NAND01GW3A2B-KGD [NUMONYX]

Known Good Die, 1 Gbit (x 8/x 16), 528 Byte/264 word page, 3 V, NAND Flash memory; 已知合格芯片, 1千兆( ×8 / ×16 ) , 528字节/ 264字页, 3 V , NAND闪存
NAND01GW3A2B-KGD
型号: NAND01GW3A2B-KGD
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Known Good Die, 1 Gbit (x 8/x 16), 528 Byte/264 word page, 3 V, NAND Flash memory
已知合格芯片, 1千兆( ×8 / ×16 ) , 528字节/ 264字页, 3 V , NAND闪存

闪存 存储 内存集成电路
文件: 总48页 (文件大小:1172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND01GW3A2B-KGD  
NAND01GW4A2B-KGD  
Known Good Die, 1 Gbit (x 8/x 16),  
528 Byte/264 word page, 3 V, NAND Flash memory  
Features  
High density NAND Flash memory  
– 1 Gbit memory array  
– 32 Mbit spare area  
– Cost effective solutions for mass storage  
applications  
NAND interface  
– x 8 or x 16 bus width  
– Multiplexed Address/ Data  
– Pinout compatibility for all densities  
Supply voltage:  
– 3.0 V device: V = 2.7 to 3.6 V  
DD  
Page size  
Wafer  
– x 8 device: (512 + 16 spare) bytes  
– x 16 device: (256 + 8 spare) words  
Block size  
– x 8 device: (16 K + 512 spare) bytes  
– x 16 device: (8 K + 256 spare) words  
Serial Number option  
Hardware Data Protection  
Page Read / Program  
– Program/Erase locked during Power  
transitions  
– Random access: 15 µs (3 V) (max)  
– Sequential access: 50 ns (min)  
– Page program time: 200 µs (typ)  
Data Integrity  
– 100,000 Program/Erase cycles (with ECC)  
– 10 years Data Retention  
Copy Back Program mode  
– Fast page copy without external buffering  
Fast Block Erase  
– Block erase time: 2 ms (typ)  
Status Register  
Electronic signature  
Chip Enable ‘Don’t care’  
– Simple interface with microcontroller  
January 2008  
Rev 3  
1/48  
www.numonyx.com  
1
Contents  
NAND01GWxA2B-KGD  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
Bad Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
Inputs/Outputs (I/O0-I/O7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Inputs/Outputs (I/O8-I/O15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Read Enable (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Ready/Busy (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
V
DD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.11 VSS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Command Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Address Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
6
Command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Device operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.1  
6.2  
Pointer operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Memory Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.2.1  
Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/48  
NAND01GWxA2B-KGD  
Contents  
6.2.2  
Page Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Page Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Copy Back Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Read Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.3  
6.4  
6.5  
6.6  
6.7  
6.7.1  
6.7.2  
6.7.3  
6.7.4  
Write Protection bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
P/E/R Controller bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Error bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SR5, SR4, SR3, SR2 and SR1 are reserved . . . . . . . . . . . . . . . . . . . . . 23  
6.8  
Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7
Software algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.1  
7.2  
7.3  
7.4  
7.5  
Bad Block Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
NAND Flash memory failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Wear-leveling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Error Correction code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8
Program and Erase times and endurance cycles . . . . . . . . . . . . . . . . . 29  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9
10  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.1 Ready/Busy signal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 44  
10.2 Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
11  
12  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3/48  
List of tables  
NAND01GWxA2B-KGD  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Product description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Valid blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Address Insertion, x 8 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Address Insertion, x 16 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Address definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Copy Back Program addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
NAND Flash failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Program, Erase Times and Program Erase endurance cycles. . . . . . . . . . . . . . . . . . . . . . 29  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
AC characteristics for command, address, data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
AC characteristics for operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
4/48  
NAND01GWxA2B-KGD  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Logic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pointer operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read (A,B,C) operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Page Program operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Copy Back operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Erase operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 10. Bad Block Management flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11. Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 12. Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 13. Equivalent testing circuit for AC characteristics measurement. . . . . . . . . . . . . . . . . . . . . . 32  
Figure 14. Command Latch AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 15. Address Latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. Data Input Latch AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 17. Sequential Data Output after Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 18. Read Status Register AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 19. Read Electronic Signature AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 20. Page Read A/ Read B Operation AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 21. Read C Operation, One Page AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 22. Page Program AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 23. Block Erase AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 24. Reset AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 25. Program/Erase Enable waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 26. Program/Erase Disable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 27. Ready/Busy AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 28. Ready/Busy load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 29. Resistor value versus waveform timings for Ready/Busy signal. . . . . . . . . . . . . . . . . . . . . 45  
