M58WT032KT70ZAQ6F [NUMONYX]

Flash, 2MX16, 70ns, PBGA88, 8 X 10 MM, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-88;
M58WT032KT70ZAQ6F
型号: M58WT032KT70ZAQ6F
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 2MX16, 70ns, PBGA88, 8 X 10 MM, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-88

内存集成电路 闪存
文件: 总117页 (文件大小:2112K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58WT032KT M58WT064KT  
M58WT032KB M58WT064KB  
32- and 64-Mbit (×16, multiple bank, burst)  
1.8 V core, 3.0 V I/O supply Flash memories  
Features  
Supply voltage  
– V = 1.7 V to 2 V for program, erase and  
DD  
read  
FBGA  
– V  
= 2.7 V to 3.3 V for I/O buffers  
DDQ  
– V = 9 V for fast program  
PP  
Synchronous/asynchronous read  
TFBGA88 (ZAQ)  
8 × 10 mm  
– Synchronous burst read mode: 52 MHz  
– Asynchronous/synchronous page read  
mode  
– Random access times: 70 ns  
Synchronous burst read suspend  
Programming time  
Security  
– 10 µs by word typical for fast factory  
program  
– 128-bit user programmable OTP cells  
– 64-bit unique device number  
– Double/quadruple word program option  
– Enhanced factory program options  
Common Flash interface (CFI)  
100 000 program/erase cycles per block  
Memory blocks  
Electronic signature  
– Multiple bank memory array: 4 Mbit banks  
– Parameter blocks (top or bottom location)  
– Manufacturer code: 20h  
– Device codes:  
M58WT032KT (top): 8866h  
M58WT032KB (bottom): 8867h  
– M58WT064KT (top): 8810h  
M58WT064KB (bottom): 8811h  
Dual operations  
– Program erase in one bank while read in  
others  
– No delay between read and write  
operations  
ECOPACK® package available  
Block locking  
– All blocks locked at power-up  
– Any combination of blocks can be locked  
– WP for block lock-down  
March 2008  
Rev 2  
1/117  
www.numonyx.com  
1
Contents  
M58WTxxxKT, M58WTxxxKB  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address inputs (A0-Amax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data inputs/outputs (DQ0-DQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reset (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Latch Enable (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.10 Wait (WAIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.11  
2.12  
2.13  
VDD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
VDDQ supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
VPP program supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.14 VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Bus read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Bus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Address Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4
5
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Command interface - standard commands . . . . . . . . . . . . . . . . . . . . . 21  
5.1  
5.2  
5.3  
Read Array command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Electronic Signature command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/117  
M58WTxxxKT, M58WTxxxKB  
Contents  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clear Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program/Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Program/Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.10 Protection Register Program command . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.11 The Set Configuration Register command . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.12 Block Lock command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.13 Block Unlock command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.14 Block Lock-Down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
Command interface - factory program commands . . . . . . . . . . . . . . . 29  
6.1  
6.2  
6.3  
Double Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Quadruple Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Enhanced Factory Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
Setup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Program phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Verify phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Exit phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.4  
Quadruple Enhanced Factory Program command . . . . . . . . . . . . . . . . . . 33  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
Setup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Load phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Program and verify phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Exit phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
Program/Erase Controller status bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . 36  
Erase suspend status bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Erase status bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Program status bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
VPP status bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Program suspend status bit (SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Block protection status bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Bank write/multiple word program status bit (SR0) . . . . . . . . . . . . . . . . . 39  
3/117  
Contents  
M58WTxxxKT, M58WTxxxKB  
8
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Read select bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
X latency bits (CR13-CR11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Wait polarity bit (CR10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Data output configuration bit (CR9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wait configuration bit (CR8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Burst type bit (CR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Valid clock edge bit (CR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wrap burst bit (CR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Burst length bits (CR2-CR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9
Read modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
9.1  
9.2  
9.3  
9.4  
Asynchronous read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Synchronous burst read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Synchronous burst read suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Single synchronous read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10  
11  
Dual operations and multiple bank architecture . . . . . . . . . . . . . . . . . 51  
Block locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11.1 Reading a block’s lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11.2 Locked state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11.3 Unlocked state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11.4 Lock-down state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
11.5 Locking operations during erase suspend . . . . . . . . . . . . . . . . . . . . . . . . 54  
12  
13  
14  
15  
16  
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 56  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
4/117  
M58WTxxxKT, M58WTxxxKB  
Contents  
Appendix A Block address tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Appendix B Common Flash interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Appendix C Flowcharts and pseudo codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
16.1 Enhanced factory program pseudo code . . . . . . . . . . . . . . . . . . . . . . . . 108  
16.2 Quadruple enhanced factory program pseudo code . . . . . . . . . . . . . . . 110  
Appendix D Command interface state tables. . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
5/117  
List of tables  
M58WTxxxKT, M58WTxxxKB  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
M58WT032KT/B bank architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
M58WT064KT/B bank architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Standard commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electronic signature codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Factory program commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Status Register bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Latency settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Burst type definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Dual operations allowed in other banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Dual operations allowed in same bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Dual operation limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Program/erase times and endurance cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
DC characteristics - currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
DC characteristics - voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Asynchronous read AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Synchronous read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Write AC characteristics, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Write AC characteristics, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Reset and power-up AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
TFBGA88 8 × 10 mm, 8 × 10 ball array, 0.8 mm pitch, package mechanical data. . . . . . . 74  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Top boot block addresses, M58WT032KT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Bottom boot block addresses, M58WT032KB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Top boot block addresses, M58WT064KT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Bottom boot block addresses, M58WT064KB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Query structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
CFI query identification string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
CFI query system interface information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Device geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Primary algorithm-specific extended query table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Protection Register information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Burst read information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Bank and erase block region information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Bank and erase block region 1 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Bank and Erase block region 2 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Command interface states - modify table, next state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Command interface states - modify table, next output . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Command interface states - Lock table, next state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Command interface states - lock table, next output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
6/117  
M58WTxxxKT, M58WTxxxKB  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TFBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
M58WT032KT/B memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
M58WT064KT/B memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection Register memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
X latency and data output configuration example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Wait configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 10. Asynchronous random access read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 11. Asynchronous page read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 12. Synchronous burst read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 13. Single synchronous read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 14. Synchronous burst read suspend AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 15. Clock input AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 16. Write AC waveforms, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 17. Write AC waveforms, Chip Enable controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 18. Reset and power-up AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 19. TFBGA88 8 × 10 mm, 8 × 10 ball array, 0.8 mm, package outline. . . . . . . . . . . . . . . . . . . 73  
Figure 20. Program flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 21. Double word program flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 22. Quadruple word program flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 23. Program suspend and resume flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 24. Block erase flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 25. Erase suspend and resume flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 26. Locking operations flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 27. Protection Register program flowchart and pseudo code. . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 28. Enhanced factory program flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 29. Quadruple enhanced factory program flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
7/117  
Description  
M58WTxxxKT, M58WTxxxKB  
1
Description  
The M58WT032KT/B and M58WT064KT/B are 32 Mbit (2 Mbit ×16) and 64 Mbit (4 Mbit  
×16) non-volatile Flash memories, respectively. They can be erased electrically at block  
level and programmed in-system on a word-by-word basis using a 1.7 V to 2 V V supply  
DD  
for the circuitry and a 2.7 V to 3.3 V V  
supply for the input/output pins. An optional 9 V  
DDQ  
V
power supply is provided to speed up customer programming.  
PP  
M58WTxxxKT/B is the collective name for all these devices. They feature an asymmetrical  
block architecture.  
The M58WT032KT/B has an array of 71 blocks, and is divided into 4 Mbit banks. There  
are 7 banks each containing 8 main blocks of 32 Kwords, and one parameter bank  
containing 8 parameter blocks of 4 Kwords and 7 main blocks of 32 Kwords.  
The M58WT064KT/B has an array of 135 blocks, and is divided into 4 Mbit banks.  
There are 15 banks each containing 8 main blocks of 32 Kwords, and one parameter  
bank containing 8 parameter blocks of 4 Kwords and 7 main blocks of 32 Kwords.  
The multiple bank architecture allows dual operations. While programming or erasing in one  
bank, read operations are possible in other banks. Only one bank at a time is allowed to be  
in program or erase mode. It is possible to perform burst reads that cross bank boundaries.  
The bank architectures are summarized in Table 2 and Table 3 and the memory maps are  
shown in Figure 3 and Figure 4. The parameter blocks are located at the top of the memory  
address space for the M58WT032KT and M58WT064KT, and at the bottom for the  
M58WT032KB and M58WT064KB.  
Each block can be erased separately. Erase can be suspended to perform program in any  
other block, and then resumed. Program can be suspended to read data in any other block  
and then resumed. Each block can be programmed and erased over 100 000 cycles using  
the supply voltage V . Two enhanced factory programming commands are available to  
DD  
speed up programming.  
Program and erase commands are written to the command interface of the memory. An  
internal Program/Erase Controller manages the timings necessary for program and erase  
operations. The end of a program or erase operation can be detected and any error  
conditions identified in the Status Register. The command set required to control the  
memory is consistent with JEDEC standards.  
The device supports synchronous burst read and asynchronous read from all blocks of the  
memory array; at power-up the device is configured for asynchronous read. In synchronous  
burst mode, data is output on each clock cycle at frequencies of up to 52 MHz. The  
synchronous burst read operation can be suspended and resumed.  
The device features an automatic standby mode. When the bus is inactive during  
asynchronous read operations, the device automatically switches to the automatic standby  
mode. In this condition the power consumption is reduced to the standby value I  
outputs are still driven.  
and the  
DD4  
8/117  
M58WTxxxKT, M58WTxxxKB  
Description  
The M58WTxxxKT/B feature an instant, individual block locking scheme that allows any  
block to be locked or unlocked with no latency, enabling instant code and data protection. All  
blocks have three levels of protection. They can be locked and locked-down individually  
preventing any accidental programming or erasure. There is additional hardware protection  
against program and erase. When V V  
all blocks are protected against program or  
PP  
PPLK  
erase. All blocks are locked at power-up.  
The device includes a Protection Register to increase the protection of a system’s design.  
The Protection Register is divided into two segments: a 64-bit segment containing a unique  
device number written by Numonyx, and a 128-bit segment one-time-programmable (OTP)  
by the user. The user programmable segment can be permanently protected. Figure 5  
shows the Protection Register memory map.  
The memory is offered TFBGA88, 8 × 10 mm, 8 × 10 active ball array, 0.8 mm pitch package  
and is supplied with all the bits erased (set to ’1’).  
9/117  
Description  
M58WTxxxKT, M58WTxxxKB  
Figure 1.  
Logic diagram  
V
V
V
DD DDQ PP  
16  
(1)  
A0-Amax  
DQ0-DQ15  
WAIT  
W
E
M58WT032KT  
M58WT032KB  
M58WT064KT  
M58WT064KB  
G
RP  
WP  
L
K
V
SS  
AI13420c  
1. Amax is equal to A20 in the M58WT032KT/B and to A21 in the M58WT064KT/B.  
Table 1.  
Signal names  
Signal name  
Function  
Direction  
A0-Amax(1)  
Address inputs  
Inputs  
I/O  
DQ0-DQ15  
Data input/outputs, command inputs  
E
Chip Enable  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
G
Output Enable  
W
Write Enable  
RP  
WP  
K
Reset  
Write Protect  
Clock  
L
Latch Enable  
WAIT  
VDD  
VDDQ  
VPP  
VSS  
NC  
Wait  
Supply voltage  
Supply voltage for input/output buffers  
Optional supply voltage for fast program and erase Input  
Ground  
Not connected internally  
1. Amax is equal to A20 in the M58WT032KT/B and, to A21 in the M58WT064KT/B.  
10/117  
M58WTxxxKT, M58WTxxxKB  
Description  
(1)  
Figure 2.  
TFBGA connections (top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
DU  
A4  
A5  
A3  
A2  
DU  
A18  
NC  
A17  
A7  
DU  
DU  
A11  
A12  
A13  
A15  
A16  
NC  
A21/  
A19  
NC  
VSS  
VDD  
NC  
NC  
K
NC(1)  
VSS  
NC  
A9  
NC  
VPP  
NC  
NC  
NC  
WP  
L
A20  
A8  
A10  
A1  
A0  
A6  
NC  
RP  
W
A14  
G
H
J
DQ8  
DQ0  
G
DQ2  
DQ1  
DQ9  
DQ10  
DQ3  
DQ11  
DQ5  
DQ12  
DQ4  
DQ13  
DQ14  
DQ6  
WAIT  
DQ7  
DQ15  
VDDQ  
VSS  
NC  
NC  
E
NC  
VDDQ  
K
L
NC  
VSS  
DU  
NC  
NC  
NC  
NC  
NC  
VSS  
DU  
VSS  
DU  
VDDQ  
VDD  
VSS  
VSS  
M
DU  
AI13811b  
1. Ball B7 is A21 in the M58WT064KT/B, and is not connected internally (NC) in the M58WT032KT/B.  
11/117  
Description  
M58WTxxxKT, M58WTxxxKB  
Table 2.  
Number  
Parameter bank  
M58WT032KT/B bank architecture  
Bank size  
Parameter blocks  
Main blocks  
4 Mbit  
4 Mbit  
4 Mbit  
4 Mbit  
8 blocks of 4 Kword  
7 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
Bank 1  
Bank 2  
Bank 3  
-
-
-
Bank 6  
Bank 7  
4 Mbit  
4 Mbit  
-
-
8 blocks of 32 Kword  
8 blocks of 32 Kword  
Table 3.  
Number  
Parameter Bank  
M58WT064KT/B bank architecture  
Bank size  
Parameter blocks  
Main blocks  
4 Mbit  
4 Mbit  
4 Mbit  
4 Mbit  
8 blocks of 4 Kword  
7 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
8 blocks of 32 Kword  
Bank 1  
Bank 2  
Bank 3  
-
-
-
Bank 14  
Bank 15  
4 Mbit  
4 Mbit  
-
-
8 blocks of 32 Kword  
8 blocks of 32 Kword  
12/117  
M58WTxxxKT, M58WTxxxKB  
Description  
Figure 3.  
M58WT032KT/B memory map  
M58WT032KT - Top Boot Block  
Address lines A20-A0  
M58WT032KB - Bottom Boot Block  
Address lines A20-A0  
000000h  
007FFFh  
000000h  
000FFFh  
32 KWord  
32 KWord  
4 KWord  
8 Main  
Blocks  
8 Parameter  
Blocks  
Bank 7  
038000h  
03FFFFh  
007000h  
007FFFh  
008000h  
00FFFFh  
4KWord  
Parameter  
Bank  
32 KWord  
7 Main  
Blocks  
038000h  
03FFFFh  
040000h  
047FFFh  
32 KWord  
32 KWord  
100000h  
107FFFh  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 3  
Bank 2  
Bank 1  
Bank 1  
Bank 2  
Bank 3  
138000h  
13FFFFh  
140000h  
147FFFh  
078000h  
07FFFFh  
080000h  
087FFFh  
32 KWord  
32 KWord  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
178000h  
17FFFFh  
180000h  
187FFFh  
0B8000h  
0BFFFFh  
0C0000h  
0C7FFFh  
32 KWord  
32 KWord  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
1B8000h  
1BFFFFh  
1C0000h  
1C7FFFh  
0F8000h  
0FFFFFh  
32 KWord  
32 KWord  
32 KWord  
7 Main  
Blocks  
1F0000h  
1F7FFFh  
1F8000h  
1F8FFFh  
32 KWord  
4 KWord  
Parameter  
Bank  
1C0000h  
1C7FFFh  
32 KWord  
32 KWord  
8 Parameter  
Blocks  
8 Main  
Blocks  
Bank 7  
1FF000h  
1FFFFFh  
1F8000h  
1FFFFFh  
4 KWord  
AI13421b  
13/117  
Description  
M58WTxxxKT, M58WTxxxKB  
Figure 4.  
M58WT064KT/B memory map  
M58WT064KT - Top Boot Block  
Address lines A21-A0  
M58WT064KB - Bottom Boot Block  
Address lines A21-A0  
000000h  
007FFFh  
000000h  
4 KWord  
32 KWord  
000FFFh  
8 Main  
8 Parameter  
Blocks  
Blocks  
Bank 15  
038000h  
03FFFFh  
007000h  
4KWord  
007FFFh  
32 KWord  
Parameter  
Bank  
008000h  
00FFFFh  
32 KWord  
7 Main  
Blocks  
038000h  
32 KWord  
03FFFFh  
300000h  
307FFFh  
040000h  
047FFFh  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 3  
Bank 2  
Bank 1  
Bank 1  
Bank 2  
Bank 3  
338000h  
33FFFFh  
340000h  
347FFFh  
078000h  
32 KWord  
07FFFFh  
32 KWord  
32 KWord  
080000h  
087FFFh  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
378000h  
37FFFFh  
380000h  
387FFFh  
0B8000h  
32 KWord  
0BFFFFh  
32 KWord  
32 KWord  
0C0000h  
32 KWord  
8 Main  
Blocks  
0C7FFFh  
8 Main  
Blocks  
3B8000h  
3BFFFFh  
3C0000h  
3C7FFFh  
0F8000h  
32 KWord  
0FFFFFh  
32 KWord  
32 KWord  
7 Main  
Blocks  
3F0000h  
3F7FFFh  
3F8000h  
3F8FFFh  
32 KWord  
4 KWord  
Parameter  
Bank  
3C0000h  
32 KWord  
3C7FFFh  
8 Main  
8 Parameter  
Blocks  
Blocks  
Bank 15  
3FF000h  
3FFFFFh  
3F8000h  
32 KWord  
3FFFFFh  
4 KWord  
AI13784b  
14/117  
M58WTxxxKT, M58WTxxxKB  
Signal descriptions  
2
Signal descriptions  
See Figure 1: Logic diagram and Table 1: Signal names for a brief overview of the signals  
connected to this device.  
2.1  
Address inputs (A0-Amax)  
Amax is the highest order address input. It is equal to A20 in the M58WT032KT/B and, to  
A21 in the M58WT064KT/B. The address inputs select the cells in the memory array to  
access during bus read operations. During bus write operations they control the commands  
sent to the command interface of the Program/Erase Controller.  
2.2  
2.3  
Data inputs/outputs (DQ0-DQ15)  
The data I/O output the data stored at the selected address during a bus read operation or  
input a command or the data to be programmed during a bus write operation.  
Chip Enable (E)  
