block is protected then the  
Erase operation will abort, the data in the block will not be changed and the Status Register  
will output the error. The Block Erase command can be issued at any moment, regardless of  
whether the block has been programmed or not.  
Two Bus Write cycles are required to issue the command.  
The first bus cycle sets up the Erase command.  
The second latches the block address in the Program/Erase Controller and starts it.  
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits SR4 and SR5  
are set and the command aborts. Erase aborts if Reset turns to V . As data integrity cannot  
IL  
be guaranteed when the Erase operation is aborted, the block must be erased again.  
Once the command is issued the device outputs the Status Register data when any address  
within the bank is read. At the end of the operation the bank will remain in Read Status  
Register mode until a Read Array, Read CFI Query or Read Electronic Signature command  
is issued.  
During Erase operations the bank containing the block being erased will only accept the  
Read Array, Read Status Register, Read Electronic Signature, Read CFI Query and the  
Program/Erase Suspend command, all other commands will be ignored. Refer to Dual  
Operations section for detailed information about simultaneous operations allowed in banks  
not being erased. Typical Erase times are given in Table 18: Program, erase times and  
endurance cycles.  
See Appendix C, Figure 24: Block Erase flowchart and pseudocode, for a suggested  
flowchart for using the Block Erase command.  
5.7  
Program command  
The memory array can be programmed word-by-word. Only one Word in one bank can be  
programmed at any one time. If the block is protected then the Program operation will abort,  
the data in the block will not be changed and the Status Register will output the error.  
Two bus write cycles are required to issue the Program Command.  
The first bus cycle sets up the Program command.  
The second latches the Address and the Data to be written and starts the  
Program/Erase Controller.  
After programming has started, read operations in the bank being programmed output the  
Status Register content.  
During Program operations the bank being programmed will only accept the Read Array,  
Read Status Register, Read Electronic Signature, Read CFI Query and the Program/Erase  
Suspend command. Refer to Dual Operations section for detailed information about  
simultaneous operations allowed in banks not being programmed. Typical Program times  
are given in Table 18: Program, erase times and endurance cycles.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory location must be reprogrammed.  
See Appendix C, Figure 20: Program flowchart and pseudocode, for the flowchart for using  
the Program command.  
25/123  
Command interface - Standard commands  
M58WRxxxKU, M58WRxxxKL  
5.8  
Program/Erase Suspend command  
The Program/Erase Suspend command is used to pause a Program or Block Erase  
operation.  
One bus write cycle is required to issue the Program/Erase Suspend command. Once the  
Program/Erase Controller has paused bits SR7, SR6 and/ or SR2 of the Status Register will  
be set to ‘1’. The command can be addressed to any bank.  
During Program/Erase Suspend the Command Interface will accept the Program/Erase  
Resume, Read Array (cannot read the suspended block), Read Status Register, Read  
Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation  
was Erase then the Clear Status Register, Set Configuration Register, Program, Block Lock,  
Block Lock-Down or Block Unlock command will also be accepted. The block being erased  
may be protected by issuing the Block Lock or Block Lock-Down commands. Only the blocks  
not being erased may be read or programmed correctly. When the Program/Erase Resume  
command is issued the operation will complete. Refer to the Dual Operations section for  
detailed information about simultaneous operations allowed during Program/Erase  
Suspend.  
During a Program/Erase Suspend, the device can be placed in standby mode by taking Chip  
Enable to V . Program/Erase is aborted if Reset turns to V .  
IH  
IL  
See Appendix C, Figure 23: Program Suspend & Resume flowchart and pseudocode, and  
Figure 25: Erase Suspend & Resume flowchart and pseudocode, for flowcharts for using  
the Program/Erase Suspend command.  
5.9  
Program/Erase Resume command  
The Program/Erase Resume command can be used to restart the Program/Erase Controller  
after a Program/Erase Suspend command has paused it. One Bus Write cycle is required to  
issue the command. The command can be written to any address.  
The Program/Erase Resume command does not change the read mode of the banks. If the  
suspended bank was in Read Status Register, Read Electronic signature or Read CFI  
Query mode the bank remains in that mode and outputs the corresponding data. If the bank  
was in Read Array mode subsequent read operations will output invalid data.  
If a Program command is issued during a Block Erase Suspend, then the erase cannot be  
resumed until the programming operation has completed. It is possible to accumulate  
suspend operations. For example: suspend an erase operation, start a programming  
operation, suspend the programming operation then read the array. See Appendix C,  
Figure 23: Program Suspend & Resume flowchart and pseudocode, and Figure 25: Erase  
Suspend & Resume flowchart and pseudocode, for flowcharts for using the Program/Erase  
Resume command.  
26/123  
M58WRxxxKU, M58WRxxxKL  
Command interface - Standard commands  
5.10  
Protection Register Program command  
The Protection Register Program command is used to Program the 128 bit user One-Time-  
Programmable (OTP) segment of the Protection Register and the Protection Register Lock.  
The segment is programmed 16 bits at a time. When shipped all bits in the segment are set  
to ‘1’. The user can only program the bits to ‘0’.  
Two write cycles are required to issue the Protection Register Program command.  
The first bus cycle sets up the Protection Register Program command.  
The second latches the Address and the Data to be written to the Protection Register  
and starts the Program/Erase Controller.  
Read operations output the Status Register content after the programming has started.  
The segment can be protected by programming bit 1 of the Protection Lock Register  
(Figure 6: Protection Register memory map). Attempting to program a previously protected  
Protection Register will result in a Status Register error. The protection of the Protection  
Register is not reversible.  
The Protection Register Program cannot be suspended. Dual operations between the  
Parameter Bank and the Protection Register memory space are not allowed (see Table 16:  
Dual operation limitations for details).  
See Appendix C, Figure 27: Protection Register Program flowchart and pseudocode, for a  
flowchart for using the Protection Register Program command.  
5.11  
Set Configuration Register command  
The Set Configuration Register command is used to write a new value to the Configuration  
Register which defines the burst length, type, X latency, Synchronous/Asynchronous Read  
mode and the valid Clock edge configuration.  
Two Bus Write cycles are required to issue the Set Configuration Register command.  
The first cycle writes the setup command and the address corresponding to the  
Configuration Register content.  
The second cycle writes the Configuration Register data and the confirm command.  
Once the command is issued the memory returns to Read mode.  
The values of the Configuration Register must always be presented on ADQ15-ADQ0. CR0  
is on ADQ0, CR1 on ADQ1, etc.; the other address bits are ignored.  
27/123  
Command interface - Standard commands  
M58WRxxxKU, M58WRxxxKL  
5.12  
Block Lock command  
The Block Lock command is used to lock a block and prevent Program or Erase operations  
from changing the data in it. All blocks are locked at power-up or reset.  
Two Bus Write cycles are required to issue the Block Lock command.  
The first bus cycle sets up the Block Lock command.  
The second Bus Write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Table 17 shows the Lock Status after issuing a Block Lock command.  
The Block Lock bits are volatile, once set they remain set until a hardware reset or power-  
down/power-up. They are cleared by a Block Unlock command. Refer to the section, Block  
Locking, for a detailed explanation. See Appendix C, Figure 26: Locking operations  
flowchart and pseudocode, for a flowchart for using the Lock command.  
5.13  
Block Unlock command  
The Block Unlock command is used to unlock a block, allowing the block to be programmed  
or erased. Two Bus Write cycles are required to issue the Block Unlock command.  
The first bus cycle sets up the Block Unlock command.  
The second Bus Write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Table 17 shows the protection status after issuing a Block Unlock command.  
Refer to the section, Block Locking, for a detailed explanation and Appendix C, Figure 26:  
Locking operations flowchart and pseudocode, for a flowchart for using the Unlock  
command.  
5.14  
Block Lock-Down command  
A locked or unlocked block can be locked-down by issuing the Block Lock-Down command.  
A locked-down block cannot be programmed or erased, or have its protection status  
changed when WP is low, V . When WP is high, V the Lock-Down function is disabled  
IL  
IH,  
and the locked blocks can be individually unlocked by the Block Unlock command.  
Two Bus Write cycles are required to issue the Block Lock-Down command.  
The first bus cycle sets up the Block Lock command.  
The second Bus Write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Locked-Down blocks revert to the locked (and not locked-down) state when the  
device is reset on power-down. Table 17 shows the Lock Status after issuing a Block Lock-  
Down command. Refer to the section, Block Locking, for a detailed explanation and  
Appendix C, Figure 26: Locking operations flowchart and pseudocode, for a flowchart for  
using the Lock-Down command.  
28/123  
M58WRxxxKU, M58WRxxxKL  
Command interface - Standard commands  
Bus operations  
Table 7.  
Standard commands  
Commands  
1st Cycle  
Add  
2nd Cycle  
Add  
Op.  
Data  
Op.  
Data  
Read Array  
1+  
1+  
1+  
1+  
1
Write  
Write  
Write  
Write  
Write  
BKA  
BKA  
BKA  
BKA  
X
FFh  
70h  
90h  
98h  
50h  
Read  
Read  
Read  
Read  
WA  
RD  
SRD  
ESD  
QD  
Read Status Register  
Read Electronic Signature  
Read CFI Query  
BKA(1)  
BKA(1)  
BKA(1)  
Clear Status Register  
BKA or  
BA(2)  
Block Erase  
Program  
2
2
Write  
Write  
20h  
Write  
BA  
D0h  
PD  
BKA or  
WA(2)  
40h or 10h Write  
WA  
Program/Erase Suspend  
Program/Erase Resume  
1
1
Write  
Write  
X(3)  
B0h  
D0h  
X
Protection Register  
Program  
2
2
2
Write  
Write  
Write  
PRA  
CRD  
C0h  
60h  
60h  
Write  
Write  
Write  
PRA  
CRD  
BA  
PRD  
03h  
01h  
Set Configuration Register  
Block Lock  
BKA or  
BA(2)  
BKA or  
BA(2)  
Block Unlock  
2
2
Write  
Write  
60h  
60h  
Write  
Write  
BA  
BA  
D0h  
2Fh  
BKA or  
BA(2)  
Block Lock-Down  
1. Must be same bank as in the first cycle. The signature addresses are listed in Table 8  
2. Any address within the bank can be used.  
3. X = Don't Care, WA = Word Address in targeted bank, RD = Read Data, SRD = Status Register Data,  
ESD = Electronic Signature Data, QD = Query Data, BA = Block Address, BKA = Bank Address,  
PD = Program Data, PRA = Protection Register Address, PRD = Protection Register Data,  
CRD = Configuration Register Data.  
29/123  
Command interface - Standard commands  
M58WRxxxKU, M58WRxxxKL  
Table 8.  
Electronic signature codes  
Code  
Address (h)  
Data (h)  
Manufacturer Code  
Bank Address + 00  
0020  
8823 (M58WR016KU)  
8828 (M58WR032KU)  
88C0 (M58WR064KU)  
Top  
Bank Address + 01  
Device Code  
8824 (M58WR016KL)  
8829 (M58WR032KL)  
88C1 (M58WR064KL)  
Bottom  
Bank Address + 01  
Block Address + 02  
Locked  
0001  
0000  
0003  
Unlocked  
Block Protection  
Locked and Locked-Down  
Unlocked and Locked-  
Down  
0002  
Die Revision Code  
Bank Address + 03  
Bank Address + 05  
DRC(1)  
CR(2)  
0002  
Configuration Register  
Numonyx Factory Default  
Protection Register  
Lock  
Bank Address + 80  
OTP Area Permanently  
Locked  
0000  
Bank Address + 81  
Bank Address + 84  
Unique Device Number  
OTP Area  
Protection Register  
Bank Address + 85  
Bank Address + 8C  
1. DRC = Die Revision Code  
2. CR = Configuration Register  
Figure 6.  
Protection Register memory map  
PROTECTION REGISTER  
8Ch  
User Programmable OTP  
85h  
84h  
Unique device number  
Protection Register Lock  
81h  
80h  
1
0
AI08614  
30/123  
M58WRxxxKU, M58WRxxxKL  
Command interface - Factory program commands  
6
Command interface - Factory program commands  
The Factory Program commands are used to speed up programming. They require V to  
PP  
be at V  
. Refer to Table 9: Factory Program commands, in conjunction with the following  
PPH  
text descriptions.  
6.1  
Double Word Program command  
The Double Word Program command improves the programming throughput by writing a  
page of two adjacent words in parallel. The two words must differ only for the address  
ADQ0. If the block is protected then the Double Word Program operation will abort, the data  
in the block will not be changed and the Status Register will output the error.  
If programming is attempted with V V  
, the command is ignored.  
PPH  
PP  
Three bus write cycles are necessary to issue the Double Word Program command.  
The first bus cycle sets up the Double Word Program Command.  
The second bus cycle latches the Address and the Data of the first word to be written.  
The third bus cycle latches the Address and the Data of the second word to be written  
and starts the Program/Erase Controller.  
Read operations in the bank being programmed output the Status Register content after the  
programming has started.  
During Double Word Program operations the bank being programmed will only accept the  
Read Array, Read Status Register, Read Electronic Signature and Read CFI Query  
command, all other commands will be ignored. Dual operations are not supported during  
Double Word Program operations and the command cannot be suspended. Typical Program  
times are given in Table 18: Program, erase times and endurance cycles.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory locations must be reprogrammed.  
See Appendix C, Figure 21: Double Word Program flowchart and pseudocode, for the  
flowchart for using the Double Word Program command.  
31/123  
Command interface - Factory program commands  
M58WRxxxKU, M58WRxxxKL  
6.2  
Quadruple Word Program command  
The Quadruple Word Program command improves the programming throughput by writing a  
page of four adjacent words in parallel. The four words must differ only for the addresses  
ADQ0 and ADQ1. If the block is protected then the Quadruple Word Program operation will  
abort, the data in the block will not be changed and the Status Register will output the error.  
If programming is attempted with V V  
, the command is ignored.  
PPH  
PP  
Five bus write cycles are necessary to issue the Quadruple Word Program command.  
The first bus cycle sets up the Double Word Program Command.  
The second bus cycle latches the Address and the Data of the first word to be written.  
The third bus cycle latches the Address and the Data of the second word to be written.  
The fourth bus cycle latches the Address and the Data of the third word to be written.  
The fifth bus cycle latches the Address and the Data of the fourth word to be written  
and starts the Program/Erase Controller.  
Read operations to the bank being programmed output the Status Register content after the  
programming has started.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory locations must be reprogrammed.  
During Quadruple Word Program operations the bank being programmed will only accept  
the Read Array, Read Status Register, Read Electronic Signature and Read CFI Query  
command, all other commands will be ignored.  
Dual operations are not supported during Quadruple Word Program operations and the  
command cannot be suspended. Typical Program times are given in Table 18: Program,  
erase times and endurance cycles.  
See Appendix C, Figure 22: Quadruple Word Program flowchart and pseudocode, for the  
flowchart for using the Quadruple Word Program command.  
32/123  
M58WRxxxKU, M58WRxxxKL  
Command interface - Factory program commands  
6.3  
Enhanced Factory Program command  
The Enhanced Factory Program command can be used to program large streams of data  
within any one block. It greatly reduces the total programming time when a large number of  
words are written to a block at any one time.  
The use of the Enhanced Factory Program command requires certain operating conditions.  
V
V
must be set to V  
PPH  
PP  
DD  
must be within operating range  
Ambient temperature T must be 30°C 10°C  
A
The targeted block must be unlocked  
Dual operations are not supported during the Enhanced Factory Program operation and the  
command cannot be suspended.  
For optimum performance the Enhanced Factory Program commands should be limited to a  
maximum of 100 program/erase cycles per block. If this limit is exceeded the internal  
algorithm will continue to work properly but some degradation in performance is possible.  
Typical Program times are given in Table 18. If the block is protected then the Enhanced  
Factory Program operation will abort, the data in the block will not be changed and the  
Status Register will output the error.  
The Enhanced Factory Program command has four phases: the Setup Phase, the Program  
Phase to program the data to the memory, the Verify Phase to check that the data has been  
correctly programmed and reprogram if necessary and the Exit Phase. Refer to Table 9:  
Factory Program commands, and Figure 28: Enhanced Factory Program flowchart.  
6.3.1  
Setup Phase  