Figure 30. Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
5/48  
Description  
NAND01GWxA2B-KGD  
1
Description  
The NAND Flash 528 Byte/ 264 Word Page is a family of non-volatile Flash memories that  
uses the Single Level Cell (SLC) NAND cell technology. It is referred to as the Small Page  
family. The NAND01GW3A2B-KGD and NAND01GW4A2B-KGD have a density of 1 Gbits.  
It operates from a 3V voltage supply. The size of a Page is either 528 Bytes (512 + 16 spare)  
or 264 Words (256 + 8 spare) depending on whether the device has a x8 or x16 bus width.  
The address lines are multiplexed with the Data Input/Output signals on a multiplexed x8  
and x16 Input/Output bus on the NAND01GW3A2B-KGD and NAND01GW4A2B-KGD,  
respectively. This interface reduces the pin count and makes it possible to migrate to other  
densities without changing the footprint.  
Each block can be programmed and erased over 100,000 cycles (with ECC). To extend the  
lifetime of NAND Flash devices it is strongly recommended to implement an Error Correction  
Code (ECC). A Write Protect pin is available to give a hardware protection against program  
and erase operations.  
The devices feature an open-drain Ready/Busy output that can be used to identify if the  
Program/Erase/Read (P/E/R) Controller is currently active. The use of an open-drain output  
allows the Ready/Busy pins from several memories to be connected to a single pull-up  
resistor.  
A Copy Back command is available to optimize the management of defective blocks. When  
a Page Program operation fails, the data can be programmed in another page without  
having to resend the data to be programmed.  
The devices are available in unsawn wafer format for multichip package products (MCPs).  
They have the Chip Enable Don't Care option, which allows the code to be directly  
downloaded by a microcontroller, as Chip Enable transitions during the latency time do not  
stop the read operation.  
A Serial Number option, allows each device to be uniquely identified. The Serial Number  
options is subject to an NDA (Non Disclosure Agreement) and so not described in the  
datasheet. For more details of this option contact your nearest Numonyx Sales office.  
For information on how to order these options refer to Table 20: Ordering Information  
Scheme. Devices are shipped from the factory with Block 0 always valid and the memory  
content bits, in valid blocks, erased to ’1’.  
See Table 1: Product description, for all the devices available.  
Table 1.  
Product description  
Timings  
Page  
Size  
Block  
Size  
Bus  
Width  
Memory Operating  
Part Number  
Density  
Package  
Block  
Erase  
Typical  
Random Sequential  
Page  
Program  
Typical  
Array  
Voltage  
Access  
(Max)  
Access  
(Min)  
NAND01GW3A2B-  
KGD  
32Pages  
x
8192  
Blocks  
x8  
Known  
Good Die  
for MCP  
256+8 8K+256  
Words Words  
1 Gbit  
2.7 to 3.6V  
15µs  
50ns  
200µs  
2ms  
NAND01GW4A2B-  
KGD  
x16  
6/48  
NAND01GWxA2B-KGD  
Figure 1.  
Description  
Logic diagram  
V
DD  
I/O8-I/O15, x16  
E
I/O0-I/O7, x8/x16  
R
W
NAND Flash  
RB  
AL  
CL  
WP  
V
SS  
AI07557C  
Table 2.  
Signal names  
I/O8-15  
Data Input/Outputs for x16 devices  
Data Input/Outputs, Address Inputs, or Command Inputs for x8 and  
x16 devices  
I/O0-7  
AL  
CL  
E
Address Latch Enable  
Command Latch Enable  
Chip Enable  
R
Read Enable  
RB  
W
Ready/Busy (open-drain output)  
Write Enable  
WP  
VDD  
VSS  
NC  
DU  
Write Protect  
Supply Voltage  
Ground  
Not Connected Internally  
Do Not Use  
7/48  
Description  
Figure 2.  
NAND01GWxA2B-KGD  
Logic block diagram  
Address  
Register/Counter  
AL  
NAND Flash  
Memory Array  
CL  
W
P/E/R Controller,  
High Voltage  
Generator  
Command  
Interface  
Logic  
E
WP  
R
Page Buffer  
Y Decoder  
Command Register  
I/O Buffers & Latches  
RB  
I/O0-I/O7, x8/x16  
I/O8-I/O15, x16  
AI07561c  
8/48  
NAND01GWxA2B-KGD  
Memory array organization  
2
Memory array organization  
The memory array is made up of NAND structures where 16 cells are connected in series.  
The memory array is organized in blocks where each block contains 32 pages. The array is  
split into two areas, the main area and the spare area. The main area of the array is used to  
store data whereas the spare area is typically used to store Error correction Codes, software  
flags or Bad Block identification.  
In x8 devices the pages are split into a main area with two half pages of 256 Bytes each and  
a spare area of 16 Bytes. In the x16 devices the pages are split into a 256 Word main area  
and an 8 Word spare area. Refer to Figure 3: Memory array organization.  
2.1  
Bad blocks  
The NAND Flash 528 byte/ 264 word page devices may contain Bad Blocks, that is blocks  
that contain one or more invalid bits whose reliability is not guaranteed. Additional Bad  
Blocks may develop during the lifetime of the device.  
The Bad Block Information is written prior to shipping (refer to Section 7.1: Bad Block  
Management for more details).  
Table 3 shows the minimum number of valid blocks in each device. The values shown  
include both the Bad Blocks that are present when the device is shipped and the Bad Blocks  
that could develop later on.  
These blocks need to be managed using Bad Blocks Management, Block Replacement or  
Error Correction Codes (refer to Section 7: Software algorithms).  
Table 3.  
Valid blocks  
Density of device  
Min  
Max  
1 Gbit  
8032  
8192  
9/48  
Memory array organization  
NAND01GWxA2B-KGD  
Figure 3.  
Memory array organization  
x8 DEVICES  
x16 DEVICES  
Block = 32 Pages  
Block = 32 Pages  
Page = 528 Bytes (512+16)  
Page = 264 Words (256+8)  
1st half Page 2nd half Page  
(256 bytes) (256 bytes)  
Main Area  
Block  
Page  
Block  
Page  
8 bits  
16 bits  
256 Words  
512 Bytes  
16  
Bytes  
8
Words  
Page Buffer, 264 Words  
8
Page Buffer, 512 Bytes  
16  
256 Words  
Words  
512 Bytes  
16 bits  
Bytes  
8 bits  
AI07587  
10/48  
NAND01GWxA2B-KGD  
Signal descriptions  
3
Signal descriptions  
See Figure 1: Logic diagram, and Table 2: Signal names, for a brief overview of the signals  
connected to this device.  
3.1  
Inputs/Outputs (I/O0-I/O7)  
Input/Outputs 0 to 7 are used to input the selected address, output the data during a Read  
operation or input a command or data during a Write operation. The inputs are latched on  
the rising edge of Write Enable. I/O0-I/O7 are left floating when the device is deselected or  
the outputs are disabled.  
3.2  
Inputs/Outputs (I/O8-I/O15)  
Input/Outputs 8 to 15 are only available in x16 devices. They are used to output the data  
during a Read operation or input data during a Write operation. Command and Address  
Inputs only require I/O0 to I/O7.  
The inputs are latched on the rising edge of Write Enable. I/O8-I/O15 are left floating when  