The Chip Enable input activates the memory control logic, input buffers, decoders and  
sense amplifiers. When Chip Enable is at V and Reset is at V the device is in active  
IL  
IH  
mode. When Chip Enable is at V the memory is deselected, the outputs are high  
IH  
impedance and the power consumption is reduced to the standby level.  
2.4  
2.5  
Output Enable (G)  
The Output Enable input controls data outputs during the bus read operation of the memory.  
Write Enable (W)  
The Write Enable input controls the bus write operation of the memory’s command interface.  
The data and address inputs are latched on the rising edge of Chip Enable or Write Enable,  
whichever occurs first.  
2.6  
Write Protect (WP)  
Write Protect is an input that provides additional hardware protection for each block. When  
Write Protect is at V , the lock-down is enabled and the protection status of the locked-  
IL  
down blocks cannot be changed. When Write Protect is at V , the lock-down is disabled  
IH  
and the locked-down blocks can be locked or unlocked. (refer to Table 16: Lock status).  
15/117  
Signal descriptions  
M58WTxxxKT, M58WTxxxKB  
2.7  
Reset (RP)  
The Reset input provides a hardware reset of the memory. When Reset is at V , the  
IL  
memory is in reset mode: the outputs are high impedance and the current consumption is  
reduced to the reset supply current I  
. Refer to Table 21: DC characteristics - currents for  
DD2  
the value of I  
After Reset all blocks are in the locked state and the Configuration  
DD2.  
Register is reset. When Reset is at V , the device is in normal operation. Upon exiting reset  
IH  
mode the device enters asynchronous read mode, but a negative transition of Chip Enable  
or Latch Enable is required to ensure valid data outputs.  
2.8  
Latch Enable (L)  
Latch Enable latches the address bits on its rising edge. The address latch is transparent  
when Latch Enable is at V and it is inhibited when Latch Enable is at V . Latch Enable can  
IL  
IH  
be kept Low (also at board level) when the Latch Enable function is not required or  
supported.  
2.9  
Clock (K)  
The clock input synchronizes the memory to the microcontroller during synchronous read  
operations; the address is latched on a Clock edge (rising or falling, according to the  
configuration settings) when Latch Enable is at V . Clock is ‘don't care’ during  
IL  
asynchronous read and in write operations.  
2.10  
Wait (WAIT)  
Wait is an output signal used during synchronous read to indicate whether the data on the  
output bus are valid. This output is high impedance when Chip Enable is at V or Reset is  
IH  
at V . It can be configured to be active during the wait cycle or one clock cycle in advance.  
IL  
The WAIT signal is not gated by Output Enable.  
2.11  
2.12  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (read, program and erase).  
VDDQ supply voltage  
V
provides the power supply to the I/O pins and enables all outputs to be powered  
DDQ  
independently of V  
.
DD  
16/117  
M58WTxxxKT, M58WTxxxKB  
Signal descriptions  
2.13  
VPP program supply voltage  
V
is both a control input and a power supply pin. The two functions are selected by the  
PP  
voltage range applied to the pin.  
If V is kept in a low voltage range (0 V to V  
) V is seen as a control input. In this case  
PP  
DDQ  
PP  
a voltage lower than V  
provides absolute protection against program or erase, while  
PPLK  
V
in the V  
range enables these functions (see Tables 21 and 22, DC characteristics for  
PP  
PP1  
the relevant values). V is only sampled at the beginning of a program or erase; a change  
PP  
in its value after the operation has started does not have any effect and program or erase  
operations continue.  
If V is in the range of V  
it acts as a power supply pin. In this condition V must be  
PP  
PP  
PPH  
stable until the program/erase algorithm is completed.  
2.14  
VSS ground  
V
is the common ground reference for all votage measurements in the Flash (core and I/O  
SS  
buffers). It must be connected to the system ground.  
Note:  
Each device in a system should have V , V and V decoupled with a 0.1 µF ceramic  
DD DDQ  
PP  
capacitor close to the pin (high-frequency, inherently-low inductance capacitors should be  
as close as possible to the package). See Figure 9: AC measurement load circuit. The PCB  
track widths should be sufficient to carry the required V program and erase currents.  
PP  
17/117  
Bus operations  
M58WTxxxKT, M58WTxxxKB  
3
Bus operations  
There are six standard bus operations that control the device. These are bus read, bus  
write, address latch, output disable, standby and reset. See Table 4: Bus operations for a  
summary.  
Typically glitches of less than 5 ns on Chip Enable or Write Enable are ignored by the  
memory and do not affect bus write operations.  
3.1  
Bus read  
Bus read operations output the contents of the memory array, the electronic signature, the  
Status Register and the common Flash interface. Both Chip Enable and Output Enable must  
be at V in order to perform a read operation. The Chip Enable input should be used to  
IL  
enable the device. Output Enable should be used to gate data onto the output. The data  
read depends on the previous command written to the memory (see Section 4: Command  
interface). See Figures 10, 11, 12 and 13, read AC waveforms, and Tables 23 and 24, read  
AC characteristics, for details of when the output becomes valid.  
3.2  
Bus write  
Bus write operations write commands to the memory or latch input data to be programmed.  
A bus write operation is initiated when Chip Enable and Write Enable are at V with Output  
IL  
Enable at V . Commands, input data and addresses are latched on the rising edge of Write  
IH  
Enable or Chip Enable, whichever occurs first. The addresses can also be latched prior to  
the write operation by toggling Latch Enable. In this case the Latch Enable should be tied to  
V
during the bus write operation.  
IH  
See Figures 16 and 17, write AC waveforms, and Tables 25 and 26, write AC characteristics  
for details of the timing requirements.  
3.3  
3.4  
Address Latch  
Address latch operations input valid addresses. Both Chip enable and Latch Enable must be  
at V during address latch operations. The addresses are latched on the rising edge of  
IL  
Latch Enable.  
Output Disable  
The outputs are high impedance when the Output Enable is at V .  
IH  
18/117  
M58WTxxxKT, M58WTxxxKB  
Bus operations  
3.5  
Standby  
Standby disables most of the internal circuitry allowing a substantial reduction of the current  
consumption. The memory is in standby when Chip Enable and Reset are at V . The power  
IH  
consumption is reduced to the standby level and the outputs are set to high impedance,  
independently from the Output Enable or Write Enable inputs. If Chip Enable switches to V  
during a program or erase operation, the device enters standby mode when finished.  
IH  
3.6  
Reset  
During reset mode the memory is deselected and the outputs are high impedance. The  
memory is in reset mode when Reset is at V . The power consumption is reduced to the  
IL  
standby level, independently from the Chip Enable, Output Enable or Write Enable inputs. If  
Reset is pulled to V during a program or erase, this operation is aborted and the memory  
SS  
content is no longer valid.  
(1)  
Table 4.  
Operation  
Bus operations  
E
G
W
L
RP  
WAIT(2)  
DQ15-DQ0  
(3)  
Bus read  
VIL  
VIL  
VIL  
VIL  
VIH  
X
VIL  
VIH  
X
VIH  
VIL  
VIH  
VIH  
X
VIL  
VIL  
VIH  
VIH  
VIH  
VIH  
VIH  
VIL  
Data output  
(3)  
Bus write  
Data input  
Address latch  
Output disable  
Standby  
VIL  
Data output or Hi-Z (4)  
VIH  
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Reset  
X
X
1. X = ‘don't care’  
2. WAIT signal polarity is configured using the Set Configuration Register command.  
3. L can be tied to VIH if the valid address has been previously latched.  
4. Depends on G.  
19/117  
Command interface  
M58WTxxxKT, M58WTxxxKB  
4
Command interface  
All bus write operations to the memory are interpreted by the command interface.  
Commands consist of one or more sequential bus write operations. An internal  
Program/Erase Controller manages all timings and verifies the correct execution of the  
program and erase commands. The Program/Erase Controller provides a Status Register  
whose output may be read at any time to monitor the progress or the result of the operation.  
The command interface is reset to read mode when power is first applied, when exiting from  
Reset, or whenever V is lower than V  
. Command sequences must be followed exactly.  
DD  
LKO  
Any invalid combination of commands is ignored.  
Refer to Table 5: Command codes, and Appendix D, Tables 44, 45, 46 and 47, command  
interface states - modify and lock tables, for a summary of the command interface.  
The command interface is split into two types of commands: standard commands and  
factory program commands. The following sections explain in detail how to perform each  
command.  
Table 5.  
Command codes  
Hex Code  
Command  
01h  
03h  
10h  
20h  
2Fh  
30h  
35h  
40h  
50h  
56h  
Block Lock Confirm  
Set Configuration Register Confirm  
Alternative Program Setup  
Block Erase Setup  
Block Lock-Down Confirm  
Enhanced Factory Program Setup  
Double Word Program Setup  
Program Setup  
Clear Status Register  
Quadruple Word Program Setup  
Block Lock Setup, Block Unlock Setup, Block Lock Down Setup and Set  
Configuration Register Setup  
60h  
70h  
75h  
90h  
98h  
B0h  
C0h  
Read Status Register  
Quadruple Enhanced Factory Program Setup  
Read Electronic Signature  
Read CFI Query  
Program/Erase Suspend  
Protection Register Program  
Program/Erase Resume, Block Erase Confirm, Block Unlock Confirm or  
Enhanced Factory Program Confirm  
D0h  
FFh  
Read Array  
20/117  
M58WTxxxKT, M58WTxxxKB  
Command interface - standard commands  
5
Command interface - standard commands  
The following commands are the basic commands used to read, write to and configure the  
device. Refer to Table 6: Standard commands, in conjunction with the following descriptions  
in this section.  
5.1  
Read Array command  
The Read Array command returns the addressed bank to read array mode. One bus write  
cycle is required to issue the Read Array command and return the addressed bank to read  
array mode. Subsequent read operations read the addressed location and output the data.  
A Read Array command can be issued in one bank while programming or erasing in another  
bank. However, if a Read Array command is issued to a bank currently executing a program  
or erase operation the command is executed but the output data is not guaranteed.  
5.2  
Read Status Register command  
The Status Register indicates when a program or erase operation is complete and the  
success or failure of operation itself. Issue a Read Status Register command to read the  
Status Register content. The Read Status Register command can be issued at any time,  
even during program or erase operations.  
The following read operations output the content of the Status Register of the addressed  
bank. The Status Register is latched on the falling edge of E or G signals, and can be read  
until E or G returns to V . Either E or G must be toggled to update the latched data. See  
IH  
Table 9 for the description of the Status Register bits. This mode supports asynchronous or  
single synchronous reads only.  
5.3  
Read Electronic Signature command  
The Read Electronic Signature command reads the manufacturer and device codes, the  
block locking status, the Protection Register, and the Configuration Register.  
The Read Electronic Signature command consists of one write cycle to an address within  
one of the banks. A subsequent read operation in the same bank outputs the manufacturer  
code, the device code, the protection status of the blocks in the targeted bank, the  
Protection Register, or the Configuration Register (see Table 7).  
Dual operations between the parameter bank and the electronic signature locations are not  
allowed (see Table 15: Dual operation limitations).  
If a Read Electronic Signature command is issued in a bank that is executing a program or  
erase operation, the bank goes into read electronic signature mode, subsequent bus read  
cycles output the electronic signature data, and the Program/Erase Controller continues to  
program or erase in the background. This mode supports asynchronous or single  
synchronous reads only; it does not support page mode or synchronous burst reads.  
21/117  
Command interface - standard commands  
M58WTxxxKT, M58WTxxxKB  
5.4  
Read CFI Query command  
The Read CFI Query command reads data from the common Flash interface (CFI). The  
Read CFI Query command consists of one bus write cycle to an address within one of the  
banks. Once the command is issued subsequent bus read operations in the same bank  
read from the common Flash interface.  
If a Read CFI Query command is issued in a bank that is executing a program or erase  
operation, the bankgoes into Read CFI Query mode, subsequent bus read cycles output the  
CFI data, and the Program/Erase Controller continues to program or erase in the  
background. This mode supports asynchronous or single synchronous reads only; it does  
not support page mode or synchronous burst reads.  
The status of the other banks is not affected by the command (see Table 13). After issuing a  
Read CFI Query command, a Read Array command should be issued to the addressed  
bank to return the bank to read array mode.  
Dual operations between the parameter bank and the CFI memory space are not allowed  
(see Table 15: Dual operation limitations for details).  
See Appendix B: Common Flash interface, Tables 34, 35, 36, 37, 38, 39, 40, 41, 42 and 43  
for details on the information contained in the common Flash interface memory area.  
5.5  
Clear Status Register command  
The Clear Status Register command resets (set to ‘0’) error bits SR1, SR3, SR4 and SR5 in  
the Status Register. One bus write cycle is required to issue the Clear Status Register  
command. The Clear Status Register command does not change the read mode of the  
bank.  
The error bits in the Status Register do not automatically return to ‘0’ when a new command  
is issued. The error bits in the Status Register should be cleared before attempting a new  
program or erase command.  
22/117  
M58WTxxxKT, M58WTxxxKB  
Command interface - standard commands  
5.6  
Block Erase command  
The Block Erase command erases a block. It sets all the bits within the selected block to ’1’.  
All previous data in the block is lost. If the block is protected then the erase operation aborts,  
the data in the block does not change, and the Status Register outputs the error. The Block  
Erase command can be issued at any moment, regardless of whether the block has been  
programmed or not.  
Two bus write cycles are required to issue the command:  
The first bus cycle sets up the erase command  
The second latches the block address in the Program/Erase Controller and starts it  
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits SR4 and SR5  
are set and the command aborts. Erase aborts if Reset turns to V . As data integrity cannot  
IL  
be guaranteed when the erase operation is aborted, the block must be erased again.  
Once the command is issued, the device outputs the Status Register data when any  
address within the bank is read. At the end of the operation the bank remains in Read  
Status Register mode until a Read Array, Read CFI Query, or Read Electronic Signature  
command is issued.  
During erase operations the bank containing the block being erased only accepts the Read  
Array, Read Status Register, Read Electronic Signature, Read CFI Query and the  
Program/Erase Suspend commands; all other commands are ignored. Refer to Section 10  
for detailed information about simultaneous operations allowed in banks not being erased.  
Typical erase times are given in Table 17: Program/erase times and endurance cycles.  
See Appendix C, Figure 24: Block erase flowchart and pseudo code for a suggested  
flowchart for using the Block Erase command.  
5.7  
Program command  
The memory array can be programmed word-by-word. Only one word in one bank can be  
programmed at any one time. If the block is protected, the program operation aborts, the  
data in the block does not change, and the Status Register outputs the error.  
Two bus write cycles are required to issue the Program command:  
The first bus cycle sets up the Program command  
The second latches the address and the data to be written and starts the  
Program/Erase Controller  
After programming has started, read operations in the bank being programmed output the  
Status Register content.  
During Program operations the bank being programmed only accepts the Read Array, Read  
Status Register, Read Electronic Signature, Read CFI Query and the Program/Erase  
Suspend commands. Refer to Section 10 for detailed information about simultaneous  
operations allowed in banks not being programmed. Typical program times are given in  
Table 17: Program/erase times and endurance cycles.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory location must be reprogrammed.  
See Appendix C, Figure 20: Program flowchart and pseudo code for the flowchart for using  
the Program command.  
23/117  
Command interface - standard commands  
M58WTxxxKT, M58WTxxxKB  
5.8  
Program/Erase Suspend command  
The Program/Erase Suspend command pauses a program or block erase operation.  
One bus write cycle is required to issue the Program/Erase Suspend command. Once the  
Program/Erase Controller has paused bits SR7, SR6 and/ or SR2 of the Status Register are  
set to ‘1’. The command can be addressed to any bank.  
During program/erase suspend the command interface accepts the Program/Erase  
Resume, Read Array (cannot read the erase-suspended block or the program-suspended  
word), Read Status Register, Read Electronic Signature, Clear Status Register, and Read  
CFI Query commands. In addition, if the suspended operation is erase then the Set  
Configuration Register, Program, Block Lock, Block Lock-Down or Block Unlock commands  
are also accepted. The block being erased may be protected by issuing the Block Lock, or  
Block Lock-Down commands. Only the blocks not being erased may be read or  
programmed correctly. When the Program/Erase Resume command is issued the operation  
completes. Refer to Section 10 for detailed information about simultaneous operations  
allowed during Program/Erase Suspend.  
During a program/erase suspend, the device is placed in standby mode by taking Chip  
Enable to V . Program/erase is aborted if Reset turns to V .  
IH  
IL  
See Appendix C, Figure 23: Program suspend and resume flowchart and pseudo code, and  
Figure 25: Erase suspend and resume flowchart and pseudo code for flowcharts for using  
the Program/Erase Suspend command.  
5.9  
Program/Erase Resume command  
The Program/Erase Resume command restarts the Program/Erase Controller after a  
Program/Erase Suspend command has paused it. One bus write cycle is required to issue  
the command. The command can be written to any address.  
The Program/Erase Resume command does not change the read mode of the banks. If the  
suspended bank is in read Status Register, read electronic signature or read CFI query  
mode the bank remains in that mode and outputs the corresponding data. If the bank is in  
read array mode, subsequent read operations output invalid data.  
If a Program command is issued during a block erase suspend, the erase cannot be  
resumed until the programming operation has completed. It is possible to accumulate  
suspend operations. For example, it is possible to suspend an erase operation, start a  
programming operation, suspend the programming operation, and then read the array. See  
Appendix C, Figure 23: Program suspend and resume flowchart and pseudo code and  
Figure 25: Erase suspend and resume flowchart and pseudo code for flowcharts for using  
the Program/Erase Resume command.  
24/117  
M58WTxxxKT, M58WTxxxKB  
Command interface - standard commands  
5.10  
Protection Register Program command  
The Protection Register Program command programs the 128-bit user OTP segment of the  
Protection Register and the Protection Register lock. The segment is programmed 16 bits at  
a time. When shipped, all bits in the segment are set to ‘1’. The user can only program the  
bits to ‘0’.  
Two write cycles are required to issue the Protection Register Program command:  
The first bus cycle sets up the Protection Register Program command.  
The second latches the address and the data to be written to the Protection Register  
and starts the Program/Erase Controller.  
Read operations output the Status Register content after the programming has started.  
The segment can be protected by programming bit 1 of the Protection Lock Register (see  
Figure 5: Protection Register memory map). Attempting to program a previously protected  
Protection Register results in a Status Register error. The protection of the Protection  
Register is not reversible. The Protection Register program cannot be suspended. Dual  
operations between the parameter bank and the Protection Register memory space are not  
allowed (see Table 15: Dual operation limitations).  
5.11  
The Set Configuration Register command  
The Set Configuration Register command writes a new value to the Configuration Register,  
which defines the burst length, type, X latency, synchronous/asynchronous read mode, and  
the valid Clock edge configuration.  
Two bus write cycles are required to issue the Set Configuration Register command:  
The first cycle writes the setup command and the address corresponding to the  
Configuration Register content.  
The second cycle writes the Configuration Register data and the confirm command.  
Read operations output the memory array content after the Set Configuration Register  
command is issued.  
The value for the Configuration Register is always presented on A0-A15. CR0 is on A0, CR1  
on A1, etc.; the other address bits are ignored.  
5.12  
Block Lock command  
The Block Lock command locks a block and prevents program or erase operations from  
changing the data in it. All blocks are locked at power-up or reset.  
Two bus write cycles are required to issue the Block Lock command:  
The first bus cycle sets up the Block Lock command.  
The second bus write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Table 16 shows the lock status after issuing a Block Lock command.  
The block lock bits are volatile; once set they remain set until a hardware reset or power-  
down/power-up. They are cleared by a Block Unlock command. Refer to Section 11: Block  
locking for a detailed explanation. See Appendix C, Figure 26: Locking operations flowchart  