The Enhanced Factory Program command requires two Bus Write operations to initiate the  
command.  
The first bus cycle sets up the Enhanced Factory Program command.  
The second bus cycle confirms the command.  
The Status Register P/E.C. SR7 should be read to check that the P/E.C. is ready. After the  
confirm command is issued, read operations output the Status Register data. The read  
Status Register command must not be issued as it will be interpreted as data to program.  
33/123  
Command interface - Factory program commands  
M58WRxxxKU, M58WRxxxKL  
6.3.2  
Program Phase  
The Program Phase requires n+1 cycles, where n is the number of words (refer to Table 9:  
Factory Program commands and Figure 28: Enhanced Factory Program flowchart).  
Three successive steps are required to issue and execute the Program Phase of the  
command.  
1. Use one Bus Write operation to latch the Start Address and the first word to be  
programmed. The Status Register Bank Write Status bit SR0 should be read to check  
that the P/E.C. is ready for the next word.  
2. Each subsequent word to be programmed is latched with a new Bus Write operation.  
The address can either remain the Start Address, in which case the P/E.C. increments  
the address location or the address can be incremented in which case the P/E.C.  
jumps to the new address. If any address that is not in the same block as the Start  
Address is given with data FFFFh, the Program Phase terminates and the Verify Phase  
begins. The Status Register bit SR0 should be read between each Bus Write cycle to  
check that the P/E.C. is ready for the next word.  
3. Finally, after all words have been programmed, write one Bus Write operation with data  
FFFFh to any address outside the block containing the Start Address, to terminate the  
programming phase.  
The memory is now set to enter the Verify Phase.  
6.3.3  
Verify Phase  
The Verify Phase is similar to the Program Phase in that all words must be resent to the  
memory for them to be checked against the programmed data. The Program/Erase  
Controller checks the stream of data with the data that was programmed in the Program  
Phase and reprograms the memory location if necessary.  
Three successive steps are required to execute the Verify Phase of the command.  
1. Use one Bus Write operation to latch the Start Address and the first word, to be  
verified. The Status Register bit SR0 should be read to check that the Program/Erase  
Controller is ready for the next word.  
2. Each subsequent word to be verified is latched with a new Bus Write operation. The  
words must be written in the same order as in the Program Phase. The address can  
remain the Start Address or be incremented. If any address that is not in the same  
block as the Start Address is given with data FFFFh, the Verify Phase terminates.  
Status Register bit SR0 should be read to check that the P/E.C. is ready for the next  
word.  
3. Finally, after all words have been verified, write one Bus Write operation with data  
FFFFh to any address outside the block containing the Start Address, to terminate the  
Verify Phase.  
If the Verify Phase is successfully completed the memory remains in Read Status Register  
mode. If the Program/Erase Controller fails to reprogram a given location, the error will be  
signaled in the Status Register.  
6.3.4  
Exit Phase  
Status Register P/E.C. bit SR7 set to ‘1’ indicates that the device has returned to Read  
mode. A full Status Register check should be done to ensure that the block has been  
successfully programmed. See the section on the Status Register for more details.  
34/123  
M58WRxxxKU, M58WRxxxKL  
Command interface - Factory program commands  
6.4  
Quadruple Enhanced Factory Program command  
The Quadruple Enhanced Factory Program command can be used to program one or more  
pages of four adjacent words in parallel. The four words must differ only for the addresses  
ADQ0 and ADQ1. V must be set to V  
during Quadruple Enhanced Factory Program. If  
PP  
PPH  
the block is protected then the Quadruple Enhanced Factory Program operation will abort,  
the data in the block will not be changed and the Status Register will output the error.  
It has four phases: the Setup Phase, the Load Phase where the data is loaded into the  
buffer, the combined Program and Verify Phase where the loaded data is programmed to  
the memory and then automatically checked and reprogrammed if necessary and the Exit  
Phase. Unlike the Enhanced Factory Program it is not necessary to resubmit the data for the  
Verify Phase. The Load Phase and the Program and Verify Phase can be repeated to  
program any number of pages within the block.  
6.4.1  
6.4.2  
Setup Phase  
The Quadruple Enhanced Factory Program command requires one Bus Write operation to  
initiate the load phase. After the setup command is issued, read operations output the  
Status Register data. The Read Status Register command must not be issued as it will be  
interpreted as data to program.  
Load Phase  
The Load Phase requires 4 cycles to load the data (refer to Table 9: Factory Program  
commands and Figure 29: Quadruple enhanced factory program flowchart). Once the first  
word of each Page is written it is impossible to exit the Load phase until all four words have  
been written.  
Two successive steps are required to issue and execute the Load Phase of the Quadruple  
Enhanced Factory Program command.  
1. Use one Bus Write operation to latch the Start Address and the first word of the first  
Page to be programmed. For subsequent Pages the first word address can remain the  
Start Address (in which case the next Page is programmed) or can be any address in  
the same block. If any address with data FFFFh is given that is not in the same block as  
the Start Address, the device enters the Exit Phase. For the first Load Phase Status  
Register bit SR7 should be read after the first word has been issued to check that the  
command has been accepted (bit SR7 set to ‘0’). This check is not required for  
subsequent Load Phases.  
2. Each subsequent word to be programmed is latched with a new Bus Write operation.  
The address is only checked for the first word of each Page as the order of the words to  
be programmed is fixed.  
The memory is now set to enter the Program and Verify Phase.  
35/123  
Command interface - Factory program commands  
M58WRxxxKU, M58WRxxxKL  
6.4.3  
Program and Verify Phase  
In the Program and Verify Phase the four words that were loaded in the Load Phase are  
programmed in the memory array and then verified by the Program/Erase Controller. If any  
errors are found the Program/Erase Controller reprograms the location. During this phase  
the Status Register shows that the Program/Erase Controller is busy, Status Register bit  
SR7 set to ‘0’, and that the device is not waiting for new data, Status Register bit SR0 set to  
‘1’. When Status Register bit SR0 is set to ‘0’ the Program and Verify phase has terminated.  
Once the Verify Phase has successfully completed subsequent pages in the same block can  
be loaded and programmed. The device returns to the beginning of the Load Phase by  
issuing one Bus Write operation to latch the Address and the first of the four new words to  
be programmed.  
6.4.4  
Exit Phase  
Finally, after all the pages have been programmed, write one Bus Write operation with data  
FFFFh to any address outside the block containing the Start Address, to terminate the Load  
and Program and Verify Phases.  
Status Register bit SR7 set to ‘1’ and bit SR0 set to ‘0’ indicate that the Quadruple  
Enhanced Factory Program command has terminated. A full Status Register check should  
be done to ensure that the block has been successfully programmed. See the section on the  
Status Register for more details.  
If the Program and Verify Phase has successfully completed the memory returns to Read  
mode. If the P/E.C. fails to program and reprogram a given location, the error will be  
signaled in the Status Register.  
36/123  
M58WRxxxKU, M58WRxxxKL  
Command interface - Factory program commands  
Bus Write operations  
(1)  
Table 9.  
Factory Program commands  
Command  
Phase  
1st  
2nd  
3rd  
Final -1  
Final  
Add  
Data  
Add Data Add Data  
Add Data Add  
Data  
BKA or  
WA1(3)  
Double Word Program(2)  
3
5
35h  
56h  
30h  
WA1 PD1 WA2 PD2  
Quadruple Word  
Program(4)  
BKA or  
WA1(3)  
WA1 PD1 WA2 PD2  
WA3 PD3 WA4  
PD4  
2+n  
+1  
NOT  
WAn(8) PAn  
WA1(7))  
Setup,  
BKA or  
WA1(3)  
BA or  
FFFF  
h
D0h WA1(7) PD1  
WA1(6)  
Enhanced  
Program  
Factory  
Program (5)  
NOT  
WAn(8) PAn  
WA1(7)  
FFFF  
h
Verify, Exit  
n+1 WA1(7)  
PD1 WA2(8) PD2 WA3(8) PD3  
Setup,  
BKA or  
5
75h  
WA1(7) PD1 WA2(9) PD2  
Automatic  
WA3(9) PD3 WA4(9) PD4  
WA1(3)  
first Load  
First  
Program &  
Verify  
Quadruple  
Enhanced  
Factory  
WA2i  
(9)  
WA3i  
Subsequent  
Loads  
4
1
WA1i(7) PD1i  
PD2i  
PD3i  
WA4i(9) PD4i  
(9)  
Program  
(4)(5)  
Subsequent  
Program &  
Verify  
Automatic  
NOT  
Exit  
FFFFh  
WA1(7)  
1. WA = Word Address in targeted bank, BKA = Bank Address, PD = Program Data, BA = Block Address.  
2. Word Addresses 1 and 2 must be consecutive Addresses differing only for A0.  
3. Any address within the bank can be used.  
4. Word Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.  
5. A Bus Read must be done between each Write cycle where the data is programmed or verified to read the Status Register  
and check that the memory is ready to accept the next data. n = number of words, i = number of Pages to be programmed.  
6. Any address within the block can be used.  
7. WA1 is the Start Address. NOT WA1 is any address that is not in the same block as WA1.  
8. Address can remain Starting Address WA1 or be incremented.  
9. Address is only checked for the first word of each Page as the order to program the words in each page is fixed so  
subsequent words in each Page can be written to any address.  
37/123  
Status Register  
M58WRxxxKU, M58WRxxxKL  
7
Status Register  
The Status Register provides information on the current or previous Program or Erase  
operations. Issue a Read Status Register command to read the contents of the Status  
Register, refer to Read Status Register Command section for more details. To output the  
contents, the Status Register is latched and updated on the falling edge of the Chip Enable  
or Output Enable signals and can be read until Chip Enable or Output Enable returns to V .  
IH  
The Status Register can only be read using single asynchronous or single synchronous  
reads. Bus Read operations from any address within the bank, always read the Status  
Register during Program and Erase operations.  
The various bits convey information about the status and any errors of the operation. Bits  
SR7, SR6, SR2 and SR0 give information on the status of the device and are set and reset  
by the device. Bits SR5, SR4, SR3 and SR1 give information on errors, they are set by the  
device but must be reset by issuing a Clear Status Register command or a hardware reset.  
If an error bit is set to ‘1’ the Status Register should be reset before issuing another  
command. SR7 to SR1 refer to the status of the device while SR0 refers to the status of the  
addressed bank.  
The bits in the Status Register are summarized in Table 10: Status Register bits. Refer to  
Table 10 in conjunction with the following text descriptions.  
7.1  
Program/Erase Controller Status bit (SR7)  
The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is  
active or inactive in any bank. When the Program/Erase Controller Status bit is Low (set to  
‘0’), the Program/Erase Controller is active; when the bit is High (set to ‘1’), the  
Program/Erase Controller is inactive, and the device is ready to process a new command.  
The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend  
command is issued until the Program/Erase Controller pauses. After the Program/Erase  
Controller pauses the bit is High.  
During Program, Erase, operations the Program/Erase Controller Status bit can be polled to  
find the end of the operation. Other bits in the Status Register should not be tested until the  
Program/Erase Controller completes the operation and the bit is High.  
After the Program/Erase Controller completes its operation the Erase Status, Program  
Status, V Status and Block Lock Status bits should be tested for errors.  
PP  
7.2  
Erase Suspend Status bit (SR6)  
The Erase Suspend Status bit indicates that an Erase operation has been suspended or is  
going to be suspended in the addressed block. When the Erase Suspend Status bit is High  
(set to ‘1’), a Program/Erase Suspend command has been issued and the memory is  
waiting for a Program/Erase Resume command.  
The Erase Suspend Status should only be considered valid when the Program/Erase  
Controller Status bit is High (Program/Erase Controller inactive). SR7 is set within the Erase  
Suspend Latency time of the Program/Erase Suspend command being issued therefore the  
memory may still complete the operation rather than entering the Suspend mode.  
When a Program/Erase Resume command is issued the Erase Suspend Status bit returns  
Low.  
38/123  
M58WRxxxKU, M58WRxxxKL  
Status Register  
7.3  
Erase Status bit (SR5)  
The Erase Status bit can be used to identify if the memory has failed to verify that the block  
has erased correctly. When the Erase Status bit is High (set to ‘1’), the Program/Erase  
Controller has applied the maximum number of pulses to the block and still failed to verify  
that it has erased correctly. The Erase Status bit should be read once the Program/Erase  
Controller Status bit is High (Program/Erase Controller inactive).  
Once set High, the Erase Status bit can only be reset Low by a Clear Status Register  
command or a hardware reset. If set High it should be reset before a new Program or Erase  
command is issued, otherwise the new command will appear to fail.  
7.4  
Program Status bit (SR4)  
The Program Status bit is used to identify either a Program failure, or an attempt to program  
a ‘1’ to an already programmed bit when V = V  
.
PP  
PPH  
When the Program Status bit goes High (set to ‘1’) after a Program failure, the  
Program/Erase Controller has applied the maximum number of pulses to the byte and still  
failed to verify that it has programmed correctly.  
After an attempt to program a ‘1’ to an already programmed bit, the Program Status bit SR4  
only goes High (set to ’1’) if V = V  
attempt is not shown).  
(if V V  
, SR4 remains Low (set to ‘0’) and the  
PP  
PPH  
PP  
PPH  
The Program Status bit should be read once the Program/Erase Controller Status bit is High  
(Program/Erase Controller inactive).  
Once set High, the Program Status bit can only be reset Low by a Clear Status Register  
command or a hardware reset. If set High it should be reset before a new command is  
issued, otherwise the new command will appear to fail.  
7.5  
VPP Status bit (SR3)  
The V Status bit can be used to identify an invalid voltage on the V pin during Program  
PP  
PP  
and Erase operations. The V pin is only sampled at the beginning of a Program or Erase  
PP  
operation. Indeterminate results can occur if V becomes invalid during an operation.  
PP  
When the V Status bit is Low (set to ‘0’), the voltage on the V pin was sampled at a valid  
PP  
PP  
voltage; when the V Status bit is High (set to ‘1’), the V pin has a voltage that is below  
PP  
PP  
the V Lockout Voltage, V  
, the memory is protected and Program and Erase  
PP  
PPLK  
operations cannot be performed.  
Once set High, the V Status bit can only be reset Low by a Clear Status Register  
PP  
command or a hardware reset. If set High it should be reset before a new Program or Erase  
command is issued, otherwise the new command will appear to fail.  
39/123  
Status Register  
M58WRxxxKU, M58WRxxxKL  
7.6  
Program Suspend Status bit (SR2)  
The Program Suspend Status bit indicates that a Program operation has been suspended in  
the addressed block. When the Program Suspend Status bit is High (set to ‘1’), a  
Program/Erase Suspend command has been issued and the memory is waiting for a  
Program/Erase Resume command. The Program Suspend Status should only be  
considered valid when the Program/Erase Controller Status bit is High (Program/Erase  
Controller inactive). SR2 is set within the Program Suspend Latency time of the  
Program/Erase Suspend command being issued therefore the memory may still complete  
the operation rather than entering the Suspend mode.  
When a Program/Erase Resume command is issued the Program Suspend Status bit  
returns Low.  
7.7  
7.8  
Block Protection Status bit (SR1)  
The Block Protection Status bit can be used to identify if a Program or Block Erase operation  
has tried to modify the contents of a locked block.  
When the Block Protection Status bit is High (set to ‘1’), a Program or Erase operation has  
been attempted on a locked block.  
Once set High, the Block Protection Status bit can only be reset Low by a Clear Status  
Register command or a hardware reset. If set High it should be reset before a new  
command is issued, otherwise the new command will appear to fail.  
Bank Write/Multiple Word Program Status bit (SR0)  
The Bank Write Status bit indicates whether the addressed bank is programming or erasing.  
In Enhanced Factory Program mode the Multiple Word Program bit shows if a word has  
finished programming or verifying depending on the phase. The Bank Write Status bit  
should only be considered valid when the Program/Erase Controller Status SR7 is Low (set  
to ‘0’).  
When both the Program/Erase Controller Status bit and the Bank Write Status bit are Low  
(set to ‘0’), the addressed bank is executing a Program or Erase operation. When the  
Program/Erase Controller Status bit is Low (set to ‘0’) and the Bank Write Status bit is High  
(set to ‘1’), a Program or Erase operation is being executed in a bank other than the one  
being addressed.  
In Enhanced Factory Program mode if Multiple Word Program Status bit is Low (set to ‘0’),  
the device is ready for the next word, if the Multiple Word Program Status bit is High (set to  