the device is deselected or the outputs are disabled.  
3.3  
3.4  
3.5  
Address Latch Enable (AL)  
The Address Latch Enable activates the latching of the Address inputs in the Command  
Interface. When AL is high, the inputs are latched on the rising edge of Write Enable.  
Command Latch Enable (CL)  
The Command Latch Enable activates the latching of the Command inputs in the Command  
Interface. When CL is high, the inputs are latched on the rising edge of Write Enable.  
Chip Enable (E)  
The Chip Enable input activates the memory control logic, input buffers, decoders and read  
circuitry. When Chip Enable is low, V , the device is selected.  
IL  
If Chip Enable goes High (V ) while the device is busy, the device remains selected and  
IH  
does not go into standby mode.  
3.6  
Read Enable (R)  
The Read Enable, R, controls the sequential data output during Read operations. Data is  
valid t  
after the falling edge of R. The falling edge of R also increments the internal  
RLQV  
column address counter by one.  
11/48  
Signal descriptions  
NAND01GWxA2B-KGD  
3.7  
Write Enable (W)  
The Write Enable input, W, controls writing to the Command Interface, Input Address and  
Data latches. Both addresses and data are latched on the rising edge of Write Enable.  
During power-up and power-down a recovery time of 10 µs (min) is required before the  
Command Interface is ready to accept a command. It is recommended to keep Write Enable  
high during the recovery time.  
3.8  
3.9  
Write Protect (WP)  
The Write Protect pin is an input that gives a hardware protection against unwanted program  
or erase operations. When Write Protect is Low, V , the device does not accept any  
program or erase operations.  
IL  
It is recommended to keep the Write Protect pin Low, V , during power-up and power-down.  
IL  
Ready/Busy (RB)  
The Ready/Busy output, RB, is an open-drain output that can be used to identify if the P/E/R  
Controller is currently active.  
When Ready/Busy is Low, V , a read, program or erase operation is in progress. When the  
OL  
operation completes Ready/Busy goes High, V  
.
OH  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
Refer to Section 10.1: Ready/Busy signal electrical characteristics for details on how to  
calculate the value of the pull-up resistor.  
3.10  
VDD Supply Voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (read, program and erase).  
An internal voltage detector disables all functions whenever V is below the V  
threshold  
LKO  
DD  
(see Figure 30: Data protection) to protect the device from any involuntary Program/Erase  
operations during power-transitions.  
Each device in a system should have V decoupled with a 0.1µF capacitor. The PCB track  
DD  
widths should be sufficient to carry the required program and erase currents  
3.11  
VSS Ground  
Ground, V  
ground.  
is the reference for the power supply. It must be connected to the system  
SS,  
12/48  
NAND01GWxA2B-KGD  
Bus operations  
4
Bus operations  
There are six standard bus operations that control the memory. Each of these is described  
in this section, see Table 4: Bus operations, for a summary.  
4.1  
Command Input  
Command Input bus operations are used to give commands to the memory. Command are  
accepted when Chip Enable is Low, Command Latch Enable is High, Address Latch Enable  
is Low and Read Enable is High. They are latched on the rising edge of the Write Enable  
signal.  
Only I/O0 to I/O7 are used to input commands.  
See Figure 14 and Table 18 for details of the timings requirements.  
4.2  
Address Input  
Address Input bus operations are used to input the memory address. Four bus cycles are  
required to input the addresses (refer to Table 5 and Table 6, Address Insertion).  
The addresses are accepted when Chip Enable is Low, Address Latch Enable is High,  
Command Latch Enable is Low and Read Enable is High. They are latched on the rising  
edge of the Write Enable signal. Only I/O0 to I/O7 are used to input addresses.  
See Figure 15 and Table 18 for details of the timings requirements.  
4.3  
4.4  
Data Input  
Data Input bus operations are used to input the data to be programmed.  
Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command  
Latch Enable is Low and Read Enable is High. The data is latched on the rising edge of the  
Write Enable signal. The data is input sequentially using the Write Enable signal.  
See Figure 16, Table 18 and Table 20 for details of the timings requirements.  
Data Output  
Data Output bus operations are used to read: the data in the memory array, the Status  
Register, the Electronic Signature and the Serial Number.  
Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,  
and Command Latch Enable is Low.  
The data is output sequentially using the Read Enable signal.  
See Figure 17 and Table 20 for details of the timings requirements.  
13/48  
Bus operations  
NAND01GWxA2B-KGD  
4.5  
Write Protect  
Write Protect bus operations are used to protect the memory against program or erase  
operations. When the Write Protect signal is Low the device will not accept program or erase  
operations and so the contents of the memory array cannot be altered. The Write Protect  
signal is not latched by Write Enable to ensure protection even during power-up.  
4.6  
Standby  
When Chip Enable is High the memory enters Standby mode, the device is deselected,  
outputs are disabled and power consumption is reduced.  
Table 4.  
Bus operations  
Bus operation  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
I/O8 - I/O15(1)  
Command Input  
Address Input  
Data Input  
VIL  
VIL  
VIL  
VIL  
X
VIL  
VIH  
VIL  
VIL  
X
VIH  
VIL  
VIL  
VIL  
X
VIH Rising X(2)  
Command  
Address  
Data Input  
Data Output  
X
X
VIH Rising  
VIH Rising  
Falling VIH  
X
X
X
Data Input  
Data Output  
X
Data Output  
Write Protect  
Standby  
X
X
X
X
VIL  
X
X
X
VIH  
X
X
X
1. Only for x16 devices.  
2. WP must be VIH when issuing a program or erase command.  
(1)(2)  
Table 5.  
Address Insertion, x 8 devices  
Bus  
cycle  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
3rd  
4th  
A7  
A16  
A24  
VIL  
A6  
A15  
A23  
VIL  
A5  
A14  
A22  
VIL  
A4  
A13  
A21  
VIL  
A3  
A12  
A20  
VIL  
A2  
A11  
A19  
VIL  
A1  
A0  
A9  
A10  
A18  
A26  
A17  
A25  
1. A8 is set Low or High by the 00h or 01h Command, see Section 6.1: Pointer operations.  
2. Any additional address input cycles will be ignored.  
(1)(2)(3)  
Table 6.  
Address Insertion, x 16 devices  
I/O8-  
I/O15  
Bus  
cycle  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
3rd  
4th  
A7  
A16  
A24  
VIL  
A6  
A15  
A23  
VIL  
A5  
A14  
A22  
VIL  
A4  
A13  
A21  
VIL  
A3  
A12  
A20  
VIL  
A2  
A11  
A19  
VIL  
A1  
A0  
A9  
A10  
A18  
A26  
VIL  
A17  
A25  
1. A8 is Don’t care in x 16 devices.  
2. Any additional address input cycles will be ignored.  
3. The 01h command is not used in x 16 devices.  