and pseudo code for a flowchart for using the Lock command.  
25/117  
Command interface - standard commands  
M58WTxxxKT, M58WTxxxKB  
5.13  
Block Unlock command  
The Block Unlock command unlocks a block, allowing the block to be programmed or  
erased. Two bus write cycles are required to issue the Block Unlock command:  
The first bus cycle sets up the Block Unlock command.  
The second bus write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Table 16 shows the protection status after issuing a Block Unlock command.  
Refer to Section 11: Block locking for a detailed explanation and Appendix C, Figure 26:  
Locking operations flowchart and pseudo code for a flowchart for using the Unlock  
command.  
5.14  
Block Lock-Down command  
A locked or unlocked block can be locked down by issuing the Block Lock-Down command.  
A locked-down block cannot be programmed or erased, or have its protection status  
changed when WP is low, V . When WP is high, V the lock-down function is disabled and  
IL  
IH,  
the locked blocks can be individually unlocked by the Block Unlock command.  
Two bus write cycles are required to issue the Block Lock-Down command:  
The first bus cycle sets up the Block Lock command.  
The second bus write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Locked-down blocks revert to the locked (and not locked-down) state when the  
device is reset on power-down. Table 16 shows the lock status after issuing a Block Lock-  
Down command. Refer to Section 11: Block locking for a detailed explanation and Appendix  
C, Figure 26: Locking operations flowchart and pseudo code for a flowchart for using the  
Lock-Down command.  
26/117  
M58WTxxxKT, M58WTxxxKB  
Command interface - standard commands  
Table 6.  
Standard commands  
Bus operations(1)  
2nd cycle  
Commands  
1st cycle  
Add  
Op.  
Data  
Op.  
Add  
Data  
Read Array  
1+  
Write  
Write  
Write  
Write  
Write  
BKA  
BKA  
BKA  
BKA  
X
FFh  
70h  
90h  
98h  
50h  
Read  
Read  
Read  
Read  
WA  
RD  
SRD  
ESD  
QD  
Read Status Register  
Read Electronic Signature  
Read CFI Query  
1+  
1+  
1+  
1
BKA(2)  
BKA(2)  
BKA(2)  
Clear Status Register  
BKA or  
BA(3)  
Block Erase  
Program  
2
2
Write  
Write  
20h  
Write  
Write  
BA  
D0h  
PD  
BKA or  
WA(3)  
40h or 10h  
WA  
Program/Erase Suspend  
Program/Erase Resume  
Protection Register Program  
Set Configuration Register  
1
1
2
2
Write  
Write  
Write  
Write  
X
B0h  
D0h  
C0h  
60h  
X
PRA  
CRD  
Write  
Write  
PRA  
CRD  
PRD  
03h  
BKA or  
BA(3)  
Block Lock  
2
2
2
Write  
Write  
Write  
60h  
60h  
60h  
Write  
Write  
Write  
BA  
BA  
BA  
01h  
D0h  
2Fh  
BKA or  
BA(3)  
Block Unlock  
Block Lock-Down  
BKA or  
BA(3)  
1. X = ‘don't care’, WA = Word Address in targeted bank, RD = Read Data, SRD = Status Register Data, ESD = Electronic  
Signature Data, QD = Query Data, BA = Block Address, BKA = Bank Address, PD = Program Data, PRA = Protection  
Register Address, PRD = Protection Register Data, CRD = Configuration Register Data.  
2. Must be same bank as in the first cycle. The signature addresses are listed in Table 7.  
3. Any address within the bank can be used.  
27/117  
Command interface - standard commands  
M58WTxxxKT, M58WTxxxKB  
Table 7.  
Electronic signature codes  
Code  
Address (h)  
Data (h)  
Manufacturer code  
Bank address + 00  
Bank address + 01  
0020  
8866 (M58WT032KT)  
8810 (M58WT064KT)  
Top  
Device code  
8867 (M58WT032KB)  
8811 (M58WT064KB)  
Bottom  
Bank address + 01  
Block address + 02  
Locked  
0001  
0000  
Unlocked  
Block protection  
Locked and locked-down  
Unlocked and locked-down  
0003  
0002  
Reserved  
Bank address + 03  
Bank address + 05  
Reserved  
CR(1)  
0002  
Configuration Register  
Numonyx factory default  
Protection Register  
lock  
Bank address + 80  
OTP area permanently locked  
0000  
Bank address + 81  
Bank address + 84  
Unique device number  
OTP Area  
Protection Register  
Bank address + 85  
Bank address + 8C  
1. CR = Configuration Register.  
Figure 5.  
Protection Register memory map  
PROTECTION REGISTER  
User Programmable OTP  
8Ch  
85h  
84h  
Unique device number  
Protection Register Lock  
81h  
80h  
1
0
AI08149  
28/117  
M58WTxxxKT, M58WTxxxKB  
Command interface - factory program commands  
6
Command interface - factory program commands  
The factory program commands are specifically designed to speed up programming. They  
require V to be at V  
. Refer to Table 8: Factory program commands in conjunction with  
PP  
PPH  
the descriptions in this section.  
The use of factory program commands requires certain operating conditions:  
V
V
must be set to V  
.
PPH  
PP  
DD  
must be within operating range.  
Ambient temperature, T must be 25°C 5°C.  
A
The targeted block must be unlocked.  
6.1  
Double Word Program command  
The Double Word Program command improves the programming throughput by writing a  
page of two adjacent words in parallel. The two words must only differ for the address A0.  
If the block is protected, then the Double Word Program operation aborts, the data in the  
block does not change, and the Status Register outputs the error.  
V
must be set to V  
during Double Word Program, otherwise the command is ignored  
PPH  
PP  
and the Status Register does not output any error.  
Three bus write cycles are necessary to issue the Double Word Program command:  
The first bus cycle sets up the Double Word Program command.  
The second bus cycle latches the address and the data of the first word to be written.  
The third bus cycle latches the address and the data of the second word to be written  
and starts the Program/Erase Controller.  
Read operations in the bank being programmed output the Status Register content after the  
programming has started.  
During double word program operations the bank being programmed only accepts the Read  
Array, Read Status Register, Read Electronic Signature and Read CFI Query commands; all  
other commands are ignored. Dual operations are not supported during double word  
program operations and the command cannot be suspended. Typical program times are  
given in Table 17: Program/erase times and endurance cycles.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory locations must be reprogrammed.  
See Appendix C, Figure 21: Double word program flowchart and pseudo code for the  
flowchart for using the Double Word Program command.  
29/117  
Command interface - factory program commands  
M58WTxxxKT, M58WTxxxKB  
6.2  
Quadruple Word Program command  
The Quadruple Word Program command improves the programming throughput by writing a  
page of four adjacent words in parallel. The four words must only differ for the addresses A0  
and A1.  
V
must be set to V  
during Quadruple Word Program, otherwise the command is  
PPH  
PP  
ignored and the Status Register does not output any error.  
If the block is protected, then the Quadruple Word Program operation aborts, the data in the  
block does not change, and the Status Register outputs the error.  
Five bus write cycles are necessary to issue the Quadruple Word Program command:  
The first bus cycle sets up the Double Word Program command.  
The second bus cycle latches the address and the data of the first word to be written.  
The third bus cycle latches the address and the data of the second word to be written.  
The fourth bus cycle latches the address and the data of the third word to be written.  
The fifth bus cycle latches the address and the data of the fourth word to be written and  
starts the Program/Erase Controller.  
Read operations to the bank being programmed output the Status Register content after the  
programming has started.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory locations must be reprogrammed.  
During Quadruple Word Program operations the bank being programmed only accepts the  
Read Array, Read Status Register, Read Electronic Signature and Read CFI Query  
commands; all other commands are ignored.  
Dual operations are not supported during quadruple word program operations and the  
command cannot be suspended. Typical program times are given in Table 17:  
Program/erase times and endurance cycles.  
See Appendix C, Figure 22: Quadruple word program flowchart and pseudo code for the  
flowchart for using the Quadruple Word Program command.  
30/117  
M58WTxxxKT, M58WTxxxKB  
Command interface - factory program commands  
6.3  
Enhanced Factory Program command  
The Enhanced Factory Program command programs large streams of data within any one  
block. It greatly reduces the total programming time when a large number of words are  
written to a block at any one time.  
Dual operations are not supported during the Enhanced Factory Program operation and the  
command cannot be suspended.  
For optimum performance the Enhanced Factory Program commands should be limited to a  
maximum of 10 program/erase cycles per block. If this limit is exceeded the internal  
algorithm continues to work properly but some degradation in performance is possible.  
Typical program times are given in Table 17  
If the block is protected then the Enhanced Factory Program operation aborts, the data in  
the block does not change, and the Status Register outputs the error.  
The Enhanced Factory Program command has four phases: the setup phase, the program  
phase to program the data to the memory, the verify phase to check that the data has been  
correctly programmed and reprogram if necessary and the exit phase. Refer to Table 8:  
Factory program commands, and Figure 28: Enhanced factory program flowchart.  
6.3.1  
Setup phase  
The Enhanced Factory Program command requires two bus write operations to initiate the  
command:  
The first bus cycle sets up the Enhanced Factory Program command  
The second bus cycle confirms the command.  
The Status Register P/EC bit SR7 should be read to check that the P/EC is ready. After the  
confirm command is issued, read operations output the Status Register data. The read  
Status Register command must not be issued or it is interpreted as data to program.  
If the second bus cycle is not EFP confirm (D0h), Status Register bits SR4 and SR5 are set  
and the command aborts.  
V
value must be in the V  
range during the confirm command, otherwise SR4 and SR3  
PPH  
PP  
are set and command are aborted.  
6.3.2  
Program phase  
The program phase requires n+1 cycles, where n is the number of words (refer to Table 8:  
Factory program commands, and Figure 28: Enhanced factory program flowchart).  
Three successive steps are required to issue and execute the program phase of the  
command:  
1. Use one bus write operation to latch the start address and the first word to be  
programmed, where the start address is the location of the first data to be  
programmed. The Status Register Bank Write Status bit SR0 should be read to check  
that the P/EC is ready for the next word.  
31/117  
Command interface - factory program commands  
M58WTxxxKT, M58WTxxxKB  
2. Each subsequent word to be programmed is latched with a new bus write operation.  
The address can either remain the start address, in which case the P/EC increments  
the address location. Or the address can be incremented, in which case the P/EC  
jumps to the new address. If any address is given that is not in the same block as the  
start address with data FFFFh, the program phase terminates and the verify phase  
begins. The Status Register bit SR0 should be read between each bus write cycle to  
check that the P/EC is ready for the next word.  
3. Finally, after all words have been programmed, write one bus write operation with data  
FFFFh to any address outside the block containing the start address, to terminate the  
programming phase. If the data is not FFFFh, the command is ignored.  
The memory is now set to enter the verify phase.  
6.3.3  
Verify phase  
The verify phase is similar to the program phase in that all words must be resent to the  
memory for them to be checked against the programmed data. The Program/Erase  
Controller checks the stream of data with the data that was programmed in the program  
phase and reprograms the memory location, if necessary.  
Three successive steps are required to execute the verify phase of the command:  
1. Use one bus write operation to latch the start address and the first word to be verified.  
The Status Register bit SR0 should be read to check that the Program/Erase Controller  
is ready for the next word.  
2. Each subsequent word to be verified is latched with a new bus write operation. The  
words must be written in the same order as in the program phase. The address can  
remain the start address or be incremented. If any address that is not in the same block  
as the start address is given with data FFFFh, the verify phase terminates. Status  
Register bit SR0 should be read to check that the P/EC is ready for the next word.  
3. Finally, after all words have been verified, write one bus write operation with data  
FFFFh to any address outside the block containing the start address, to terminate the  
verify phase.  
If the verify phase is successfully completed, the memory remains in read Status Register  
mode. If the Program/Erase Controller fails to reprogram a given location, the error is  
signaled in the Status Register.  
6.3.4  
Exit phase  
Status Register P/EC bit SR7 set to ‘1’ indicates that the device has returned to read mode.  
A full Status Register check should be done to ensure that the block has been successfully  
programmed. See Section 7: Status Register for more details.  
32/117  
M58WTxxxKT, M58WTxxxKB  
Command interface - factory program commands  
6.4  
Quadruple Enhanced Factory Program command  
The Quadruple Enhanced Factory Program command programs one or more pages of four  
adjacent words in parallel. The four words must only differ for the addresses A0 and A1.  
V
must be set to V  
during the Quadruple Enhanced Factory Program, otherwise the  
PPH  
PP  
command is ignored and the Status Register does not output any error.  
Dual operations are not supported during Quadruple Enhanced Factory Program operations  
and the command cannot be suspended.  
If the block is protected then the Quadruple Enhanced Factory Program operation aborts,  
the data in the block does not change, and the Status Register outputs the error.  
The Quadruple Enhanced Factory Program command has four phases: the setup phase,  
the load phase where the data is loaded into the buffer, the combined program and verify  
phase where the loaded data is programmed to the memory and then automatically checked  
and reprogrammed if necessary and the exit phase. Unlike the Enhanced Factory Program it  
is not necessary to resubmit the data for the verify phase. The load phase and the program  
and verify phase can be repeated to program any number of pages within the block.  
6.4.1  
6.4.2  
Setup phase  
The Quadruple Enhanced Factory Program command requires one bus write operation to  
initiate the load phase. After the setup command is issued, read operations output the  
Status Register data. The Read Status Register command must not be issued or it is  
interpreted as data to program.  
Load phase  
The load phase requires 4 cycles to load the data (refer to Table 8: Factory program  
commands and Figure 29: Quadruple enhanced factory program flowchart). Once the first  
word of each page is written it is impossible to exit the load phase until all four words have  
been written.  
Two successive steps are required to issue and execute the load phase of the Quadruple  
Enhanced Factory Program command.  
1. Use one bus write operation to latch the start address and the first word of the first  
page to be programmed, where the start address is the location of the first data to be  
programmed. For subsequent pages the first word address can remain the start  
address (in which case the next page is programmed) or can be any address in the  
same block. If any address with data FFFFh is given that is not in the same block as the  
start address, the device enters the exit phase. For the first load phase Status Register  
bit SR7 should be read after the first word has been issued to check that the command  
has been accepted (bit SR7 set to ‘0’). This check is not required for subsequent load  
phases.  
2. Each subsequent word to be programmed is latched with a new bus write operation.  
The address is only checked for the first word of each page as the order of the words to  
be programmed is fixed.  
The memory is now set to enter the program and verify phase.  
33/117  
Command interface - factory program commands  
M58WTxxxKT, M58WTxxxKB  
6.4.3  
Program and verify phase  
In the program and verify phase the four words that were loaded in the load phase are  
programmed in the memory array and then verified by the Program/Erase Controller. If any  
errors are found, the Program/Erase Controller reprograms the location. During this phase  
the Status Register shows that the Program/Erase Controller is busy, the Status Register bit  
SR7 is set to ‘0’, and that the device is not waiting for new data (Status Register bit SR0 set  
to ‘1’). When Status Register bit SR0 is set to ‘0’ the program and verify phase has  
terminated.  
Once the verify phase has successfully completed, subsequent pages in the same block  
can be loaded and programmed. The device returns to the beginning of the load phase by  
issuing one bus write operation to latch the address and the first of the four new words to be  
programmed.  
6.4.4  
Exit phase  
Finally, after all the pages have been programmed, write one bus write operation with data  
FFFFh to any address outside the block containing the start address, to terminate the load  
and program and verify phases.  
Status Register bit SR7 set to ‘1’ and bit SR0 set to ‘0’ indicate that the Quadruple  
Enhanced Factory Program command has terminated. A full Status Register check should  
be done to ensure that the block has been successfully programmed. See Section 7: Status  
Register for more details.  
If the program and verify phase has successfully completed the memory returns to read  
mode. If the P/EC fails to program and reprogram a given location, the error is signaled in  
the Status Register.  
34/117  
M58WTxxxKT, M58WTxxxKB  
Command interface - factory program commands  
Bus write operations(1)  
Table 8.  
Factory program commands  
Command  
Phase  
1st  
2nd  
3rd  
Final -1  
Final  
Add  
Data  
Add Data Add  
Data  
Add Data Add  
Data  
BKA or  
WA1(3)  
Double Word Program(2)  
3
5
35h  
WA1 PD1 WA2  
PD2  
Quadruple Word  
Program(4)  
BKA or  
WA1(3)  
56h  
30h  
WA1 PD1 WA2  
BA or  
PD2  
WA3 PD3 WA4  
PD4  
Setup,  
Program  
2+n+ BKA or  
WA1(3)  
NOT  
WAn(8) PAn  
WA1(7)  
D0h WA1(7) PD1  
FFFFh  
FFFFh  
Enhanced  
Factory  
1
WA1(6)  
Program  
NOT  
WAn(8) PAn  
WA1(7)  
n+1 WA1(7) PD1 WA2(8) PD2 WA3(8) PD3  
(5)  
Verify, Exit  
Setup,  
BKA or  
5
4
1
75h WA1(7) PD1 WA2(9) PD2  
WA3(9) PD3 WA4(9) PD4  
WA1(3)  
first Load  
First  
Program &  
Verify  
Automatic  
PD1i WA2i(9) PD2i WA3i(9) PD3i  
Automatic  
Quadruple  
Enhanced  
Factory  
Subsequent  
Loads  
WA1i  
WA4i(9) PD4i  
(7)  
Program  
(4),(5)  
Subsequent  
Program &  
Verify  
NOT  
Exit  
FFFFh  
WA1(7)  
1. WA = Word Address in targeted bank, BKA = Bank Address, PD = Program Data, BA = Block Address.  
2. Word addresses 1 and 2 must be consecutive Addresses differing only for A0.  
3. Any address within the bank can be used.  
4. Word addresses 1,2,3 and 4 must be consecutive addresses differing only for A0 and A1.  
5. A bus read must be done between each write cycle where the data is programmed or verified to read the Status Register  
and check that the memory is ready to accept the next data. n = number of words, i = number of pages to be programmed.  
6. Any address within the block can be used.  
7. WA1 is the start address. NOT WA1 is any address that is not in the same block as WA1.  
8. Address can remain starting address WA1 or be incremented.  
9. Address is only checked for the first word of each page as the order to program the words in each page is fixed so  
subsequent words in each page can be written to any address.  
35/117  
Status Register  
M58WTxxxKT, M58WTxxxKB  
7
Status Register  
The Status Register provides information on the current or previous program or erase  
operations. Issue a Read Status Register command to read the contents of the Status  
Register (refer to Section 5.2: Read Status Register command for more details). To output  
the contents, the Status Register is latched and updated on the falling edge of the Chip  
Enable or Output Enable signals and can be read until Chip Enable or Output Enable  
returns to V . The Status Register can only be read using single asynchronous or single  
IH  
synchronous reads. Bus read operations from any address within the bank always read the  
Status Register during Program and Erase operations, as long as no Read Array command  
has been issued.  
The various bits convey information about the status and any errors of the operation. Bits  
SR7, SR6, SR2 and SR0 provide information on the status of the device and are set and  
reset by the device. Bits SR5, SR4, SR3 and SR1 provide information on errors. TThey are  
set by the device but must be reset by issuing a Clear Status Register command or a  
hardware reset. If an error bit is set to ‘1’ the Status Register should be reset before issuing  
another command. SR7 to SR1 refer to the status of the device while SR0 refers to the  
status of the addressed bank.  
The bits in the Status Register are summarized in Table 9: Status Register bits. Refer to  
Table 9 in conjunction with the descriptions in the following sections.  
7.1  
Program/Erase Controller status bit (SR7)  
The Program/Erase Controller status bit indicates whether the Program/Erase Controller is  
active or inactive in any bank. When the Program/Erase Controller status bit is Low (set to  
‘0’), the Program/Erase Controller is active; when the bit is High (set to ‘1’), the  
Program/Erase Controller is inactive, and the device is ready to process a new command.  
The Program/Erase Controller status is Low immediately after a Program/Erase Suspend  
command is issued until the Program/Erase Controller pauses. After the Program/Erase  
Controller pauses the bit is High.  
During program and erase operations the Program/Erase Controller status bit can be polled  
to find the end of the operation. Other bits in the Status Register should not be tested until  
the Program/Erase Controller completes the operation and the bit is High.  
After the Program/Erase Controller completes its operation the erase status, program  
status, V status and block lock status bits should be tested for errors.  
PP  
36/117  
M58WTxxxKT, M58WTxxxKB  
Status Register  
7.2  
Erase suspend status bit (SR6)  