‘1’) the device is not ready for the next word.  
Note:  
Refer to Appendix C: Flowcharts and pseudocodes, for using the Status Register.  
40/123  
M58WRxxxKU, M58WRxxxKL  
Table 10. Status Register bits  
Status Register  
LogicLevel  
Bit  
Name  
Type  
Status  
Status  
Error  
Definition  
(1)  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
Ready  
SR7 P/E.C. Status  
Busy  
Erase Suspended  
SR6 Erase Suspend Status  
SR5 Erase Status  
Erase In progress or Completed  
Erase Error  
Erase Success  
Program Error  
SR4 Program Status  
Error  
Program Success  
VPP Invalid, Abort  
SR3  
SR2  
V
PP Status  
Error  
VPP OK  
Program Suspended  
Program Suspend  
Status  
Status  
Program In Progress or Completed  
Program/Erase on protected Block, Abort  
No operation to protected blocks  
SR7 = ‘1’ Not Allowed  
SR1 Block Protection Status Error  
'1'  
Program or erase operation in a bank other than  
the addressed bank  
SR7 = ‘0’  
Bank Write Status  
Status  
Status  
SR7 = ‘1’ No Program or erase operation in the device  
SR7 = ‘0’ Program or erase operation in addressed bank  
SR7 = ‘1’ Not Allowed  
'0'  
'1'  
'0'  
SR0  
Multiple Word Program  
Status (Enhanced  
SR7 = ‘0’ the device is NOT ready for the next word  
SR7 = ‘1’ the device is exiting from EFP  
Factory Program mode)  
SR7 = ‘0’ the device is ready for the next word  
1. Logic level '1' is High, '0' is Low.  
41/123  
Configuration Register  
M58WRxxxKU, M58WRxxxKL  
8
Configuration Register  
The Configuration Register is used to configure the type of bus access that the memory will  
perform. Refer to Read Modes section for details on read operations.  
The Configuration Register is set through the Command Interface. After a Reset or Power-  
Up the device is configured for asynchronous read (CR15 = 1). The Configuration Register  
bits are described in Table 12 They specify the selection of the burst length, burst type, burst  
X latency and the Read operation. Refer to Figures 7 and 8 for examples of synchronous  
burst configurations.  
8.1  
8.2  
Read Select bit (CR15)  
The Read Select bit, CR15, is used to switch between asynchronous and synchronous Bus  
Read operations. When the Read Select bit is set to ’1’, read operations are asynchronous;  
when the Read Select bit is set to ’0’, read operations are synchronous. Synchronous Burst  
Read is supported in both parameter and main blocks and can be performed across banks.  
On reset or power-up the Read Select bit is set to’1’ for asynchronous access.  
Bus Invert Configuration (CR14)  
The Bus Invert Configuration bit is used to enable the BINV functionality. When the  
functionality is enabled, if the BINV pin operates as an input pin (during write bus  
operations), the BINV signal must always be driven; if it operates as an output pin (during  
read bus operations), the functionality is valid only during synchronous read operations.  
42/123  
M58WRxxxKU, M58WRxxxKL  
Configuration Register  
8.3  
X-Latency bits (CR13-CR11)  
The X-Latency bits are used during Synchronous Read operations to set the number of  
clock cycles between the address being latched and the first data becoming available. Refer  
to Figure 7: X-latency and data output configuration example.  
For correct operation the X-Latency bits can only assume the values in Table 12:  
Configuration Register.  
Table 11 shows how to set the X-Latency parameter, taking into account the speed class of  
the device and the Frequency used to read the Flash memory in Synchronous mode.  
Table 11. X-latency settings  
fmax  
tKmin  
X-Latency min  
30 MHz  
40 MHz  
54 MHz  
66 MHz  
86 MHz  
33 ns  
25 ns  
19 ns  
15 ns  
12 ns  
2
3
4
4
5
8.4  
8.5  
Wait Polarity bit (CR10)  
In synchronous burst mode the Wait signal indicates whether the output data are valid or a  
WAIT state must be inserted. The Wait Polarity bit is used to set the polarity of the Wait  
signal. When the Wait Polarity bit is set to ‘0’ the Wait signal is active Low. When the Wait  
Polarity bit is set to ‘1’ the Wait signal is active High.  
Data Output Configuration bit (CR9)  
The Data Output Configuration bit determines whether the output remains valid for one or  
two clock cycles. When the Data Output Configuration bit is ’0’ the output data is valid for  
one clock cycle, when the Data Output Configuration bit is ’1’ the output data is valid for two  
clock cycles.  
The Data Output Configuration depends on the condition:  
t > t  
+ t  
K
KQV QVK_CPU  
where t is the clock period, t  
is the data setup time required by the system CPU  
K
QVK_CPU  
and t  
is the clock to data valid time. If this condition is not satisfied, the Data Output  
KQV  
Configuration bit should be set to ‘1’ (two clock cycles). Refer to Figure 7: X-latency and  
data output configuration example.  
8.6  
Wait Configuration bit (CR8)  
In burst mode the Wait bit controls the timing of the Wait output pin, WAIT. When WAIT is  
asserted, Data is Not Valid and when WAIT is deasserted, Data is Valid.  
When the Wait bit is ’0’ the Wait output pin is asserted during the wait state. When the Wait  
bit is ’1’ the Wait output pin is asserted one clock cycle before the wait state.  
43/123  
Configuration Register  
M58WRxxxKU, M58WRxxxKL  
8.7  
Burst Type bit (CR7)  
The Burst Type bit is used to configure the sequence of addresses read as sequential or  
interleaved. When the Burst Type bit is ’0’ the memory outputs from interleaved addresses;  
when the Burst Type bit is ’1’ the memory outputs from sequential addresses. See Table 13:  
Burst type definition, for the sequence of addresses output from a given starting address in  
each mode.  
8.8  
8.9  
Valid Clock Edge bit (CR6)  
The Valid Clock Edge bit, CR6, is used to configure the active edge of the Clock, K, during  
Synchronous Burst Read operations. When the Valid Clock Edge bit is ’0’ the falling edge of  
the Clock is the active edge; when the Valid Clock Edge bit is ’1’ the rising edge of the Clock  
is active.  
Power-Down bit (CR5)  
The Power-Down bit is used to enable or disable the Power-Down function. When it is set to  
‘0’ the Power-Down function is disabled. If the Reset/Power-Down, RP, pin goes Low (V ),  
IL  
the device is reset and the supply current I is reduced to the Standby value I  
. When  
DD  
DD3  
the Power-Down bit is set to ‘1’ the Power-Down function is enabled. If the Reset/Power-  
Down, RP, pin goes Low (V ) the device switches to the Power-Down state and the supply  
IL  
current I is reduced to the Reset/Power-Down value, I  
.
DD  
DD2  
The recovery time after a Reset/Power-Down, RP, pulse is significantly longer when Power-  
Down is enabled (see Table 28: Reset and Power-up ac characteristics).  
8.10  
Wrap Burst bit (CR3)  
The burst reads can be confined inside the 4, 8 or 16 word boundary (wrap) or overcome the  
boundary (no wrap). The Wrap Burst bit is used to select between wrap and no wrap. When  
the Wrap Burst bit is set to ‘0’ the burst read wraps; when it is set to ‘1’ the burst read does  
not wrap.  
44/123  
M58WRxxxKU, M58WRxxxKL  
Configuration Register  
8.11  
Burst length bits (CR2-CR0)  
The Burst Length bits set the number of words to be output during a Synchronous Burst  
Read operation as result of a single address latch cycle. They can be set for 4 words, 8  
words, 16 words or continuous burst, where all the words are read sequentially.  
In continuous burst mode the burst sequence can cross bank boundaries.  
In continuous burst mode or in 4, 8, 16 words no-wrap, depending on the starting address,  
the device asserts the WAIT output to indicate that a delay is necessary before the data is  
output.  
If the starting address is aligned to a 4 word boundary no wait states are needed and the  
WAIT output is not asserted.  
If the starting address is shifted by 1, 2 or 3 positions from the four word boundary, WAIT will  
be asserted for 1, 2 or 3 clock cycles when the burst sequence crosses the first 16 word  
boundary, to indicate that the device needs an internal delay to read the successive words in  
the array. WAIT will be asserted only once during a continuous burst access. See also  
Table 13: Burst type definition.  
CR4 is reserved for future use.  
45/123  
Configuration Register  
M58WRxxxKU, M58WRxxxKL  
Description  
Table 12. Configuration Register  
Bit  
Description  
Value  
0
1
0
1
Synchronous Read  
CR15  
Read Select  
Asynchronous Read (Default at power-on)  
BINV (power save) disabled (default)  
BINV (power save) enabled  
2 clock latency  
Bus invert  
configuration  
CR14  
010  
011  
100  
101  
111  
3 clock latency  
4 clock latency  
CR13-CR11  
X-Latency  
5 clock latency  
Reserved (default)  
Other configurations reserved  
0
1
0
1
0
1
0
1
0
1
0
1
WAIT is active Low (default)  
CR10  
CR9  
CR8  
CR7  
CR6  
Wait Polarity  
WAIT is active High  
Data held for one clock cycle  
Data held for two clock cycles (default)  
WAIT is active during wait state (default)  
WAIT is active one data cycle before wait state  
Interleaved  
Data Output  
Configuration  
Wait Configuration  
Burst Type  
Sequential (default)  
Falling Clock edge  
Valid Clock Edge  
Rising Clock edge (default)  
Power-Down disabled (default)  
Power-Down enabled  
Power-Down  
Configuration  
CR5  
CR4  
CR3  
Reserved  
0
Wrap  
Wrap Burst  
1
No Wrap (default)  
001  
010  
011  
111  
4 words  
8 words  
CR2-CR0  
Burst Length  
16 words  
Continuous (CR7 must be set to ‘1’) (default)  
46/123  
M58WRxxxKU, M58WRxxxKL  
Configuration Register  
Table 13. Burst type definition  
4 words  
Start  
8 words  
16 words  
Sequential Interleaved  
Continuous  
Burst  
Sequen-  
tial  
Inter-  
leaved  
Add  
Sequential Interleaved  
0-1-2-3-4-5-6-7-8- 0-1-2-3-4-5-6-  
9-10-11-12-13-14- 7-8-9-10-11-  
0-1-2-3-4- 0-1-2-3-4-5-  
0
1
2
0-1-2-3  
1-2-3-0  
2-3-0-1  
0-1-2-3  
1-0-3-2  
2-3-0-1  
0-1-2-3-4-5-6...  
5-6-7  
6-7  
15  
12-13-14-15  
1-2-3-4-5-6-7-8-9- 1-0-3-2-5-4-7- 1-2-3-4-5-6-7-  
1-2-3-4-5- 1-0-3-2-5-4-  
6-7-0 7-6  
10-11-12-13-14-  
15-0  
6-9-8-11-10-  
13-12-15-14  
...15-WAIT-16-  
17-18...  
2-3-4-5-6-7-8-9-  
10-11-12-13-14-  
15-0-1  
2-3-0-1-6-7-4- 2-3-4-5-6-7...15-  
5-10-11-8-9-  
14-15-12-13  
2-3-4-5-6- 2-3-0-1-6-7-  
7-0-1 4-5  
WAIT-WAIT-16-  
17-18...  
3-4-5-6-7...15-  
WAIT-WAIT-  
WAIT-16-17-  
18...  
3-4-5-6-7-8-9-10- 3-2-1-0-7-6-5-  
11-12-13-14-15-0- 4-11-10-9-8-  
3-4-5-6-7- 3-2-1-0-7-6-  
0-1-2 5-4  
3
...  
7
3-0-1-2  
7-4-5-6  
3-2-1-0  
7-6-5-4  
1-2  
15-14-13-12  
7-8-9-10-11-12-  
13-14-15-WAIT-  
WAIT-WAIT-16-  
17...  
7-8-9-10-11-12-13- 7-6-5-4-3-2-1-  
14-15-0-1-2-3-4-5- 0-15-14-13-  
7-0-1-2-3- 7-6-5-4-3-2-  
4-5-6 1-0  
6
12-11-10-9-8  
...  
12-13-14-15-16-  
17-18...  
12  
13-14-15-WAIT-  
16-17-18...  
13  
14  
14-15-WAIT-  
WAIT-16-17-  
18....  
15-WAIT-WAIT-  
WAIT-16-17-  
18...  
15  
47/123  
Configuration Register  
M58WRxxxKU, M58WRxxxKL  
Table 13. Burst type definition (continued)  
4 words  
8 words  
16 words  
Start  
Add  
Continuous  
Burst  
Sequen-  
Inter-  
Sequential Interleaved  
Sequential  
Interleaved  
tial  
leaved  
0-1-2-3-4-5-6-7-8-  
9-10-11-12-13-14-  
15  
0-1-2-3-4-  
5-6-7  
0
1
0-1-2-3  
1-2-3-4-5-6-7-8-9-  
10-11-12-13-14-  
15-WAIT-16  
1-2-3-4-5-  
6-7-8  
1-2-3-4  
2-3-4-5  
2-3-4-5-6-7-8-9-  
10-11-12-13-14-  
15-WAIT-WAIT-16-  
17  
2-3-4-5-6-  
7-8-9...  
2
3-4-5-6-7-8-9-10-  
11-12-13-14-15-  
WAIT-WAIT-WAIT-  
3-4-5-6-7-  
8-9-10  
3
...  
7
3-4-5-6  
16-17-18  
7-8-9-10-11-12-13-  
14-15-WAIT-WAIT-  
WAIT-16-17-18-19-  
20-21-22  
Same as for  
Wrap  
7-8-9-10-  
11-12-13-  
14  
7-8-9-10  
(Wrap /No Wrap  
has no effect on  
...  
Continuous  
Burst)  
12-13-14-  
15-16-17-  
18-19  
12-13-14-15-16-  
17-18-19-20-21-  
22-23-24-25-26-27  
12-13-14-  
15  
12  
13-14-15-  
WAIT-16-  
17-18-19-  
20  
13-14-15-WAIT-16-  
17-18-19-20-21-  
22-23-24-25-26-  
27-28  
13-14-15-  
WAIT-16  
13  
14  
14-15-  
WAIT-  
WAIT-16-  
17-18-19-  
20-21  
14-15-  
WAIT-  
WAIT-16-  
17  
14-15-WAIT-WAIT-  
16-17-18-19-20-  
21-22-23-24-25-  
26-27-28-29  
15-WAIT-  
WAIT-  
WAIT-16-  
17-18-19-  
20-21-22  
15-WAIT-  
WAIT-  
WAIT-16-  
17-18  
15-WAIT-WAIT-  
WAIT-16-17-18-19-  
20-21-22-23-24-  
25-26-27-28-29-30  
15  
48/123  
M58WRxxxKU, M58WRxxxKL  
Configuration Register  
Figure 7.  
X-latency and data output configuration example  
X-latency  
2nd cycle 3rd cycle  
1st cycle  
4th cycle  
K
E
L
A16-Amax(1)  
VALID ADDRESS  
VALID ADDRESS  
tQVK_CPU  
tK  
tKQV  
VALID DATA VALID DATA  
ADQ15-ADQ0  
AI13522  
1. Amax is equal to A19 in the M58WR016KU/L, to A20 in the M58WR032KU/L, and to A21 in the M58WR064KU/L.  
2. Settings shown: X-latency = 4, Data Output held for one clock cycle.  
49/123  
Configuration Register  
M58WRxxxKU, M58WRxxxKL  
Figure 8.  
Wait configuration example  
E
K
L
G
(1)  
A16-Amax  
VALID ADDRESS  
VALID ADDRESS  
ADQ15-ADQ0  
VALID DATA VALID DATA NOT VALID VALID DATA  
WAIT  
CR8 = '0'  
CR10 = '0'  
WAIT  
CR8 = '1'  
CR10 = '0'  
WAIT  
CR8 = '0'  
CR10 = '1'  
WAIT  
CR8 = '1'  
CR10 = '1'  
AI13523  
1. Amax is equal to A19 in the M58WR016KU/L, to A20 in the M58WR032KU/L, and to A21 in the M58WR064KU/L.  
50/123  
M58WRxxxKU, M58WRxxxKL  
Read modes  
9
Read modes  
Read operations can be performed in two different ways depending on the settings in the  
Configuration Register. If the clock signal is ‘don’t care’ for the data output, the read  
operation is Asynchronous; if the data output is synchronized with clock, the read operation  
is Synchronous.  
The Read mode and data output format are determined by the Configuration Register. (See  
Configuration Register section for details). All banks supports both asynchronous and  
synchronous read operations. The Multiple Bank architecture allows read operations in one  
bank, while write operations are being executed in another (see Tables 14 and 15).  
9.1  
Asynchronous Read mode  
In Asynchronous Read operations the clock signal is ‘don’t care’. The device outputs the  
data corresponding to the address latched, that is the memory array, Status Register,  
Common Flash Interface or Electronic Signature depending on the command issued. CR15  
in the Configuration Register must be set to ‘1’ for Asynchronous operations.  
In Asynchronous Read mode, the WAIT signal is always deasserted.  
The device features an Automatic Standby mode. During asynchronous read operations,  
after a bus inactivity of 150 ns, the device automatically switches to the Automatic Standby  
mode. In this condition the power consumption is reduced to the standby value I  
outputs are still driven.  
and the  
DD4  
See Table 24: Asynchronous Read ac characteristics, and Figure 11: Asynchronous random  
access read ac waveforms.  
51/123  
Read modes  
M58WRxxxKU, M58WRxxxKL  
9.2  
Synchronous Burst Read mode  
In Synchronous Burst Read mode the data is output in bursts synchronized with the clock. It  
is possible to perform burst reads across bank boundaries.  
Synchronous Burst Read mode can only be used to read the memory array. For other read  
operations, such as Read Status Register, Read CFI and Read Electronic Signature, Single  
Synchronous Read or Asynchronous Random Access Read must be used.  
In Synchronous Burst Read mode the flow of the data output depends on parameters that  
are configured in the Configuration Register.  
A burst sequence is started at the first clock edge (rising or falling depending on Valid Clock  
Edge bit CR6 in the Configuration Register) after the falling edge of Latch Enable.  
Addresses are internally incremented and after a delay of 2 to 5 clock cycles (X latency bits  
CR13-CR11) the corresponding data are output on each clock cycle.  
The number of words to be output during a Synchronous Burst Read operation can be  
configured as 4, 8 or 16 words or Continuous (Burst Length bits CR2-CR0). The data can be  
configured to remain valid for one or two clock cycles (Data Output Configuration bit CR9).  
The order of the data output can be modified through the Burst Type and the Wrap Burst bits  
in the Configuration Register. The burst sequence may be configured to be sequential or  
interleaved (CR7). The burst reads can be confined inside the 4, 8 or 16 word boundary  
(Wrap) or overcome the boundary (No Wrap). If the starting address is aligned to the Burst  
Length (4, 8 or 16 words), the wrapped configuration has no impact on the output sequence.  
Interleaved mode is not allowed in Continuous Burst Read mode or with No Wrap  
sequences.  
A WAIT signal may be asserted to indicate to the system that an output delay will occur. This  
delay will depend on the starting address of the burst sequence; the worst case delay will  
occur when the sequence is crossing a 16 word boundary and the starting address was at  
the end of a four word boundary.  
WAIT is asserted during X-latency, the Wait state and at the end of a 4, 8 and 16 word burst.  
It is only deasserted when output data are valid or when G is at V . In Continuous Burst  
IH  
Read mode a Wait state will occur when crossing the first 16 word boundary. If the burst  
starting address is aligned to a 4 word Page, the Wait state will not occur.  
The WAIT signal can be configured to be active Low or active High by setting CR10 in the  
Configuration Register.  
See Table 25: Synchronous Read ac characteristics, and Figure 12: Synchronous Burst  
Read ac waveforms, for details.  
52/123  
M58WRxxxKU, M58WRxxxKL  
Read modes  
9.2.1  
Synchronous Burst Read Suspend  
A Synchronous Burst Read operation can be suspended, freeing the data bus for other  
higher priority devices. It can be suspended during the initial access latency time (before  
data is output) or after the device has output data. When the Synchronous Burst Read  
operation is suspended, internal array sensing continues and any previously latched internal  
data is retained. A burst sequence can be suspended and resumed as often as required as  
long as the operating conditions of the device are met.  
A Synchronous Burst Read operation is suspended when E is low and the current address  
has been latched (on a Latch Enable rising edge or on a valid clock edge). The clock signal  