14/48  
NAND01GWxA2B-KGD  
Table 7.  
Bus operations  
Address definitions  
Address  
Definition  
A0 - A7  
A9 - A26  
A9 - A13  
A14 - A26  
Column Address  
Page Address  
Address in Block  
Block Address  
A8 is set Low or High by the 00h or 01h  
Command, and is Don’t care in x 16 devices  
A8  
15/48  
Command set  
NAND01GWxA2B-KGD  
5
Command set  
All bus write operations to the device are interpreted by the Command Interface. The  
Commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when  
the Command Latch Enable signal is high. Device operations are selected by writing  
specific commands to the Command Register. The two-step command sequences for  
program and erase operations are imposed to maximize data security.  
The Commands are summarized in Table 8: Commands.  
Table 8.  
Commands  
Command  
Bus Write operations(1)  
Command  
accepted during  
busy  
1
st cycle  
2nd cycle  
3rd cycle  
Read A  
Read B  
Read C  
00h  
01h(2)  
50h  
-
-
-
-
-
-
-
Read Electronic Signature  
Read Status Register  
Page Program  
90h  
-
70h  
-
-
Yes  
Yes  
80h  
10h  
8Ah  
D0h  
-
-
Copy Back Program  
Block Erase  
00h  
10h  
60h  
-
-
Reset  
FFh  
1. The bus cycles are only shown for issuing the codes. The cycles required to input the addresses or  
input/output data are not shown.  
2. Don’t Care in x 16 devices.  
16/48  
NAND01GWxA2B-KGD  
Device operations  
6
Device operations  
6.1  
Pointer operations  
As the NAND Flash memories contain two different areas for x 16 devices and three  
different areas for x 8 devices (see Figure 4) the read command codes (00h, 01h, 50h) are  
used to act as pointers to the different areas of the memory array (they select the most  
significant column address).  
The Read A and Read B commands act as pointers to the main memory area. Their use  
depends on the bus width of the device.  
In x 16 devices the Read A command (00h) sets the pointer to Area A (the whole of the  
main area) that is words 0 to 255.  
In x 8 devices the Read A command (00h) sets the pointer to Area A (the first half of the  
main area) that is bytes 0 to 255, and the Read B command (01h) sets the pointer to  
Area B (the second half of the main area) that is bytes 256 to 511.  
In both the x8 and x16 devices the Read C command (50h), acts as a pointer to Area C (the  
spare memory area) that is bytes 512 to 527 or words 256 to 263.  
Once the Read A and Read C commands have been issued the pointer remains in the  
respective areas until another pointer code is issued. However, the Read B command is  
effective for only one operation, once an operation has been executed in Area B the pointer  
returns automatically to Area A.  
Figure 4.  
Pointer operations  
x8 Devices  
x16 Devices  
Area A  
(00h)  
Area B  
(01h)  
Area C  
(50h)  
Area A  
(00h)  
Area C  
(50h)  
Bytes 512  
-527  
Words 256  
-263  
Bytes 0- 255  
Bytes 256-511  
Words 0- 255  
A
B
C
Page Buffer  
A
C
Page Buffer  
Pointer  
(00h,01h,50h)  
Pointer  
(00h,50h)  
AI07592  
17/48  
Device operations  
NAND01GWxA2B-KGD  
6.2  
Read Memory Array  
Each operation to read the memory area starts with a pointer operation as shown in the  
Section 6.1: Pointer operations. Once the area (main or spare) has been selected using the  
Read A, Read B or Read C commands, four bus cycles are required to input the address  
(refer to Table 5) of the data to be read.  
The device defaults to Read A mode after power-up or a Reset operation.  
When reading the spare area addresses:  
A0 to A3 (x 8 devices)  
A0 to A2 (x 16 devices)  
are used to set the start address of the spare area while addresses:  
A4 to A7 (x 8 devices)  
A3 to A7 (x 16 devices)  
are ignored.  
Once the Read A or Read C commands have been issued they do not need to be reissued  
for subsequent read operations as the pointer remains in the respective area. However, the  
Read B command is effective for only one operation, once an operation has been executed  
in Area B the pointer returns automatically to Area A and so another Read B command is  
required to start another read operation in Area B.  
Once a read command is issued two types of operations are available: Random Read and  
Page Read.  
6.2.1  
6.2.2  
Random Read  
Each time the command is issued the first read is Random Read.  
Page Read  
After the Random Read access the page data is transferred to the Page Buffer in a time of  
t
(refer to Table 20 for value). Once the transfer is complete the Ready/Busy signal  
WHBH  
goes High. The data can then be read out sequentially (from selected column address to  
last column address) by pulsing the Read Enable signal.  
18/48  
NAND01GWxA2B-KGD  
Device operations  
Figure 5.  
Read (A,B,C) operations  
CL  
E
W
AL  
R
tBLBH1  
(read)  
RB  
I/O  
00h/  
Data Output (sequentially)  
Address Input  
01h/ 50h  
Command  
Code  
Busy  
ai07595c  
Figure 6.  
Read block diagrams  
Read A Command, X8 Devices  
Read A Command, X16 Devices  
Area B  
(2nd half Page)  
Area A  
(1st half Page)  
Area C  
(Spare)  
Area A  
(main area)  
Area C  
(Spare)  
A9-A26  
A9-A26  
A0-A7  
A0-A7  
Read B Command, X8 Devices  
Read C Command, X8/x16 Devices  
Area B  
(2nd half Page)  
Area A/ B  
Area A  
(1st half Page)  
Area C  
(Spare)  
Area A  
Area C  
(Spare)  
A9-A26  
A9-A26  
A0-A7  
A0-A3 (x8)  
A0-A2 (x16)  
A4-A7 (x8), A3-A7 (x16) are don't care  
AI13144  
19/48  
Device operations  
NAND01GWxA2B-KGD  
6.3  
Page Program  
The Page Program operation is the standard operation to program data to the memory  
array.  
The main area of the memory array is programmed by page, however partial page  
programming is allowed where any number of bytes (1 to 528) or words (1 to 264) can be  
programmed.  
The maximum number of consecutive partial page program operations allowed in the same  
page is three. After exceeding this a Block Erase command must be issued before any  
further program operations can take place in that page.  
Before starting a Page Program operation a Pointer operation can be performed to point to  
the area to be programmed. Refer to the Section 6.1: Pointer operations and Figure 5 for  
details.  
Each Page Program operation consists of five steps (see Figure 7):  
1. One bus cycle is required to setup the Page Program command  
2. Four bus cycles are then required to input the program address (refer to Table 5)  
3. The data is then input (up to 528 bytes/ 264 words) and loaded into the Page Buffer  
4. One bus cycle is required to issue the confirm command to start the P/E/R Controller.  
5. The P/E/R Controller then programs the data into the array.  
Once the program operation has started the Status Register can be read using the Read  
Status Register command. During program operations the Status Register will only flag  
errors for bits set to '1' that have not been successfully programmed to '0'.  
During the program operation, only the Read Status Register and Reset commands will be  