The erase suspend status bit indicates that an erase operation has been suspended or is  
going to be suspended in the addressed block. When the erase suspend status bit is High  
(set to ‘1’), a Program/Erase Suspend command has been issued and the memory is  
waiting for a Program/Erase Resume command.  
The erase suspend status should only be considered valid when the Program/Erase  
Controller status bit is High (Program/Erase Controller inactive). SR7 is set within the erase  
suspend latency time of the Program/Erase Suspend command being issued, therefore, the  
memory may still complete the operation rather than entering the suspend mode.  
When a Program/Erase Resume command is issued the erase suspend status bit returns  
Low.  
7.3  
7.4  
Erase status bit (SR5)  
The erase status bit identifies if the memory has failed to verify that the block has erased  
correctly. When the erase status bit is High (set to ‘1’), the Program/Erase Controller has  
applied the maximum number of pulses to the block and still failed to verify that it has erased  
correctly. The erase status bit should be read once the Program/Erase Controller status bit  
is High (Program/Erase Controller inactive).  
Once set High, the erase status bit can only be reset Low by a Clear Status Register  
command or a hardware reset. If set High it should be reset before a new program or erase  
command is issued, otherwise the new command appears to fail.  
Program status bit (SR4)  
The program status bit identifies a program failure or an attempt to program a ‘1’ to an  
already programmed bit when V = V  
.
PP  
PPH  
When the program status bit is High (set to ‘1’), the Program/Erase Controller has applied  
the maximum number of pulses to the byte and still failed to verify that it has programmed  
correctly.  
After an attempt to program a '1' to an already programmed bit, the program status bit SR4  
only goes High (set to '1') if V = V  
(if V is different from V  
, SR4 remains Low (set  
PP  
PPH  
PP  
PPH  
to '0') and the attempt is not shown).  
The program status bit should be read once the Program/Erase Controller status bit is High  
(Program/Erase Controller inactive).  
Once set High, the program status bit can only be reset Low by a Clear Status Register  
command or a hardware reset. If set High it should be reset before a new command is  
issued, otherwise the new command appears to fail.  
37/117  
Status Register  
M58WTxxxKT, M58WTxxxKB  
7.5  
VPP status bit (SR3)  
The V status bit identifies an invalid voltage on the V pin during program and erase  
PP  
PP  
operations. The V pin is only sampled at the beginning of a program or erase operation.  
PP  
Indeterminate results can occur if V becomes invalid during an operation.  
PP  
When the V status bit is Low (set to ‘0’), the voltage on the V pin was sampled at a valid  
PP  
PP  
voltage. When the V status bit is High (set to ‘1’), the V pin has a voltage that is below  
PP  
PP  
the V lockout voltage, V  
, the memory is protected and program and erase operations  
PP  
PPLK  
cannot be performed.  
Once set High, the V status bit can only be reset Low by a Clear Status Register  
PP  
command or a hardware reset. If set High it should be reset before a new program or erase  
command is issued, otherwise the new command appears to fail.  
7.6  
Program suspend status bit (SR2)  
The program suspend status bit indicates that a program operation has been suspended in  
the addressed block. When the program suspend status bit is High (set to ‘1’), a  
Program/Erase Suspend command has been issued and the memory is waiting for a  
Program/Erase Resume command. The program suspend status should only be considered  
valid when the Program/Erase Controller status bit is High (Program/Erase Controller  
inactive). SR2 is set within the program suspend latency time of the Program/Erase  
Suspend command being issued, therefore, the memory may still complete the operation  
rather than entering the suspend mode.  
When a Program/Erase Resume command is issued, the program suspend status bit  
returns Low.  
7.7  
Block protection status bit (SR1)  
The block protection status bit can be used to identify if a program or block erase operation  
has tried to modify the contents of a locked or locked-down block.  
When the block protection status bit is High (set to ‘1’), a program or erase operation has  
been attempted on a locked or locked-down block.  
Once set High, the block protection status bit can only be reset Low by a Clear Status  
Register command or a hardware reset. If set High it should be reset before a new  
command is issued, otherwise the new command appears to fail.  
38/117  
M58WTxxxKT, M58WTxxxKB  
Status Register  
7.8  
Bank write/multiple word program status bit (SR0)  
The bank write status bit indicates whether the addressed bank is programming or erasing.  
In enhanced factory program mode the multiple word program bit shows if a word has  
finished programming or verifying depending on the phase. The bank write status bit should  
only be considered valid when the Program/Erase Controller status SR7 is Low (set to ‘0’).  
When both the Program/Erase Controller status bit and the bank write status bit are Low (set  
to ‘0’), the addressed bank is executing a program or erase operation. When the  
Program/Erase Controller status bit is Low (set to ‘0’) and the bank write status bit is High  
(set to ‘1’), a program or erase operation is being executed in a bank other than the one  
being addressed.  
In enhanced factory program mode if the multiple word program status bit is Low (set to ‘0’),  
the device is ready for the next word. If the multiple word program status bit is High (set to  
‘1’) the device is not ready for the next word.  
Refer to Appendix C: Flowcharts and pseudo codes for using the Status Register.  
39/117  
Status Register  
M58WTxxxKT, M58WTxxxKB  
Definition  
Table 9.  
Bit  
Status Register bits  
Name Type  
Logic  
level(1)  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
Ready  
Busy  
SR7 P/EC status  
Status  
Status  
Error  
Erase suspended  
Erase in progress or completed  
Erase error  
SR6 Erase suspend status  
SR5 Erase status  
SR4 Program status  
SR3 VPP status  
Erase success  
Program error  
Error  
Program success  
VPP invalid, abort  
Error  
VPP OK  
Program suspended  
SR2 Program suspend status Status  
Program in progress or completed  
Program/erase on protected block, abort  
No operation to protected blocks  
SR7 = ‘1’ Not allowed  
SR1 Block protection status  
Error  
'1'  
'0'  
Program or erase operation in a  
SR7 = ‘0’  
bank other than the addressed bank  
Bank write status  
Status  
No program or erase operation in the  
SR7 = ‘1’  
device  
Program or erase operation in  
SR7 = ‘0’  
SR0  
addressed bank  
SR7 = ‘1’ Not allowed  
'1'  
'0'  
The device is NOT ready for the next  
Multiple word program  
status (enhanced factory Status  
program mode)  
SR7 = ‘0’  
word  
SR7 = ‘1’ The device is exiting EFP  
SR7 = ‘0’ The device is ready for the next word  
1. Logic level '1' is High, '0' is Low.  
40/117  
M58WTxxxKT, M58WTxxxKB  
Configuration Register  
8
Configuration Register  
The Configuration Register configures the type of bus access that the memory performs.  
Refer to Section 9: Read modes for details on read operations.  
The Configuration Register is set through the command interface. After a reset or power-up  
the device is configured for asynchronous page read (CR15 = 1). The Configuration  
Register bits are described in Table 11. They specify the selection of the burst length, burst  
type, burst X latency, and the Read operation. Refer to Figures 6 and 7 for examples of  
synchronous burst configurations.  
8.1  
8.2  
Read select bit (CR15)  
The read select bit, CR15, switches between asynchronous and synchronous bus read  
operations. When the read select bit is set to ’1’, read operations are asynchronous; when  
the read select bit is set to ’0’, read operations are synchronous. Synchronous burst read is  
supported in both parameter and main blocks and can be performed across banks.  
On reset or power-up the read select bit is set to’1’ for asynchronous access.  
X latency bits (CR13-CR11)  
The X latency bits are used during synchronous read operations to set the number of clock  
cycles between the address being latched and the first data becoming available. For correct  
operation the X latency bits can only assume the values in Table 11: Configuration Register.  
Table 10shows how to set the X latency parameter, taking into account the speed class of  
the device and the frequency used to read the Flash memory in synchronous mode.  
Table 10. Latency settings  
fmax  
tKmin  
X latency min  
30 MHz  
40 MHz  
52 MHz  
33 ns  
25 ns  
19 ns  
2
3
4
8.3  
Wait polarity bit (CR10)  
In synchronous burst mode the Wait signal indicates whether the output data are valid or a  
WAIT state must be inserted. The wait polarity bit is used to set the polarity of the Wait  
signal. When the wait polarity bit is set to ‘0’ the Wait signal is active Low. When the wait  
polarity bit is set to ‘1’ the Wait signal is active High.  
41/117  
Configuration Register  
M58WTxxxKT, M58WTxxxKB  
8.4  
Data output configuration bit (CR9)  
The data output configuration bit determines whether the output remains valid for one or two  
clock cycles. When the data output configuration bit is ’0’ the output data is valid for one  
clock cycle. When the data output configuration bit is ’1’ the output data is valid for two clock  
cycles.  
The data output configuration depends on the condition:  
t > t  
+ t  
QVK_CPU  
K
KQV  
where t is the clock period, t  
is the data setup time required by the system CPU  
K
QVK_CPU  
and t  
is the clock to data valid time. If this condition is not satisfied, the data output  
KQV  
configuration bit should be set to ‘1’ (two clock cycles). Refer to Figure 6: X latency and data  
output configuration example.  
8.5  
8.6  
8.7  
8.8  
Wait configuration bit (CR8)  
In burst mode the Wait bit controls the timing of the Wait output pin, WAIT. When WAIT is  
asserted, data is not valid and when WAIT is de-asserted, data is valid. When the Wait bit is  
’0’ the Wait output pin is asserted during the wait state. When the Wait bit is ’1’ the Wait  
output pin is asserted one clock cycle before the wait state.  
Burst type bit (CR7)  
The burst type bit configures the sequence of addresses read as sequential or interleaved.  
When the burst type bit is ’0’ the memory outputs from interleaved addresses. When the  
burst type bit is ’1’ the memory outputs from sequential addresses. See Table 12: Burst type  
definition for the sequence of addresses output from a given starting address in each mode.  
Valid clock edge bit (CR6)  
The valid clock edge bit, CR6, configures the active edge of the Clock, K, during  
synchronous burst read operations. When the valid clock edge bit is ’0’ the falling edge of  
the Clock is the active edge. When the Valid Clock Edge bit is ’1’ the rising edge of the Clock  
is active.  
Wrap burst bit (CR3)  
The burst reads can be confined inside the 4 or 8-word boundary (wrap) or overcome the  
boundary (no wrap). The wrap burst bit selects between wrap and no wrap. When the wrap  
burst bit is set to ‘0’ the burst read wraps; when it is set to ‘1’ the burst read does not wrap.  
42/117  
M58WTxxxKT, M58WTxxxKB  
Configuration Register  
8.9  
Burst length bits (CR2-CR0)  
The burst length bits set the number of words to be output during a synchronous burst read  
operation as result of a single address latch cycle. They can be set for 4 words, 8 words, 16  
words or continuous burst, where all the words are read sequentially.  
In continuous burst mode the burst sequence can cross bank boundaries.  
In continuous burst mode or in 4, 8, 16 words no-wrap, depending on the starting address,  
the device asserts the WAIT output to indicate that a delay is necessary before the data is  
output.  
If the starting address is aligned to a 4 word boundary no wait states are needed and the  
WAIT output is not asserted.  
If the starting address is shifted by 1, 2 or 3 positions from the 4-word boundary, WAIT is  
asserted for 1, 2 or 3 clock cycles when the burst sequence crosses the first 16 word  
boundary to indicate that the device needs an internal delay to read the successive words in  
the array. WAIT is asserted only once during a continuous burst access. See also Table 12:  
Burst type definition.  
CR14, CR5 and CR4 are reserved for future use.  
43/117  
Configuration Register  
M58WTxxxKT, M58WTxxxKB  
Description  
Table 11. Configuration Register  
Bit  
Description  
Value  
0
1
Synchronous read  
CR15  
CR14  
Read select  
Reserved  
Asynchronous read (default at power-on)  
010  
011  
100  
101  
111  
2 clock latency  
3 clock latency  
4 clock latency  
5 clock latency  
Reserved (default)  
CR13-CR11 X latency  
Other configurations reserved  
0
1
0
1
0
1
0
1
0
1
WAIT is active Low  
CR10  
CR9  
CR8  
CR7  
CR6  
Wait polarity  
WAIT is active High (default)  
Data held for one clock cycle  
Data held for two clock cycles (default)  
WAIT is active during wait state  
WAIT is active one data cycle before wait state (default)  
Interleaved  
Data output  
configuration  
Wait  
configuration  
Burst type  
Sequential (default)  
Falling Clock edge  
Valid clock  
edge  
Rising Clock edge (default)  
CR5-CR4 Reserved  
CR3 Wrap burst  
0
Wrap  
1
No wrap (default)  
001  
010  
011  
111  
4 words  
8 words  
CR2-CR0 Burst length  
16 words  
Continuous (CR7 must be set to ‘1’) (default)  
44/117  
M58WTxxxKT, M58WTxxxKB  
Configuration Register  
Table 12. Burst type definition  
4 words  
Start  
8 words  
16 words  
Sequential Interleaved  
Continuous  
burst  
add  
Sequential Interleaved Sequential Interleaved  
0-1-2-3-4-5-6- 0-1-2-3-4-5-6-  
7-8-9-10-11-12- 7-8-9-10-11- 0-1-2-3-4-5-6...  
0-1-2-3-4- 0-1-2-3-4-5-  
0
1
0-1-2-3  
1-2-3-0  
0-1-2-3  
1-0-3-2  
5-6-7  
6-7  
13-14-15  
12-13-14-15  
1-2-3-4-5-6-7- 1-0-3-2-5-4-7- 1-2-3-4-5-6-7-  
8-9-10-11-12- 6-9-8-11-10- ...15-WAIT-16-  
1-2-3-4-5- 1-0-3-2-5-4-  
6-7-0 7-6  
13-14-15-0  
13-12-15-14  
17-18...  
2-3-4-5-6-  
7...15-WAIT-  
WAIT-16-17-  
18...  
2-3-4-5-6-7-8- 2-3-0-1-6-7-4-  
9-10-11-12-13- 5-10-11-8-9-  
2-3-4-5-6- 2-3-0-1-6-7-  
7-0-1 4-5  
2
2-3-0-1  
3-0-1-2  
2-3-0-1  
3-2-1-0  
14-15-0-1  
14-15-12-13  
3-4-5-6-7...15-  
WAIT-WAIT-  
WAIT-16-17-  
18...  
3-4-5-6-7-8-9- 3-2-1-0-7-6-5-  
3-4-5-6-7- 3-2-1-0-7-6-  
0-1-2 5-4  
3
...  
7
10-11-12-13-  
14-15-0-1-2  
4-11-10-9-8-  
15-14-13-12  
7-8-9-10-11-12-  
13-14-15-WAIT-  
WAIT-WAIT-16-  
17...  
7-8-9-10-11-12- 7-6-5-4-3-2-1-  
13-14-15-0-1-2- 0-15-14-13-  
7-0-1-2-3- 7-6-5-4-3-2-  
4-5-6 1-0  
7-4-5-6  
7-6-5-4  
3-4-5-6  
12-11-10-9-8  
...  
12-13-14-15-  
16-17-18...  
12  
13-14-15-WAIT-  
16-17-18...  
13  
14  
14-15-WAIT-  
WAIT-16-17-  
18....  
15-WAIT-WAIT-  
WAIT-16-17-  
18...  
15  
45/117  
Configuration Register  
M58WTxxxKT, M58WTxxxKB  
Table 12. Burst type definition (continued)  
4 words  
8 words  
16 words  
Start  
add  
Continuous  
burst  
Sequential Interleaved Sequential Interleaved  
Sequential  
Interleaved  
0-1-2-3-4-5-6-  
7-8-9-10-11-12-  
13-14-15  
0-1-2-3-4-  
0
1
0-1-2-3  
5-6-7  
1-2-3-4-5-6-7-  
8-9-10-11-12-  
13-14-15-  
1-2-3-4-5-  
1-2-3-4  
6-7-8  
WAIT-16  
2-3-4-5-6-7-8-  
9-10-11-12-13-  
14-15-WAIT-  
WAIT-16-17  
2-3-4-5-6-  
2
2-3-4-5  
7-8-9...  
3-4-5-6-7-8-9-  
10-11-12-13-  
14-15-WAIT-  
WAIT-WAIT-  
16-17-18  
3-4-5-6-7-  
3
...  
7
3-4-5-6  
8-9-10  
7-8-9-10-11-12-  
13-14-15-  
WAIT-WAIT-  
WAIT-16-17-  
18-19-20-21-22  
7-8-9-10-  
11-12-13-  
14  
Same as for  
Wrap  
7-8-9-10  
(Wrap /No Wrap  
has no effect on  
...  
Continuous  
Burst)  
12-13-14-15-  
16-17-18-19-  
20-21-22-23-  
24-25-26-27  
12-13-14-  
15-16-17-  
18-19  
12-13-14-  
15  
12  
13-14-15-  
WAIT-16-17-  
18-19-20-21-  
22-23-24-25-  
26-27-28  
13-14-15-  
WAIT-16-  
17-18-19-  
20  
13-14-15-  
WAIT-16  
13  
14  
14-15-  
WAIT-  
WAIT-16-  
17-18-19-  
20-21  
14-15-WAIT-  
WAIT-16-17-  
18-19-20-21-  
22-23-24-25-  
26-27-28-29  
14-15-  
WAIT-  
WAIT-16-  
17  
15-WAIT-  
WAIT-WAIT-  
16-17-18-19-  
20-21-22-23-  
24-25-26-27-  
28-29-30  
15-WAIT-  
WAIT-  
WAIT-16-  
17-18-19-  
20-21-22  
15-WAIT-  
WAIT-  
WAIT-16-  
17-18  
15  
46/117  
M58WTxxxKT, M58WTxxxKB  
Configuration Register  
Figure 6.  
X latency and data output configuration example  
X-latency  
2nd cycle 3rd cycle  
1st cycle  
4th cycle  
K
E
L
(1)  
Amax-A0  
VALID ADDRESS  
tQVK_CPU  
tK  
tKQV  
VALID DATA VALID DATA  
DQ15-DQ0  
Ai13422b  
1. Amax is equal to A20 in the M58WT032KT/B and to A21 in the M58WT064KT/B.  
2. Settings shown: X latency = 4, data output held for one clock cycle.  
Figure 7.  
Wait configuration example  
E
K
L
(1)  
Amax-A0  
VALID ADDRESS  
DQ15-DQ0  
VALID DATA VALID DATA NOT VALID VALID DATA  
WAIT  
CR8 = '0'  
CR10 = '0'  
WAIT  
CR8 = '1'  
CR10 = '0'  
WAIT  
CR8 = '0'  
CR10 = '1'  
WAIT  
CR8 = '1'  
CR10 = '1'  
AI13423b  
1. Amax is equal to A20 in the M58WT032KT/B and, to A21 in the M58WT064KT/B.  
47/117  
Read modes  
M58WTxxxKT, M58WTxxxKB  
9
Read modes  
Read operations can be performed in two different ways depending on the settings in the  
Configuration Register. If the clock signal is ‘don’t care’ for the data output, the read  
operation is asynchronous. If the data output is synchronized with clock, the read operation  
is synchronous.  
The read mode and data output format are determined by the Configuration Register (see  
Section 8: Configuration Register for details). All banks supports both asynchronous and  
synchronous read operations. The multiple bank architecture allows read operations in one  
bank, while write operations are being executed in another (see Tables 13 and 14).  
9.1  
Asynchronous read mode  
In asynchronous read operations the clock signal is ‘don’t care’. The device outputs the data  
corresponding to the address latched, that is the memory array, Status Register, common  
Flash interface or electronic signature, depending on the command issued. CR15 in the  
Configuration Register must be set to ‘1’ for asynchronous operations.  
In asynchronous read mode a page of data is internally read and stored in a page buffer.  
The page has a size of 4 words and is addressed by A0 and A1 address inputs. The address  
inputs A0 and A1 are not gated by Latch Enable in asynchronous read mode.  
The first read operation within the page has a longer access time (T , random access  
acc  
time), and subsequent reads within the same page have much shorter access times. If the  
page changes then the normal, longer timings apply again.  
Asynchronous read operations can be performed in two different ways, Asynchronous  
random access read and asynchronous page read. Only asynchronous page read takes full  
advantage of the internal page storage so different timings are applied.  
During asynchronous read operations, after a bus inactivity of 150 ns, the device  
automatically switches to automatic standby mode. In this condition the power consumption  
is reduced to the standby value and the outputs are still driven.  
In asynchronous read mode, the WAIT signal is always asserted.  
See Table 23: Asynchronous read AC characteristics, Figure 10: Asynchronous random  
access read AC waveforms and Figure 11: Asynchronous page read AC waveforms for  
details.  
48/117  
M58WTxxxKT, M58WTxxxKB  
Read modes  
9.2  
Synchronous burst read mode  
In synchronous burst read mode the data is output in bursts synchronized with the clock. It is  
possible to perform burst reads across bank boundaries.  
Synchronous burst read mode can only be used to read the memory array. For other read  
operations, such as read Status Register, read CFI, and read electronic signature, single  
synchronous read or asynchronous random access read must be used.  
In synchronous burst read mode the flow of the data output depends on parameters that are  
configured in the Configuration Register.  
A burst sequence is started at the first clock edge (rising or falling depending on valid clock  
edge bit CR6 in the Configuration Register) after the falling edge of Latch Enable or Chip  
Enable, whichever occurs last. Addresses are internally incremented and after a delay of 2  
to 5 clock cycles (X latency bits CR13-CR11) the corresponding data is output on each clock  
cycle.  
The number of words to be output during a synchronous burst read operation can be  
configured as 4, 8, 16 words, or continuous (burst length bits CR2-CR0). The data can be  
configured to remain valid for one or two clock cycles (data output configuration bit CR9).  
The order of the data output can be modified through the burst type and the wrap burst bits  
in the Configuration Register. The burst sequence may be configured to be sequential or  
interleaved (CR7). The burst reads can be confined inside the 4, 8 or 16 word boundary  
(wrap) or overcome the boundary (no wrap). If the starting address is aligned to the burst  
length (4, 8 or 16 words) the wrapped configuration has no impact on the output sequence.  
Interleaved mode is not allowed in continuous burst read mode or with no wrap sequences.  
A WAIT signal may be asserted to indicate to the system that an output delay occurs. This  
delay depends on the starting address of the burst sequence. The worst case delay occurs  
when the sequence is crossing a 16-word boundary and the starting address was at the end  
of a four word boundary.  
WAIT is asserted during X latency, the Wait state, and at the end of 4-, 8- or 16-word burst.  
It is only de-asserted when output data are valid. In continuous burst read mode a Wait state  
occurs when crossing the first 16-word boundary. If the burst starting address is aligned to a  
4-word page, the Wait state does not occur.  
The WAIT signal can be configured to be active Low or active High by setting CR10 in the  
Configuration Register. The WAIT signal is meaningful only in synchronous burst read  
mode. In other modes, WAIT is always asserted (except for read array mode).  
See Table 24: Synchronous read AC characteristics and Figure 12: Synchronous burst read  
AC waveforms for details.  
49/117  
Read modes  
M58WTxxxKT, M58WTxxxKB  
9.3  
Synchronous burst read suspend  
A synchronous burst read operation can be suspended, freeing the data bus for other higher  
priority devices. It can be suspended during the initial access latency time (before data is  
output), or after the device has output data. When the synchronous burst read operation is  
suspended, internal array sensing continues and any previously latched internal data is  
retained. A burst sequence can be suspended and resumed as often as required as long as  
the operating conditions of the device are met.  
A synchronous burst read operation is suspended when E is low and the current address  