is then halted at V or at V , and G goes high.  
IH  
IL  
When G becomes low again and the clock signal restarts, the Synchronous Burst Read  
operation is resumed exactly where it stopped.  
WAIT being gated by E remains active and will not revert to high-impedance when G goes  
high. So if two or more devices are connected to the system’s READY signal, to prevent bus  
contention the WAIT signal of the Flash memory should not be directly connected to the  
system’s READY signal.  
See Table 25: Synchronous Read ac characteristics, and Figure 14: Synchronous Burst  
Read Suspend ac waveforms for details.  
9.3  
Single Synchronous Read mode  
Single Synchronous Read operations are similar to Synchronous Burst Read operations  
except that only the first data output after the X latency is valid.  
Synchronous Single Reads are used to read the Electronic Signature, Status Register, CFI,  
Block Protection Status, Configuration Register Status or Protection Register. When the  
addressed bank is in Read CFI, Read Status Register or Read Electronic Signature mode,  
the WAIT signal is deasserted when Output Enable, G, is at V or for the one clock cycle  
IH  
during which output data is valid. Otherwise, it is asserted.  
See Table 25: Synchronous Read ac characteristics and Figure 13: Single Synchronous  
Read ac waveforms, for details.  
53/123  
Dual operations and multiple bank architecture  
M58WRxxxKU, M58WRxxxKL  
10  
Dual operations and multiple bank architecture  
The Multiple Bank Architecture of the M58WRxxxKU/L provides flexibility for software  
developers by allowing code and data to be split with 4 Mbit granularity. The Dual  
Operations feature simplifies the software management of the device and allows code to be  
executed from one bank while another bank is being programmed or erased.  
The Dual operations feature means that while programming or erasing in one bank, Read  
operations are possible in another bank with zero latency (only one bank at a time is allowed  
to be in Program or Erase mode). If a Read operation is required in a bank which is  
programming or erasing, the Program or Erase operation can be suspended. Also if the  
suspended operation was Erase then a Program command can be issued to another block,  
so the device can have one block in Erase Suspend mode, one programming and other  
banks in Read mode. Bus Read operations are allowed in another bank between setup and  
confirm cycles of program or erase operations. The combination of these features means  
that read operations are possible at any moment.  
Dual operations between the Parameter Bank and either of the CFI, the OTP or the  
Electronic Signature memory space are not allowed. Table 16 shows which dual operations  
are allowed or not between the CFI, the OTP, the Electronic Signature locations and the  
memory array.  
Tables 14 and 15 show the dual operations possible in other banks and in the same bank.  
Note that only the commonly used commands are represented in these tables. For a  
complete list of possible commands refer to Appendix D: Command interface state tables.  
Table 14. Dual operations allowed in other banks  
Commands allowed in another bank  
Status of  
bank  
Read  
Status  
Register  
Read  
CFI  
Query  
Read  
Program/ Program/  
Erase Erase  
Suspend Resume  
Read  
Array  
Electronic Program Erase  
Signature  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Programming Yes  
Erasing  
Yes  
Yes  
Program  
Suspended  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Erase  
Suspended  
Yes  
Yes  
54/123  
M58WRxxxKU, M58WRxxxKL  
Dual operations and multiple bank architecture  
Table 15. Dual operations allowed in same bank  
Commands allowed in same bank  
Status of  
bank  
Read  
Status  
Read  
CFI  
Read  
Program/ Program/  
Erase Erase  
Suspend Resume  
Read  
Array  
Electronic Program Erase  
Register Query Signature  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(1))  
Programming  
Erasing  
(1)  
Program  
Suspended  
Yes(2)  
Yes(2)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Erase  
Suspended  
Yes(2)  
1. The Read Array command is accepted but the data output is not guaranteed until the Program or Erase  
has completed.  
2. Not allowed in the Block or word that is being erased or programmed.  
Table 16. Dual operation limitations  
Commands allowed  
Read Main Blocks  
Read CFI / OTP /  
Electronic  
Read  
Parameter  
Blocks  
Current Status  
Located in  
Parameter  
Bank  
Not Located  
in Parameter  
Bank  
Signature  
Programming / Erasing  
Parameter Blocks  
No  
No  
No  
No  
No  
Yes  
Yes  
Located in  
Parameter  
Yes  
Programming/  
Erasing Main  
Blocks  
Bank  
Not Located  
in Parameter  
Bank  
In Different  
Bank Only  
Yes  
No  
Yes  
No  
Yes  
No  
Programming OTP  
No  
55/123  
Block locking  
M58WRxxxKU, M58WRxxxKL  
11  
Block locking  
The M58WRxxxKU/L features an instant, individual block locking scheme that allows any  
block to be locked or unlocked with no latency. This locking scheme has three levels of  
protection.  
Lock/Unlock - this first level allows software-only control of block locking.  
Lock-Down - this second level requires hardware interaction before locking can be  
changed.  
V
V  
- the third level offers a complete hardware protection against program and  
PPLK  
PP  
erase on all blocks.  
The protection status of each block can be set to Locked, Unlocked, and Lock-Down.  
Table 17, defines all of the possible protection states (WP, DQ1, DQ0), and Appendix C:  
Flowcharts and pseudocodes, Figure 26, shows a flowchart for the locking operations.  
11.1  
Reading a block’s lock status  
The lock status of every block can be read in the Read Electronic Signature mode of the  
device. To enter this mode write 90h to the device. Subsequent reads at the address  
specified in Table 8, will output the protection status of that block. The lock status is  
represented by DQ0 and DQ1. DQ0 indicates the Block Lock/Unlock status and is set by the  
Lock command and cleared by the Unlock command. It is also automatically set when  
entering Lock-Down. DQ1 indicates the Lock-Down status and is set by the Lock-Down  
command. It cannot be cleared by software, only by a hardware reset or power-down.  
The following sections explain the operation of the locking system.  
11.2  
11.3  
Locked state  
The default status of all blocks on power-up or after a hardware reset is Locked (states  
(0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any  
program or erase operations attempted on a locked block will return an error in the Status  
Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the  
appropriate software commands. An Unlocked block can be Locked by issuing the Lock  
command.  
Unlocked state  
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked  
blocks return to the Locked state after a hardware reset or when the device is powered-  
down. The status of an unlocked block can be changed to Locked or Locked-Down using the  
appropriate software commands. A locked block can be unlocked by issuing the Unlock  
command.  
56/123  
M58WRxxxKU, M58WRxxxKL  
Block locking  
11.4  
Lock-Down state  
Blocks that are Locked-Down (state (0,1,x))are protected from program and erase  
operations (as for Locked blocks) but their protection status cannot be changed using  
software commands alone. A Locked or Unlocked block can be Locked-Down by issuing the  
Lock-Down command. Locked-Down blocks revert to the Locked state when the device is  
reset or powered-down.  
The Lock-Down function is dependent on the WP input pin. When WP=0 (V ), the blocks in  
IL  
the Lock-Down state (0,1,x) are protected from program, erase and protection status  
changes. When WP=1 (V ) the Lock-Down function is disabled (1,1,x) and Locked-Down  
IH  
blocks can be individually unlocked to the (1,1,0) state by issuing the software command,  
where they can be erased and programmed. These blocks can then be re-locked (1,1,1) and  
unlocked (1,1,0) as desired while WP remains high. When WP is Low, blocks that were  
previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes  
made while WP was high. Device reset or power-down resets all blocks, including those in  
Lock-Down, to the Locked state.  
11.5  
Locking operations during Erase Suspend  
Changes to block lock status can be performed during an erase suspend by using the  
standard locking command sequences to unlock, lock or lock-down a block. This is useful in  
the case when another block needs to be updated while an erase operation is in progress.  
To change block locking during an erase operation, first write the Erase Suspend command,  
then check the status register until it indicates that the erase operation has been  
suspended. Next write the desired Lock command sequence to a block and the lock status  
will be changed. After completing any desired lock, read, or program operations, resume the  
erase operation with the Erase Resume command.  
If a block is locked or locked-down during an erase suspend of the same block, the locking  
status bits will be changed immediately, but when the erase is resumed, the erase operation  
will complete. Locking operations cannot be performed during a program suspend. Refer to  
Appendix D: Command interface state tables, for detailed information on which commands  
are valid during erase suspend.  
57/123  
Block locking  
M58WRxxxKU, M58WRxxxKL  
Table 17. Lock status  
Current Protection Status(1)  
(WP, ADQ1, ADQ0)  
Next Protection status(1) (WP, ADQ1, ADQ0)  
After Block After Block  
Current  
State  
Program/Erase After Block Lock  
After WP  
transition  
Unlock  
Lock-Down  
Command  
Allowed  
Command  
Command  
1,0,0  
1,0,1(2)  
1,1,0  
yes  
no  
1,0,1  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
0,0,1  
0,1,1  
1,0,0  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
0,0,0  
0,1,1  
1,1,1  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,1,1  
0,1,1  
0,0,0  
0,0,1  
yes  
no  
0,1,1  
1,1,1  
0,1,1  
0,0,0  
yes  
no  
1,0,0  
0,0,1(2)  
1,0,1  
0,1,1  
no  
1,1,1 or 1,1,0(3)  
1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for  
a locked block) as read in the Read Electronic Signature command with A1 = VIH and A0 = VIL.  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.  
3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
58/123  
M58WRxxxKU, M58WRxxxKL  
Program and erase times and endurance cycles  
12  
Program and erase times and endurance cycles  
The Program and Erase times and the number of Program/ Erase cycles per block are  
shown in Table 18 In the M58WRxxxKU/L the maximum number of Program/ Erase cycles  
depends on the voltage supply used.  
(1)  
Table 18. Program, erase times and endurance cycles  
Parameter Condition  
Parameter Block (4 Kword)(2)  
Typical  
Min  
Typ  
after 100k Max Unit  
W/E Cycles  
0.3  
0.8  
1
1
3
2.5  
4
s
s
Erase  
Preprogrammed  
Main Block (32  
Kword)  
Not Preprogrammed  
4
s
Word  
12  
40  
300  
5
12  
100  
µs  
Program(3)  
Parameter Block (4 Kword)  
Main Block (32 Kword)  
Program  
ms  
ms  
µs  
10  
20  
Suspend Latency  
Erase  
5
µs  
Main Blocks  
100,000  
100,000  
cycles  
cycles  
s
Program/Erase  
Cycles (per Block)  
Parameter Blocks  
Parameter Block (4 Kword)  
Main Block (32 Kword)  
Word/ Double Word/ Quadruple Word(4)  
Quad-Enhanced Factory  
0.25  
0.8  
10  
2.5  
4
Erase  
s
100  
µs  
11  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
s
Enhanced Factory  
45  
Parameter  
Block (4 Kword)  
(4)  
Quadruple Word  
10  
Word  
40  
Program(3)  
Quad-Enhanced Factory  
Enhanced Factory  
Quadruple Word(4)  
Word  
Quad-Enhanced Factory(4)  
Quadruple Word(4)  
94  
360  
80  
Main Block (32  
Kword)  
328  
0.75  
0.65  
Bank (4Mbit)  
Main Blocks  
s
1000 cycles  
2500 cycles  
Program/Erase  
Cycles (per Block)  
Parameter Blocks  
1. TA = –40 to 85°C; VDD = VDDQ = 1.7 V to 2 V.  
2. The difference between preprogrammed and not preprogrammed is not significant (‹30 ms).  
3. Values are liable to change with the external system-level overhead (command sequence and Status Register polling  
execution).  
4. Measurements performed at 25°C. TA = 30°C 10°C for Quadruple Word, Double Word and Quadruple Enhanced Factory  
Program.  
59/123  
Maximum rating  
M58WRxxxKU, M58WRxxxKL  
13  
Maximum rating  
Stressing the device above the rating listed in the Absolute Maximum Ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the Numonyx SURE Program  
and other relevant quality documents.  
Table 19. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TA  
TBIAS  
TSTG  
VIO  
Ambient operating temperature  
Temperature under bias  
Storage temperature  
Input or output voltage  
Supply voltage  
–40  
–40  
85  
125  
°C  
°C  
°C  
V
–65  
155  
–0.5  
–0.2  
–0.2  
–0.2  
VDDQ+0.6  
2.45  
VDD  
VDDQ  
VPP  
V
Input/output supply voltage  
Program voltage  
2.45  
V
10.0  
V
IO  
Output short circuit current  
Time for VPP at VPPH  
100  
mA  
hours  
tVPPH  
100  
60/123  
M58WRxxxKU, M58WRxxxKL  
DC and AC parameters  
14  
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 20: Operating and ac measurement conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 20. Operating and ac measurement conditions  
M58WRxxxKU/L  
Parameter  
60 ns  
70 ns  
Unit  
Min  
Max  
Min  
Max  
V
DD supply voltage  
DDQ supply voltage  
1.7  
1.7  
2
2
1.7  
1.7  
2
2
V
V
V
VPP supply voltage (factory environment)  
VPP supply voltage (application environment)  
Ambient operating temperature  
Load capacitance (CL)  
8.5  
9.5  
8.5  
9.5  
V
–0.4  
–40  
VDDQ+0.4  
85  
–0.4  
–40  
VDDQ+0.4  
85  
V
°C  
pF  
ns  
V
30  
30  
Input rise and fall times  
5
5
Input pulse voltages  
0 to VDDQ  
VDDQ/2  
0 to VDDQ  
VDDQ/2  
Input and output timing ref. voltages  
V
Figure 9.  
AC measurement I/O waveform  
V
DDQ  
V
/2  
DDQ  
0V  
AI06161  
61/123  
DC and AC parameters  
Figure 10. AC measurement load circuit  
M58WRxxxKU, M58WRxxxKL  
V
DDQ  
V
DDQ  
V
DD  
16.7kΩ  
DEVICE  
UNDER  
TEST  
C
L
16.7kΩ  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI06162  
(1)  
Table 21. Capacitance  
Symbol  
Parameter  
Input capacitance  
Output capacitance  
Test condition  
Min  
Max  
Unit  
CIN  
VIN = 0 V  
6
8
8
pF  
pF  
COUT  
VOUT = 0 V  
12  
1. Sampled only, not 100% tested.  
62/123  
M58WRxxxKU, M58WRxxxKL  
DC and AC parameters  
Min Typ Max Unit  
Table 22. DC characteristics - currents  
Symbol  
Parameter  
Test condition  
ILI  
Input leakage current  
Output leakage current  
0V VIN VDDQ  
1
1
µA  
µA  
ILO  
0V VOUT VDDQ  
Supply current  
Asynchronous Read (f=6 MHz)  
E = VIL, G = VIH  
10  
20  
mA  
4 word  
8 word  
18  
20  
22  
24  
22  
25  
30  
33  
20  
22  
24  
26  
25  
27  
32  
35  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply current  
Synchronous Read (f=66 MHz)  
16 word  
Continuous  
4 word  
IDD1  
8 word  
Supply current  
Synchronous Read (f=86 MHz)  
16 word  
Continuous  
Supply current  
(Reset/Power-Down)  
IDD2  
IDD3  
IDD4  
RP = VSS 0.2 V  
E = VDDQ 0.2 V,  
2
10  
50  
50  
µA  
µA  
µA  
Supply current (Standby)  
15  
15  
K = V  
SS  
Supply current (Automatic  
Standby)  
E = VIL, G = VIH  
V
PP = VPPH  
10  
20  
10  
20  
30  
34  
30  
34  
mA  
mA  
mA  
mA  
Supply current (Program)  
Supply current (Erase)  
VPP = VDD  
(1)  
IDD5  
VPP = VPPH  
VPP = VDD  
Program/Erase in one  
Bank, Asynchronous Read  
in another Bank  
30  
54  
mA  
Supply current  
(1)(2)  
IDD6  
Program/Erase in one  
Bank, Synchronous Read  
(continuous burst 66 MHz)  
in another Bank  
(Dual operations)  
44  
15  
60  
50  
mA  
µA  
Supply current Program/ Erase  
Suspended (Standby)  
E = VDDQ 0.2 V,  
(1)  
IDD7  
K = V  
SS  
V
PP = VPPH  
5
10  
5
mA  
µA  
mA  
µA  
µA  
µA  
µA  
VPP supply current (Program)  
VPP = VDD  
0.2  
5
(1)  
IPP1  
VPP = VPPH  
10  
5
VPP supply current (Erase)  
VPP = VDD  
0.2  
V
PP = VPPH  
VPP VDD  
VPP VDD  
100 400  
IPP2  
VPP supply current (Read)  
0.2  
0.2  
5
5
(1)  
IPP3  
VPP supply current (Standby)  
1. Sampled only, not 100% tested.  
2. VDD Dual operation current is the sum of read and program or erase currents.  
63/123  
DC and AC parameters  
M58WRxxxKU, M58WRxxxKL  
Table 23. DC characteristics - voltages  
Symbol  
Parameter  
Input low voltage  
Test condition  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
–0.5  
0.4  
VDDQ + 0.4  
0.1  
V
V
V
V
V
V
V
V
Input high voltage  
VDDQ –0.4  
VOL  
Output low voltage  
IOL = 100 µA  
IOH = –100 µA  
Program, Erase  
Program, Erase  
VOH  
VPP1  
VPPH  
Output high voltage  
VDDQ –0.1  
1.3  
VPP program voltage-logic  
VPP program voltage factory  
2.4  
9.5  
0.4  
1
8.5  
9
VPPLK Program or Erase lockout  
VLKO VDD lock voltage  
64/123  
M58WRxxxKU, M58WRxxxKL  
Figure 11. Asynchronous random access read ac waveforms  
DC and AC parameters  
65/123  
DC and AC parameters  
M58WRxxxKU, M58WRxxxKL  
Table 24. Asynchronous Read ac characteristics  
M58WRxxxKU/L  
Unit  
Symbol  
Alt  
Parameter  
60  
70  
tAVAV  
tAVQV  
tELTV  
tRC  
Address Valid to Next Address Valid  
Min  
60  
70  
ns  
ns  
Address Valid to Output Valid  
(Random)  
tACC  
Max  
60  
70  
Chip Enable Low to Wait Valid  
Chip Enable Low to Output Valid  
Chip Enable High to Wait Hi-Z  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Max  
Max  
Max  
Min  
9
11  
70  
14  
0
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
tELQV  
tCE  
60  
11  
0
tEHTZ  
(2)  
tEHQX  
tEHQZ  
tGLQV  
tOH  
tHZ  
tOE  
(2)  
(1)  
Max  
Max  
11  
20  
14  
20  
Output Enable Low to Output  
Transition  
(2)  
(2)  
tGLQX  
tOLZ  
Min  
Min  
0
0
0
0
ns  
ns  
Output Enable High to Output  
Transition  
tGHQX  
tOH  
tDF  
(2)  
tGHQZ  
tAVLH  
tELLH  
Output Enable High to Output Hi-Z  
Max  
Min  
Min  
11  
4
14  
7
ns  
ns  
ns  
tAVADVH Address Valid to Latch Enable High  
tELADVH Chip Enable Low to Latch Enable High  
9
10  
Latch Enable High to Address  
Transition  
tLHAX  
tLLLH  
tLLQV  
tADVHAX  
Min  
Min  
Max  
4
7
7
7
ns  
ns  
ns  
tADVLADVH Latch Enable Pulse Width  