accepted, all other commands will be ignored.  
Once the program operation has completed the P/E/R Controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High.  
The device remains in Read Status Register mode until another valid command is written to  
the Command Interface.  
Figure 7.  
Page Program operation  
tBLBH2  
(Program Busy time)  
RB  
Busy  
I/O  
80h  
Data Input  
10h  
Address Inputs  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai07566  
1. Before starting a Page Program operation a Pointer operation can be performed. Refer to Section 6.1: Pointer operations  
for details.  
20/48  
NAND01GWxA2B-KGD  
Device operations  
6.4  
Copy Back Program  
The Copy Back Program operation is used to copy the data stored in one page and  
reprogram it in another page.  
The Copy Back Program operation does not require external memory and so the operation  
is faster and more efficient because the reading and loading cycles are not required. The  
operation is particularly useful when a portion of a block is updated and the rest of the block  
needs to be copied to the newly assigned block.  
If the Copy Back Program operation fails an error is signalled in the Status Register.  
However as the standard external ECC cannot be used with the Copy Back operation bit  
error due to charge loss cannot be detected. For this reason it is recommended to limit the  
number of Copy Back operations on the same data and or to improve the performance of the  
ECC.  
The Copy Back Program operation requires three steps:  
1. The source page must be read using the Read A command (one bus write cycle to  
setup the command and then 4 bus write cycles to input the source page address).  
This operation copies all 264 Words/ 528 Bytes from the page into the Page Buffer.  
2. When the device returns to the ready state (Ready/Busy High), the second bus write  
cycle of the command is given with the 4 bus cycles to input the target page address.  
Refer to Table 9 for the addresses that must be the same for the Source and Target  
pages.  
3. Then the confirm command is issued to start the P/E/R Controller.  
After a Copy Back Program operation, a partial-page program is not allowed in the target  
page until the block has been erased.  
See Figure 8 for an example of the Copy Back operation.  
Table 9.  
Copy Back Program addresses  
Density  
Same Address for Source and Target Pages  
1 Gbit  
A14, A26  
Figure 8.  
Copy Back operation  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
I/O  
Busy  
Source  
Target  
00h  
Read  
8Ah  
10h  
70h  
SR0  
Address Inputs  
Address Inputs  
Copy Back  
Code  
Read Status Register  
Code  
ai07590b  
21/48  
Device operations  
NAND01GWxA2B-KGD  
6.5  
Block Erase  
Erase operations are done one block at a time. An erase operation sets all of the bits in the  
addressed block to ‘1’. All previous data in the block is lost.  
An erase operation consists of three steps (refer to Figure 9):  
1. One bus cycle is required to setup the Block Erase command.  
2. Only three bus cycles are required to input the block address. The first cycle (A0 to A7)  
is not required as only addresses A14 to A26 are valid, A9 to A13 are ignored. In the  
last address cycle I/O2 to I/O7 must be set to V .  
IL  
3. One bus cycle is required to issue the confirm command to start the P/E/R Controller.  
Once the erase operation has completed the Status Register can be checked for errors.  
Figure 9.  
Block Erase operation  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Block Erase  
Setup Code  
ai07593  
6.6  
Reset  
The Reset command is used to reset the Command Interface and Status Register. If the  
Reset command is issued during any operation, the operation will be aborted. If it was a  
program or erase operation that was aborted, the contents of the memory locations being  
modified will no longer be valid as the data will be partially programmed or erased.  
If the device has already been reset then the new Reset command will not be accepted.  
The Ready/Busy signal goes Low for t  
after the Reset command is issued. The value  
BLBH4  
of t  
depends on the operation that the device was performing when the command was  
BLBH4  
issued, refer to Table 20 for the values.  
22/48  
NAND01GWxA2B-KGD  
Device operations  
6.7  
Read Status Register  
The device contains a Status Register which provides information on the current or previous  
Program or Erase operation. The various bits in the Status Register convey information and  
errors on the operation.  
The Status Register is read by issuing the Read Status Register command. The Status  
Register information is present on the output data bus (I/O0-I/O7) on the falling edge of Chip  
Enable or Read Enable, whichever occurs last. When several memories are connected in a  
system, the use of Chip Enable and Read Enable signals allows the system to poll each  
device separately, even when the Ready/Busy pins are common-wired. It is not necessary to  
toggle the Chip Enable or Read Enable signals to update the contents of the Status  
Register.  
After the Read Status Register command has been issued, the device remains in Read  
Status Register mode until another command is issued. Therefore if a Read Status Register  
command is issued during a Random Read cycle a new read command must be issued to  
continue with a Page Read.  
The Status Register bits are summarized in Table 10: Status Register Bits. Refer to Table 10  
in conjunction with the following text descriptions.  
6.7.1  
Write Protection bit (SR7)  
The Write Protection bit can be used to identify if the device is protected or not. If the Write  
Protection bit is set to ‘1’ the device is not protected and program or erase operations are  
allowed. If the Write Protection bit is set to ‘0’ the device is protected and program or erase  
operations are not allowed.  
6.7.2  
6.7.3  
6.7.4  
P/E/R Controller bit (SR6)  
The Program/Erase/Read Controller bit indicates whether the P/E/R Controller is active or  
inactive. When the P/E/R Controller bit is set to ‘0’, the P/E/R Controller is active (device is  
busy); when the bit is set to ‘1’, the P/E/R Controller is inactive (device is ready).  
Error bit (SR0)  
The Error bit is used to identify if any errors have been detected by the P/E/R Controller. The  
Error Bit is set to ’1’ when a program or erase operation has failed to write the correct data to  
the memory. If the Error Bit is set to ‘0’ the operation has completed successfully.  
SR5, SR4, SR3, SR2 and SR1 are reserved  
23/48  
Device operations  
NAND01GWxA2B-KGD  
Definition  
Table 10. Status Register Bits  
Bit  
Name  
Logic level  
'1'  
'0'  
'1'  
'0'  
Not Protected  
Protected  
SR7  
SR6  
Write Protection  
P/E/R C inactive, device ready  
P/E/R C active, device busy  
Program/ Erase/ Read  
Controller  
SR5, SR4,  
SR3, SR2,  
SR1  
Reserved  
Don’t care  