has been latched (on a Latch Enable rising edge or on a valid clock edge). The clock signal  
is then halted at V or at V , and G goes high.  
IH  
IL  
When G becomes low again and the clock signal restarts, the synchronous burst read  
operation is resumed exactly where it stopped.  
WAIT being gated by E remains active and does not revert to high-impedance when G goes  
high. Therefore, if two or more devices are connected to the system’s READY signal, to  
prevent bus contention the WAIT signal of the Flash memory should not be directly  
connected to the system’s READY signal.  
See Table 24: Synchronous read AC characteristics and Figure 14: Synchronous burst read  
suspend AC waveforms for details.  
9.4  
Single synchronous read mode  
Single synchronous read operations are similar to synchronous burst read operations  
except that only the first data output after the X latency is valid. Synchronous single reads  
are used to read the electronic signature, Status Register, CFI, block protection status,  
Configuration Register status or Protection Register status. When the addressed bank is in  
read CFI, read Status Register or read electronic signature mode, the WAIT signal is always  
asserted.  
See Table 24: Synchronous read AC characteristics and Figure 13: Single synchronous  
read AC waveforms for details.  
50/117  
M58WTxxxKT, M58WTxxxKB  
Dual operations and multiple bank architecture  
10  
Dual operations and multiple bank architecture  
The multiple bank architecture of the M58WTxxxKT/B provides flexibility for software  
developers by allowing code and data to be split with 4 Mbit granularity. The dual operations  
feature simplifies the software management of the device and allows code to be executed  
from one bank while another bank is being programmed or erased.  
The dual operations feature means that while programming or erasing in one bank, read  
operations are possible in another bank with zero latency (only one bank at a time is allowed  
to be in program or erase mode). If a Read operation is required in a bank that is  
programming or erasing, the program or erase operation can be suspended. Also, if the  
suspended operation is erase then a program command can be issued to another block.  
This means the device can have one block in erase suspend mode, one programming, and  
other banks in read mode. Bus read operations are allowed in another bank between setup  
and confirm cycles of program or erase operations. The combination of these features  
means that read operations are possible at any moment.  
Dual operations between the parameter bank and either the CFI, OTP, or the electronic  
signature memory space are not allowed. Table 15, however, shows dual operations that are  
allowed between the CFI, OTP, electronic signature locations, and the memory array.  
Tables 13 and 14 show the dual operations possible in other banks and in the same bank.  
For a complete list of possible commands refer to Appendix D: Command interface state  
tables.  
Table 13. Dual operations allowed in other banks  
Commands allowed in another bank  
Read  
Status  
Read  
Read  
Program/ Program/  
Status of bank  
Read  
Array  
Block  
Erase  
CFI Electronic Program  
Erase  
Erase  
Register Query Signature  
Suspend Resume  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Programming  
Erasing  
Program  
suspended  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Erase suspended  
Yes  
51/117  
Dual operations and multiple bank architecture  
M58WTxxxKT, M58WTxxxKB  
Table 14. Dual operations allowed in same bank  
Commands allowed in same bank  
Read  
Electroni  
c
Read  
Status  
Register Query  
Read  
CFI  
Program/ Program/  
Block  
Status of bank  
Read  
Array  
Program  
Erase  
Erase  
Erase  
Suspend Resume  
Signature  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(2)  
Programming  
Erasing  
(2)  
Program  
suspended  
Yes(1)  
Yes(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Erase  
suspended  
Yes(1)  
1. Not allowed in the block or word that is being erased or programmed.  
2. The Read Array command is accepted but the data output is no guaranteed until the program or erase has  
completed.  
Table 15. Dual operation limitations  
Commands allowed  
Read Main Blocks  
Read CFI / OTP /  
Electronic  
Read  
Parameter  
Blocks  
Current status  
Located in  
parameter  
bank  
Not located in  
parameter  
bank  
Signature  
Programming/erasing  
parameter blocks  
No  
No  
No  
No  
No  
Yes  
Yes  
Located in  
parameter bank  
Yes  
Programming/  
erasing main  
blocks  
Not located in  
parameter bank  
In different bank  
only  
Yes  
No  
Yes  
No  
Yes  
No  
Programming OTP  
No  
52/117  
M58WTxxxKT, M58WTxxxKB  
Block locking  
11  
Block locking  
The M58WTxxxKT/B features an instant, individual block locking scheme that enables any  
block to be locked or unlocked with no latency. This locking scheme has three levels of  
protection.  
Lock/unlock - this first level allows software-only control of block locking.  
Lock-down - this second level requires hardware interaction before locking can be  
changed.  
V
V  
- the third level offers a complete hardware protection against program and  
PPLK  
PP  
erase on all blocks.  
The protection status of each block can be set to locked, unlocked, and lock-down. Table 16,  
defines all of the possible protection states (WP, DQ1, DQ0), and Appendix C, Figure 26,  
shows a flowchart for the locking operations.  
11.1  
Reading a block’s lock status  
The lock status of every block can be read in the read electronic signature mode of the  
device. To enter this mode write 90h to the device. Subsequent reads at the address  
specified in Table 7 output the protection status of that block. The lock status is represented  
by DQ0 and DQ1. DQ0 indicates the block lock/unlock status and is set by the Lock  
command and cleared by the Unlock command. It is also automatically set when entering  
lock-down. DQ1 indicates the lock-down status and is set by the Lock-Down command. It  
cannot be cleared by software, only by a hardware reset or power-down.  
The following sections explain the operation of the locking system.  
11.2  
11.3  
Locked state  
The default status of all blocks on power-up or after a hardware reset is locked (states  
(0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any  
program or erase operations attempted on a locked block returns an error in the Status  
Register. The status of a locked block can be changed to unlocked or lock-down using the  
appropriate software commands. An unlocked block can be locked by issuing the Lock  
command.  
Unlocked state  
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked  
blocks return to the locked state after a hardware reset or when the device is powered-down.  
The status of an unlocked block can be changed to locked or locked-down using the  
appropriate software commands. A locked block can be unlocked by issuing the Unlock  
command.  
53/117  
Block locking  
M58WTxxxKT, M58WTxxxKB  
11.4  
Lock-down state  
Blocks that are locked-down (state (0,1,x)) are protected from program and erase operations  
(as for locked blocks) but their protection status cannot be changed using software  
commands alone. A locked or unlocked block can be locked-down by issuing the Lock-Down  
command. Locked-down blocks revert to the locked state when the device is reset or  
powered-down.  
The lock-down function is dependent on the WP input pin. When WP=0 (V ), the blocks in  
IL  
the lock-down state (0,1,x) are protected from program, erase and protection status  
changes. When WP=1 (V ) the lock-down function is disabled (1,1,x) and locked-down  
IH  
blocks can be individually unlocked to the (1,1,0) state by issuing the software command,  
where they can be erased and programmed. These blocks can then be re-locked (1,1,1) and  
unlocked (1,1,0) as desired while WP remains high. When WP is Low, blocks that were  
previously locked-down return to the lock-down state (0,1,x) regardless of any changes  
made while WP was High. Device reset or power-down resets all blocks, including those in  
lock-down, to the locked state.  
11.5  
Locking operations during erase suspend  
Changes to block lock status can be performed during an erase suspend by using the  
standard locking command sequences to unlock, lock or lock down a block. This is useful in  
the case when another block needs to be updated while an erase operation is in progress.  
To change block locking during an erase operation, first write the Erase Suspend command,  
then check the status register until it indicates that the erase operation has been  
suspended. Next ,write the desired lock command sequence to a block and the lock status  
changes. After completing any desired lock, read, or program operations, resume the erase  
operation with the Erase Resume command.  
If a block is locked or locked down during an erase suspend of the same block, the locking  
status bits change immediately. But when the erase is resumed, the erase operation  
completes. Locking operations cannot be performed during a program suspend. Refer to  
Appendix D: Command interface state tables for detailed information on which commands  
are valid during erase suspend.  
54/117  
M58WTxxxKT, M58WTxxxKB  
Block locking  
Table 16. Lock status  
Current protection status(1)  
(WP, DQ1, DQ0)  
Next protection status(1)  
(WP, DQ1, DQ0)  
After Block After Block  
Program/erase  
Current state  
After Block  
Lock command  
After WP  
transition  
Unlock  
Lock-Down  
command  
allowed  
command  
1,0,0  
1,0,1(2)  
1,1,0  
yes  
no  
1,0,1  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
0,0,1  
0,1,1  
1,0,0  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
0,0,0  
0,1,1  
1,1,1  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,1,1  
0,1,1  
0,0,0  
0,0,1  
yes  
no  
0,1,1  
1,1,1  
0,1,1  
0,0,0  
yes  
no  
1,0,0  
0,0,1(2)  
1,0,1  
0,1,1  
no  
1,1,1 or 1,1,0(3)  
1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for  
a locked block) as read in the Read Electronic Signature command with A1 = VIH and A0 = VIL.  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.  
3. A WP transition to VIH on a locked block restores the previous DQ0 value, giving a 111 or 110.  
55/117  
Program and erase times and endurance cycles  
M58WTxxxKT, M58WTxxxKB  
12  
Program and erase times and endurance cycles  
The program and erase times and the number of program/ erase cycles per block are shown  
in Table 17. Exact erase times may change depending on the memory array condition. The  
best case is when all the bits in the block or bank are at ‘0’ (preprogrammed). The worst  
case is when all the bits in the block or bank are at ‘1’ (not preprogrammed). Usually, the  
system overhead is negligible with respect to the erase time. In the M58WTxxxKT/B the  
maximum number of program/ erase cycles depends on the V voltage supply used.  
PP  
(1)  
Table 17. Program/erase times and endurance cycles  
Parameter Condition  
Parameter block (4 Kword)(2)  
Typical  
Min  
Typ after 100 k Max Unit  
W/E cycles  
0.3  
0.8  
1
1
3
2.5  
4
s
s
Erase  
Preprogrammed  
Main block (32  
Kword)  
Not preprogrammed  
4
s
Word  
12  
40  
300  
5
12  
100  
µs  
Program(3)  
Parameter block (4 Kword)  
Main block (32 Kword)  
Program  
ms  
ms  
µs  
10  
20  
Suspend latency  
Erase  
5
µs  
Main blocks  
100 000  
100 000  
cycles  
cycles  
s
Program/Erase  
Cycles (per Block)  
Parameter blocks  
Parameter block (4 Kword)  
Main block (32 Kword)  
Word/ double word/ quadruple word(4)  
Quad-enhanced factory  
0.25  
0.8  
10  
2.5  
4
Erase  
s
100  
µs  
11  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
s
Enhanced factory  
Quadruple word(4)  
Word  
45  
Parameter  
block (4 Kword)  
10  
40  
Program(3)  
Quad-enhanced factory  
Enhanced factory  
Quadruple word(4)  
Word  
Quad-enhanced factory(4)  
Quadruple word(4)  
94  
360  
80  
Main block (  
32 Kword)  
328  
0.75  
0.65  
Bank (4 Mbit)  
s
Main blocks  
1000 cycles  
2500 cycles  
Program/erase  
cycles (per block)  
Parameter blocks  
1. TA = –40 to 85 °C; VDD = VDDQ = 1.7 V to 2 V; VDDQ = 2.7 V to 3.3 V.  
2. The difference between preprogrammed and not preprogrammed is not significant (< 30 ms).  
3. Values are liable to change with the external system-level overhead (command sequence and Status Register polling  
execution).  
4. Measurements performed at 25°C. TA = 30 °C 10 °C for quadruple word, double word and quadruple enhanced factory  
program.  
56/117  
M58WTxxxKT, M58WTxxxKB  
Maximum ratings  
13  
Maximum ratings  
Stressing the device above the ratings listed in Table 18: Absolute maximum ratings may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the Numonyx SURE Program  
and other relevant quality documents.  
Table 18. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TA  
TBIAS  
TSTG  
VIO  
Ambient operating temperature  
Temperature under bias  
Storage temperature  
Input or output voltage  
Supply voltage  
–40  
–40  
85  
125  
°C  
°C  
°C  
V
–65  
155  
–0.5  
–0.2  
–0.2  
–0.2  
VDDQ + 0.6  
2.45  
VDD  
VDDQ  
VPP  
V
Input/output supply voltage  
Program voltage  
3.6  
V
10  
V
IO  
Output short circuit current  
Time for VPP at VPPH  
100  
mA  
hours  
tVPPH  
100  
57/117  
DC and AC parameters  
M58WTxxxKT, M58WTxxxKB  
14  
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics tables in this  
section are derived from tests performed under the measurement conditions summarized in  
Table 19: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 19. Operating and AC measurement conditions  
Parameter  
Min  
Max  
Unit  
V
DD supply voltage  
VDDQ supply voltage  
PP supply voltage (factory environment)  
1.7  
2.7  
2
3.3  
V
V
V
8.5  
9.5  
V
VPP supply voltage (application environment)  
Ambient operating temperature  
Load capacitance (CL)  
–0.4  
–40  
VDDQ+0.4  
85  
V
°C  
pF  
ns  
V
30  
Input rise and fall times  
5
Input pulse voltages  
0 to VDDQ  
VDDQ/2  
Input and output timing ref. voltages  
V
Figure 8.  
AC measurement I/O waveform  
V
DDQ  
V
/2  
DDQ  
0V  
AI06161  
58/117  
M58WTxxxKT, M58WTxxxKB  
Figure 9. AC measurement load circuit  
DC and AC parameters  
V
DDQ  
V
DDQ  
V
DD  
16.7kΩ  
DEVICE  
UNDER  
TEST  
C
L
16.7kΩ  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI06162  
(1)  
Table 20. Capacitance  
Symbol  
Parameter  
Test condition  
Min  
Max  
Unit  
CIN  
Input capacitance  
Output capacitance  
VIN = 0 V  
6
8
8
pF  
pF  
COUT  
VOUT = 0 V  
12  
1. Sampled only, not 100% tested.  
59/117  
DC and AC parameters  
M58WTxxxKT, M58WTxxxKB  
Min Typ Max Unit  
Table 21. DC characteristics - currents  
Symbol  
Parameter  
Test condition  
ILI  
Input leakage current  
Output leakage current  
0V VIN VDDQ  
2
µA  
µA  
ILO  
0V VOUT VDDQ  
10  
Supply current  
asynchronous read (f = 5 MHz)  
E = VIL, G = VIH  
10  
20  
mA  
4 word  
8 word  
18  
20  
25  
28  
20  
22  
27  
30  
mA  
mA  
mA  
mA  
IDD1  
Supply current  
synchronous Read (f = 52 MHz)  
16 word  
Continuous  
Supply current  
(reset/power-down)  
IDD2  
IDD3  
IDD4  
RP = VSS 0.2 V  
E = VDDQ 0.2 V,  
15  
15  
15  
50  
50  
50  
µA  
µA  
µA  
Supply current (standby)  
K = V  
SS  
Supply current (automatic  
standby)  
E = VIL, G = VIH  
V
PP = VPPH  
8
15  
8
15  
40  
15  
40  
mA  
mA  
mA  
mA  
Supply current (program)  
Supply current (erase)  
V
PP = VDD  
(1)  
IDD5  
VPP = VPPH  
V
PP = VDD  
15  
Program/erase in one  
bank, asynchronousread  
in another bank  
25  
60  
mA  
Supply current  
(1)(2)  
IDD6  
Program/erase in one  
bank, synchronous read  
(continuous burst 66  
MHz) in another bank  
(dual operations)  
43  
15  
70  
50  
mA  
µA  
Supply current program/ erase  
suspended (standby)  
E = VDDQ 0.2 V,  
(1)  
IDD7  
K = V  
SS  
VPP = VPPH  
VPP = VDD  
5
10  
5
mA  
µA  
mA  
µA  
µA  
µA  
µA  
VPP supply current (program)  
0.2  
5
(1)  
IPP1  
VPP = VPPH  
10  
5
VPP supply current (erase)  
VPP = VDD  
0.2  
VPP = VPPH  
100 400  
IPP2  
VPP supply current (read)  
VPP VDD  
VPP VDD  
0.2  
0.2  
5
5
(1)  
IPP3  
VPP supply current (standby)  
1. Sampled only, not 100% tested.  
2. VDD dual operation current is the sum of read and program or erase currents.  
60/117  
M58WTxxxKT, M58WTxxxKB  
DC and AC parameters  
Table 22. DC characteristics - voltages  
Symbol  
Parameter  
Input low voltage  
Test condition  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
–0.5  
0.4  
VDDQ + 0.4  
0.1  
V
V
V
V
V
V
V
V
Input high voltage  
Output low voltage  
Output high voltage  
VDDQ –0.4  
VOL  
VOH  
IOL = 100 µA  
IOH = –100 µA  
Program, erase  
Program, erase  
VDDQ –0.1  
1.3  
VPP1 VPP program voltage-logic  
VPPH VPP program voltage factory  
VPPLK Program or erase lockout  
VLKO VDD lock voltage  
3.3  
9.5  
0.4  
1
8.5  
9
Figure 10. Asynchronous random access read AC waveforms  
A0-Amax(1)  
VALID  
VALID  
tAVAV  
tAXQX  
tAVLH  
tLHAX  
L
tLLLH  
tLLQV  
tELQV  
tELQX  
tELLH  
tLHGL  
E
tEHQZ  
tEHQX  
G
tGLQV  
tGLQX  
tGHQX  
tGHQZ  
tELTV  
tEHTZ  
Hi-Z  
Hi-Z  
WAIT  
tAVQV  
DQ0-DQ15  
VALID  
Valid Address Latch  
Outputs Enabled  
Data Valid  
Standby  
AI13424b  
1. Amax is equal to A20 in the M58WT032KT/B and, to A21 in the M58WT064KT/B.  
2. Write Enable, W, is High, WAIT is active Low.  
61/117  
DC and AC parameters  
Figure 11. Asynchronous page read AC waveforms  
M58WTxxxKT, M58WTxxxKB  
62/117  
M58WTxxxKT, M58WTxxxKB  
DC and AC parameters  
Table 23. Asynchronous read AC characteristics  
Symbol  
Alt  
Parameter  
Value  
Unit  
tAVAV  
tAVQV  
tAVQV1  
tRC  
tACC  
tPAGE  
tOH  
Address Valid to Next Address Valid  
Address Valid to Output Valid (Random)  
Address Valid to Output Valid (page)  
Address Transition to Output Transition  
Chip Enable Low to Wait Valid  
Min  
Max  
Max  
Min  
Max  
Max  
Min  
Max  
Min  
Max  
Max  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
70  
70  
25  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
tAXQX  
tELTV  
20  
70  
0
(2)  
tELQV  
tCE  
tLZ  
Chip Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Chip Enable High to Wait Hi-Z  
(1)  
tELQX  
tEHTZ  
25  
0
(1)  
tEHQX  
tEHQZ  
tGLQV  
tGLQX  
tOH  
tHZ  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
(1)  
(2)  
(1)  
(1)  
20  
30  
0
tOE  
tOLZ  
tOH  
tDF  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable High to Output Transition  
Output Enable High to Output Hi-Z  
tGHQX  
0
(1)  
tGHQZ  
14  
10  
10  
9
tAVLH  
tELLH  
tLHAX  
tLLLH  
tAVADVH Address Valid to Latch Enable High  
tELADVH Chip Enable Low to Latch Enable High  
tADVHAX Latch Enable High to Address Transition  
tADVLADVH Latch Enable Pulse Width  
10  
Latch Enable Low to Output Valid  
(Random)  
tLLQV  
tLHGL  
tADVLQV  
Max  
Min  
70  
0
ns  
ns  
tADVHGL Latch Enable High to Output Enable Low  
1. Sampled only, not 100% tested.  
2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV  
.
63/117  
DC and AC parameters  
Figure 12. Synchronous burst read AC waveforms  
M58WTxxxKT, M58WTxxxKB  
64/117  
M58WTxxxKT, M58WTxxxKB  
Figure 13. Single synchronous read AC waveforms  
DC and AC parameters  
65/117  
DC and AC parameters  
M58WTxxxKT, M58WTxxxKB  
Figure 14. Synchronous burst read suspend AC waveforms  
66/117  
M58WTxxxKT, M58WTxxxKB  
Figure 15. Clock input AC waveform  
DC and AC parameters  
tKHKL  
tKHKH  
tr  
tf  
tKLKH  
AI06981  
(1) (2)  
Table 24. Synchronous read AC characteristics  
Symbol  
tAVKH  
tELKH  
tELTV  
Alt  
Parameter  
Value  
Unit  
tAVCLKH  
tELCLKH  
Address Valid to Clock High  
Chip Enable Low to Clock High  
Chip Enable Low to Wait Valid  
Min  
Min  
Max  
9
9
ns  
ns  
ns  
20  
Chip Enable Pulse Width (subsequent  
synchronous reads)  
tEHEL  
Min  
20  
ns  
tEHTZ  
tKHAX  
tKHQV  
tKHTV  
tKHQX  
tKHTX  
Chip Enable High to Wait Hi-Z  
Clock High to Address Transition  
Max  
Min  
20  
10  
ns  
ns  
tCLKHAX  
tCLKHQV  
Clock High to Output Valid  
Clock High to WAIT Valid  
Max  
Min  
17  
3
ns  
ns  
Clock High to Output Transition  
Clock High to WAIT Transition  
tCLKHQX  
tLLKH  
tADVLCLKH Latch Enable Low to Clock High  
Min  
Min  
9
ns  
ns  
tKHKH  
tCLK  
Clock Period (f=52MHz)  
19  
tKHKL  
tKLKH  
Clock High to Clock Low  
Clock Low to Clock High  
Min  
9.5  
3
ns  
ns  
tf  
tr  
Clock Fall or Rise Time  
Max  
1. Sampled only, not 100% tested.  
2. For other timings please refer to Table 23: Asynchronous read AC characteristics.  
67/117  
DC and AC parameters  
M58WTxxxKT, M58WTxxxKB  
Figure 16. Write AC waveforms, Write Enable controlled  
68/117  
M58WTxxxKT, M58WTxxxKB  
DC and AC parameters  
(1)  
Table 25. Write AC characteristics, Write Enable controlled  
Symbol  
Alt  
Parameter  
Value Unit  
tAVAV  
tAVLH  
tWC Address Valid to Next Address Valid  
Address Valid to Latch Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
70  
10  
45  
45  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tAVWH  
tDVWH  
tELLH  
tELWL  
tELQV  
tELKV  
tGHWL  
tLHAX  
tLLLH  
Address Valid to Write Enable High  
tDS Data Valid to Write Enable High  
Chip Enable Low to Latch Enable High  
tCS Chip Enable Low to Write Enable Low  
Chip Enable Low to Output Valid  
70  
9
Chip Enable Low to Clock Valid  
Output Enable High to Write Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
17  
9
10  
0
(2)  
tWHAV  
Write Enable High to Address Valid  
(2)  
tWHAX  
tWHDX  
tWHEH  
tAH Write Enable High to Address Transition  
tDH Write Enable High to Input Transition  
tCH Write Enable High to Chip Enable High  
Write Enable High to Chip Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Latch Enable Low  
tWPH Write Enable High to Write Enable Low  
tWP Write Enable Low to Write Enable High  
Output (Status Register) Valid to VPP Low  
0
0
0
(3)  
tWHEL  
tWHGL  
25  
0
(3)  
tWHLL  
tWHWL  
tWLWH  
tQVVPL  
25  
25  
45  
0
Output (Status Register) Valid to Write  
Protect Low  
tQVWPL  
Min  
0
ns  
tVPHWH  
tWHVPL  
tWHWPL  
tWPHWH  
tVPS VPP High to Write Enable High  
Write Enable High to VPP Low  
Min  
Min  
Min  
Min  
200  
200  
200  
200  
ns  
ns  
ns  
ns  
Write Enable High to Write Protect Low  
Write Protect High to Write Enable High  
1. Sampled only, not 100% tested.  
2. Meaningful only if L is always kept low.  
3. tWHEL and tWHLL have this value when reading in the targeted bank or when reading following a  
Set Configuration Register command. System designers should take this into account and may  
insert a software No-Op instruction to delay the first read in the same bank after issuing any  
command and to delay the first read to any address after issuing a Set Configuration Register  
command. If the first read after the command is a Read Array operation in a different bank and  
no changes to the Configuration Register have been issued, tWHEL and tWHLL are 0ns.  
69/117  