Latch Enable Low to Output Valid  
(Random)  
tADVLQV  
60  
70  
Latch Enable High to Output Enable  
tLHGL  
tADVHGL  
Low  
Min  
4
5
ns  
1. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV  
2. Sampled only, not 100% tested.  
.
66/123  
M58WRxxxKU, M58WRxxxKL  
Figure 12. Synchronous Burst Read ac waveforms  
DC and AC parameters  
67/123  
DC and AC parameters  
Figure 13. Single Synchronous Read ac waveforms  
M58WRxxxKU, M58WRxxxKL  
68/123  
M58WRxxxKU, M58WRxxxKL  
Figure 14. Synchronous Burst Read Suspend ac waveforms  
DC and AC parameters  
69/123  
DC and AC parameters  
Figure 15. Clock input ac waveform  
M58WRxxxKU, M58WRxxxKL  
tKHKL  
tKHKH  
tr  
tf  
tKLKH  
AI06981  
Table 25. Synchronous Read ac characteristics  
M58WRxxxKU/L  
Unit  
Symbol  
Alt  
Parameter  
60  
70  
tAVKH  
tELKH  
tELTV  
tAVCLKH Address Valid to Clock High  
tELCLKH Chip Enable Low to Clock High  
Chip Enable Low to Wait Valid  
Min  
Min  
Max  
4
4
9
5
5
ns  
ns  
ns  
11  
Chip Enable Pulse Width  
(subsequent synchronous reads)  
tEHEL  
Min  
11  
14  
ns  
tEHTZ  
tGHTV  
tGLTV  
tKHAX  
Chip Enable High to Wait Hi-Z  
Output Enable High to Wait Valid  
Max  
Min  
Max  
Min  
11  
11  
11  
6
14  
11  
11  
7
ns  
ns  
ns  
ns  
Output Enable Low to Wait Valid  
tCLKHAX Clock High to Address Transition  
tKHQV  
tKHTV  
tKHQX  
tKHTX  
Clock High to Output Valid  
tCLKHQV  
Max  
9
11  
3
ns  
ns  
Clock High to WAIT Valid  
Clock High to Output Transition  
tCLKHQX  
Min  
Min  
2
4
Clock High to WAIT Transition  
tLLKH tADVLCLKH Latch Enable Low to Clock High  
Clock Period (66 MHz)  
5
ns  
ns  
15  
tKHKH  
tCLK  
Min  
Clock Period (f=86 MHz)  
12  
tKHKL  
tKLKH  
Clock High to Clock Low  
Clock Low to Clock High  
Min  
3.5  
3.5  
3
ns  
ns  
tf  
tr  
Clock Fall or Rise Time  
Max  
3
1. Sampled only, not 100% tested. For other timings please refer to Table 24: Asynchronous Read ac  
characteristics.  
70/123  
M58WRxxxKU, M58WRxxxKL  
DC and AC parameters  
Figure 16. Write ac waveforms, Write Enable controlled  
71/123  
DC and AC parameters  
M58WRxxxKU, M58WRxxxKL  
Table 26. Write ac characteristics, Write Enable controlled  
Symbol Alt Parameter  
M58WRxxxKU/L  
Unit  
60  
70  
tAVAV  
tAVLH  
tDVWH  
tELLH  
tELWL  
tELQV  
tGHLL  
tGHWL  
tLHAX  
tLHGL  
tLLLH  
tWC Address Valid to Next Address Valid  
Address Valid to Latch Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
60  
4
70  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
Data Valid to Write Enable High  
40  
9
40  
10  
0
Chip Enable Low to Latch Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Output Valid  
tCS  
0
60  
14  
14  
4
70  
20  
20  
7
Output Enable High to Latch Enable Low  
Output Enable High to Write Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable Pulse Width  
4
5
7
7
tWHDX  
tDH  
tCH  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Chip Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Latch Enable Low  
0
0
tWHEH  
0
0
(1)  
tWHEL  
25  
0
25  
0
tWHGL  
(1)  
tWHLL  
25  
25  
40  
0
25  
25  
45  
0
tWHWL  
tWLWH  
tQVVPL  
tWPH Write Enable High to Write Enable Low  
tWP Write Enable Low to Write Enable High  
Output (Status Register) Valid to VPP Low Min  
Output (Status Register) Valid to Write  
Protect Low  
tQVWPL  
Min  
0
0
ns  
tVPHWH  
tWHVPL  
tWHWPL  
tWPHWH  
tVPS VPP High to Write Enable High  
Write Enable High to VPP Low  
Min  
Min  
Min  
Min  
200  
200  
200  
200  
200  
200  
200  
200  
ns  
ns  
ns  
ns  
Write Enable High to Write Protect Low  
Write Protect High to Write Enable High  
1. tWHEL and tWHLL have this value when reading from the targeted bank or when reading from any address  
after a Set Configuration Register command has been issued. System designers should take this into  
account and may insert a software No-Op instruction to delay the first read in the same bank after issuing  
any command, or to delay the first read to any address after issuing a Set Configuration Register  
command. If the first read after the command is a Read Array operation in a different bank and no changes  
to the Configuration Register have been issued, tWHEL and tWHLL are 0 ns.  
2. Sampled only, not 100% tested.  
72/123  
M58WRxxxKU, M58WRxxxKL  
DC and AC parameters  
Figure 17. Write ac waveforms, Chip Enable controlled  
73/123  
DC and AC parameters  
M58WRxxxKU, M58WRxxxKL  
Table 27. Write ac characteristics, Chip Enable controlled  
Symbol Alt Parameter  
M58WRxxxKU/L  
Unit  
60  
70  
tAVAV  
tAVLH  
tDVEH  
tEHDX  
tEHEL  
tEHLL  
tEHWH  
tELEH  
tELLH  
tELQV  
tGHEL  
tGHLL  
tLHAX  
tLHGL  
tLLLH  
tWC Address Valid to Next Address Valid  
Address Valid to Latch Enable High  
tDS Data Valid to Chip Enable High  
tDH Chip Enable High to Input Transition  
tWPH Chip Enable High to Chip Enable Low  
Chip Enable High to Latch Enable Low  
tCH Chip Enable High to Write Enable High  
tWP Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
Chip Enable Low to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
60  
4
70  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
0
40  
0
25  
0
25  
0
0
0
40  
9
45  
10  
70  
20  
20  
7
60  
14  
14  
4
Output Enable High to Chip Enable Low  
Output Enable High to Latch Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable Pulse Width  
4
5
7
7
(2)  
tWHEL  
tWLEL  
Write Enable High to Chip Enable Low  
tCS Write Enable Low to Chip Enable Low  
Chip Enable High to VPP Low  
25  
0
25  
0
tEHVPL  
tEHWPL  
tQVVPL  
200  
200  
0
200  
200  
0
Chip Enable High to Write Protect Low  
Output (Status Register) Valid to VPP Low  
Output (Status Register) Valid to Write  
Protect Low  
tQVWPL  
Min  
0
0
ns  
tVPHEH tVPS VPP High to Chip Enable High  
tWPHEH Write Protect High to Chip Enable High  
Min  
Min  
200  
200  
200  
200  
ns  
ns  
1. Sampled only, not 100% tested.  
2. tWHEL has this value when reading from the targeted bank or when reading from any address after a Set  
Configuration Register command has been issued. System designers should take this into account and  
may insert a software No-Op instruction to delay the first read in the same bank after issuing any  
command, or to delay the first read to any address after issuing a Set Configuration Register command. If  
the first read after the command is a Read Array operation in a different bank and no changes to the  
Configuration Register have been issued, tWHEL is 0 ns.  
74/123  
M58WRxxxKU, M58WRxxxKL  
DC and AC parameters  
Figure 18. Reset and Power-up ac waveforms  
tPHWL  
tPHEL  
tPHGL  
tPHLL  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
W, E, G, L  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI06976  
Table 28. Reset and Power-up ac characteristics  
Symbol  
Parameter  
Test Condition  
During Program  
60  
70  
Unit  
Reset Low to  
Min  
Min  
Min  
Min  
10  
20  
50  
80  
10  
20  
50  
80  
µs  
µs  
µs  
ns  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
Write Enable Low,  
Chip Enable Low,  
Output Enable Low,  
Latch Enable Low  
During Erase  
After Power-Down  
Other Conditions  
Reset High to  
tPHWL  
tPHEL  
tPHGL  
tPHLL  
Write Enable Low  
Chip Enable Low  
Output Enable Low  
Latch Enable Low  
Min  
30  
30  
ns  
(1)(2)  
tPLPH  
RP Pulse Width  
Min  
Min  
50  
50  
ns  
µs  
Supply Voltages High to Reset  
High  
(3)  
tVDHPH  
200  
200  
1. The device Reset is possible but not guaranteed if tPLPH < 50 ns.  
2. Sampled only, not 100% tested.  
3. It is important to assert RP in order to allow proper CPU initialization during Power-Up or Reset.  
75/123  
Package mechanical  
M58WRxxxKU, M58WRxxxKL  
15  
Package mechanical  
In order to meet environmental requirements, Numonyx offers these devices in ECOPACK®  
packages. These packages have a Lead-free second-level interconnect. The category of  
Second-Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
Figure 19. VFBGA44 7.5 × 5 mm, 10 × 4 ball array, 0.50 mm pitch, bottom view  
package outline  
D
D2  
D1  
FE FE1  
SD  
E2  
E
E1  
SE  
BALL "A1"  
FD1  
FD  
e
b
ddd  
A
A2  
A1  
BGA-Z52  
1. Drawing is not to scale.  
76/123  
M58WRxxxKU, M58WRxxxKL  
Package mechanical  
Table 29. VFBGA44 7.5 × 5 mm, 10 × 4 ball array, 0.50 mm pitch, package  
mechanical data  
millimeters  
inches  
Min  
Symbol  
Typ  
Min  
Max  
Typ  
Max  
A
A1  
A2  
b
1.000  
0.0394  
0.150  
0.0059  
0.660  
0.300  
7.500  
4.500  
6.500  
0.0260  
0.0118  
0.2953  
0.1772  
0.2559  
0.250  
7.400  
0.350  
7.600  
0.0098  
0.2913  
0.0138  
0.2992  
D
D1  
D2  
ddd  
E
0.080  
5.100  
0.0031  
0.2008  
5.000  
1.500  
3.500  
0.500  
1.500  
0.500  
1.750  
0.750  
0.250  
0.250  
4.900  
0.1969  
0.0591  
0.1378  
0.0197  
0.0591  
0.0197  
0.0689  
0.0295  
0.0098  
0.0098  
0.1929  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
77/123  
Part numbering  
M58WRxxxKU, M58WRxxxKL  
16  
Part numbering  
Table 30. Ordering information scheme  
Example:  
M58 W R 032  
K
U
70 ZA  
6
E
Device Type  
M58  
Architecture  
W = Multiple Bank, Burst Mode  
Operating Voltage  
R = VDD = VDDQ = 1.7 V to 2 V  
Density  
016 = 16 Mbit (× 16)  
032 = 32 Mbit (× 16)  
064 = 64 Mbit (× 16)  
Technology  
K = 65 nm technology  
Parameter Location  
U = Top Boot, Mux I/O  
L = Bottom Boot, Mux I/O  
Speed  
60 = 60 ns  
70 = 70 ns  
Package  
ZA = VFBGA44 7.5 x 5 mm, 0.50 mm pitch  
Temperature Range  
6 = –40 to 85 °C  
Option  
E = ECOPACK® Package, Standard Packing  
U = ECOPACK® Package, Tape & Reel Packing, 16mm  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc.), Daisy chain ordering information, or for  
further information on any aspect of this device, please contact the Numonyx Sales Office  
nearest to you.  
78/123  
M58WRxxxKU, M58WRxxxKL  
Block address tables  
Appendix A Block address tables  
Table 31. Top boot block addresses, M58WR016KU  
Bank(1)  
#
Size (Kword)  
Address range  
0
4
FF000-FFFFF  
FE000-FEFFF  
FD000-FDFFF  
FC000-FCFFF  
FB000-FBFFF  
FA000-FAFFF  
F9000-F9FFF  
F8000-F8FFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
79/123  
Block address tables  
M58WRxxxKU, M58WRxxxKL  
Table 31. Top boot block addresses, M58WR016KU (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
31  
32  
33  
34  
35  
36  
37  
38  
32  
32  
32  
32  
32  
32  
32  
32  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
1. There are two Bank Regions: Bank Region 1 contains all the banks that are made up of main blocks only;  
Bank Region 2 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
Table 32. Bottom boot block addresses, M58WR016KL  
Bank(1)  
#
Size (Kword)  
Address range  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
F8000-FFFFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
80/123  
M58WRxxxKU, M58WRxxxKL  
Block address tables  
Table 32. Bottom boot block addresses, M58WR016KL (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
1. There are two Bank Regions: Bank Region 2 contains all the banks that are made up of main blocks only;  
Bank Region 1 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
81/123  
Block address tables  
M58WRxxxKU, M58WRxxxKL  
Table 33. Top boot block addresses, M58WR032KU  
Bank(1)  
#
Size (Kword)  
Address range  
0
4
1FF000-1FFFFF  
1FE000-1FEFFF  
1FD000-1FDFFF  
1FC000-1FCFFF  
1FB000-1FBFFF  
1FA000-1FAFFF  
1F9000-1F9FFF  
1F8000-1F8FFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
82/123  
M58WRxxxKU, M58WRxxxKL  
Block address tables  
Table 33. Top boot block addresses, M58WR032KU (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
1. There are two Bank Regions: Bank Region 1 contains all the banks that are made up of main blocks only;  
Bank Region 2 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
83/123  
Block address tables  
M58WRxxxKU, M58WRxxxKL  
Table 34. Bottom boot block addresses, M58WR032KL  
Bank(1)  
#
Size (Kword)  
Address range  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
84/123  
M58WRxxxKU, M58WRxxxKL  
Block address tables  
Table 34. Bottom boot block addresses, M58WR032KL (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
85/123  
Block address tables  
M58WRxxxKU, M58WRxxxKL  
Table 34. Bottom boot block addresses, M58WR032KL (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
4
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
1. There are two Bank Regions: Bank Region 2 contains all the banks that are made up of main blocks only;  
Bank Region 1 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
86/123  
M58WRxxxKU, M58WRxxxKL  
Block address tables  
Address range  
Table 35. Top boot block addresses, M58WR064KU  
Bank(1)  
#
Size (Kword)  
0
4
3FF000-3FFFFF  
3FE000-3FEFFF  
3FD000-3FDFFF  
3FC000-3FCFFF  
3FB000-3FBFFF  
3FA000-3FAFFF  
3F9000-3F9FFF  
3F8000-3F8FFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
87/123  
Block address tables  
M58WRxxxKU, M58WRxxxKL  
Table 35. Top boot block addresses, M58WR064KU (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
88/123  
M58WRxxxKU, M58WRxxxKL  
Block address tables  
Table 35. Top boot block addresses, M58WR064KU (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
79  
80  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
89/123  
Block address tables  
M58WRxxxKU, M58WRxxxKL  
Table 35. Top boot block addresses, M58WR064KU (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
1. There are two Bank Regions: Bank Region 1 contains all the banks that are made up of main blocks only;  
Bank Region 2 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
Table 36. Bottom boot block addresses, M58WR064KL  
Bank(1)  
#
Size (Kword)  
Address range  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
3F8000-3FFFFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
90/123  
M58WRxxxKU, M58WRxxxKL  
Block address tables  
Table 36. Bottom boot block addresses, M58WR064KL (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
91/123  
Block address tables  
M58WRxxxKU, M58WRxxxKL  
Table 36. Bottom boot block addresses, M58WR064KL (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
92/123  
M58WRxxxKU, M58WRxxxKL  
Block address tables  
Table 36. Bottom boot block addresses, M58WR064KL (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
93/123  
Block address tables  
M58WRxxxKU, M58WRxxxKL  
Table 36. Bottom boot block addresses, M58WR064KL (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
1. There are two Bank Regions: Bank Region 2 contains all the banks that are made up of main blocks only;  
Bank Region 1 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
94/123  
M58WRxxxKU, M58WRxxxKL  
Common Flash Interface  
Appendix B Common Flash Interface  
The Common Flash Interface is a JEDEC approved, standardized data structure that can be  
read from the Flash memory device. It allows a system software to query the device to  
determine various electrical and timing parameters, density information and functions  
supported by the memory. The system can interface easily with the device, enabling the  
software to upgrade itself when necessary.  
When the Read CFI Query Command is issued the device enters CFI Query mode and the  
data structure is read from the memory. Tables 37, 38, 39, 40, 41, 42, 43, 44, 45 and 46  
show the addresses used to retrieve the data. The Query data is always presented on the  
lowest order data outputs (DQ0-DQ7), the other outputs (DQ8-DQ15) are set to 0.  
The CFI data structure also contains a security area where a 64 bit unique security number  
is written (see Figure 6: Protection Register memory map). This area can be accessed only  
in Read mode by the final user. It is impossible to change the security number after it has  
been written by Numonyx. Issue a Read Array command to return to Read mode.  
(1)  
Table 37. Query structure overview  
Offset  
Sub-section name  
Description  
00h Reserved  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
10h CFI query identification string  
1Bh System interface information  
27h Device geometry definition  
Primary algorithm-specific extended query Additional information specific to the primary  
P
A
table  
algorithm (optional)  
Alternate algorithm-specific extended  
query table  
Additional information specific to the alternate  
algorithm (optional)  
Lock Protection Register  
Unique device Number and  
User Programmable OTP  
80h Security code area  
1. The Flash memory display the CFI data structure when CFI Query command is issued. In this table are  
listed the main sub-sections detailed in Tables 38, 39, 40 and 41. Query data is always presented on the  
lowest order data outputs.  
95/123  
Common Flash Interface  
M58WRxxxKU, M58WRxxxKL  
Table 38. CFI query identification string  
Offset Sub-section name  
Description  
Value  
00h  
0020h  
Manufacturer code  
Numonyx  
8823h  
8828h  
88C0h  
8824h  
8829h  
88C1h  
M58WR016KU  
M58WR032KU  
M58WR064KU  
M58WR016KL  
M58WR032KL  
M58WR064KL  
Top  
Top  
Top  
01h  
Device code  
Bottom  
Bottom  
Bottom  
02h  
03h  
reserved  
DRC  
Reserved  
Die revision code  
Reserved  
04h-0Fh  
10h  
reserved  
0051h  
"Q"  
"R"  
"Y"  
11h  
0052h  
Query unique ASCII string "QRY"  
12h  
0059h  
13h  
0003h  
Primary algorithm command set and control interface ID  
code 16 bit ID code defining a specific algorithm  
14h  
0000h  
15h  
offset = P = 0039h  
0000h  
Address for primary algorithm extended query table (see  
Table 41)  
p = 39h  
NA  
16h  
17h  
0000h  
Alternate vendor command set and control interface ID  
code second vendor - specified algorithm supported  
18h  
0000h  
19h  
value = A = 0000h  
0000h  
Address for alternate algorithm extended query table  
NA  
1Ah  
96/123  
M58WRxxxKU, M58WRxxxKL  
Common Flash Interface  
Value  
Table 39. CFI query system interface information  
Offset  
Data  
Description  
VDD logic supply minimum Program/Erase or Write voltage  
1Bh  
0017h bit 7 to 4 BCD value in volts  
bit 3 to 0 BCD value in 100 millivolts  
1.7 V  
2 V  
VDD logic supply maximum Program/Erase or Write voltage  
1Ch  
1Dh  
1Eh  
0020h bit 7 to 4 BCD value in volts  
bit 3 to 0 BCD value in 100 millivolts  
VPP [programming] supply minimum Program/Erase voltage  