‘1’  
‘0’  
Error – operation failed  
SR0  
Generic Error  
No Error – operation successful  
6.8  
Read Electronic Signature  
The device contains a Manufacturer Code and Device Code. To read these codes two steps  
are required:  
1. first use one Bus Write cycle to issue the Read Electronic Signature command (90h),  
followed by an address input of 00h.  
2. then perform two Bus Read operations – the first will read the Manufacturer Code and  
the second, the Device Code. Further Bus Read operations will be ignored.  
Refer to Table 11: Electronic Signature, for information on the addresses.  
Table 11. Electronic Signature  
Part number  
Manufacturer code  
Device code  
NAND01GW3A2B-KGD  
NAND01GW4A2B-KGD  
20h  
79h  
0020h  
0074h  
24/48  
NAND01GWxA2B-KGD  
Software algorithms  
7
Software algorithms  
This section gives information on the software algorithms that Numonyx recommends to  
implement to manage the Bad Blocks and extend the lifetime of the NAND device.  
NAND Flash memories are programmed and erased by Fowler-Nordheim tunneling using a  
high voltage. Exposing the device to a high voltage for extended periods can cause the  
oxide layer to be damaged. For this reason, the number of program and erase cycles is  
limited (see Table 13 for value) and it is recommended to implement Garbage Collection, a  
Wear-Leveling Algorithm and an Error Correction Code, to extend the number of program  
and erase cycles and increase the data retention.  
To help integrate a NAND memory into an application Numonyx can provide File System OS  
Native reference software, which supports the basic commands of file management.  
Contact the nearest Numonyx sales office for more details.  
7.1  
Bad Block Management  
Devices with Bad Blocks have the same quality level and the same AC and DC  
characteristics as devices where all the blocks are valid. A Bad Block does not affect the  
performance of valid blocks because it is isolated from the bit line and common source line  
by a select transistor.  
The devices are supplied with all the locations inside valid blocks erased (FFh). The Bad  
Block Information is written prior to shipping. Any block where the 6th byte (x 8 device) / 1st  
word (x 16 device) in the spare area of the 1st page does not contain FFh is a Bad Block.  
The Bad Block Information must be read before any erase is attempted as the Bad Block  
Information may be erased. For the system to be able to recognize the Bad Blocks based on  
the original information it is recommended to create a Bad Block table following the  
flowchart shown in Figure 10.  
7.2  
NAND Flash memory failure modes  
Over the lifetime of the device additional Bad Blocks may develop.  
To implement a highly reliable system, all the possible failure modes must be considered:  
Program/Erase failure: in this case the block has to be replaced by copying the data to  
a valid block. These additional Bad Blocks can be identified as attempts to program or  
erase them will give errors in the Status Register. As the failure of a Page Program  
operation does not affect the data in other pages in the same block, the block can be  
replaced by re-programming the current data and copying the rest of the replaced block  
to an available valid block. The Copy Back Program command can be used to copy the  
data to a valid block. See Section 6.4: Copy Back Program for more details.  
Read failure: in this case, ECC correction must be implemented. To efficiently use the  
memory space, it is recommended to recover single-bit error in read by ECC, without  
replacing the whole block.  
Refer to Table 12 for the procedure to follow if an error occurs during an operation.  
25/48  
Software algorithms  
NAND01GWxA2B-KGD  
Table 12. NAND Flash failure modes  
Operation  
Procedure  
Erase  
Program  
Read  
Block Replacement  
Block Replacement or ECC  
ECC  
Figure 10. Bad Block management flowchart  
START  
Block Address =  
Block 0  
Increment  
Block Address  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
AI07588C  
Figure 11. Garbage collection  
Old Area  
New Area (After GC)  
Valid  
Page  
Invalid  
Page  
Free  
Page  
(Erased)  
AI07599B  
26/48  
NAND01GWxA2B-KGD  
Software algorithms  
7.3  
Garbage collection  
When a data page needs to be modified, it is faster to write to the first available page, and  
the previous page is marked as invalid. After several updates it is necessary to remove  
invalid pages to free some memory space.  
To free this memory space and allow further program operations it is recommended to  
implement a Garbage Collection algorithm. In a Garbage Collection software the valid  
pages are copied into a free area and the block containing the invalid pages is erased (see  
Figure 11).  
7.4  
Wear-leveling algorithm  
For write-intensive applications, it is recommended to implement a Wear-leveling Algorithm  
to monitor and spread the number of write cycles per block.  
In memories that do not use a Wear-Leveling Algorithm not all blocks get used at the same  
rate.  
The Wear-leveling Algorithm ensures that equal use is made of all the available write cycles  
for each block. There are two wear-leveling levels:  
First Level Wear-leveling, new data is programmed to the free blocks that have had the  
fewest write cycles  
Second Level Wear-leveling, long-lived data is copied to another block so that the  
original block can be used for more frequently-changed data.  
The Second Level Wear-leveling is triggered when the difference between the maximum  
and the minimum number of write cycles per block reaches a specific threshold.  
7.5  
Error Correction code  
An Error Correction Code (ECC) can be implemented in the Nand Flash memories to  
identify and correct errors in the data.  
For every 2048 bits in the device it is recommended to implement 22 bits of ECC (16 bits for  
line parity plus 6 bits for column parity).  
An ECC model is available in VHDL or Verilog. Contact the nearest Numonyx sales office for  
more details.  
27/48  
Software algorithms  
NAND01GWxA2B-KGD  
Figure 12. Error detection  
New ECC generated  
during read  
XOR previous ECC  
with new ECC  
NO  
NO  
>1 bit  
= zero?  
All results  
= zero?  
YES  
YES  
22 bit data = 0  
11 bit data = 1  
1 bit data = 1  
ECC Error  
Correctable  
Error  
No Error  
ai08332  
28/48  
NAND01GWxA2B-KGD  
Program and Erase times and endurance cycles  
8
Program and Erase times and endurance cycles  
The Program and Erase times and the number of Program/ Erase cycles per block are  
shown in Table 13.  
Table 13. Program, Erase Times and Program Erase endurance cycles  
NAND01GW3A2B-KGD  
NAND01GW4A2B-KGD  
Parameters  
Unit  
Min  
Typ  
Max  
Page Program Time  
200  
2
500  
3
µs  
Block Erase Time  
ms  
Program/Erase Cycles (per block)  
(with ECC)  
100,000  
10  
cycles  
years  
Data Retention  
29/48  
Maximum rating  
NAND01GWxA2B-KGD  
9
Maximum rating  