DC and AC parameters  
M58WTxxxKT, M58WTxxxKB  
Figure 17. Write AC waveforms, Chip Enable controlled  
70/117  
M58WTxxxKT, M58WTxxxKB  
DC and AC parameters  
(1)  
Table 26. Write AC characteristics, Chip Enable controlled  
Symbol  
Alt  
Parameter  
Value  
Unit  
tAVAV  
tAVEH  
tAVLH  
tDVEH  
tEHAX  
tEHDX  
tEHEL  
tEHGL  
tEHWH  
tELKV  
tELEH  
tELLH  
tELQV  
tGHEL  
tLHAX  
tLLLH  
tWC Address Valid to Next Address Valid  
Address Valid to Chip Enable High  
Min  
70  
45  
10  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Address Valid to Latch Enable High  
tDS Data Valid to Chip Enable High  
tAH Chip Enable High to Address Transition  
tDH Chip Enable High to Input Transition  
tCPH Chip Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
tCH Chip Enable High to Write Enable High  
Chip Enable Low to Clock Valid  
0
25  
0
0
9
tCP Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
Chip Enable Low to Output Valid  
45  
10  
70  
17  
9
Output Enable High to Chip Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
10  
25  
0
(2)  
tWHEL  
tWLEL  
Write Enable High to Chip Enable Low  
tCS Write Enable Low to Chip Enable Low  
Chip Enable High to VPP Low  
tEHVPL  
tEHWPL  
tQVVPL  
200  
200  
0
Chip Enable High to Write Protect Low  
Output (Status Register) Valid to VPP Low  
Output (Status Register) Valid to Write  
Protect Low  
tQVWPL  
Min  
0
ns  
tVPHEH tVPS VPP High to Chip Enable High  
tWPHEH Write Protect High to Chip Enable High  
Min  
Min  
200  
200  
ns  
ns  
1. Sampled only, not 100% tested.  
2. tWHEL has this value when reading in the targeted bank or when reading following a Set  
Configuration Register command. System designers should take this into account and may  
insert a software No-Op instruction to delay the first read in the same bank after issuing any  
command and to delay the first read to any address after issuing a Set Configuration Register  
command. If the first read after the command is a read array operation in a different bank and  
no changes to the Configuration Register have been issued, tWHEL is 0 ns.  
71/117  
DC and AC parameters  
M58WTxxxKT, M58WTxxxKB  
Figure 18. Reset and power-up AC waveforms  
tPHWL  
tPHEL  
tPHGL  
tPHLL  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
W, E, G, L  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI06976  
Table 27. Reset and power-up AC characteristics  
Symbol  
Parameter  
Test condition  
Value  
Unit  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
Reset Low to Write Enable Low,  
Reset Low to Chip Enable Low,  
Reset Low to Output Enable Low,  
Reset Low to Latch Enable Low  
During program  
During erase  
Min  
Min  
10  
20  
µs  
µs  
Other conditions  
Min  
80  
ns  
tPHWL  
tPHEL  
tPHGL  
tPHLL  
Reset High to Write Enable Low  
Reset High to Chip Enable Low  
Reset High to Output Enable Low  
Reset High to Latch Enable Low  
Min  
30  
ns  
(1),(2)  
tPLPH  
RP pulse width  
Min  
Min  
50  
ns  
µs  
(3)  
tVDHPH  
Supply Voltages High to Reset High  
200  
1. The device Reset is possible but not guaranteed if tPLPH < 50 ns.  
2. Sampled only, not 100% tested.  
3. It is important to assert RP in order to allow proper CPU initialization during power-up or reset.  
72/117  
M58WTxxxKT, M58WTxxxKB  
Package mechanical  
15  
Package mechanical  
To meet environmental requirements, Numonyx offers the M58WTxxxKT/B in ECOPACK®  
packages, which have a lead-free, second-level interconnect. In compliance with JEDEC  
Standard JESD97, the category of second-level interconnect is marked on the package and  
on the inner box label.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
Figure 19. TFBGA88 8 × 10 mm, 8 × 10 ball array, 0.8 mm, package outline  
D
D1  
e
SE  
E
E2 E1  
b
BALL "A1"  
ddd  
FE FE1  
FD  
SD  
A
A2  
A1  
BGA-Z42  
1. Drawing is not to scale.  
73/117  
Package mechanical  
M58WTxxxKT, M58WTxxxKB  
Table 28. TFBGA88 8 × 10 mm, 8 × 10 ball array, 0.8 mm pitch, package mechanical  
data  
Millimeters  
Inches  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.200  
0.0079  
0.850  
0.350  
8.000  
5.600  
0.0335  
0.0138  
0.3150  
0.2205  
0.300  
7.900  
0.400  
8.100  
0.0118  
0.3110  
0.0157  
0.3189  
D
D1  
ddd  
E
0.100  
0.0039  
0.3976  
10.000  
7.200  
8.800  
0.800  
1.200  
1.400  
0.600  
0.400  
0.400  
9.900  
10.100  
0.3937  
0.2835  
0.3465  
0.0315  
0.0472  
0.0551  
0.0236  
0.0157  
0.0157  
0.3898  
E1  
E2  
e
FD  
FE  
FE1  
SD  
SE  
74/117  
M58WTxxxKT, M58WTxxxKB  
Part numbering  
16  
Part numbering  
Table 29. Ordering information scheme  
Example:  
M58WT032KT  
70 ZAQ 6 E  
Device type  
M58  
Architecture  
W = Multiple bank, burst mode  
Operating voltage  
T = VDD = 1.8 V to 2 V ; VDDQ = 2.7 V to 3.3 V  
Density  
032 = 32 Mbit (×16)  
064 = 64 Mbit (×16)  
Technology  
K = 65 nm technology  
Parameter bank location  
T = top boot  
B = bottom boot  
Speed  
70 = 70 ns  
Package  
ZAQ = TFBGA88 8 × 10 mm, 0.80 mm pitch, quadruple  
stacked footprint  
Temperature range  
6 = –40 to 85 °C  
Options  
E = ECOPACK® package, standard packing  
F = ECOPACK® package, tape and reel packing  
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of  
available options (speed, etc.) or for further information on any aspect of this device, please  
contact the nearest Numonyx sales office.  
75/117  
Block address tables  
M58WTxxxKT, M58WTxxxKB  
Appendix A  
Block address tables  
Table 30. Top boot block addresses, M58WT032KT  
Bank(1)  
#
Size (Kword)  
Address range  
0
4
1FF000-1FFFFF  
1FE000-1FEFFF  
1FD000-1FDFFF  
1FC000-1FCFFF  
1FB000-1FBFFF  
1FA000-1FAFFF  
1F9000-1F9FFF  
1F8000-1F8FFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
76/117  
M58WTxxxKT, M58WTxxxKB  
Block address tables  
Address range  
Table 30. Top boot block addresses, M58WT032KT (continued)  
Bank(1)  
#
Size (Kword)  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
77/117  
Block address tables  
M58WTxxxKT, M58WTxxxKB  
Table 30. Top boot block addresses, M58WT032KT (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
63  
64  
65  
66  
67  
68  
69  
70  
32  
32  
32  
32  
32  
32  
32  
32  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
1. There are two Bank Regions: Bank Region 1 contains all the banks that are made up of main blocks only;  
Bank Region 2 contains the banks that are made up of the parameter and main blocks (parameter bank).  
Table 31. Bottom boot block addresses, M58WT032KB  
Bank(1)  
#
Size (Kword)  
Address range  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
78/117  
M58WTxxxKT, M58WTxxxKB  
Block address tables  
Table 31. Bottom boot block addresses, M58WT032KB (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
79/117  
Block address tables  
M58WTxxxKT, M58WTxxxKB  
Table 31. Bottom boot block addresses, M58WT032KB (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
4
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
1. There are two bank regions: bank region 2 contains all the banks that are made up of main blocks only;  
bank region 1 contains the banks that are made up of the parameter and main blocks (parameter bank).  
80/117  
M58WTxxxKT, M58WTxxxKB  
Block address tables  
Address range  
Table 32. Top boot block addresses, M58WT064KT  
Bank(1)  
#
Size (Kword)  
0
4
3FF000-3FFFFF  
3FE000-3FEFFF  
3FD000-3FDFFF  
3FC000-3FCFFF  
3FB000-3FBFFF  
3FA000-3FAFFF  
3F9000-3F9FFF  
3F8000-3F8FFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
81/117  
Block address tables  
M58WTxxxKT, M58WTxxxKB  
Table 32. Top boot block addresses, M58WT064KT (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
82/117  
M58WTxxxKT, M58WTxxxKB  
Block address tables  
Address range  
Table 32. Top boot block addresses, M58WT064KT (continued)  
Bank(1)  
#
Size (Kword)  
79  
80  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
83/117  
Block address tables  
M58WTxxxKT, M58WTxxxKB  
Table 32. Top boot block addresses, M58WT064KT (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
1. There are two bank regions: bank region 1 contains all the banks that are made up of main blocks only;  
bank region 2 contains the banks that are made up of the parameter and main blocks (parameter bank).  
Table 33. Bottom boot block addresses, M58WT064KB  
Bank(1)  
#
Size (Kword)  
Address range  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
3F8000-3FFFFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
84/117  
M58WTxxxKT, M58WTxxxKB  
Block address tables  
Table 33. Bottom boot block addresses, M58WT064KB (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
85/117  
Block address tables  
M58WTxxxKT, M58WTxxxKB  
Table 33. Bottom boot block addresses, M58WT064KB (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
86/117  
M58WTxxxKT, M58WTxxxKB  
Block address tables  
Table 33. Bottom boot block addresses, M58WT064KB (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
87/117  
Block address tables  
M58WTxxxKT, M58WTxxxKB  
Table 33. Bottom boot block addresses, M58WT064KB (continued)  
Bank(1)  
#
Size (Kword)  
Address range  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
1. There are two bank regions: bank region 2 contains all the banks that are made up of main blocks only;  
bank region 1 contains the banks that are made up of the parameter and main blocks (parameter bank).  
88/117  
M58WTxxxKT, M58WTxxxKB  
Common Flash interface  
Appendix B  
Common Flash interface  
The common Flash interface is a JEDEC approved, standardized data structure that can be  
read from the Flash memory device. It allows a system software to query the device to  
determine various electrical and timing parameters, density information and functions  
supported by the memory. The system can interface easily with the device, enabling the  
software to upgrade itself when necessary.  
When the Read CFI Query Command is issued the device enters CFI query mode and the  
data structure is read from the memory. Tables 34, 35, 36, 37, 38, 39, 40, 41, 42 and 43  
show the addresses used to retrieve the data. The query data is always presented on the  
lowest order data outputs (DQ0-DQ7), the other outputs (DQ8-DQ15) are set to 0.  
The CFI data structure also contains a security area where a 64-bit unique security number  
is written (see Figure 5: Protection Register memory map). This area can be accessed only  
in read mode by the final user. It is impossible to change the security number after it has  
been written by Numonyx. Issue a Read Array command to return to read mode.  
(1)  
Table 34. Query structure overview  
Offset  
Sub-section name  
Description  
00h  
10h  
1Bh  
27h  
Reserved  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash device layout  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Primary Algorithm-specific Extended Query Additional information specific to the  
P
A
table  
primary algorithm (optional)  
Alternate Algorithm-specific Extended  
Query table  
Additional information specific to the  
Alternate Algorithm (optional)  
Lock Protection Register  
Unique device Number and  
User Programmable OTP  
80h  
Security Code Area  
1. The Flash memory display the CFI data structure when CFI Query command is issued. In this table are  
listed the main sub-sections detailed in Tables 35, 36, 37 and 38. Query data is always presented on the  
lowest order data outputs.  
89/117  
Common Flash interface  
M58WTxxxKT, M58WTxxxKB  
Table 35. CFI query identification string  
Sub-section  
name  
Offset  
Description  
Manufacturer code  
Value  
00h  
0020h  
Numonyx  
8866h  
8810h  
8867h  
8811h  
M58WT032KT (Top)  
M58WT064KT (Top)  
M58WT032KB (Bottom)  
M58WT064KB (Bottom)  
01h  
Device code  
02h  
03h  
reserved  
reserved  
reserved  
0051h  
Reserved  
Reserved  
Reserved  
04h-0Fh  
10h  
"Q"  
"R"  
"Y"  
11h  
0052h  
Query Unique ASCII String "QRY"  
12h  
0059h  
13h  
0003h  
Primary Algorithm Command Set and  
Control Interface ID code 16 bit ID code  
defining a specific algorithm  
14h  
0000h  
15h  
16h  
17h  
offset = P = 0039h  
0000h  
Address for Primary Algorithm extended  
Query table (see Table 38)  
p = 39h  
NA  
0000h  
Alternate Vendor Command Set and  
Control Interface ID Code second vendor  
- specified algorithm supported  
18h  
0000h  
19h  
1Ah  
value = A = 0000h  
0000h  
Address for Alternate Algorithm extended  
Query table  
NA  
90/117  
M58WTxxxKT, M58WTxxxKB  
Common Flash interface  
Value  
Table 36. CFI query system interface information  
Offset Data Description  
V
V
V
V
DD Logic Supply Minimum Program/Erase or Write voltage  
1Bh  
1Ch  
1Dh  
1Eh  
0017h  
0020h  
0085h  
0095h  
1.7V  
2V  
bit 7 to 4 BCD value in volts  
bit 3 to 0 BCD value in 100 millivolts  
DD Logic Supply Maximum Program/Erase or Write voltage  
bit 7 to 4 BCD value in volts  
bit 3 to 0 BCD value in 100 millivolts  
PP [Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 millivolts  
8.5V  
9.5V  
PP [Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 millivolts  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h  
0000h  
000Ah  
0000h  
0003h  
0000h  
0002h  
0000h  
Typical time-out per single byte/word program = 2n µs  
Typical time-out for multi-byte programming = 2n µs  
Typical time-out per individual block erase = 2n ms  
Typical time-out for full chip erase = 2n ms  
16µs  
NA  
1s  
NA  
Maximum time-out for word program = 2n times typical  
Maximum time-out for multi-byte programming = 2n times typical  
Maximum time-out per individual block erase = 2n times typical  
Maximum time-out for chip erase = 2n times typical  
128µs  
NA  
4s  
NA  
91/117  
Common Flash interface  
M58WTxxxKT, M58WTxxxKB  
Table 37. Device geometry definition  
Offset  
word  
Data  
Description  
Value  
mode  
0016h M58WT032KT/B Device Size = 2n in number of bytes  
0017h M58WT064KT/B Device Size = 2n in number of bytes  
4 Mbytes  
8 Mbytes  
27h  
28h  
29h  
0001h  
x16  
Flash Device Interface Code description  
0000h  
Async.  
2Ah  
2Bh  
0000h  
Maximum number of bytes in multi-byte program or page = 2n  
0000h  
NA  
2
Number of identical sized erase block regions within the device  
0002h  
2Ch  
bit 7 to 0 = x = number of Erase Block Regions  
003Eh M58WT032KT Region 1 Information  
63  
0000h Number of identical-size erase blocks = 003Eh+1  
2Dh  
2Eh  
007Eh M58WT064KT Region 1 Information  
127  
0000h Number of identical-size erase blocks = 007Eh+1  
2Fh  
30h  
0000h Region 1 Information  
64 Kbyte  
8
0001h Block size in Region 1 = 0100h * 256 byte  
31h  
32h  
0007h Region 2 Information  
0000h Number of identical-size erase blocks = 0007h+1  
33h  
34h  
0020h Region 2 Information  
8 Kbyte  
NA  
0000h Block size in Region 2 = 0020h * 256 byte  
35h  
38h  
Reserved for future erase block region information  
2Dh  
2Eh  
0007h Region 1 Information  
8
0000h Number of identical-size erase block = 0007h+1  
2Fh  
30h  
0020h Region 1 Information  
8 Kbyte  
63  
0000h Block size in Region 1 = 0020h * 256 byte  
003Eh M58WT032KB Region 1 Information  
0000h Number of identical-size erase blocks = 003Eh+1  
31h  
32h  
007Eh M58WT064KB Region 1 Information  
127  
0000h Number of identical-size erase blocks = 007Eh+1  
33h  
34h  
0000h Region 2 Information  
64 Kbyte  
NA  
0001h Block size in Region 2 = 0100h * 256 byte  
35h  
38h  
Reserved for future erase block region information  
92/117  
M58WTxxxKT, M58WTxxxKB  
Common Flash interface  
(1)  
Table 38. Primary algorithm-specific extended query table  
Offset  
Data  
Description  
Value  
(P)h = 39h  
0050h  
"P"  
0052h Primary Algorithm extended Query table unique ASCII string “PRI”  
0049h  
"R"  
"I"  
(P+3)h = 3Ch 0031h Major version number, ASCII  
"1"  
"3"  
(P+4)h = 3Dh 0033h Minor version number, ASCII  
(P+5)h = 3Eh 00E6h Extended Query table contents for Primary Algorithm. Address (P+5)h contains  
less significant byte.  
0003h  
(P+7)h = 40h  
(P+8)h = 41h  
0000h  
0000h  
bit 0 Chip Erase supported (1 = Yes, 0 = No)  
bit 1 Erase Suspend supported (1 = Yes, 0 = No)  
bit 2 Program Suspend supported (1 = Yes, 0 = No)  
bit 3 Legacy Lock/Unlock supported (1 = Yes, 0 = No)  
bit 4 Queued Erase supported (1 = Yes, 0 = No)  
bit 5 Instant individual block locking supported (1 = Yes, 0 = No)  
bit 6 Protection bits supported (1 = Yes, 0 = No)  
bit 7 Page mode read supported (1 = Yes, 0 = No)  
bit 8 Synchronous read supported (1 = Yes, 0 = No)  
bit 9 Simultaneous operation supported (1 = Yes, 0 = No)  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
bit 10 to 31 Reserved; undefined bits are ‘0’. If bit 31 is ’1’ then another 31 bit  
field of optional features follows at the end of the bit-30 field.  
Supported Functions after Suspend  
Read Array, Read Status Register and CFI Query  
(P+9)h = 42h  
(P+A)h = 43h  
0001h  
0003h  
Yes  
bit 0 Program supported after Erase Suspend (1 = Yes, 0 = No)  
bit 7 to 1 Reserved; undefined bits are ‘0’  
Block Protect status  
Defines which bits in the Block Status Register section of the Query are  
implemented.  
(P+B)h = 44h  
0000h  
bit 0 Block protect Status Register Lock/Unlock bit active (1 = Yes, 0 = No)  
bit 1 Block Lock Status Register lock-down bit active (1 = Yes, 0 = No)  
bit 15 to 2 Reserved for future use; undefined bits are ‘0’  
Yes  
Yes  
VDD Logic Supply Optimum Program/Erase voltage (highest performance)  
(P+C)h = 45h 0018h  
(P+D)h = 46h 0090h  
1.8V  
9V  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
VPP Supply Optimum Program/Erase voltage  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
1. The variable P is a pointer that is defined at CFI offset 15h.  
93/117  
Common Flash interface  
M58WTxxxKT, M58WTxxxKB  
Value  
(1)  
Table 39. Protection Register information  
Offset  
Data  
Description  
Number of protection register fields in JEDEC ID space. 0000h indicates  
that 256 fields are available.  
(P+E)h = 47h  
0001h  
1
(P+F)h = 48h  
(P+10)h = 49h  
0080h  
0000h  
Protection Field 1: Protection Description  
0080h  
Bits 0-7 Lower byte of protection register address  
Bits 8-15 Upper byte of protection register address  
Bits 16-23 2n bytes in factory pre-programmed region  
Bits 24-31 2n bytes in user programmable region  
(P+11)h =  
4Ah  
0003h  
0004h  
8 bytes  
(P+12)h= 4Bh  
16 bytes  
1. The variable P is a pointer that is defined at CFI offset 15h.  
(1)  
Table 40. Burst read information  
Offset  
Data  
Description  
Value  
Page-mode read capability  
bits 0-7 ’n’ such that 2n HEX value represents the number of read-page  
bytes. See offset 28h for device word width to determine page-mode data  
output width.  
(P+13)h = 4Ch  
(P+14)h = 4Dh  
0003h  
0004h  
8 bytes  
4
Number of synchronous mode read configuration fields that follow.  
Synchronous mode read capability configuration 1  
bit 3-7 Reserved  
bit 0-2 ’n’ such that 2n+1 HEX value represents the maximum number of  
continuous synchronous reads when the device is configured for its  
maximum word width. A value of 07h indicates that the device is capable of  
continuous linear bursts that will output data until the internal burst counter  
reaches the end of the device’s burstable address space. This field’s 3-bit  
value can be written directly to the read configuration register bit 0-2 if the  
device is configured for its maximum word width. See offset 28h for word  
width to determine the burst data output width.  
(P+15)h = 4Eh  
0001h  
4
(P+16)h = 4Fh  
(P+17)h = 50h  
(P+18)h = 51h  
0002h  
0003h  
0007h  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
8
16  
Cont.  
1. The variable P is a pointer that is defined at CFI offset 15h.  
(1) (2)  
Table 41. Bank and erase block region information  
M58WT032KT,  
M58WT064KT  
M58WT032KB,  
M58WT064KB  
Description  
Offset  
Data  
02h  
Offset  
Data  
02h  
(P+19)h = 52h  
(P+19)h = 52h  
Number of bank regions within the device  
1. The variable P is a pointer that is defined at CFI offset 15h.  
2. Bank regions. There are two bank regions, see Tables 30, 31, 32 and 33.  
94/117  
M58WTxxxKT, M58WTxxxKB  
Common Flash interface  
(1)  
Table 42. Bank and erase block region 1 information  
M58WT032KT,  
M58WT064KT  
M58WT032KB,  
M58WT064KB  
Description  
Offset  
Data  
Offset  
Data  
07h(2)  
0Fh(3)  
(P+1A)h = 53h  
(P+1B)h = 54h  
(P+1A)h = 53h  
(P+1B)h = 54h  
01h  
00h  
Number of identical banks within Bank Region 1  
00h  
Number of program or erase operations allowed in Bank  
Region 1:  
(P+1C)h = 55h  
(P+1D)h = 56h  
(P+1E)h = 57h  
(P+1F)h = 58h  
11h  
(P+1C)h = 55h  
(P+1D)h = 56h  
(P+1E)h = 57h  
(P+1F)h = 58h  
11h  
00h  
00h  
02h  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in same region is programming  
00h  
00h  
01h  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in Bank Region 1  
n = number of erase block regions with contiguous same-size  
erase blocks.  
Symmetrically blocked banks have one blocking region.(4)  
(P+20)h = 59h  
(P+21)h = 5Ah  
(P+22)h = 5Bh  
(P+23)h = 5Ch  
(P+24)h = 5Dh  
(P+25)h = 5Eh  
07h  
00h  
00h  
01h  
64h  
00h  
(P+20)h = 59h  
(P+21)h = 5Ah  
(P+22)h = 5Bh  
(P+23)h = 5Ch  
(P+24)h = 5Dh  
(P+25)h = 5Eh  
07h  
00h  
20h  
00h  
64h  
00h  
Bank Region 1 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 1 (Erase Block Type 1): BIts per cell, internal  
ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved 5Eh 01 5Eh 01  
(P+26)h = 5Fh  
(P+27)h = 60h  
01h  
03h  
(P+26)h = 5Fh  
(P+27)h = 60h  
01h  
03h  
Bank Region 1 (Erase Block Type 1): page mode and  
synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
95/117  
Common Flash interface  
M58WTxxxKT, M58WTxxxKB  
(1)  
Table 42. Bank and erase block region 1 information (continued)  
M58WT032KT,  
M58WT064KT  
M58WT032KB,  
M58WT064KB  
Description  
Offset  
Data  
Offset  
Data  
(P+28)h = 61h  
(P+29)h = 62h  
(P+2A)h = 63h  
(P+2B)h = 64h  
(P+2C)h = 65h  
(P+2D)h = 66h  
06h  
00h  
00h  
01h  
64h  
00h  
Bank Region 1 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Regions 1 (Erase Block Type 2): BIts per cell, internal  
ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
(P+2E)h = 67h  
(P+2F)h = 68h  
01h  
03h  
Bank Region 1 (Erase Block Type 2): page mode and  
synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Applies to M58WT032KT.  
3. Applies to M58WT064KT.  
4. Bank Regions. There are two Bank Regions, see Tables 30, 31, 32 and 33.  
96/117  
M58WTxxxKT, M58WTxxxKB  
Common Flash interface  
(1)  
Table 43. Bank and Erase block region 2 information  
M58WT032KT,  
M58WT064KT  
M58WT032KB,  
M58WT064KB  
Description  
Offset  
Data  
Offset  
Data  
07h(2)  
0Fh(3)  
(P+28)h = 61h  
(P+29)h = 62h  
01h  
00h  
(P+30)h = 69h  
(P+31)h = 6Ah  
Number of identical banks within Bank Region 2  
00h  
Number of program or erase operations allowed in Bank  
Region 2:  
(P+2A)h = 63h  
(P+2B)h = 64h  
(P+2C)h = 65h  
(P+2D)h = 66h  
11h  
00h  
00h  
02h  
(P+32)h = 6Bh  
(P+33)h = 6Ch  
(P+34)h = 6Dh  
(P+35)h = 6Eh  