0085h bit 7 to 4 HEX value in volts  
8.5 V  
9.5 V  
bit 3 to 0 BCD value in 100 millivolts  
VPP [programming] supply maximum Program/Erase voltage  
0095h bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 millivolts  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h Typical time-out per single byte/word program = 2n µs  
0000h Typical time-out for multi-byte program = 2n µs  
16 µs  
NA  
000Ah Typical time-out per individual block erase = 2n ms  
0000h Typical time-out for full chip erase = 2n ms  
1 s  
NA  
0003h Maximum time-out for word program = 2n times typical  
0000h Maximum time-out for multi-byte program = 2n times typical  
0002h Maximum time-out per individual block erase = 2n times typical  
0000h Maximum time-out for chip erase = 2n times typical  
128 µs  
NA  
4 s  
NA  
97/123  
Common Flash Interface  
M58WRxxxKU, M58WRxxxKL  
Table 40. Device geometry definition  
Offset  
Word  
Mode  
Data  
Description  
Value  
0015h M58WR016KU/L Device size = 2n in number of bytes  
0016h M58WR032KU/L Device size = 2n in number of bytes  
0017h M58WR064KU/L Device size = 2n in number of bytes  
2 Mbytes  
4 Mbytes  
8 Mbytes  
27h  
28h  
29h  
0001h  
x 16  
Flash device interface code description  
0000h  
Async.  
2Ah  
2Bh  
0000h  
Maximum number of bytes in multi-byte program or page = 2n  
0000h  
NA  
2
Number of identical sized Erase block regions within the device  
2Ch  
0002h  
bit 7 to 0 = x = number of Erase block regions  
001Eh M58WR016KU region 1 information  
31  
0000h Number of identical-size Erase blocks = 001Eh+1  
2Dh  
2Eh  
003Eh M58WR032KU region 1 information  
63  
0000h Number of identical-size Erase blocks = 003Eh+1  
007Eh M58WR064KU region 1 information  
127  
0000h Number of identical-size Erase blocks = 007Eh+1  
2Fh  
30h  
0000h Region 1 information  
64 Kbyte  
8
0001h Block size in region 1 = 0100h * 256 byte  
31h  
32h  
0007h Region 2 information  
0000h Number of identical-size Erase blocks = 0007h+1  
33h  
34h  
0020h Region 2 information  
8 Kbyte  
NA  
0000h Block size in region 2 = 0020h * 256 byte  
35h  
38h  
Reserved for future Erase block region information  
2Dh  
2Eh  
0007h Region 1 information  
8
0000h Number of identical-size Erase block = 0007h+1  
2Fh  
30h  
0020h Region 1 information  
8 Kbyte  
31  
0000h Block size in region 1 = 0020h * 256 byte  
001Eh M58WR016KL region 1 information  
0000h Number of identical-size Erase blocks = 001Eh+1  
31h  
32h  
003Eh M58WR032KL region 1 information  
63  
0000h Number of identical-size Erase blocks = 003Eh+1  
007Eh M58WR064KL region 1 information  
127  
0000h Number of identical-size Erase blocks = 007Eh+1  
33h  
34h  
0000h Region 2 information  
64 Kbyte  
NA  
0001h Block size in region 2 = 0100h * 256 byte  
35h  
38h  
Reserved for future Erase block region information  
98/123  
M58WRxxxKU, M58WRxxxKL  
Common Flash Interface  
(1)  
Table 41. Primary algorithm-specific extended query table  
Offset  
Data  
Description  
Value  
(P)h = 39h  
0050h  
"P"  
0052h Primary algorithm extended query table unique ASCII string “PRI”  
0049h  
"R"  
"I"  
(P+3)h = 3Ch 0031h Major version number, ASCII  
"1"  
"3"  
(P+4)h = 3Dh 0033h Minor version number, ASCII  
(P+5)h = 3Eh 00E6h Extended query table contents for primary algorithm. Address (P+5)h contains  
less significant byte.  
0003h  
(P+7)h = 40h  
(P+8)h = 41h  
0000h  
0000h  
bit 0Chip Erase supported(1 = Yes, 0 = No)  
bit 1Erase Suspend supported(1 = Yes, 0 = No)  
bit 2Program Suspend supported(1 = Yes, 0 = No)  
bit 3Legacy Lock/Unlock supported(1 = Yes, 0 = No)  
bit 4Queued Erase supported(1 = Yes, 0 = No)  
bit 5Instant individual block locking supported(1 = Yes, 0 = No)  
bit 6Protection bits supported(1 = Yes, 0 = No)  
bit 7Page mode read supported(1 = Yes, 0 = No)  
bit 8Synchronous read supported(1 = Yes, 0 = No)  
bit 9Simultaneous operation supported(1 = Yes, 0 = No)  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
bit 10 to 31Reserved; undefined bits are ‘0’. If bit 31 is ’1’ then another 31 bit  
field of optional features follows at the end of the bit-30 field.  
Supported Functions after Suspend  
Read Array, Read Status Register and CFI Query  
(P+9)h = 42h  
(P+A)h = 43h  
0001h  
0003h  
Yes  
bit 0Program supported after Erase Suspend (1 = Yes, 0 = No)  
bit 7 to 1Reserved; undefined bits are ‘0’  
Block Protect Status  
Defines which bits in the Block Status Register section of the Query are  
implemented.  
(P+B)h = 44h  
0000h  
bit 0Block protect Status Register Lock/Unlock bit active(1 = Yes, 0 = No)  
bit 1Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)  
bit 15 to 2Reserved for future use; undefined bits are ‘0’  
Yes  
Yes  
VDD Logic Supply Optimum Program/Erase voltage (highest performance)  
(P+C)h = 45h 0018h  
(P+D)h = 46h 0090h  
1.8 V  
9 V  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
VPP Supply Optimum Program/Erase voltage  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
1. The variable P is a pointer that is defined at CFI offset 15h.  
99/123  
Common Flash Interface  
M58WRxxxKU, M58WRxxxKL  
Value  
(1)  
Table 42. Protection Register information  
Offset  
Data  
Description  
Number of protection register fields in JEDEC ID space. 0000h indicates  
that 256 fields are available.  
(P+E)h = 47h  
0001h  
1
(P+F)h = 48h  
(P+10)h = 49h  
0080h  
0000h  
Protection Field 1: protection description  
0080h  
Bits 0-7 Lower byte of protection register address  
Bits 8-15 Upper byte of protection register address  
Bits 16-23 2n bytes in factory pre-programmed region  
Bits 24-31 2n bytes in user programmable region  
(P+11)h =  
4Ah  
0003h  
0004h  
8 Bytes  
(P+12)h= 4Bh  
16 Bytes  
1. The variable P is a pointer that is defined at CFI offset 15h.  
(1)  
Table 43. Burst Read Information  
Offset  
Data  
Description  
Value  
Page-mode read capability  
bits 0-7’n’ such that 2n HEX value represents the number of read-page  
bytes. See offset 28h for device word width to determine page-mode data  
output width.  
(P+13)h = 4Ch  
(P+14)h = 4Dh  
0003h  
0004h  
8 Bytes  
4
Number of synchronous mode read configuration fields that follow.  
Synchronous mode read capability configuration 1  
bit 3-7Reserved  
bit 0-2’n’ such that 2n+1 HEX value represents the maximum number of  
continuous synchronous reads when the device is configured for its  
maximum word width. A value of 07h indicates that the device is capable of  
continuous linear bursts that will output data until the internal burst counter  
reaches the end of the device’s burstable address space. This field’s 3-bit  
value can be written directly to the read configuration register bit 0-2 if the  
device is configured for its maximum word width. See offset 28h for word  
width to determine the burst data output width.  
(P+15)h = 4Eh  
0001h  
4
(P+16)h = 4Fh  
(P+17)h = 50h  
(P+18)h = 51h  
0002h  
0003h  
0007h  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
8
16  
Cont.  
1. The variable P is a pointer that is defined at CFI offset 15h.  
Table 44. Bank and Erase block region information  
M58WR032KU  
M58WR032KL  
Description  
Offset  
Data  
02h  
Offset  
Data  
02h  
(P+19)h = 52h  
(P+19)h = 52h  
Number of Bank Regions within the device  
1. The variable P is a pointer that is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, see Tables 31, 32, 33, 34, 35 and 36.  
100/123  
M58WRxxxKU, M58WRxxxKL  
Common Flash Interface  
(1)  
Table 45. Bank and Erase block region 1 information  
M58WR016KU,  
M58WR032KU,  
M58WR064KU  
M58WR016KL,  
M58WR032KL,  
M58WR064KL  
Description  
Offset  
Data  
Offset  
Data  
03h(2)  
07h(3)  
0Fh(4)  
(P+1A)h = 53h  
(P+1B)h = 54h  
(P+1A)h = 53h  
(P+1B)h = 54h  
01h  
00h  
Number of identical banks within Bank Region 1  
00h  
Number of program or erase operations allowed in Bank  
Region 1:  
(P+1C)h = 55h  
(P+1D)h = 56h  
(P+1E)h = 57h  
(P+1F)h = 58h  
11h  
(P+1C)h = 55h  
(P+1D)h = 56h  
(P+1E)h = 57h  
(P+1F)h = 58h  
11h  
00h  
00h  
02h  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in same region is programming  
00h  
00h  
01h  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in Bank Region 1  
n = number of erase block regions with contiguous same-  
size erase blocks.  
Symmetrically blocked banks have one blocking region.(5)  
(P+20)h = 59h  
(P+21)h = 5Ah  
(P+22)h = 5Bh  
(P+23)h = 5Ch  
(P+24)h = 5Dh  
(P+25)h = 5Eh  
07h  
00h  
00h  
01h  
64h  
00h  
(P+20)h = 59h  
(P+21)h = 5Ah  
(P+22)h = 5Bh  
(P+23)h = 5Ch  
(P+24)h = 5Dh  
(P+25)h = 5Eh  
07h  
00h  
20h  
00h  
64h  
00h  
Bank Region 1 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 1 (Erase Block Type 1): bits per cell, internal  
ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved 5Eh 01 5Eh 01  
(P+26)h = 5Fh  
(P+27)h = 60h  
01h  
03h  
(P+26)h = 5Fh  
(P+27)h = 60h  
01h  
03h  
Bank Region 1 (Erase Block Type 1): Page mode and  
synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
101/123  
Common Flash Interface  
M58WRxxxKU, M58WRxxxKL  
(1)  
Table 45. Bank and Erase block region 1 information (continued)  
M58WR016KU,  
M58WR032KU,  
M58WR064KU  
M58WR016KL,  
M58WR032KL,  
M58WR064KL  
Description  
Offset  
Data  
Offset  
Data  
(P+28)h = 61h  
(P+29)h = 62h  
(P+2A)h = 63h  
(P+2B)h = 64h  
(P+2C)h = 65h  
(P+2D)h = 66h  
06h  
00h  
00h  
01h  
64h  
00h  
Bank Region 1 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase  
blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Regions 1 (Erase Block Type 2): bits per cell, internal  
ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
(P+2E)h = 67h  
(P+2F)h = 68h  
01h  
03h  
Bank Region 1 (Erase Block Type 2): Page mode and  
synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
1. The variable P is a pointer that is defined at CFI offset 15h.  
2. Applies to M58WR016KU.  
3. Applies to M58WR032KU.  
4. Applies to M58WR064KU.  
5. Bank Regions. There are two Bank Regions, see Tables 31, 32, 33, 34, 35 and 36.  
102/123  
M58WRxxxKU, M58WRxxxKL  
Common Flash Interface  
(1)  
Table 46. Bank and Erase block region 2 information  
M58WR016KU,  
M58WR032KU,  
M58WR064KU  
M58WR016KL,  
M58WR032KL,  
M58WR064KL  
Description  
Offset  
Data  
Offset  
Data  
03h(2)  
07h(3)  
0Fh(4)  
(P+28)h = 61h  
(P+29)h = 62h  
01h  
00h  
(P+30)h = 69h  
(P+31)h = 6Ah  
Number of identical banks within Bank Region 2  
00h  
Number of program or erase operations allowed in Bank  
Region 2:  
(P+2A)h = 63h  
(P+2B)h = 64h  
(P+2C)h = 65h  
(P+2D)h = 66h  
11h  
00h  
00h  
02h  
(P+32)h = 6Bh  
(P+33)h = 6Ch  
(P+34)h = 6Dh  
(P+35)h = 6Eh  
11h  
Bits 0-3: number of simultaneous program operations  
Bits 4-7: number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in this region is programming  
00h  
00h  
01h  
Bits 0-3: number of simultaneous program operations  
Bits 4-7: number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in this region is erasing  
Bits 0-3: number of simultaneous program operations  
Bits 4-7: number of simultaneous erase operations  
Types of erase block regions in Bank Region 2  
n = number of erase block regions with contiguous same-size  
erase blocks.  
Symmetrically blocked banks have one blocking region.(5)  
(P+2E)h = 67h  
(P+2F)h = 68h  
(P+30)h = 69h  
(P+31)h = 6Ah  
(P+32)h = 6Bh  
(P+33)h = 6Ch  
06h  
00h  
00h  
01h  
64h  
00h  
(P+36)h = 6Fh  
(P+37)h = 70h  
(P+38)h = 71h  
(P+39)h = 72h  
(P+3A)h = 73h  
(P+3B)h = 74h  
07h  
00h  
00h  
01h  
64h  
00h  
Bank Region 2 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 1): bits per cell, internal  
ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
Bits 5-7: reserved  
(P+34)h = 6Dh  
(P+35)h = 6Eh  
01h  
03h  
(P+3C)h = 75h  
(P+3D)h = 76h  
01h  
03h  
Bank Region 2 (Erase Block Type 1): Page mode and  
synchronous mode capabilities (defined in Table 43)  
Bit 0: page-mode reads permitted  
Bit 1: synchronous reads permitted  
Bit 2: synchronous writes permitted  
Bits 3-7: reserved  
103/123  
Common Flash Interface  
M58WRxxxKU, M58WRxxxKL  
(1)  
Table 46. Bank and Erase block region 2 information (continued)  
M58WR016KU,  
M58WR032KU,  
M58WR064KU  
M58WR016KL,  
M58WR032KL,  
M58WR064KL  
Description  
Offset  
Data  
Offset  
Data  
(P+36)h = 6Fh  
(P+37)h = 70h  
(P+38)h = 71h  
(P+39)h = 72h  
(P+3A)h = 73h  
(P+3B)h = 74h  
07h  
00h  
20h  
00h  
64h  
00h  
Bank Region 2 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 2): bits per cell, internal  
ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
Bits 5-7: reserved  
(P+3C)h = 75h  
(P+3D)h = 76h  
01h  
03h  
Bank Region 2 (Erase Block Type 2): Page mode and  
synchronous mode capabilities (defined in Table 43)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+3E)h = 77h  
(P+3F)h = 78h  
(P+3E)h = 77h  
(P+3F)h = 78h  
Feature space definitions  
Reserved  
1. The variable P is a pointer that is defined at CFI offset 15h.  
2. Applies to M58WR016KL.  
3. Applies to M58WR032KL.  
4. Applies to M58WR064KL.  
5. Bank Regions. There are two Bank Regions, see Tables 31, 32, 33, 34, 35 and 36.  
104/123  
M58WRxxxKU, M58WRxxxKL  
Flowcharts and pseudocodes  
Appendix C Flowcharts and pseudocodes  
Figure 20. Program flowchart and pseudocode  
Start  
program_command (addressToProgram, dataToProgram) {:  
writeToFlash (addressToProgram, 0x40);  
/*writeToFlash (addressToProgram, 0x10);*/  
/*see note (3)*/  
Write 40h or 10h (3)  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram);  
"see note (3)";  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
error_handler ( ) ;  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06170c  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
105/123  
Flowcharts and pseudocodes  
M58WRxxxKU, M58WRxxxKL  
Figure 21. Double Word Program flowchart and pseudocode  
Start  
Write 35h  
double_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2)  
{
writeToFlash (addressToProgram1, 0x35);  
/*see note (4)*/  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 1  
& Data 1 (3, 4)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
/*Memory enters read status state after  
the Program command*/  
Write Address 2  
& Data 2 (3)  
do {  
status_register=readFlash (addressToProgram) ;  
"see note (4)"  
/* E or G must be toggled*/  
Read Status  
Register (4)  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06171b  
1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation  
or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.  
4. Any address within the bank can equally be used.  
106/123  
M58WRxxxKU, M58WRxxxKL  
Flowcharts and pseudocodes  
Figure 22. Quadruple Word Program flowchart and pseudocode  
Start  
quadruple_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2,  
addressToProgram3, dataToProgram3,  
addressToProgram4, dataToProgram4)  
{
Write 56h  
Write Address 1  
& Data 1 (3, 4)  
writeToFlash (addressToProgram1, 0x56);  
/*see note (4) */  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 2  
& Data 2 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
writeToFlash (addressToProgram3, dataToProgram3) ;  
/*see note (3) */  
Write Address 3  
& Data 3 (3)  
writeToFlash (addressToProgram4, dataToProgram4) ;  
/*see note (3) */  
Write Address 4  
& Data 4 (3)  
/*Memory enters read status state after  
the Program command*/  
do {  
status_register=readFlash (addressToProgram) ;  
/"see note (4) "/  
/* E or G must be toggled*/  
Read Status  
Register (4)  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06977b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.  
4. Any address within the bank can equally be used.  
107/123  
Flowcharts and pseudocodes  
M58WRxxxKU, M58WRxxxKL  
Figure 23. Program Suspend & Resume flowchart and pseudocode  
Start  
program_suspend_command ( ) {  
writeToFlash (any_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
program has already completed */  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
SR2 = 1  
Program Complete  
Write FFh  
if (status_register.SR2==0) /*program completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Read Data  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
Read data from  
another address  
read_data ( ); /*read data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume program*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if program has completed */  
Write 70h(1)  
}
Program Continues with  
Bank in Read Status  
Register Mode  
}
AI10117b  
1. The Read Status Register command (Write 70h) can be issued just before or just after the Program Resume command.  
108/123  
M58WRxxxKU, M58WRxxxKL  
Flowcharts and pseudocodes  
Figure 24. Block Erase flowchart and pseudocode  
Start  
erase_command ( blockToErase ) {  
writeToFlash (blockToErase, 0x20) ;  
/*see note (2) */  
Write 20h (2)  
writeToFlash (blockToErase, 0xD0) ;  
(3)  
/* only ADQ12-ADQ15 and A16-Amax are significant */  
/* Memory enters read status state after  
the Erase Command */  
Write Block  
Address & D0h  
do {  
Read Status  
Register (2)  
status_register=readFlash (blockToErase) ;  
/* see note (2) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
} while (status_register.SR7== 0) ;  
YES  
NO  
YES  
NO  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
Error (1)  
PP  
SR3 = 0  
YES  
if ( (status_register.SR4==1) && (status_register.SR5==1) )  
/* command sequence error */  
Command  
Sequence Error (1)  
SR4, SR5 = 1  
NO  
error_handler ( ) ;  
if ( (status_register.SR5==1) )  
/* erase error */  
SR5 = 0  
YES  
Erase Error (1)  
error_handler ( ) ;  
Erase to Protected  
Block Error (1)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI13531  
1. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
2. Any address within the bank can equally be used.  
3. Amax is equal to A19 in the M58WR016KU/L, to A20 in the M58WR032KU/L, and to A21 in the M58WR064KU/L.  
109/123  
Flowcharts and pseudocodes  
M58WRxxxKU, M58WRxxxKL  
Figure 25. Erase Suspend & Resume flowchart and pseudocode  
Start  
erase_suspend_command ( ) {  
writeToFlash (bank_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
erase has already completed */  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