Stressing the device above the ratings listed in Table 14: Absolute maximum ratings, may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the Numonyx SURE Program  
and other relevant quality documents.  
Table 14. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage  
Supply Voltage  
– 50  
– 65  
– 0.6  
– 0.6  
125  
150  
4.6  
4.6  
°C  
°C  
V
(1)  
VIO  
VDD  
V
1. Minimum Voltage may undershoot to –2 V for less than 20 ns during transitions on input and I/O pins.  
Maximum voltage may overshoot to VDD + 2 V for less than 20 ns during transitions on I/O pins.  
30/48  
NAND01GWxA2B-KGD  
DC and AC parameters  
10  
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 15: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the measurement conditions when relying on the  
quoted parameters.  
Table 15. Operating and AC measurement conditions  
Value  
Parameter  
Units  
Min  
Max  
Supply voltage (VDD  
)
3 V devices  
Grade 6  
2.7  
3.6  
85  
V
°C  
pF  
pF  
V
Ambient temperature (TA)  
–40  
2.7 - 3.6 V  
3.0 - 3.6 V  
50  
Load capacitance (CL) (1 TTL GATE  
and CL)  
100  
Input pulses voltages  
0.4  
2.4  
Input and output timing ref. voltages  
Input rise and fall times  
1.5  
5
V
ns  
kΩ  
Output circuit resistors, Rref  
8.35  
(1)(2)  
Table 16. Capacitance  
Symbol  
Parameter  
Test condition  
Typ  
Max  
Unit  
CIN  
Input capacitance  
VIN = 0 V  
20  
pF  
Input/Output  
capacitance  
CI/O  
VIL = 0 V  
20  
pF  
1.  
TA = 25 °C, f = 1 MHz. CIN and CI/O are not 100% tested.  
2. Input/output capacitances double on stacked devices.  
31/48  
DC and AC parameters  
NAND01GWxA2B-KGD  
Figure 13. Equivalent testing circuit for AC characteristics measurement  
V
DD  
2R  
ref  
NAND Flash  
C
L
2R  
ref  
GND  
GND  
Ai11085  
(1)  
Table 17. DC characteristics  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
Read  
IDD1  
-
10  
20  
mA  
E=VIL, OUT = 0 mA  
I
Operating  
current  
IDD2  
IDD3  
IDD4  
Program  
Erase  
-
-
-
-
-
10  
10  
-
20  
20  
1
mA  
mA  
mA  
Standby current (TTL),  
Standby current (CMOS)  
E=VIH, WP=0V/VDD  
E=VDD-0.2,  
WP=0/VDD  
IDD5  
-
20  
100  
µA  
ILI  
ILO  
Input Leakage current  
Output Leakage current  
Input High voltage  
VIN= 0 to VDDmax  
VOUT= 0 to VDDmax  
-
-
-
-
-
±10  
±10  
µA  
µA  
V
VIH  
0.8VDD  
-
VDD+0.3  
0.2VDD  
-
VIL  
Input Low voltage  
-
0.3  
2.4  
-
-
V
VOH  
VOL  
Output High voltage level  
Output Low voltage level  
Output Low current (RB)  
IOH = 400 µA  
IOL = 2.1 mA  
VOL = 0.4 V  
-
V
-
0.4  
V
IOL (RB)  
8
10  
mA  
VDD supply voltage (Erase and  
Program lockout)  
VLKO  
-
-
-
1.7  
V
1. Leakage currents double on stacked devices.  
32/48  
NAND01GWxA2B-KGD  
DC and AC parameters  
Table 18. AC characteristics for command, address, data input  
NAND01GW3A2B-KGD,  
Unit  
Symbol  
Alt.  
Parameter  
NAND01GW4A2B-KGD  
tALLWL  
tALHWL  
Address Latch Low to Write Enable Low  
Address Latch High to Write Enable Low  
AL Setup  
time  
tALS  
Min  
Min  
0
0
ns  
ns  
Command Latch High to Write Enable  
Low  
tCLHWL  
tCLLWL  
tDVWH  
tELWL  
CL Setup  
time  
tCLS  
Command Latch Low to Write Enable  
Low  
Data Setup  
time  
tDS Data Valid to Write Enable High  
Min  
Min  
20  
0
ns  
ns  
E Setup  
time  
tCS Chip Enable Low to Write Enable Low  
tWHALH  
tWHALL  
Write Enable High to Address Latch High  
tALH  
AL Hold  
time  
Min  
10  
10  
ns  
ns  
Write Enable High to Address Latch Low  
Write Enable High to Command Latch  
tWHCLH  
tWHCLL  
High  
tCLH  
CL hold time Min  
Write Enable High to Command Latch  
Low  
Data Hold  
Min  
tWHDX  
tWHEH  
tWHWL  
tDH Write Enable High to Data Transition  
tCH Write Enable High to Chip Enable High  
tWH Write Enable High to Write Enable Low  
10  
10  
15  
ns  
ns  
ns  
time  
E Hold time Min  
W High Hold  
Min  
time  
W Pulse  
Min  
25(1)  
50  
ns  
ns  
(1)  
tWLWH  
tWP Write Enable Low to Write Enable High  
tWC Write Enable Low to Write Enable Low  
Width  
Write Cycle  
Min  
tWLWL  
time  
1. If tELWL is less than 10ns, tWLWH must be minimum 35 ns, otherwise, tWLWH may be minimum 25 ns.  
33/48  
DC and AC parameters  
NAND01GWxA2B-KGD  
NAND01GW3A2B-  
Table 19. AC characteristics for operations  
KGD,  
Symbol  
Alt.  
Parameter  
Unit  
NAND01GW4A2B-  
KGD  
Read Electronic  
Signature  
tALLRL1  
Min  
10  
ns  
tAR  
Address Latch Low to Read Enable Low  
tALLRL2  
tBHRL  
Read cycle  
Min  
Min  
Max  
10  
20  
15  
ns  
ns  
µs  
tRR Ready/Busy High to Read Enable Low  
tBLBH1  
Read Busy time  
Program Busy  
time  
tBLBH2  
tBLBH3  
tPROG Ready/Busy Low to Ready/Busy High  
tBERS  
Max  
500  
3
µs  
ms  
µs  
Erase Busy time Max  
Reset Busy time,  
Max  
5
during ready  
Reset Busy time,  
Max  
5
µs  
µs  
µs  
during read  
tBLBH4  
tRST Write Enable High to Ready/Busy High  
Reset Busy time,  
Max  
10  
during program  
Reset Busy time,  
Max  
500  
during erase  
tCLLRL  
tDZRL  
tEHQZ  
tELQV  
tCLR Command Latch Low to Read Enable Low  
Min  
Min  
10  
0
ns  
ns  
ns  
ns  
tIR  
Data Hi-Z to Read Enable Low  
tCHZ Chip Enable High to Output Hi-Z  
tCEA Chip Enable Low to Output Valid  
Max  
Max  
20  
45  
Read Enable High  
Min  
tRHRL  
tREH Read Enable High to Read Enable Low  
tRHZ Read Enable High to Output Hi-Z  
15  
30  
ns  
ns  
Hold time  
tRHQZ  
tEHQX  
tRHQX  
Max  
TOH Chip Enable high or Read Enable high to Output Hold  
Read Enable  
Min  
10  
ns  
tRLRH  
tRLRL  
tRP  
Read Enable Low to Read Enable High  
Min  
Min  
25  
50  
ns  
ns  
Pulse Width  
tRC Read Enable Low to Read Enable Low Read Cycle time  
Read Enable  
Access time  
tREA Read Enable Low to Output Valid  
Read ES Access  
tRLQV  
Max  
30  
ns  
time(1)  
tWHBH  
tWHBL  
tWHRL  
tR  
Write Enable High to Ready/Busy High Read Busy time  
Max  
Max  
Min  
15  
100  
60  
µs  
ns  
ns  
tWB Write Enable High to Ready/Busy Low  
tWHR Write Enable High to Read Enable Low  
34/48  
NAND01GWxA2B-KGD  
DC and AC parameters  
NAND01GW3A2B-  
Table 19. AC characteristics for operations (continued)  
KGD,  
Symbol  
Alt.  
Parameter  
Unit  
NAND01GW4A2B-  
KGD  
tWLWL  
tWC Write Enable Low to Write Enable Low Write Cycle time  
tWW Write Protection time  
Min  
Min  
50  
ns  
ns  
tVHWH  
,
100  
(2)  
tVLWH  
1. ES = Electronic Signature.  
2. During a Program/Erase Enable Operation, tVHWH is the delay from WP high to W High.  
During a Program/Erase Disable Operation, tVLWH is the delay from WP Low to W High.  
Figure 14. Command Latch AC waveforms  
CL  
tCLHWL  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
(E Hold time)  
tELWL  
(E Setup time)  
E
tWLWH  
W
tALLWL  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
I/O  
tDVWH  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Command  
ai08028  
35/48  
DC and AC parameters  
NAND01GWxA2B-KGD  
Figure 15. Address Latch AC waveforms  
tCLLWL  
(CL Setup time)  
CL  
tELWL  
tWLWL  
tWLWL  
tWLWL  