11h  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in this region is programming  
00h  
00h  
01h  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other  
banks while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in Bank Region 2  
n = number of erase block regions with contiguous same-size  
erase blocks.  
Symmetrically blocked banks have one blocking region.(4)  
(P+2E)h = 67h  
(P+2F)h = 68h  
(P+30)h = 69h  
(P+31)h = 6Ah  
(P+32)h = 6Bh  
(P+33)h = 6Ch  
06h  
00h  
00h  
01h  
64h  
00h  
(P+36)h = 6Fh  
(P+37)h = 70h  
(P+38)h = 71h  
(P+39)h = 72h  
(P+3A)h = 73h  
(P+3B)h = 74h  
07h  
00h  
00h  
01h  
64h  
00h  
Bank Region 2 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 1): BIts per cell, internal  
ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
(P+34)h = 6Dh  
(P+35)h = 6Eh  
01h  
03h  
(P+3C)h = 75h  
(P+3D)h = 76h  
01h  
03h  
Bank Region 2 (Erase Block Type 1): page mode and  
synchronous mode capabilities (defined in Table 40)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
97/117  
Common Flash interface  
M58WTxxxKT, M58WTxxxKB  
(1)  
Table 43. Bank and Erase block region 2 information (continued)  
M58WT032KT,  
M58WT064KT  
M58WT032KB,  
M58WT064KB  
Description  
Offset  
Data  
Offset  
Data  
(P+36)h = 6Fh  
(P+37)h = 70h  
(P+38)h = 71h  
(P+39)h = 72h  
(P+3A)h = 73h  
(P+3B)h = 74h  
07h  
00h  
20h  
00h  
64h  
00h  
Bank Region 2 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 2): BIts per cell, internal  
ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
(P+3C)h = 75h  
(P+3D)h = 76h  
01h  
03h  
Bank Region 2 (Erase Block Type 2): page mode and  
synchronous mode capabilities (defined in Table 40)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+3E)h = 77h  
(P+3F)h = 78h  
(P+3E)h = 77h  
(P+3F)h = 78h  
Feature Space definitions  
Reserved  
1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Applies to M58WT032KB.  
3. Applies to M58WT064KB.  
4. Bank Regions. There are two Bank Regions, see Tables 30, 31, 32 and 33.  
98/117  
M58WTxxxKT, M58WTxxxKB  
Flowcharts and pseudo codes  
Appendix C  
Flowcharts and pseudo codes  
Figure 20. Program flowchart and pseudo code  
Start  
program_command (addressToProgram, dataToProgram) {:  
"
writeToFlash (addressToProgram, 0x40);  
/*writeToFlash (addressToProgram, 0x10);*/  
/*see note (3)*/  
Write 40h or 10h (3)  
"
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram);  
"see note (3)";  
/* E or G must be toggled*/  
NO  
SR7 = 1  
} while (status_register.SR7== 0) ;  
YES  
NO  
NO  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
error_handler ( ) ;  
Program  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06170b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
99/117  
Flowcharts and pseudo codes  
M58WTxxxKT, M58WTxxxKB  
Figure 21. Double word program flowchart and pseudo code  
Start  
Write 35h  
double_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2)  
{
writeToFlash (addressToProgram1, 0x35);  
/*see note (4)*/  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 1  
& Data 1 (3, 4)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
/*Memory enters read status state after  
the Program command*/  
Write Address 2  
& Data 2 (3)  
do {  
status_register=readFlash (addressToProgram) ;  
"see note (4)"  
/* E or G must be toggled*/  
Read Status  
Register (4)  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06171b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.  
4. Any address within the bank can equally be used.  
100/117  
M58WTxxxKT, M58WTxxxKB  
Flowcharts and pseudo codes  
Figure 22. Quadruple word program flowchart and pseudo code  
Start  
quadruple_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2,  
addressToProgram3, dataToProgram3,  
addressToProgram4, dataToProgram4)  
{
Write 56h  
Write Address 1  
& Data 1 (3, 4)  
writeToFlash (addressToProgram1, 0x56);  
/*see note (4) */  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 2  
& Data 2 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
writeToFlash (addressToProgram3, dataToProgram3) ;  
/*see note (3) */  
Write Address 3  
& Data 3 (3)  
writeToFlash (addressToProgram4, dataToProgram4) ;  
/*see note (3) */  
Write Address 4  
& Data 4 (3)  
/*Memory enters read status state after  
the Program command*/  
do {  
status_register=readFlash (addressToProgram) ;  
/"see note (4) "/  
/* E or G must be toggled*/  
Read Status  
Register (4)  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06977b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.  
4. Any address within the bank can equally be used.  
101/117  
Flowcharts and pseudo codes  
M58WTxxxKT, M58WTxxxKB  
Figure 23. Program suspend and resume flowchart and pseudo code  
Start  
program_suspend_command ( ) {  
writeToFlash (any_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
program has already completed */  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
SR2 = 1  
Program Complete  
Write FFh  
if (status_register.SR2==0) /*program completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Read Data  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
Read data from  
another address  
read_data ( ); /*read data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume program*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if program has completed */  
Write 70h(1)  
}
Program Continues with  
Bank in Read Status  
Register Mode  
}
AI10117b  
1. The Read Status Register command (Write 70h) can be issued just before or just after the Program Resume command.  
102/117  
M58WTxxxKT, M58WTxxxKB  
Flowcharts and pseudo codes  
Figure 24. Block erase flowchart and pseudo code  
Start  
erase_command ( blockToErase ) {  
writeToFlash (blockToErase, 0x20) ;  
/*see note (2) */  
Write 20h (2)  
writeToFlash (blockToErase, 0xD0) ;  
/* only A12-A20 are significant */  
/* Memory enters read status state after  
the Erase Command */  
Write Block  
Address & D0h  
do {  
Read Status  
Register (2)  
status_register=readFlash (blockToErase) ;  
/* see note (2) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
YES  
NO  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
Error (1)  
PP  
SR3 = 0  
YES  
if ( (status_register.SR4==1) && (status_register.SR5==1) )  
/* command sequence error */  
Command  
Sequence Error (1)  
SR4, SR5 = 1  
NO  
error_handler ( ) ;  
if ( (status_register.SR5==1) )  
/* erase error */  
SR5 = 0  
YES  
Erase Error (1)  
error_handler ( ) ;  
Erase to Protected  
Block Error (1)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI13431  
1. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
2. Any address within the bank can be used also.  
103/117  
Flowcharts and pseudo codes  
M58WTxxxKT, M58WTxxxKB  
Figure 25. Erase suspend and resume flowchart and pseudo code  
Start  
erase_suspend_command ( ) {  
writeToFlash (bank_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
erase has already completed */  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
NO  
} while (status_register.SR7== 0) ;  
SR7 = 1  
YES  
SR6 = 1  
Erase Complete  
Write FFh  
if (status_register.SR6==0) /*erase completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
Read Data  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
YES  
Write FFh  
}
else  
{ writeToFlash (bank_address, 0xFF) ;  
Read data from another block,  
Program,  
read_program_data ( );  
Set Configuration Register  
or  
/*read or program data from another block*/  
Block Lock/Unlock/Lock-Down  
writeToFlash (bank_address, 0xD0) ;  
/*write 0xD0 to resume erase*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if erase has completed */  
(1)  
Write 70h  
}
}
Erase Continues with  
Bank in Read Status  
Register Mode  
AI10116d  
1. The Read Status Register command (Write 70h) can be issued just before or just after the Erase Resume command.  
104/117  
M58WTxxxKT, M58WTxxxKB  
Flowcharts and pseudo codes  
Figure 26. Locking operations flowchart and pseudo code  
Start  
locking_operation_command (address, lock_operation) {  
writeToFlash (address, 0x60) ; /*configuration setup*/  
Write 60h (1)  
/* see note (1) */  
if (lock_operation==LOCK) /*to protect the block*/  
writeToFlash (address, 0x01) ;  
else if (lock_operation==UNLOCK) /*to unprotect the block*/  
writeToFlash (address, 0xD0) ;  
Write  
01h, D0h or 2Fh  
else if (lock_operation==LOCK-DOWN) /*to lock the block*/  
writeToFlash (address, 0x2F) ;  
writeToFlash (address, 0x90) ;  
/*see note (1) */  
Write 90h (1)  
Read Block  
Lock States  
if (readFlash (address) ! = locking_state_expected)  
error_handler () ;  
NO  
Locking  
change  
/*Check the locking state (see Read Block Signature table )*/  
confirmed?  
YES  
writeToFlash (address, 0xFF) ; /*Reset to Read Array mode*/  
/*see note (1) */  
Write FFh (1)  
}
End  
AI06176b  
1. Any address within the bank can equally be used.  
105/117  
Flowcharts and pseudo codes  
M58WTxxxKT, M58WTxxxKB  
Figure 27. Protection Register program flowchart and pseudo code  
Start  
protection_register_program_command (addressToProgram, dataToProgram) {:  
writeToFlash (addressToProgram, 0xC0) ;  
/*see note (3) */  
Write C0h (3)  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram) ;  
/* see note (3) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06177b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
106/117  
M58WTxxxKT, M58WTxxxKB  
Flowcharts and pseudo codes  
Figure 28. Enhanced factory program flowchart  
SETUP PHASE  
Start  
VERIFY PHASE  
Write PD1  
Address WA1  
Write 30h  
Address WA1  
1)  
(
Write D0h  
Address WA1  
Read Status  
Register  
Read Status  
Register  
NO  
SR0 = 0?  
YES  
NO  
SR7 = 0?  
Check SR4, SR3  
Write PD2  
Address WA2  
YES  
1)  
and SR1 for program,  
(
V
and Lock Errors  
PP  
NO  
SR0 = 0?  
YES  
Exit  
Read Status  
Register  
Write PD1  
Address WA1  
PROGRAM PHASE  
NO  
SR0 = 0?  
Read Status  
Register  
YES  
Write PDn  
Address WAn  
NO  
1)  
(
SR0 = 0?  
YES  
Read Status  
Register  
Write PD2  
Address WA2  
1)  
(
NO  
Read Status  
Register  
SR0 = 0?  
YES  
NO  
Write FFFFh  
SR0 = 0?  
Address Block WA1  
=
/
YES  
EXIT PHASE  
Write PDn  
Address WAn  
1)  
(
Read Status  
Register  
Read Status  
Register  
NO  
SR7 = 1?  
YES  
NO  
SR0 = 0?  
YES  
Check Status  
Register for Errors  
Write FFFFh  
=
Address Block WA1  
/
End  
AI06160  
1. Address can remain Starting Address WA1 or be incremented.  
107/117  
Flowcharts and pseudo codes  
M58WTxxxKT, M58WTxxxKB  
16.1  
Enhanced factory program pseudo code  
efp_command(addressFlow,dataFlow,n)  
/* n is the number of data to be programmed */  
{
/* setup phase */  
writeToFlash(addressFlow[0],0x30);  
writeToFlash(addressFlow[0],0xD0);  
status_register=readFlash(any_address);  
if (status_register.SR7==1){  
/*EFP aborted for an error*/  
if (status_register.SR4==1) /*program error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block error*/  
error_handler();  
}
else{  
/*Program Phase*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1)  
/*Ready for first data*/  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* Verify Phase */  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* exit program phase */  
/* Exit Phase */  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.SR7==0);  
if (status_register.SR4==1) /*program failure error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block error*/  
error_handler();  
}
}
108/117  
M58WTxxxKT, M58WTxxxKB  
Flowcharts and pseudo codes  
Figure 29. Quadruple enhanced factory program flowchart  
SETUP PHASE  
Start  
LOAD PHASE  
Write PD1  
1)  
Write 75h  
Address WA1  
Address WA1(  
FIRST  
LOAD PHASE  
Write PD2  
Write PD1  
Address WA1  
2)  
Address WA2(  
Read Status  
Register  
Write PD3  
2)  
Address WA3(  
NO  
SR7 = 0?  
YES  
Write PD4  
2)  
Address WA4(  
EXIT PHASE  
Write FFFFh  
Check SR4, SR3  
and SR1 for program,  
PROGRAM AND  
VERIFY PHASE  
VPP and Lock Errors  
Read Status  
Register  
Address =Block WA1  
/
Exit  
Check SR4 for  
Programming Errors  
NO  
NO  
SR0 = 0?  
YES  
End  
Last Page?  
YES  
AI06178b  
1. Address can remain Starting Address WA1 (in which case the next page is programmed) or can be any address in the  
same block.  
2. The address is only checked for the first word of each page as the order to program the words is fixed, so subsequent  
words in each page can be written to any address.  
109/117  
Flowcharts and pseudo codes  
M58WTxxxKT, M58WTxxxKB  
16.2  
Quadruple enhanced factory program pseudo code  
quad_efp_command(addressFlow,dataFlow,n)  
/* n is the number of pages to be programmed.*/  
{
/* Setup phase */  
writeToFlash(addressFlow[0],0x75);  
for (i=0; i++; i< n){  
/*Data Load Phase*/  
/*First Data*/  
writeToFlash(addressFlow[i],dataFlow[i,0]);  
/*at the first data of the first page, Quad-EFP may be aborted*/  
if (First_Page) {  
status_register=readFlash(any_address);  
if (status_register.SR7==1){  
/*EFP aborted for an error*/  
if (status_register.SR4==1) /*program error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block  
error*/  
}
error_handler();  
}
/*2nd data*/  
writeToFlash(addressFlow[i],dataFlow[i,1]);  
/*3rd data*/  
writeToFlash(addressFlow[i],dataFlow[i,2]);  
/*4th data*/  
writeToFlash(addressFlow[i],dataFlow[i,3]);  
/* Program&Verify Phase */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
}while (status_register.SR0==1)  
}
/* Exit Phase */  
writeToFlash(another_block_address,FFFFh);  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.SR7==0);  
if (status_register.SR1==1) /*program to protected block error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR4==1) /*program failure error*/  
error_handler();  
}
}
110/117  
M58WTxxxKT, M58WTxxxKB  
Command interface state tables  
Appendix D  
Command interface state tables  
(1)  
Table 44. Command interface states - modify table, next state  
Command Input  
Erase  
Confirm, P/E  
Resume,  
Block Unlock  
confirm, EFP  
Confirm  
Read  
Clear  
Status  
DWP,  
QWP  
Setup  
Block  
Erase  
Setup  
Program/ Read  
Erase Status  
Suspend Register  
Electronic  
signature,  
Read CFI  
Query  
Current CI State  
Read  
Array  
(FFh)  
WP  
setup  
(10/40h)  
EFP Quad-EFP  
Setup Setup  
(3)(4)  
(2)  
(3)(4)  
Register  
(3)(4)  
(5)  
(30h)  
(75h)  
(B0h)  
(70h)  
(35h, 56h)  
(20h)  
(50h)  
(90h, 98h)  
(D0h)  
Program Program  
Erase  
Setup  
EFP Quad-EFP  
Setup Setup  
Ready  
Ready  
Ready  
Ready (Lock Error)  
Setup  
Setup  
Lock/CR Setup  
Setup  
Ready (Lock Error)  
Ready  
OTP Busy  
Busy  
OTP Busy  
IS in OTP busy  
OTP Busy  
OTP  
IS in OTP  
busy  
OTP busy  
Setup  
Busy  
Program Busy  
Program  
busy  
IS in Program busy  
Program busy  
PS  
Program busy  
IS in Program  
busy  
Program  
Program Busy  
Suspend  
IS in PS  
Setup  
PS  
IS in Program Suspend  
Program Busy  
Program suspend  
Erase Busy  
Program Suspend  
Ready (error)  
Ready (error)  
Erase Busy  
Erase  
Busy  
Busy  
IS in Erase busy  
Erase Busy  
ES  
IS in Erase  
busy  
Erase  
Erase busy  
Program  
in ES  
Suspend  
ES  
IS in Erase Suspend  
Erase Busy  
Erase Suspend  
IS in ES  
Setup  
Erase Suspend  
Program Busy in Erase Suspend  
Program Busy  
Program  
Busy in ES  
Program Busy in Erase  
Suspend  
Busy  
IS in Program Busy in Erase Suspend  
PS in ES  
in ES  
Program Busy in Erase Suspend  
Program Busy  
Program  
in ES  
IS in Program  
busy in ES  
Suspend  
PS in ES  
IS in Program suspend in ES  
Program Suspend in Erase Suspend  
Erase Suspend (Lock Error)  
in ES  
IS in PS in ES  
Program Suspend in Erase Suspend  
Lock/CR Setup in ES  
Erase Suspend (Lock Error)  
ES  
111/117  
Command interface state tables  
M58WTxxxKT, M58WTxxxKB  
(1)  
Table 44. Command interface states - modify table, next state (continued)  
Command Input  
Erase  
Confirm, P/E  
Resume,  
Block Unlock  
confirm, EFP  
Confirm  
Read  
Clear  
Status  
DWP,  
QWP  
Setup  
Block  
Erase  
Setup  
Program/ Read  
Electronic  
signature,  
Read CFI  
Query  
Current CI State  
Read  
Array  
(FFh)  
WP  
setup  
(10/40h)  
EFP Quad-EFP  
Setup Setup  
(3)(4)  
Erase  
Suspend Register  
(B0h) (70h)  
Status  
(2)  
(3)(4)  
Register  
(3)(4)  
(5)  
(30h)  
(75h)  
(35h, 56h)  
(20h)  
(50h)  
(90h, 98h)  
(D0h)  
Setup  
EFP Busy  
Verify  
Ready (error)  
EFP Busy  
(6)  
Ready (error)  
EFP Busy  
(6)  
EFP Verify  
(6)  
Setup  
Quad  
Quad EFP Busy  
Quad EFP Busy  
EFP  
(6)  
Busy  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase  
Controller, PS = program suspend, ES = erase suspend, IS = Illegal state.  
2. At Power-Up, all banks are in read array mode. A Read Array command issued to a busy bank, results in undetermined  
data output.  
3. The two cycle command should be issued to the same bank address.  
4. If the P/EC is active, both cycles are ignored.  
5. The Clear Status Register command clears the Status Register error bits except when the P/EC is busy or suspended.  
6. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’.EFP and Quad EFP are busy if Block  
Address is first EFP Address. Any other commands are treated as data.  
112/117  
M58WTxxxKT, M58WTxxxKB  
Command interface state tables  
(1)  
Table 45. Command interface states - modify table, next output  
(2)  
Command Input  
Erase Confirm  
Block  
Erase  
Setup  
Quad-  
EFP  
Setup  
(75h)  
Program/  
Erase  
Suspend Register  
Read  
Status  
Read Electronic  
signature, Read  
CFI Query (90h,  
98h)  
Current CI State  
Read DWP, QWP  
Clear Status  
Register  
EFP  
Setup  
(30h)  
P/E Resume,  
Block Unlock  
confirm, EFP  
Confirm (D0h)  
(3)  
(4)(5)  
(6)  
Array  
Setup  
(4)(5)  
(FFh) (35h, 56h)  
(50h)  
(B0h)  
(70h)  
(20h)  
Program Setup  
Erase Setup  
OTP Setup  
Program Setup in  
Erase Suspend  
EFP Setup  
EFP Busy  
Status Register  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Lock/CR Setup in  
Erase Suspend  
OTP Busy  
Ready  
Status Register  
Program Busy  
Erase Busy  
Status  
Register Unchanged  
Output  
Array  
Status Register  
Output Unchanged  
Electronic  
Signature/CFI  
Program/Erase  
Suspend  
Program Busy in  
Erase Suspend  
Program Suspend  
in Erase Suspend  
Illegal State  
Output Unchanged  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase  
Controller, IS = Illegal State, ES = Erase suspend, PS = Program suspend.  
2. The output state shows the type of data that appears at the outputs if the bank address is the same as the command  
address. A bank can be placed in read array, Read Status Register, Read Electronic Signature or Read CFI Query mode,  
depending on the command issued. Each bank remains in its last output state until a new command is issued. The next  
state does not depend on the bank’s output state.  
3. At Power-Up, all banks are in read array mode. A Read Array command issued to a busy bank, results in undetermined  
data output.  
4. The two cycle command should be issued to the same bank address.  
5. If the P/EC is active, both cycles are ignored.  
6. The Clear Status Register command clears the Status Register error bits except when the P/EC is busy or suspended.  
113/117  
Command interface state tables  
M58WTxxxKT, M58WTxxxKB  
(1)  
Table 46. Command interface states - Lock table, next state  
Command Input  
Current CI State  
Lock/CR  
Setup  
(60h)  
OTP  
Setup  
(C0h)  
Block Lock  
Confirm  
(01h)  
Block Lock- Set CR EFP Exit,  
Down Confirm Quad EFP  
P/E. C.  
Operation  
Completed  
Illegal  
Command  
(2)  
(2)  
(4)  
(3)  
Confirm (2Fh) (03h)  
Exit  
Ready  
Lock/CR Setup  
Setup  
Lock/CR Setup OTP Setup  
Ready (Lock error)  
Ready  
N/A  
N/A  
Ready  
Ready (Lock error)  
OTP Busy  
OTP  
Busy  
IS in OTP busy  
Setup  
IS in OTP busy  
OTP Busy  
Ready  
IS Ready  
N/A  
OTP Busy  
Program Busy  
Program Busy  
Busy  
IS in Program busy  
IS in PS  
Ready  
IS in Program  
busy  
Program  
Program busy  
IS Ready  
Suspend  
IS in PS  
Program Suspend  
N/A  
N/A  
Program Suspend  
Ready (error)  
Setup  
N/A  
Busy  
IS in Erase Busy  
Erase Busy  
Ready  
IS Ready  
IS in Erase Busy  
Erase Busy  
Erase  
Lock/CR Setup IS in Erase  
Suspend  
Erase Suspend  
N/A  
N/A  
in ES  
Suspend  
IS in ES  
Setup  
Busy  
Erase Suspend  
Program Busy in Erase Suspend  
Program Busy in Erase Suspend  
Program busy in ES  
Program Suspend in Erase Suspend  
IS in Program busy in ES  
ES  
Program  
in Erase  
Suspend  
IS in Program  
busy in ES  
IS in ES  
Suspend  
IS in PS in ES  
N/A  
IS in PS in ES  
Program Suspend in Erase Suspend  
Erase Suspend  
Lock/CR Setup in ES  
Setup  
Erase Suspend (Lock error)  
Erase Suspend (Lock error)  
(5)  
N/A  
N/A  
Ready (error)  
(5)  
EFP  
Busy  
Verify  
Setup  
EFP Busy  
EFP Verify  
EFP Busy  
N/A  
(5)  
(5)  
EFP Verify  
Ready  
EFP Verify  
Ready  
N/A  
(5)  
Quad EFP Busy  
QuadEFP  
Quad EFP  
Busy  
(5)  
Busy  
Quad EFP Busy  
Ready  
Ready  
(4)  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, P/E. C. = Program/Erase Controller, IS = Illegal state, ES = Erase suspend, PS = Program  
suspend.  
2. If the P/EC is active, both cycles are ignored.  
3. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
4. Illegal commands are those not defined in the command set.  
5. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’. EFP and Quad EFP are busy if Block  
Address is first EFP Address. Any other commands are treated as data.  
114/117  
M58WTxxxKT, M58WTxxxKB  
Command interface state tables  
(1)  
Table 47. Command interface states - lock table, next output  
Command Input  
Block Lock-  
Current CI State  
Lock/CR  
Setup  
(60h)  
Block Lock  
Confirm  
(01h)  
Set CR  
Confirm  
(03h)  
EFP Exit,  
P/E. C.  
Operation  
Completed  
(2)  
OTPSetup  
(C0h)  
Down  
Confirm  
(2Fh)  
Illegal  
Command  
(2)  
Quad EFP  
(4)  
(3)  
Exit  
Program Setup  
Erase Setup  
OTP Setup  
Program Setup in  
Erase Suspend  
Status Register  
EFP Setup  
EFP Busy  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Output  
Unchanged  
Status Register  
Array  
Status Register  
Lock/CR Setup in  
Erase Suspend  
OTP Busy  
Ready  
Program Busy  
Erase Busy  
Output  
Unchanged  
Status Register  
Output Unchanged  
Array  
Program/Erase  
Suspend  
Program Busy in  
Erase Suspend  
Program Suspend in  
Erase Suspend  
Illegal State  
Output Unchanged  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, P/E. C. = Program/Erase Controller.  
2. If the P/EC is active, both cycles are ignored.  
3. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
4. Illegal commands are those not defined in the command set.  
115/117  
Revision history  
M58WTxxxKT, M58WTxxxKB  
Revision history  
Table 48. Document revision history  
Date  
Revision  
Changes  
30-Jan-2008  
20-Mar-2008  
1
2
Initial release.  
Applied Numonyx branding.  
116/117  
M58WTxxxKT, M58WTxxxKB  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
117/117  