NO  
} while (status_register.SR7== 0) ;  
SR7 = 1  
YES  
SR6 = 1  
Erase Complete  
Write FFh  
if (status_register.SR6==0) /*erase completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
Read Data  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
read_program_data ( );  
Read data from another block,  
Program,  
/*read or program data from another block*/  
Set Configuration Register  
or  
Block Lock/Unlock/Lock-Down  
writeToFlash (bank_address, 0xD0) ;  
/*write 0xD0 to resume erase*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if erase has completed */  
}
(1)  
Write 70h  
}
Erase Continues with  
Bank in Read Status  
Register Mode  
AI13530b  
1. The Read Status Register command (Write 70h) can be issued just before or just after the Erase Resume command.  
110/123  
M58WRxxxKU, M58WRxxxKL  
Flowcharts and pseudocodes  
Figure 26. Locking operations flowchart and pseudocode  
Start  
locking_operation_command (address, lock_operation) {  
writeToFlash (address, 0x60) ; /*configuration setup*/  
Write 60h (1)  
/* see note (1) */  
if (lock_operation==LOCK) /*to protect the block*/  
writeToFlash (address, 0x01) ;  
else if (lock_operation==UNLOCK) /*to unprotect the block*/  
writeToFlash (address, 0xD0) ;  
Write  
01h, D0h or 2Fh  
else if (lock_operation==LOCK-DOWN) /*to lock the block*/  
writeToFlash (address, 0x2F) ;  
writeToFlash (address, 0x90) ;  
/*see note (1) */  
Write 90h (1)  
Read Block  
Lock States  
if (readFlash (address) ! = locking_state_expected)  
error_handler () ;  
NO  
Locking  
change  
/*Check the locking state (see Read Block Signature table )*/  
confirmed?  
YES  
writeToFlash (address, 0xFF) ; /*Reset to Read Array mode*/  
/*see note (1) */  
Write FFh (1)  
}
End  
AI06176b  
1. Any address within the bank can equally be used.  
111/123  
Flowcharts and pseudocodes  
M58WRxxxKU, M58WRxxxKL  
Figure 27. Protection Register Program flowchart and pseudocode  
Start  
protection_register_program_command (addressToProgram, dataToProgram) {:  
writeToFlash (addressToProgram, 0xC0) ;  
/*see note (3) */  
Write C0h (3)  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram) ;  
/* see note (3) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06177b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
112/123  
M58WRxxxKU, M58WRxxxKL  
Flowcharts and pseudocodes  
Figure 28. Enhanced Factory Program flowchart  
SETUP PHASE  
Start  
VERIFY PHASE  
Write PD1  
Address WA1  
Write 30h  
Address WA1  
1)  
(
Write D0h  
Address WA1  
Read Status  
Register  
Read Status  
Register  
NO  
SR0 = 0?  
YES  
NO  
SR7 = 0?  
Check SR4, SR3  
Write PD2  
Address WA2  
YES  
1)  
and SR1 for program,  
(
V
and Lock Errors  
PP  
NO  
SR0 = 0?  
YES  
Exit  
Read Status  
Register  
Write PD1  
Address WA1  
PROGRAM PHASE  
NO  
SR0 = 0?  
Read Status  
Register  
YES  
Write PDn  
Address WAn  
NO  
1)  
(
SR0 = 0?  
YES  
Read Status  
Register  
Write PD2  
Address WA2  
1)  
(
NO  
Read Status  
Register  
SR0 = 0?  
YES  
NO  
Write FFFFh  
SR0 = 0?  
Address Block WA1  
=
/
YES  
EXIT PHASE  
Write PDn  
Address WAn  
1)  
(
Read Status  
Register  
Read Status  
Register  
NO  
SR7 = 1?  
YES  
NO  
SR0 = 0?  
YES  
Check Status  
Register for Errors  
Write FFFFh  
=
Address Block WA1  
/
End  
AI06160  
1. Address can remain Starting Address WA1 or be incremented.  
113/123  
Flowcharts and pseudocodes  
M58WRxxxKU, M58WRxxxKL  
16.1  
Enhanced Factory Program pseudocode  
efp_command(addressFlow,dataFlow,n)  
/* n is the number of data to be programmed */  
{
/* setup phase */  
writeToFlash(addressFlow[0],0x30);  
writeToFlash(addressFlow[0],0xD0);  
status_register=readFlash(any_address);  
if (status_register.SR7==1){  
/*EFP aborted for an error*/  
if (status_register.SR4==1) /*program error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block error*/  
error_handler();  
}
else{  
/*Program Phase*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1)  
/*Ready for first data*/  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* Verify Phase */  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* exit program phase */  
/* Exit Phase */  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.SR7==0);  
if (status_register.SR4==1) /*program failure error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block error*/  
error_handler();  
}
}
114/123  
M58WRxxxKU, M58WRxxxKL  
Flowcharts and pseudocodes  
Figure 29. Quadruple enhanced factory program flowchart  
SETUP PHASE  
Start  
LOAD PHASE  
Write PD1  
1)  
Write 75h  
Address WA1  
Address WA1(  
FIRST  
LOAD PHASE  
Write PD2  
Write PD1  
Address WA1  
2)  
Address WA2(  
Read Status  
Register  
Write PD3  
2)  
Address WA3(  
NO  
SR7 = 0?  
YES  
Write PD4  
2)  
Address WA4(  
EXIT PHASE  
Write FFFFh  
Check SR4, SR3  
and SR1 for program,  
VPP and Lock Errors  
PROGRAM AND  
VERIFY PHASE  
Read Status  
Register  
Address =Block WA1  
/
Exit  
Check SR4 for  
Programming Errors  
NO  
NO  
SR0 = 0?  
YES  
End  
Last Page?  
YES  
AI06178b  
1. Address can remain Starting Address WA1 (in which case the next Page is programmed) or can be any address in the  
same block.  
2. The address is only checked for the first word of each Page as the order to program the words is fixed, so subsequent  
words in each Page can be written to any address.  
115/123  
Flowcharts and pseudocodes  
M58WRxxxKU, M58WRxxxKL  
16.2  
Quadruple enhanced factory program pseudocode  
quad_efp_command(addressFlow,dataFlow,n)  
/* n is the number of pages to be programmed.*/  
{
/* Setup phase */  
writeToFlash(addressFlow[0],0x75);  
for (i=0; i++; i< n){  
/*Data Load Phase*/  
/*First Data*/  
writeToFlash(addressFlow[i],dataFlow[i,0]);  
/*at the first data of the first page, Quad-EFP may be aborted*/  
if (First_Page) {  
status_register=readFlash(any_address);  
if (status_register.SR7==1){  
/*EFP aborted for an error*/  
if (status_register.SR4==1) /*program error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block  
error*/  
}
error_handler();  
}
/*2nd data*/  
writeToFlash(addressFlow[i],dataFlow[i,1]);  
/*3rd data*/  
writeToFlash(addressFlow[i],dataFlow[i,2]);  
/*4th data*/  
writeToFlash(addressFlow[i],dataFlow[i,3]);  
/* Program&Verify Phase */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
}while (status_register.SR0==1)  
}
/* Exit Phase */  
writeToFlash(another_block_address,FFFFh);  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.SR7==0);  
if (status_register.SR1==1) /*program to protected block error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR4==1) /*program failure error*/  
error_handler();  
}
}
116/123  
M58WRxxxKU, M58WRxxxKL  
Command interface state tables  
Appendix D Command interface state tables  
(1)  
Table 47. Command interface states - modify table, next state  
Command Input  
Erase  
Confirm, P/E  
Resume,  
Block Unlock  
confirm, EFP  
Confirm  
Read  
Clear  
Status  
DWP,  
QWP  
Setup  
Block  
Erase  
Setup  
Program/ Read  
Electronic  
signature,  
Read CFI  
Query  
Current CI State  
Read  
Array  
(FFh)  
WP  
setup  
(10/40h)  
EFP Quad-EFP  
Setup Setup  
(3)(4)  
Erase  
Status  
(2)  
(3)(4)  
Register  
(3)(4)  
Suspend Register  
(5)  
(30h)  
(75h)  
(B0h)  
(70h)  
(35h, 56h)  
(20h)  
(50h)  
(90h, 98h)  
(D0h)  
Program Program  
Erase  
Setup  
EFP Quad-EFP  
Setup Setup  
Ready  
Ready  
Ready  
Ready (Lock Error)  
Setup  
Setup  
Lock/CR Setup  
Setup  
Ready (Lock Error)  
Ready  
OTP Busy  
Busy  
OTP Busy  
IS in OTP busy  
OTP Busy  
OTP  
IS in OTP  
busy  
OTP busy  
Setup  
Busy  
Program Busy  
Program  
busy  
IS in Program busy  
Program busy  
PS  
Program busy  
IS in Program  
busy  
Program  
Program Busy  
Suspend  
IS in PS  
Setup  
PS  
IS in Program Suspend  
Program Busy  
Program suspend  
Erase Busy  
Program Suspend  
Ready (error)  
Ready (error)  
Erase Busy  
Erase  
Busy  
Busy  
IS in Erase busy  
Erase Busy  
ES  
IS in Erase  
busy  
Erase  
Erase busy  
Program  
in ES  
Suspend  
ES  
IS in Erase Suspend  
Erase Busy  
Erase Suspend  
IS in ES  
Setup  
Erase Suspend  
Program Busy in Erase Suspend  
Program Busy  
Program  
Busy in ES  
Program Busy in Erase  
Suspend  
Busy  
IS in Program Busy in Erase Suspend  
PS in ES  
in ES  
Program Busy in Erase Suspend  
Program Busy  
Program  
in ES  
IS in Program  
busy in ES  
Suspend  
PS in ES  
IS in Program suspend in ES  
Program Suspend in Erase Suspend  
Erase Suspend (Lock Error)  
in ES  
IS in PS in ES  
Program Suspend in Erase Suspend  
Lock/CR Setup in ES  
Erase Suspend (Lock Error)  
ES  
117/123  
Command interface state tables  
M58WRxxxKU, M58WRxxxKL  
(1)  
Table 47. Command interface states - modify table, next state (continued)  
Command Input  
Erase  
Confirm, P/E  
Resume,  
Block Unlock  
confirm, EFP  
Confirm  
Read  
Clear  
Status  
DWP,  
QWP  
Setup  
Block  
Erase  
Setup  
Program/ Read  
Electronic  
signature,  
Read CFI  
Query  
Current CI State  
Read  
Array  
(FFh)  
WP  
setup  
(10/40h)  
EFP Quad-EFP  
Setup Setup  
(3)(4)  
Erase  
Suspend Register  
(B0h) (70h)  
Status  
(2)  
(3)(4)  
Register  
(3)(4)  
(5)  
(30h)  
(75h)  
(35h, 56h)  
(20h)  
(50h)  
(90h, 98h)  
(D0h)  
Setup  
EFP Busy  
Verify  
Ready (error)  
EFP Busy  
(6)  
Ready (error)  
EFP Busy  
(6)  
EFP Verify  
(6)  
Setup  
Quad  
Quad EFP Busy  
Quad EFP Busy  
EFP  
(6)  
Busy  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase  
Controller, PS = program suspend, ES = erase suspend, IS = Illegal state.  
2. At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined  
data output.  
3. The two cycle command should be issued to the same bank address.  
4. If the P/E.C. is active, both cycles are ignored.  
5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
6. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’.EFP and Quad EFP are busy if Block  
Address is first EFP Address. Any other commands are treated as data.  
118/123  
M58WRxxxKU, M58WRxxxKL  
Command interface state tables  
(1)  
Table 48. Command interface states - Modify table, next output  
(2)  
Command Input  
Erase Confirm  
Block  
Erase  
Setup  
Quad-  
EFP  
Setup  
(75h)  
Program/  
Erase  
Suspend Register  
Read  
Status  
Read Electronic  
signature, Read  
CFI Query (90h,  
98h)  
Current CI State  
Read DWP, QWP  
Clear Status  
Register  
EFP  
Setup  
(30h)  
P/E Resume,  
Block Unlock  
confirm, EFP  
Confirm (D0h)  
(3)  
(4)(5)  
(6)  
Array  
Setup  
(4)(5)  
(FFh) (35h, 56h)  
(50h)  
(B0h)  
(70h)  
(20h)  
Program Setup  
Erase Setup  
OTP Setup  
Program Setup in  
Erase Suspend  
EFP Setup  
EFP Busy  
Status Register  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Lock/CR Setup in  
Erase Suspend  
OTP Busy  
Ready  
Status Register  
Program Busy  
Erase Busy  
Status  
Register Unchanged  
Output  
Array  
Status Register  
Output Unchanged  
Electronic  
Signature/CFI  
Program/Erase  
Suspend  
Program Busy in  
Erase Suspend  
Program Suspend  
in Erase Suspend  
Illegal State  
Output Unchanged  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase  
Controller, IS = Illegal State, ES = Erase suspend, PS = Program suspend.  
2. The output state shows the type of data that appears at the outputs if the bank address is the same as the command  
address. A bank can be placed in Read Array, Read Status Register, Read Electronic Signature or Read CFI Query mode,  
depending on the command issued. Each bank remains in its last output state until a new command is issued. The next  
state does not depend on the bank’s output state.  
3. At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined  
data output.  
4. The two cycle command should be issued to the same bank address.  
5. If the P/E.C. is active, both cycles are ignored.  
6. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
119/123  
Command interface state tables  
M58WRxxxKU, M58WRxxxKL  
(1)  
Table 49. Command interface states - Lock table, next state  
Command Input  
Current CI State  
Lock/CR  
Setup  
(60h)  
OTP  
Setup  
(C0h)  
Block Lock  
Confirm  
(01h)  
Block Lock- Set CR EFP Exit,  
Down Confirm Quad EFP  
P/E. C.  
Operation  
Completed  
Illegal  
Command  
(2)  
(2)  
(4)  
(3)  
Confirm (2Fh) (03h)  
Exit  
Ready  
Lock/CR Setup  
Setup  
Lock/CR Setup OTP Setup  
Ready (Lock error)  
Ready  
N/A  
N/A  
Ready  
Ready (Lock error)  
OTP Busy  
OTP  
Busy  
IS in OTP busy  
Setup  
IS in OTP busy  
OTP Busy  
Ready  
IS Ready  
N/A  
OTP Busy  
Program Busy  
Program Busy  
Busy  
IS in Program busy  
IS in PS  
Ready  
IS in Program  
busy  
Program  
Program busy  
IS Ready  
Suspend  
IS in PS  
Program Suspend  
N/A  
N/A  
Program Suspend  
Ready (error)  
Setup  
N/A  
Busy  
IS in Erase Busy  
Erase Busy  
Ready  
IS Ready  
IS in Erase Busy  
Erase Busy  
Erase  
Lock/CR Setup IS in Erase  
Suspend  
Erase Suspend  
N/A  
N/A  
in ES  
Suspend  
IS in ES  
Setup  
Busy  
Erase Suspend  
Program Busy in Erase Suspend  
Program Busy in Erase Suspend  
Program busy in ES  
Program Suspend in Erase Suspend  
IS in Program busy in ES  
ES  
Program  
in Erase  
Suspend  
IS in Program  
busy in ES  
IS in ES  
Suspend  
IS in PS in ES  
N/A  
IS in PS in ES  
Program Suspend in Erase Suspend  
Erase Suspend  
Lock/CR Setup in ES  
Setup  
Erase Suspend (Lock error)  
Erase Suspend (Lock error)  
(5)  
N/A  
N/A  
Ready (error)  
(5)  
EFP  
Busy  
Verify  
Setup  
EFP Busy  
EFP Verify  
EFP Busy  
N/A  
(5)  
(5)  
EFP Verify  
Ready  
EFP Verify  
Ready  
N/A  
(5)  
Quad EFP Busy  
QuadEFP  
Quad EFP  
Busy  
(5)  
Busy  
Quad EFP Busy  
Ready  
Ready  
(4)  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, P/E. C. = Program/Erase Controller, IS = Illegal state, ES = Erase suspend, PS = Program  
suspend.  
2. If the P/E.C. is active, both cycles are ignored.  
3. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
4. Illegal commands are those not defined in the command set.  
5. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’. EFP and Quad EFP are busy if Block  
Address is first EFP Address. Any other commands are treated as data.  
120/123  
M58WRxxxKU, M58WRxxxKL  
Command interface state tables  
(1)  
Table 50. Command interface states - Lock table, next output  
Command Input  
Block Lock-  
Current CI State  
Lock/CR  
Setup  
(60h)  
Block Lock  
Confirm  
(01h)  
Set CR  
Confirm  
(03h)  
EFP Exit,  
P/E. C.  
Operation  
Completed  
(2)  
OTPSetup  
(C0h)  
Down  
Confirm  
(2Fh)  
Illegal  
Command  
(2)  
Quad EFP  
(4)  
(3)  
Exit  
Program Setup  
Erase Setup  
OTP Setup  
Program Setup in  
Erase Suspend  
Status Register  
EFP Setup  
EFP Busy  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Output  
Unchanged  
Status Register  
Array  
Status Register  
Lock/CR Setup in  
Erase Suspend  
OTP Busy  
Ready  
Program Busy  
Erase Busy  
Output  
Unchanged  
Status Register  
Output Unchanged  
Array  
Program/Erase  
Suspend  
Program Busy in  
Erase Suspend  
Program Suspend in  
Erase Suspend  
Illegal State  
Output Unchanged  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, P/E. C. = Program/Erase Controller.  
2. If the P/E.C. is active, both cycles are ignored.  
3. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
4. Illegal commands are those not defined in the command set.  
121/123  
Revision history  
M58WRxxxKU, M58WRxxxKL  
Revision history  
Table 51. Document revision history  
Date  
Version  
Changes  
Initial release.  
M58WR032KU/L (revision 0.2 of 21-Jul-2006) and M58WR064KU/L  
(revision 0.1 of 21-Sep-2006) datasheets merged. M58WR016KU and  
M58WR016KL part numbers added.  
Changes made:  
Document status promoted from Target Specification to Preliminary Data.  
60 ns speed class and 86 MHz frequency added.  
During Erase Suspend, the Set Configuration Register command is also  
accepted (see Program/Erase Suspend command and Figure 23:  
Program Suspend & Resume flowchart and pseudocode).  
06-Nov-2006  
0.1  
VDDQ max modified in Table 19: Absolute maximum ratings.  
VPPLK max modified in Table 23: DC characteristics - voltages.  
Data and Values modified at address offsets 1Dh and 1Eh in Table 39:  
CFI query system interface information. Value modified at address offset  
(P+D)h = 46h in Table 41: Primary algorithm-specific extended query  
table. Data modified at address offsets (P+2E)h = 67h, (P+30)h = 69h and  
(P+31)h = 6Ah in Table 46: Bank and Erase block region 2 information.  
Appendix D: Command interface state tables updated.  
Parameter Block, Main Block and Bank Program values modified for  
VPP = VPPH in Table 18: Program, erase times and endurance cycles.  
VRPH removed from Table 23: DC characteristics - voltages. tELTV, tEHTZ  
,
tEHQZ, tGHQZ, tAVLH, tELLH, tLHAX, tLHGL modified for 60 ns speed class in  
Table 24: Asynchronous Read ac characteristics.  
05-Jan-2007  
0.2  
tAVKH, tELKH, tELTV, tEHEL, tGHTV, tGHTL, tKHAX, tKHQX, tKHTX, tLLKH  
modified for 60 ns speed class in Table 25: Synchronous Read ac  
characteristics. tVDHPH modified in Table 28: Reset and Power-up ac  
characteristics.  
Data modified at address offset (P+D)h = 46h in Table 41: Primary  
algorithm-specific extended query table. Small text changes.  
Small text changes.  
Section 5.8: Program/Erase Suspend command and Figure 25: Erase  
Suspend & Resume flowchart and pseudocode) updated.  
IDD5 values when VPP = VDD and IDD6 values modified in Table 22: DC  
characteristics - currents.  
16-Jan-2007  
0.3  
Note 1 added below Table 41, Note 1 added below Table 42 and Note 1  
added below Table 43.  
tAVLH min, tELLH min, tLHAX min, tLHGL min and max values modified in  
Table 26: Write ac characteristics, Write Enable controlled and Table 27:  
Write ac characteristics, Chip Enable controlled.  
Document status promoted from Preliminary Data to full Datasheet.  
25-May-2007  
3-Dec-2007  
1
2
IDD1, IDD5 and IDD6 changed in Table 22.: DC characteristics - currents.  
Data modified in Table 46.: Bank and Erase block region 2 information.  
Applied Numonyx branding.  
122/123  
M58WRxxxKU, M58WRxxxKL  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
123/123  