(E Setup time)  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHALL  
tALHWL  
tWHWL  
tWHALL  
tWHWL  
tWHALL  
(AL Setup time)  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
tWHDX  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 1  
ai08029  
Figure 16. Data Input Latch AC waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWL  
tWLWL  
(ALSetup time)  
AL  
W
tWLWH  
tWLWH  
tWLWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai08030  
36/48  
NAND01GWxA2B-KGD  
DC and AC parameters  
Figure 17. Sequential Data Output after Read AC waveforms  
tEHQX  
tEHQZ  
1. CL = Low, AL = Low, W = High.  
Figure 18. Read Status Register AC waveform  
tEHQX  
37/48  
DC and AC parameters  
NAND01GWxA2B-KGD  
Figure 19. Read Electronic Signature AC waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
Man.  
code  
Device  
code  
I/O  
90h  
00h  
Read Electronic 1st Cycle  
Manufacturer and  
Device Codes  
Signature  
Command  
Address  
ai08039b  
1. Refer to Table 11 for the values of the Manufacturer and Device Codes.  
38/48  
NAND01GWxA2B-KGD  
DC and AC parameters  
Figure 20. Page Read A/ Read B Operation AC waveform  
CL  
E
tWLWL  
tEHQZ  
W
tWHBL  
AL  
tALLRL2  
tWHBH  
tRLRL  
tRHQZ  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
I/O  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
00h or  
01h  
Add.N Add.N Add.N  
cycle 2 cycle 3 cycle 4  
Add.N  
cycle 1  
Data Output  
from Address N to Last Byte or Word in Page  
Command  
Code  
Address N Input  
Busy  
tRHQX  
tEHQX  
ai08033c  
39/48  
DC and AC parameters  
NAND01GWxA2B-KGD  
Figure 21. Read C Operation, One Page AC waveform  
CL  
E
W
tWHBH  
tWHALL  
AL  
tALLRL2  
tBHRL  
R
Data  
Last  
Add. M Add. M Add. M Add. M  
cycle 1 cycle 2 cycle 3 cycle 4  
I/O  
RB  
50h  
Data M  
Command  
Code  
Data Output from M to  
Last Byte or Word in Area C  
Address M Input  
Busy  
ai08035b  
1. A0-A7 is the address in the Spare Memory area, where A0-A3 are valid and A4-A7 are ‘Don’t care’.  
40/48  
NAND01GWxA2B-KGD  
DC and AC parameters  
Figure 22. Page Program AC waveform  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N  
Add.N Add.N  
cycle 1 cycle 2  
Add.N  
cycle 3  
I/O  
RB  
80h  
Last  
N
10h  
70h  
SR0  
cycle 4  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai08037  
41/48  
DC and AC parameters  
NAND01GWxA2B-KGD  
Figure 23. Block Erase AC waveform  
CL  
E
tWLWL  
(Write Cycle time)  
W
AL  
R
tBLBH3  
tWHBL  
(Erase Busy time)  
Add.  
Add.  
Add.  
I/O  
RB  
60h  
D0h  
70h  
SR0  
cycle 1 cycle 2  
cycle 3  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038b  
Figure 24. Reset AC waveform  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
42/48  
NAND01GWxA2B-KGD  
DC and AC parameters  
Figure 25. Program/Erase Enable waveform  
W
tVHWH  
WP  
RB  
I/O  
80h  
10h  
ai12477  
Figure 26. Program/Erase Disable waveform  
W
tVLWH  
WP  
High  
RB  
I/O  
80h  
10h  
ai12478  
43/48  
DC and AC parameters  
NAND01GWxA2B-KGD  
10.1  
Ready/Busy signal electrical characteristics  
Figure 28, Figure 27 and Figure 29 show the electrical characteristics for the Ready/Busy  
signal. The value required for the resistor R can be calculated using the following equation:  
P
(
)
V
V
DDmax  
OLmax  
+ I  
-------------------------------------------------------------  
R min=  
P
I
L
OL  
So,  
1.85V  
---------------------------  
R min(1.8V)=  
P
+
3mA  
I
L
3.2V  
---------------------------  
R min(3V)=  
P
+
8mA  
I
L
where I is the sum of the input currents of all the devices tied to the Ready/Busy signal. R  
L
P
max is determined by the maximum value of t .  
r
Figure 27. Ready/Busy AC waveform  
ready V  
DD  
V
OH  
V
OL  
busy  
t
t
r
f
AI07564B  
Figure 28. Ready/Busy load circuit  
ibusy  
R
P
V
DD  
DEVICE  
RB  
Open Drain Output  
V
SS  
AI07563B  
44/48  
NAND01GWxA2B-KGD  
DC and AC parameters  
Figure 29. Resistor value versus waveform timings for Ready/Busy signal  
V
= 3.3V, C = 100pF  
L
DD  
400  
300  
200  
4
3
2
381  
290  
3.3  
1.89  
1.65  
100  
0
1
0.825  
96  
0.6  
4.2  
4.2  
4.2  
4.2  
1
2
3
4
R
(KΩ)  
P
t
t
r
ibusy  
f
ai13145  
1. T = 25°C.  
10.2  
Data Protection  
The Numonyx NAND device is designed to guarantee Data Protection during Power  
Transitions.  
A V detection circuit disables all NAND operations, if V is below the V threshold.  
LKO  
DD  
DD  
In the V range from V  
to the lower limit of nominal range, the WP pin should be kept  
DD  
LKO  
low (V ) to guarantee hardware protection during power transitions as shown in the below  
IL  
figure.  
Figure 30. Data protection  
Nominal Range  
V
DD  
V
LKO  
Locked  
Locked  
W
Ai11086  
45/48  
Ordering information  
NAND01GWxA2B-KGD  
11  
Ordering information  
Table 20. Ordering Information Scheme  
Example:  
NAND01GW3A  
2
B E0 6  
Device Type  
NAND = NAND Flash memory  
Density  
01G = 1 Gb  
Operating voltage  
W = VDD = 2.7 to 3.6 V  
Bus width  
3 = x 8  
4 = x 16  
Family identifier  
A = 528 bytes/ 264 word page  
Device options  
2 = Chip Enable Don’t Care Enabled  
Product version  
B = Second version  
Package  
E0 = Unsawn wafer  
Temperature range  
6 = –40 to 85 °C  
Devices are shipped from the factory with the memory content bits, in valid blocks, erased to  
’1’.  
For further information on any aspect of this device, please contact your nearest Numonyx  
Sales Office.  
46/48  
NAND01GWxA2B-KGD  
Revision history  
12  
Revision history  
Table 21. Document revision history  
Date  
Revision  
Changes  
10-Aug-2006  
0.1  
Initial release.  
Datasheet status updated to Preliminary data.  
24-Aug-2006  
1
Confidentiality level changed from Restricted Distribution to public.  
Datasheet status upgraded to ‘Full datasheet’.  
Data integrity of 100,000 specified for ECC implemented.  
18-May-2007  
04-Jan-2008  
2
3
Section 7.2 Block replacement replaced by Section 7.2: NAND Flash  
memory failure modes.  
tWHBH1 removed from Table 21: AC Characteristics for operations.  
Applied Numonyx branding.  
47/48  
NAND01GWxA2B-KGD  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx B.V. All Rights Reserved.  
48/48  

相关型号:

NAND01GW3A2BE06

Known Good Die, 1 Gbit (x 8/x 16), 528 Byte/264 word page, 3 V, NAND Flash memory
NUMONYX

NAND01GW3A2BN1

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BN1E

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BN1F

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BN1T

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BN6

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BN6E

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BN6F

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BN6T

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BV1

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BV1E

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR

NAND01GW3A2BV1F

128 Mbit, 256 Mbit, 512 Mbit, 1 Gbit (x8/x16) 528 Byte/264 Word Page, 1.8V/3V, NAND Flash Memories
STMICROELECTR