相关型号:

M58WT032QB70ZB6E

32- and 64-Mbit (】16, multiple bank, burst) 1.8 V core, 3.0 V I/O supply Flash memories
NUMONYX

M58WT032QB70ZB6F

32- and 64-Mbit (】16, multiple bank, burst) 1.8 V core, 3.0 V I/O supply Flash memories
NUMONYX

M58WT032QT70ZB6E

32- and 64-Mbit (】16, multiple bank, burst) 1.8 V core, 3.0 V I/O supply Flash memories
NUMONYX

M58WT032QT70ZB6F

32- and 64-Mbit (】16, multiple bank, burst) 1.8 V core, 3.0 V I/O supply Flash memories
NUMONYX

M58WT064KB

32- and 64-Mbit (】16, multiple bank, burst) 1.8 V core, 3.0 V I/O supply Flash memories
NUMONYX

M58WT064KB70ZAQ6E

Flash, 4MX16, 70ns, PBGA88, 8 X 10 MM, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-88
NUMONYX

M58WT064KB70ZAQ6F

Flash, 4MX16, 70ns, PBGA88, 8 X 10 MM, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-88
NUMONYX

M58WT064KT

32- and 64-Mbit (】16, multiple bank, burst) 1.8 V core, 3.0 V I/O supply Flash memories
NUMONYX

M58WT064KT70ZAQ6F

Flash, 4MX16, 70ns, PBGA88, 8 X 10 MM, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-88
NUMONYX

M59002FP

Power Supply Support Circuit, 1 Channel, PDSO42, PLASTIC, SOP-42
MITSUBISHI

M5913

COMBINED SINGLE CHIP PCM CODEC AND FILTER
STMICROELECTR

M5913B1

COMBINED SINGLE CHIP PCM CODEC AND FILTER
STMICROELECTR