相关型号:

M58WR016KU

16- or 32-Mbit (】16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
STMICROELECTR

M58WR016KU

16-, 32- and 64-Mbit (x 16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
NUMONYX

M58WR016KU60ZA6E

16- or 32-Mbit (】16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
STMICROELECTR

M58WR016KU60ZA6E

16-, 32- and 64-Mbit (x 16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
NUMONYX

M58WR016KU60ZA6U

16- or 32-Mbit (】16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
STMICROELECTR

M58WR016KU60ZA6U

16-, 32- and 64-Mbit (x 16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
NUMONYX

M58WR016KU70ZA6E

16- or 32-Mbit (】16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
STMICROELECTR

M58WR016KU70ZA6E

16-, 32- and 64-Mbit (x 16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
NUMONYX

M58WR016KU70ZA6U

16- or 32-Mbit (】16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
STMICROELECTR

M58WR016KU70ZA6U

16-, 32- and 64-Mbit (x 16, Mux I/O, Multiple Bank, Burst) 1.8 V supply Flash memories
NUMONYX

M58WR016QB

16 Mbit and 32 Mbit (x16, Multiple Bank, Burst) 1.8V supply Flash memories
NUMONYX

M58WR016QB60ZB6

16 Mbit and 32 Mbit (x16, Multiple Bank, Burst) 1.8V supply Flash memories
NUMONYX